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Abstract. The recent development of subwavelength photonic and phononic crystals shows the
possibility of controlling wave propagation at deep subwavelength scales. Subwavelength bandgap
phononic crystals are typically created using a periodic arrangement of subwavelength resonators,
in our case small gas bubbles in a liquid. In this work, a waveguide is created by modifying the sizes
of the bubbles along a line in a dilute two-dimensional bubbly crystal, thereby creating a line defect.
Our aim is to prove that the line defect indeed acts as a waveguide; waves of certain frequencies
will be localized to, and guided along, the line defect. The key result is an original formula for the
frequencies of the defect modes. Moreover, these frequencies are numerically computed using the
multipole method, which numerically illustrates our main results.

Keywords. Bubble, subwavelength resonance, subwavelength phononic crystal, subwavelength
waveguide, line defect, weak localization

1. Introduction

Line defects in bandgap photonic or phononic bandgap crystals are of interest due to
their possible applications in low-loss waveguides. The main mathematical problem of
interest is to show that the spectrum of the defect operator has a non-zero overlap with
the original bandgap. Moreover, it is also of interest to understand the nature and location
of the defect spectrum. For previous works regarding line defects in bandgap crystals we
refer to [11, 13–16, 18, 23, 24].

In this work, we consider a line defect in a phononic bandgap crystal consisting of
gas bubbles in a liquid. The gas bubbles are known to resonate at a low frequency, called
the Minnaert frequency. The corresponding wavelength is larger than the bubble by
several orders of magnitude [1,30]. Based on this, it is possible to create subwavelength
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bandgap crystals, which operate at wavelengths much larger than the unit cell size of
the microstructured material. One of the main motivations for studying subwavelength
bandgap materials is to manipulate wave propagation at subwavelength scales. A second
motivation is for their use in devices where conventional bandgap materials, based on
Bragg scattering, would create infeasibly large devices [28,33]. Mathematical properties
of bubbly phononic bandgap materials have been studied in, for example, [1,4,6–8,12], and
subwavelength phononic bandgap materials have been experimentally realised in [25–27].

Wave localization due to a point defect in a bubbly bandgap material was first proven
in [4]. In [3], where some additions and minor corrections to [4] were made, it is shown
that the mechanism for creating localized modes using small perturbations is quite differ-
ent depending on the volume fraction of the bubbles. In order to create localized modes in
the dilute regime, the defect should be smaller than the surrounding bubbles, while in the
non-dilute regime, the defect has to be larger. Based on this, in the case of a line defect, it
is natural to expect different behaviour in these two different regimes. This suggests that
different methods of analysis are needed in the two regimes. In this paper, we will mainly
focus on the dilute regime, taking the radius of the bubbles sufficiently small.

If the defect size is small, i.e. if the size of the perturbed bubble is close to its original
size, then the band structure of the defect problem will be a small perturbation of the
band structure of the original problem [5, 9]. This way, it is possible to shift the defect
band upwards, and a part of the defect band will fall into the subwavelength bandgap.
However, because of the curvature of the original band, it is impossible to create a defect
band entirely inside the bandgap with this approach.

In order to create defect bands which are entirely located inside the subwavelength
bandgap, we have to consider slightly larger perturbations. In this paper, we will show
that for arbitrarily small defects, a part of the defect band will lie inside the bandgap.
Moreover, we will show that for suitably large perturbation sizes, the entire defect band
will fall into the bandgap, and we will explicitly quantify the size of the perturbation
needed in order to achieve this. Because of this, our results are more general than previous
weak localization results since we explicitly show how the defect band depends on the
perturbation size.

In order to have guided waves along the line defect, the defect mode must not only
be localized to the line, but also propagating along the line. In other words, we must
exclude the case of standing waves in the line defect, i.e. modes which are localized in
the direction of the line. As discussed in [22, 23], such modes are associated with the
point spectrum of the perturbed operator which appears as a flat band in the dispersion
relation. Proving the absence of bound modes in phononic or photonic waveguides is
a challenging problem; for example in [32] this was proven by imposing “hard-wall”
Dirichlet or Neumann boundary conditions along the waveguide, while in [20] the absence
of bound modes was proven in the case of a simpler Helmholtz-type operator. In this
paper, we use the explicit formula for the defect band to show that it is nowhere flat, and
hence does not correspond to bound modes in the direction of the line.

The paper is structured as follows. In Section 2 we discuss preliminary results on
layer potentials, and outline the main results from [6]. In Section 3 we restrict to circular
domains and follow the approach of [3, 4] to model the line defect using the fictitious
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source superposition method, originally introduced in [34]. In Section 4 we prove the
existence of a defect resonance frequency, and derive an asymptotic formula in terms of
the density contrast in the dilute regime. Using this formula, we show that the defect
modes are localized to, and guided along, the line defect. In Section 5 we compute the
defect band numerically, in order to verify the formula and also illustrate the behaviour
in the non-dilute regime. The paper ends with some concluding remarks in Section 6. In
Appendix A, we restrict ourselves to small perturbations to derive an asymptotic formula
valid in the non-dilute regime. In Appendix B we outline the fictitious source superposi-
tion method in the case of non-circular domains.

2. Preliminaries

2.1. Layer potentials

Let Y 2 D Œ�1=2; 1=2/2 � R2 be the unit cell and assume that the bubble occupies a
bounded and simply connected domainD � Y 2 with @D 2 C 1;s for some 0 < s < 1. Let
�0 and �k ; k > 0, be the Green’s functions of the Laplace and Helmholtz equations in
dimension 2, respectively, i.e.,8̂<̂

:
�k.x; y/ D �

i

4
H
.1/
0 .kjx � yj/; k > 0;

�0.x; y/ D
1

2�
ln jx � yj; k D 0;

where H .1/
0 is the Hankel function of the first kind and order zero. Here, the outgoing

Sommerfeld radiation condition is used to select the physical Helmholtz Green’s func-
tion [5].

Let �kD W L
2.@D/! H 1

loc.R
2/ be the single layer potential defined by

�kDŒ��.x/ D

Z
@D

�k.x; y/�.y/ d�.y/; x 2 R2:

Here, H 1
loc.R

2/ denotes the space of functions that, on every compact subset of R2, are
square integrable and have a weak first derivative that is also square integrable.

We also define the Neumann–Poincaré operator K
k;�
D W L2.@D/! L2.@D/ by

K
k;�
D Œ��.x/ D

Z
@D

@

@�x
�k.x; y/�.y/ d�.y/; x 2 @D:

The following so-called jump relations of �kD on the boundary @D are well-known (see,
for example, [5]):

�kDŒ��jC D �kDŒ��j�;
@

@�
�kDŒ��

ˇ̌̌̌
˙

D

�
˙
1

2
I CK

k;�
D

�
Œ��:
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Here, @=@� denotes the outward normal derivative, and j˙ denote the limits from outside
and insideD. In two dimensions, we have the following expansion of the Green’s function
for the Helmholtz equation [5]:

�
i

4
H0.kjx � yj/ D

1

2�
ln jx � yj C �k C

1X
jD1

�
bj ln.kjx � yj/C cj

�
.kjx � yj/2j ;

where ln is the principal branch of the logarithm and

�k D
1

2�
.ln k C  � ln 2/ �

i

4
; bj D

.�1/j

2�

1

22j .j Š/2
;

cj D bj

�
 � ln 2 �

i�

2
�

jX
nD1

1

n

�
;

with  being the Euler constant. Define, for � 2 L2.@D/,

OSkDŒ��.x/ D �DŒ��.x/C �k

Z
@D

� d�:

Then the following expansion holds:

�kD D
O�kD CO.k

2 ln k/: (2.1)

We also introduce a quasi-periodic version of the layer potentials. For ˛ 2 Œ0; 2�/2,
the quasi-periodic Green’s function �˛;k is defined to satisfy

.�x C k
2/�˛;k.x; y/ D

X
n2R2

ı.x � y � n/ein�˛; x; y 2 Y;

where ı is the Dirac delta function. The function �˛;k is ˛-quasi-periodic in x, i.e.,
e�i˛�x�˛;k.x; y/ is periodic in x with respect to Y .

We define the quasi-periodic single layer potential �
˛;k
D by

�
˛;k
D Œ��.x/ D

Z
@D

�˛;k.x; y/�.y/ d�.y/; x 2 R2:

It satisfies the following jump formulas:

�
˛;k
D Œ��jC D �

˛;k
D Œ��j�;

@

@�

ˇ̌̌̌
˙

�
˛;k
D Œ�� D

�
˙
1

2
I C .K

�˛;k
D /�

�
Œ�� on @D;

where .K�˛;kD /� is the operator given by

.K
�˛;k
D /�Œ��.x/ D

Z
@D

@

@�x
�˛;k.y; y/�.y/ d�.y/:

We recall that �
˛;0
D W L2.@D/! H 1.@D/ is invertible for ˛ ¤ 0 [5].
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2.2. Floquet transform

A function f .x1/ is said to be ˛-quasi-periodic in the variable x1 2 R if e�i˛x1f .x1/ is
periodic. Given a function f 2 L2.R/, the Floquet transform in one dimension is defined
as

F Œf �.x1; ˛/ D
X
m2Z

f .x1 �m/e
i˛m; (2.2)

which is ˛-quasi-periodic in x1 and periodic in ˛. Let Y D Œ�1=2; 1=2/ be the unit cell
and Y � WDR=2�Z' Œ0; 2�/ be the Brillouin zone. The Floquet transform is an invertible
map F W L2.R/! L2.Y � Y �/, with inverse (see, for instance, [5, 21])

F �1Œg�.x1/ D
1

2�

Z
Y �
g.x1; ˛/ d˛:

2.3. Bubbly crystals and subwavelength bandgaps

Here we briefly review the subwavelength bandgap opening of a bubbly crystal from [6].
Assume that a single bubble occupies the regionD specified in Section 2.1. We denote

by �b and �b the density and the bulk modulus inside the bubble, respectively. We let �w
and �w be the corresponding parameters outside the bubble. We introduce

vw D
p
�w=�w ; vb D

p
�b=�b; kw D !=vw ; kb D !=vb

as the speed of sound outside and inside the bubbles, and the wavenumber outside and
inside the bubbles, respectively. Here, ! corresponds to the operating frequency of the
acoustic waves. Let C D

S
n2Z2.D C n/ be the periodic bubbly crystal. Define, for

x 2 R2,

�.x/ D �b�C .x/C �w.1 � �C .x//; �.x/ D �b�C .x/C �w.1 � �C .x//;

where �C is the characteristic function of C .
We assume that there is a large contrast in the density, that is, the density contrast ı

satisfies
ı D �b=�w � 1: (2.3)

Recall that under (2.3), there exists a subwavelength resonance of the bubble in free
space [1].

In the following, we shall also make the assumption stated below.

Assumption 2.1. Without loss of generality, we assume that

vw D vb D 1:

In this case we have kb D kw D !. Assumption 2.1 only serves to simplify the expres-
sions. The methods presented in this paper indeed apply as long as the wave speeds outside
and inside the bubbles are comparable to each other.
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The wave propagation problem inside the periodic crystal can be modelled as

�.x/r �

�
1

�.x/
rv.x/

�
C !2v.x/ D 0; x 2 R2: (2.4)

We denote by ƒ0 the set of propagating frequencies, i.e., the set of ! such that !2 is in
the spectrum of the operator

��r �
1

�
r:

Denote by Ys D Y � R the unit strip and recall that Y 2 D Œ�1=2; 1=2/2 is the unit
cell of the crystal. Applying the Floquet transformation, first in x1-direction and then in
x2-direction, equation (2.4) can be decomposed first as8<: �.x/r �

�
1

�.x/
rv.x/

�
C !2v.x/ D 0; x 2 Ys;

e�i˛1x1v is periodic in x1;
(2.5)

where ˛1 2 Y �, and then as8<: �.x/r �
�

1

�.x/
rv.x/

�
C !2v.x/ D 0; x 2 Y 2;

e�i˛�xv is periodic in x;
(2.6)

where ˛ D .˛1; ˛2/ 2 Y � � Y �. We denote by ƒ0;˛1 the set of ! such that !2 is in the
spectrum of the operator implied by (2.5) and byƒess

0;˛1
the essential part of this spectrum.

It is known that (2.6) has non-trivial solutions for discrete values of !:

0 � !˛1 � !
˛
2 � � � � ;

and we have the following band structure of propagating frequencies for the periodic
bubbly crystal C :

ƒ0;˛1 D
h

min
˛22Y �

!
.˛1;˛2/
1 ; max

˛22Y �
!
.˛1;˛2/
1

i
[

h
min
˛22Y �

!
.˛1;˛2/
2 ; max

˛22Y �
!
.˛1;˛2/
2

i
[ � � � ;

ƒ0 D
h
0; max
˛2Y ��Y �

!˛1

i
[

h
min

˛2Y ��Y �
!˛2 ; max

˛2Y ��Y �
!˛2

i
[ � � � :

In [6], it is proved that there exists a subwavelength spectral gap opening in the band
structure. Let us briefly review this result. We look for a solution v of (2.6) which has the
following form:

v D

´
�
˛;kw
D Œ'˛� in Y 2 nD;

�
kb
D Œ ˛� in D;

for some densities '˛;  ˛ 2 L2.@D/. Using the jump relations for the single layer poten-
tials, one can show that (2.6) is equivalent to the boundary integral equation

A˛.!; ı/Œˆ˛� D 0; (2.7)
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where

A˛.!; ı/ D

 
�
kb
D ��

˛;k
D

�
1
2
I CK

kb ;�
D �ı

�
1
2
I C .K

�˛;k
D /�

�! ; ˆ˛ D

�
'˛

 ˛

�
:

Since it can be shown that ! D 0 is a characteristic value for the operator-valued
analytic function A.!; 0/, we can conclude the following result by the Gohberg–Sigal
theory [5, 19].

Lemma 2.1. For any ı sufficiently small, there exists a characteristic value !˛1 D !
˛
1 .ı/

to the operator-valued analytic function A˛.!; ı/ such that !˛1 .0/ D 0 and !˛1 depends
on ı continuously.

The next theorem gives the asymptotic expansion of !˛1 as ı ! 0.

Theorem 2.1 ([6]). For ˛ ¤ 0 and sufficiently small ı, we have

!˛1 D

s
ı CapD;˛
jDj

CO.ı3=2/;

where the constant CapD;˛ is given by

CapD;˛ WD �h.�
˛;0
D /�1Œ�@D�; �@Di:

Here, h � ; � i stands for the standard inner product of L2.@D/ and �@D denotes the char-
acteristic function of @D.

Let !�1 D max˛ !˛1 . The following theorem expresses the fact that a subwavelength
bandgap opens in the band structure of the bubbly crystal.

Theorem 2.2 ([6]). For every " > 0, there exist ı0 > 0 and Q! > !�1 such that

Œ!�1 C "; Q!� �
h
max
˛
!˛1 ;min

˛
!˛2

i
for ı < ı0.

3. Integral representation for bubbly crystals with a defect

3.1. Formulation of the line defect problem

In the following, we will consider the case when all the bubbles are circular disks. This
gives a convenient presentation, and makes the problem similar to the point defect prob-
lem studied in [3,4]. In Appendix B, we will outline the analysis in the case of non-circular
bubbles.

Consider a perturbed crystal, where all the disks along the x1-axis are replaced by
defect disks of radius Rd with 0 < Rd < R. Denote the centre defect disk by Dd and let

Cd D
�[
m2Z

Dd C .m; 0/
�
[

� [
m2Z

n2Zn¹0º

D C .m; n/
�
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D

Dd � � �� � �

:::

:::

�w ; �w�b ; �b

Y 2

Ys

Fig. 1. Illustration of the defect crystal and the material parameters.

be the perturbed crystal, depicted in Figure 1. Moreover, let "D Rd �R < 0; " 2 .�R;0/
be the perturbation of the radius. Define

�d .x/ D �b�Cd .x/C �w.1 � �C .x//; �d .x/ D �b�C .x/C �w.1 � �Cd .x//:

The wave propagation problem inside the periodic crystal can be modelled as

�d .x/r �

�
1

�d .x/
ru.x/

�
C !2u.x/ D 0; x 2 R2: (3.1)

We denote by ƒd the set of propagating frequencies in the line defect crystal, i.e. the set
of ! such that !2 is in the spectrum of the operator

��dr �
1

�d
r:

Since the defect crystal is periodic in the x1-direction, we can use the Floquet trans-
formation to decompose (3.1) as8<: �d .x/r �

�
1

�d .x/
ru.x/

�
C !2u.x/ D 0; x 2 Ys;

e�i˛1x1u is periodic in x1;
(3.2)

where ˛1 2 Y � and Ys again denotes the strip Ys D Œ�1=2; 1=2/ � R. We will denote
by ƒd;˛1 the set of ! such that !2 is in the spectrum of the operator implied by (3.2) and
by ƒess

d;˛1
the corresponding essential part of the spectrum.

In the strip Ys , the perturbations �d � � and �d � � have compact support. Since the
essential spectrum is stable under compact perturbations [17,31], it can be shown that the
essential spectra ƒess

0;˛1
and ƒess

d;˛1
coincide.

In this paper, we want to show that introducing the line defect creates a defect band
!".˛1/ … ƒ0;˛1 . Moreover, we want to show that " can be chosen such that !".˛1/ … ƒ0
for all ˛1 2 Y �, which means that any Bloch mode is localized to the line defect. We also
want to show that !".˛1/ is not contained in the pure point part of ƒd;˛1 , which means
that there are no bound modes in the defect direction.
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3.2. Effective sources for the defect

Here we describe an effective sources approach to the solution of (3.2) in the strip. The
idea is to model the defect bubble Dd as an unperturbed bubble D with additional fic-
titious monopole and dipole sources f and g. This method was originally introduced in
[34] and then it was applied in [3, 4] for a point defect in a bubbly crystal.

Let us consider the following problem:8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

r �
1

�w
rzuC

!2

�w
zu D 0 in Ys n C ;

r �
1

�b
rzuC

!2

�b
zu D 0 in Ys \ C ;

zujC � zuj� D f ım;0 on @D C .0;m/; m 2 Z;

1

�w

@zu

@�

ˇ̌̌̌
C

�
1

�b

@zu

@�

ˇ̌̌̌
�

D gım;0 on @D C .0;m/; m 2 Z;

e�i˛1x1 zu is periodic in x1;

(3.3)

where f and g are the source terms and ım;n is the Kronecker delta function. Note that
the sources are present only on the boundary of the central bubble D.

We denote the solution to the original problem (3.2) by u and the effective source
solution (3.3) by zu. We want to find appropriate conditions on f and g in order to achieve

u � zu in .Ys nD/ [Dd : (3.4)

Then u can be recovered by extending zu to the whole region including D n Dd with
boundary conditions on @D and @Dd . The conditions for the effective sources f and g,
which are necessary in order to correctly model the defect, will be characterized in the
next subsection.

3.3. Characterization of the effective sources

Here we clarify the relation between the effective source pair .f; g/ and the layer density
pair .';  / defined in (3.5) below.

First, we observe that away from the central unit cell Y 2, the equations (3.2) and (3.3)
satisfy the same geometric and quasi-periodic conditions. Thus, in order for (3.4) to hold,
it is sufficient for u and zu to coincide inside the central unit cell Y 2.

Inside Y 2, the solution zu can be represented as

zu D

´
zH C �kwD Œ � in Y 2 nD;

�
kb
D Œ'� in D;

(3.5)

for some pair .';  / 2 L2.@D/2, where zH satisfies the homogeneous equation
.� C k2w/

zH D 0 in Y 2 and is chosen to make zu satisfy the quasi-periodic condition.
In (3.5), the local properties of zu around @D are given by the single-layer potentials,
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while zH accounts for the quasi-periodic condition. From the jump conditions given in
Section 2.1, the pair .';  / satisfies

AD

�
'

 

�
WD

 
�
kb
D ��kwD

@�
kb
D =@�j� �ı@�kwD =@�jC

!�
'

 

�
D

�
zH j@D � f

@ zH=@�j@D � g

�
: (3.6)

Similarly, inside Y 2, the solution u can be represented as

u D

´
H C �kwDd Œ d � in Y 2 nDd ;

�
kb
Dd
Œ'd � in Dd ;

where

ADd

�
'd
 d

�
WD

 
�
kb
Dd

��kwDd
@�

kb
Dd
=@�j� �ı@�kwDd =@�jC

!�
'd
 d

�
D

�
H j@Dd

@H=@�j@Dd

�
; (3.7)

and H is defined analogously to zH .
Now, having the two solutions coincide inside .Y 2 nD/[Dd is equivalent toH � zH

together with the conditions

�
kb
Dd
Œ'd � � �

kb
D Œ'� in Dd ; (3.8)

�kwDd Œ d � � �kwD Œ � in Y 2 nD: (3.9)

Assuming D is a disk, the above equations were solved in [3, 4], and we state the results
in Proposition 3.1 below. First, we introduce some notation. Since D and Dd are circu-
lar disks, we can use a Fourier basis for functions in L2.@D/ or L2.@Dd /. For n 2 Z,
define the subspace Vn of L2.@D/ as Vn WD span¹eim�º. Then define the subspace Vmn
of L2.@D/2 as

Vmn WD Vm � Vn; m; n 2 Z:

Similarly, let V dmn be the subspace of L2.@Dd /2 with the same Fourier basis. Then it
can be shown that the operator AD in (3.6) has the following matrix representation as an
operator from Vmn to Vm0n0 :

.AD/Vmn!Vm0n0

D ımnım0n0
.�i/�R

2

 
Jn.kbR/H

.1/
n .kbR/ �Jn.kwR/H

.1/
n .kwR/

kbJ
0
n.kbR/H

.1/
n .kbR/ �ıkwJn.kwR/.H

.1/
n /0.kwR/

!
:

Similarly, the operator ADd in (3.7) is represented as follows:

.ADd /V dmn!V dm0n0

D ımnım0n0
.�i/�Rd

2

 
Jn.kbRd /H

.1/
n .kbRd / �Jn.kwRd /H

.1/
n .kwRd /

kbJ
0
n.kbRd /H

.1/
n .kbRd / �ıkwJn.kwRd /.H

.1/
n /0.kwRd /

!
:
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In [3, 4], the following proposition was shown.

Proposition 3.1. The density pair .';  / and the effective sources .f; g/ satisfy the rela-
tion

.A"
D �AD/

�
'

 

�
D

�
f

g

�
; (3.10)

where the operators P1 W L
2.@D/2 ! L2.@Dd /

2 and P2 W L
2.@D/2 ! L2.@Dd /

2 are
defined by

.P1/Vmn!V dm0n0
D ımnım0n0

R

Rd

0BBB@
H
.1/
n .kbR/

H
.1/
n .kbRd /

0

0
Jn.kwR/

Jn.kwRd /

1CCCA ;

.P2/Vmn!V dm0n0
D ımnım0n0

0BB@
Jn.kwRd /

Jn.kwR/
0

0
J 0n.kwRd /

J 0n.kwR/

1CCA ;
and A"

D is defined as
A"
D WD .P2/

�1ADdP1: (3.11)

3.4. Floquet transform of the solution

In view of Proposition 3.1, we can identify the solutions u and zu. In this section, we
derive an integral equation for the effective source problem (3.3). This problem is already
quasi-periodically reduced in the x1-direction, with quasi-periodicity ˛1. For some quasi-
periodicity ˛2 2 Y �, we set ˛D .˛1;˛2/ and apply the Floquet transform to the solution u
in the x2-direction as follows:

u˛ D
X
m2Z

u.x � .0;m//ei˛2m:

The transformed solution u˛ satisfies8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

r �
1

�w
ru˛ C

!2

�w
u˛ D 0 in Y 2 nD;

r �
1

�b
ru˛ C

!2

�b
u˛ D 0 in D;

u˛jC � u
˛
j� D f on @D;

1

�w

@u˛

@�

ˇ̌̌̌
C

�
1

�b

@u˛

@�

ˇ̌̌̌
�

D g on @D;

e�i˛�xu˛ is periodic:
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The solution u˛ is ˛-quasi-periodic in the two-dimensional cell Y 2, and can be repre-
sented using quasi-periodic layer potentials as (see [9, Section 8.2.1])

u˛ D

´
�
˛;kw
D Œ ˛� in Y 2 nD;

�
kb
D Œ'˛� in D;

(3.12)

where, similarly to (2.7), the pair .'˛;  ˛/ 2 L2.@D/2 is the solution to

A˛.!; ı/

�
'˛

 ˛

�
WD

 
�
kb
D ��

˛;k
D

�
1
2
I CK

kb ;�
D �ı

�
1
2
I C .K

�˛;k
D /�

�!�'˛
 ˛

�
D

�
�f

�g

�
:

Since the operator A˛ is invertible for small enough ı and for ! inside the bandgap [6],
we have �

'˛

 ˛

�
D A˛.!; ı/�1

�
�f

�g

�
: (3.13)

The solution u to problem (3.3) can be recovered by the inversion formula as

u.x/ D
1

2�

Z
Y �
u.˛1;˛2/.x/ d˛2: (3.14)

Now, by the same arguments as those in [3, 4], we obtain the following proposition.

Proposition 3.2. The density pair .';  / and the effective source pair .f; g/ satisfy�
'

 

�
D

�
1

2�

Z
Y �

A.˛1;˛2/.!; ı/�1 d˛2

��
�f

�g

�
; (3.15)

for small enough ı and for ! … ƒ0;˛1 inside the bandgap.

3.5. The integral equation for the layer densities

Here we state the integral equation for the layer density pair .';  /. The following result
is an immediate consequence of Propositions 3.1 and 3.2.

Proposition 3.3. The layer density pair .'; / 2 L2.@D/2 satisfies the integral equation

M";ı;˛1.!/

�
'

 

�
WD

�
I C

�
1

2�

Z
Y �

A˛.!; ı/�1 d˛2

�
.A"

D.!; ı/ �AD.!; ı//

��
'

 

�
D

�
0

0

�
(3.16)

for small enough ı and for ! … ƒ0;˛1 inside the bandgap.

This integral equation resembles the one for a point defect found in [3, 4]. However,
this similarity is not obvious, and can be seen as a consequence of the cancellation of H
in Proposition 3.1.

The significance of Proposition 3.3 is as follows. If we can show that there is a char-
acteristic value ! D !" of M";ı;˛1 inside the bandgap, i.e. if there is a non-trivial pair
.';  / such that M";ı;˛1.!"/.

'
 / D 0, then !" is a resonance frequency for the defect

mode.
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4. Subwavelength guided modes in the defect

Here, we will prove the existence of a resonance frequency ! D !".˛1/ inside the
bandgap of the unperturbed crystal at ˛1. We will give an asymptotic formula for M";ı;˛1

in terms of ı in the dilute regime. Moreover, we will show that the defect band is not
contained in the pure point spectrum of the defect operator, and for perturbation sizes "
larger than some critical "0, the entire defect band is located in the bandgap region of the
original operator.

4.1. Asymptotic expansions for small ı

In this section, we will asymptotically expand M";ı;˛1 in the limit as ı ! 0 and with !
in the subwavelength regime, i.e., ! D O.

p
ı/. Throughout this section we assume that

˛ ¤ .0; 0/. We begin by studying the operator .A˛.!; ı//�1.
Define  ˛ as

 ˛ D .�
˛;0
D /�1Œ�@D�:

Since we know that
�
1
2
I C .K

�˛;0
D r/�

�
Œ ˛� D  ˛ , we can decompose this operator as

1
2
I C .K

�˛;0
D /� D P˛ CQ˛;

where

P˛ D �
h�@D; �i

CapD;˛
 ˛

is a projection on  ˛ . Then it can be shown that Q˛Œ ˛� D 0 and Q�˛Œ�@D� D 0, where
Q�˛ is the adjoint of Q˛ .

For small ı and for ! D O.
p
ı/ inside the corresponding bandgap, the operator

A˛.!; ı/ can be decomposed as

A˛.!; ı/ D

 
�!D ��

˛;!
D

�
1
2
I CK

!;�
D 0

!
� ı

�
0 0

0 P˛

�
� ı

�
0 0

0 Q˛

�
CO.ı3/:

Define the operators

A0 D

 
�!D ��

˛;!
D

�
1
2
I CK

!;�
D 0

!
; A1 D I � ıA

�1
0

�
0 0

0 P˛

�
:

The motivation for defining these operators is given in Lemmas 4.1 and 4.2 below. Intro-
ducing these operators enables the explicit computation of .A˛/�1. We will compute the
asymptotic expansion of these operators for small ! and ı.

Lemma 4.1. The following results hold for A0 and A1:

(i) For ! ¤ 0, A0 W L2.@D/! L2.@D/ is invertible, and as ! ! 0 and ı ! 0,

A�10 D

 
0 �

h�@D ;�i

�R3!2 ln!
�@D CO

�
1

! ln!

�
�.�

˛;0
D /�1 CO.!2/ �

h�@D ;�i

�R2!2
 ˛ CO

�
1
!

� !
:
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(ii) For ! ¤ !˛ , A1 W L2.@D/! L2.@D/ is invertible, and as ! ! 0 and ı ! 0,

A�11 D

 
I �

.!˛/2

!2R ln!
h�@D ;.P

?
˛ /
�1Œ��i

CapD;˛
�@D CO

�
!

ln!

�
0 .P?˛ /

�1 CO.!/

!
;

where P?˛ D I �
.!˛/2

!2
P˛ .

Proof of (i). We easily find that

A�10 D

 
0

�
�
1
2
I CK

!;�
D

��1
�.�

˛;!
D /�1 .�

˛;!
D /�1�!D

�
�
1
2
I CK

!;�
D

��1
!
; (4.1)

which is well-defined since�1
2
I CK

!;�
D WL2.@D/!L2.@D/ is invertible for ! ¤ 0 [5].

From the low-frequency expansion of �
˛;!
D [5], and using the Neumann series, we have

.�
˛;!
D /�1 D .�

˛;0
D CO.!2//�1 D .�

˛;0
D /�1 CO.!2/: (4.2)

Using the Fourier basis, the operator �1
2
I CK

!;�
D can be represented as [6]�

�
1
2
I CK

!;�
D

�
Vm!Vn

D ımn

�
�
1

2
C
�i�R!

4
.H .1/

n .!R/J 0n.!R/C .H
.1/
n /0.!R/Jn.!R//

�
:

Using standard asymptotics we can compute

�
�
1
2
I CK

!;�
D

�
Vn!Vn

D

´
�
R2

2
!2.2��! C lnR/CO.!3 ln!/; n D 0;

�
1
2
CO.!/; n ¤ 0:

Hence the operator
�
�
1
2
I CK

!;�
D

��1 can be written as�
�
1
2
I CK

!;�
D

��1
D �

1

�R3!2.2��! C lnR/
h�@D; �i�@D CO

�
1

! ln!

�
: (4.3)

Moreover, we deduce from (2.1) that �!DŒ�@D� D .2�R�! C R lnR/�@D CO.!2 ln!/,
and so

.�
˛;!
D /�1�!D

�
�
1
2
I CK

!;�
D

��1
D �
h�@D; �i

�R2!2
 ˛ CO

�
1

!

�
: (4.4)

Combining (4.1)–(4.4) proves (i).

Proof of (ii). Using the definition of A1, and the expression for A0, we can compute

A1 D I � ı

 
0 �

h�@D ;�i

�R3!2 ln!
�@D CO

�
1

! ln!

�
0 �

h�@D ;�i

�R2!2
 ˛ CO

�
1
!

� !
:
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Recall the asymptotic expression of !˛ given in Theorem 2.1:

!˛ D

s
ı CapD;˛
�R2

CO.ı3=2/: (4.5)

We then find that

A1 D

0@I .!˛/2

!2R ln!
h�@D ;�i
CapD;˛

�@D CO
�
!

ln!

�
0 I � .!˛/2

!2
P˛ CO.!/

1A :
Define

P?˛ D I �
.!˛/2

!2
P˛:

For ! small enough, A1 is invertible precisely when P?˛ is invertible, i.e. when ! ¤ !˛ .
Moreover, we have

A�11 D

 
I �

.!˛/2

!2R ln!
h�@D ;.P

?
˛ /
�1Œ��i

CapD;˛
�@D CO

�
!

ln!

�
0 .P?˛ /

�1 CO.!/

!
:

This proves (ii).

Lemma 4.2. For ! ¤ !˛ , and as ! ! 0 and ı ! 0, we have

.A˛.!; ı//�1 D A�11 A
�1
0 .I CO.ı//:

Proof. We have already established the invertibility of A0 and A1. Using this fact, we
have

A˛.!; ı/ D A0 � ı

�
0 0

0 P˛

�
� ı

�
0 0

0 Q˛

�
CO.ı3/

D A0

�
I � ıA�10

�
0 0

0 P˛

�
� ıA�10

�
0 0

0 Q˛

�
CO.ı2/

�
D A0A1

�
I � ıA�11 A

�1
0

�
0 0

0 Q˛

�
CO.ı2/

�
:

Because Q�˛�@D D 0, we have

ıA�11 A
�1
0

�
0 0

0 Q˛

�
D O.ı/:

Consequently,

.A˛.!; ı//�1 D A�11 A
�1
0 .I CO.ı//

�1
D A�11 A

�1
0 .I CO.ı//;

where the last step follows using the Neumann series.
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Next, we compute the operator A"
D �AD . Using Proposition 3.1 and equation (3.11),

we have

.A"
D/Vmn!Vm0n0

D ımnım0n0
.�i/�R

2

0@ Jn.!R/H
.1/
n .!R/ �Jn.!R/H

.1/
n .!Rd /

Jn.!R/
Jn.!Rd /

!J 0n.!R/H
.1/
n .!R/ �ı!Jn.!R/.H

.1/
n /0.!Rd /

J 0n.!R/

J 0n.!Rd /

1A :
Consequently,

.A"
D �AD/Vmn!Vm0n0

D ımnım0n0
.�i/�RJn.!R/

2

0@0 H
.1/
n .!R/ � Jn.!R/H

.1/
n .!Rd /

Jn.!Rd /

0 ı!
�
.H

.1/
n /0.!R/ �

J 0n.!R/.H
.1/
n /0.!Rd /

J 0n.!Rd /

�
1A :

Introduce the notation

A"
D �AD WD

�
0 E"1
0 E"2

�
: (4.6)

Using the asymptotic expansions of the Bessel function Jn.z/ and the Hankel function
H
.1/
n .z/, for small z, straightforward computations show that

.E"1/Vm!Vn D ım;n
.�i/�R

2

Jn.!R/

Jn.!Rd /

�
H .1/
n .!R/Jn.!Rd / � Jn.!R/H

.1/
n .!Rd /

�
;

D

8̂̂̂<̂
ˆ̂:
ım;n

�
R ln

R

Rd
CO.! ln!/

�
; n D 0;

ım;n

�
�
R

2jnj

�
1 �

R2jnj

R
2jnj

d

�
CO.!/

�
; n ¤ 0:

Moreover, we have

.E"2/Vm!Vn D ım;n
.�i/�RJn.!R/

2
ı!

�
.H .1/

n /0.!R/ �
J 0n.!R/.H

.1/
n /0.!Rd /

J 0n.!Rd /

�
;

D

8̂<̂
: ım;n

�
ı

�
1 �

R2

R2
d

�
CO.ı!2 ln!/

�
; n D 0;

ım;nO.ı/; n ¤ 0:

(4.7)

We are now ready to compute the full operator M";ı;˛1 .

Proposition 4.1. The operator M";ı;˛1.!/ has the form

M";ı;˛1.!/ D

�
I M1.!/

0 I CM0.!/

�
; (4.8)
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where the operators M0.!/;M1.!/ W L
2.@D/! L2.@D/ depend on "; ı; ˛1. Moreover,

as ! ! 0, ı ! 0 and ! … ƒ0;˛1 we have

M0.!/ D �
1

2�

Z
Y �

�
.P?˛ /

�1.�
˛;0
D /�1E"1 C ı

�
1 �

R2

R2
d

�
h�@D; �i

�R2.!2 � .!˛/2/
 ˛

�
d˛2

CO.!/:

Proof. The expression of M";ı;˛1 given in (4.8) follows from (3.16) and (4.6). Combining
Lemmas 4.1 and 4.2, we find that

.A˛.!; ı//�1 D0@ .!˛/2

!2R ln!
h�@D ;.P

?
˛ /
�1.�

˛;0
D

/�1Œ��i

CapD;˛
�@DCO

�
!

ln!

�
�

h�@D ;�i

�R3.!2�.!˛/2/ ln!
�@DCO

�
1

! ln!

�
�.P?˛ /

�1.�
˛;0
D /�1CO.!/ �

h�@D ;�i

�R2.!2�.!˛/2/
 ˛CO

�
1
!

�
1A :

Combining this with equations (3.16), (4.6) and (4.7) yields the desired expression
for M0.!/.

Remark 4.1. It is clear that ! D !" is a characteristic value of M";ı;˛1 if and only if
!" is a characteristic value for I CM0. We have thus reduced the characteristic value
problem for the two-dimensional matrix operator M";ı;˛1 to the scalar operator I CM0.

4.2. Defect resonance frequency in the dilute regime

The following theorem is the main result of this paper. Again, we say a frequency ! is in
the subwavelength regime if ! D O.

p
ı/.

Theorem 4.1. For ı and R small enough, there is a unique characteristic value !".˛1/
of M";ı;˛1.!/ such that !".˛1/ … ƒ0;˛1 and !".˛1/ is in the subwavelength regime.
Moreover, for ˛1 ¤ 0,

!".˛1/ D O! CO.R
2
C ı/;

where O! is the root of the following equation:

1C

�
O!2R2

2ı
ln
R

Rd
C

�
1 �

R2

R2
d

��
1

2�

Z
Y �

.!˛/2

O!2 � .!˛/2
d˛2 D 0: (4.9)

Proof. We seek the characteristic values of the operator I CM0. We consider the dilute
regime, i.e. where R is small. As shown in [6], in this case we have

�
˛;0
D Œ�� D �0DŒ��CRR˛.0/

Z
@D

� d� CO.R2k�k/; (4.10)

where R˛.x/ D �
˛;0.x/ � �0.x/. In particular,

 ˛ D .�
˛;0
D /�1Œ�@D� D �

CapD;˛
2�R

�@D CO

�
R2

lnR

�
:
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We will compute M0 in the Fourier basis. It is known that [5]

.�0D/Vm!Vn D �ım;n
R

2jnj
; m ¤ 0;

which gives

..�
˛;0
D /�1/Vm!Vn D �ım;n

2jnj

R
CO.R/; m ¤ 0:

Moreover,

..P?˛ /
�1/Vm!Vn D

´
ım;n

!2

!2�.!˛/2
CO

�
R2

lnR

�
; n D 0;

ım;n; n ¤ 0:

In total, we have on the subspace V0,

.I CM0/V0!V0 D 1C

�
!2R2

2ı
ln
R

Rd
C

�
1 �

R2

R2
d

��
1

2�

Z
Y �

.!˛/2

!2 � .!˛/2
d˛2

CO

�
R2

lnR
C !

�
:

Moreover, if n ¤ 0, then

.I CM0/Vm!Vn D ım;n

�
R2jnj

R
2jnj

d

�
CO.R2 C !/; n ¤ 0:

In summary, the operator I CM0 can be written as

I CM0.!/ D OM.!/CO.R2 C !/;

where the limiting operator OM.!/ is a diagonal operator in the Fourier basis, with non-
zero diagonal entries for n ¤ 0. We conclude that ! D O! is a characteristic value for
OM.!/ if and only if the diagonal entry at n D 0 vanishes at ! D O!, i.e. if

1C

�
O!2R2

2ı
ln
R

Rd
C

�
1 �

R2

R2
d

��
1

2�

Z
Y �

.!˛/2

O!2 � .!˛/2
d˛2 D 0: (4.11)

Next, we show that equation (4.11) has a zero O! … ƒ0;˛1 satisfying O! D O.
p
ı/. Set

I.!; ˛1/ D
1

2�

Z
Y �

.!˛/2

!2 � .!˛/2
d˛2:

Then equation (4.11) implies

O!2
�
R2

2ı
ln
R

Rd

�
C

�
1 �

R2

R2
d

�
C

1

I. O!; ˛1/
D 0: (4.12)
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For a fixed ˛1 2 Y �, define !� D !.˛1;�/; which is the edge of the first band in ƒ0;˛1 .
Observe that 1=I.!; ˛1/ is increasing in !, and

lim
!!!�

1

I.!; ˛1/
D 0; lim

!!1

1

I.!; ˛1/
D
!2

!20
;

where !20 is the average

!20 D
1

2�

Z
Y �
.!˛/2 d˛2:

In the dilute regime, we can compute

.!�/2 D �
2ı

R2 lnR
CO

�
ı2 C

1

R

�
;

so as ! ! !�, the left-hand side of (4.12) tends to

lnRd
lnR

�
R2

R2
d

CO.ı CR/:

Since Rd < R, the leading-order term is negative. On the other hand, as ! ! 1, the
left-hand side of (4.12) tends to1. Since the left-hand side of (4.12) is increasing, this
equation has a unique zero ! D O!. It can be verified that this zero has multiplicity 1.
Moreover, O! satisfies O! D O.

p
ı/.

Now, we turn to the full operator I C M0.!/. Since I C M0.!/ D OM.!/ C

O.R2 C !/; by the Gohberg–Sigal theory [5, 9, 19], close to O! there is a unique char-
acteristic value !" of the operator I CM0.!/, satisfying

!" D O! CO.R2 C ı/:

This concludes the proof.

Remark 4.2. If Rd > R, i.e. for larger defect bubbles, similar arguments show that any
subwavelength frequency !".˛1/ 2 ƒd;˛1 n ƒ0;˛1 satisfies (4.9) in the dilute regime.
However, it is easily verified that this equation has no solutions O! > !� when Rd > R.
The conclusion is that we must reduce the size of the defect bubbles in order to create
subwavelength guided modes in the dilute regime.

4.2.1. Absence of bound modes in the line defect direction. In this section, we will show
that the defect band is not contained in the pure point spectrum of the defect crystal.

Lemma 4.3. For .˛1; ˛2/ 2 Y � � Y �, ˛2 ¤ 0, the partial derivative of the quasi-periodic
Green’s function,

@

@˛1
�˛;0.0/;

is zero precisely when ˛1 D 0 or ˛1 D � .
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Proof. From the spectral form of the Green’s function [5],

�˛;0.x/ D �
X
m2Z2

ei.˛C2�m/�x

j˛ C 2�mj2
;

it can be easily shown that

r˛�
˛;0.0/ D

X
m2Z2

˛ C 2�m

j˛ C 2�mj4
:

By symmetry of the summation, we find that

@

@˛1
�˛;0.0/ D 0

if and only if ˛1 D 0 or ˛1 D � .

Proposition 4.2. For ı and R small enough, and for ˛1 ¤ 0; � , the characteristic value
!" D !".˛1/ satisfies

@!"

@˛1
¤ 0:

Proof. To simplify the computations, we introduce the following notation:

a D
R2

4�ı
ln
R

Rd
; b D

1

2�

�
1 �

R2

R2
d

�
;

x D x.˛1/ D O!
2; y D y.˛1; ˛2/ D .!

˛/2:

Then equation (4.9) reads

.ax C b/

Z
Y �

y

x � y
d˛2 D 1:

Denote x0 D @x
@˛1

and y0 D @y
@˛1

. Then

ax0
Z
Y �

y

x � y
d˛2 � .ax C b/

Z
Y �

x0y � xy0

.x � y/2
d˛2 D 0;

or equivalently
x0AC B D 0;

where

A D a

Z
Y �

y

x � y
d˛2 � .ax C b/

Z
Y �

y

.x � y/2
d˛2;

B D .ax C b/x

Z
Y �

y0

.x � y/2
d˛2:
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First, we show that A¤ 0, which implies that the zeros of x0 coincide with the zeros of B .
We have

A D a

Z
Y �

y

x � y
d˛2 � .ax C b/

Z
Y �

y

.x � y/2
d˛2

D

Z
Y �

ay.x � y/ � .ax C b/y

.x � y/2
d˛2 D �

Z
Y �

y.ay C b/

.x � y/2
d˛2 < 0;

since y.ay C b/ > 0 for all .˛1; ˛2/ 2 Y � � Y �.
Next, we show that the leading order of B vanishes exactly at the points ˛1 D 0 and

˛ D � . Using (4.5) and (4.10), we have

y0 D
@

@˛1
.!˛/2

D
@

@˛1

�
�2ı

R2 lnRC 2�R3R˛.0/

�
CO

�
R3

lnR
C ı2

�
D

4�R3ı

.R2 lnRC 2�R3R˛.0//2
@

@˛1
R˛.0/CO

�
R3

lnR
C ı2

�
:

Since R˛ D �
˛;0 � �0, using Lemma 4.3 we conclude that for ı andR small enough and

˛1 ¤ 0;� , y0 is non-zero for any ˛2. Hence B is non-zero, which concludes the proof.

Proposition 4.2 shows that the defect dispersion relation is not flat, except for local
extrema at ˛1 D 0 and ˛1 D � . Thus, the defect band is not in the pure point spectrum of
the defect operator, and corresponding Bloch modes are not square integrable in the line
defect direction.

4.2.2. Bandgap located defect bands. In this section, we will demonstrate that it is pos-
sible to position the entire defect band inside the bandgap region, using a suitable choice
of ". Recall that " D Rd �R. As before, let

I.!; ˛1/ D
1

2�

Z
Y �

.!˛/2

!2 � .!˛/2
d˛2:

Lemma 4.4. The minimum
min
˛12Y �

!".˛1/

is attained at ˛1 D ˛0 with ˛0 ! 0 as R! 0 and ı ! 0.

Proof. If ˛0 ¤ 0, it follows from Theorem 4.1 that the minima of !".˛1/ and I.!; ˛1/
are attained at the same point ˛0 2 Y �. Moreover, from the expression of I we see that the
minimum of !.˛1;˛2/ is also attained at ˛1. Using Lemma 4.2, for every fixed ˛2 ¤ 0 the
minimum of CapD;˛ is attained at ˛1 D 0, so by Theorem 2.1 the minimum of !.˛1;˛2/ is
attained at ˛1 D ˛0 with ˛0 ! 0 as ı ! 0. Since !.0;0/ D 0 (see [6]), this is true for all
˛2 2 Y

�.
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Proposition 4.3. For R and ı small enough, there exists an " such that for any ˛1 2 Y �

we have
!".˛1/ … ƒ0:

Proof. We want to show that

min
˛12Y �

!".˛1/ > max
˛2Y ��Y �

!˛:

From [10] we know that
!� WD max

˛2Y ��Y �
!˛

is attained at ˛ D ˛� D .�; �/. Using Theorem 4.1, we conclude that if !".˛1/ D !� for
some ˛1 ¤ 0, this ˛1 satisfies the equation

R2

R2
d

�
lnRd
lnR

D
1

I.!�; ˛1/
CO.

p
ı CR/:

For small enough R and ı, the right-hand side is positive, while the left-hand side ranges
from 0 to C1 for " 2 .�R; 0/. Moreover, I.!; ˛1/ is continuous for ˛1 in a neighbour-
hood of 0. Hence, for each ˛1 2 Y �, we can find a solution Q".˛1/ to this equation. Define

"0 D max
˛12Y �

Q".˛1/:

With the choice " D "0, for every fixed ˛1 ¤ 0 we have !".˛1/ … ƒ0 for R and ı small
enough. Moreover, since !".˛1/ is continuous, by choosing " > "0 the statement holds
for any ˛1 2 Y �.

Remark 4.3. In practice, since I.!; ˛1/ is continuous for ˛1 in a neighbourhood of 0,
we can approximate "0 as the root to the equation

R2

R2
d

�
lnRd
lnR

D
1

I.!�; 0/
(4.13)

for R and ı small enough.

5. Numerical illustrations

5.1. Implementation

5.1.1. Discretization of the operator. The operator M";ı;˛1.!/ was approximated as a
matrix M.!/ using the truncated Fourier basis e�iN� , e�i.N�1/� ; : : : ; eiN� . We refer to
[3,4] for the details of the discretization. The integral over Y � in (3.16) was approximated
using the trapezoidal rule with 100 discretization points. The characteristic value problem
for M";ı;˛1.!/ was formulated as the root-finding problem detM.!/ D 0 and solved
using Muller’s method [5].
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5.1.2. Evaluation of the asymptotic formula. The integral over Y � in (4.9) was approxi-
mated using the trapezoidal rule with 100 discretization points. Again, the equation was
numerically solved using Muller’s method.

5.2. Dilute regime

Figure 2 shows the unperturbed band structure and the defect band for ˛1 over the Bril-
louin zone Œ0;2��. The material parameters were chosen as �bD �bD 1, �w D �w D 5000,
R D 0:05 and " D �0:2R. It can be seen that the entire defect band is located inside the
deep subwavelength regime of the bandgap. Moreover, the defect frequencies computed
using the asymptotic formula agree well with the values computed by discretizing the
operator M";ı;˛1 . Also, we see that the defect band is not flat. In summary, these results
show that the defect crystal supports guided modes in the subwavelength regime, localized
to the line defect.

Fig. 2. Dilute case. The first two bands of the unperturbed crystal (left) and magnification of the
first band and the defect mode (right). The defect band is computed using the asymptotic formula
(4.9) (red dashed) and by discretizing the operator M";ı;˛1 (red circles). The crystal bubble radius
was R D 0:05 and " D �0:2R.
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5.2.1. Computation of defect modes. The defect modes were numerically computed by
approximating the integral in (3.14) using the trapezoidal rule. To compute u.˛1;˛2/ in
this equation, the pair .�; / was numerically computed as the kernel of M";ı;˛1.!"/ and
u.˛1;˛2/ was computed using (3.10), (3.12) and (3.13).

Figure 3 shows the defect Bloch eigenfunction corresponding to ˛1 D �=2, with the
same material parameters as in Figure 2. The figure clearly shows that the eigenfunction
is localized to the defect line and quickly decays away from the line.

(a) Two-dimensional plot.

(b) One-dimensional plot along the y-axis.

Fig. 3. Real part of the defect Bloch eigenfunction for ˛1 D �=2 in the dilute case. Each peak
corresponds to one bubble, and the defect line is located at y D 0.

5.2.2. Computation of "0. In this section, we numerically compute the critical perturba-
tion size, where the entire defect band is located in the bandgap. The critical perturbation
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Fig. 4. Critical defect size "0, i.e. the smallest defect size where corresponding defect band is
entirely located inside the bandgap, as a function of the crystal bubble radius.

size was computed in two ways: by solving (4.13) for the leading order term, and by solv-
ing the root-finding problem !"0.0/ D !� where !" was computed by discretizing the
operator M";ı;˛1 .

Figure 4 shows "0 for different R in the dilute regime. The material parameters were
chosen as �b D �b D 1 and �w D �w D 10000. The values obtained from the asymptotic
formula and by discretizing the operator agree, with a smaller radius R giving a smaller
error. Quantitatively, for R in this regime, we require a decrease of the bubble size by
around 14% to 26% in order that the defect band be located inside the bandgap.

5.3. Non-dilute regime

Here we compute the defect band in the non-dilute regime, in both cases " < 0 and
" > 0, corresponding to smaller and larger defect bubbles, respectively. Theorem A.1
in Appendix A shows that there is a defect frequency !" in the bandgap for small " > 0
but not for small " < 0.

5.3.1. Larger defect bubbles. Figure 5 shows the band structure in the non-dilute case
with " > 0. The material parameters were chosen as �b D �b D 1, �w D �w D 5000,
R D 0:4 and "D 0:45R. As expected from Theorem A.1, there is a defect band above the
first band of the unperturbed crystal. Moreover, it is possible to position the entire band
inside the bandgap.

5.3.2. Smaller defect bubbles. Figure 6 shows the band structure in the non-dilute case
with "D�0:6R. The material parameters were chosen as �b D �b D 1, �w D �w D 5000,
R D 0:4 and " D 0:45R. In this case a defect band is present inside the bandgap. Here "
is quite large, in contrast to Theorem A.1 which is only valid for small ".
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Fig. 5. Non-dilute case. The first two bands of the unperturbed crystal (left) and magnification of the
first band and the defect mode (right). The defect band was computed by discretizing the operator
M";ı;˛1 . The crystal bubble radius was RD 0:4 and "D 0:45R, corresponding to a non-dilute case
with larger defect bubbles.

6. Concluding remarks

In this paper, we have for the first time proved the possibility of creating subwavelength
guided waves localized to a line defect in a bubbly phononic crystal. We have shown that
introducing a defect line, by shrinking the bubbles along the line, creates a defect fre-
quency band inside the bandgap of the original crystal. An arbitrarily small perturbation
will create a non-zero overlap between the defect band and the bandgap, and we have
explicitly quantified the required defect size in order to position the entire defect band
inside the bandgap. Moreover, we have shown for the first time that the defect band is
not contained in the pure point spectrum of the perturbed operator. This shows that we
can create truly guided modes, which are not localized in the direction of the defect. In
the future, we plan to study more sophisticated waveguides, with bends and junctions.
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Fig. 6. Non-dilute case. The first two bands of the unperturbed crystal (left) and magnification of the
first band and the defect mode (right). The defect band was computed by discretizing the operator
M";ı;˛1 . The crystal bubble radius was R D 0:4 and " D �0:6R, corresponding to a non-dilute
case with smaller defect bubbles.

Moreover, we also plan to study waveguides in phononic subwavelength bandgap crys-
tals with non-trivial topology, rigorously proving the existence of topologically protected
subwavelength states in bubbly crystals.

Appendix A. The resonance frequency of the defect mode for small perturbations

Here we derive a formula for the resonance frequency of the defect mode in the case of
small ", following the approach of [3,4]. The strength of this approach is that it is valid in
both the dilute and non-dilute regimes. We begin by reformulating the integral equation
(3.16) in terms of the effective sources .f; g/ instead of the layer densities .�;  /. The
following proposition is a restatement of Proposition 3.3.
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Proposition A.1. The effective source pair .f; g/ 2 L2.@D/2 satisfies the following inte-
gral equation:

M";ı;˛1.!/

�
f

g

�
WD

�
IC.A"

D.!; ı/�AD.!; ı//
1

2�

Z
Y �

A.˛1;˛2/.!; ı/�1 d˛2

��
f

g

�
D

�
0

0

�
; (A.1)

for small enough ı and for ! … ƒ0;˛1 inside the bandgap.

In this section, we derive an expression for the characteristic value !" of M";ı;˛1.!/

located slightly above !˛ for both the dilute and non-dilute regimes.
Let us first analyse the operator

R
Y �
.A˛/�1 d˛. Since !˛ is a simple pole of the

mapping ! 7! A˛.!/�1 in a neighbourhood of !˛ , according to [5], we can write

A˛.!/�1 D
L˛

! � !˛
CR˛.!/; (A.2)

where the operator-valued function R˛.!/ is holomorphic in a neighbourhood of !˛ , and
the operator L˛ maps L2.@D/2 onto ker A˛.!˛; ı/. Let us write

ker A˛.!˛/ D span¹‰˛º; ker .A˛.!˛//� D span¹ˆ˛º;

where � denotes the adjoint operator. Then, as in [2, 5], it can be shown that

L˛
D

hˆ˛; � i‰˛˝
ˆ˛; d

d!
A˛
ˇ̌
!D!˛

‰˛
˛ ;

where again h � ; � i stands for the standard inner product of L2.@D/2.
Hence the operator M";ı;˛1 can be decomposed as

M";ı;˛1.!/ D I C .A"
D �AD/

1

2�

Z
Y �

L˛

! � !˛
d˛2

C .A"
D �AD/

1

2�

Z
Y �

R˛ d˛2:

Note that the third term on the right-hand side is holomorphic with respect to !.
Denote ˛� D .˛1; �/ and !�.˛1/D !.˛1;�/. Using similar arguments to those in [10]

and the fact that each bubble is a circular disk, we can prove the following result on the
shape of the dispersion relation close to ˛�.

Lemma A.1. For a fixed ˛1 2 Y �, the characteristic value !˛ attains its maximum over
˛2 at ˛2 D � , i.e. at ˛ D ˛�. Moreover, for ˛2 near � , we have

!˛ D !�.˛1/ �
1
2
cı.˛1/.˛2 � �/

2
C o..˛2 � �/

2/:

Here, cı.˛1/ is a positive function of ˛1 and ı.
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The operator
R
Y �

L˛

!�!˛
d˛2 becomes singular when ! ! !˛ . Moreover, since we

want to compute the defect band inside the bandgap of the periodic problem at ˛1, we
can assume ! is inside this bandgap. Consequently, the singularity occurs as ! ! !�.
Let us extract the singular part explicitly. Denote A� D A.˛1;�/; ˆ� D ˆ.˛1;�/; and
L� D L.˛1;�/. Moreover, denote by Bj a bounded function with respect to ! in V . Then,
by Lemma A.1, we have

1

2�

Z
Y �

L.˛1;˛2/

!�!.˛1;˛2/
d˛2 D

L�

2�

Z 2�

0

1

!�!�C 1
2
cı.˛1/.˛2��/2

d˛2CB1.!/

D
L�

2�

s
2

.!�!�/cı.˛1/
2 arctan

�r
c

2.!�!�/
�

�
CB1.!/

D
L�p

2.!�!�/cı.˛1/
CB2.!/:

We therefore get

M";ı;˛1.!/ D I C
1p

2.! � !�/cı.˛1/
.A"

D.!
�/ �AD.!

�//L� CR".!/

for some R".!/ D O."/ which is analytic and bounded for ! close to !�. We look for
characteristic values ! D !" of M";ı;˛1.!/, i.e. values such that there exists some‰" ¤ 0
with M";ı;˛1.!/‰" D 0. Expanding this equation, we have

‰" C
1p

2.!" � !�/cı.˛1/

.A"
D �AD/.!

�/‰�˝
ˆ�; d

d!
A�
ˇ̌
!D!�

‰�
˛ hˆ�; ‰"i CR".!/‰" D 0:

Then, multiplying by ˆ�, we obtain

hˆ�; ‰"i

�
1C

1p
2.!"�!�/cı.˛1/

hˆ�; .A"
D�AD/.!

�/‰�i˝
ˆ�; d

d!
A�
ˇ̌
!D!�

‰�
˛ �
Chˆ�;R".!/‰"i D 0:

Since R".!/ D O."/, it follows from the above equation that hˆ�; ‰"i ¤ 0. Therefore,
choose ‰" such that hˆ�; ‰"i D 1. This gives

!" D !� C
1

2cı.˛1/

1

.1C hˆ�;R".!/‰"i/2

�
hˆ�; .A"

D �AD/.!
�/‰�i˝

ˆ�; d
d!

A�
ˇ̌
!D!�

‰�
˛ �2

: (A.3)

In order to derive a more explicit expression, we will consider the asymptotic limit as
ı ! 0. As in [3, 4], we have the following lemma.

Lemma A.2. The following results hold:

(i) When ı ! 0, we have�
ˆ�;

d

d!
A�.!�; ı/‰�

�
D �2�!� ln!�R3 CO.

p
ı/;

which is positive for ı small enough.
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(ii) For a fixed ", when ı ! 0 we have

hˆ�; .A"
D.!

�; ı/ �AD.!
�; ı//‰�i D ı" ln!�.Rk ˛�k2L2.@D/ � 2CapD;˛�/

CO."ı C "2ı ln ı/;

where  ˛� D .�
˛�;0
D /�1Œ�@D� and CapD;˛� D �h ˛� ; �@Di. For small " and ı, this

expression is positive for " < 0 if R is small enough, or " > 0 for R close enough
to 1=2.

Combining equation (A.3) and Lemma A.2, we obtain the following result.

Theorem A.1. Assume that ı is small enough and the pair .R; "/ satisfies one of the two
assumptions

(i) R small enough and " < 0 small enough in magnitude .dilute regime/,
(ii) R close enough to 1=2 and " > 0 small enough .non-dilute regime/.

Then there exists one frequency value !".˛1/ such that the problem (3.2) has a non-trivial
solution and !".˛1/ is slightly above !�.˛1/. Moreover, as ı ! 0 we have

!".˛1/ D !
�.˛1/C

1

2cı.˛1/

�ı".Rk ˛�k2L2.@D/ � 2CapD;˛�/

2�!�.˛1/R3

�2
CO

�
"2
p
ı

ln ı
C "3
p
ı

�
; (A.4)

where ˛� D .˛1; �/.

Remark A.1. It is easily verified that equation (4.9) evaluated for small " coincides with
equation (A.4) evaluated for small R.

Appendix B. Characterization of the effective sources for non-circular bubbles

Let now D be a general simply connected domain with @D 2 C 1. In this section, we will
restrict to the case of small size perturbations " < 0. Define the defect bubble Dd 2 D as
the domain with boundary

@Dd D ¹x C "�x j x 2 @Dº;

where �x is the outward unit normal of @D at x 2 @D. We will need some results given
in [2]. First, we introduce some notation. Define the mapping p W @D ! @Dd ; p.x/ D

x C "�x . Let x; y 2 @D and let zx D p.x/ 2 @Dd and zy D p.y/ 2 @Dd . Define q W
L2.@D/! L2.@Dd /; q.�/.zx/ D �.p

�1.zx//, and for a surface density � on @D, define
z� D q.�/ on @Dd .

We also define the signed curvature � D �.x/, x 2 @D, in the following way. Let
x D x.t/ be a parametrization of @D by arc length. Then define � by

d2

dt2
x.t/ D ���x :
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Observe that � is independent of the orientation of @D. The following results are given
in [2], but adjusted to the case where " < 0.

Proposition B.1. Let k > 0. Let � 2 L2.@D/ and let x; y; zx; zy; z� be as above. Then

�kDd ;DŒ��.zx/ D �kDŒ��.x/C "
�
�
1
2
I CK

k;�
D

�
Œ��.x/C o."/; (B.1)

�kDd Œ
z��.zx/ D �kDŒ��.x/C ".K

k
D CK

k;�
D /Œ��.x/C "�kDŒ���.x/C o."/; (B.2)

�kD;Dd Œ
z��.x/ D �kDŒ��.x/C "

�
�
1
2
I CKk

D

�
Œ��.x/C "�kDŒ���.x/C o."/: (B.3)

Proposition B.2. Let � 2 L2.@D/ and let x; y; zx; zy; z� be as above. Then

K
k;�
Dd
Œz��.zx/ DK

k;�
D Œ��.x/C "Kk

1 Œ��.x/C o."/; (B.4)

where Kk
1 is given by

Kk
1 DK

k;�
D Œ���.x/ � �.x/K

k;�
D Œ��.x/C

@Dk
D

@�
Œ��.x/ �

@2

@T 2
�kDŒ��.x/ � k

2�kDŒ��.x/:

Here @2

@T 2
denotes the second tangential derivative, which is independent of the orienta-

tion of @D.

We also state the following result which is given, for example, in [29].

Proposition B.3. For x 2 @D and k � 0 we have

@Dk
D

@�
Œ��.x/ D

�
1
2
I CK

k;�
D

�
.�kD/

�1
�
�
1
2
I CKk

D

�
Œ��.x/

D
�
�
1
2
I CK

k;�
D

�
.�kD/

�1
�
1
2
I CKk

D

�
Œ��.x/:

As in Section 4, we consider the defect problem (3.1), modelled by the fictitious
sources as in (3.3). Observe that Proposition 3.2 is valid even for non-circular bubbles. To
derive the analogue of Proposition 3.1, we again study equations (3.8) and (3.9), i.e.,

�
kb
Dd
Œ'd � � �

kb
D Œ'� in Dd ;

�kwDd Œ d � � �kwD Œ � in Y 2 nD:

Since ! is in the subwavelength regime, kb is not a Dirichlet eigenvalue. Together with the
uniqueness of the exterior Dirichlet problem, we conclude that it is sufficient to consider
these equations on the boundaries. Using the notation above, this means

�
kb
Dd
Œ'd � D �

kb
Dd ;D

Œ'�; �kwD;Dd Œ d � D �kwD Œ �:

Using the expansions (B.1)–(B.3), we find

�
kb
D Œq�1'd �C ".K

kb
D CK

kb ;�
D /Œq�1'd �C "�

kb
D Œ�q�1'd �

D �
kb
D Œ'�C "

�
�
1
2
I CK

kb ;�
D

�
Œ'�C o."/

�kwD Œq�1 d �.x/C "
�
�
1
2
I CKkw

D

�
Œq�1 d �.x/C "�

kw
D Œ�q�1 d �.x/ D �kwD Œ �C o."/;
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with q defined as above. From this we find that�
'd
 d

�
D Q

 
I C "

 
�.�

kb
D /�1

�
1
2
ICK

kb
D

�
�� 0

0 �.�kwD /�1
�
�
1
2
ICKkw

D

�
��

!!�
'

 

�
C o."/

WD P1

�
'

 

�
; (B.5)

where Q is the bijection Q W L2.@D/2 ! L2.@Dd /
2; Q D .q; q/, and P1 W L

2.@D/2

! L2.@Dd /
2.

Using the asymptotic expansions (B.2) and (B.4), we can expand the operator ADd as

ADd D Q ı .AD.!; ı/C "A1.!; ı// ıQ
�1
C o."/; (B.6)

where

A1.!; ı/ D

 
K
kb
D CK

kb ;�
D C �

kb
D Œ� �� �.Kkw

D CK
kw ;�
D C �kwD Œ� ��/

K
kb
1 �ıKkw

1

!
:

Using Taylor expansion, we have

@

@�
H j@D D

@

@�
H j@Dd � "

@2

@�2
H j@Dd :

We use the Laplacian in the curvilinear coordinates defined by Tzx ; �zx for zx 2 @Dd ,

� D
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@

@�
C
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@T 2
:

It is easily verified that the curvatures on the two boundaries satisfy

�.zx/ D �.x/CO."/:

Hence we obtain
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In total, we have �
H j@D

@H=@�j@D

�
D P�12

�
H j@Dd

@H=@�j@Dd

�
; (B.7)

where the operator P�12 W L2.@Dd /
2 ! L2.@D/2 is given by

P�12 D

�
I C "

�
0 �1

k2w C .@T /
2 �

��
Q�1 C o."/:
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Combining equations (3.6), (3.7), (B.5) and (B.7) we arrive at

.P�12 ADdP1 �AD/

�
'

 

�
D

�
f

g

�
:

As before, we define A"
D D P�12 ADdP1. Finally, we can compute this explicitly using

equations (B.5)–(B.7) and Proposition B.3 to obtain the following proposition, which is
the analogue of Proposition 3.1 in the case of non-circular bubbles.

Proposition B.4. The density pair .'; / and the effective sources .f; g/ satisfy the rela-
tion

.A"
D �AD/

�
'

 

�
D

�
f

g

�
;

where the operator A"
D satisfies

A"
D �AD D ".ı � 1/

 
0 1

2
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