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Abstract. Let q be a non-negative integer. We prove that a perfect field K has cohomological
dimension at most q C 1 if, and only if, for any finite extension L of K and for any homogeneous
space Z under a smooth linear connected algebraic group over L, the q-th Milnor K-theory group
of L is spanned by the images of the norms coming from finite extensions of L over which Z has
a rational point. We also prove a variant of this result for imperfect fields.
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1. Introduction

In 1986, in the article [12], Kato and Kuzumaki stated a set of conjectures which aimed
at giving a diophantine characterization of cohomological dimension of fields. For this
purpose, they introduced some properties of fields which are variants of the classical
Ci -property and which involve Milnor K-theory and projective hypersurfaces of small
degree. They hoped that those properties would characterize fields of small cohomological
dimension.

More precisely, fix a field L and two non-negative integers q and i . Let KMq .L/ be
the q-th Milnor K-group of L. For each finite extension L0 of L, one can define a norm
morphism

NL0=L W K
M
q .L

0/! KMq .L/

(see [10, Section 1.7]). Thus, if Z is a scheme of finite type over L, one can introduce the
subgroup Nq.Z=L/ of KMq .L/ generated by the images of the norm morphisms NL0=L
when L0 runs through the finite extensions of L such that Z.L0/ ¤ ;. One then says
that the field L is C qi if, for each n � 1, for each finite extension L0 of L and for each
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hypersurface Z in PnL0 of degree d with d i � n, one has

Nq.Z=L
0/ D KMq .L

0/:

For example, the field L is C 0i if, for each finite extension L0 of L, every hypersurface Z
in PnL0 of degree d with d i � n has a 0-cycle of degree 1. The field L is C q0 if, for each
tower of finite extensions L00=L0=L, the norm morphism

NL00=L0 W K
M
q .L

00/! KMq .L
0/

is surjective.
Kato and Kuzumaki conjectured that, for i � 0 and q � 0, a perfect field is C qi

if, and only if, it is of cohomological dimension at most i C q. This conjecture gen-
eralizes a question raised by Serre in [18] asking whether the cohomological dimen-
sion of a Ci -field is at most i . As it was already pointed out at the end of Kato and
Kuzumaki’s original paper [12], Kato and Kuzumaki’s conjecture for i D 0 follows from
the Bloch–Kato conjecture (which has been established by Rost and Voevodsky, cf. [16]):
in other words, a perfect field is C q0 if, and only if, it is of cohomological dimension
at most q. However, it turns out that the conjectures of Kato and Kuzumaki are wrong
in general. For example, Merkurjev constructed in [14] a field of characteristic 0 and of
cohomological dimension 2 which did not satisfy property C 02 . Similarly, Colliot-Thélène
and Madore produced in [2] a field of characteristic 0 and of cohomological dimen-
sion 1 which did not satisfy property C 01 . These counter-examples were all constructed by
a method using transfinite induction due to Merkurjev and Suslin. The conjecture of Kato
and Kuzumaki is therefore still completely open for fields that usually appear in number
theory or in algebraic geometry.

In 2015, in [25], Wittenberg proved that totally imaginary number fields and p-adic
fields have the C 11 property. In 2018, in [9], the first author also proved that, given a posi-
tive integer n, finite extensions of C.x1; : : : ; xn/ and of C.x1; : : : ; xn�1/..t// are C qi for
any i; q � 0 such that i C q D n. These are essentially the only known cases of Kato and
Kuzumaki’s conjectures. In particular, the C 11 property is still unknown for several usual
fields with cohomological dimension 2, such as the field of rational functions C..t//.x/
or the field of Laurent series C..x; y//.

In the present article, for each non-negative integer q, we introduce variants of the C q1
property and we prove that, contrary to the C q1 property, they characterize the cohomo-
logical dimension of fields. More precisely, we say that a field L is C qHS if, for each finite
extension L0 of L and for each homogeneous space Z under a smooth linear connected
algebraic group over L0, one has

Nq.Z=L
0/ D KMq .L

0/:

Similarly, we say that a field L is C qPHS (resp. C qRed) if, for each finite extension L0

of L and for each principal homogeneous space Z under a smooth linear connected
(resp. reductive) algebraic group over L0, one has

Nq.Z=L
0/ D KMq .L

0/:

Our main theorem is the following (please refer to Section 2 for the definitions of the
cohomological dimension and the separable cohomological dimension).
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Main Theorem. Let q be a non-negative integer.

(i) A perfect field has the C qHS-property if, and only if, it has cohomological dimension at
most q C 1.

(ii) An imperfect field has the C qRed-property if, and only if, all its finite extensions have
separable cohomological dimension at most q C 1.

Remark 1.1. In fact, we will see in Section 3 that the properties C qHS and C qRed are much
stronger than what is actually needed to prove that a field has cohomological dimension
at most q C 1. More precisely, we will prove that (cf. Remark 3.4):
(1) A field K has cohomological dimension at most q C 1 if, for any tower of finite field

extensions M=L=K and any element a 2 L�, we have Nq.Z=L/ D KMq .L/ for the
L-variety Z defined by the normic equation NM=L.x/ D a.

(2) A field K has separable cohomological dimension at most q C 1 if it holds that
Nq.Z=L/ D K

M
q .L/ for any positive integer n, any finite separable extension L=K

and any PGLn;L-torsor Z.

Our Main Theorem, together with the previous remark, unifies and significantly gen-
eralizes several results in the literature:
� The theorems of Steinberg and Springer (see [18, Chapter III, Section 2.4]), which

state that, ifK is a perfect field with cohomological dimension at most one, then every
homogeneous space under a linear connected K-group has a zero-cycle of degree 1
(and even a rational point).
� A theorem of Suslin, which states that a field K of characteristic 0 has cohomolog-

ical dimension at most 2 if, and only if, for any finite extension L of K and any
central simple algebra A over L, the reduced norm Nrd W A� ! L� is surjective (see
[23, Corollary 24.9] or [6, Theorem 8.9.3]).
� A result of Gille which generalizes Suslin’s theorem to positive characteristic fields

(see [5, Theorem 7]).
� Two theorems of Wittenberg, which state that p-adic fields and totally imaginary

number fields have the property C 1HS (see [25, Corollaries 5.6 and 5.8]).
Since our result applies to all fields, our proof has to be purely algebraic and/or geo-

metric: contrary to the cases of p-adic fields and number fields dealt by Wittenberg, we
have to systematically avoid arithmetical arguments. In Section 2, we gather some gen-
eralities about the cohomological dimension of fields. In particular, we recall the “good”
definition of the cohomological dimension for positive characteristic fields as well as
a characterization of this invariant in terms of Milnor K-theory. In Section 3, we settle
the easy direction of our main theorem: in other words, we prove that a field L having
the C qRed-property has separable cohomological dimension at most q C 1. The core of the
article is Section 4, where we prove our main theorem in three steps:
(1) We first prove that, if P is a finite Galois module over a characteristic 0 field L of

cohomological dimension � q C 1 and ˛ is an element inH 2.L; P /, thenKMq .L/ is
spanned by the images of the norms coming from finite extensions ofL trivializing ˛.
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This requires to use the Bloch–Kato conjecture but also some properties of norm
varieties that have been established by Rost and Suslin.

(2) We then use a theorem of Steinberg and Step (1) to deal with principal homogeneous
spaces over characteristic zero fields; the case of principal homogeneous spaces over
positive characteristic fields is then solved by reducing to the characteristic 0 case.

(3) We finally deal with the case of homogeneous spaces over perfect fields by using
a theorem of Springer in non-abelian cohomology which reduces us to the case with
finite solvable stabilizers. We deal with this last case by using “dévissage” techniques
in non-abelian cohomology and Step (2).
Given a field L, if we denote by cd.L/ and by sd.L/ the cohomological dimension

and the separable cohomological dimension of L respectively, the following diagram
summarizes the implications we settle along the proof:

Case when L is perfect:

C
q
1

Proposition 3.2

��
cd.L/ � q C 1

Theorem 4.11 (i)
��

C
q
Red

Proposition 3.2
4<

C
q
PHS

Section 4.3
��

obvious
ks

C
q
HS

obvious

KS

Case when L is imperfect:

C
q
1

Proposition 3.2

��
8L0=L finite, sd.L0/ � q C 1

Theorem 4.11 (ii)
��

C
q
Red

Proposition 3.2

KS

Preliminaries on Milnor K-theory

Let L be any field and let q be a non-negative integer. The q-th Milnor K-group of L is
by definition the group

KM0 .L/ D Z

if q D 0 and

KMq .L/ WD L
�
˝Z � � � ˝Z L

�„ ƒ‚ …
q times

=hx1 ˝ � � � ˝ xq j 9i; j; i ¤ j; xi C xj D 1i

if q > 0. For x1; : : : ; xq 2 L�, the symbol ¹x1; : : : ; xqº denotes the class of x1˝ � � � ˝ xq
in KMq .L/. More generally, for r and s non-negative integers such that r C s D q, there
is a natural pairing

KMr .L/ �K
M
s .L/! KMq .L/

which we will denote ¹ � ; � º.
When L0 is a finite extension of L, one can construct a norm homomorphism

NL0=L W K
M
q .L

0/! KMq .L/;
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satisfying the following properties (see [10, Section 1.7] or [6, Section 7.3]):
� For q D 0, the map

NL0=L W K
M
0 .L

0/! KM0 .L/

is given by multiplication by ŒL0 W L�.
� For q D 1, the map

NL0=L W K
M
1 .L

0/! KM1 .L/

coincides with the usual norm L0� ! L�.
� If r and s are non-negative integers such that r C s D q, we have

NL0=L.¹x; yº/ D ¹x;NL0=L.y/º

for x 2 KMr .L/ and y 2 KMs .L
0/.

� If L00 is a finite extension of L0, we have

NL00=L D NL0=L ıNL00=L0 :

For each L-scheme of finite type, we denote by Nq.Z=L/ the subgroup of KMq .L/ gen-
erated by the images of the maps NL0=L W KMq .L

0/! KMq .L/ when L0 runs through the
finite extensions of L such that Z.L0/ ¤ ;. In particular, N0.Z=L/ is the subgroup of Z
generated by the index of Z (i.e. the gcd of the degrees ŒL0 W L� when L0 runs through the
finite extensions of L such that Z.L0/ ¤ ;).

2. Generalities on the cohomological dimension

We start the article by recalling the “good” definition of the cohomological dimension for
fields of any characteristic:

Definition 2.1. Let K be any field.
(i) Let ` be a prime number different from the characteristic of K. The `-cohomolog-

ical dimension cd`.K/ and the separable `-cohomological dimension sd`.K/ of K
are both the `-cohomological dimension of the absolute Galois group of K.

(ii) (Kato, [11]; Gille, [5]). Assume thatK has characteristic p > 0. Let�iK be the i -th
exterior product over K of the absolute differential module �1

K=Z and consider the
morphism piK W �

i
K ! �iK=d.�

i�1
K / defined by

x
dy1

y1
^ � � � ^

dyi

yi
7! .xp � x/

dy1

y1
^ � � � ^

dyi

yi
mod d.�i�1K /

for x 2 K and y1; : : : ; yi 2 K�: this morphism is well-defined by [6, Sections 9.2
and 9.4]. Let H iC1

p .K/ be the cokernel of piK . The p-cohomological dimension
cdp.K/ of K is the smallest integer i (or 1 if such an integer does not exist)
such that ŒK W Kp� � pi and H iC1

p .L/ D 0 for all finite extensions L of K. The
separable p-cohomological dimension sdp.K/ of K is the smallest integer i (or1
if such an integer does not exist) such that H iC1

p .L/ D 0 for all finite separable
extensions L of K.
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(iii) The cohomological dimension cd.K/ ofK is the supremum of all the cd`.K/ when
` runs through all prime numbers. The separable cohomological dimension sd.K/
of K is the supremum of all the sd`.K/ when ` runs through all prime numbers.

The following proposition is probably well known to experts, but we did not find an
appropriate reference covering the positive characteristic case:

Proposition 2.2. Let q be a non-negative integer, let ` be a prime number and let K be
any field.

(i) Assume that, for any tower of finite extensions M=L=K, the cokernel of the norm
NM=L W K

M
q .M/! KMq .L/ has no `-torsion. Then K has `-cohomological dimen-

sion at most q.

(ii) Assume that, for any tower of finite separable extensions M=L=K, the cokernel
of the norm NM=L W K

M
q .M/! KMq .L/ has no `-torsion. Then K has separable

`-cohomological dimension at most q.

Proof. The proofs of (i) and (ii) being very similar, we only prove (i).
First assume that ` is different from the characteristic of K. In that case, the proposi-

tion is essentially a consequence of [12, Lemma 7]. But we are going to give a full proof
since that lemma is only stated without proof. To do so, consider a finite extension L
of K and a symbol ¹a1; : : : ; aqC1º 2 KMqC1.L/. Let M be the splitting field of the poly-
nomial T ` � aqC1. Since the cokernel of NM=L W KMq .M/! KMq .L/ has no `-torsion,
we can find b 2 KMq .M/ such that ¹a1; : : : ; aqº � NM=L.b/ mod `KMq .L/. Hence

¹a1; : : : ; aqC1º � NM=L.¹b; aqC1º/ mod `KMqC1.L/;

and thus, by construction of M , we get

¹a1; : : : ; aqC1º 2 `K
M
qC1.L/

By the Bloch–Kato conjecture, we deduce that the group H qC1.L; �
˝.qC1/

`
/ is trivial.

This being true for any finite extensionL ofK, [18, Chapter I, Section 3.3, Corollary 1 and
Chapter I, Section 4.1, Proposition 21] then imply thatK has `-cohomological dimension
at most q.

Now assume that ` is the characteristic of K. We first prove that H qC1

`
.L/ D 0 for

all finite extensions L of K. We therefore consider such a finite extension L of K and an
element

x
dy1

y1
^ � � � ^

dyq

yq

of �qL with x 2 L and y1; : : : ; yq 2 L�. Let M be the splitting field of the polynomial
T ` � T � x over L. By assumption, we can find an element z 2 KMq .M/ such that

¹y1; : : : ; yqº � NM=L.z/ mod `KMq .L/:

Now recall the Bloch–Gabber–Kato theorem, which states that, if �.q/L denotes the
kernel of p

q
L, the differential symbol

 
q
L W K

M
q .L/=`K

M
q .L/! �.q/L; ¹a1; : : : ; aqº 7!

da1

a1
^ � � � ^

daq

aq
;
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is an isomorphism ([6, Theorem 9.5.2]). Through this isomorphism, the norm on Milnor
K-theory corresponds to the trace on modules of differential q-forms ([6, Lemma 9.5.7]).
Hence we can find an element z0 2 �.q/M such that

dy1

y1
^ � � � ^

dyq

yq
D trM=L.z0/:

By our choice of the field M , we know that the class of xz0 modulo d.�q�1M / is in the
image of p

q
M . We can therefore conclude that the class of

x
dy1

y1
^ � � � ^

dyq

yq

modulo d.�q�1L / is in the image of p
q
L by observing that the following diagram is com-

mutative:

�
q
M

p
q
M //

trM=L

��

�
q
M=d.�

q�1
M /

trM=L

��

�
q
L

p
q
L // �

q
L=d.�

q�1
L /.

We prove that ŒK W K`� � `q . Assume the contrary, so that we can find x1; : : : ; xqC1
a family of q C 1 elements of K which are `-independent (in the sense of [13, Sec-
tion 26]). By assumption, we can find w 2 KMq .K. `

p
xqC1// such that

NK. `
p
xqC1/=K.w/ D ¹x1; : : : ; xqº:

We then also have
NKs. `

p
xqC1/=Ks .w/ D ¹x1; : : : ; xqº;

where Ks denotes a separable closure of K. Since all finite extensions of Ks have degree
a power of `, it follows from [6, Corollary 7.2.10] that KMq .K

s. `
p
xqC1// is spanned,

as an abelian group, by elements of the form ¹b1; : : : ; bqº with b2; : : : ; bq 2 Ks and
b1 2 K

s. `
p
xqC1/. The image of such a symbol ¹b1; : : : ; bqº by NKs. `

p
xqC1/=Ks is the

symbol
¹NKs. `

p
xqC1/=Ks .b1/; b2; : : : ; bqº;

where NKs. `
p
xqC1/=Ks .b1/ 2 .K

s/`.xqC1/. Hence ¹x1; : : : ; xqº lies in the subgroup of
KMq .K

s/ spanned by elements of the form ¹c1; : : : ; cqº with c1 2 .Ks/`.xqC1/. In other
words, by the Bloch–Gabber–Kato theorem,

dx1

x1
^ � � � ^

dxq

xq

lies in the sub-Ks-vector space of �qKs spanned by the dxqC1 ^ ! with ! 2 �q�1Ks . By
[13, Theorem 26.5], this contradicts the `-independence of the family x1; : : : ; xqC1.

3. The C
q

HS, C
q

PHS and C
q

Red properties

Let q be a non-negative integer. In the article [12], Kato and Kuzumaki introduce the
notion of C q1 fields: they say that a field K satisfies the C q1 property if, for every finite
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extension L of K and for every hypersurface Z in PnL of degree d with d � n, we have
Nq.Z=L/ D K

M
q .L/. In this article, we are interested in the following variants of this

property:

Definition 3.1. Let q be a non-negative integer. We say that a fieldK has theC qHS property
if, for each finite extension L of K and for each homogeneous space Z under a smooth
linear connected algebraic group over L, one has Nq.Z=L/ D KMq .L/. Similarly, we
say that a field K has the C qPHS property (resp. the C qRed property) if, for each finite exten-
sionL ofK and for each principal homogeneous spaceZ under a smooth linear connected
(resp. reductive) algebraic group over L, one has Nq.Z=L/ D KMq .L/.

Of course, the C qHS property implies the C qPHS property, which itself implies the C qRed
property. The following proposition shows that a field satisfying those properties has small
cohomological dimension:

Proposition 3.2. Let K be a field.

(i) Assume that, for any tower of finite (resp. finite separable) extensions M=L=K and
any element a 2 L�, we have Nq.Z=L/ D KMq .L/ for the L-variety:

Z W NM=L.x/ D a:

Then K has cohomological dimension (resp. separable cohomological dimension) at
most q C 1.

(ii) Assume that, for any finite separable extension L=K and any Severi–Brauer L-vari-
ety Z, we have Nq.Z=L/ D KMq .L/. Then K has separable cohomological dimen-
sion at most q C 1.

Proof. Let us prove (i) first. The statements about the cohomological dimension and the
separable cohomological dimension can be proved in the same way, so we will only deal
with the cohomological dimension. By Proposition 2.2, we only need to prove that for
any tower of finite field extensions M=L=K, the norm

NM=L W K
M
qC1.M/! KMqC1.L/

is surjective. To do so, consider a symbol ¹a1; : : : ; aqC1º 2 KMqC1.L/. Also consider the
following variety:

Z W NM=L.x/ D a1:

By assumption, one can find finite extensions L1; : : : ; Lr of L such that´
8i 2 ¹1; : : : ; rº; Z.Li / ¤ ;

¹a2; : : : ; aqC1º 2 hNLi=L.K
M
q .Li // j 1 � i � ri:

In other words´
8i 2 ¹1; : : : ; rº; 9xi 2 .M ˝L Li /

�; NM˝LLi=Li
.xi / D a1

9.y1; : : : ; yr / 2
Qr
iD1K

M
q .Li /; ¹a2; : : : ; aqC1º D

Qr
iD1NLi=L.yi /:
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Hence

NM=L

 
rY
iD1

NM˝Li=M .¹xi ; yiº/

!
D

rY
iD1

NM˝Li=L.¹xi ; yiº/

D

rY
iD1

NLi=L.NM˝Li=Li
.¹xi ; yiº//

D

rY
iD1

NLi=L.¹NM˝Li=Li
.xi /; yiº/

D

rY
iD1

NLi=L.¹a1; yiº/

D

´
a1;

rY
iD1

NLi=L.yi /

µ
D ¹a1; a2; : : : ; aqC1º

and ¹a1; a2; : : : ; aqC1º is indeed in the image of NM=L W KMqC1.M/! KMqC1.L/.
Let us now prove (ii). To do so, fix a prime number ` and first assume that ` is different

from the characteristic of K. Consider a finite extension L of K containing a primitive
`-th root of unity and a symbol ¹a1; : : : ; aqC2º 2 H qC2.L;Z=`Z/. By assumption and by
the Bloch–Kato conjecture, one can find finite extensions L1; : : : ; Lr of L and elements
b1 2 Kq.L1/; : : : ; br 2 Kq.Lr / such that ¹a1; a2ºjLi

D 0 for each i and

¹a3; : : : ; aqC2º D

rX
iD1

CoresLi=L.bi /:

Hence

¹a1; : : : ; aqC2º D

rX
iD1

CoresLi=L.¹a1; a2º [ bi / D 0;

and the group H qC2.L;Z=`Z/ is trivial. This being true for any finite extension L of
K containing a primitive `-th root of unity, [18, Chapter I, Section 3.3, Corollary 1 and
Chapter I, Section 4.1, Proposition 21] then imply thatK has `-cohomological dimension
at most q C 1.

Let us finally assume that K has characteristic `. Fix a finite separable extension L of
K and an element

x
dy1

y1
^ � � � ^

dyqC1

yqC1
of �qC1L with x 2 L and y1; : : : ; yqC1 2 L�. Consider the cyclic central simple alge-
bra ˛ 2 ` BrL corresponding to the form x dy1

y1
through the isomorphism of [6, Theo-

rem 9.2.4]. By assumption, we can find finite extensions L1; : : : ; Lr of L and elements
z1 2 K

M
q .L1/, . . ., zr 2 KMq .Lr / such that ˛jLi

D 0 for each i and

¹y2; : : : ; yqC1º D

rY
i

NLi=L.zi /:
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Hence, by the Bloch–Gabber–Kato theorem ([6, Theorem 9.5.2]), we can find elements
z01 2 �.q/L1

; : : : ; z0r 2 �.q/Lr
such that

dy2

y2
^ � � � ^

dyqC1

yqC1
D

rX
iD1

trLi=L.z
0
i /:

We then have

x
dy1

y1
^ � � � ^

dyqC1

yqC1
D

rX
iD1

trLi=L

�
x
dy1

y1
^ z0i

�
2 Im.pqC1L /:

This proves that H qC2

`
.L/ D 0, as wished.

Remark 3.3. Since the varieties considered in Proposition 3.2 (i) are, up to homoge-
nization, hypersurfaces of degree d D ŒM W L� in PdL , this shows that a C q1 field has
cohomological dimension at most q C 1. This fact seems to have been overlooked in the
literature: for instance, in [25, Theorem 4.2], the assumption concerning the C q0 property
is unnecessary.

Remark 3.4. As stated in the introduction, Proposition 3.2 shows that, in order to check
that a field has separable cohomological dimension at most q C 1, it suffices to check one
of the following conditions:
(a) For each finite extension L of K and each torsor Z under a normic torus over L, we

have Nq.Z=L/ D KMq .L/.
(b) For each positive integer n, each finite extension L of K and each PGLn;L-torsor Z,

we have Nq.Z=L/ D KMq .L/.
In particular, a field having the C qRed property has separable cohomological dimension at
most q C 1.

4. Proof of the Main Theorem

This section is devoted to the proof of the following theorem, which corresponds to the
“difficult” direction of our Main Theorem:

Theorem 4.1. Let q be a non-negative integer. Let K be a any field.

(i) If K is perfect and has cohomological dimension at most q C 1, then for any homo-
geneous space Z under a smooth linear connected group over K, we have

Nq.Z=K/ D K
M
q .K/:

(ii) IfK is imperfect and all its finite extensions have separable cohomological dimension
at most q C 1, we have

Nq.Z=K/ D K
M
q .K/

for any principal homogeneous spaceZ under a (smooth, connected) reductive group
over K.
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Note that our Main Theorem immediately follows from Proposition 3.2, Theorem 4.1
and the fact that cohomological dimension, when it is finite, is preserved under finite
separable extensions.

4.1. First step: Trivializing Galois cohomology classes

In this first step of the proof of theorem 4.1, we are interested in the following variant of
the groups Nq.Z=K/:

Definition 4.2. Let K be a characteristic zero field and let P be a finite Galois module
over K. Fix a cohomology class ˛ 2 H 2.K; P /. We define Nq.˛=K/ as the subgroup of
KMq .K/ spanned by the images of the norms coming from finite extensions L of K such
that ˛jL D 0 2 H 2.L; P /.

The main result we are going to prove in this context is the following:

Theorem 4.3. Let q be a non-negative integer and letK be a field of characteristic 0. Fix
an algebraic closureK. Assume that we are given a Galois extensionK1 ofK inK such
that:

(A) for each finite extension L of K and each prime number `, the morphism

H qC2.L; �
˝.qC1/

`
/! H qC2.LK1; �

˝.qC1/

`
/

is injective,

(B) for each finite extension L of K and each prime number ` such that L contains
a primitive `-th root of unity, the group ` Br.LK1=L/ is spanned by cyclic central
algebras.

Then for any finite Galois module P overK which becomes diagonalisable overK1 and
any cohomology class ˛ 2 Ker.H 2.K; P /! H 2.K1; P //, we have

Nq.˛=K/ D K
M
q .K/:

By takingK1 D K and by applying the Merkurjev–Suslin theorem ([16]), we obtain
the following corollary:

Corollary 4.4. Let q be a non-negative integer and let K be a field of characteristic 0
and of cohomological dimension at most q C 1. For any finite Galois module P over K
and any cohomology class ˛ 2 H 2.K; P /; we have Nq.˛=K/ D KMq .K/.

Remark 4.5. In order to prove Theorem 4.1 for perfect fields, we will only need the pre-
vious corollary. But to deal with imperfect fields, we will need to consider other choices
for K1 and hence we will have to use the more general Theorem 4.3.

4.1.1. The Galois module Z=`Z.

Proposition 4.6. Let q be a non-negative integer, let ` be a prime number and let K be
a field of characteristic 0. Consider q C 2 elements a1; : : : ; aqC2 in K� such that the
symbol ¹a1; : : : ; aqC2º is trivial in KMqC2.K/=`. Set ˛ WD ¹a1; a2º 2 H 2.K;�˝2

`
/. Then

¹a3; : : : ; aqC2º 2 Nq.˛=K/.
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Proof. We proceed by induction on q, noting that if q D 0, there is nothing to prove.
Assume then that the proposition is true for some integer q � 0 and consider q C 3 ele-
ments a1; : : : ; aqC3 in K� such that the symbol ¹a1; : : : ; aqC3º is trivial in KMqC3.K/=`.
Observe that, if ˛ D 0, there is nothing to prove. Hence we may and do assume that
˛ ¤ 0.

LetK` be the field fixed by an `-Sylow subgroup of Gal.K=K/. Since ˛¤ 0, a restric-
tion-corestriction argument shows that ˛jK`

¤ 0. Let m 2 ¹2; : : : ; q C 2º be the largest
integer such that ¹a1; : : : ; amºjK`

¤ 0 2 Hm.K`; �
˝m
`
/. In view of [24, Theorem 1.21],

there exists a geometrically irreducible projective `-generic splitting �m�1-variety X for
¹a1; : : : ; amºjK`

(see [24, Definitions 1.10 and 1.20]). Moreover, by [24, Theorem A.1],
we have an exact sequenceM

x2X closed

K`.x/
�

L
NK`.x/=K`

���������! K�`
¹a1;:::;amº[
���������! KMmC1.K`/=`:

Since ¹a1; : : : ; amC1ºjK`
D 0 2 HmC1.K`; �

˝mC1
`

/, we deduce that there are r closed
points x1; : : : ; xr in X and an element bi 2 K`.xi /� for each i 2 ¹1; : : : ; rº such that
amC1 D

Qr
iD1NK`.xi /=K`

.bi /.
Now, for each i , the symbol ¹a1; : : : ; amºjK`.xi / is trivial in Hm.K`.xi /; �

˝m
`
/. By

the inductive assumption, we deduce that ¹a3; : : : ; amº 2 Nm�2.˛jK`.xi /=K`.xi // for
each i . In other words, we can find some finite extensions Ki;1; : : : ; Ki;ri of K`.xi / and
an ri -tuple .ci;1; : : : ; ci;ri / 2

Qri
jD1K

M
m�2.Ki;j / such that´

˛jKi;j
D 0 for each j 2 ¹1; : : : ; riº;

¹a3; : : : ; amº D
Qri
jD1NKi;j =K`.xi /.ci;j /:

We then compute
rY
iD1

riY
jD1

NKi;j =K`
.¹ci;j ; bi ; amC2; : : : ; aqC3º/

D

rY
iD1

riY
jD1

NK`.xi /=K`
.NKi;j =K`.xi /.¹ci;j ; bi ; amC2; : : : ; aqC3º//

D

rY
iD1

NK`.xi /=K`
.¹a3; : : : ; am; bi ; amC2; : : : ; aqC3º/

D ¹a3; : : : ; aqC3º:

Hence
¹a3; : : : ; aqC3ºjK`

2 NqC1.˛jK`
=K`/:

This means that there exists a finite extension K 0 of K contained in K` such that

¹a3; : : : ; aqC3ºjK0 2 NqC1.˛jK0=K
0/:

Since ` does not divide the degree of the extension K 0=K, we deduce that

¹a3; : : : ; aqC3º 2 NqC1.˛=K/:
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As a corollary, we obtain the following particular case of Theorem 4.3:

Corollary 4.7. Let q be a non-negative integer and let ` be a prime number. Let K be
a field of characteristic 0. Fix an algebraic closure K. Assume that we are given a Galois
extension K1 of K in K satisfying assumptions (A) and (B) of Theorem 4.3. Then for
any ˛ 2 Ker.H 2.K;Z=`Z/! H 2.K1;Z=`Z//, we have Nq.˛=K/ D KMq .K/.

Proof. If K contains a primitive `-th root of unity, this follows immediately from the
previous proposition, the fact that ˛jK1 D 0 and assumptions (A) and (B) of Theorem
4.3. We may hence assume that K does not contain any primitive `-th root of unity. In
that case, let �` be a primitive `-th root of unity in K. Then we know that

Nq.˛jK.�`/=K.�`// D K
M
q .K.�`//;

so that Nq.˛=K/ contains ŒK.�`/ W K�KMq .K/. Moreover, for each prime number p dif-
ferent from `, if L is a finite Galois extension of K such that ˛jL D 0 and if Lp is
a field fixed by a p-Sylow subgroup of Gal.L=K/, then a restriction-corestriction argu-
ment shows that ˛jLp

D 0, so that Nq.˛=K/ contains ŒLp W K�KMq .K/. We deduce that
Nq.˛=K/ D K

M
q .K/.

4.1.2. Behavior with respect to “dévissages”. In order to reduce Theorem 4.3 to the
case studied in the previous paragraph, we will need to carry out some “dévissages”.
The following easy lemma will be very useful for that purpose:

Lemma 4.8. Let q be a non-negative integer. Let K be a field of characteristic 0, fix
an algebraic closure K and consider an exact sequence of finite Galois modules

0! P ! Q! R! 0:

Let K1 be an algebraic extension of K in K such that, for each finite extension L
of K, the morphism H 2.LK1; P /! H 2.LK1;Q/ is injective. Make the following
assumptions:

(i) for any ˇ 2 Ker.H 2.K;R/! H 2.K1; R//, we have Nq.ˇ=K/ D KMq .K/,

(ii) for any finite extension L of K and for any 
 2 Ker.H 2.L; P /! H 2.LK1; P //,
we have Nq.
=L/ D KMq .L/.

Then, for any ˛ 2 Ker.H 2.K;Q/! H 2.K1;Q//, we have Nq.˛=K/ D KMq .K/.

Proof. Let ˛ be an element of Ker.H 2.K;Q/! H 2.K1;Q//; take any x 2 KMq .K/.
Let ˇ be the image of ˛ in H 2.K;R/. By assumption (i), one can then find some finite
extensions K1; : : : ; Kr of K and an r-tuple .x1; : : : ; xr / 2

Qr
iD1K

M
q .Ki / such that8̂<̂

:
ˇjKi

D 0 for each i 2 ¹1; : : : ; rº;

x D

rY
iD1

NKi=K.xi /:

One then observes that, for each i , one can lift the class ˛jKi
2 H 2.Ki ;Q/ to a class


i 2 H
2.Ki ; P /. Since H 2.KiK1; P /! H 2.KiK1;Q/ is injective, 
i lies in fact in

Ker.H 2.Ki ; P /! H 2.KiK1; P //. By assumption (ii), one can then find some finite
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extensionsKi;1; : : : ; Ki;ri ofKi and an ri -tuple .xi;1; : : : ; xi;ri / 2
Qri
jD1K

M
q .Ki;j / such

that 8̂̂<̂
:̂

i jKi;j

D 0 for each j 2 ¹1; : : : ; riº;

xi D

riY
jD1

NKi;j =Ki
.xi;j /:

Hence x D
Qr
iD1

Qri
jD1NKi;j =K.xi;j /, and x 2 Nq.˛=K/.

4.1.3. Proof of Theorem 4.3. We are now ready to prove Theorem 4.3.

Proof of Theorem 4.3. Consider a finite Galois module P over K which becomes diag-
onalizable over K1 and a cohomology class ˛ 2 Ker.H 2.K; P /! H 2.K1; P //. We
want to prove that Nq.˛=K/ D KMq .K/.

Given a prime number `, one can write the exact sequence of Galois modules

0! `P ! P ! P=`P ! 0:

Now note that, since P is diagonalizable over K1, one can write an isomorphism of
Galois modules over K1

P jK1 Š P
0
�

rY
iD1

�`si

for some Galois module P 0 of order prime to ` and for some positive integers s1; : : : ; sr .
For each finite extension L of K, the morphism H 2.LK1; `P /! H 2.LK1; P / can
therefore be identified with the morphism

H 2.LK1; P
0/ �

rY
iD1

H 2.LK1; �`si�1/! H 2.LK1; P
0/ �

rY
iD1

H 2.LK1; �`si /;

which is always injective. Hence, by carrying out an induction on the exponent of P in
which we repeatedly apply Lemma 4.8 and in which the field K varies, we can assume
that P is `-torsion for some prime number `.

Now consider a finite Galois extension L of K such that ˛jL D 0 and Gal.L=L/
acts trivially on P . Fix a prime number p and let Lp be a field fixed by a p-Sylow of
Gal.L=K/. Consider the two following cases.

First case: p ¤ `. Since ˛jL D 0, we see by a restriction-corestriction argument that
˛jLp

D 0. Hence Nq.˛=K/ contains ŒLp W K�KMq .K/.

Second case: p D `. Since Gal.L=Lp/ is a p-group and since P is an Fp-vector space,
we can find a basis of P such that all the elements of Gal.L=Lp/ act on P via a unipotent
upper-triangular matrix. This means that we have a dévissage of Galois modules over Lp

0! Z=pZ! P ! P1 ! 0

0! Z=pZ! P1 ! P2 ! 0
:::

0! Z=pZ! Ps�1 ! Ps ! 0;
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with Ps D Z=pZ. Since P becomes diagonalizable over K1, all these exact sequences
split over LpK1. Hence, by applying Corollary 4.7 and Lemma 4.8, it follows that
Nq.˛jLp

=Lp/ D K
M
q .Lp/. Hence Nq.˛=L/ contains ŒLp W L�KMq .L/.

Thus Nq.˛=L/ contains ŒLp W L�KMq .L/ for every prime p, which implies that

Nq.˛=L/ D K
M
q .L/:

4.2. Second step: Principal homogeneous spaces

In this second step, we prove Theorem 4.1 (i) for principal homogeneous spaces under
smooth connected linear groups as well as Theorem 4.1 (ii). We start with the character-
istic 0 case.

Proposition 4.9. Let q be a non-negative integer. Let K be a field of characteristic 0
and with cohomological dimension at most q C 1. Then for any principal homogeneous
space Z under a quasi-split reductive K-group G, we have Nq.Z=K/ D KMq .K/.

Proof. LetZ be a principal homogeneous space under a quasi-split reductiveK-groupG.
Let z be the class of Z in H 1.K;G/. By [22, Theorem 11.1], we have

H 1.K;G/ D
[
T�G

Im
�
H 1.K; T /! H 1.K;G/

�
;

where T runs over the maximalK-tori ofG. Let then Tz be a maximalK-torus ofG such
that z can be lifted to a class Qz 2 H 1.K; Tz/. By Ono’s lemma ([15, Theorem 1.5.1]), we
can find an exact sequence

0! F ! R0 ! T nz �R1 ! 0

for some positive integer n, some quasi-trivial tori R0 and R1 and some finite commu-
tative algebraic group F . By considering the associated cohomology exact sequence, we
get an injection H 1.K; Tz/

n ,! H 2.K; F /. If ˛ 2 H 2.K; F / stands for the image of
the n-tuple . Qz; : : : ; Qz/ 2 H 1.K; Tz/

n, then Nq.˛=K/ is contained in Nq.Z=K/. But by
Corollary 4.4, we have Nq.˛=K/ D KMq .K/. Hence Nq.Z=K/ D KMq .K/.

Theorem 4.10. Let q be a non-negative integer. Let K be a field of characteristic 0
and with cohomological dimension at most q C 1. Then for any principal homogeneous
space Z under a connected linear K-group G, we have Nq.Z=K/ D KMq .K/.

Proof. LetG a connected linearK-group,U its unipotent radical andZ a principal homo-
geneous space under G. Then Z0 D Z=U is naturally a G=U -torsor and, since H 1 is
trivial for unipotent groups (cf. [18, Chapter III, Section 2.1, Proposition 6]), we know
that every fiber ofZ ! Z0 (which is a U -torsor) has rational points. Then it is easy to see
that the result holds for Z as soon as it holds for Z0.

Assume then that G is reductive and let Z be as above. Then there exists a quasi-split
reductive K-group H and a class Œa� 2 H 1.K;H/ such that G D aH ([21, Proposi-
tion 16.4.9]). Fix an element x in KMq .K/. By Proposition 4.9, we can find some finite
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extensions K1; : : : ; Kr of K and an r-tuple .x1; : : : ; xr / 2
Qr
iD1K

M
q .Ki / such that8̂<̂

:
Œa�jKi

D 0 for each i 2 ¹1; : : : ; rº;

x D

rY
iD1

NKi=K.xi /:

Hence for each i , the reductive group GKi
is quasi-split. By applying Proposition 4.9

once again, we can find some finite extensions Ki;1; : : : ; Ki;ri of Ki and an ri -tuple
.xi;1; : : : ; xi;ri / 2

Qri
jD1K

M
q .Ki;j / such that8̂̂<̂

:̂
Z.Ki;j / ¤ ; for each j 2 ¹1; : : : ; riº;

xi D

riY
jD1

NKi;j =Ki
.xi;j /:

Hence x D
Qr
iD1

Qri
jD1NKi;j =K.xi;j /, and x 2 Nq.Z=K/.

We now deal with fields of positive characteristic.

Theorem 4.11. Let q be a non-negative integer and let K be any field of characteristic
p > 0.

(i) IfK is perfect and has cohomological dimension at most q C 1, then for any principal
homogeneous space Z under a smooth linear connected group over K, we have

Nq.Z=K/ D K
M
q .K/:

(ii) IfK is imperfect and all its finite extensions have separable cohomological dimension
at most q C 1, we have

Nq.Z=K/ D K
M
q .K/

for any principal homogeneous space Z under a reductive group over K.

Proof. We start by proving (i). Let Z be a principal homogeneous space under a smooth
linear connected K-group G. Let also ¹u1; : : : ; uqº be a symbol in KMq .K/. We want to
prove that ¹u1; : : : ; uqº 2 Nq.Z=K/.

Since K is a perfect field, the triviality of H 1 for unipotent groups still holds in this
case. Then, by proceeding as in the proofs of Proposition 4.9 and Theorem 4.10, we may
and do assume that G is a torus T . We can then find an isotrivial torus QT on the ring of
Witt vectors W.K/ which lifts T . Moreover, since the map H 1.W.K/; QT /! H 1.K; T /

is an isomorphism ([7, Theorem 11.7]), we can find a lifting QZ of Z to W.K/. Let QT and
QZ be the generic fibers of QT and QZ respectively: they are defined on the fraction field QK

of W.K/.
By [11, Theorem 3], the cohomological dimension of QK is at most q C 2. Hence, by

Theorem 4.10, we know that NqC1. QZ= QK/ D KMqC1. QK/. We can therefore find r finite
extensions QK1; : : : ; QKr of QK and an r-tuple .x1; : : : ; xr / 2

Qr
iD1K

M
q .
QKi / such that8̂<̂

:
QZ. QKi / ¤ ; for each i 2 ¹1; : : : ; rº;

¹p; Qu1; : : : ; Quqº D

rY
iD1

N QKi= QK
.xi /
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for some liftings Qu1; : : : ; Quq 2 W.K/� of u1; : : : ; uq . Denote by k1; : : : ; kr the residue
fields of QK1; : : : ; QKr . Using the compatibility of the norm morphism in Milnor K-theory
with the residue maps ([6, Proposition 7.4.1]), we deduce that ¹u1; : : : ; uqº is a product of
norms coming from the ki . Moreover, for each i 2 ¹1; : : : ; nº, the restriction morphism
H 1.O QKi

; QT /! H 1. QKi ; QT / can be identified with the inflation morphism

H 1. QKnri =
QKi ;H

0. QKnri ;
QT //! H 1. QKi ; QT /

and is therefore injective. This implies that Z.ki / ¤ ;, so that ¹u1; : : : ; uqº 2 Nq.Z=K/
and (i) is proved.

We now prove statement (ii). Let Z be a principal homogeneous space under a reduc-
tive K-group G. There is an exact sequence

1! H ! G ! S ! 1

in which H is semisimple and S is an isotrivial torus. Such a sequence induces a coho-
mology exact sequence

H 1.K;H/! H 1.K;G/! H 1.K; S/:

Hence, by using a variant of Lemma 4.8 for non-abelian cohomology, we can reduce to
the case where G is a semisimple group or an isotrivial torus. But the case where G is
semisimple can itself be reduced to the case whereG is an isotrivial torus by proceeding as
in the proofs of Proposition 4.9 and Theorem 4.10, by observing that [22, Theorem 11.1]
still holds for semisimple groups over imperfect fields (see [19, Theorem 2]) and by using
the isotriviality of maximal tori of semisimple groups. We henceforth assume that G is an
isotrivial torus T . By adopting the same notations as in part (i) and by proceeding exactly
in the same way, we only need to prove that

NqC1. QZ= QK/ D K
M
qC1.

QK/:

Here, the field QK need not have cohomological dimension at most q C 2, and hence
we cannot directly use Theorem 4.10. But we know that the torus QT is unramified. Hence,
by Hilbert’s Theorem 90, we know that ŒZ� 2 Ker.H 1. QK; QT /! H 1. QKnr ; QT //. By using
Ono’s lemma just as in Proposition 4.9, we see that we only need to prove that, for any
finite Galois module M over K which becomes diagonalisable over Knr and any coho-
mology class ˛ 2 Ker.H 2. QK;M/! H 2. QKnr ;M//, we haveNqC1.˛= QK/ D KMqC1. QK/.
But since all finite extensions of K have separable cohomological dimension at most
q C 1, [5, Lemma 1] and [11, Theorem 3 (1)] imply that the restriction map

H qC3.L; �˝.qC2/p /! H qC3.Lnr ; �˝.qC2/p /

is injective for every finite extension L of QK. One can therefore apply Theorem 4.3 with
QK1 D QK

nr , provided that one checks the following lemma.

Lemma 4.12. LetK be a complete discrete valuation field of mixed characteristic .0; p/.
Let k be the residue field of K and assume that K contains a primitive p-th root of unity.
Then the group p Br.Knr=K/ is spanned by cyclic central simple algebras.



D. Izquierdo, G. Lucchini Arteche 18

Proof. By [17, Chapter XII, Section 3, Exercise 3], we have the exact sequence

0! Br k ! Br.Knr=K/! H 1.k;Q=Z/! 0:

By Albert’s theorem ([6, Theorem 9.1.8]), every element in p Br k is represented by
a cyclic algebra. Moreover, if � is an element in H 1.k;Q=Z/, then a lifting of � in
Br.Knr=K/ is given by the cyclic algebra . Q�; �/ where Q� 2 H 1.K;Q=Z/ is the unram-
ified lifting of � and � is a uniformizer in K. Hence every element in p Br.Knr=K/ is
a sum of at most two cyclic algebras.

Remark 4.13. With these two first steps, we have already proved that a perfect field K
of cohomological dimension at most q C 1 is C qPHS. We have also proved part (ii) of
Theorem 4.1.

4.3. Third step: Homogeneous spaces

We finally prove part (i) of Theorem 4.1. For this purpose, recall the following theorem
of Springer ([20, Theorem 3.4]):

Theorem 4.14. Let K be a perfect field with algebraic closure K, let L be a K-kernel
with underlying (smooth)K-algebraic groupG. Then for every � 2 H 2.K;L/, there exist
a (smooth) finite nilpotent K-subgroup F � G, a K-kernel F with underlying K-group
F and an injective morphism ofK-kernels F ! L compatible with the inclusion F � G
such that the induced relation H 2.K; F / ( H 2.K;L/ has � in its image.

Proof of Theorem 4.1. LetK be a perfect field of cohomological dimension at most q C 1
and Z a homogeneous space under a smooth linear connected K-group G. We claim that
we may assume that Z has smooth stabilizers (which of course is automatic in char-
acteristic 0). Indeed, consider the Frobenius twist Z.p/ and the Frobenius morphism
Z ! Z.p/, which is surjective since Z is smooth. Since the Frobenius twist is func-
torial and it does not modify rational points (cf. [1, Exposé VIIA, Paragraph 4.1]), we
may replace G by G=FrG, where FrG denotes the kernel of G ! G.p/. The stabiliz-
ers will be thus replaced by the corresponding quotient by the Frobenius kernel. By
[1, Exposé VIIA, Proposition 8.3] we know that some power of this construction will
give smooth stabilizers.

Now, following [3, Section 2.3], we associate to Z a gerb M and an injective mor-
phism of gerbs M! TORS.G/, where TORS.G/ is the trivial gerb of torsors under G.
The gerb M represents a class � 2 H 2.K;L/ for someK-kernel L with smooth underly-
ingK-group. Springer’s Theorem 4.14 tells us then that there exists an injective morphism
of gerbs MF !M with MF a finite gerb whose underlying group F is smooth and
nilpotent. By [3, Proposition 3.2], this implies the existence of a homogeneous space
ZF under G with finite nilpotent stabilizers and an (a fortiori surjective) G-morphism
ZF ! Z. Since clearly NK0=K.ZF =K/ � NK0=K.Z=K/, we may and do assume that
the stabilizers of Z are finite and solvable.

Consider then the gerb M with underlying (smooth, finite, solvable) K-group F .
It represents a class � 2 H 2.K; F / for some finite K-kernel F . We proceed by induc-
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tion on the order of F , noting that the case of order 1 corresponds to G-torsors, which are
already dealt with by Theorem 4.10.

Denote by F 0 D ŒF; F � the derived subkernel of F . It is indeed well-defined since
the underlyingK-subgroup F

0
is characteristic in F . By the “functoriality” of non-abelian

H 2 for surjective morphisms (cf. [3, Section 2.2.3]), we obtain from � 2 H 2.K; F /

a class �ab 2 H 2.K; F ab/, whereF ab is the finite abelianK-group (D K-kernel) naturally
obtained from F=F 0 (cf. for instance [4, Paragraph 1.15]).

Choose an element x 2 KMq .K/. By Corollary 4.4, we can find some finite extensions
K1; : : : ; Kr of K and an r-tuple .x1; : : : ; xr / 2

Qr
iD1K

M
q .Ki / such that8̂<̂

:
�ab
jKi
D 0 for each i 2 ¹1; : : : ; rº;

x D

rY
iD1

NKi=K.xi /:

Using for instance the cocyclic approach to the classes in H 2.K; F /, we immediately
see that the triviality of �abjKi

implies that �jKi
comes from H 2.Ki ; F

0/. This implies
in turn that there exist Ki -gerbs Mi with underlying kernel F 0 and injective morphisms
of gerbs Mi !M which, composed with M! TORS.G/, prove by [3, Proposition 3.2]
the existence of GKi

-homogeneous spaces Zi with geometric stabilizers isomorphic to
F
0

and GKi
-equivariant morphisms Zi ! ZKi

. By the inductive assumption, we deduce
thatNq.Zi=Ki / D KMq .Ki /. We can therefore find some finite extensionsKi;1; : : : ; Ki;ri
of Ki and an ri -tuple .xi;1; : : : ; xi;ri / 2

Qri
jD1K

M
q .Ki;j / such that8̂̂<̂

:̂
Zi .Ki;j / ¤ ; for each j 2 ¹1; : : : ; riº;

xi D

riY
jD1

NKi;j =Ki
.xi;j /:

Hence x D
Qr
iD1

Qri
jD1NKi;j =K.xi;j /, and x 2 Nq.Z=K/.

Remark 4.15. In the case of fields of characteristic 0, there is a second proof of our Main
Theorem that completely avoids the use of gerbs by using the main result in [3]. This result
allows to reduce the proof to the cases of homogeneous spaces of SLn with finite stabi-
lizer and homogeneous spaces of semisimple simply connected groups with stabilizers of
“ssu-type”. There is still some basic non-abelian cohomology to be dealt with in the latter
case, but it is much less technical (the point being that all the gerbs are hidden in the
results by Demarche and the second author). The case of SLn and finite stabilizers is eas-
ily reduced to the case of solvable stabilizers by a restriction-corestriction argument using
the Sylow subgroups of the stabilizers. Then one can follow the techniques on universal
torsors used by Harpaz and Wittenberg in [8] in order to get a proof by induction that
completely avoids non-abelian cohomology.

Acknowledgments. We thank Olivier Wittenberg, Tamás Szamuely and the anonymous referees for
very useful comments.

Funding. The second author’s research was partially supported by Conicyt via Fondecyt Grant
11170016 and PAI Grant 79170034.



D. Izquierdo, G. Lucchini Arteche 20

References

[1] Schémas en groupes (SGA3). Tome I. Propriétés générales des schémas en groupes. Doc.
Math. (Paris) 7, Société Mathématique de France, Paris (2011) Zbl 1241.14002
MR 2867621

[2] Colliot-Thélène, J.-L., Madore, D. A.: Surfaces de del Pezzo sans point rationnel sur un corps
de dimension cohomologique un. J. Inst. Math. Jussieu 3, 1–16 (2004) Zbl 1056.14030
MR 2036596

[3] Demarche, C., Lucchini Arteche, G.: Le principe de Hasse pour les espaces homogènes:
réduction au cas des stabilisateurs finis. Compos. Math. 155, 1568–1593 (2019)
Zbl 07077747 MR 3977320

[4] Flicker, Y. Z., Scheiderer, C., Sujatha, R.: Grothendieck’s theorem on non-abelian H2 and
local-global principles. J. Amer. Math. Soc. 11, 731–750 (1998) Zbl 0893.14015
MR 1608617

[5] Gille, P.: Invariants cohomologiques de Rost en caractéristique positive.K-Theory 21, 57–100
(2000) Zbl 0993.20031 MR 1802626

[6] Gille, P., Szamuely, T.: Central Simple Algebras and Galois Cohomology. Cambridge Stud.
Adv. Math. 165, Cambridge University Press, Cambridge (2017) Zbl 1373.19001
MR 3727161

[7] Grothendieck, A.: Le groupe de Brauer. III. Exemples et compléments. In: Dix exposés sur
la cohomologie des schémas, Adv. Stud. Pure Math. 3, North-Holland, Amsterdam, 88–188
(1968) Zbl 0198.25901 MR 244271

[8] Harpaz, Y., Wittenberg, O.: Zéro-cycles sur les espaces homogènes et problème de Galois
inverse. J. Amer. Math. Soc. 33, 775–805 (2020) Zbl 07225790 MR 4127903

[9] Izquierdo, D.: On a conjecture of Kato and Kuzumaki. Algebra Number Theory 12, 429–454
(2018) Zbl 1442.11070 MR 3803709

[10] Kato, K.: A generalization of local class field theory by using K-groups. II. J. Fac. Sci. Univ.
Tokyo Sect. IA Math. 27, 603–683 (1980) Zbl 0463.12006 MR 603953

[11] Kato, K.: Galois cohomology of complete discrete valuation fields. In: Algebraic K-Theory,
Part II (Oberwolfach, 1980), Lecture Notes in Math. 967, Springer, Berlin, 215–238 (1982)
Zbl 0506.12022 MR 689394

[12] Kato, K., Kuzumaki, T.: The dimension of fields and algebraic K-theory. J. Number Theory
24, 229–244 (1986) Zbl 0608.12029 MR 863657

[13] Matsumura, H.: Commutative Ring Theory. Cambridge Stud. Adv. Math. 8, Cambridge
University Press, Cambridge (1986) Zbl 0603.13001 MR 879273

[14] Merkur’ev, A. S.: Simple algebras and quadratic forms. Izv. Akad. Nauk SSSR Ser. Mat. 55,
218–224 (1991) Zbl 0733.12008 MR 1130036

[15] Ono, T.: Arithmetic of algebraic tori. Ann. of Math. (2) 74, 101–139 (1961)
Zbl 0119.27801 MR 124326

[16] Riou, J.: La conjecture de Bloch–Kato (d’après M. Rost et V. Voevodsky). Astérisque 361,
Exp. No. 1073, x, 421–463 (2014) Zbl 1366.19001 MR 3289290

[17] Serre, J.-P.: Local Fields. Grad. Texts in Math. 67, Springer, New York (1979)
Zbl 0423.12016 MR 554237

[18] Serre, J.-P.: Cohomologie Galoisienne. Lecture Notes in Math. 5, Springer, Berlin, 5th ed.
(1994) Zbl 0812.12002 MR 1324577

https://zbmath.org/?q=an:1241.14002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2867621
https://zbmath.org/?q=an:1056.14030&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2036596
https://zbmath.org/?q=an:07077747&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3977320
https://zbmath.org/?q=an:0893.14015&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1608617
https://zbmath.org/?q=an:0993.20031&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1802626
https://zbmath.org/?q=an:1373.19001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3727161
https://zbmath.org/?q=an:0198.25901&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=244271
https://zbmath.org/?q=an:07225790&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4127903
https://zbmath.org/?q=an:1442.11070&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3803709
https://zbmath.org/?q=an:0463.12006&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=603953
https://zbmath.org/?q=an:0506.12022&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=689394
https://zbmath.org/?q=an:0608.12029&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=863657
https://zbmath.org/?q=an:0603.13001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=879273
https://zbmath.org/?q=an:0733.12008&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1130036
https://zbmath.org/?q=an:0119.27801&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=124326
https://zbmath.org/?q=an:1366.19001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3289290
https://zbmath.org/?q=an:0423.12016&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=554237
https://zbmath.org/?q=an:0812.12002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1324577


Homogeneous spaces, algebraic K-theory and cohomological dimension of fields 21

[19] Serre, J.-P.: Cohomologie galoisienne: progrès et problèmes. Astérisque 227, Exp. No. 783, 4,
229–257 (1995) Zbl 0837.12003 MR 1321649

[20] Springer, T. A.: Nonabelian H2 in Galois cohomology. In: Algebraic Groups and Discontin-
uous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), American Mathematical
Society, Providence, 164–182 (1966) Zbl 0193.48902 MR 0209297

[21] Springer, T. A.: Linear Algebraic Groups. Mod. Birkhäuser Class., Birkhäuser, Boston, 2nd
ed. (2009) Zbl 1202.20048 MR 2458469

[22] Steinberg, R.: Regular elements of semisimple algebraic groups. Publ. Math. Inst. Hautes
Études Sci. 25, 49–80 (1965) MR 180554

[23] Suslin, A. A.: Algebraic K-theory and the norm-residue homomorphism, J. Sov. Math. 30,
2556–2611 (1985) Zbl 0566.12016

[24] Suslin, A., Joukhovitski, S.: Norm varieties. J. Pure Appl. Algebra 206, 245–276 (2006)
Zbl 1091.19002 MR 2220090

[25] Wittenberg, O.: Sur une conjecture de Kato et Kuzumaki concernant les hypersurfaces de
Fano. Duke Math. J. 164, 2185–2211 (2015) Zbl 1348.11037 MR 3385132

https://zbmath.org/?q=an:0837.12003&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1321649
https://zbmath.org/?q=an:0193.48902&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=0209297
https://zbmath.org/?q=an:1202.20048&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2458469
https://mathscinet.ams.org/mathscinet-getitem?mr=180554
https://zbmath.org/?q=an:0566.12016&format=complete
https://zbmath.org/?q=an:1091.19002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2220090
https://zbmath.org/?q=an:1348.11037&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3385132

	1. Introduction
	Preliminaries on Milnor $K$-theory

	2. Generalities on the cohomological dimension
	3. The $C_{\mathrm{HS}}^{q}$, $C_{\mathrm{PHS}}^{q}$ and $C_{\mathrm{Red}}^{q}$ properties
	4. Proof of the Main Theorem
	4.1. First step: Trivializing Galois cohomology classes
	4.2. Second step: Principal homogeneous spaces
	4.3. Third step: Homogeneous spaces

	References

