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Abstract. The equidistribution conjecture is proved for general semiabelian varieties over number
fields. Previously, this conjecture was only known in the special case of almost split semiabelian
varieties through work of Chambert-Loir. The general case has remained intractable so far because
the height of a semiabelian variety is negative unless it is almost split. In fact, this places the
conjecture outside the scope of Yuan’s equidistribution theorem on algebraic dynamical systems.
To overcome this, an asymptotic adaption of the equidistribution technique invented by Szpiro,
Ullmo, and Zhang is used here. It also allows a new proof of the Bogomolov conjecture and hence
a self-contained proof of the strong equidistribution conjecture in the same general setting.
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1. Introduction

Throughout this article, G denotes an arbitrary semiabelian variety over a number field
K � Q with maximal subtorus T of dimension t and maximal abelian quotient � WG ! A

of dimension g. For a place � of K, we denote by K� the associated completion of K, by
K� the algebraic closure of K� , and by C� the completion of the algebraic closure K� .
For a quasi-projective algebraic variety X over a number field K and a place � of K,
we denote by X an

C�
the C�-analytic space associated with XC� . If � is archimedean, this

means that X an
C�

is a complex (analytic) space (see [24] for this notion). If � is non-
archimedean, X an

C�
is a Berkovich C�-analytic space (see [3, Section 3.4]).

In order to state our main results, we need a canonical height yh on G. For details,
the reader is referred to Section 3 and [44, Sections 2 and 3]. To simplify our exposition,
we enlarge K if necessary so that we can assume that T D Gt

m. Then .P1/t is naturally
a Gt

m-equivariant compactification of Gt
m, and each multiplication-by-n map Gt

m ! Gt
m

extends to a map .P1/t ! .P1/t . This yields a compactificationG ofG, and � extends to
a map � WG ! A, whose fibers are isomorphic to .P1/t . Furthermore, the multiplication-
by-nmap Œn�WG ! G extends to a map Œn�WG ! G. The boundary .P1/t nGt

m gives rise
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to a Weil divisor onG. LettingMG denote the line bundle associated with this divisor, we
have Œn��MG DM

˝n

G
. In addition, we fix an ample symmetric line bundle N on A and

set L DMG ˝ �
�N . Tate’s limit argument allows us to define a unique canonical height

yhL.x/ for each closed point x 2 G, starting from the Weil heights of MG and ��N .
This already suffices to define the main object of our study. Recall that a sequence

.xi / 2 G
N of closed points is said to be generic (resp. strict) if none of its subsequences

is contained in a proper algebraic subvariety (resp. a proper algebraic subgroup) of G.
Furthermore, we say that a sequence .xi / 2 GN of closed points is a sequence of small
points if yhL.xi /! 0.

As in the case of abelian varieties, the following two conjectures convey signifi-
cant information about the diophantine geometry of semiabelian varieties. For each place
� 2†.K/, a closed point x 2G yields a 0-cycle O�.x/D .x˝K C�/an on the C�-analytic
group Gan

C�
associated with G. We write ıy for the Dirac measure associated with a point

y 2 Gan
C�

.

Equidistribution conjecture (EC). Let .xi /2GN be a generic sequence of small points.
Then the measures 1

#O�.xi /
P
y2O�.xi / ıy converge weakly to c1.L�/^gCt=degL.G/.

More explicitly, (EC) asserts that

1

#O�.xi /

X
y2O�.xi /

f .y/!
1

degL.G/

Z
Gan

C�

fc1.L�/
^gCt .i !1/

for every compactly supported f 2 C 0.Gan
C�
/.

The measure c1.L�/^gCt arises naturally in a refined approach to the canonical height
yhL introduced above (see Sections 2 and 3 for details). In fact, the line bundle L can be
endowed with a canonical �-metric. This yields a �-metrized line bundleL� D .L; k � k�/.
Letting � vary over all places of K, these canonical metrics combine to an (adelically)
metrized line bundle zL D .L; ¹k � k�º/. The (adelic) height function hzL associated with
zL coincides with the Néron–Tate height yhL from above. Additionally, it enables us to
assign a height hzL.X/ with every algebraic subvariety X � G. Most importantly, each
�-metrized line bundle L� supplies us with a regular Borel measure c1.L�/^gCt on the
analytic space Gan

C�
(see Subsection 2.3).

For an archimedean place �, it is well known that c1.L�/^gCt is a Haar measure on
the maximal compact subgroup ofGan

C�
. In fact, this is a special case of Lemma 5.2 below.

The maximal compact subgroup can be easily described by ignoring the complex structure
on Gan

C�
. As a real Lie group, every semiabelian variety is isomorphic to R2.gCt/=ƒ for

an arbitrary discrete subgroup ƒ � R2.gCt/ of rank 2g C t . The maximal compact sub-
group of Gan

C�
corresponds then evidently to the R-linear subspace R �ƒ � R2.gCt/. For

a non-archimedean place �, the determination of c1.L�/^gCt is more intricate since even
for abelian varieties the reduction ofG with respect to � plays a role. A complete descrip-
tion of the abelian case is given by Gubler in [31, Example 7.2]. It seems very likely that
his techniques can be also used for general semiabelian varieties. Since this seems, unfor-
tunately, a lengthy distraction from our main investigation, we leave it nevertheless to the
interested reader.
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Bogomolov conjecture (BC). Let X be a geometrically irreducible algebraic subvariety
of G. Then either X is the translate of a connected subgroup by a torsion point or there
exists some " D ".X/ > 0 such that

¹x 2 X.Q/ j yhL.x/ < "º

is not Zariski-dense in X .

Closely related to these two conjectures is a formal strengthening of the first one.

Strong equidistribution conjecture (SEC). For every strict sequence .xi / 2 G.Q/N of
small points, the measures 1

#O�.xi /
P
y2O�.xi / ıy converge weakly to the limit measure

c1.L�/
^gCt=degL.G/.

In fact, it is easy to prove the equivalence (EC) ^ (BC), (SEC). In the nineties of the
last century, considerable efforts were dedicated to prove the above conjectures in various
settings. An important special case of (BC) is the embedding X D C ,! G D Jac.C / of
a geometrically irreducible curve C overK into its Jacobian variety Jac.C /. Before being
completely settled by Ullmo [69], this case of (BC) was proven by Szpiro [67] and Zhang
[75,77] in numerous cases. In the meantime, Zhang proved (BC) for algebraic tori in [76].
A complete proof of (BC) for abelian varieties was given by Zhang [78]. (The reader may
also consult the surveys [1, 79].)

For abelian varieties, (EC) was proven in a joint work of Szpiro, Ullmo, and Zhang
[68]. Bilu [5] proved directly (SEC) for algebraic tori and gave a deduction (SEC))(BC).
A further advancement was made by Chambert-Loir [12], who gave a proof of (SEC) in
the case where G is almost split (i.e., G is isogenous to the product of an abelian variety
and a torus). Up to the present work, his work has contained the best result in the direction
of (SEC). Indeed, the canonical height hzL.G/ is strictly negative unless it is almost split
[12, Corollaire 4.3]. In addition, all points of negative height lie on the boundary G nG
(see [12, Lemma 3.9]). This means that no generic sequence .xi / 2 GN of closed points
can satisfy

hzL.xi /! hzL.G/; i !1; (1.1)

unless G is almost split. Yuan’s general equidistribution theorem for algebraic dynamical
systems [74, Theorem 10.2] is hence empty in this situation as the equidistribution method
developed by Szpiro, Ullmo, and Zhang [68] does generally only apply to sequences
satisfying (1.1). The reader is referred to [12] for details.

Using different methods, David and Philippon [17] proved (BC) for general semi-
abelian varieties. However, their method seems completely incapable to approach (EC).
In this article, we tackle both (EC) and (BC) for general semiabelian varieties with arith-
metic intersection theory. We proceed in a way that is surprisingly close to the method of
Szpiro, Ullmo, and Zhang in spite of the above-mentioned obstacle. Our main result is as
follows.

Theorem 1.1. (SEC) is true for every semiabelian variety G over Q and every strict
sequence .xi / 2 GN of small points.
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As already mentioned, (SEC) is a direct consequence of (EC) and (BC); we refer to
Section 7 for the deduction of Theorem 1.1 from (EC) and (BC). The fastest way to prove
Theorem 1.1 is hence to prove merely (EC) and to rely on [17] for (BC). However, our
technique to prove (EC) can be also used to give a new proof of (BC), which is remarkably
close to Zhang’s proof of (BC) in the case of abelian varieties [78]. Consequently, we can
give a self-contained and genuinely Arakelov-theoretic proof of Theorem 1.1. This seems
worth to afford the detour of proving (BC) anew, and we do so in Section 6 after some
preparation in Section 5.

The centerpiece of our argument is Proposition 4.1, which includes (EC) as a special
case. Section 4 is completely devoted to its proof. The main idea is rather simple, and
we describe it next. For this, we exclusively restrict ourselves to the case where G is the
extension of an abelian variety A by T D Gm (i.e., t D 1 with the above notation). As
already mentioned, a semiabelian variety G has canonical height zero if and only if it is
almost split, which means here that the associated extension class

� 2 Ext1
Q
.A;Gm/ D A

_.Q/

is a torsion point. For an ample symmetric line bundle N on A_, this is equivalent to the
Néron–Tate height yhN .�/ being zero. One can hence suspect that yhN .�/ quantifies the
obstruction to proving (EC) by means of the standard equidistribution arguments.

The Q-isogeny class of G contains semiabelian varieties associated with extension
classes �0 2 Ext1

Q
.A;Gm/ D A

_.Q/ such that yhN .�0/ is arbitrary small. In fact, if �0 is
such that n�0 D � for some positive integer n, then yhN .�0/ D n�2yhN .�/. Writing Gn for
the semiabelian variety described by �0, there is an isogeny 'nWGn ! G of degree n (see
Section 4). Additionally, it is not hard to see that we only need to prove (EC) for a single
element in the isogeny class of G. It is hence reasonable to replace our original G with
some Gn, n� 1, and to hope that this facilitates the proof of (EC) with the traditional
procedure.

If G is not almost split, we deduce from [12, Théorème 4.2] that

� n�2 � hzLn.Gn/ < 0 (1.2)

for a certain compactification Gn of Gn and a certain metrized line bundle zLn on Gn.
Thus, merely replacing G with a fixed Gn, n� 1, is not sufficient, but working asymp-
totically as n!1 seems prospective. In other words, one should try to carry out the
argument of Szpiro, Ullmo, and Zhang [68] for each level Gn and observe what happens
as n!1. The integer n is not the only parameter that appears here. As in previous
proofs of (EC), a real scaling factor �! 0 comes up. It turns out that there is some inter-
play between these both parameters: up to suppressing some easily controllable terms,
written .: : :/, we obtain an upper bound

lim sup
i!1

ˇ̌̌̌
1

#O�.xi /

X
y2O�.xi /

f .y/ �

Z
Gan

C�

fc1.L�/
^gCt

ˇ̌̌̌
�G;f nj�j C n

�2
j�j�1 C .: : :/ (1.3)
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(compare (4.13) below) for every integer n and every real � 2 .0; n�1�. Choosing n
a square number and � D n�3=2 yields an upper bound�G;f n

�1=2 so that (EC) follows
with n!1.

To conclude this sketch of our argument, let us briefly discuss the provenience of the
two terms on the right-hand side of (1.3). The first term stems from the error term in the
expansion (compare to [78, p. 162] and Lemma 4.4 below)

hzLn.�f /.Gn/ D hzLn.Gn/C �

Z
Gn.C�/

fnc1.Ln/
^gCt

COG;f;n.j�j
2/; fn D f ı 'n;

for some integer n� 1. The integer n appears in the implicit constant of OG;f;n.j�j2/,
and we have to render the dependency more precisely. This is done by applying the projec-
tion formula to (a compactification of) the isogeny 'nWGn ! G of degree n. The second
term is more or less j��1hzL.Gn/j, which is majorized by (1.2). That there is a suitable
choice of n and � relies ultimately on the fact that j��1hzL.Gn/j decreases faster than
deg.'n/ increases. To make a long story short, the quadraticity of the Néron–Tate height
on the dual abelian variety A_ is played off against the linearity in the toric part ofG, and
quadratic decay prevails over linear growth.

As is well known (see [78, Corollary 4]), (SEC) implies directly the Manin–Mumford
conjecture for semiabelian varieties, which was proven by Raynaud [59, 60] for abelian
varieties, by Laurent [49] for algebraic tori, and by Hindry [35] in our setting. Further-
more, Poonen [58] and Zhang [80, Remark (3) on p. 41] pointed out that (SEC) and the
Mordell–Lang conjecture .MLC/ imply a common generalization. For a finitely generated
subgroup � of G.Q/, we set

� 0 D ¹x 2 G.Q/ j 9n 2 Z n ¹0º W nx 2 �º

as well as

� 0."/ D ¹x 2 G.Q/ j 9y 2 � 0; z 2 G.Q/ W x D y C z and yhL.z/ � "º

for any real " > 0.

Mordell–Lang plus Bogomolov conjecture (MLBC). For any subvariety X � G that
is not a translate of a semiabelian subvariety of G by a point in � 0, there exists some
" > 0 such that � 0."/ \X.Q/ is not Zariski-dense in X .

By the time [58, 80] were written, McQuillan [53] had already proven .MLC/ for
general semiabelian varieties so that their arguments were only conditional on the then-
missing (SEC) for an archimedean place �. In [61], Rémond gave a proof of (MLBC)
that avoids (SEC) and uses instead his version [62] of Vojta’s inequality for semiabelian
varieties as well as (BC) for semiabelian varieties [17]. Theorem 1.1 renders the original
proofs of Poonen [58] and Zhang [80] unconditional, giving an alternative to Rémond’s
approach.

Finally, let us remark that the availability of (EC) for general semiabelian varieties
also allows to extend Zhang’s equidistribution result on almost division points [80, Theo-
rem 1.1] (see [80, Remark (3) on p. 41]).
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Notation and conventions

General. For two terms a and b, we write a� b if there exists a positive real num-
ber c such that a � c � b. If c depends on some data, say an algebraic variety X , we
write a�X b, etc. If there is no subscript, the implied constant c is absolute. We use�
similarly.

Number fields. Throughout this article, we let K � Q denote a number field with integer
ring OK , and we set S D Spec.OK/. In addition, †f .K/ (resp. †1.K/) is the set of
non-archimedean (resp. archimedean) places, and we set†.K/ D †f .K/ [†1.K/. For
each � 2 †.K/, we let K� denote the �-adic completion of K. By C� is denoted the
completion of an algebraic closure K� of K� , by O� � C� its ring of integers, by p�
the maximal prime ideal of O� , by k� the residue field O�=p� , and by p� the residue
characteristic of C� . For all � 2 †f .K/, the absolute value j � j� on C� is normalized such
that jp� j� D p�ŒK� WQp �� . We use the standard values of R and C for archimedean places.
This normalization leads to an additional factor

ı� D

´
2 if � is complex archimedean;
1 otherwise;

in some identities. For a scheme X over S , we denote by X� the formal completion of the
special fiber X �S Spec.k�/ in X �S Spec.O�/. This is a formal scheme over Spf.O�/.

Algebraic geometry (general). Denote by k an arbitrary field. A k-variety is a reduced
scheme of finite type over k. By a subvariety of a k-variety, we mean a closed reduced
subscheme. A subvariety is determined by its underlying topological space, and we fre-
quently identify both. The tangent bundle of a k-varietyX is written TX , and its fiber over
a point x 2 X is denoted by TxX . Furthermore, X sm denotes the smooth locus of X . If X
is an irreducible k-variety, we write �X for its generic point. The unity of a k-algebraic
group G is written eG .

For a non-negative integer d and a k-variety X , a d -cycle on X is a finite formal sumPr
iD1 ni ŒZi �, where each ni is an integer and each Zi is a k-irreducible subvariety of X

having dimension d .
For a line bundle L over a general scheme, we denote by F .L/ its sheaf of sections.

Generic sequences. Let X be an algebraic k-variety. We say that a sequence .xi / 2 XN

of closed points isX -generic if none of its subsequences is contained in a proper algebraic
subvariety of X . If the variety X can be inferred from context, we simply say generic
instead of X -generic.

Line bundles and intersection theory. For line bundles L1; L2; : : : ; Ld on a proper alge-
braic variety X of dimension d over a field k, we use the intersection numbers

L1 � L2 � � �Ld 2 Z
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defined by Kleiman [41] and Snapper [65] (see [42, Section VI.2] for a good introduction).
These coincide with the numbers

deg
�
c1.L1/ \ c1.L2/ � � � \ c1.Ld / \ ŒX�

�
2 Z

in the terminology of [22]. If ¹M1;M2; : : : ;Mrº D ¹L1;L2; : : : ;Ld º and eachMi occurs
ni -times among L1; L2; : : : ; Ld , we set

M
n1
1 �M

n2
2 � � �M

nr
r ´ L1 � L2 � � �Ld I

a similar notation is used for the Borel measures defined in Subsection 2.3 and the arith-
metic intersection numbers defined in Subsection 2.6. Furthermore, we write degL.X/
for Ld . We define the volume

vol.L/ D lim sup
N!1

h0.X;L˝N /

N dim.X/=dim.X/Š
:

The group law of Picard groups of line bundles, as well as of their various metrized
versions introduced in Section 2, is written additively. For an invertible rational section
sWXÜ L of a line bundle L, its divisor is denoted by div.s/. The support of a divisorD
(resp. a cycle Z) is written jDj (resp. jZj).

Admissible formal schemes and generic fibers. For each � 2 †f .K/, we define admissi-
ble formal schemes over Spf.O�/ as in [29, 2.6]. As there, we assign with an admissible
formal scheme X� over Spf.O�/ a Berkovich C�-analytic space X�;� , its generic fiber.

Continuity and smoothness. We use C 0 (resp. C1) as an abbreviation for continuous
(resp. smooth). For any topological space X , C 0.X/ denotes the continuous functions
on X and C 0

c .X/ the continuous functions on X having compact support.

Tangent spaces. For each differentiable or real-analytic manifold M , we denote by TM
its tangent bundle. The fiber of TM over x 2M is denoted TxM .

Let Y be a complex manifold (e.g., .X sm/an
C�

for an algebraic variety X over K and
some � 2 †1.K/). To Y is associated its real tangent bundle TRY and its holomorphic
tangent bundle T 1;0C Y (e.g., .TX/an

C�
for a smooth complex algebraic variety X and some

� 2 †1.K/). The reader is referred to [25, Section 0.2] and [38, Section 1.2] for details.

Riemann metrics. A Riemannian metric g on a manifold M is a smooth R-linear map

gWTRM ˝ TRM ! R �M

of R-bundles such that g.t; t/ 2 R�0 �M for all t 2 TR;xM . (We usually drop the sec-
ond factor and write e.g. g.t; t/� 0.) We say that it is non-degenerate if g.t; t/D ¹0º �M
is equivalent to t 2 ¹0º �M . The volume element vol.g/ associated with a Riemannian
metric g on an orientable manifold is defined as usual (see e.g. [34, p. 362]).

A Riemannian metric on a complex manifold Y is just a Riemannian metric on the
underlying real-analytic manifold. With each hermitian metric on Y , we can associate
a Riemannian metric (as e.g. in [34, pp. 361–362]).
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Measure Theory. We adhere to the definitions used in [63, Chapters 1 and 2]. The support
of a measure � on X is the set of all points x 2 X for which every neighborhood N of x
satisfies �.N/ > 0.

Complex spaces. Let S be a reduced complex (analytic) space. Recall that this means
that S is locally biholomorphic to a closed analytic subvariety V in a complex domain
U � Cn. A function f on S is smooth if, for each such sufficiently small local chart, it
is the restriction of a smooth function on U . We write C1.S/ for the smooth real-valued
functions on S . In the same way, we use local charts to define plurisubharmonic functions
on S as restrictions.

Similarly, a C1-form ! on S is a differential form on the smooth locus S sm of S with
the following extension property: S can be covered by local charts V � U � Cn as above
such that, for each chart, the differential form !jV sm is the restriction of a C1-differential
form on U . There are also well-defined linear operators d and d c D i=2�.@ � @/ on the
C1-differential forms on S .1

For each local chart V � U � Cn, these are simply the restrictions of the operators
of the same name on Cn. Having defined C1-differential forms on S , we can define
currents by duality as in [19, Définition 1.1].

For each C 0-hermitian metric k � k on a holomorphic line bundle L over S , we can
define a Chern current c1.L; k � k/ in the usual way; if sWU ! L is a non-zero section
over some open subset U � S , we set c1.L; k � k/jU D dd c.� logksk/.1 This is a C1-
differential form on S if k � k is C1.

A current on S is called semipositive here if it is “(faiblement) positif” according to
[19, Définition 1.2]. For two currents T1 and T2 on S , we use T1 � T2 as a shorthand for
the statement that T1 � T2 is semipositive.

A C 0-hermitian metric ! on S is a C 0-hermitian metric on T 1;0C S sm such that S can
be covered as above by local charts V � U � Cn on each of which!jV sm is the restriction
of a C 0-hermitian metric on T 1;0C U . Note that each C 0-hermitian metric ! on S yields
a current Œ!� of bidegree .1; 1/ on S . We say that a current T of bidegree .1; 1/ is strictly
positive if there exists a C 0-hermitian metric ! on S such that T � Œ!�; we write T > 0
in this case.

2. Arithmetic intersection theory

In this section, we recall the basics of intersection theory for (adelically) metrized line
bundles. Our basic references are [12–14, 26–29, 52, 56, 74, 77]. We only need to asso-
ciate intersection numbers with integrable (adelically) metrized line bundles on projective
varieties over a number field and can hence avoid arithmetic Chow rings [7, 21, 23, 66].

1Note that there are different definitions of d c in the literature. Many texts on Arakelov theory
(e.g. [28, 56, 66]) use d c D i=4�.@ � @/.
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2.1. Setup

Throughout this section, we consider a number field K and an irreducible, projective K-
variety X of pure dimension d . Let � 2 †f .K/, and let e be a positive integer. Since
X is projective, the analytic space X an

C�
is Hausdorff and compact for every � 2 †.K/

(see [3, Theorem 3.4.8 (ii)]).
Let L1; L2; : : : ; Lk be line bundles on X . (The case k D 0 is allowed here.) A for-

mal O�-model .X� ;L1;� ; : : : ;Lk;�/ of .X;L˝e11 ; : : : ; L˝ek
k

/ consists of an admissible
formal scheme X� over Spf.O�/ and line bundles Li;� on X� such that X an

C�
D X�;� and

.L˝eii /an
C�
D Li;�;� . Similarly, an S -model .X;L1; : : : ;Lk/ of .X;L˝e11 ; : : : ; L˝ek

k
/ is

a flat, integral, projective S -scheme X and a collection of line bundles Li on X such that

X D X �S K and L˝eii D Li �S K:

For each � 2 †f .K/, an S -model .X;L1; : : : ;Lk/ of .X;L˝e11 ; : : : ; L˝ek
k

/ gives natu-
rally rise to a formal O�-model .X� ;L1;� ; : : : ;Lk;�/ of .X;L˝e11 ; : : : ; L˝ek

k
/ by taking

formal completions.

2.2. Metrics

Let L be a line bundle on X . A �-metric on L is a map k � kWLan
C�
! R�0 such that, for

each open subset U � X , each section sWU ! L, and every f 2 OX .U /,
(a) the function ksk D k � k ı san

C�
WU an

C�
! R�0 is continuous,

(b) if s vanishes nowhere on U , then kskWU an
C�
! R�0 has no zeros,

(c) for every f 2 OX .U /, we have kf sk D jf j � ksk on U an
C�

, and
(d) k � k is Gal.C�=K�/-invariant2.
For a sequence of �-metrics k � k.n/ on L, we say that k � k.n/ converges uniformly to a �-
metric k � k if the C 0-functions k � k.n/=k � k converge uniformly to 1 onX an

C�
. A �-metrized

line bundle L D .L; k � k/ consists of a line bundle L onX and a �-metric on L. An isom-
etry f W .L; k � k/! .M; k � k0/ between two �-metrized line bundles is an isomorphism
f WL!M of line bundles that transports k � k to k � k0. The set of isometry classes of �-
metrized line bundles on X is denoted by Pic�.X/. For L;M 2 Pic�.X/, N 2 Pic�.Y /,
and every algebraic map f WX ! Y , we define LCM , �L, and f �N as elements of
Pic�.X/ in the obvious way. If M D .L˝e; k � k/ is a �-metrized line bundle for some
non-zero integer e, there is a unique �-metrized line bundle L D .L; k � k1=e/ such that
eL �M . For later applications, we also set Pic�.X/Q D Pic�.X/˝Z Q.

2Each � 2 Gal.C�=K�/ induces an algebraic map �LWLC� ! LC� over � WC� ! C� , and
invariance means here that

k � k ı �an
L D k � k:

If � 2 †f .K/, then the analytic space Lan
K�

is the quotient of Lan
C�

by Gal.C�=K�/ (see [3, Corol-
lary 1.3.6]), so one can equivalently demand that k � k is the pullback of a map Lan

K�
! R�0

satisfying (a), (b), and (c) with C� replaced by K� .
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If � 2 †1.K/, a �-metric is just a C 0-hermitian metric on Lan
C�

. A �-metrized line
bundle .L; k � k/ is called semipositive (resp. strictly positive) if dd cc1.L; k � k/ � 0 (resp.
dd cc1.L; k � k/ > 0).

For � 2 †f .K/, every formal �-model .X� ;L�/ of .X;L˝e/ induces a �-metric on
L (see [27, Section 7]). Let ¹Uiº be a covering of X� by formal open subschemes such
that there are isomorphisms 'i WL� jUi ! A1Ui and each Ui;� � X

an
C�

is an affinoid C�-
analytic space. The maps 'i induce isomorphisms 'i;�W .L˝e/an

C�
jUi;� ! A1Ui;� over Ui;� .

For every x 2 Ui;� , we set

kvki D j'i;�.v/j� for all v 2 .L˝e/an
C�
jx :

On overlaps Ui \ Uj , the composites 'j ı '�1i are described by elements

fij 2 O�.Ui \ Uj /:

Each fij induces a meromorphic function fij;� on Ui;� \ Uj;� with supremum norm � 1
such that 'j ı '�1i jUi:�\Uj;� is multiplication by

fij;� 2 O�.Ui;� \ Uj;�/:

Since fij;� D f �1ji;� , this implies jfij;�.x/j D 1 for all x 2 Ui;� \ Uj;� . Consequently, the
�-metrics ¹k � kiº glue to a �-metric k � kL� on .L˝e/an

C�
so that we obtain a �-metric

k � k
1=e

L�
on Lan

C�
. The �-metric k � k1=e

L�
on Lan

C�
is called formally semipositive if L�;s can

be chosen to be a nef line bundle on the special fiber X�;s . A general �-metrized line
bundle is called semipositive if its �-metric is the uniform limit of formally semipositive
�-metrics.

For every Gal.C�=K�/-invariant g 2 C 0.X an
C�
/, we define the �-metrized line bundle

OX .g/D .OX ; k � k/ by setting k1xk� D e�g.x/ for all x 2 X an
C�

. For a �-metrized line
bundle L, we write L.g/ instead of L˝OX .g/.

A �-metrized pseudo-divisor on X is a triple .L; Y; s/ consisting of a �-metrized
line bundle L over X , an algebraic subvariety Y � X , and a nowhere vanishing section
sWX n Y ! L. This is an analogue of the pseudo-divisors used in algebraic intersection
theory [22, Definition 2.2.1]. Our definition is more restrictive than the one introduced in
[29, 3.4], but fully suffices for our purposes.

2.3. Borel measures

For both archimedean and non-archimedean places � 2 †.K/, a collection of semiposi-
tive �-metrized line bundles L1; L2; : : : ; Ld 2 Pic�.X/ gives rise to a finite regular Borel
measure c1.L1/ ^ c1.L2/ ^ � � � ^ c1.Ld / on X an

C�
. If X is smooth, � 2 †1.K/, and the

metrics of L1; L2; : : : ; Ld are C1, we just take the Borel measure given by integrat-
ing with the wedge product of the Chern forms c1.Li / (i 2 ¹1; : : : ; dº). If the metrics of
L1; : : : ; Ld are only C 0 or � 2 †f .K/, the definition of c1.L1/ ^ c1.L2/ ^ � � � ^ c1.Ld /
is more involved, but we nevertheless retain the notation from the smooth archimedean
case for ease of notation.
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We start with defining c1.L1/ ^ c1.L2/ ^ � � � ^ c1.Ld / for archimedean � 2 †1.K/.
Let U � X an

C�
be a sufficiently small open set such that there exist non-vanishing sec-

tions si WU ! .Li /
an
C�

. By assumption, the Chern currents c1.Li jU / D dd c.� logksik/
are semipositive. Shrinking U if necessary, their local potentials .� logksik/ are bounded
on U . As proposed by Bedford and Taylor [2] (see [32, Chapter 3] for smooth X and [19]
for general X ), we can define a semipositive, closed current

TU D dd
c.� logks1k/ ^ dd c.� logks2k/ ^ � � � ^ dd c.� logksdk/

on U . This current depends only on c1.Li jU / and not on the local potentials .� logksik/.
Consequently, the currents TU1 and TU2 agree on U1 \ U2 for any two open sets U1 and
U2 as above. A partition of unity argument (see [37, Theorem 2.2.4]) shows that there
is a unique, semipositive, closed current T on X an

C�
of bidegree .d; d/ restricting to TU

on every open U as above. Because of its non-negativity (see [37, Theorem 2.1.7]), T
is actually a distribution of order 0. Using the Riesz representation theorem [63, Theo-
rem 2.14], we obtain a unique Borel measure c1.L1/ ^ c1.L2/ ^ � � � ^ c1.Ld / on X an

C�
.

It is a consequence of the Chern–Levine–Nirenberg inequalities [16] that

c1.L1/ ^ c1.L2/ ^ � � � ^ c1.Ld /

does not charge locally pluripolar sets and has finite mass (see [32, Theorem 3.9 and
Theorem 3.14]3).4

For non-archimedean � 2 †f .K/, we use the measures introduced by Chambert-Loir
(see [13, Section 2]) and define c1.L1/ ^ � � � ^ c1.Ld / as in [29, (3.8)]. For this, we
choose non-zero rational sections si WXÜ Li (i D 1; : : : ; d ). These define �-metrized
pseudo-divisors cdiv�.si / D .Li ; jdiv.si /j; si / on X . With each function g 2 C 0.X an

C�
/,

we can furthermore associate the �-metrized pseudo-divisor .OX .g/;;; 1/. Defining

�.OX .g/;;;1/;bdiv�.s1/;:::;bdiv�.sd /.X/

as the local height of X in the sense of Gubler [28, Section 9], we obtain a functional

C 0.X an
C�
/! R; g 7! �.OX .g/;;;1/;bdiv�.s1/;:::;bdiv�.sd /.X/;

which induces a Borel measure on X an
C�

by the Riesz representation theorem [63, Theo-
rem 2.14]. By [29, Theorem 3.5 (c)], the ensuing measure is independent of the choice

3Literally, these theorems only apply if Xan
C�

is smooth. By Hironaka’s resolution theorem [36]
(see also [43]), there always exists a smooth variety zX and a birational, projective morphism
f W zX ! X . One can then use [32, Theorem 3.14] to prove that

c1.f
�L1/ ^ c1.f

�L2/ ^ � � � ^ c1.f
�Ld /

does not charge locally pluripolar sets in zX . In particular, no mass is attached to the ramification
locusE of f . We can then obtain the same assertion for c1.L1/ ^ c1.L2/ ^ � � � ^ c1.Ld / by means
of Lemma 2.2 (c).

4Finiteness also implies the claimed regularity by [63, Theorem 2.18].
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of si , and we denote it by c1.L1/ ^ c1.L2/ ^ � � � ^ c1.Ld / in the sequel. Moreover, the
measure is finite by [29, Corollary 3.9 (c)] and hence regular by [63, Theorem 2.18].

In spite of the different definitions, the following two lemmas allow to treat both cases
� 2 †f .K/ and � 2 †1.K/ in a uniform manner.

Lemma 2.1. For each i 2 ¹1; : : : ; dº, let Li be a line bundle on X , and let further

k � k
.n/
i W .Li /

an
C�
! R�0

be a sequence of semipositive �-metrics converging uniformly to k � ki . Writing

L
.n/
i D .Li ; k � k

.n/
i / and Li D .Li ; k � ki /;

there is then a weak convergence

c1.L
.n/
1 / ^ c1.L

.n/
2 / ^ � � � ^ c1.L

.n/

d
/! c1.L1/ ^ c1.L2/ ^ � � � ^ c1.Ld / .n!1/

of measures.

Proof. For � 2†1.K/, this is [20, Corollary 1.6]. The non-archimedean case � 2†f .K/
is [29, Proposition 3.12].

Lemma 2.2. Let L1; : : : ; Ld ; L01 2 Pic�.X/ be semipositive.

(a) (Multilinearity) We have

c1.L1 C L
0
1/ ^ c1.L2/ ^ � � � ^ c1.Ld /

D c1.L1/ ^ c1.L2/ ^ � � � ^ c1.Ld /C c1.L
0
1/ ^ c1.L2/ ^ � � � ^ c1.Ld /:

(b) (Commutativity) For any permutation � W ¹1; : : : ; nº ! ¹1; : : : ; nº, we have

c1.L�.1// ^ c1.L�.2// ^ � � � ^ c1.L�.d// D c1.L1/ ^ c1.L2/ ^ � � � ^ c1.Ld /:

(c) (Projection formula) Let Y be an irreducible, projective K-variety and f WY ! X

a generically finite surjective map of degree deg.f /. Then the pushforward measure

.f an
C�
/�
�
c1.f

�L1/ ^ c1.f
�L2/ ^ � � � ^ c1.f

�Ld /
�

equals
deg.f / � c1.L1/ ^ c1.L2/ ^ � � � ^ c1.Ld /:

(d) (Total mass) We haveZ
Xan

C�

c1.L1/ ^ c1.L2/ ^ � � � ^ c1.Ld / D L1 � L2 � � �Ld :

Proof. In case of � 2 †1.K/, the first three assertions are evident if all metrics are C1.
The local nature of the first three statements allows as above to use plurisubharmonic
smoothings (see [32, Proposition 1.42]) and Lemma 2.1. For the fourth statement, which
is stated as [20, Corollary 9.3], one needs a global C1-regularization of the C 0-metrics
(compare Appendix A).
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The non-archimedean case � 2 †f .K/ is [29, Corollary 3.9] for the first three asser-
tions and [29, Proposition 3.12] for the fourth one.

We say that L 2 Pic�.X/Q is integrable if there exists a non-zero integer n and semi-
positive L1; L2 2 Pic�.X/ such that nL D L1 � L2. By (a) of the above lemma, we can
define signed Borel measures

c1.L1/ ^ c1.L2/ ^ � � � ^ c1.Ld /

for integrable Li 2 Pic�.X/Q.

2.4. Hermitian line bundles on arithmetic varieties

Let X be a flat, integral, projective S -scheme of relative dimension d . A hermitian line
bundle L on X is a collection .L; ¹k � k�º�2†1.K// consisting of a line bundle L on X

and a �-metric k � k� on LK for each archimedean place � 2 †1.K/; if K� D R, we
assume additionally that the �-metric is invariant under Gal.C�=K�/ (i.e., under complex
conjugation on X an

C�
). We say that the hermitian line bundles L and M are isometric if

there is an isomorphism L �M preserving the metrics at all archimedean places. The
arithmetic Picard group cPic.X/ is the set of isometry classes of hermitian line bundles
on X.

A hermitian line bundle

L 2 cPic.X/ D .L; ¹k � k�º�2†1.K//

is called vertically semipositive if L is relatively nef with respect to X ! S and each
.LK ; k � k�/ is a semipositive �-metrized line bundle. This definition extends naturally tocPic.X/Q D cPic.X/˝Z Q.

2.5. Metrized line bundles on K-varieties

A collection of �-metrics ¹k � k�º�2†.K/ on L is called an adelic metric if there exists
an S -model .X;L/ of .X;L˝e/ such that k � k� D k � k

1=e

L�
on Lan

C�
for all but finitely

many � 2 †f .K/ (coherence condition). The pair zL D .L; ¹k � k�º�2†.K// is then called
a(n adelically) metrized line bundle. For any place � 2 †.K/, we denote the �-metrized
line bundle .L; k � k�/ associated with zL by L� .

Again, there is a natural notion of isometry between metrized line bundles and the
isometry classes of metrized line bundles form a Picard group cPic.X/. If zL and zM are
metrized line bundles with underlying line bundles L and M , there is an obvious way
to endow L˝M and L�1 with the structure of metrized line bundles. We write zL˝ zM
and zL�1, respectively, for these metrized line bundles. If f WY ! X is an algebraic map
between irreducible, projectiveK-varieties and zL is a metrized line bundle, we can endow
the pullback f �L with a canonical adelic metric, obtaining a metrized line bundle f � zL.
For a closed immersion f WY ,! X of K-varieties, we write zLjY instead of f � zL.
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We define the base change zLK0 D .LK0 ; ¹k � k�0º�02†.K0// of a �-metrized line bundle
zL as follows. For each place � 2 †.K 0/ lying above � 2 †.K/, we have a (non-canon-
ical) identification C� � C�0 extending K� ,! K 0�0 . This yields an isomorphism

Lan
C�
D .LK0/

an
C�0
;

which we use to set k � k�0 D k � kŒK
0
�0
WK� �

� if ı� D ı0� and k � k�0 D k � k� elsewise5. As
k � k� is Gal.C�=K�/-invariant (property (d) in Subsection 2.2), this gives a well-defined
metrized line bundle zLK0 on XK0 not depending on the identification C� � C�0 .

Every hermitian line bundle on an S -model induces a metrized line bundle. In fact,
let .X;L/ be an S -model of .X;L˝e/, and let L D .L; ¹k � k�º�2†1.K// 2

cPic.X/ be
a hermitian line bundle. For each � 2 †f .K/ (resp. � 2 †1.K/), we set k � k0� D k � k

1=e

L�
(resp. k � k0� D k � k

1=e
� ). Then ¹k � k0�º�2†.K/ is an adelic metric on L, and we call adelic

metrics of this type algebraic. The corresponding metrized line bundles are called alge-
braically metrized.

All other adelic metrics of interest for us arise from algebraic adelic metrics by means
of a limit process. Let ¹k � ki;�º, i 2 N, be a sequence of adelic metrics on L. We say that
these metrics converge uniformly to an adelic metric ¹k � k�º on L if there exists a finite
set of places †0 � †.K/ such that k � ki;�=k � k� ! 1 (i !1) uniformly on X an

C�
for all

� 2 †0 and k � ki;� D k � k� for all � … †0 and i .
The standard metrics ¹j � j�º�2†.K/ on OX yield a(n adelically) metrized line bun-

dle zOX D .OX ; ¹j � j�º/. Similarly, we define for each Gal.C�0=K�0/-invariant function
f 2 C 0.X an

C�0
/, �0 2 †.K/, a metrized line bundle zOX .f / D .OX ; ¹k � k�º�2†.K// by

setting k � k�0 D e
�f j � j�0 and k � k� D j � j� if � ¤ �0. For each zL 2 cPic.X/, we write

zL.f / instead of zL˝ zOX .f /.
Finally, an element zL 2 cPic.X/ is called vertically semipositive (resp. vertically inte-

grable) if each L� 2 cPic�.X/, � 2 †.K/, is semipositive (resp. integrable). Again, we
can extend this terminology to cPic.X/Q D cPic.X/˝Z Q.

2.6. Arithmetic intersection pairings

Given vertically integrable zLi D .Li ; ¹k � ki;�º�2†.K// 2 cPic.X/ (0 � i � d 0 � d ), we
next define an arithmetic intersection number

zL1 � zL2 � � � zLd 0C1 � Z 2 R

for every d 0-cycle Z on X . We rely on Gubler’s theory of local heights [26–28] for this
task. We start by choosing non-zero rational sections si WXÜ Li such that

jdiv.s1/j \ jdiv.s2/j \ � � � \ jdiv.sd 0C1/j \ jZj D ;:

There always exist rational sections si meeting this condition. Each section si defines a �-
metrized pseudo-divisor cdiv�.si / D .Li;� ; jdiv.si /j; si / for any place � 2 †f .K/. By our

5Note that the latter case means that ı� D 1 and ı�0 D 2 (i.e., � is a real archimedean and � is
a complex archimedean place).
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assumption on vertical integrability, we can use [28, Theorem 10.6] to obtain a collection
of (unique) local heights

�bdiv�.s1/;bdiv�.s2/;:::;bdiv�.sd 0C1/.Z/ 2 R; � 2 †f .K/:

A similar definition for � 2 †1.K/ is given in [28, Theorem 10.6] under the assump-
tion that the hermitian metrics k � ki;� are C1. This assumption can be lifted by using
the induction formula (see [28, Proposition 3.5]). For each subvariety Z of X having
dimension d 0, this formula states that the local height �bdiv�.s1/;bdiv�.s2/;:::;bdiv�.sd 0C1/.ŒZ�/

equals

�bdiv�.s1/;bdiv�.s2/;:::;bdiv�.sd 0 /.div.sd 0C1jZ//

�

Z
Zan

C�

logksd 0C1kd 0C1;�c1.L1;�/ ^ c1.L2;�/ ^ � � � ^ c1.Ld 0;�/ (2.1)

if all k � ki;� are C1 and div.sd 0C1jZ/ is considered as a .d 0 � 1/-cycle on Z. The induc-
tion formula can be also used as a recursive definition of the local height (as is done
in [13–15]). By [15, Théorème 4.1], the integrals appearing in (2.1) are always finite.
Using a regularization lemma [52, Théorème 4.6.1], one can then deduce the standard
properties for the local heights thus defined in the C 0-case from the C1-case. This is
straightforward, but requires some checking. The reader is referred to Appendix A for
details.

Arithmetic intersection numbers can be simply defined as sums of local heights, by
setting

zL1 � zL2 � � � zLd 0C1 � ŒZ� D
X

�2†.K/

ı� � �bdiv�.s1/;bdiv�.s2/;:::;bdiv�.sd 0C1/.Z/: (2.2)

For this to be a valid definition, the right-hand side has to be independent of the chosen
rational sections si and all except finitely many summands have to be zero. The former
fact follows from the product formula by [28, Propositions 3.7 and 9.4], and the latter
one follows from the compatibility with ordinary intersection theory [27, Section 6]. This
compatibility also shows that the intersection numbers in (2.2) generalize those defined
by Gillet and Soulé [23, 66] and their extension by Zhang [77].

To simplify notation, we write zL1 � zL2 � � � zLdC1 instead of zL1 � zL2 � � � zLdC1 � ŒX�.
From [28, Theorem 10.6 (b)], we know that

zL1 � zL2 � � � zLd 0C1 � ŒZ� D zL1jZ � zL2jZ � � � zLd 0C1jZ

for any irreducible subvariety Z � X of dimension d 0.

Lemma 2.3. Let zL1; : : : ; zLdC1; zL01 2 cPic.X/ be vertically integrable.

(a) (Multilinearity) We have

.zL1 C zL
0
1/ �
zL2 � � � zLd 0C1 D zL1 � zL2 � � � zLd 0C1 C zL

0
1 �
zL2 � � � zLd 0C1:

(b) (Commutativity) For any permutation � W ¹1; : : : ; d 0C 1º ! ¹1; : : : ; d 0C 1º, we have

zL�.1/ � zL�.2/ � � � zL�.d 0C1/ D zL1 � zL2 � � � zLd 0C1:
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(c) (Projection formula) Let Y be an irreducible, projective K-variety, and let further
f WY ! X be a generically finite surjective map of degree deg.f /. Then

f � zL1 � f
� zL2 � � � f

� zLdC1 D deg.f / � .zL1 � zL2 � � � zLdC1/:

(d) (Uniform limits) Given sequences .zL.n/i / 2 cPic.X/N , i 2 ¹1; : : : ; dº, of vertically
semipositive metrized line bundles such that zL.n/i converges uniformly to zLi , we have

zL.n/1 �
zL.n/2 � � �

zL.n/dC1 !
zL1 � zL2 � � � zLdC1 .n!1/:

(e) (Scaling invariance) If

zL1 D .L1; ¹k � k�º�2†.K// and zL01 D .L1; ¹jcj� � k � k�º�2†.K//

for some c 2 K�, we have

zL01 �
zL2 � � � zLdC1 D zL1 � zL2 � � � zLdC1:

(f) (Base change) If K 0=K is a finite extension, then

zL1;K0 � zL2;K0 � � � zLdC1;K0 D ŒK
0
W K� � .zL1 � zL2 � � � zLdC1/:

Proof. Each of the first four statements follows from the respective property of Gubler’s
local heights [28, Theorem 10.6], which extends, by Appendix A, to archimedean C 0-
metrics. Statement (e) is a consequence of [28, Propositions 3.7 and 9.4] and the product
formula. Statement (f) is a consequence of our normalization, as can be seen from the
induction formula [28, Proposition 3.5 or Remark 9.5], using that

ŒK 0 W K� D
X
�0j�

ŒK 0�0 W K� �:

We need also an extension of the projection formula mentioned in the above lemma,
which is a slight generalization of [55, Proposition 1.3] to our setting.

Lemma 2.4. Let Y be an irreducible, projectiveK-variety, and let f WY !X be a proper
surjective map. Set d D dim.X/ as well as d 0 D dim.Y /. Then

zL1 � zL2 � � � zLd�d 0 � f
� zN1 � f

� zN2 � � � f
� zNd 0C1

D .L1;�Y � L2;�Y � � �Ld�d 0;�Y /.
zN1 � zN2 � � � zNd 0C1/:

for all zL1; : : : ; zLd�d 0 2 cPic.Y /, zN1; : : : ; zNd 0C1 2 cPic.X/.

Proof. The proof of [10, Proposition 2.3] can be straightforwardly adapted to our situa-
tion, starting from Lemma 2.3 (c) and using the induction formula [28, Proposition 3.5 and
Remark 9.5]; note that, for any place � 2 †.K/, the integral occurring in the induction
formula is finite by [15, Théorème 4.1].

We conclude with two further direct consequences of the induction formula [28,
Proposition 3.5 and Remark 9.5]. Fix some � 2 †.K/ and f 2 C 0.X an

C�
/ such that the

�-metrized Q-line bundle OX .f / 2 Pic�.X/Q is integrable. (This implies that zOX .f / is
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vertically integrable.) Then we have

zL1 � zL2 � � � zLd � zOX .f /
i

D ı�

Z
Xan

C�

fc1.L1;�/ ^ c1.L2;�/ ^ � � � ^ c1.LdC1�i;�/ ^ c1.OX .f //
i�1: (2.3)

If � 2 †1.K/ and we consider � 2 R as a constant function on X an
C�

, we hence have

.zLC zOX .�//
dC1
D zLdC1 C ı��.d C 1/L

d :

If L is nef, this means

.zLC zOX .�//
dC1
D zLdC1 C ı��.d C 1/vol.L/ (2.4)

by the algebraic Riemann–Roch theorem [50, Corollary 1.4.41].
As for the Borel measures defined in Subsection 2.3, Lemma 2.3 (a) allows to extend

the definition of the arithmetic intersection number to vertically integrable elements ofcPic.X/Q. The above results evidently remain valid in this generality.

2.7. Heights

Using the intersection numbers defined above, we can define the height hzL.Y / of an irre-
ducible subvariety Y � X with respect to a metrized line bundle zL D .L; ¹k � k�º�2†.K//
such that L is ample. In fact, we set

hzL.Y / D
.zLjY /

dC1

ŒK W Q�.dim.Y /C 1/.LjY /d
(2.5)

for an irreducible subvariety Y � X of pure dimension d .
We can make the above definition more explicit if Y is a closed point x 2 X . As

.Ljx/
0 D ŒK.x/ W K� (compare e.g. [42, Proposition VI.2.7]), the definition in (2.5) sim-

plifies to hzL.x/ D .zLjx/=ŒK.x/ W K�. Recall that we write O�.x/ for .x ˝K C�/an. Com-
bining (2.2) with the induction formula [28, Proposition 3.5 and Remark 9.5], we obtain

hzL.x/ D �
1

ŒK.x/ W Q�

X
�2†.K/

X
y2O�.x/

ı� logks.y/k� (2.6)

for any non-zero rational section s of L such that x … jdiv.s/j.
Our height is compatible with base changes in the following sense: for every finite

extension K 0 � K, every irreducible variety Y � X , and every irreducible component
Z � YK0 , we have an equality hzL.Y / D hzLK0 .Z/.

2.8. Positivity

Having arithmetic intersection numbers and heights at our disposal, we collect here vari-
ous notions of positivity for metrized line bundles.
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An algebraic adelic metric ¹k � k�º�2†.K/ on L that arises from an S -model .X;L/
of .X;L˝e/ and a hermitian line bundle

L D .L; ¹k � k�º�2†1.K// 2
cPic.X/

is called
(a) vertically semipositive if L is relatively nef with respect to X ! S and .L; k � k�/ is

semipositive for each � 2 †1.K/,
(b) horizontally semipositive if h.L;¹k � k�º/.x/ � 0 for all closed points x 2 X ,
(c) semipositive if it is both vertically and horizontally semipositive.

A metrized line bundle is called semipositive if its adelic metric is the uniform limit
of semipositive algebraic adelic metrics. It is called integrable if it is the difference of two
semipositive metrized line bundles.

For a vertically semipositive zL 2 cPic.X/, each �-metrized line bundle L� 2 Pic�.X/,
� 2 †.K/, is semipositive. Consequently, an integrable metrized line bundle is also ver-
tically integrable in the sense of Subsection 2.5. An element zL 2 cPic.X/Q is called
semipositive (resp. integrable) if there exists some integer n � 1 such that nzL is con-
tained in the image of cPic.X/ and semipositive (resp. integrable) according to the above
definition.

2.9. Arithmetic volumes

Let again zL D .L; ¹k � k�º�2†.K// be a metrized line bundle on X , and write

zL˝N D .L˝N ; ¹k � k˝N� º/:

For each integer N � 1, we consider the global sections VN D H 0.X;L˝N / as an rN -
dimensional K-vector space and form the tensor product VN;A D VN ˝K AK with the
adeles AK of K. For each � 2 †.K/, we can additionally endow VN with a sup-norm

ksk.1/� D max
x2Xan

C�

¹ks.x/k˝N� º; s 2 VN ;

which extends to a K�-linear norm k � k.1/� on VN;� D VN ˝K K� .
Assume first that VN ¤ ¹0º. Since VN is a co-compact subgroup of VN;A, there is

a unique invariant Haar measure volN . � / on VN;A that is normalized such that the induced
quotient measure on VN;A=VN has total mass 1. We then define the adelic unit ball

BN D ¹s D .: : : ; s� ; : : : / 2 VN;A j 8� 2 †.K/ W ks�k.1/� � 1º:

We claim that volN .BN / is a non-zero real. By coherence, it suffices to prove this for
algebraic adelic metrics (i.e., those induced by hermitian line bundles on S -models). For
these, volN .BN / 2 R�0 follows from the comparison of lattice norms and sup-norms
(e.g. [8, Theorem 5.14 and Lemma 5.15 (iii)]). This allows us to set

�sup.zL
˝N / D log volN .BN /:

If VN D ¹0º, we simply set �sup.zL
˝N / D 0.
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The arithmetic volume of a metrized line bundle zL 2 fPic.X/ is defined by

cvol�.zL/ D lim sup
N!1

�sup.zL
˝N /

N dC1=.d C 1/Š
:

If the adelic metric of zL is induced by a hermitian line bundle L on some S -model of X ,
the volume cvol�.zL/ agrees with the volume denoted cvolb�.L/ in [40]. We collect some
standard results on cvol�. � / in the following lemma.

Lemma 2.5. Let zL D .L; ¹k � k�º/ be a metrized line bundle.

(a) For any � 2 †1.K/ and any real � 2 R, which is considered as a real-valued con-
stant function on X an

C�
, we havecvol�.zL.�// D cvol�.zL/C ı��.d C 1/vol.L/:

(b) Let zLi D .L; ¹k � k�º/ be a sequence of metrized line bundles such that the adelic
metric of zLi converges to zL. If L is big, we have

jcvol�.zLi / �cvol�.zL/j
vol.L/

! 0:

Otherwise, we have cvol�.zLi / D cvol�.zL/ for all i .

(c) Assume that the adelic metric of zL is a uniform limit of algebraic adelic metrics. For
each integer k � 1, we have cvol�.zL˝k/ D kdC1cvol�.zL/.

Proof. Part (a) follows from �sup.zL
˝N .�// D �sup.zL

˝N /C � � rNN for real � and sim-
ilarly for complex �.6

For part (b), we define a C 0-function

e��i;� D k � ki;�=k � k� on X an
C�

for each i and � 2 †.K/. There exists a finite subset † � †.K/ such that �i;� D 0
for all � 2 †.K/ n†. For each � 2 †, we have �i;� ! 0 (i !1) uniformly on X an

C�
.

Furthermore, we have

�sup.zL
˝N / � j�i j � rNN � �sup.zL

˝N
i / � �sup.zL

˝N /C j�i j � rNN; (2.7)

where
j�i j D

X
�2†f .K/

j�i;� jsup C
X
real

�2†1.K/

j�i;� jsup C 2
X

complex
�2†1.K/

j�i;� jsup;

which converges to 0 as i !1. Dividing (2.7) by N d=.d C 1/Š yields the claim as
i !1.

6Note that if volK� . � / is the Haar measure on K� , � 2 †.K/, we have

volK� .c�S/ D jc� j
ı�
� volK� .S/

for all measurable sets S � K� and each c� 2 K� .
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Part (c) is [40, Theorem 3.3.2] in the case where the adelic metric of zL is algebraic.
Using part (b) of the lemma, we can extend this result.

Lemma 2.5 (c) allows us to extend the definition of cvol�. � / to cPic.X/Q. The next
lemma is a straightforward consequence of Ikoma’s version of Yuan’s bigness theorem
[73].

Lemma 2.6. Let zL; zM 2 cPic.X/Q be semipositive. Thencvol�.zL � zM/ � zLdC1 � .d C 1/zLd � zM:

Proof. Because of homogeneity (Lemma 2.3 (a) and Lemma 2.5 (c)), we can assume that
zL; zM 2 cPic.X/. By assumption, there exists a sequence .zLi / (resp. . zM i /) of semipositive
algebraically metrized line bundles whose adelic metrics converge uniformly towards the
metric of zL (resp. zM ). We can assume that both zLi and zMi are given by hermitian line
bundles on the same S -model Xi of X .7 Let " > 0 be a real number. By Lemma 2.5 (b),
we have cvol�.zL � zM/ � cvol�.zLi � zM i / � "

for all integers i �";.zLi /;. zM i / 1. Lemma 2.3 (d) implies

zLdC1i � .d C 1/zLdi �
zM i � zL

dC1
� .d C 1/zLd � zM � "

for all integers i �";.zLi /;. zM i / 1. According to [40, Theorem 3.5.3 and Remark 3.5.4], we
have cvol�.zLi � zM i / � zL

dC1
i � .d C 1/zLdi �

zM i :

Combining the three above inequalities, we obtaincvol�.zL � zM/ � zLdC1 � .d C 1/zLd � zM � 2":

Taking the limit "! 0 finishes the proof.

2.10. Minkowski’s theorem

The following lemma is typical in applications of Arakelov theory to diophantine geom-
etry.

Lemma 2.7. Let � 2†.K/ and a real " > 0 be given. For each zLD .L; ¹k �k�º/ 2cPic.X/
with nef and big L, there exists a non-zero section s 2 H 0.X;L˝N0/ and a sufficiently
large positive integer N0 such that

ı� logksk.1/� �

�
�

cvol�.zL/
.d C 1/Ld

C "

�
N0

and logksk.1/� � 0 for all other places � ¤ � of K.

7In fact, if zLi , zM i are induced from hermitian line bundles Li 2cPic.Xi / and Mi 2cPic.X0i /,
then we can replace Xi and X0i with the Zariski closure X of the diagonally embedded copy of X
in Xi �X0i and the line bundles Li and Mi with their pullbacks to X.
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Proof. In this proof, we use the notations V; VN ; rN ; VN;� ; BN ; volN as in Subsection 2.9.
The lemma is implied by an adelic version of Minkowski’s second theorem [6, Theo-
rem C.2.11]. To use the theorem, fix an identification VN � KrN and note that the Haar
measure used there agrees with volN (see [6, Proposition C.1.10]). Setting

S D

²
s 2 VN;�

ˇ̌̌̌
ı� logksk.1/� � �

�sup.zL
˝N /

rN
C log.2/ŒK W Q�

³
�

Y
�¤�

¹s 2 VN;� j ksk.1/� � 1º � VA;

we have

volN .S/ D exp
�
��sup.zL

˝N /C log.2/ŒK W Q�rN
�
volN .BN / � 2ŒKWQ�rN :

The theorem yields hence a non-zero section s 2 S , which means that

ı� logksk.1/� � �
�sup.zL

˝N /

rN
C log.2/ŒK W Q�

D

�
�

1

.d C 1/
�

�sup.zL
˝N /

N dC1=.d C 1/Š
�
N d=dŠ

rN
C

log.2/ŒK W Q�
N

�
N

and logksk.1/� � 0 for all other places � ¤ � of K. Using the algebraic Riemann–Roch
theorem [50, Corollary 1.4.41], we infer the assertion of the lemma.

3. Semiabelian varieties

We start by summarizing the basic facts on homomorphisms and compactifications of
semiabelian varieties that are essential for our main proof. The reader may also compare
with [44, Sections 1 and 2].

3.1. Basics

A general reference for this subsection is [64, Chapter VII], and we only summarize
briefly what we need. A semiabelian variety G over a field k is a connected smooth
algebraic k-group that is the extension of an abelian variety A over k by a k-torus T . This
means that there exists an exact sequence

0! T ! G ! A! 0 (3.1)

in the abelian category of commutative k-algebraic groups of finite type [18, Théorème
VIA.3.2]. Both T andA are uniquely determined byG so that we may call T the toric part
of G and G ! G=T D A (or just A) the abelian quotient of G in the following. Further-
more, the exact sequence (3.1) describes a Yoneda extension class in Ext1

k
.A; T / (see [57,

Section I.3]). In the sequel, we write �G for the extension class associated to a semiabelian
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variety G in this way. Each homomorphism 'WB ! A (resp. 'WT ! S ) of abelian vari-
eties (resp. tori) induces a pullback '�WExt1

k
.A; T /! Ext1

k
.B; T / (resp. a pushforward

'�WExt1
k
.A; T /! Ext1

k
.A; S/).

The Weil–Barsotti formula (see [57, Section III.18] or [54, Appendix]) gives a canon-
ical identification Ext1

k
.A;Gm/ D A

_.k/. If T is split so that we can identify it with Gt
m,

we make frequent use of the identity Ext1
k
.A;Gt

m/ D Ext1
k
.A;Gm/

t D .A_/t .k/. With
this identification, it is easy to describe pushforwards. If 'WGt

m ! Gt 0

m is the homo-
morphism described by '�.Yv/ D

Qt
uD1X

auv
u in standard coordinates X1; : : : ; Xt (resp.

Y1; : : : ; Yt 0 ) on Gt
m (resp. Gt 0

m), then the pushforward '�WExt1
k
.A;Gt

m/! Ext1
k
.A;Gt 0

m/

corresponds to the homomorphism .A_/t ! .A_/t
0

sending the tuple .�1; : : : ; �t / to the
tuple .

Pt
uD1 auv�u/1�v�t 0 .

3.2. Homomorphisms and compactifications

Let G (resp. G0) be a semiabelian variety over a field k with abelian quotient A (resp. A0)
and split toric part Gt

m (resp. Gt 0

m). Recall from Lemma [44, Lemma 1] that homomor-
phisms 'WG ! G0 give rise to commutative diagrams

0 Gt
m G A 0

0 Gt 0

m G0 A0 0

'tor ' 'ab (3.2)

with homomorphisms 'torWGt
m ! Gt 0

m and 'abWA! A0. Conversely, a (unique) homo-
morphism ' exists for a pair .'tor; 'ab/ if and only if .'tor/��G D '

�
ab�G0 2 Ext1

k
.Gt 0

m; A/.
We use the compactification G of G given in [44, Construction 5], which differs

from the one used in [12]. This choice of compactification is notationally convenient
for us, but other compactifications are equally legitimate. Indeed, these lead to a differ-
ent Arakelov height whose main features are however the same as those of the Arakelov
height used here: torsion points have height 0, and the height of G is strictly negative
(compare [12, Section 4]). Consider Gt

m with its natural Gt
m-action, and endow .P1/t

with the unique Gt
m-action �.P1/t such that the inclusion Gt

m ,! .P1/t is Gt
m-equivariant.

We endow G �k .P
1/t with the Gt

m-action given by

t � .g; x/ D .t �G g; t
�1
�.P1/t x/; t 2 Gt

m.Z/; x 2 .P
1/t .Z/; g 2 G.Z/;

onZ-points. We can then form the (categorical) quotient .G � .P1/t /=Gt
m in the category

of k-schemes, which is a smooth k-variety G into which G embeds. The abelian quotient
� WG ! A extends to an algebraic map � WG ! A. Writing

�G D .Q1; : : : ;Qt / 2 A
_.k/t D Pic.A/t ;

our compactification can be also described as the embedding

G ,! G D Proj
�
Sym.OA ˚ F .Q1/

_/
�
�A � � � �A Proj

�
Sym.OA ˚ F .Qt /

_/
�

(3.3)
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(see [11, Section 4]). The ideal Sym.0˚ F .Qi /
_/ (resp. Sym.OA ˚ 0/) describes a divi-

sor in Proj.Sym.OA ˚ F .Qi /
_//. Replacing the factor Proj.Sym.OA ˚ F .Qi /

_// in
(3.3) with this divisor, we obtain a Weil divisor D.0/

i (resp. D.1/
i ) on G. The bound-

ary G nG is the union of the 2t Weil divisors D.0/
i ;D.1/

i (1 � i � t ). Each divisor
D.�/
i (� 2 ¹0;1º, 1 � i � t ) gives rise to an effective line bundle M .�/

G;i whose sheaf
of sections is OG.D

.�/
i /. In the sequel, we write

MG D

tO
iD1

.M
.0/
G;i ˝M

.1/
G;i /:

By [44, Lemma 3], the line bundle MG ˝ �
�N is ample. For each integer n � 1, the

same lemma shows that .M .�/
Gi
/˝n ˝MG ˝ �

�N is ample and hence M .�/
G;i is nef.

We also have to compactify (the graphs of) homomorphisms. A general procedure
for this is outlined in [44, Construction 7], but we only need some special cases, and
we describe these in detail here. Assume that 'WG ! G0 is a homomorphism of semi-
abelian varieties such that 'tor D Œn�Gtm in the notation of (3.2). The homomorphism
Œn�Gtm WG

t
m!Gt

m extends to a map Œn�Gtm W .P
1/t ! .P1/t so that there is a map

' � Œn�Gtm WG � .P
1/t ! G0 � .P1/t :

It is easy to see that this map descends to a map

'WG D G �Gtm .P1/t ! G0 �Gtm .P1/t D G0

on contraction products, which is the unique extension of 'WG ! G0 to an algebraic
map G ! G0. In the particular case where ' D Œn�, we obtain an extension Œn�WG ! G

of the multiplication-by-n map Œn�WG ! G. One can compute that Œn��D.�/
i D nD

.�/
i

(� 2 ¹0;1º, 1 � i � t ) and hence Œn��M .�/
G;i � .M

.�/
G;i /
˝n (see [44, Section 2]).

3.3. Canonical metrics and heights

Our references for this subsection are [11,12,77]. We let G be a semiabelian variety over
a number field K. Denote by � WG ! A its abelian quotient and by T its toric part. We
may assume that T D Gt

m, enlarging K if necessary. In this situation, the last subsection
yields a compactification G and line bundles M .�/

G;i (� 2 ¹0;1º, 1 � i � t ) on G. Let N
be an ample symmetric line bundle on A.

We next aim to decorate M .�/
G;i and N with adelic metrics, following Zhang [77]. The

technical result that we need is summarized in the following lemma.

Lemma 3.1. LetX be a projective variety, L a line bundle onX , f WX ! X a surjective
algebraic map, d > 1 an integer, and �WL˝d ! f �L an isomorphism of line bundles
over X . Then,

(a) for each � 2 †.K/, there exists a unique �-metrized line bundle L� D .L; k � k�/
such that � is an isometry L˝d� ! f �L� ,

(b) on replacing � with c�, the metric k � k� changes to jcj1=.d�1/� k � k� ,
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(c) the metrics k � k� thus obtained combine to an adelic metric ¹k � k�º�2†.K/ on L,

(d) if there exists a vertically semipositive algebraic adelic metric on L, then the (adeli-
cally) metrized line bundle zL D .L; ¹k � k�º�2†.K// is vertically semipositive.

Proof. (a), (b): This is the content of [77, Theorem 2.2]. The Gal.C�=K�/-invariance
demanded by property (d) in Subsection 2.2 follows from uniqueness.

(c): This is an extension of the ample case considered in [77, (2.3)]. Let L0 be a very
ample line bundle on X such that L˝ L0 is also very ample. In other words, the global
sections yield projective embeddings

�L0 WX ,! Pk1K and �L˝L0 WX ,! Pk2K :

Composing with the diagonal map, we thus obtain an embedding �WX ,! Pk1K � Pk2K such
that L0 D ��pr�1OP

k1
K
.1/ and L˝ L0 D ��pr�2OP

k2
K
.1/, where pri (i D 1; 2) denotes the

projection to the i -th factor. Let X be the Zariski closure of X in Pk1S � Pk2S . We set

L D .pr�2OP
k2
S
.1/˝ pr�1OP

k1
S
.1/˝�1/jX

so that .X;L/ is an S -model of .X;L/.
For each integer n � 1, we consider the graph embedding

�� D .idX ; f ın/WX ,! �.f ın/ � X �X

and the Zariski closure �.f ın/ of �.f ın/ in X �X. Writing pr2WX �X ! X for the
projection to the second factor, we define the line bundle Ln D .pr�2L/j�.f ın/. The iso-
morphism � induces an isomorphism �nWL

˝dn ! .f ın/�L over X . Through �� and �n,
the tuple .�.f ın/;Ln/ is an S -model of .X;L˝d

n
/. For each � 2 †f .K/, we have

induced formal �-metrics k � k1=d
n

Ln;�
on L. An inspection of the argument of [77, Theo-

rem 2.2 (a), (b)] shows that the �-metric k � k1=d
n

Ln;�
converges uniformly to the �-metric k � k�

from (a) as n!1.
Furthermore, there exists a non-empty open U � S such that each iterate f ın extends

to a map ef ınWXjU ! XjU and each �n extends to an isomorphism

e�nWL˝dn jU ! .ef ın/�LjU
over XjU . For each � 2 U , this implies k � k� D k � k

1=dn

Ln;�
D k � kL� , which shows that

¹k � k�º�2†.K/ is an adelic metric.
(d): By assumption, there exists an S -model .X;L/ of .X;L˝e/ and a hermitian line

bundle L D .L; ¹k � k�º�2†1.K// 2
cPic.X/ such that L is relatively nef with respect to

X ! S and each .L; k � k�/, � 2 †1.K/, is semipositive. Proceeding as in (c), we obtain
a sequence of algebraic adelic metrics .¹k � k1=d

ne

Ln;�
º/ that are vertically semipositive and

converge uniformly to ¹k � k�º.

Using
Œn��M

.�/
G;i � .M

.�/
G;i /
˝n and Œn��N � N˝n

2

;

the above lemma yields metrized line bundles zM .�/
G;i and zN . The adelic metrics are unique

up to a rescaling as in part (b) of the above theorem. Since this has no influence on
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arithmetic intersection numbers due to Lemma 2.3 (e), we can ignore this indetermi-
nancy in the following and just work with a fixed arbitrary choice. The heights h zM .�/

G;i

and h�� zN coincide with the corresponding Néron–Tate heights yhM .�/

G;i
and yh��N defined

in [44, Lemma 8].
AsN is ample, the global sections of some powerN˝e induce a projective embedding

A ,! PkK . Taking the Zariski closure A ofA in PkS , we obtain an S -model .A;OPk
S
.1/jA/

of .A;N˝e/. Since OPk
S
.1/jA is ample, there exists a vertically semipositive hermit-

ian line bundle N D .OPk
S
.1/jA; ¹k � k�2†1.K/º/ 2

cPic.A/. The algebraic adelic metric
onN induced by N is vertically semipositive. By Lemma 3.1 (d), zN is likewise vertically
semipositive. Furthermore, zN is also horizontally semipositive, since this just means that
the Néron–Tate height associated with N is non-negative.

As M .�/
G;i is only nef (see [44, Lemma 3]), the vertical semipositivity of zM .�/

G;i is
not as easy to establish as for zN . Nevertheless, Chambert-Loir proved this fact in [12,
Proposition 3.6], relying on specific regular models of abelian varieties constructed by
Künnemann [45].

3.4. Heights and homomorphisms

We next recall a lemma that controls the behavior of our canonical height under homo-
morphisms.

Lemma 3.2. Let Gi , i D 1; 2, be a semiabelian variety with toric part Ti D Gti
m and

abelian quotient � WGi ! Ai . Let furtherNi , i 2 ¹1; 2º, be symmetric line bundles on Ai .
Assume that N1 is ample. For every homomorphism 'WG1 ! G2, we then have

h��
2
zN2.'.x//�Ni ;' h��1 zN1.x/ and h zMG2 .'.x//�' h zMG1 .x/

for all closed points x 2 G1.

We note that all four terms in the above two inequalities are non-negative. This is
horizontal semipositivity for the terms in the first inequality. For the terms of the second
inequality, we can use [44, Lemma 10] (see also [12, Lemme 3.9]).

Proof. The first inequality is equivalent to h zN2.'ab.x//�Ni ;' h zN1.x/ for all closed
points x 2 A1. It follows hence from an application of [72, Proposition 2.3] to the map
'WA1 ! A2. As usual, the term O.1/ in [72, Proposition 2.3] disappears by Tate’s limit
argument.

The second inequality can be deduced from [44, Lemma 10]. Invoking said lemma for
the pair .'tor; 0/ 2 Hom.Gt1

m ;G
t2
m/ yields

jyhM�.'tor/
.x/j �'

yhMG1 .x/

for all x 2G.Q/, whereM�.'tor/ is as in [44, Construction 6]. Functoriality [44, Lemma 9]
implies that

yhM�.'tor/
.x/ D yhMG2 .'.x//

(see also [44, Construction 7]). We conclude by noting the canonical heights constructed
in the last subsection coincide with the corresponding Néron–Tate heights used in [44].
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3.5. Local trivializations

Let � be an archimedean place ofK. For use in Section 5, we state next an auxiliary result
describing the �-metrized line bundles constructed in Subsection 3.3. The construction
therein, carried out forG D Gm andA D 0, yields metrized line bundles zM .�/

P1
D zM .�/

P1;1
,

� 2 ¹0;1º, on the compactification P1 of Gm. By Lemma 3.1 (a), we have

Œn�� zM
.�/

P1
� . zM

.�/

P1
/˝n

for any positive integer n. We write

zMP1 D
zM .0/

P1 ˝
zM .1/

P1 and zMG;i D zM
.0/
G;i ˝

zM
.1/
G;i .i D 1; : : : ; t /

to ease notation.

Lemma 3.3. There exists a finite collection ¹.Uj ;  j /ºj2J , where Uj , j 2 J , are open
sets covering Aan

C�
and  j , j 2 J , are holomorphic maps

 j D . 
.j /
1 ; : : : ;  

.j /
t /WGan

C�
jUj ! ..P1C� /

t /an

such that
�an

C�
jUj �  j WG

an
C�
jUj ! Uj � ..P

1
C�
/t /an

is a biholomorphism and

MG;i;� jUj � . 
.j /
i /�MP1;� ; i 2 ¹1; : : : ; tº: (3.4)

For each j; j 0 2 J and each i 2 ¹1; : : : ; tº, the quotient

 
.j /
i = 

.j 0/
i W .�

an
C�
/�1.Uj \ Uj 0/! C (3.5)

is a locally constant function with values in S1 D ¹z 2 C j jzj D 1º. Furthermore, we
have

ker.d .j /i /y \ ker.d�/y D ker.d .j
0/

i /y \ ker.d�/y ; i 2 ¹1; : : : ; tº; (3.6)

for any j; j 0 2 J and all y 2 .�an
C�
/�1.Uj \ Uj 0/.

In the following, Weil functions are used to describe archimedean metrics. The reader
is referred to [47, Chapter 10] and [48, Chapter I] for basics on Weil functions. In addition,
[44, Section 5.1] and [71, Section 2] contain further information on the specific Weil
functions used here.

Proof. Write �G D .Q1;Q2; : : : ;Qt / 2 A
_.Q/. Recall from Subsection 3.2 the Weil

divisors D.0/
i ;D.1/

i (1 � i � t ) on G. Let si (1 � i � t ) be a non-zero rational section
ofQ_i such that eA … jdiv.si /j. From (3.3), we see that each si induces a rational function
fi on G with divisor

div.fi / D D.0/
i �D

.1/
i C �� div.si /:
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In fact, ��Qi is the line bundle associated with D.0/
i �D

.1/
i (see [11, Lemme 4.1]).

Let U be an open, simply connected subset of Aan
C�

, and let us assume additionally
that U and div.si /an

C�
are disjoint. We can then lift the inclusion �an

C�
jU WU ,! Aan

C�
to

a map e� WU ! Cg , where Cg is interpreted as the universal covering of Aan
C�

. By [46,
Chapter X], there exists a normalized theta function #i on Cg whose (analytic) divisor
div.#i / is the pullback of div.si /an

C�
along the universal covering Cg � Aan

C�
. Rescal-

ing if necessary, we may assume that fi .eG/ D 1 and #i .0; : : : ; 0/ D 1. We define a map
 WGan

C�
jU ! U � ..P1C� /

t /an by setting

 .y/ D
�
�.y/;  1.y/; : : : ;  t .y/

�
;  i .y/ D fi .y/=#i .e�.y//;

for y 2 Gan
C�
jU ; this extends uniquely to a biholomorphism Gan

C�
jU ! U � ..P1C� /

t /an.
Varying the rational sections si and the simply connected subset U � Aan

C�
, we can find

a finite covering ¹Uj ºj2J of Aan
C�

and holomorphisms

¹ j D . 
.j /
1 ; : : : ;  

.j /
t /ºj2J

in this way.
To show the assertion about the �-metrized line bundles, we identify

MG;i;� D
�
OG.D

.0/
i CD

.1/
i /; k � kG;i

�
and MP1;� D

�
OP1.Œ0�C Œ1�/; k � kGm

�
:

This presentation allows us to interpret the sections of MG;i and MP1 as meromorphic
functions on G and to work with Weil functions. The pullback of meromorphic functions
along the map Œn� gives rise to canonical isomorphisms

�.n/
G;i
WM˝n

G;i
! Œn��MG;i and �.n/P1 WM

˝n
P1 ! Œn��MP1 I

by Lemma 3.1 (b), we can assume that these actually induce isometries

M˝n
G;i;�

! Œn��MG;i;� and M˝nP1;� ! Œn��MP1;� :

By [71, Proposition 2.6] (and its proof combined with [47, Theorem 13.1.1]), we have

j 
.j /
i .y/j D j 

.j 0/
i .y/j for all y 2 Uj \ Uj 0 :

Since  .j /i = 
.j 0/
i is a meromorphic function on Uj \ Uj 0 , this implies (3.5), whence

also (3.6). We can also define C1-functions �i WGan
C�
! R (1 � i � t ) by setting

�i .y/ D logj .j /i .y/j for all y 2 Uj :

The mentioned proposition in [71] states then that �i is the unique Weil function for
D.1/
i �D.0/

i such that �i .y1 C y2/ D �i .y1/C �i .y2/ for all y1; y2 2 Gan
C�

. Since �.n/
G;i

induces isometries M˝nG;i;� ! Œn��MG;i;� and

.OG.D
.0/
i CD

.1/
i /; e�j�i jj � j/˝n ! Œn��.OG.D

.0/
i CD

.1/
i /; e�j�i jj � j/;

Lemma 3.1 (a) implies that k � kG;i D e�j�i jj � j, where j � j is the ordinary absolute value on
rational functions. Similarly, we can argue with �.n/

P1
and obtain that k � kP1 D e�jlogjzjjj � j.

Combining these two identities and using jlog. � /j ı  .j /i D �i , we infer that

MG;i;� jUj � . 
.j /
i /�MP1;� ; i 2 ¹1; : : : ; tº:
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4. The equidistribution conjecture

As in the introduction, we letK be a number field, � 2 †.K/ an arbitrary place,G a semi-
abelian variety over K with split toric part T D Gt

m and abelian quotient � WG ! A.
Thus, G is given by an exact sequence

0! Gt
m ! G ! A! 0;

which is described by a t -tuple

� D .�1; : : : ; �t / 2 A
_.K/t D Ext1K.A;G

t
m/:

We may then use the compactification G and the map � WG ! A described in Subsec-
tion 3.2. Furthermore, write zM (resp. zN ) for the vertically semipositive metrized line bun-
dle zMG 2 cPic.G/ (resp. zN 2 cPic.A/) defined in Subsection 3.3, and set zLD zM C �� zN .

Our aim in this section is to prove (EC) in a slighter stronger form, namely for arbitrary
subvarieties X � G. This extra strength is needed in Section 6 for the proof of (BC). The
case X D G corresponds to (EC).

Proposition 4.1. Let X � G be a geometrically irreducible algebraic subvariety, and
let X denote its Zariski closure in G. Set d D dim.X/, d 0 D dim.�.X//, and define the
Borel measure

�� D
c1.MG;� jX /

d�d 0 ^ c1.�
�N � jX /

d 0

.MG jX /d�d
0
� .��N jX /d

0

on X an
C�

. Furthermore, let .xi / 2 XN be an X -generic sequence of small points. Then,
for any f 2 C 0.X an

C�
/, we have

1

#O�.xi /

X
y2O�.xi /

f .y/!

Z
Xan

C�

f�� .i !1/:

The proposition is proven at the end of this section, after a series of preparatory lem-
mas. Before starting with them, we have to introduce some further objects. For each
integer n � 1, we choose (arbitrary) �.n/i 2 A

_.Q/, 1 � i � t , such that n � �.n/i D �i .
Let Gn be the semiabelian variety given by the extension class

.�.n/1 ; : : : ; �.n/t / 2 A_.Q/t D Ext1
Q
.A;Gt

m/:

Note thatGn is in general not a semiabelian variety overK but only over a finite extension
Kn � K. We consider Gn as a Kn-variety in the sequel. From Subsection 3.2, we know
that there exists an isogeny 'nWGn ! GKn such that, in the notation of (3.2), we have
'n;tor D Œn� and 'n;ab D idAKn .

We have again a standard compactificationGn ofGn and a map �nWGn ! AKn from
Subsection 3.2. In addition, the homomorphism 'n extends to a map 'nWGn ! AKn . Let
zM n 2 cPic.Gn/ denote the vertically semipositive metrized line bundle zMGn defined in

Subsection 3.3. The construction in Subsection 3.2 shows that '�nMKn D nMn, which we
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can use to ensure '�n zMKn D n
zM n by Lemma 3.1 (a), (b). Writing zLn D zM n C �

�
n
zNKn ,

we have an isomorphism

zLn � '
�
n

�
n�1 zMKn C .�

� zN/Kn
�
; (4.1)

which we invoke frequently.
In contrast to XKn , the preimage '�1n .XKn/ � Gn is not irreducible in general. We

work therefore with an irreducible component Y of '�1n .XKn/ in the sequel. In addition,
we write ı.Y / for the degree of 'njY WY ! XKn , which is a surjective finite map. (In the
case X D G, which corresponds to (EC), we have Y D Gn and ı.Y / D nt .) We write
†n.�/ for the places in †.Kn/ that lie above the place � in Proposition 4.1. For each
�0 2 †n.�/, we fix an identification C� � C�0 ; our arguments below are independent of
this arbitrary choice, and we use it mostly without further explicit mention.

The next lemma controls the growth of geometric degrees as n!1. In its proof and
the one of Lemma 4.3 below, we use the standard notation from Fulton’s book [22] freely.

Lemma 4.2. Let X � G be a geometrically irreducible algebraic subvariety and Y an
irreducible component of '�1n .XKn/. Then .LnjY /d � ı.Y /n�dCd

0

.

Proof of Lemma 4.2. By the projection formula [22, Proposition 2.5 (c)], we have

c1.Ln/
d
\ ŒY � D

dX
iD0

�
d

i

�
ı.Y /n�dCic1.MKn/

d�i
\ c1.�

�NKn/
i
\ ŒXKn �

because '�nMKn � nMn and '�n.�
�N/Kn � �

�
nNKn . Since Kn=K is flat, this yields

c1.Ln/
d
\ ŒY � D

dX
iD0

�
d

i

�
ı.Y /n�dCic1.M/d�i \ c1.�

�N/i \ ŒX� (4.2)

by [22, Proposition 2.5 (d)]. Note that M is nef by [44, Lemma 3] and that ��N is nef
because N is ample. Using [41, Theorem III.2.1], we infer

.LnjY /
d
�

�
d

d 0

�
ı.Y /n�dCd

0

deg
�
c1.M/d�d

0

\ c1.�
�N/d

0

\ ŒX�
�
: (4.3)

The lemma is proven if we can show that the degree on the right-hand side of (4.3) is
positive. Set � D ��.X/. By an ascending induction on the fiber dimension d � d 0, we
can deduce

deg
�
c1.M/d�d

0

\ c1.�
�N/d

0

\ ŒX�
�

D deg
�
c1.M�/

d�d 0
\ ŒX��

�
� deg

�
c1.N /

d 0
\ Œ�.X/�

�
from the projection formula. Since M� is ample on X� and N is ample on �.X/, the two
factors on the right-hand side of this identity are strictly positive by [22, Lemma 12.1].

The next lemma justifies the choice of the measure �� in Proposition 4.1.
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Lemma 4.3. Assume that f 2 C 0.X an
C�
/ is Gal.C�=K�/-invariant. For each �0 2 †n.�/,

we set
fn;�0 D f ı .'njY /

an
C�0
2 C 0.Y an

C�0
/:

Writing
�n;�0 D c1.Ln;�0 jY /

d=.LnjY /
d ;

we have Z
Y an

C�0

fn;�0�n;�0 !

Z
Xan

C�

f�� .n!1/:

Note that the assumption that f is Gal.C�=K�/-invariant is needed to make sure that
fn;�0 is well-defined (i.e., independent of the chosen identification between C�0 and C�).

Proof. Another use of the projection formula reveals that

deg
�
c1.�

�N/i \ .c1.M/d�i \ ŒX�/
�

D deg
�
c1.N j�.X//

i
\ .�jX /�.c1.M jX /

d�i
\ ŒX�/

�
;

which is clearly zero whenever i > d 0. With (4.2), we infer thatˇ̌̌̌
.LnjY /

d
� ı.Y /n�dCd

0

�
d

d 0

�
.M jX /

d�d 0.��N jX /
d 0
ˇ̌̌̌
�X;M;N ı.Y /n�dCd

0�1:

Recall from the proof of Lemma 4.2 above that .M jX /d�d
0

� .��N jX /
d 0 > 0. Invoking

Lemma 2.2 (a) and (c), we obtain similarlyˇ̌̌̌Z
Y an

C�0

fn;�0c1.Ln;�0 jY /
d
� ı.Y /n�dCd

0

�
d

d 0

�Z
Xan

C�

fc1.M �/
d�d 0

^ c1.�
�N �/

d 0
ˇ̌̌̌

�X;M;N;f ı.Y /n
�dCd 0�1

The lemma follows by combining these two asymptotic estimates.

Lemma 4.4. Assume that f is Gal.C�=K�/-invariant and that OX .f / 2 Pic�.X/Q is
integrable. For each positive integer n, each real number � 2 Œ�n�1; n�1�, and each
�0 2 †n.�/, we haveˇ̌̌̌

hzLn;�.Y / � hzLn.Y / �
�ı�

ŒK W Q�

Z
YC�0

fn;�0�n;�0

ˇ̌̌̌
�X;f j�j

2n;

where we write zLn;�´ zLn C '�n.zOX .�f /Kn/.

We notice that

zLn;� D zLn C
X

�002†n.�/
ı�00Dı�

zOY .�ŒKn;�00 W K� �fn;�00/C
X

�002†n.�/
ı�00D2ı�

zOY .�fn;�00/; (4.4)

which is a direct consequence of our definition of base change in Subsection 2.5. The
advantage of working with zLn;� instead of manipulating zLn at a single place �0 2 †n.�/
is that zLn;� is evidently a pullback.
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Proof. Note first that OX .�f / 2 Pic�.X/Q is integrable for any real number �. We have

hzLn;�.Y / D
.zLn;�jY /

dC1

ŒKn W Q�.d C 1/.LnjY /d

by definition and

.zLn;�jY /
dC1
D

dC1X
iD0

�
d C 1

i

�
.zLnjY /

dC1�i
� '�n.

zOX .�f /Kn/
i

by Lemma 2.3 (a) and (b). By definition, we have

.zLnjY /
dC1

ŒKn W Q�.d C 1/.LnjY /d
D hzLn.Y /:

If � is not a real archimedean place, we note that ı�00 D ı� for all �00 2 †n.�/ so that

.zLnjY /
d � '�n.

zOX .�f /Kn/

.LnjY /d
D

�

ŒKn W Q�

X
�002†n.�/

�
ı�00 ŒKn;�00 W K� �

Z
Y an

C�00

fn;�00�n;�00

�

D
�ı�

ŒK W Q�

Z
YC�0

fn;�0�n;�0 :

by (2.3) and (4.4), using also the Gal.C�=K�/-invariance of f . The same equality is also
true if � is a real archimedean prime, though there is then also a contribution of the second
sum in (4.4); indeed, one just has to use that

P
�002†n.�/

ı�00 D ŒKn W K� and ı� D 1 in this
case. The lemma boils hence down toˇ̌̌̌
ˇ
dC1X
iD2

dC1�iX
jD0

�
d C 1

i

��
d C 1 � i

j

�
. zM njY /

d�i�jC1 � .��n
zNKn jY /

j � '�n.
zOX .�f /Kn/

i

ŒKn W Q�.d C 1/.LnjY /d

ˇ̌̌̌
ˇ

�X;f j�j
2n: (4.5)

As '�n zMKn D n
zM n and '�n.�

� zN/Kn D �
�
n
zNKn , Lemma 2.3 (c) and (f) imply that

. zM njY /
d�i�jC1

� .��n
zNKn jY /

j
� '�n.

zOX .�f /Kn/
i

D ı.Y /ŒKn W K�n
�dCiCj�1. zM jX /

d�i�jC1
� .�� zN jX /

j
� zOX .�f /

i : (4.6)

By Lemma 2.3 (a) and (2.3), we have

. zM jX /
dC1�i�j

� .�� zN jX /
j
� zOX .�f /

i

D �iı�

Z
Xan

C�

fc1.M �/
d�i�jC1

^ c1.�
�N �/

j
^ c1.OX .f //

i�1

for any i � 2. By integrability, there exist semipositive P 1; P 2 2 Pic�.X/Q such that
OX .f / D P 1 � P 2. The above integral is then bounded from above by

kf ksup

i�1X
kD0

�
i � 1

k

�
.M jX /

d�i�jC1
� .��N jX /

j
� .P1jX /

i�k�1
� .P2jX /

k
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because of Lemma 2.2 (d). By the projection formula, this is zero if j > d 0. Conse-
quently, the term in (4.6) is �X;f ı.Y /ŒKn W K�j�j

in�dCd
0Ci�1. In combination with

Lemma 4.2, this gives that each term on the left-hand side of (4.5) is �X;f j�j
ini�1.

Since j�jini�1 � j�j2n, we obtain (4.5).

Starting with the following lemma, we fix some place �0 2 †1.K/ so that we can
regard a real number �n as a constant function on X an

C�0
and define zOX .�n/ as in Sub-

section 2.5.8 For our purposes, it is immaterial which place �0 we choose, even whether
� D �0 or � ¤ �0, so that we omit any further reference to the place �0 in the following.

Lemma 4.5. For each integer n � 1, there exists some positive real �n �G n
�2 such

that zLn ˝ '�n.zOX .�n/Kn/ is horizontally semipositive. If X � G contains an X -generic
sequence of small points, we have

� n�2 �G hzLn.Y / � 0 (4.7)

for every irreducible component Y of '�1n .XKn/. In this situation, we also have

h zNKn
.�n.Y // D 0: (4.8)

For the compactification ofG and the associated Arakelov heights used by Chambert-
Loir, an explicit height formula [12, Théorème 4.2] implies the same asymptotics in the
caseX D G. By Zhang’s proof of (BC), (4.8) implies that �n.Y / is a translate of an abel-
ian subvariety of AKn by a torsion point. However, we have no use for this information,
and it does not simplify the arguments below.

Proof. By definition, zLn ˝ '�n.zOX .�n/Kn/ is horizontally semipositive if and only if

inf
x2Gn
closed

¹hzLn˝'�n.zOX .�n/Kn /.x/º D inf
x2Gn
closed

¹hzLn.x/º C
�n

ŒK W Q�
� 0:

Our first assertion hence follows directly from the statement of [12, Lemme 4.5] if t D 1.
In general, the compactification used there differs from ours, and the argument has to be
slightly adjusted. But this is straightforward and hence left to the reader. It should also
be noted that Chambert-Loir [12] uses a different definition of height (see [12, Subsec-
tion 1.4]) than the one we introduced in Section 2.7; ours has an additional factor ŒK W Q�
to make it absolute, which allows us to work with varying base fields Kn.

By Zhang’s ampleness theory in the incarnation of [12, Théorème 1.5], we have

hzLn.Z/ � inf
x2Z
closed

¹hzLn.x/º � inf
x2Gn
closed

¹hzLn˝'�n.zOX .�n/Kn /.x/º �
�n

ŒK W Q�
� �

�n

ŒK W Q�

for any irreducible subvariety Z � Gn, which proves the lower bound in (4.7).

8Note that zOX .�n/ is clearly integrable if �0 2 †1.K/, which is not immediately clear if we
would allow some non-archimedean place �0 2 †f .K/ instead. However, this could be achieved
as in the beginning of the proof of Proposition 4.1 below.
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Let now .xi / 2 X
N be an X -generic sequence of small points. As hzLn and h zM are

non-negative on the closed points of G (see the remark after Lemma 3.2), we obtain

0 � max
x2'�1n .xi /\Y

¹hzLn.x/º D n
�1h zM .xi /C h�� zN .xi / � hzL.xi /! 0 .i !1/ (4.9)

by using (4.1). This shows that Y contains a Y -generic sequence of small points. In this
way, the upper bound in (4.7) is another consequence of Zhang’s inequalities.

Finally, .�.xi // is a �n.X/-generic sequence of small points so that, taking into
account the horizontal semipositivity of zN , we obtain

h zNKn
.�n.Y // D h zN .�.X// D 0:

We next give an asymptotic lower bound on the arithmetic volume of zLn;�jY . Recall
that zLn;�´ zLn C '�n zOX .�f /, and set analogously zLn;�n D zLn C '

�
n.
zOX .�n/Kn/.

Lemma 4.6. Assume that zOX .f / 2 cPic.X/Q is integrable and that zLn.�n/, �n > 0, is
horizontally semipositive. Then we havecvol�.zLn;�jY / � .zLn;�jY /dC1 �X;f �ı.Y /ŒKn W K�j�j

2n�dCd
0C1.1C �nn/

for any positive integer n and any real number � 2 Œ�n�1; n�1�.

Note that the two terms on the left-hand side are equal if zLn;�jY is vertically semi-
positive (see [40, Theorem 3.5.1 and Remark 3.5.4]). In our situation, there are however
two obstructions to this line of reasoning. First, zLn;�jY may not be vertically semipositive
for small � even if zLn is so. This problem has to be dealt with already in the almost split
case (see [12]). The second problem is that zLn is not horizontally semipositive, which
is a new problem for general semiabelian varieties. To work around this, we follow the
argument given in [73, Subsection 3.2] but have to pay additional attention to the errors
terms suppressed therein.

Proof. By assumption, there exist semipositive zP1; zP2 2 cPic.X/Q such that

zOX .f / D zP1 � zP2:

Applying Lemma 2.6 to the decomposition

zLn;�;�n jY ´ .zL�n C �'
�
n
zP1;Kn jY / � �'

�
n
zP2;Kn jY ;

we obtain thatcvol�.zLn;�;�n jY / � .zLn;�n jY C �'
�
n
zP1;Kn jY /

dC1

� .d C 1/.zLn;�n jY C �'
�
n
zP1;Kn jY /

d
� �'�n

zP2;Kn jY :

By Lemma 2.3 (a), subtracting .zLn;�;�n jY /
dC1 from the right-hand side of this inequality

results in

�

dC1X
iD2

�
d C 1

i

�
.zLn;�n jY C �'

�
n
zP1;Kn jY /

dC1�i
� .��'�n

zP2;Kn jY /
i :
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We claim that the absolute value of this difference is

�X;f ı.Y /ŒKn W K�j�j
2n�dCd

0C1.1C �n/:

For this purpose, we expand the intersection number

.zLn;�n jY C �'
�
n
zP1;Kn jY /

dC1�i
� .��'�n

zP2;Kn jY /
i

as

.�1/i
dC1�iX
jD0

�iCj
�
d C 1 � i

j

�
.zLn;�n jY /

dC1�i�j
� .'�n

zP1;Kn jY /
j
� .'�n

zP2;Kn jY /
i :

Expanding this sum even further, we obtain
dC1�iX
jD0

X
k1Ck2Ck3DdC1�i�j

�iCj˛.k1; k2; k3; i; j /c.k1; k2; k3; i; j / (4.10)

with

˛.k1; k2; k3; i; j / D ŒKn W K�ı.Y /n
�k1. zM jX /

k1

� .�� zN jX /
k2 � zOX .�n/

k3 � . zP1jX /
j
� . zP2jX /

i

and

c.k1; k2; k3; i; j / D .�1/
i

�
d C 1 � i

j

��
d C 1 � i � j

k1; k2; k3

�
:

From (4.8), we know that zN d 0C1 � Œ�n.Y /� D 0. Applying Lemma 2.4 to �n and X � G,
it follows that ˛.k1; k2; k3; i; j / is zero if k2 > d 0. In addition, ˛.k1; k2; k3; i; j / is zero
if k3 > 1 because of (2.3) and Lemma 2.2 (d). If k3 D 0 and ˛.k1; k2; k3; i; j / ¤ 0, we
have k1 � d C 1 � i � j � d 0 and hence

j˛.k1; k2; k3; i; j /j �X;f ı.Y /ŒKn W K�n
�dCd 0CiCj�1:

If k3 D 1, we have

˛.k1; k2; k3; i; j / D �nı.Y /n
�k1ı�0

Z
Xan

C�

c1.M �0 jX /
k1 ^ c1.�

�N �0 jX /
k2

^ .P 1;�0 jX /
j
^ .P 2;�0 jX /

i

by (2.3). In combination with k1 � d � i � j � d 0, this implies

j˛.k1; k2; k3; i; j /j �X;f �nı.Y /n
�dCd 0CiCj :

These estimates imply that the absolute value of each summand in (4.10) is

�X;f ı.Y /j�j
iCjn�dCd

0CiCj�1.1C �nn/ � ı.Y /j�j
2n�dCd

0C1.1C �nn/:

In summary, we conclude thatcvol�.zLn;�;�n jY / � .zLn;�;�n jY /
dC1
�X;f �ı.Y /j�j

2n�dCd
0C1.1C �nn/:

By (2.4) and Lemma 2.5 (a), the left-hand side of the above inequality equalscvol�.zLn;�jY / � .zLn;�jY /dC1:
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We can now reap the proceeds of the above lemmas.

Proof of Proposition 4.1. It is well known that zOX .f / is integrable if � 2 †1.K/. En-
larging K, we can also assume that K� D C� and hence that f is trivially Gal.C�=K�/-
invariant. If � 2 †f .K/, we can use a Stone–Weierstrass approximation argument of
Yuan [73, p. 638, “Equivalence”] to reduce the proof to the case where f is Gal.C�=K�/-
invariant. A similar approximation argument [27, Theorem 7.12] and [30, Proposition 3.4]
(see also [73, Lemma 3.5] and [74, Subsection 10.4]) allows us to assume that zOX .f /
is integrable. Both approximations potentially involve a replacement of K by a finite
extension.

From now on, let n be a fixed integer. We choose also a non-zero real � 2 Œ�n�1; n�1�
and a real " > 0; an explicit choice of � is given below. By Lemma 4.5, we can find
some positive real �n �G n

�2 such that zLn;�n D zLn C '
�
n.
zOX .�n/Kn/ is horizontally

semipositive.
Let � 2 †.K/ and a real " > 0 be given. For the sequel, we keep fixed an arbitrary

place �0 2 †n.�/ above � 2 †.K/. In addition, let us again write

zLn;� D zLn C '
�
n
zOX .�f / D .Ln; ¹k � k�º�2†.Kn//:

By Lemma 2.7, there exists some positive integer N0 and a non-zero section

s 2 H 0.Y ; .LnjY /
˝N0/

such that
ı�0 logks.x/k1=N0�0

ŒKn W Q�
� �

cvol�.zLn;�jY /
ŒKn W Q�.d C 1/.LnjY /d

C "

for every point x 2 Y an
C�0

and

logks.x/k� � 0 .� 2 †.Kn/ n ¹�
0
º/

for every point x 2 Y an
C�

. Using Lemmas 4.2 and 4.6, we infer that there exists some
constant c1 D c1.X; f; ŒK W Q�/ > 0 such that

ı�0 logks.x/k1=N0�0

ŒKn W Q�
� �hzLn;�.Y /C c1j�j

2n.1C �nn/C "

for every point x 2 Y an
C�0

. With Lemma 4.4 and (4.7), we further deduce that

ı�0 logks.x/k1=N0�0

ŒKn W Q�
� �

�ı�

ŒK W Q�

Z
YC�0

fn;�0�n;�0 C c2.n
�2
C j�j2nC �nj�j

2n2/C "

for some constant c2 D c2.X;f; ŒK WQ�/ > 0 and all x 2 .Y n jdiv.s/j/an
C�0

. Through (2.6),
we can use this to obtain the lower global bound

hzLn;�.x/ �
�ı�

ŒK W Q�

Z
Y an

C�0

fn;�0�n;�0 � c2.n
�2
C j�j2nC �nj�j

2n2/ � " (4.11)
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for all closed points x 2 Y n jdiv.s/j. Note that � is not a real archimedean place by our
above assumptions so that the second sum in (4.4) is empty. For each closed point x 2 Y ,
we infer from (2.6) and (4.4) that

h
'�n.zOX .�f //Kn

.x/ D
�

ŒKn.x/ W Q�

X
�002†n.�/

X
y2O�.x/

ı�00 ŒK�00 W K� �fn;�00.y/

D
�ı� ŒKn W K�

ŒKn.x/ W Q�

X
y2O�0 .x/

fn;�0.y/

D
�ı�

ŒK W Q� � .#O�0.x//

X
y2O�0 .x/

fn;�0.y/;

where we also used the Gal.C�=K�/-invariance of f in the second equality. Expanding
the left-hand side of (4.11), we thus obtain

hzLn.x/C
�ı�

ŒK W Q�

�
1

#O�0.x/

X
y2O�0 .x/

fn;�0.y/ �

Z
Y an

C�0

fn;�0�n;�0

�
� �c2.n

�2
C j�j2nC �nj�j

2n2/ � " (4.12)

for all closed points x 2 Y n jdiv.s/j. Since .xi / 2 XN is a generic sequence, there exists
some integer i0 D i0.X; f; n/ such that x … jdiv.s/j for all x 2 '�1n .xi / \ Y , i � i0. We
recall that

0 � max
x2'�1n .xi /\Y

¹hzLn.x/º ! 0 .i !1/

by (4.9). Combining this with (4.12) and averaging over all closed points x 2 '�1n .xi /, it
follows that

lim inf
i!1

�
�

#O�.xi /

X
y2O�.xi /

f .y/ � �

Z
Y an

C�

fn;�0�n;�0

�
� �c3.n

�2
C j�j2nC �nj�j

2n2/ � ı�1� ŒK W Q�"

for some constant c3 D c3.X; f; ŒK W Q�/ > 0. Working with�� instead of � in our above
reasoning, we obtain similarly

lim sup
i!1

�
�

#O�.xi /

X
y2O�.xi /

f .y/ � �

Z
Y an

C�

fn;�0�n;�0

�
� c3.n

�2
C j�j2nC �nj�j

2n2/C ı�1� ŒK W Q�":

Combining these two inequalities, we can deduce that

lim sup
i!1

ˇ̌̌̌
1

#O�.xi /

X
y2O�.xi /

f .y/ �

Z
Y an

C�

fn;�0�n;�0

ˇ̌̌̌
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is bounded from above by

c3.n
�2
j�j�1 C j�jnC �nj�jn

2/C ı�1� ŒK W Q�j�j�1": (4.13)

Given a positive integer n, we choose � D n�3=2 and " D n�1=2j�j. In this way, we obtain

lim
i!1

ˇ̌̌̌
1

#O�.xi /

X
y2O�.xi /

f .y/ �

Z
Y an

C�

fn;�0�n;�0

ˇ̌̌̌
�X;f n

�1=2:

Combining this with Lemma 4.3, the proposition follows with n!1.

5. Equilibrium measures

In preparation for the proof of (BC) in Section 6, we investigate here the measures from
Proposition 4.1 in more detail. We continue with the notation of Section 4 but restrict
to an archimedean place � 2 †1.K/ throughout this section. Choose a local trivializa-
tion ¹.Uj ;  j /ºj2J , J finite, of Gan

C�
as in Lemma 3.3, and write  j D . 

.j /
1 ; : : : ;  

.j /
t /.

Furthermore, we use the line bundles M .0/
G;i and M .1/

G;i (1 � i � t ) as defined in Subsec-
tion 3.2 and set MG;i DM

.0/
G;i ˝M

.1/
G;i .

Let X � G be a geometrically irreducible algebraic subvariety of positive dimen-
sion, and denote by X its Zariski closure in G. Set d D dim.X/, d 0 D dim.�.X//, and
t 0 D d � d 0. We let IX be the set of all t 0-tuples .i1; i2; : : : ; it 0/ such that

MG;i1 j��.X/ �MG;i2 j��.X/ � � �MG;it0
j��.X/ > 0; (5.1)

where ��.X/ is the generic point of �.X/. AsMG D
Nt
iD1MG;i is relatively ample with

respect to � WG ! A, the set IX is non-empty. For each i D .i1; i2; : : : ; it 0/ 2 IX , we
define the subset

Xi D
[
j2J

®
y 2 .�an

C�
/�1.Uj / \X

an
C�
j j j

.j /
i1
.y/ D j 

.j /
i2
.y/j D � � � D j 

.j /
it0
.y/j D 1

¯
and the map

 .j /i D . 
.j /
i1
; : : : ;  

.j /
it0
/WGan

C�
jUj ! ..P1C� /

t 0/an:

Using (3.5), we see that Xi is a closed and hence a compact real-analytic subset of X an
C�

.
We next define complex-analytic subsets Ei � X an

C�
, i 2 IX , such that eachXi has a sim-

ple structure away from Ei . For this, we first set

E.j /i D
®
y 2 .�an

C�
/�1.Uj / \X

an
C�
j ker.d .j /i / \ ker.d�/an

C�
\ T 1;0C;y.X

an
C�
/ ¤ ¹0yº

¯
for each j 2 J . By (3.6), we have

E.j /i \ .�
an
C�
/�1.Uj 0/ D E

.j 0/
i \ .�an

C�
/�1.Uj /

for all j; j 0 2 J . Consequently, their union
S
j2J E

.j /
i is a closed complex-analytic sub-

set of X an
C�

. We set

Ei D
[
j2J

E.j /i [ .X nX
sm/an

C�
[
�
��1.�.X/ n �.X/sm/

�an
C�
[
�
X \ .G nG/

�an
C�
:

We collect the main properties of Xi and Ei in the following lemma.
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Lemma 5.1. Let j 2 J and i 2 IX . Then

(a) Ei is a closed complex-analytic subset of X an
C�

having dimension < d ,

(b) on .X an
C�
\ .�an

C�
/�1.Uj //nEi , the map �an

C�
� .j /i restricts to a local biholomor-

phism with codomain .�.X/sm �Gt 0

m/
an
C�

,

(c) Xi nEi is a union of finitely many (embedded) real-analytic submanifolds, each
having dimension d C d 0, and

(d) on .Xi \ .�an
C�
/�1.Uj //nEi , the map �an

C�
� .j /i restricts to a real-analytic local

isomorphism with codomain .�.X/sm/an
C�
� .S1/t

0

.

Proof. (a): It is enough to show that the closed complex-analytic subset
S
j2J E

.j /
i has

dimension < d . Since X an
C�

is irreducible as a complex-analytic set, we only have to find
a point y 2 X an

C�
not contained in

S
j2J E

.j /
i .

By assumption (5.1), there exists a closed point z 2 �.X/sm
C�

such that the fiber X jz
is of dimension t 0 and

MG;i1 �MG;i2 � � �MG;it0
� ŒX jz � > 0: (5.2)

Let Uj , j 2 J , be such that zan 2 Uj . Note that  .j /i j.X jz/an is the analytification of an
algebraic map f WX jz ! .P1/t

0

(either by Chow’s theorem [33, Theorem M.3] or by in-
specting the proof of Lemma 3.3) such thatMG;i jz � f

�pr�iMP1 , where pri W .P
1/t
0

!P1

is the projection to the i -th factor. It is easy to see that dim.f .X jz// D t 0, for the pro-
jection formula [22, Proposition 2.5 (c)] would else imply that the intersection number
in (5.2) is zero. By [33, Lemma L.6 and Theorem N.1], this implies that there exists some
smooth point y 2 .X jz/an such that the rank of .d .j /i j.X jz/an/y is t 0 D dim.X jy/. This
means nothing else but

ker.d .j /i / \ ker.d�/an
C�
\ T 1;0C;y.X

an
C�
/ D ¹0yº;

which shows that y … E.j /i .
(b): We have

ker.d.�an
C�
�  .j /i // \ T 1;0C;y.X

an
C�
/ D ker.d .j /i / \ ker.d�/an

C�
\ T 1;0C;y.X

an
C�
/

D ¹0yº

for all y 2 .X an
C�
\ .�an

C�
/�1.Uj // nEi .

(c), (d): Any real-analytic set is locally a union of finitely many real-analytic man-
ifolds (e.g., by [51, Theorem 2]). By compactness, we can hence write Xi as a union
of finitely many real-analytic manifolds. It only remains to show that Xi nEi has local
dimension d C d 0 everywhere. Using

Xi nEi D . 
.j /
i /�1..S1/t

0

/ \ .X an
C�
nEi /

and (b), the two assertions follow from the standard fact that .S1/t
0

� .Gt 0

m/
an
C�

is a real-
analytic submanifold of dimension t 0.
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With the information of Lemma 5.1 at our disposal, we can conclude this section with
an explicit description of the measures introduced in Proposition 4.1. Let!t 0 be the unique
.S1/t

0

-invariant t 0-form on the compact real Lie group .S1/t
0

such that
R
.S1/t

0 !t 0 D 2
t 0 .

For each j 2 J , the pullback . .j /i /�!t 0 is a t 0-form on .Xi \ ��1.Uj // nEi . By (3.5)
and .S1/t

0

-invariance, these forms glue together to a t 0-form !i on Xi nEi .

Lemma 5.2. For each i 2 IX , the .d C d 0/-form!i ^ .c1.��N �/jXinEi /
^d 0 is a positive

C1-volume form on Xi nEi . For all f 2 C 0.X an
C�
/, we haveZ

Xan
C�

fc1.MG;� jX /
^t 0
^ c1.�

�N � jX /
^d 0
D t 0Š

X
i2IX

Z
XinEi

f!i ^ c1.�
�N �/

^d 0 :

Proof. By linearity, it suffices to prove thatZ
Xan

C�

f c1.MG;i1;� jX / ^ c1.MG;i2;� jX / ^ � � � ^ c1.MG;it0 ;�
jX / ^ c1.�

�N �/
^d 0

D

Z
XinEi

f!i ^ c1.�
�N �/

^d 0 (5.3)

for each i 2 IX and all f 2 C 0
c .X

an
C�
/. As the subsetsEi � X an

C�
are locally pluripolar by

Lemma 5.1 (a), we can further restrict to f 2 C 0
c .X

an
C�
nEi /. Using a partition of unity

and Lemma 5.1 (b), we can even restrict to the case where f 2C 0
c .U /withU �X an

C�
nEi

a relatively compact, open subset such that, for some j 2 J , the map �an
C�
�  .j /i sendsU

biholomorphically to some U 00 �
Qt 0

iD1 U
0
i , where U 00 � A

an
C�

is an open subset and

U 0i D ¹re
i�
2 C�� j r 2 .ri ; si /; � 2 .˛i ; ˇi /º; 0 < ri < si ; j˛i � ˇi j < 2�:

Let pr0WU
0
0 �

Qt 0

iD1 U
0
i ! U 00 be the standard projection. Using that

MG;i;� jUj � . 
.j /
i /�MP1;�

by (3.4) and that c1.MP1;�/ D dd
c jlogjzjj, a substitution along �an

C�
�  .j /i yields that

the left-hand side of (5.3) equalsZ
U 0
0
�
Qt0
iD1 U

0
i

gdd c jlogjz1jj ^ dd c jlogjz2jj ^ � � � ^ dd c jlogjzt 0 jj

^ c1.pr�0N � jX /
^d 0 (5.4)

with
g D f ı .�an

C�
�  .j /i /j�1U

and z1; : : : ; zt 0 the standard coordinates on
Qt 0

iD1 U
0
i � .C

�
� /
t 0 . The Borel measure

dd c jlogjz1jj ^ dd c jlogjz2jj ^ � � � ^ dd c jlogjzt 0 jj ^ c1.pr�0N � jU 0
0
/^d
0

is the product of the measures induced by dd c jlogjzi jj, i 2 ¹1; : : : ; t 0º, on U 0i � C�� and
the measure c1.pr�0N � jU 0

0
/^d
0

on U 00; indeed, this follows from the corresponding fact
for C1-forms by plurisubharmonic smoothings (combine [32, Proposition 1.42] and [20,
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Corollary 1.6]). By Fubini’s theorem [63, Theorem 8.8], the integral (5.4) hence equalsZ
U 0
0

�Z
U 0
t0

�
� � �

�Z
U 0
1

gdd c
ˇ̌
logjz1j

ˇ̌�
� � �

�
dd c jlogjzt 0 jj

�
c1.pr�0N � jX /

^d 0 : (5.5)

It is an elementary exercise (see Appendix B) to compute thatZ
C��

h.z/dd c jlogjzjj D
Z
Œ0;2��

h.ei�/
d�

�

for every h 2 C 0
c .C

�
� /. Using Fubini’s theorem once again, we see that (5.5) equalsZ

U 0
0

�Z
.S1/t

0
g!t 0

�
c1.N � jX /

^d 0
D

Z
U 0
0
�.S1/t

0
g!t 0 ^ c1.pr�0N � jX /

^d 0 :

By the substitution formula and Lemma 5.1 (d), this equals
R
U
f!i as claimed.

The .d C d 0/-form !i ^ c1.�
�N �/

^d 0 restricts to an everywhere non-zero volume
form on Xi nEi for each i 2 IX . It hence prescribes an orientation on each Xi nEi . We
tacitly mean this orientation in the following.

Lemma 5.3. For each i 2 IX , let �i be the Borel measure on G associated with the
functional

C 0.X an
C�
/! R; f 7!

Z
XinEi

f!i ^ c1.�
�N �/

^d 0 :

There exists a Riemannian metric gi on G such that

�i .U / �

Z
U

vol.gi jXinEi / (5.6)

for each open subsetU �Xi nEi . Furthermore, gi can be chosen independently of i 2 IX .

Proof. Consider ..P1C� /
t 0/an with its standard .S1/t

0

-action

l W .S1/t
0

� ..P1C� /
t 0/an
! ..P1C� /

t 0/an:

For each s 2 .S1/t
0

, we have then a left-multiplication map

ls W ..P
1
C�
/t
0

/an
! ..P1C� /

t 0/an; x 7! l.s; x/:

Let g0 be an arbitrary non-degenerate Riemann metric on ..P1C� /
t 0/an. Setting

gx.t; t
0/ D

Z
s2.S1/t

0
g0ls.x/

�
.d ls/xt; .d ls/x.t

0/
�
!t 0

for all x 2 ..P1C� /
t 0/an, t; t 0 2 TR;x..P1C� /

t 0/an, we obtain an .S1/t
0

-invariant Riemann
metric on ..P1C� /

t 0/an. Its restriction gj.S1/t0 is a Riemann metric on the compact mani-
fold .S1/t

0

. Because of its .S1/t
0

-invariance, the associated volume form vol.gj.S1/t0 / is
a Haar measure on .S1/t

0

. We conclude that vol.gj.S1/t0 / is a positive multiple of the
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t 0-form !t 0 . By rescaling, we can even assure that

vol.gj.S1/t0 / D !t 0 : (5.7)

The .S1/t
0

-invariance of g allows us to define a(n in general degenerate) Riemannian
metric gi ;tor on G by stipulating locally that gi ;torjUj D . 

.j /
i /�g.

Furthermore, let g00 be the non-degenerate Riemann metric associated with the posi-
tive definite .1; 1/-form c1.N �/ on Aan

C�
. By [70, Lemma 3.8], we know thatZ

U

c1.N �/
^d 0
D d 0Š

Z
U

vol.g00j�.X// D
Z
U

vol..d 0Š/2=d
0

g00/ (5.8)

for every open U � �.X/sm. We set gab D .d
0Š/2=d

0

.d�/�g00.
We claim that gi D gi ;tor C gab is the sought (possibly degenerate) Riemann metric

on G. Indeed, for each x 2 Xi nEi , the tangent space TxXi decomposes as

ker.d .j /i jXi /x ˚ ker.d�jXi /x

by Lemma 5.1 (b). By construction, gi ;tor is zero on ker.d .j /i /x and gab is zero on
ker.d�/x . We deduce

vol.gi jTxXi / D vol.gi ;torjTxXi\ker.d�// ^ vol.gabjTxXi\ker.d .j/
i
//

D d 0Š � .d 
.j /
i jTxXi /

�vol.gj.S1/t0 / ^ .d�TxXi /
�vol.g00j�.X//

D !i ;x ^ .c1.�
�N �/jTxXi /

^d 0 ;

where we used (5.7) and (5.8) in the third equality. Estimate (5.6) follows and is in fact
an equality.

For the last assertion, we can just take the sum g D
P
i2IX

gi of the already con-
structed Riemannian metrics gi , i 2 IX . Inequality (5.6) with gi replaced by g is then
a straightforward consequence of Minkowski’s determinant inequality (see e.g. [4, Corol-
lary II.3.21]).

6. The Bogomolov conjecture

Our argument for deducing (BC) from the archimedean case of Proposition 4.1 follows
Zhang’s argument [78], which itself is a generalization of an argument due to Ullmo [69].
The new difficulty is that the measures �� , � 2 †1.K/, from Proposition 4.1 are not
described by smooth differential forms, which is why we need Lemma 5.2.

Proposition 6.1. (BC) is true for every semiabelian variety G over Q.

Before proving the proposition, we start with a lemma.

Lemma 6.2. Let X be a geometrically irreducible subvariety of G. Assume that the
stabilizer group

StabGQ.XQ/ D ¹g 2 GQ j g CXQ D XQº
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is trivial (i.e., equal to ¹eGQº). For all integers m�X 1, the algebraic map

˛mWX
m
! Gm�1; .x1; x2; : : : ; xm/ 7! .x1 � x2; x2 � x3; : : : ; xm�1 � xm/;

is then generically finite of degree 1.

Proof. This can be proven in the same way as [78, Lemma 3.1].

With this lemma, we can start the main proof of this section.

Proof of Proposition 6.1. We may and do assume that X is of positive dimension. Let
Gt
m be the toric part of G. We first reduce to the case StabGQ.XQ/ D ¹eGQº. By enlarg-

ing K, we can assume that StabGQ.XQ/ is HQ for some algebraic subgroup H � G.
Consider the quotient 'WG� G=H µ G0. It is well known that G0 is a semiabelian
variety [9, Corollary 5.4.6]. Denote its toric part by Gt 0

m and its abelian quotient by
� 0WG0 ! A0. The map ' is a homomorphism [39, Theorem 2], and the imageX 0 D '.X/
is an irreducible subvariety of G0 satisfying StabG0Q.X

0
Q/ D ¹eG0Q

º. Evidently, X 0 is not
the translate by a torsion point of a connected subgroup of G0 unless X is so.

We can then reduce (BC) for X to (BC) for X 0. Write

G D G �Gtm .P1/t and G0 D G0 �Gt
0

m .P1/t
0

for the standard compactifications from Subsection 3.2, and write

� WG ! A and � 0WG0 ! A0

for the associated projections. We also use the nef line bundles MG and MG0 as defined
there, and we fix an ample symmetric line bundle N (resp. N 0) on A (resp. A0). Set
L DMG ˝N (resp. L0 DMG0 ˝N

0), and endow all line bundles with the adelic met-
rics from Subsection 3.3. By Lemma 3.2 applied to ', we have

hzL0.'.x//�N;N 0;' hzL.x/ (6.1)

for every closed point x 2 G. If there exists some " > 0 such that

X 0" D ¹closed point x0 2 X 0 j hzL0.x0/ � "º

is not Zariski-dense in X 0, then its preimage '�1.X 0"/ is likewise not Zariski-dense in X .
By (6.1), '�1.X 0"/ contains

X"0 D ¹closed point x 2 X j hzL.x/ � "0º

for some sufficiently small "0 > 0. We may hence assume that StabGQ.XQ/ D ¹eGQº in
the following.

We argue by contradiction and assume that (BC) is wrong for X . This means that
there exists a Zariski-dense sequence .xi / 2 XN of small points. By Lemma 6.2, we can
fix some integer m such that ˛m is generically finite of degree 1. Pick a bijection

N ! Nm; i 7! .�1.i/; : : : ; �m.i//;
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and define the new sequence

yi D .x�1.i/; : : : ; x�m.i//; i 2 N;

which is clearly Zariski-dense in Xm. Using [78, Lemma 4.1], we can even assume that
.yi / is Xm-generic by passing to a subsequence. By construction, .yi / 2 Xm.Q/ and
.˛m.yi // 2 G

m�1.Q/ are sequences of small points in Gm and Gm�1, respectively. The
sequence .˛m.yi // is also ˛m.Xm/-generic. Let U � Xm be a dense open subset such
that ˛mjU WU ! ˛m.U / is an isomorphism. For sufficiently large i , we have yi 2 U and
˛m.yi / 2 ˛m.U /.

For the sequel, fix an arbitrary archimedean place � 2 †1.K/. Proposition 4.1 yields
Borel measures �1 and �2 on .Xm/an

C�
and ˛m.Xm/an

C�
, respectively, such that the fol-

lowing two assertions are true.
(a) For every f 2 C 0

c ..X
m/an

C�
/, we have

1

#O�.yi /

X
y2O�.yi /

f .y/!

Z
.Xm/an

C�

f�1 .i !1/:

(b) For every f0 2 C 0
c .˛m.X

m/an
C�
/, we have

1

#O�.˛m.yi //

X
y2O�.˛m.yi //

f0.y/!

Z
˛m.Xm/

an
C�

f0�2 .i !1/:

Setting f D f0 ı ˛m, we infer thatZ
.Xm/an

C�

.f0 ı ˛m/�1 D

Z
˛m.Xm/

an
C�

f0�2 (6.2)

for every f0 2 C 0
c .˛m.X

m/an
C�
/. We derive a contradiction from this equality through

a closer look at the measures �1 and �2.
Applying Lemma 5.2 withX �G replaced by ˛m.Xm/�Gm�1, we obtain that there

exist finitely many (embedded) real-analytic submanifolds ¹Mkº1�k�K of ˛m.Xm/an
C�

,
each endowed with a positive C1-volume form �k , such thatZ

˛m.Xm/
an
C�

f0�2 D

KX
kD1

Z
Mk

f0�k : (6.3)

In addition, Lemma 5.3 provides us with a Riemannian metric g on Gm�1 such thatZ
U

�k �

Z
U

vol.gjMk
/ (6.4)

for each k 2 ¹1; : : : ; Kº and every open subset U �Mk . As .˛m.Xm/ n ˛m.U //an
C�

is
a locally pluripolar subset of ˛m.Xm/an

C�
, the measure �2 does not attach any mass to it

(see Subsection 2.3). We can hence assume that

Mk \
�
˛m.X

m/ n ˛m.U /
�an

C�
D ;
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for all k 2 ¹1; : : : ; Kº. Each set ˛�1m .Mk/ is an (embedded) real-analytic manifold con-
tained in U . By the substitution formula, the right-hand side of (6.3) equals

KX
kD1

Z
˛�1m .Mk/

.f0 ı ˛m/˛
�
m�k :

A closer inspection of Proposition 4.1 shows that the measure �1 on Xm equals the
m-fold product measure�

c1.MG;� jX /
d�d 0

^ c1.�
�N � jX /

d 0
��m

:

By Lemma 5.2 applied to X � G, there exist (embedded) real-analytic submanifolds
¹M0

k
º1�k�K0 of X an

C�
and a positive volume form �0

k
on each M0

k
such thatZ

.Xm/an
C�

f�1 D
X

1�k1;:::;km�K0

Z
M0
k1
�����M0

km

f .�0k1 ^ � � � ^�
0
km
/

for all f 2 C 0
c ..X

m/an
C�
/.

Combining this with (6.2), we obtain the identity

X
1�k1;:::;km�K0

�Z
M0
k1
�����M0

km

f .�0k1 ^ � � � ^�
0
km
/

�
D

KX
kD1

Z
˛�1m .Mk/

f ˛�m�k (6.5)

for all f 2 C 0
c .U

an
C�
/. For every " > 0, there exists an open set V � .Xm n U/ such that

both sides of (6.5) are strictly less than " for the indicator function f D 1V . By approx-
imation, this implies that (6.5) is also valid for general functions f 2 C 0

c ..X
m/an

C�
/.

Comparing supports, we obtain that

[
1�k1;:::;km�K0

.M0
k1
� � � � �M0

km
/ D

K[
kD1

˛�1m .Mk/:

Since �1 associates a zero measure to any closed real analytic submanifold of dimen-
sion < m.d C d 0/, the dimension of each ˛�1m .Mk/ is m.d C d 0/. In other words, each
˛�1m .Mk/ is an open subset of [

1�k1;:::;km�K0

.M0
k1
� � � � �M0

km
/:

Pick some x 2M0
k

, where k 2 ¹1; : : : ; K 0º, such that there exists an open neighbor-
hood x 2 V � X disjoint from M01 [ � � � [M0

k�1
[M0

kC1
[ � � � [M0K0 . Shrinking V

if necessary, there exists a real-analytic isomorphism  W .�1; 1/dCd
0

!M0
k
\ V with

 .0; : : : ; 0/ D x. For convenience, we write

 m D  � � � � �  W .�1; 1/
.dCd 0/m

! Gm

for its m-fold product and �m � .�1; 1/.dCd
0/m for the diagonally embedded copy of

.�1; 1/dCd
0

.
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Let f 2 C 0
c .V

m/ be non-negative with f .x; : : : ; x/ > 0. Defining

B" D ..�"; "/
.dCd 0//m � R.dCd

0/m

and writing vol.B"/ for its volume with respect to the standard Euclidean metric, we note
that Z

 m.B"/\˛
�1
m .Mk/

f ˛�m�k D

Z
˛mı m.B"/\Mk

f �k

� jf jsup

Z
˛mı m.B"/\Mk

vol.gjMk
/

for each k 2 ¹1; : : : ; Kº by (6.4). Since the differential d.˛m ı  m/.0;:::;0/ annihilates the
.d C d 0/-dimensional R-subspace T.0;:::;0/�m, we furthermore obtainZ

˛mı m.B"/\Mk

vol.gjMk
/ D

Z
B"

vol..˛m ı  m/�g/

� m;˛m;g;�1;:::;�K "
dCd 0vol.B"/

for sufficiently small " > 0. Using (6.5), we obtain however

KX
iD1

Z
 m.B"/\˛

�1
m .Mk/

f ˛�m�k D

Z
M0
k
�����M0

k

f .�0k ^ � � � ^�
0
k/�f; m;�0k

vol.B"/

since �0
k

is (strictly) positive at x by construction. We obtain a contradiction by combin-
ing this with the other estimates above and letting "! 0.

7. The strong equidistribution conjecture

For completeness, we give the well-known argument for (EC) ^ (BC)) (SEC) (see [78,
p. 165]).

Proof of Theorem 1.1. Let .xi / 2 GN be a strict sequence of small height. If .xi / were
not G-generic, there would exist a proper algebraic subvariety X and a Zariski-dense
subsequence .xni / 2 X

N of small points. Proposition 6.1 implies that X is contained in
a finite union of proper algebraic subgroups of G. This contradicts the strictness of .xi /,
and hence .xi / must be G-generic. This allows us to apply Proposition 4.1, concluding
the proof of (SEC).

Appendix A. Global regularization and archimedean local heights

In this appendix, we indicate how to extend the archimedean local heights defined by
Gubler [28] to semipositive C 0-metrics through global regularization. This allows us to
use the facts on archimedean local heights that are provided in [28] also in this more
general setting.
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We work with a projective K-variety X and an archimedean place � 2 †1.K/. Let
Li D .Li ; k � ki /, 1 � i � d 0 C 1, be semipositive �-metrized line bundles on X , and let
yDi D .Li ; Yi ; si /, 1 � i � d 0 C 1, denote �-metrized pseudo-divisors on X . If each �-

metric k � ki (1 � i � d 0 C 1) is C1, Gubler [28, Definition 3.3] defines a local height
� yD1; yD2;:::; yDd 0C1.Z/ for each d 0-cycle Z on X that satisfies the condition

Y1 \ Y2 \ � � � \ Yd 0C1 \ jZj D ;: (A.1)

To reduce to this case, we choose an ample line bundle M on X and a smooth �-metric
k � k0 on M such that M D .M; k � k0/ is a strictly positive �-metrized line bundle. For
each cycle Z satisfying (A.1), we can choose global sections ti WX !M (1� i � d 0C 1)
such that

.Y1 [ jdiv.t1/j/ \ .Y2 [ jdiv.t2/j/ \ � � � \ .Yd 0C1 [ jdiv.td 0C1/j/ \ jZj D ;:

As the �-metrized line bundle L˝ni ˝M is strictly positive, we can approximate its
continuous metric by C1-metrics.

Lemma A.1. For each i 2 ¹1; : : : ; d 0 C 1º and each integer k � 1, there exists a smooth
�-metric k � k.n;k/i on L˝ni ˝M such that, writing L.n;k/i D .L˝ni ˝M; k � k

.n;k/
i /, we

have

(a) c1.L
.n;k/
i / � .1 � 1=k/.n � c1.Li /C c1.M// � 0, and

(b) e�1=2k � k � k.n;k/i =.k � k˝ni ˝ k � k0/ � 1 everywhere on X an
C�

.

Proof. This follows from (the proof of) [52, Theorem 4.6.1] (with � D 1=k) for the
strictly positive �-line bundle L.n;k/i .

We define the �-metrized pseudo-divisor yD.n;k/
i D .L

.n;k/
i ; Yi [ jdiv.ti /j; s˝ni ˝ ti /

for each i 2 ¹1; : : : ; d 0 C 1º. Using [28, Definition 3.3], we obtain a local height

� yD.n;k/
1

; yD
.n;k/
2

;:::; yD
.n;k/

d 0C1
.Z/

for all integers n; k � 1.
Our main goal in this appendix is to establish the following lemma.

Lemma A.2. For each d 0-cycle Z on X satisfying (A.1), the double limit

� yD1; yD2;:::; yDd 0C1.Z/´ lim
n!1

n�.d
0C1/

�
lim
k!1

� yD.n;k/
1

; yD
.n;k/
2

;:::; yD
.n;k/

d 0C1
.Z/

�
(A.2)

exists and depends only on yDi and X (in particular, not on M , the sections ti , nor on the
�-metrics k � k.n;k/i ). Setting (A.2) extends the definition of [28, Definition 3.3] such that
the induction formula

� yD1; yD2;:::; yDd 0C1.ŒZ�/ D � yD1; yD2;:::; yDd 0 .Œdiv.sd 0C1jZ/�/

�

Z
Zan

C�

logksd 0C1kd 0C1c1.L1/ ^ � � � ^ c1.Ld 0/ (A.3)

holds for each irreducible subvariety Z � X of dimension d . If d D 0, this means

� yD1
.ŒZ�/ D �

X
x2Zan

C�

logks1.x/k1:
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Proof. By linearity, we can restrict to the case where Z D ŒZ� for an irreducible subva-
riety Z � X of dimension d 0. We use an induction on the dimension d 0 of X . The case
d 0 D 0 is straightforward as

n�1� yD.n;k/
1

.ŒZ�/! �
X

x2Zan
C�

�
logks1.x/k1 C n�1 logkt1.x/k0

�
.k !1/

is a direct consequence of Lemma A.1 (b). Let now d 0 � 1, and assume that the lemma is
already proven for all dimensions < d 0.

As the local height does not depend on the ambient variety X (apply [28, Propo-
sition 3.6] to the inclusion Z ,! X ), we can assume X D Z and hence d 0 D d . By
Hironaka’s resolution theorem [36] (see also [43]), there always exists a smooth vari-
ety zX and a birational, projective morphism f W zX ! X . Again by [28, Proposition 3.6],
we have

� yD.n;k/
1

; yD
.n;k/
2

;:::; yD
.n;k/

dC1
.ŒX�/ D �f � yD.n;k/

1
;f � yD

.n;k/
2

;:::;f � yD
.n;k/

dC1
.Œ zX�/

where f � yD.n;k/
i D .f �L

.n;k/
i ; f �1.Yi / [ jdiv.f �ti /j; .f �si /˝n ˝ f �ti /. This and the

compatibility of Monge–Ampère measures with pullback (see footnote 3 on page 2087
above) allow us to reduce the proof of the lemma to the case where X D Z is smooth.

By the induction formula [28, Proposition 3.5], the local height

� yD.n;k/
1

; yD
.n;k/
2

;:::; yD
.n;k/

dC1
.ŒX�/

equals

� yD.n;k/
1

; yD
.n;k/
2

;:::; yD
.n;k/

d
.div.s˝ndC1 ˝ tdC1//

�

Z
Xan

C�

logks˝ndC1 ˝ tdC1k
.n;k/

dC1

 
d̂

iD1

c1.L
.n;k/
i /

!
:

(Note that the integral is finite by [15, Théorème 4.1].) By our inductive assumption, the
double limit

lim
n!1

n�d
�

lim
k!1

� yD.n;k/
1

; yD
.n;k/
2

;:::; yD
.n;k/

d

.div.sdC1//
�

exists, and

lim
n!1

n�dC1
�

lim
k!1

� yD.n;k/
1

; yD
.n;k/
2

;:::; yD
.n;k/

d

.div.tdC1//
�
D 0:

To show convergence of (A.2), it hence suffices to prove that the double limit

lim
n!1

n�.dC1/

 
lim
k!1

Z
Xan

C�

logks˝ndC1 ˝ tdC1k
.n;k/

dC1

 
d̂

iD1

c1.L
.n;k/
i /

!!
(A.4)

exists. For ease of notation, let us write

'.n;k/ D logks˝ndC1 ˝ tdC1k
.n;k/

dC1
and '.n/ D n � logksdC1kdC1 C logktdC1k0:
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Furthermore, we set

�
.n;k/

l
D

 
d�l̂

iD1

c1.L
.n;k/
i /

!
^

 
d̂

iDd�lC1

.n � c1.Li /C c1.M//

!
for each l 2 ¹0; : : : ; dº. To indicate its independence of k, we also write �.n/

d
instead of

�
.n;k/
d

. We claim thatZ
Xan

C�

'.n;k/�
.n;k/
0 �

Z
Xan

C�

'.n/�
.n/

d
! 0 .k !1/: (A.5)

In fact, this difference equals

d�1X
lD0

��k � 1
k

�l Z
Xan

C�

'.n;k/�
.n;k/

l
�

�k � 1
k

�lC1 Z
Xan

C�

'.n;k/�
.n;k/

lC1

�
C

��k � 1
k

�d Z
Xan

C�

'.n;k/�.n/d �

Z
Xan

C�

'.n/�
.n/

d

�
:

By Lemma A.1, we have

j'.n;k/ � '.n/j ! 0 .k !1/ (A.6)

uniformly on X an
C�

. Using Lemma 2.2 (d), we deduce thatˇ̌̌̌Z
Xan

C�

'.n;k/�
.n/

d
�

Z
Xan

C�

'.n/�
.n/

d

ˇ̌̌̌
�

Z
Xan

C�

j'.n;k/ � '.n/j�
.n/

d
! 0 .k !1/:

This implies that�k � 1
k

�d Z
Xan

C�

'.n;k/�
.n/

d
!

Z
Xan

C�

'.n/�
.n/

d
.k !1/:

For each l 2 ¹0; : : : ; d � 1º, the differenceZ
Xan

C�

'.n;k/�
.n;k/

l
�

�k � 1
k

� Z
Xan

C�

'.n;k/�
.n;k/

lC1

equalsZ
Xan

C�

'.n;k/

 
d�l�1^
iD1

c1.L
.n;k/
i /

!
^ Tl ^

 
d̂

iDd�lC1

�
n � c1.Li /C c1.M/

�!
; (A.7)

where

Tl D c1.L
.n;k/

d�l
/ �

k � 1

k

�
n � c1.Ld�l /C c1.M/

�
:

Note that Tl is a closed positive .1; 1/-current by Lemma A.1 (a). Hence the wedge prod-
uct of currents in (A.7) is well-defined in the sense of Monge–Ampère measures (see
[32, Subsection 3.1.1]), yielding a positive measure on X an

C�
.
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To bound (A.7), we choose a finite covering ¹U˛º˛2A of X an
C�

by open sets U˛ with
the property that, for each ˛ 2 A, there exist open sets V˛; W˛ such that
(a) the topological closure U ˛ � X an

C�
(resp. V ˛ � X an

C�
) is a compact subset of V˛

(resp. W˛), and
(b) there exist non-vanishing sections

si;˛WW˛ ! .Li /
an
C�
; i 2 ¹1; : : : ; d C 1º;

t˛WW˛ !M an
C�
:

On the open subset V˛ � W˛ , the functions

ui;˛ D logks˝ni;˛ ˝ t˛k.n;k/i ;

vi;˛ D logks˝ni;˛ ˝ t˛k.n;k/i �
k � 1

k
.n logksi;˛ki C logkt˛k0/; and

wi;˛ D n logksi;˛ki C logkt˛k0

are locally bounded potentials for c1.L
.n;k/
i /, Ti , and nc1.Li /C c1.M/, respectively.

They are hence all locally bounded plurisubharmonic functions on each U˛ . We can
bound (A.7) byX

˛2A

Z
U˛

j'.n;k/jdd cu1;˛ ^ � � � ^ dd
cud�l�1;˛ ^ dd

cvd�l;˛

^ dd cwd�lC1;˛ ^ � � � ^ dd
cwd;˛: (A.8)

Applying the Chern–Levine–Nirenberg inequalities for each U˛ � W˛ (namely, [32, The-
orem 3.14]), each integral in the above sum is

�U˛ ;V˛ k'
.n;k/
kL1.V˛/

 
d�l�1Y
iD1

kui;˛kL1.V˛/

!
� kvd�l;˛kL1.V˛/

 
dY

iDd�lC1

kwi;˛kL1.V˛/

!
;

where the norms k � kL1.V˛/ and k � kL1.V˛/ are with respect to c1.M/^d (or, equivalently,
the measure induced by any other Kähler form onX an

C�
). (Note that k'.n;k/kL1.V˛/ is finite

as '.n;k/ is locally the difference of two plurisubharmonic functions, which are locally
integrable by [32, Proposition 1.34].)

Using Lemma A.1 (b), we obtain an upper bound

kui;˛kL1.V˛/ � kwi;˛kL1.V˛/ �si;˛ ;t˛ ;U˛ ;V˛ ;n 1

for each i 2 ¹1; : : : ; dº and each ˛ 2 A. In addition, we have

jvi;˛j D log
�
ks˝ni;˛ ˝ t˛k.n;k/i

ksi;˛kni kt˛k0

�
C
wi;˛

k
! 0 .k !1/

uniformly on V˛ because of Lemma A.1 (b) and the boundedness of wi;˛ on V ˛ � W˛ .
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Combining all these estimates and the uniform convergence (A.6), we obtain that (A.8)
converges to 0 as k !1. This confirms our claim (A.5). Unraveling notations, we
conclude that the inner limit (k !1) in (A.4) exists and equalsZ

Xan
C�

'.n/�.n/d D

Z
Xan

C�

.n logksdC1kdC1 C logktdC1k0/

 
d̂

iD1

n � c1.Li /C c1.M/

!
:

Rearranging, we see that this integral equals

ndC1
Z
Xan

C�

logksdC1kdC1c1.L1/ ^ c1.L2/ ^ � � � ^ c1.Ld /CO.nd /;

and the convergence of the double limit (A.2) follows immediately. The induction for-
mula (A.3) is also a consequence of our proof. Uniqueness (i.e., independence of M , its
sections ti , and the �-metrics k � k.n;k/i ) follows inductively.

Finally, let us note that our definition of � yD1; yD2;:::; yDd 0C1.Z/ by a limit process as
in (A.2) also allows us to observe that [28, Propositions 3.4, 3.5, 3.6, 3.7, 3.8 and Theo-
rem 10.6] remain true in our more general setting. In particular, we realize retrospectively
that the induction formula of [28, Proposition 3.5] can be also used as a straightforward
definition of the local heights � yD1; yD2;:::; yDd 0C1.Z/ for general semipositive �-metrized
line bundles on X .

Appendix B. An elementary computation

For convenience, we give the details of the elementary computation used in the proof of
Lemma 5.2.

Lemma B.1. For every h 2 C 0
c .C

�/, we haveZ
C�
h.z/dd c jlogjzjj D

Z
Œ0;2��

h.ei�/
d�

�
:

Note that the measure d�=� on the right-hand side assigns volume 2 (and not 1)
to Œ0; 2��.

Proof. By the definition of the Bedford–Taylor measure dd c jlogjzjj, it suffices to prove
that Z

C�
jlogjzjjdd ch D

Z
Œ0;2��

h.ei�/
d�

�
(B.1)

for every test function h 2 C1c .C
�/. Using polar coordinates z D rei� , we have

dd ch D
1

2�

�
r
@2h

@r2
C
@h

@r
C
1

r

@2h

@�2

�
dr ^ d�;
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and the left-hand side of (B.1) equals

1

2�

Z 2�

0

�Z 1
1

C

Z 0

1

��
log.r/r

@2h

@r2
C log.r/

@h

@r
C

log.r/
r

@2h

@�2

�
dr ^ d�: (B.2)

Integration by parts yields�Z 1
1

C

Z 0

1

�
log.r/r

@2g

@r2
dr D 2g.1/C

�Z 1
1

C

Z 0

1

�
g dr

r

and �Z 1
1

C

Z 0

1

�
log.r/

@g

@r
dr D �

�Z 1
1

C

Z 0

1

�
g dr

r

for any smooth function g 2 C1c .R
>0/. As

R 2�
0
@2h=@�2 D Œ@h=@��2�0 D 0, it follows

that (B.2) equals
R 2�
0
h.ei�/ d�=� .
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