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Abstract. We prove that if � is a self-affine measure in the plane whose defining IFS acts totally
irreducibly on RP1 and satisfies an exponential separation condition, then its dimension is equal to
its Lyapunov dimension. We also treat a class of reducible systems. This extends our previous work
on the subject with Bárány to the overlapping case.
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1. Introduction

1.1. Statement of results

LetX D
S
i2ƒ 'iX �R2 be a planar self-affine set, and let �D

P
i2ƒpi � 'i� 2P .R2/

be a planar self-affine measure, generated by a finite system ˆ D ¹'iºi2ƒ of invertible
affine contractions of R2 and a probability vector p D .pi /i2ƒ. To avoid trivial cases we
assume throughout this paper (and without further mention) that
� the maps 'i do not have a common fixed point;
� pi > 0 for all i 2 ƒ.
We write 'i .x/ D Aix C bi where Ai is a 2 � 2 matrix and bi 2 R2, and for a general
affine map ' of R2 we similarly write '.x/ D A'x C b' .

It has been a longstanding problem to compute the dimensions dimX and dim �.
General upper bounds have been known for some time: the affinity dimension dima X

bounds the dimension of X [8], and the Lyapunov dimension dimL � bounds the dimen-
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sion of � [18].1 Another, trivial, upper bound is the dimension 2 of the ambient space R2;
thus we obtain the general bound

dimX � min ¹2; dimaXº; (1.1)
dim� � min ¹2; dimL �º: (1.2)

It is a natural question to ask when X and � are “as spread out as possible”, that is, when
these bounds are achieved. Equality turns out to be the situation for “typical” ˆ, as has
been established in many instances over the past few decades, most often as the generic
behavior in various parametric families of systems, and in some special cases of concrete
systems; see e.g. [5, 9, 17, 26]. This behavior is not universal, and some counterexamples
are known, but they are rather special, consisting either of systems in which, in suitable
coordinates, the matrices Ai are all diagonal [6, 22] (see also [20]); or of systems with
many “overlaps”, that is, systems in which there are many algebraic relations in the semi-
group generated by ˆ.

Over the past few years results have emerged that apply to specific instances of sys-
tems [2,10,23,24], under some separation assumption and assumptions on the dimension
of the associated Furstenberg measure. Most recently, in joint work with B. Bárány, we
removed the last assumption and proved the following general result:

Theorem ([3]). Suppose that ˆ D ¹'iºi2ƒ is a finite system of invertible affine contrac-
tions in R2 and satisfies the following conditions:

� Non-conformality: There is no coordinate system in which all the maps 'i are simi-
larities.
� Total irreducibility: There is no finite set ¹`1; : : : ; `nº of lines in R2 which is invariant

under all of the matrices Ai .
� Strong open set condition: There is a bounded open setU �R2 such thatU \X ¤;,
'iU � U for all i 2 ƒ, and 'iU \ 'jU D ; for distinct i; j 2 ƒ.

Then equality holds in (1.1) and (1.2).

The first assumption, non-conformality, is not actually necessary for the conclusion to
hold, because under the separation assumption given, the conformal (or self-similar) case
is easily dealt with using classical methods. It was stated here and in our earlier paper
because the methods in the conformal and non-conformal settings turn out to be quite
different.

The second assumption, total irreducibility, can be replaced with weaker assumptions
for some systems of triangular matrices [3, Proposition 6.6], but cannot be eliminated
entirely, as is shown by carpet-like examples.

The purpose of the present paper is to replace the third assumption, the strong open
set condition, with a substantially weaker one, analogous to the state-of-the-art in the
conformal case [15, 16]. This is of intrinsic interest, as it is a step towards eliminating
the separation assumption entirely (a possibility which, at present, is only conjectural).

1Strictly speaking, the affinity and Lyapunov dimensions depend on ˆ and p, not on X and �,
but we suppress this in our notation.
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As further motivation, we anticipate that understanding the overlapping two-dimensional
case will be an important step towards treating the separated case in higher dimensions; we
will explain this point in more detail below. Finally, although our previous work concerned
the same non-conformal class of fractals as here, in fact the proof there reduced to dealing
with a family of conformal-like fractals on the line. The present work requires genuinely
non-conformal techniques, which we introduce here. These are of independent interest.

To state our main result we fix a left-invariant metric d , derived from a Riemannian
metric, on the group A2;2 of invertible affine maps R2!R2. We say that the system ¹'iº
satisfies exponential separation if there exists a constant c > 0 such that for every n 2 N
and for every pair of sequences i1 : : : in ¤ j1 : : : jn in ƒn, we have

d.'i1 : : : 'in ; 'j1 : : : 'jn/ > c
n: (1.3)

Note that the constant c will depend on the choice of metric, but the existence of such
a constant is independent of the metric. Other metrics would also serve for this purpose,
e.g. the norm metric when the affine maps are viewed as 3 � 3 matrices in the standard
way.

Theorem 1.1. Let ˆ D ¹'iºi2ƒ be a finite system of invertible affine contractions of R2,
and suppose that ˆ has no common fixed point, satisfies the non-conformality and total
irreducibility assumptions, and is exponentially separated. Then, writingX for the attrac-
tor, we have

dimX D min ¹2; dimaXº:

Furthermore, for any positive probability vector p, the associated self-affine measure
� D

P
pi � 'i� satisfies

dim� D min ¹2; dimL �º: (1.4)

The first statement follows from the second using a variational principle due to Morris
and Shmerkin [23]. We therefore focus on calculating the dimension of �.

For Theorem 1.1 and other theorems below which assume exponential separation, it
is enough to assume the weaker property that there exists a c > 0 for which, for infinitely
many n, (1.3) holds over all distinct choices i; j 2ƒn. This is true also for the results in [3]
and several other recent works on the subject. The proof requires almost no modification;
see [15] where it is given on the line. We continue to state our results in the case of expo-
nential separation because this has become customary and holds in many important cases,
but one should remember that it can be weakened, and can be significant (see e.g. [27]).

A version of Theorem 1.1 holds also in terms of random walk entropy. Specifically,
suppose that (1.3) holds for all n (or for arbitrarily large n) for all pairs i; j 2 ƒn such that
'i ¤ 'j. Then (1.4) holds, but we must define the Lyapunov dimension not with respect to
the entropy H.p/ of p, but rather with respect to the random walk entropy HRW .ˆ; p/
of the random walk on the affine group generated by ˆ and p. The proof of this requires
only minor modifications (specifically, to Proposition 8.5, although not to its statement),
and is by now well understood, so we omit the details.

We finish this subsection with a concrete example. SupposeƒD¹1;2º, let 0< r � 3=5
and set

A1 D

�
r r

0 r

�
and A2 D

�
r 0

r r

�
:
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Note that the operator norm of these matrices is strictly less than 1. Let b1 D .t1; s1/ and
b2 D .t2; s2/ be any vectors in R2 which satisfy

r

1 � r
s1 C t1 ¤ t2 or s1 ¤

r

1 � r
t2 C s2:

For i D 1; 2 and x 2 R2 set 'i .x/ D Aix C bi . Then from our assumption on b1; b2 it
follows that '1; '2 do not have the same fixed point. We can apply the ping-pong lemma
to show that A1; A2 generate a free semigroup. Thus,

kAi � Ajk � r
n for all n � 1 and distinct i; j 2 ƒn;

which shows that ˆ D ¹'1; '2º is exponentially separated. Additionally, it is easy to
verify that the non-conformality and total irreducibility assumptions hold in the present
case. Thus the conclusion of Theorem 1.1 is satisfied for the system ˆ.

1.2. Discussion and reduction

A central tool in this theory is the Ledrappier–Young formula, which in the setting of self-
affine measures is due to Bárány and Käenmäki [4,14], and which we now recall (see also
Section 2.10). Let �� denote the Furstenberg measure of the i.i.d. random matrix product
�n � �n�1 � : : : � �1 where �i takes the value A�i with probability pi . This is the unique
measure on the projective line RP1 satisfying the relation ��D

P
pi �A

�
i �
�, where we let

matrices act on the space of lines, and on measures on this space, in the natural way. Also,
let �1 < �2 < �1 < 0 denote the Lyapunov exponents of this random matrix product,
which are negative because the matrices contract (this accounts for the absolute values
later on), and are distinct if we assume total irreducibility and non-conformality. For a
linear subspace W � R2, let �W denote the orthogonal projection to W , and write �Wx
for the conditional measure of � on x CW , which is �-a.e. well defined. WriteH.p/ for
the Shannon entropy

H.p/ D �
X
i2ƒ

pi logpi :

Let… WƒN !X denote the natural coding map of the attractorX , let B denote the Borel
� -algebra of R2, and let P1 denote the partition of ƒN according to the first coordinate.

Theorem 1.2 (Ledrappier–Young formula [4]). Let � be a self-affine measure in R2, and,
in the notation above, assume �2 < �1. Then the real number H.p/ splits as a sum

H.p/ D H1 CH2 CH3

such that

� 0 � H1=j�1j � 1 and dim�W� D H1=j�1j for ��-a.e. W ;

� 0 � H2=j�2j � 1 and dim�W
?

x D H2=j�2j for ��-a.e. W and �-a.e. x;

� dim� D H1=j�1j CH2=j�2j;

� H3 D HpN .P1 j…
�1B/ .in particular H3 � 0/.
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The Ledrappier–Young theorem does not by itself determine dim �, because the
expression dim� D H1=j�1j CH2=j�2j for the dimension is constrained primarily by
the identity H.p/ D H1 CH2 CH3, and this leaves two degrees of freedom.2 But the
theorem also gives bounds for the Hi , placing them in a certain compact convex set.
Regarding these parameters as free variables, we may proceed to maximize the linear
expression H1=j�1j CH2=j�2j on this compact domain; its maximal value is essentially
the Lyapunov dimension dimL �, and by the Ledrappier–Young formula it is automati-
cally an upper bound on the dimension, dim�� dimL�. In order to compute this maximal
value, one relies on two observations:
� If H1 < j�1j and if one of the other parameters Hj is positive, then the target func-

tion H1=j�1j CH2=j�2j can be increased by increasing H1 and decreasing Hj , while
keeping H1 CH2 CH3 constant.3

� IfH2 < j�2j andH3 > 0 then the target functionH1=j�1j CH2=j�2j can be increased
by increasing H2 and decreasing H3, while keeping H1 CH2 CH3 constant.

In other words, the maximum is achieved ifH1 is maximal relative to the constraints, and
H2 is maximal given the constraints and H1. From this, one easily derives the formula
for dimL in the cases4 H.p/ � j�1j C j�2j,

dimL � D

8̂̂<̂
:̂
H.p/
j�1j

if H.p/ � j�1j;

1C H.p/�j�1j
j�2j

if j�1j � H.p/ � j�1j C j�2j;

2 � H.p/
j�1jCj�2j

if j�1j C j�2j < H.p/:

In our previous work [3], we proved the following result under the same assumptions
as Theorem 1.1:

Theorem 1.3 ([3]). Under the assumptions of Theorem 1.1 and with the notation in the
Ledrappier–Young theorem,

dim�W� D min ¹1;H.p/=j�1jº for ��-a.e. W: (1.5)

It should be noted that Theorem 1.3 hinges on computing dim �W�, which is the
dimension of a fractal measure on R. In this sense, it does not confront the non-confor-
mality of ˆ and � directly. Nevertheless, it implies Theorem 1.1 in two important cases:

2There is an explicit description of H1; H2 in terms of a conditional entropy, but computing
them is no easier than computing the dimension directly, so we do not present it here.

3Transferring from H2 to H1 increases the target function because, due to our assumption
�2 < �1 < 0, the coefficient 1=j�1j of H1 is larger than the coefficient 1=j�2j of H2.

4In the third case,H.p/> j�1j C j�2j, the formula for the Lyapunov dimension is not explained
by the Ledrappier–Young formula, but is motivated by considerations involving the affinity dimen-
sion. In this case the Lyapunov dimension is greater than 2, and since we take the minimum with 2
in Theorem 1.1, the details of this case do not interest us here.
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1. IfH3 D 0, and, in particular, under the strong open set condition.5 In this case we saw
that dim� D dimL � provided that H1 takes its maximal value given the constraints,
i.e. provided that either H1 D H.p/ (if H.p/ � j�1j) orH1 D j�1j (if H.p/ > j�1j).
This holds because Theorems 1.2 and 1.3 together imply

H1=j�1j D dim�W� D min ¹1;H.p/=j�1jº for ��-a.e. W:

2. If dim� < 1. In this case, since projections are Lipschitz maps and cannot increase
dimension, we know that

dim�W � dim� < 1 for all W 2 RP1:

By Theorems 1.2 and 1.3 we obtain

H1=j�1j D dim�W� D H.p/=j�1j for ��-a.e. W;

hence H1 D H.p/ < j�1j, so dim� D H.p/=j�1j D dimL �.
Thus, in order to prove Theorem 1.1, we need to prove dim� D dimL � for the cases not
covered above, which is the following statement:

Theorem 1.4. Under the assumptions of Theorem 1.1 and with the notation in the
Ledrappier–Young theorem, if H3 > 0 and dim� � 1, then dim� D 2.

The bulk of this paper is devoted to proving this last result, but many of the interme-
diate steps are valid – and interesting – under weaker assumptions than those above, and
so we prove them under the minimal assumptions necessary. The reader should take note
of the exact assumptions made on ˆ in each of the sections of the paper; these are stated
at the start of each section and in the main theorems, but, for the sake of readability, not
in all the lemmas and propositions.

1.3. Overview of the argument

In the following paragraphs, we sketch the main ingredients of the proof of Theorem
1.4, and the main auxiliary results that go into it. We shall present it as an argument by
contradiction. Thus, for most of the following discussion, we assume that � is a self-affine
measure generated by ˆ, and that
� ˆ is non-conformal, totally irreducible, and satisfies exponential separation;
� H3 D HpN .P1 j…

�1B/ > 0;
� 1 � dim� < 2.
The proof will depend heavily on the analysis of entropy of measures at a variety of dif-
ferent scales (for the basic definitions see Section 2). In this introduction we are purposely
vague about how we measure entropy, but during this exposition we use the convention

5The SOSC implies H3 D 0 [4, Corollary 2.8].
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that when measuring entropy at some small scale 2�m, we normalize the entropy by divid-
ing by m, so that after normalization the entropy is comparable to the dimension for
well behaved measures. Then non-negligible entropy means that (after dividing bym) the
entropy is bounded away from 0, perhaps by a very small constant; entropy of order 1
means that before normalization the entropy was of order m; etc.

Denote by � the convolution operation between measures on a group, usually R2 or
the affine group; and for a measure � on the affine group and a measure � on R2, denote
by �:� the push-forward of � � � by the action map .'; x/ 7! 'x; we also sometimes
write �:x D �:ıx . The starting point of the analysis is the basic convolution structure of
� as a self-affine measure. By slight abuse of notation, write p D

P
i2ƒ pi � ı'i for the

measure on the affine group corresponding to ˆ (with weights .pi /), so that

� D p:� D .p � p/:� D � � � D p�n:�

for all n. The overall structure of the proof is similar to other recent results in the area:
Decomposing p�n: Express p�n as an average of measures � which are supported on

sets of diameter O.1/ in the affine group (with respect to the left-invariant metric d ),
and such that a positive fraction of the � have non-negligible entropy at scale Cn for
some C > 0.

This step is where H3 > 0 and exponential separation are used.
Normalizing in the affine group: For each piece � of p�n, fix an affine map ' 2 supp �

and replace � by its translate '�1� in the affine group, which is supported on an
O.1/-neighborhood of the identity (by the left-invariance of the metric).

This step is meant to deal with some of the problems arising from the non-confor-
mality of the maps, since '�1� is now supported on maps with bounded distortion.

Entropy growth: Apply an entropy-growth result to the convolution .'�1�/:�, and
conclude that, for a positive fraction of the pieces � of p�n, the entropy of .'�1�/:�
is substantially larger than that of �.

We establish the entropy growth result more generally for convolutions of the
form �:�, assuming � is a measure near the identity of the affine group having non-
negligible entropy at a small scale. We do not require exponential separation of � for
this result.

Returning to the distorted setting: Re-interpreting this for the convolution �:� D
'..'�1�/:�/, we find that for a positive fraction of the pieces � of p�n, the entropy
of �:�, when measured in the correct way, is substantially larger than that of �.

Here one must measure the entropy of '.'�1�:�/ using partitions whose cells are
adapted to '; roughly speaking, they will be like the images under ' of square cells.
We shall loosely call this a non-conformal partition.

Interpolation: We show that the entropy increase observed for the non-conformal parti-
tions implies an increase with respect to appropriately chosen conformal partitions.

We do this by interpolating between the non-conformal and conformal partitions.
We must show this interpolation has a neutral effect on the entropy. This is done with
the aide of fine information provided by the Ledrappier–Young formula and a careful
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analysis of projections and slices of �. This step is the main place where we use the
assumption dim� � 1 (although it also simplifies some of the other arguments). This
step also uses exponential separation and total irreducibility.

Total entropy change: Observing that p�n:� is an average (over the choice of the
piece � ) of the convolutions of the form �:�, we show that the extra entropy from
the last step accumulates to imply that the entropy of p�n:� is substantially larger
than that of �, which in view of the identity p�n:� D �, is the desired contradiction.

1.4. Some more details

We now discuss some of these steps in more detail, and the new ingredients in them.

Analyzing the function L and the orientation of cylinders . One interesting new feature
in our proof, which holds without assuming exponential separation or dim� � 1, is an
observation about the orientation of cylinder measures in �. A cylinder measure of gen-
eration n is a measure of the form 'i1 : : : 'in�, and because the affine map 'i1 : : : 'in
is highly non-conformal, the cylinder measure is supported very close to a line whose
direction L.Ai1 : : : Ain/ is the direction of the major axis of the image of the unit ball
under the matrix product Ai1 : : : Ain . It is a basic result in the theory of random matrix
products that this direction converges, for a pN-typical sequence i 2 ƒN and as n!1,
to a directionL.i/; and the distribution � of this direction, as a function of the pN-random
sequence i, is the associated Furstenberg measure. Note that we are now multiplying the
original matrices Ai and not, as we did earlier, their transposes, so � ¤ �� in general; see
Section 2.10 for more details.

We are assuming that the symbolic coding … W ƒN ! X is far from being injective
(since H3 > 0), so for a typical point x 2 X with respect to the measure � D ….pN/,
the function L potentially can take many values on the fiber…�1.x/. However, under our
assumptions, it turns out that L does factor through X :

Theorem 1.5. Let � be a self-affine measure in R2 of dimension < 2 generated by a
systemˆ that is totally irreducible and non-conformal. ThenL is measurable with respect
to …�1B .up to a pN-null set/.

Note that this theorem does not require exponential separation or dim� � 1.
The intuition behind the proof is simple. For simplicity assume for the moment expo-

nential separation and dim� � 1. Then, if L were not constant on typical …-fibers, it
would mean that there is a set E � X of positive �-measure such that for x 2 E, the
cylinder sets which x belongs to “point” in substantially different directions. Now, these
cylinder measures are very nearly concentrated on a line segment and, heuristically, The-
orem 1.3 implies that their projection to this line has dimension 1 (the rigorous version of
this is given in Section 3.3). It follows that the measure �jE looks, at small scales, like
a collection of uniform measures on parallel line segments, but that this holds simulta-
neously for two different directions. It then follows by a Fubini type argument that the
dimension of �jE should be 2.
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This argument works also without exponential separation, and when dim� < 1. Then
we do not know that the projections of � to lines have dimension 1, but using a projection
theorem due to Bourgain, and the fact that dim �� > 0, one can show that there is a ı > 0
such that for ��-a.e.W we have dim�W� � 1

2
dim�C ı, and this is enough to carry out

the argument.
In summary, under the assumptions of Theorem 1.4, the function L W ƒN ! RP1

descends to a �-a.e. defined measurable function L W X ! RP1.
For details see Section 4.

Decomposing p�n. Under the assumptions of Theorem 1.4, we wish to decompose p�n

into “smaller” measures � whose supports have diameter O.1/ but which still possess
non-negligible entropy. One should first note that p�n itself does not have this property;
it is a very spread out measure that is supported on exponentially many atoms, describing
a set of exponential diameter.

In this paper, the measures � are obtained by first covering the fibers …�1.x/ of the
symbolic coding map by cylinders of a given length n, interpreting the name of each
cylinder as a composition of affine maps in the group, and assigning it the weight that
the cylinder has under the conditional measure of pN on …�1.x/. The assumption that
H3 D HpN .P1 j…

�1B/ > 0 means that these fiber-measures have positive dimension,
and so require exponentially many cylinders to cover them. This leads to � having positive
entropy as a discrete measure, and by exponential separation, it also has positive entropy
at scale Cn for some C � 1.

This construction does not give the necessary bound on the diameter of the support
of � , and, in fact, � can still be very spread out. The measure � arising as above consists
of atoms at affine maps 'i1 : : : 'in which correspond to cylinder sets containing x, and
if the directions L.'i1 : : : 'in/ of these cylinders vary enough, then the measure � will
be supported on a very large set. We would like to further decompose � into smaller
measures � 0 which are supported on sets of diameter O.1/, but if we needed to partition
it into exponentially many such sets, then there is the risk that the entropy of each small
piece would be negligible, and that the entropy of � originally came from the variation in
directions.

Luckily, the orientation of the cylinder at a point x is controlled by the value L.x/:
the n-th cylinder’s orientation converges to L.x/ as n!1, and there is some control of
the rates (this is a feature of standard proofs of the Oseledets ergodic theorem, and a result
of the (eventually) contractive nature of the action of matrix products on the flag space).
Using this, we can ensure that, in order to decompose � into pieces of support O.1/, we
need only a subexponential number of pieces, and therefore a positive proportion of the
pieces will still have substantial entropy.

For details see Section 8.

Entropy growth. For the entropy growth part of the proof we establish another general
result which does not require the assumption of exponential separation or dim� � 1. In
the following statement, Dn denotes a dyadic-like partition of the affine group into cells
of diameter approximately 2�n; see Section 2.5 for details.
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Theorem 1.6. Let � be a self-affine measure in R2 defined by a non-conformal,6 totally
irreducible system ˆ and satisfying dim� < 2. Then for every "; R > 0 there is a ı D
ı.�; ";R/ > 0 such that for every n >N.�;";R/, the following holds. If � is a probability
measure on the affine group supported within distance R of the identity, then

1

n
H.�;Dn/ > " H)

1

n
H.�:�;Dn/ >

1

n
H.�;Dn/C ı:

The proof is given in Section 6. It has some features in common with results in the lit-
erature, but also requires many new ideas. These are explained in the following summary
of the main steps.

(i) Linearization. This step is similar to previous work. In order to study the entropy
of �:�, where � is a measure in a bounded neighborhood of the identity in the affine
group, we first decompose both � and � into pieces � 0 and �0 respectively, so that �:� is
the convex combination of � 0:�0; and we choose the pieces so that they are supported on
sets of small diameter.

Next, we use the fact that on small balls (e.g. the supports of � 0; �0), the action
.'; x/ 7! 'x is essentially linear. Thus we can approximate the action-convolution � 0:�0
by a Euclidean convolution .� 0:x/ � .'�0/ for some (any) choice of x 2 supp �0 and
' 2 supp � 0.

Gathering all the pieces together, and using the fact that entropy is concave, we con-
clude that the entropy of �:� is at least the average entropies of � 0:�0 (the average being
over the pieces), and if the pieces are small enough this is essentially the same as the
average of .� 0:x/ � .'�0/, with x; ' as above.

This step is explained in more detail in Section 6.3.

(ii) Applying the multidimensional inverse theorem. The inverse theorem in Rd from [16]
says that in order for a convolution � � � of measures in R2 to have entropy that is essen-
tially the same as that of � alone, it must be the case that, at most scales ı, there is a linear
subspace V D Vı � R2 such that at � -most points x the restriction of � to the ball Bı.x/
is concentrated near a translate of V , and for �-most points y, the measure � on Bı.y/
looks like a combination of uniform measures on translates of V . If � has positive entropy
then we know that Vı cannot be the trivial subspace ¹0º at too many scales, and if Vı
had dimension 2 at a substantial number of scales this is also to our advantage, since
this would mean that on many small balls � looks like 2-dimensional Lebesgue measure.
Thus, to ensure entropy growth, we want to rule out the possibility that dim Vı D 1 at
more than a fraction of all scales.

Now, in our case, with � D � 0:x and � D '�0, we aim to show that '�0 does not look
like a combination of uniform measures on line segments in direction Vı ; but, unfortu-
nately, it is very likely that this is precisely what it looks like in some direction. Indeed,
�0 is a piece of �, and � is a combination of cylinder measures 'i1 : : : 'in�, which,

6In fact, the conformal case is also true, but the proof is different, and we do not pursue this
here.
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as we already noted, look like copies of � squeezed onto a line segment in direction
L.'i1 : : : 'in/ � L.x/; these look like the orthogonal projection of � to a line, and when
dim� � 1 it is entirely possible (even likely) that this projection has dimension 1. Thus
the fractal structure of �0 actually supports the possibility that its structure is “bad” from
the point of view of applying the inverse theorem, since it looks like uniform measure on
translates of L.x/ (so '�0 looks like the uniform measure on lines parallel to 'L.x/).

(iii) Identification of the direction L.x/ and using total irreducibility. Summarizing, if
there is no entropy growth in the convolution .� 0:x/ � .'�0/, then, at scale ı, on the one
hand '�0 is uniform when conditioned on translates of the 1-dimensional subspace Vı ; on
the other hand, it is uniform when conditioned on translates of lines in direction 'L.x/.
If these subspaces are transverse, this would lead to �0 having entropy 2, which would
eventually lead to � having dimension 2, contrary to our assumptions. So we conclude
that Vı must agree with 'L.x/.

Now fix � 0 and let �0 vary, so also ' 2 supp � 0 is fixed, but x 2 supp�0 varies. Then,
under the assumption that there is no entropy growth, we have found that the measure
� 0:x is essentially supported on a translate of an affine line in direction 'L.x/. Equiv-
alently, the measure '�1� 0:x is essentially supported on a translate of an affine line in
direction L.x/, and this holds for �-most x. We then show that in this situation, L.x/
must be an affine function of x; that is, there exists an affine function  W R2 ! R2 such
that �-a.e. the value L.x/ is the direction of the line R .x/.

Finally, we show that if L is affine in the sense above, then � (and the attractor X )
must be supported on a quadratic curve in R2. This, in turn, can be shown to contradict
the total irreducibility of ˆ, completing the entropy growth part of the proof.

1.5. Triangular matrices

Systems in which the matrices Ai act reducibly on R2 present additional challenges, and
our results for them are less complete. An extreme instance occurs when the matrices Ai
are jointly diagonalizable, in which case some unusual behaviors can occur, e.g. Haus-
dorff and box dimensions may not agree. This situation has been extensively studied over
several decades, beginning with the work of Bedford [6] and McMullen [22], and we do
not discuss it here.

Our focus will be on the intermediate case, in which the Ai have a single common
eigendirection. Then, in some coordinate system, the Ai are given by triangular matrices
of the same kind (upper or lower), and we assume such coordinates have been chosen.
For concreteness we consider the lower-triangular case (the upper triangular case being
similar), and write systems ˆ D ¹'iºi2ƒ as

'i .x/ D

�
ai 0

bi ci

�
x C vi : (1.6)

As before, we assume that the maps 'i are invertible, i.e. ai ; ci ¤ 0 for each i 2 ƒ. Write
e1; e2 for the horizontal and vertical lines through the origin, respectively. Then e2 is the
common eigendirection of the matrices above, and e1 is the common eigendirection of
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their transposes. We are assuming that the matrices are not jointly diagonalizable, so there
is no other jointly invariant direction. Let us now note some of the differences between
this case and the totally irreducible one:
� Without total irreducibility, we shall need additional assumptions to ensure7 that the

Lyapunov exponents are distinct (previously this followed from non-conformality and
total irreducibility).
� Assuming that the Lyapunov exponents are distinct, one of the random walks driven by
¹Aiº or ¹A�i º admits a unique stationary distribution equal to ıe2 or ıe1 , respectively;
and the other random walk admits two ergodic stationary measures, one of which has
positive dimension, and one again being ıe2 or ıe1 , respectively (which of these occurs
is determined by whether the expansion rate of the ¹Aiº acting on the invariant space e2
is 2�1 or 2�2 ). Either way, this breaks parts of our argument which relied on the uniform
convergence of the random walks to their stationary distribution, or on the stationary
measures �; �� having positive dimension or being non-atomic.

Crucially, when the ¹A�i º-walk is attracted to ıe1 , Theorem 1.3 is not valid, and
we get no good bound on the dimension of ��-typical projections; and when ¹A�i º is
attracted to a measure of positive dimension, but non-uniformly and not from all initial
lines, then the information we get about projections of � is also non-uniform.
� Due to the behavior of the random walks, the projection �1 D �e1 onto e1 plays a

distinguished role in the analysis. Because the foliation of R2 by lines parallel to e2 is
invariant under the 'i , there is an induced system ˆ D ¹'iºi2ƒ of affine maps on R,
given by

'i .x/ D aix C �1.vi /;

and satisfying
'i�1 D �1'i : (1.7)

The projection �1� is then a self-similar measure of the system ˆ. One should note,
however, that exponential separation ofˆ does not imply the same forˆ, so computing
dim�1� is not always possible with current methods.
� In contrast to the totally irreducible case, in the triangular case, it is actually possible

that X and � lie in a quadratic curve.8 Such examples were first given by Bandt and
Kravchenko [1], and in fact they show that there is a 1-parameter family of affine maps
(with triangular linear parts) preserving a given parabola. It is then an easy matter to
choose an exponentially separated subfamily with an arbitrarily large number of maps.
In this way we can obtain a system ˆ whose attractor has dimension 1, but whose
affinity dimension (or Lyapunov dimension for e.g. the uniform choice of weights) is
larger than 2. This shows that being “trapped” in a quadratic curve is a real, rather than
just hypothetical, obstruction to achieving the Lyapunov dimension.

7If the Lyapunov exponents agree, one can apply the methods from the self-similar case more
directly.

8We remark that by work of Feng and Käenmäki [13], quadratic curves and, in trivial cases,
lines, are the only algebraic curves which can support a self-affine measure.
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Due to these many issues, our arguments do not work in the triangular case in general,
and we are able to handle only one of the scenarios above, namely, when � has positive
dimension and �� D ıe1 :

Theorem 1.7. Let � be a self-affine measure defined by ˆ D ¹'i .x/ D Aix C viºi2ƒ as
in (1.6), i.e. ¹Aiº are invertible and lower-triangular. Suppose that

� ¹Aiº are not simultaneously conjugate to a diagonal system;

� ˆ satisfies exponential separation;

� the Lyapunov exponents are distinct: �1 < �2 < �1 < 0, and e2 is contracted at rate
2�2 . for example, this holds if jci j < jai j for all i 2 ƒ/;

� � is not supported on a quadratic curve;

� the projection �1� has the maximal possible dimension, i.e.

dim�1� D min ¹1; dim�º: (1.8)

Then
dim� D min ¹2; dimL �º:

Remark 1.8. The case covered by Theorem 1.7 is complementary to the one analyzed in
[3, Proposition 6.6]. Because Theorem 1.3 cannot be applied, we have been forced to add
an explicit assumption about dim�1� (where �1 is in fact the projection to a ��-typical
line). The case which the theorem above does not cover is when �2 < �1 < 0 but e2 is
contracted at rate 2�1 ; then Theorem 1.3 does hold, but we are unable to carry out the rest
of the argument, and are still not able to go beyond the case whenH3 D 0, which already
follows from [3].

The situation in the theorem here is reminiscent of that of self-similar measures in the
plane generated by homotheties, and carpet fractals. In all these cases one gets informa-
tion about � (or X ) only if one can show that certain projections are large (or that the
corresponding slices are small). This is unsatisfactory, but examples show that it reflects
the true state of affairs for self-similar and carpet measures, and it is likely that the same
is true in our setting.

There are currently two main ways to try to verify hypothesis (1.8). First, if
the induced system ˆ satisfies exponential separation, then we will have dim �1� D

min ¹1; dimL �1�º, in which case (1.8) clearly holds. Second, by the Ledrappier–Young
formula, a “dimension conservation” phenomenon holds:

dim� D dim�1�C dim�e2x for �-a.e. x; (1.9)

where �e2x denotes the conditional measure on e2 C x. If we can show that all vertical
slices X \ .x C e2/ of the attractor X satisfy dim.X \ .x C e2// � max ¹dim� � 1; 0º,
we would get similar bounds for dim�

e2
x , and (1.8) follows from (1.9).
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1.6. Higher dimensions

The study of the overlapping case for planar self-affine measures is motivated not only by
its general interest, but because it is closely related to the higher-dimensional setting. In
this section we very briefly explain this connection.

One can see the connection already in our work on separated self-affine measures in
the plane [3]. There the key ingredient of the analysis was the computation of the dimen-
sion of projections, which are complicated for two reasons: first, they are not self-affine,
but nevertheless they do have some convolution structure, which helps in the analysis; but,
second, although �was separated, its projections to lines are generally not separated. This
makes it necessary to analyze overlapping fractals in the line in order to study separated
planar ones.

A similar situation holds in higher dimensions. As a demonstration, suppose that one
wants to study the separated case of self-affine measures in R3. Let � D

P
pi � 'i� be

such a measure. Assume that there are distinct Lyapunov exponents �3 < �2 < �1 < 0,
meaning that the normalized logarithms of the singular values of the random products
Ain : : : Ai1 converge to these constants a.s. The Furstenberg measure �� is also a more
complicated object: it is a measure on pairs .V;W /where V �R3 is a line andW �R3 is
a 2-dimensional subspace containing V (this is the so-called flag space). The projections
��1 ; �

�
2 to the first and second components now describe the asymptotic distribution of the

random walks A�in : : : A
�
i1
V on lines and A�in : : : A

�
i1
W on planes.

The Ledrappier–Young formula in this case says that the entropy H.p/ decomposes
as a non-negative sum9 H.p/ D H1 CH2 CH3, where
� dim�V� D H1=j�1j for ��1-a.e. line V ;
� dim�W� D H1=j�1j CH2=j�2j for ��2-a.e. plane W ;
� dim� D H1=j�1j CH2=j�2j CH3=j�3j.
Now, our results from [3] can be adapted to show thatH1 must be maximal, i.e. dim�V�
D min ¹1;H.p/=j�1jº for ��1-a.e. V . However, that still leaves one degree of freedom to
determineH2;H3. To prove that the dimension is maximal subject to the constraints, it is
then necessary to show that �W� is maximal.

Now, �W� is a measure in a plane W and is not, strictly speaking, self-affine, but it
shares some of that structure of a self-affine measure, in the sense that it can be written as

�W� D
X

pi � �W 'i�

(note that the right hand side does not consist of affine images of the left hand side,
but when this identity is iterated the distribution of the measures on the right hand side
becomes consistent across scales).

Therefore, one may hope to analyze �W� using the methods we have developed for
self-affine measures in the plane. However, although � is a separated self-affine measure
in R3, its projection �W� on a plane W in general is not separated. Nevertheless it is

9If we did not assume separation, there would be a fourth term H4 D H.�;P1 j…
�1B/.
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likely to be exponentially separated for ��2-typical choices ofW . One therefore hopes that
the methods from this paper can be applied there.

We anticipate that in this way one can, by a suitable induction on the dimension of
the ambient space, compute the dimension of exponentially separated self-affine mea-
sures in general, at least under the assumption of total irreducibility and, possibly, simple
Lyapunov spectrum. We hope to return to this in a future paper.

1.7. Organization of the paper

In the next section (Section 2) we develop notation and background, such as basic results
on entropy, the Oseledets theorem, Furstenberg measure and related material. Section 3
establishes many technical results about the entropy of projections and slices of � as well
as those of the cylinder measures of � and its components (restrictions to dyadic cells). In
Section 4 we study the function L describing the orientation of cylinders and show that it
is well-defined �-a.e. (Theorem 1.5). In Section 5 we give some algebraic results showing
among other things that L is not affine. Section 6 establishes the entropy growth theorem
(Theorem 1.6). Section 7 analyzes the entropy of non-conformal partitions. In Section 8
we construct the decomposition of p�n into high-entropy measures supported on sets of
diameter O.1/. Finally, Section 9 contains the proof of the main theorem, Theorem 1.1.

We include a summary of our main notation:

Ak;m Space of maximal-rank affine maps Rk ! Rm

Avec
k;m

Vector space of all affine maps Rk ! Rm

A' ; b' For ' 2 A2;2 with '.x/ D A'x C b'
�W Orthogonal projection onto W
Tc , Sa Scaling x 7! cx and translation x 7! x C a

ˆ D ¹'i ºi2ƒ Affine invertible contractions of R2, no common fixed point
p D .pi /i2ƒ Positive prob. vector; identify with

P
pi � ı'i 2 P .A2;2/

X Self-affine set
� Self-affine measure, � D

P
i2ƒ pi'i�

˛; ˇ; 
 Dimension of �, its projections and slices (Section 2.2)
�2 < �1 � 0 Lyapunov exponents, Section 2.10
�; �� Furstenberg measure of products of Ai and A�i ; resp.
'i1:::in ; Ai1:::in Composition 'i1 ı � � � ı 'in etc.
Œa�� ƒN Cylinder set corresponding to a 2 ƒn

S Shift map on ƒN

… Coding map ƒN ! X

� D pN Product measure on ƒN

�! Conditional measure on …�1.….!//
�Vx Conditional measure on x C V for line V � R2

RP1 Projective space (space of lines in R2)
x 2 RP1 element of RP1 (sometimes associated to x 2 R2 n ¹0º)
˛1.A/ � ˛2.A/ Singular values of a matrix A
L.A/;L.!/ 2 RP1 Major axis/asymptotic version (Sections 2.4, 2.10, 4)
Dn Partition into level-n dyadic cells or equivalent (Section 2.5)
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DW˚W?
n Dyadic partition in coordinates W ˚W ?

�x;n; �
x;n Dyadic components (Section 2.6)

‰n; ‡n � ƒ
� See Section 2.7

I.n/,K.n/ See Section 2.7
d Left-invariant metric on A2;2
dRP1 Metric on RP1: dRP1.V;W / D k�V � �W k

dTV Total variation metric on measures
H.�;C/;H.�;C jE/ Entropy (resp. conditional)
�1 � �2 Convolution in R2 or A2;2
�:� Convolution of � 2 P .A2;2/ and � 2 P .R2/

2. Preparations

2.1. Conventions

We equip Rd with the Euclidean norm. Spaces of matrices and linear maps are given
the operator norm. In a metric space, Br .x/ is the closed ball of radius r around x, and
E.r/ is the open r-neighborhood of E, that is, all points of distance < r from E. We
write P .X/ for the space of Borel probability measures on X . All measures are Borel
measures unless otherwise stated and all functions are assumed measurable even if not
mentioned explicitly. Convergence of measures in P .X/ is by default understood to be
weak convergence, although we will sometimes also consider the total variation metric
on P .X/, which we denote dTV : We use standard big-O and little-o notation.

2.2. Self-affine sets and measures

Throughout the paper, ˆ D ¹'i .x/ D Aix C biºi2ƒ is a system of invertible affine con-
tractions of R2 without a common fixed point, and X ¤ ; is the associated compact
attractor, defined uniquely by the relation

X D
[
i2ƒ

'i .X/:

We also fix a strictly positive probability vector p D .pi /i2ƒ, and let � denote the asso-
ciated self-affine measure, defined uniquely by the relation

� D
X
i2ƒ

pi � 'i�:

We write ƒ� for the set of all finite words over ƒ. For a word i D i1 : : : in 2 ƒ�, let

'i D 'i1 : : : 'in ;

and similarly write Ai D Ai1 : : : Ain ; pi D pi1 : : : pin , etc.
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We define the coding map, … W ƒN ! X , by

….i/ D lim
n!1

'i1:::;in.0/;

where the limit exists by contraction. Then X D image…. We write

� D pN

for the product measure on ƒN with marginal p, so that

� D …�:

For i 2 ƒn we refer to the measure 'i� as a (generation-n) cylinder measure. We also
define the generation-n cylinder set Œi� � ƒN by

Œi� D ¹j 2 ƒN
W j1 : : : jn D i1 : : : inº;

which is closed and open in the product topology. The corresponding generation-n cylin-
der measure of � is defined by �Œi� D �.Œi�/�1 � �jŒi�, and we have

'i� D …�Œi�;

so that the generation-n cylinder measures of � are the images under … of generation-n
cylinder measures of �.

Throughout the paper, we write

˛ D dim�;

and, when assuming non-conformality and total irreducibility, we let ˇ denote the ��-
almost-sure value of orthogonal projections,

ˇ D dim�W� for ��-a.e. W

(which exists by Theorem 1.2; for �� see that theorem or Section 2.10 below). Note that
if exponential separation is assumed, then ˇ D min ¹1;H.p/=j�1jº by Theorem 1.3. Also
set


 D ˛ � ˇ:

It is another consequence of the Ledrappier–Young theory that 
 is the a.s. dimension of
the conditional measures of � on translates of lines perpendicular to ��-typical directions.
For details see Theorem 1.2 above.

2.3. Affine maps, projections, dilations, translations

We write Ak;m for the space of maximal-rank affine maps Rk ! Rm, and Avec
k;m

for the
vector space of all affine maps Rk ! Rm, so that A2;2 � Avec

2;2.
We endow A2;2 with a left-invariant metric d , derived from a Riemannian metric, and

endow Avec
2;2 with a norm. These induce the same topology on A2;2; but the metrics are not

bi-Lipschitz equivalent.
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An affine map ' can be written as '.x/ D Ax C b for a matrix A and vector b. In
general, we denote A; b by A' ; b' , respectively.

For a subspace W � R2, we write �W W R2 ! W for the orthogonal projection
onto W . We often identify a projection �W with the affine map R2 ! R of norm 1,
obtained by endowing W with a unit vector and corresponding coordinate system. Con-
versely, a functional � of norm 1 corresponds to an orthogonal projection to .ker �/?.
With this identification, for any lineW and affine map ' WR2!R2 with '.x/DAxC b,
it is easy to check that

�W ı '.x/ D .˙1/k�W ı Ak � �A�W .x/C �W .b/; (2.1)

where the sign depends on the orientation we used to identify W and A�W with R.
The operations of dilation and translation in Rk are denoted by Sc and Ta respectively,

i.e., for c 2 R we write Sc.x/ D c � x, and for a 2 Rk we write Ta.x/ D x C a.

2.4. Projective space, singular values and the function L

We write RP1 for the 1-dimensional projective space, i.e. the space of lines in R2. We
define the metric dRP1.�; �/ on RP1 by

dRP1.V;W / D k�V � �W kop;

where k � kop is the operator norm. We note that there is a constant c > 1 such that

jsin�.V;W /j � dRP1.V;W / � cjsin�.V;W /j: (2.2)

For v 2 R2 n ¹0º we write v D Rv 2 RP1, and also denote elements of RP1 generi-
cally by x, even when no representative x was chosen. We continue to also denote linear
subspaces of R2 by V;W etc.

GivenA2GL2.R/, let ˛1.A/� ˛2.A/ denote its singular values, i.e. ifAD VDU is a
singular value decomposition, thenDD diag.˛1.A/;˛2.A//. These are also characterized
by ˛1.A/D kAk and ˛2.A/D kA�1k�1, and represent the length of the major and minor
axes of the ellipse which is the image A.B1.0// of the unit ball.

Let e1; e2 denote the standard basis vectors in R2. Assuming ˛1.A/ > ˛2.A/, write

L.A/ D Ve1 2 RP1

for the direction of Ve1 (L.A/ is not defined if ˛1.A/ D ˛2.A/).
For i 2 ƒn and 'i D 'i1 : : : 'in we call L.Ai/ the direction of 'i and of the cylin-

der 'i�. We also say that ˛1.Ai/ is the diameter, or length, of the cylinder 'i� and that
˛2.Ai/ is its width.

Lemma 2.1. Let W 2 RP1 and A 2 GL2.R/, and suppose that L.A/ is well defined.
Then

kAk � jsin�.L.A/;W ?/j � k�W ı Ak � kAk;

and in particular, for c as in (2.2),

c�1 � kAk � dRP1.L.A/;W
?/ � k�W ı Ak � kAk:
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Proof. The inequality on the right follows from k�WAk � k�W kkAk D kAk and the one
on the left by considering a unit vector v such that kAvkD kAk, and noting thatAv points
in direction L.A/, so k�WAvk D kAvk � jsin�.L.A/;W ?/j.

2.5. Dyadic partitions

We work extensively with the dyadic partitions of R and R2. The level-n partition of R is
defined by

Dn D

²�
k

2n
;
k C 1

2n

�
W k 2 Z

³
:

We write Dt D DŒt� when t 2 R is non-integer. In Rd we write

Dd
n D ¹I1 � : : : � Id W Ii 2 Dnº;

and generally omit the superscript. For W 2 RP1 and m � 0 write

DW˚W?

m D .��1W Dm/ _ .�
�1
W?

Dm/:

This is just a dyadic partition in the coordinate system determined by W;W ?:
Two partitions are C -commensurable if each element of one intersects at most C

elements of the other. If ' is an isometry of R or Rd then Dn and 'Dn are Od .1/-
commensurable, and also DW˚W?

n and Dn are O.1/-commensurable.
We will need a similar system of partitions of A2;2. By [19, Remark 2.2], there exists

a collection of Borel sets

¹Qn;i � A2;2 W n 2 Z; i 2 Nº;

having the following properties:
(1) A2;2 D

S
i2N Qn;i for every n 2 Z;

(2) Qn;i \Qm;j D ; or Qn;i � Qm;j whenever n;m 2 Z, n � m, i; j 2 N;
(3) there exists a constantC >1 such that for every n2Z and i 2N there exists 2Qn;i

with
B. ;C�12�n/ � Qn;i � B. ;C2

�n/;

where the balls are taken with respect to the left-invariant metric d .

For each n 2 Z, denote by D
A2;2
n the partition ¹Qn;i W i 2 Nº of A2;2. These partitions

behave10 much like the dyadic partitions of Rd and we usually denote them simply by Dn

(whether we mean the partition of Rd or A2;2 will be clear from the context).

10One difference between D
A2;2
n and dyadic partitions in Rd is that there is no guarantee that

a decreasing sequence of cells E1 � E2 � � � � with En 2 D
A2;2
n must be strictly decreasing. For

some n it might be that EnC1 D En. But property (3) ensures that this can only happen for at most
boundedly many consecutive values of n. In any case, this will never be an issue.
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Lemma 2.2. There exists a constant C 0 � 1 such that for every n � 0 and Q 2 D
A2;2
n ,

#¹Q0 2 D
A2;2
nC1 W Q

0
� Qº � C 0:

We omit the proof. For a similar statement with proof see [3, Lemma 2.4].

2.6. Component measures

For a partition Q (in Rd or in A2;2 respectively) we write Q.x/ for the unique partition
element containing x. For a probability measure � , write

�A D
1

�.A/
� jA

for the conditional measure of � on A, assuming �.A/ > 0.
For a probability measure � on a space equipped with refining partitions Q1;Q2; : : :,

we define measure valued random variables �x;n such that �x;n D �Qn.x/ with probability
�.Qn.x//. We call �x;n an n-th level component of � . When several components appear
together, e.g. �x;n and �y;n, we assume x; y are chosen independently unless stated oth-
erwise. Sometimes n is chosen randomly as well, usually uniformly in some range. For
example we write, for n2 � n1 integers and an event U,

Pn1�i�n2.�x;i 2 U/ D
1

n2 � n1 C 1

n2X
nDn1

P .�x;n 2 U/: (2.3)

We write E and En1�i�n2 for the expected value with respect to the probabilities P and
Pn1�i�n2 .

We also introduce notation for randomly chosen integers in interval ranges: Given
integers n � m � 1 let Nm;n D ¹m;mC 1; : : : ; nº and denote the normalized counting
measure on Nm;n by �m;n, i.e. �m;n¹iº D 1

n�mC1
for each m � i � n. Write Nn and �n

in place of N1;n and �1;n.
In Euclidean space we also introduce re-scaled components: For � 2 P .Rd /, denote

by �x;n the push-forward of �x;n by the unique homothety which maps Dn.x/ onto Œ0;1/2.
We view these as random variables using the same conventions as above.

Component distributions have the convenient property that they are almost invariant
under repeated sampling, i.e. choosing components of components. More precisely, for
� 2 P .Rd / and m; n 2 N, let P �n denote the distribution of components �x;i , 0 � i � n,
as defined above; and let Q�

n;m denote the distribution on components obtained by first
choosing a random component �x;i , 0� 1� n, and then, conditionally on � D �x;i , choos-
ing a component �y;j , i � j � i Cm with the usual distribution (note that �y;j D �y;j

is indeed a component of �).

Lemma 2.3. Given � 2 P .Rd / and m; n 2 N, the total variation distance between P �n
and Q�

n;m satisfies
dTV .P

�
n ;Q

�
n;m/ D O.m=n/:

For the proof, see [16, Lemma 2.7].
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2.7. Random cylinder measures with prescribed geometry

The symbolic space ƒN comes with the natural partitions Pn into level-n cylinder sets.
It will be convenient to consider more general partitions into cylinders of varying length.
Thus, if „ � ƒ� is a collection of words such that the cylinder sets corresponding to the
words in „ form a partition of ƒN , then we say that „ is a partition. In this case we also
let „ denote the associated “name” function „ W ƒN ! ƒ�, so „.i/ is the unique word
in „ such that i 2 Œ„.i/�.

We return to our self-affine measure �, recalling the notation from Sections 2.2
and 2.3. We first note that by iterating the basic identity � D

P
i2ƒ pi � 'i�, for any

partition „ � ƒ� we get
� D

X
i2„

pi'i�; (2.4)

and if V 2 RP1 then by applying �V to the above, we get

�V� D
X
i2„

pi � �V 'i�: (2.5)

In these identities, if „ D ƒn for large n then the measures 'i� and �V 'i� exhibit sub-
stantial variation in geometry as i ranges over „. Instead, it is useful to choose other
partitions which make their behavior more uniform. We present these next.

First, we would like (the supports of) the measures 'i� to all have roughly the same
diameter. To this end, for n � 1 let

‰n D ¹i0; : : : ; im 2 ƒ
�
W ˛1.Ai0;:::;im/ � 2

�n < ˛1.Ai0;:::;im�1/º

(we could have equivalently used norms instead of ˛1). Because the 'i are contractions,
‰n forms a partition ofƒN for every n� 1 and it is easy to see that there exists a constant
c0 > 0, depending on the matrices but independent of n, such that for every i 2 ‰n,

c02
�n
� ˛1.Ai/ D kAik � 2

�n:

Next, we will sometimes want the “width” of the cylinder 'i� to vary uniformly. Thus,
for n � 1 define

‡n D ¹i1 : : : im 2 ƒ
�
W ˛2.Ai1:::im/ � 2

�n < ˛2.Ai1:::im�1/º:

Then there is a constant c00 > 0 such that for every i 2 ‡n,

c002
�n
� ˛2.Ai/ � 2

�n:

Every measure on Euclidean space has associated to it its dyadic components. For
a planar self-affine measure �, one can also decompose � into cylinder measures, i.e.
measures of the form 'i� for i 2 ƒ�. As with dyadic components, it is natural to view the
cylinders as random measures, with the naturally defined probabilities.
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For any given n 2N we introduce a random word U.n/ 2ƒn chosen according to the
probability measure pn. That is,

P .U.n/ D i/ D
²
pi if i 2 ƒn;
0 otherwise:

Similarly, we define the random word I.n/ 2 ‰n according to the probability vector p,
i.e.

P .I.n/ D i/ D
²
pi if i 2 ‰n;
0 otherwise;

and define K.n/ to be the random word taking values in ‡n according to p, i.e.

P .K.n/ D w/ D
²
pw if w 2 ‡n;
0 otherwise:

The representation of � as a convex combination of cylinder measures in equation (2.4)
then takes the form

� D E.'U.n/�/ D E.'I.n/�/ D E.'K.n/�/: (2.6)

The first represents � as a combination of cylinder measures of fixed length n, the second
as a combination of cylinders having diameter equal to 2�n up to a constant factor, and
the last as a combination of cylinders of width 2�n up to a constant factor. We may also
randomize n in the same way as we do in the case of components, thus for example for
any observable F ,

En1�i�n2.F.'I.i/�// D
1

n2 � n1 C 1

n2X
iDn1

E.F.'I.i/�//;

and use the same notation for probabilities and expectations over the random cylinders
'K.n/�.

2.8. Entropy

Let � be a probability measure and Q;Q0 finite or countable partitions of the underlying
probability space. The entropy of � with respect to the partition Q is denoted H.�;Q/,
and, when conditioned on Q0, by H.�;Q jQ0/. That is,

H.�;Q/ D �
X
I2Q

�.I / log �.I /

H.�;Q jQ0/ D H.�;Q _Q0/ �H.�;Q0/ (2.7)

D

X
I2Q0

�.I / �H.�I ;Q/; (2.8)
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assuming the sums are finite. Here Q0 _Q denotes the common refinement of the parti-
tions Q0;Q, and by convention the logarithms are in base 2, and 0 log 0 D 0.

The entropy function is concave and almost convex in the measure argument. That is,
if �i are measures and .qi / a probability vector, thenX

qiH.�i ;Q/ � H
�X

qi�i ;Q
�
�

X
qiH.�i ;Q/CH.q/;

where H.q/ D �
P
qi log qi .

If Q;Q0 are C -commensurable partitions (i.e. each atom of one intersects at most C
atoms of the other), then they have comparable entropies; more generally, replacing any
one of the partitions in the expression H.�;A _ B j C _D/ by a partition that is C -
commensurable to it results in an additive OC .1/ change in value.

The entropy function � 7! H.�;Q jQ0/ is continuous in the total variation distance
dTV .�; �/. In fact, if dTV .�; �/ < " and if each atom of Q0 intersects at most k atoms of Q,
then as in [16, Lemma 3.4],

jH.�;Q jQ0/ �H.�;Q jQ0/j � 2" log k C 2H."=2/: (2.9)

In particular, using the fact that for n > m each atom of Dd
m intersects 2d.n�m/ atoms

of Dd
n , this implies that if dTV .�; �/ < ", thenˇ̌̌̌

1

n �m
H.�;Dn jDm/ �

1

n �m
H.�;Dn jDm/

ˇ̌̌̌
< 2d"C

2H."=2/

n �m
: (2.10)

The same bound holds for dyadic partitions in any orthogonal coordinate system
W ˚W ?.

2.9. Entropy in Rd

For a � 2 P .Rd / or � 2 P .A2;2/, we call H.�;Dn/ the scale-n entropy of �. We collect
some basic properties of this quantity.

We often normalize by n, in which case

1

n
H.�;Dn/ � d CO

�
log.2C diam.supp �//

n

�
:

By the definition of the distribution on components, for n;m � 1,

H.�;DnCm jDn/ D E.H.�x;n;DnCm//: (2.11)

Hence, for � 2 P .Rd / we have the bound

1

k
H.�;DnCk jDn/ � d; ;

and similarly in A2;2 with another constant on the right hand side.
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Scale-n entropy is insensitive to coordinate changes: for � 2 P .R2/ and W 2 RP1,
the partitions Dn and DW˚W?

n are Od .1/-commensurable, hence

jH.�;Dn/ �H.�;D
W˚W?

n /j D O.1/; (2.12)

and similarly for conditional entropy.
Scale-n entropy transforms nicely under similarity maps: For any similarity f W

Rd ! Rd and � 2 P .Rd /, writing Lip.f / for the Lipschitz constant of f , we have

H.f �;Dn/ D H.�;DnClog Lip.f //CO.1/ (2.13)
D H.�;Dn/CO.1C jlog Lip.f /j/: (2.14)

In particular, recalling the notation Ta; Sc for translation and scaling,

H.Ta�;Dn/ D H.�;Dn/CO.1/ for a 2 Rd ; (2.15)
H.Sc�;Dn/ D H.�;DnClog c/CO.1/ for c > 0:

Thus, using equation (2.1) and Lemma 2.1, if '.x/ D Ax C b 2 A2;2 and W 2 RP1

satisfy dRP1.L.A/;W
?/ � c, then for every measure � 2 P .R2/ and every n,

H.�W '�;Dn/ D H.�A�W �;DnClog kAk/COc.1/: (2.16)

Similarly, as a consequence of concavity and of (2.15), for any �; � 2 P .Rd / we have

H.� � �;Dn/ � H.�;Dn/CO.1/: (2.17)

Also, the entropy of images is nearly continuous in the map: If supx jf .x/� g.x/j < 2
�n

then
jH.f �;Dn/ �H.g�;Dn/j D O.1/: (2.18)

For � 2 P .Rd /, the entropy dimension of � is defined as

dime � D lim
n!1

H.�;Dn/

n

if the limit exists (otherwise we take limsup or liminf as appropriate, denoted dime �

and dime �).

Lemma 2.4. If � 2 P .Rd / is exact dimensional then dime � exists, and moreover

dim � D lim
n!1

H.�;Dn/

n
:

The proof of the lemma can be found in e.g. [11].
The following lemma expresses entropy in terms of the contribution of different

“scales”. The proof is identical (or in the case of A2;2, similar) to the proof of [15,
Lemma 3.4], and is therefore omitted.

Lemma 2.5. Let � 2 P .Rd / or � 2 P .A2;2/, let n � m � 1, and let k � 0 be given.
Suppose that diam.supp �/ D O.2�k/. Then

1

n
H.�;DkCn/ D Ek�i�kCn

�
1

m
H.� ;i ;DiCm/

�
CO

�
m

n

�
:
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2.10. Random matrix products, Furstenberg measure, and L again

We rely on the following classical results about random matrix products (see e.g. [7,
Chapter III]).

Theorem 2.6. Let ¹Biºi2� be a finite set of invertible matrices and q D
P
i2� qi � ıBi

a probability measure on GL2.R/, with qi > 0. Assume that ¹Biº is non-conformal and
totally irreducible .in the sense of the introduction/. Let �1; �2; : : : be an i.i.d. sequence of
matrices with marginal distribution q.

(1) There exist constants �1 > �2 .called the Lyapunov exponents/ such that with prob-
ability 1,

˛1.�1 : : : �n/ D 2
.�1Co.1//n; ˛2.�1 : : : �n/ D 2

.�2Co.1//n

as n!1. The same holds if the order of the products is reversed .since B;B� have
the same singular values/.

(2) For every v 2 R2, with probability 1,

k�n : : : �1vk D 2
.�1Co.1//n; k��1n : : : ��11 vk D 2.��2Co.1//n

as n!1 .the o.n/ error terms depend on the sample .�i / and on v/. If the matrices
are multiplied in the opposite order, the limits exist in probability.

(3) There exists a random subspace W 2 RP1 .which is a measurable function of
�1; �2; : : :/ such that with probability 1,

lim
n!1

L.�1 : : : �n/ D W:

If the product is taken in the opposite order then W is still the limit in distribution
.but generally not in probability/.

(4) The distribution � 2 P .RP1/ of W is the Furstenberg measure associated to q. It is
the unique measure satisfying � D

P
i2� qi � Bi� . It has no atoms and dim � > 0.

(5) For any continuous measure � on RP1, we have

lim
n!1

E.�1 : : : �n.�// D �;

and with probability 1,

lim
n!1

�1 : : : �n.�/ D ıW :

Furthermore,

lim
n!1

�n : : : �1V D W in distribution and uniformly in V 2 RP1.

We can view the function L on matrices (Section 2.4) as a partially defined function
on words in ƒ� D

S1
nD1ƒ

n, given by

L.i1 : : : in/ D L.Ai1 : : : Ain/

(it is defined whenever Ai1 : : : Ain have distinct singular values). In view of Theorem
2.6(3), we can extend the function L to a �-a.e. defined function of infinite sequences:
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Definition 2.7. Given our system ¹'iºi2ƒ of affine maps with 'i .x/ D Aix C bi , and a
probability vector p D .pi /i2ƒ, we define L W ƒN ! RP1 by

L.!/ D lim
n!1

L.A!1 : : : A!n/:

The limit in the definition exists �-a.e. by Theorem 2.6. We also define � D L�, and note
that for any continuous measure � on RP1, by part (5) of the same theorem, for �-a.e.
! 2 ƒN ,

ıL.!/ D lim
n!1

A!1 : : : A!n�:

We define �� analogously, using the system .A�i / of matrices and p.

The following is a variant of [3, Lemma 2.6]. We include it here for completeness:

Proposition 2.8. There exist constants C1; C2; N � 1, which depend only on ¹Aiºi2ƒ,
such that with the notation of Section 2.7 for every V 2 RP1 and n � N we have

E1�i�n.ıA�I.i/V /� E1�i�C1n.ıA�U.i/V /;

and the Radon–Nikodym derivative of the measures above is bounded by C2. Conse-
quently, if U�RP1 is an open set and ��.U/> 1� " for some "> 0 then for n>n.";U/,

inf
V 2RP1

E1�i�n.ıA�I.i/V .U// > 1 � C2":

Furthermore, the proposition also holds with K in place of I.

Proof. We carry out the proof for the random words I.i/; the proof for K.i/ is sim-
ilar. Choose C1 such that maxi2ƒ kAikC1=2 < 1=2, write c0 for mini2ƒ ˛2.Ai /, and
set C2 D C1.1 � log c0/. If u 2 ƒk appears as I.i/ on the left hand side then kAuk �
c02
�i � c02

�n (recall the definition of I.i/), which using kAuk �
Qk
jD1 kAuj k implies

that k � .C1=2/.n � log c0/, which is � C1n for n � � log c0; so u appears on the right
hand side as well.

Let 1 � i � j � n be with u 2 ‰i \‰j , then 2�j � ˛1.Au/ � c02�i , and so j � i
� � log c0. It follows that u appears on the left hand side at most 1 � log c0 times, which
shows that its probability in the expectation on the left is at most .1 � log c0/pu=n. Fur-
thermore, on the right the corresponding term has probability pu=.C1n/. This proves
absolute continuity and shows that the Radon–Nikodym derivative is � C2.

For the last statement, by Theorem 2.6(5), E1�i�C1n.ıA�U.i/V /! �� as n!1 uni-
formly in V 2 RP1. We conclude that

lim sup
n!1

sup
V 2RP1

E1�i�C1n.ıA�U.i/V .RP1 nU// � ��.RP1 nU/ < ";

and apply the first part to find that

lim sup
n!1

sup
V 2RP1

E1�i�n.ıA�I.i/V .RP1 nU// < C2":
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3. Entropy of projections and slices of �

In this section we assume that ˆ is totally irreducible and non-conformal, but we do not
assume exponential separation or dim� � 1.

Recall that

˛ D dim�; ˇ D dim�W� for ��-a.e. W; 
 D ˛ � ˇ

(ˇ is well defined by Theorem 1.2). Lemma 2.4 tells us that for ��-a.e. W , the entropy
of �W� at a large scale n is close to nˇ. In this section we get a similar lower bound for
all (rather than ��-almost-all) projections of �, uniformly in the direction of projection,
and also projections of cylinders 'i1 : : : 'in�, and of components �x;i . We also examine
certain conditional measures of � along lines perpendicular to ��-typical directions, and
determine their entropies.

The methods here are mostly not new, and some of the statements have also appeared
elsewhere, but others have not. In particular, the uniform lower bound on the entropy of
projections of � is new. We give a full development for completeness.

3.1. Projections of � and its cylinders

One of the basic mechanisms in the study of self-affine measures is that projecting a
typical cylinder measure in a fixed direction is essentially the same as projecting � in
an ��-random direction, because the “orientation” of high-generation cylinders becomes
increasingly random. In the discussion below, the reader should note the different roles
of the Furstenberg measure � associated to the random matrix product of the Ai , and the
Furstenberg measure ��, associated to the products of the transposed matrices, A�i .

To see how �� comes into the picture, observe that if iD i1 : : : in 2ƒn andW 2 RP1

are fixed, then, writing t D t .i/ D k�WAi1 : : : Aink, by (2.1) we have

�WAi1 : : : Ain D ˙St�A�in :::A
�
i1
W

(recall that Stx D tx is the scaling operator). This means that, up to a translation and
reflection, the projection onto W of the cylinder 'i1 : : : 'in� is just the projection of �
to another line (the line A�in : : : A

�
i1
W ), but scaled by k�WAi1 : : : Aink. The subspace

A�in : : : A
�
i1
W , when i1 : : : in are chosen at random according to pn, is asymptotically (as

n!1) distributed like ��.
To see how � enters the picture, note that in order for the analysis above to be use-

ful we must have control of the norm t D k�WAi1 : : : Aink. This norm depends on two
factors. The first is the norm kAi1 : : : Aink of the matrix product, which is a function of
the sequence i1 : : : in (not only of n). Because of this, later we will usually not choose
a sequence of constant length n, but rather condition the sequence on the desired norm.
This is what the random word I.n/ does (see Section 2.7).11 The second factor controlling

11Choosing variable length words complicates the equidistribution properties of A�in : : : A
�
i1
W

and is the reason we need Proposition 2.8.
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the norm t is how the direction L.Ai1 : : : Ain/ of the cylinder 'i1 : : : 'in� lies in relation
toW ?: if L.Ai1 : : :Ain/ is far fromW ? then the norms of �WAi1 : : :Ain and Ai1 : : :Ain
will be comparable; if they are close, the former might be far smaller. The directions
L.Ai1 : : : Ain/, when i1 : : : in is chosen at random according to pn, are asymptotically
distributed like �.

These considerations underlie the following lemmas. Since our ultimate goal is to
compute entropies, they are formulated in that way. Recall the definition of ‰n and I.n/
from Section 2.7, and that ‰n.!/ denotes the unique word w 2 ‰n with ! 2 Œw�.

Lemma 3.1. For every " > 0 and � > 0, if m > M."; �/, the following holds for every
n � 1. For every W 2 RP1 and every u 2 ‰n satisfying dRP1.L.Au/;W

?/ � �,ˇ̌̌̌
1

m
H.�W 'u�;DnCm/ �

1

m
H.�A�uW�;Dm/

ˇ̌̌̌
< ":

Proof. Using kAukD 2�nCO.1/ (because u2‰n) and the hypothesis d.L.Au/;W ?/� �,
equation (2.16) implies

1

m
H.�W 'u�;DnCm/ D

1

m
H.�A�uW�;Dm/CO�

�
1

m

�
;

which gives the claim provided m is large enough.

For this lemma to be useful we must bound the probability thatL.Au/ is close toW ?.
We have already observed that when n is large, L.Au/ is distributed approximately like �,
which is a continuous measure (has no atoms), and so the probability that L.Au/ is within
distance � of a fixed W ? is asymptotically �.B�.W ?//, which is negligible when � is
small. This argument is formalized in the next lemma.

Lemma 3.2. For every " > 0 and every 0 < � � �."/, if n � N."; �/ then for every
W 2 RP1,

P .dRP1.L.AI.n//;W
?/ � �/ > 1 � ":

Proof. The measure � D L� is continuous, hence there exists �."/ > 0 such that for any
0 < � � �."/ we have L�.B.W; 2�// < "=2 for all W 2 RP1.

By the definition of L, the sequence ¹L.A‰n.!//ºn�1 converges to L.!/ for �-a.e.
! 2 ƒN . For each n � 1 and w 2 ƒ�, by definition

P .I.n/ D w/ D �¹! W ‰n.!/ D wº:

It follows that ¹L.AI.n//ºn�1 converges in distribution to L, where we consider L as a
random variable on .ƒN ; �/. Hence for every n � 1 large enough in a manner depending
on " and �, and for any W 2 RP1,

P .L.AI.n// 2 B.W; �// < ";

as claimed.
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What we have done so far shows that �W 'I.n/� is, with high probability, comparable
to �A�I.n/W� at another scale. For this to be useful we must now understand the distri-
bution of A�I.n/W . Here we meet the associated random matrix product of the transpose
matrices A�i . These should heuristically converge to ��, but the equidistribution proper-
ties of this random walk are not as good, due to the fact that we have only convergence in
distribution (and not pointwise, due to the order of composition), and because we are inter-
ested in the behavior along a certain random subsequence of times (those which define the
lengths of I.n/). Nevertheless in the Cesàro sense the random walk A�I.n/W does equidis-
tribute to ��, allowing us in the next lemma to get information about the projections of
typical cylinders (and hence of �) in a fixed direction W .

Lemma 3.3. For every " > 0 and n � N."/ � 1,

inf
W 2RP1

1

n
H.�W�;Dn/ > ˇ � ":

Proof. Let " > 0, choose � suitable for the previous lemma, and let n > m � 1, with m
large with respect to " and �, and n large with respect to all parameters; we shall see the
relations later.

By Lemma 2.5 and by assuming that n is sufficiently large with respect tom, it follows
that for W 2 RP1,

1

n
H.�W�;Dn/ D

1

n

nX
kD1

1

m
H.�W�;DkCm jDk/CO."/:

For each k � 1 we have �W� D EiDk.�W 'I.i/�/, thus by the concavity of conditional
entropy,

1

n
H.�W�;Dn/ �

1

n

nX
kD1

E

�
1

m
H.�W 'I.k/�;DiCm jDi /

�
�O."/:

Since diam.supp.'I.i/�// D ‚.2�i / and by assuming that m is sufficiently large with
respect to ", we can do away with the conditioning at the expense of a slight increase to
the error term:

1

n
H.�W�;Dn/ �

1

n

nX
kD1

E

�
1

m
H.�W 'I.k/�;DiCm/

�
�O."/

D E1�i�n

�
1

m
H.�W 'I.i/�;DiCm/

�
�O."/:

By Lemmas 3.2 and 3.1, by our choice of � and by assumingm;n are large relative to ";�,
outside an event of probability < ", the expression in the last expectation can be replaced
with projection to A�I.n/W at the expense of another " error, hence

1

n
H.�W�;Dn/ � E1�i�n

�
1

m
H.�A�I.i/W

�;Dm/

�
�O."/: (3.1)
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The point now is that, roughly speaking, A�I.n/W equidistributes to ��. This is not pre-
cisely true; what is true is that A�U.n/W equidistributes to ��. The two sequences are not
quite comparable, but the two distributions are close enough to hit high-probability events
with roughly proportional probabilities, and this is enough to complete the proof; the tech-
nical step is given by Proposition 2.8. In more detail, observe that since dim �V� D ˇ

for ��-a.e. V , if m is large enough then 1
m
H.�V�;Dm/ > ˇ � "=2 for a set of V of

��-measure greater than 1� ". Hence, using also the almost-continuity of entropy of pro-
jections, we can find an open set U � RP1 with ��.U/ > 1 � " and such that

1

m
H.�V�;Dm/ > ˇ � " for all V 2 U.

Applying Proposition 2.8 we conclude that for n large relative to ",

P1�i�n

�
1

m
H.�A�I.i/W

�;Dm/ > ˇ � "

�
� 1 �O."/:

Combined with (3.1) this completes the proof.

Lastly, we obtain a similar result for cylinders:

Lemma 3.4. For every " > 0, for m �M."/ and n � N."/,

inf
W 2RP1

P

�
1

m
H.�W 'I.n/�;DnCm/ � ˇ � "

�
> 1 � ":

Proof. From Lemmas 3.2 and 3.1 again, it is enough to prove (perhaps for another ") that

inf
W 2RP1

P

�
1

m
H.�A�I.n/W

�;Dm/ � ˇ � "

�
> 1 � ";

and this follows from the previous lemma.

3.2. Projections of components of �

Another basic method is “covering”, i.e. decomposition of measures as convex combi-
nations of well-behaved ones (and possibly a small remainder). For example, one can
cover (the restriction of � to) dyadic cells by cylinders of roughly the same diameter.
Since entropy is concave, if in a cell C 2 Dn we can express � as a convex combination
of measures, most of which are cylinders which project with large entropy in direction
W 2 RP1, then the same should be true of the conditional measure �C . A complication
arises here because there will in general be cylinder measures which are partly, but not
completely, supported on C , and then we lose control of the behavior of the part of them
that lies inside C . But by controlling the mass of such cut-off cylinders, we can obtain
good decompositions of �C for most choices of C . This argument depends on controlling
the mass of small neighborhoods of @C . That is the purpose of the following lemma:
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Lemma 3.5. For every " > 0 there is a ı > 0 such that for every W 2 RP1,

�W�.Bır .x// � " � �W�.Br .x// for all x 2 R and 0 < r < 1.

In particular, for every " > 0 there is a ı > 0 such that for all n � 1,

�
� [
D2Dn

.@D/.2
�nı/

�
< ":

Proof. The first part is a direct consequence of [3, Lemma 3.13]. The second follows by
decomposing

S
D2Dn

.@D/.2
�nı/ into vertical strips and horizontal strips of width 21�nı

and using the first part to estimate their mass. We omit the details.

Proposition 3.6. For every compact E � A2;2, " > 0, m �M.E; "/, and n � N."/,

inf
h2E

inf
W 2RP1

1

m
H.h�; ��1W DnCm jDn/ � ˇ � ":

Proof. LetE �A2;2 be compact. Given h 2E,W 2RP1, and n;m� 1, note that h�1Dn

is OE .1/-commensurable with Dn, and also h�1��1W DnCm is OE .1/-commensurable
with S�1

k�W Ahk
��1
A�
h
W

DnCm. Thus by basic properties of entropy (see Section 2.8) and the
bound k�W ı Ahk D ‚E .1/ (because E is compact),

H.h�; ��1W DnCm jDn/ D H.�; h
�1��1W DnCm j h

�1Dn/

D H.�; ��1
A�
h
.W /

DnCm jDn/COE .1/:

Hence it suffices to prove the proposition with E D ¹Idº.
Let " > 0 and let m � M."/ and n � N."/ be as in Lemma 3.4. Fix W 2 RP1. By

the concavity of conditional entropy and the fact that diam.supp.'I.n/�// D O.2
�n/,

1

m
H.�; ��1W DnCm jDn/ � EiDn

�
1

m
H.'I.i/�; �

�1
W DnCm jDn/

�
� EiDn

�
1

m
H.'I.i/�; �

�1
W DnCm/

�
CO

�
1

m

�
:

The proof is completed by an application of Lemma 3.4.

Lemma 3.7. For every " > 0, m �M."/ � 1, and n � N."/,

inf
W 2RP1

PiDn

�
1

m
H.�W�x;i ;DiCm/ > ˇ � "

�
> 1 � ":

Proof. When ˇD 1 (which is the case under the assumptions of Theorem 1.4, and what is
needed to prove our main theorem) the lemma is immediate from the previous proposition
by starting with E D ¹Idº and a smaller ", observing that

H.�; ��1W DnCm jDn/ D EiDn.H.�W�x;i ;DiCm//;

and applying Markov’s inequality.
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We include the proof of the case ˇ < 1 for completeness and future reference. Let
" > 0, let ı > 0 be small with respect to ", let k � 1 be large with respect to ı, and
let m � 1 be large with respect to k. Also, let n � 1 be large with respect to " and fix
W 2 RP1.

By Lemma 3.5 we may assume that

�
� [
D2Dn

.@D/.2
�nı/

�
< ":

Let C D diam.supp �/. Since k is large with respect to ı, we may assume that if
� 2 P .R2/ is such that diam.supp �/ � C � 2�n�k and

#¹D 2 Dn W .supp �/ \D ¤ ;º > 1;

then supp � �
S
D2Dn

.@D/.2
�nı/. It follows that

PiDnCk.'I.i/� is contained in a level-n dyadic cell/

> 1 � �
� [
D2Dn

.@D/.2
�nı/

�
> 1 � ":

On the other hand, by Lemma 3.4 (applied with nC k instead of n),

PiDnCk

�
1

m
H.�W 'I.i/�;DiCm

�
� ˇ � "/ > 1 � ":

From the last two probability bounds and Markov’s inequality, for a 1 � O.
p
"/ frac-

tion of dyadic cells D 2 Dn, all but a 1 � O.
p
"/ fraction of the mass of �D can be

expressed as a convex combination of cylinders 'i� whose projection in direction W
satisfies .1=m/H.�W 'i�;DnCkCm/ > ˇ � ". For such a component, by concavity of
entropy, we have .1=m/H.�W�D;DnCkCm/ > ˇ �O.

p
"/, and adjusting the scale from

n C k C m to n C m at the cost of an O.k=m/ error to entropy, and making m large
enough so that it can be absorbed in the error term, we obtain

PiDn

�
1

m
H.�W�x;i ;DiCm/ > ˇ �O.

p
"/

�
> 1 �O.

p
"/:

This is what we wanted if we start from a smaller ".

3.3. Entropy of thickened slices

In this section we use the eccentricity of cylinders in another way, to control the con-
ditional measures on fibers of an orthogonal projection. More precisely, we condition
the measure on ��1W .I / for a short interval I . If 'i1 : : : 'in� is a cylinder whose “long”
direction is approximately W ? then it will be contained in ��1W .I / for some interval I
whose length is close to ˛2.Ai1 : : : Ain/. Its entropy, at scale jI j, will be comparable to
the entropy of its projection to W ?, and this we know will be large. Thus, restricting �
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to the cylinders pointing in direction W ?, we get good lower bounds on the conditional
entropy with respect to ��1W Dn.

For E � ƒN write �E D ….�E / (recall that �E D 1
�.E/

�jE ).

Lemma 3.8. For every ";� > 0 and everym�M1.";�/, the following holds. LetE �ƒN

be a Borel set and J � RP1 be an open interval with �.E \L�1.J // > 0. Then for each
W 2 RP1 with dRP1.W

?; J / � � and n � N1."; �;m;E; J;W /,

1

m
H.�E\L�1.J /; �

�1
W DnCm jD

W˚W?

n / � ˇ � ":

Proof. Let m � 1 be large in a manner depending on "; �, let E � ƒN be a Borel
set, let J � RP1 be an open interval with �.E \ L�1.J // > 0, let W 2 RP1 satisfy
dRP1.W

?; J / � �, and let n be large in a manner depending on all parameters.
Write F D E \L�1.J /. Since � is a Borel probability measure on ƒn, it is a regular

measure, so there exists an open set V � ƒN with F � V and �.V n F / < " � �.F /.
Let U � ‰n be the set12

U D ¹u 2 ‰n W Œu� � V and L.Au/ 2 J º;

and write
U D

[
u2U

Œu�:

Since V and J are open and L.A!1:::!n/ ! L.!/ for �-a.e. !, by assuming that n is
sufficiently large we can ensure

�V .U / � �V .F / � " � 1 � 2":

Since U; F � V and both differ in �-measure from V by mass at most 2"�.V /, we con-
clude that F \ U differs from both F and U by at most 4"�.V /. Hence in the sum
�jF D �jF\U C �jF nU all but a relative O."/ of the mass is in the first term, and simi-
larly for �jU D �jF\U C �jUnF . It follows that

dTV .�U ; �F / D O."/; hence dTV .�U ; �F / D O."/:

By the definition of U and Lemmas 3.1 and 3.3, the fact that diam.supp.'u�// D
‚.2�n/ and dRP1.W

?; J / � �, and assuming m large relative to " and �, we have

1

m
H.'u�; �

�1
W DnCm jD

W˚W?

n / �
1

m
H.�W 'u�;DnCm/ �O

�
1

m

�
� ˇ �O."/ for u 2 U: (3.2)

12In the definition of U we only take u for which L.Au/ is defined. It may not be defined for
all u, because it could be that Au has equal singular values; but the probability of this with respect
to � tends to zero as n!1.
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Since U is a union of cylinders from ‰n,

�U D E.'I.n/� j I.n/ 2 U/;

so by concavity of entropy and the previous inequality,

1

m
H.�U ; �

�1
W DnCm jD

W˚W?

n / � ˇ �O."/:

The result now follows from dTV .�U ; �F / D O."/ combined with (2.10).

Lemma 3.9. Let " > 0. For every m � M2."/ there exists ı D ı."; m/ > 0 such that
the following holds. Let E � ƒN be a Borel set and I � RP1 be an open interval
with diam I < ı and �.E \ L�1.I // > 0. Then for each W 2 RP1 with W ? 2 I and
n � N2.";m; ı; E; I;W /,

1

m
H.�E\L�1.I /;D

W˚W?

nCm jDW˚W?

n _ ��1W DnCm/ � ˇ � ":

Proof. Letm� 1 be large in a manner depending on ", and let ı > 0 be small in a manner
depending on " and m. Let E � ƒN , I � RP1 and W 2 RP1 be as in the statement and
let n be large in a manner depending on all parameters.

Write F D E \L�1.I /. Since � is regular there exists an open V 2 ƒN with F � V
and �.V n F / < " � �.F /. Let

U D

²
u 2 ‰n W Œu� � V;

˛1.Au/

˛2.Au/
> 2m and L.Au/ 2 I

³
;

and write
U D

[
u2U

Œu�:

Since V and I are open, and by assuming that n is sufficiently large,

�V .U / � �V .F / � " � 1 � 2":

For u 2 U we have L.Au/ 2 I . Since W ? 2 I and diam I < ı it follows (assuming
ı < 1=20, say) that d.W;L.Au// > 1=100. Hence by Lemmas 3.1 and 3.3,

1

m
H.'u�;D

W˚W?

nCm / �
1

m
H.�W?'u�;DnCm/ � ˇ �O."/: (3.3)

Since kAuk D 2�nCO.1/ we have diam.supp 'u�/ D 2�nCO.1/, so 1
m
H.'u�;Dn/ D

O
�
1
m

�
, and the last equation implies

1

m
H.'u�;D

W˚W?

nCm jDW˚W?

n / � ˇ �O."/:

Now assume that ı < 2�m. From L.Au/ 2 I it follows dRP1.L.Au/;W
?/ < 2�m. Also,

˛1.Au/ D 2�nCO.1/ and ˛1.Au/=˛2.Au/ > 2m, hence ˛2.Au/ < 2�.nCm/CO.1/. This
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implies 'u� is contained in the 2�.nCm/CO.1/-neighborhood of a translate ofW ?. Hence

diam.supp�W 'u�/ D O.2�.nCm//;

and so
1

m
H.'u�; �

�1
W DnCm/ D

1

m
H.�W 'u�;DnCm/ D O

�
1

m

�
:

Combined with the previous bound, this shows that for every u 2 U,

1

m
H.'u�;D

W˚W?

nCm jDW˚W?

n _ ��1W DnCm/ D ˇ �O."/:

Since �U is a convex combination of measures 'u� over u 2 U, concavity of entropy
implies

1

m
H.�U ;D

W˚W?

nCm jDW˚W?

n _ ��1W DnCm/ D ˇ �O."/:

The argument is now completed as in the previous lemma, by showing that �U ; �F are
close in total variation.

3.4. Entropy of slices

Denote the Borel � -algebra by B. For � 2 P .R2/ and a � -algebra A � B let ¹�A
x ºx2R2

be the disintegration of � with respect to A. For W 2 RP1 we write BW � B for the � -
algebra ofW -saturated sets (that is, setsE such that if x 2E thenW C x �E), and write
¹�Wx ºx2R2 in place of ¹�BW

x ºx2R2 , the family of conditional measures on translates ofW .
The following is standard equivariance of measure disintegration, we omit the proof:

Lemma 3.10. Let ' 2 A2;2,W 2RP1, and � 2P .R2/ be given. Then for �-a.e. x 2R2,

.'�/W'x D '
�
�
A�1' W
x

�
; or equivalently .'�/W

?

'x D '
�
�
.A�'W /

?

x

�
:

Remark 3.11. The last form is the one we will use. Usually W will be a subspace onto
which we are projecting �, and since ��1W B consists of lines perpendicular to W , the
disintegration of � over this map is then given by ¹�W

?

x º.

Recall the definition of ‡n and K.n/ from Section 2.7 and that we write 
 for ˛ � ˇ.
As mentioned above, from Theorem 1.2 it follows that

dim�W
?

x D 
 for ��-a.e. W and �-a.e. x. (3.4)

Lemma 3.12. For " > 0, m �M."/ � 1, and n � N.¹Aiºi2ƒ/ � 1,Z
E1�i�n

�
'K.i/�

²
x W

1

m
H..'K.i/�/

W?

x ;DiCm/ > 
 � "

³�
d��.W / > 1� ": (3.5)
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Proof. Let " > 0, let m � 1 be large with respect to ", and let n � 1 be large in a manner
depending on ¹Aiºi2ƒ. Let C1 � 1 be as in Proposition 2.8. From (3.4) it follows that we
may assume thatZ

�

²
x W

1

m
H.�W

?

x ;Dm/ > 
 �
"

2

³
d��.W / > 1 � ":

From this and the relation
�� D E1�i�C1n.A

�
U.i/�

�/;

we getZ
E1�i�C1n

�
�

²
x W

1

m
H.�

.A�U.i/W /
?

x ;Dm/ > 
 �
"

2

³�
d��.W / > 1 � ":

By Proposition 2.8 it now follows thatZ
E1�i�n

�
�

²
x W

1

m
H.�

.A�K.i/W /
?

x ;Dm/ > 
 �
"

2

³�
d��.W / > 1 �O."/: (3.6)

Let 1 � i � n. Then by Lemma 3.10 for each W 2 RP1 and �-a.e. x,

.'K.i/�/
W?

'K.i/x
D 'K.i/

�
�
.A�K.i/W /

?

x

�
:

For w 2 ‡i , the map '�1w expands by at most O.2i / in every direction. Therefore there
exist constants C;C 0 > 0, independent ofm and i , such that, for every w 2 ‡i , each atom
of '�1w .DiCm/ is of diameter at most C � 2�m, so it intersects at most C 0 atoms of Dm. It
follows that

1

m
H..'K.i/�/

W?

'K.i/x
;DmCi / D

1

m
H
�
'K.i/

�
�
.A�K.i/W /

?

x

�
;DmCi

�
D
1

m
H
�
�
.A�K.i/W /

?

x ; '�1K.i/DmCi

�
�
1

m
H
�
�
.A�K.i/W /

?

x ;Dm

�
CO

�
1

m

�
:

Hence, assuming that m is large enough with respect to ", the left hand side of (3.5) is at
least as large as the left hand side of (3.6), which completes the proof of the lemma.

Lemma 3.13. For every " > 0, m �M."/ � 1, and n � N."/ � 1,Z
P1�i�n

�
1

m
H.�x;i ;DiCm j�

�1
W .B// > 
 � "

�
d��.W / > 1 � ":
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Proof. Let " > 0 be small, let ı > 0 be small with respect to ", let k � 1 be large with
respect to ı, let m � 1 be large with respect to k, and let n � 1 be large with respect to k
and ¹Aiºi2ƒ. The measure L� is continuous, hence we can assume that

P .L.AK.iCk// 2 B.W; ı// < " for each W 2 RP1 and 1 � i � n: (3.7)

It is not hard to see that for eachW 2RP1, 1� i � n,w 2‡iCk withL.Aw/…B.W ?; ı/,
and 'w�-a.e. x 2 R2,

diam.supp .'w�/W
?

x / D Oı.2
�i�k/: (3.8)

Recall from Section 2.6 that we write Nn for ¹1; : : : ; nº and �n for the uniform mea-
sure on Nn. Let Z be the set of all pairs .W; i/ 2 RP1 �Nn such that,

E

�
'K.iCk/�

²
x W

1

m
H..'K.iCk/�/

W?

x ;DiCkCm/ > 
 � "

³�
> 1 � ": (3.9)

By Lemma 3.12, and since n is large with respect to k, we may assume that �� � �n.Z/ >
1 � ". Fix .W; i/ 2 Z for the remainder of the proof.

Define � 2 P .‡iCk �R2/ by

� D
X

w2‡iCk

pw � ı¹wº � 'w�:

Let F be the set of all .w; x/ 2 ‡iCk �R2 such that (3.8) holds and

1

m
H..'w�/

W?

x ;DiCm/ > 
 � ": (3.10)

By (3.7) and (3.9), by recalling that m is large with respect to k, and by replacing " with
a larger quantity which is still small without changing the notation, we may assume that
�.F / > 1 � ".

By Lemma 3.5,
�
� [
D2Di

.@D/.2
�i ı/

�
< ":

Since k is large with respect to ı, we may assume that if � 2 P .R2/, diam.supp �/ D
Oı.2

�i�k/ and
#¹D 2 Di W .supp �/ \D ¤ ;º > 1;

then supp � �
S
D2Di

.@D/.2
�i ı/. Also, it is possible to write � as

� D E.'K.iCk/�/ D E

�Z
.'K.iCk/�/

W?

x d'K.iCk/�.x/

�
: (3.11)

By these facts, since (3.8) holds for .w; x/ 2 F , and by replacing " with a larger quantity
without changing the notation, we may assume that for each .w; x/ 2 F ,

9D 2 Di with supp .'w�/W
?

x � D; (3.12)

while still having �.F / > 1 � ".
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Let E be the set of all x 2 R2 for which there exist a probability space .�x ; �x/,
¹�x;!º!2�x � P .R2/, 0 � �x < ", and �0x 2 P .R2/, such that
� �x;i D .1 � �x/

R
�x;! d�x.!/C �x�

0
x I

�
1
m
H.�x;! ;DiCm/ > 
 � " for ! 2 �x ;

� �x;! is supported on a single atom of ��1W .B/ for ! 2 �x .
From the decomposition � D EjDi .�x;j /, by (3.11), since (3.10) and (3.12) hold for
.w; x/ 2 F , since �.F / > 1� ", and by replacing " with a larger quantity without chang-
ing the notation, we may assume that �.E/ > 1 � ".

Let x 2 E. Then by concavity of conditional entropy,

1

m
H.�x;i ;DiCm j�

�1
W .B// � .1 � "/

Z
1

m
H.�x;! ;DiCm j�

�1
W .B// d�x.!/:

For ! 2 �x ,
1

m
H.�x;! ;DiCm/ > 
 � "

and �x;! is supported on a single atom of ��1W .B/. Hence,

1

m
H.�x;i ;DiCm j�

�1
W .B// � .1 � "/.
 � "/:

Since �.E/ > 1� " and �� � �n.Z/ > 1� ", this completes the proof of the lemma.

3.5. Uniform entropy dimension

In this section we show that typical components of � have normalized entropy close to
˛ D dim �, a property referred to in [15] as uniform entropy dimension. This will be
used later on to conclude that typical components cannot look like uniform measure on a
dyadic cell, which we use to rule out one of the alternatives that one gets from the entropy
inverse theorem in R2 (See Section 6.1).

Definition 3.14. We say that � 2 P .Rd / has uniform entropy dimension t if for every
" > 0, m �M."/ � 1, and n � N.";m/ � 1,

P0�i�n.jHm.�
x;i / � t j < "/ > 1 � ":

This property implies a uniformity among the components of the measure. If � has
uniform entropy dimension t , then it follows from Lemma 2.5 that its entropy dimension is
well defined and dime � D t . The converse is false, i.e. the existence of entropy dimension
does not imply existence of uniform entropy dimension.

Proposition 3.15. � has uniform entropy dimension ˛.

Proof. Let " > 0, let m � 1 be large with respect to ", and let n � 1 be large with respect
to m. Recall that for W 2 RP1 and k � 1,

DW˚W?

k
D .��1W Dk/ _ .�

�1
W?

Dk/;
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and that Dk and DW˚W?

k
are commensurable partitions. Write

ı D

Z
P0�i�n

�
1

m
H.�x;i ;D

W˚W?

iCm / � ˛ � "

�
d��.W /;

ı1 D

Z
P0�i�n

�
1

m
H.�x;i ; �

�1
W DiCm/ � ˇ �

"

2

�
d��.W /;

and

ı2 D

Z
P0�i�n

�
1

m
H.�x;i ;D

W˚W?

iCm j��1W DiCm/ � 
 �
"

2

�
d��.W /:

Since for each W 2 RP1, 0 � i � n, and x 2 R2,

H.�x;i ;D
W˚W?

iCm / D H.�x;i ; �
�1
W DiCm/CH.�x;i ;D

W˚W?

iCm j��1W DiCm/;

any component that belongs to the event defining ı must also belong to one of the events
defining ı1 or ı2, hence ı � ı1 C ı2.

By Lemma 3.7 we can assume that ı1 < "=2. By Lemma 3.13 we can assume that
ı2 < "=2. Hence ı � ı1 C ı2 < ", and soZ

P0�i�n

�
1

m
H.�x;i ;D

W˚W?

iCm / > ˛ � "

�
d��.W / > 1 � ":

Since DW˚W?

iCm and DiCm are commensurable, the entropy above depends on W only
up to an additive O.1/ constant, so we can eliminate the outer integral by introducing an
additive O.1=m/ error. Therefore, assuming m is large enough relative to ",

P0�i�n

�
1

m
H.�x;i ;DiCm/ > ˛ � 2"

�
> 1 � ": (3.13)

By Lemma 2.5 and since we can assume that m=n < ",

˛ D E0�i�n

�
1

m
H.�x;i ;DiCm/

�
CO."/:

This together with (3.13) completes the proof of the proposition (by starting from a
smaller ").

4. The function L factors through…

In this section we assume thatˆ is non-conformal and totally irreducible. We also assume
that dim� < 2. Exponential separation is not needed.

We shall study here the function L describing the orientation of cylinders and show
that it is �-a.e. well-defined (Theorem 1.5). This observation appears to be new.
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4.1. Bourgain’s projection theorem (entropy variant)

In the next sections we prove a result which requires, in its most general form, the follow-
ing theorem, whose proof will appear in more quantitative form separately. It is an entropy
version of Bourgain’s projection theorem, in which dimB denotes box (Minkowski)
dimension (see e.g. [21]) and uniform entropy dimension is understood in the sense of
Definition 3.14.

Theorem 4.1. For every ı > 0 there exists a � D �.ı/ > 0 such that the following holds.
Let � 2 P .R2/ have uniform entropy dimension t 2 .ı; 2 � ı/, and let E � RP1 satisfy
dimBE > ı. Then for every n > N.ı; �;E/ there existsW 2 E .depending perhaps on n/
such that

1

n
H.�W �;Dn/ >

1

2
�
1

n
H.�;Dn/C �:

Corollary 4.2. If � is a self-affine measure defined by a non-conformal, totally irre-
ducible system, and if dim� < 2, then there exists � > 0 such that for all large enough n,
for all W 2 RP1,

1

n
H.�W�;Dn/ >

1

2
dim�C �:

Proof. Since 1
n
H.�;Dn/ ! dim � as n ! 1, and since dim �� > 0, it follows that

for every set E � RP1 of positive ��-measure, for every n large enough (depending on
E), there are W 2 E such that the inequality in the statement above holds. This implies
that for ��-a.e. W there exist arbitrarily large n for which the inequality holds. But for
��-a.e. W we have 1

n
H.�W�;Dn/! ˇ, where ˇ � 0 is the ��-a.s. constant dimension

of dim�W� of W ; therefore ˇ � 1
2

dim�C � . The fact that one can take n uniformly in
W 2 RP1 now follows from Lemma 3.3 (at the cost of a slight loss in � ).

Remark. In the case that exponential separation holds, the conclusion of the last corol-
lary follows easily from Theorem 1.3 since when dim� < 2 we certainly have

dim�W� D min ¹1; dim�º > 1
2

dim� for ��-a.e. W:

Thus, Corollary 4.2 will be used only when exponential separation is not assumed.

4.2. Transversality of cylinders

Proposition 4.3. Let � D …� be a self-affine measure defined by a non-conformal and
totally irreducible system, and suppose that dim� < 2. Then for every � > 0 there exists
ı D ı.�; �/ > 0 such that the following holds. Let I; J � RP1 be such that I; J are
open intervals, L�.I /; L�.J / > 0, dRP1.I; J / > �, and diam I < ı. Then the measures
�L�1.I / and �L�1.J / are singular.

Proof. We first give the proof under the simplifying assumptions (which are the ones used
in the proof of Theorem 1.1) that exponential separation holds and dim�� 1. In this case,
dim�W� D 1 for all W 2 RP1.
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Assume that there exists � > 0 for which the proposition fails. We will show that this
leads to a contradiction with the assumption dim� < 2. Let " > 0, M1 D M1."; �/ as
in Lemma 3.8, M2 D M2."/ as in Lemma 3.9, m � max ¹M1;M2º, and ı D ı."; m/ be
as in Lemma 3.9. Since the proposition fails for � there exist open intervals I; J � RP1

such that L�.I /; L�.J / > 0, dRP1.I; J / > �, diam I < ı, and �L�1.I /; �L�1.J / are not
singular.

Since �L�1.I /; �L�1.J / are not singular, there exists a Borel set E � R2 with
�L�1.I /.E/ > 0 on which the measures are equivalent, that is, .�L�1.I //E � .�L�1.J //E .
Therefore there exists a Borel set B � E with

�L�1.I /.B/; �L�1.J /.B/ > 0 and dTV ..�L�1.I //B ; .�L�1.J //B/ < "

(we can take B � E to be any Borel set of positive .�L�1.J //E -measure on which the
Radon–Nikodym derivative f D d .�L�1.I //E=d .�L�1.J //E is positive and sufficiently
concentrated around one value, e.g. if f .B/ � .c � "0; c C "0/ for some c > 0 and "0 > 0
that is small relative to c and "). Set �I D �…�1.B/\L�1.I / and �J D �…�1.B/\L�1.J /.
Then �I D .�L�1.I //B and �J D .�L�1.J //B , and so dTV .�I ; �J / < ".

FixW 2RP1 withW ? 2 I , letN1DN1.";�;m;…�1.B/;J;W / be as in Lemma 3.8,
N2 D N2."; m; ı; …

�1.B/; I; W / as in Lemma 3.9, and N � max ¹N1; N2º. From
dRP1.W

?; J / � � and our choices of parameters,

1

m
H.�J ; ��1W DnCm jD

W˚W?

n / � 1 � " for n � N . (4.1)

Similarly, since W ? 2 I ,

1

m
H.�I ;DW˚W?

nCm jDW˚W?

n _ ��1W DnCm/ � 1 � " for n � N . (4.2)

By (4.1), (4.2), since dTV .�I ; �J / < ", inequality (2.10) (see also note after it)
implies that for n � N with N sufficiently large,

1

m
H.�I ;DW˚W?

nCm jDW˚W?

n / D
1

m
H.�I ; ��1W DnCm jD

W˚W?

n /

C
1

m
H.�I ;DW˚W?

nCm jDW˚W?

n _ ��1W DnCm/

�
1

m
H.�J ; ��1W DnCm jD

W˚W?

n /C 1 �O."/

� 2 �O."/: (4.3)

Since �I � � and � has exact dimension ˛, it follows that �I also has exact dimen-
sion ˛. From this and Lemma 2.5 it follows that for k large enough,

˛ �
1

k
H.�I ;DW

k / � " � E0�n�k

�
1

m
H.�I ;DW˚W?

nCm jDW˚W?

n /

�
�O."/:

This together with (4.3) shows that ˛ � 2 � O."/. Since this holds for every " > 0, it
implies a contradiction with ˛ < 2, which is what we wanted.
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We now explain how to modify the proof for the general case, i.e. without exponential
separation. As above, assume that there exists � > 0 for which the proposition fails. Let
� > 0 be as in Corollary 4.2, so that dim�W� > ˛=2C � for allW 2RP1. Let " > 0 and
carry out the argument above. Then on the right hand side of (4.1) and (4.2) we will have
˛=2C � � "; proceeding from there we eventually get ˛ � ˛C 2� �O."/. This holds for
every " > 0 and so yields the required contradiction.

4.3. L factors through …

Proposition 4.4. Let � be a self-affine measure defined by a non-conformal and totally
irreducible system, and suppose that dim� < 2. Let � D

R
�x d�.x/ denote the decom-

position of � with respect to the partition ¹…�1.x/ºx2X . Then for �-a.e. x, the function
Lj…�1.x/ is �x-a.s. constant.

Remark 4.5. This implies that there is a Borel function bL W X ! RP1, defined �-a.e.,
such that bL.…!/ D L.!/ �-a.s. We shall write L instead of bL from now on; which one
is intended will be clear from the context.

Proof of Proposition 4.4. For ! 2ƒN let �! D �…! , which is defined �-a.e. It suffices to
show that for �-a.e. ! 2 ƒN the measure L�! is a mass point. It follows by Proposition
4.3 that there exist sequences ¹Ikº1kD1 and ¹Jkº1kD1 such that

(1) Ik ; Jk � RP1 are open intervals with L�.Ik/; L�.Jk/ > 0 for k � 1;
(2) for any distinct x; y 2 suppL� there exists k � 1 with x 2 Ik and y 2 Jk ;
(3) �L�1.Ik/ and �L�1.Jk/ are singular for k � 1.

For each k� 1 there exists a Borel setEk �R2 with�L�1.Ik/.Ek/D 0 and�L�1.Jk/.E
c
k
/

D 0. We have

0 D �.L�1.Ik// � �L�1.Ik/.Ek/ D �.L
�1.Ik/ \…

�1.Ek//

D

Z
…�1.Ek/

�!.L
�1.Ik// d�.!/;

and similarly Z
…�1.Ec

k
/

�!.L
�1.Jk// d�.!/ D 0:

It follows that for �-a.e. ! 2 ƒN , for each k � 1,

�!.L
�1.Ik// D 0 or �!.L

�1.Jk// D 0: (4.4)

Additionally, it is clear that for �-a.e. ! 2 ƒN ,

suppL�! � suppL�: (4.5)

Fix ! 2 ƒN which satisfies (4.4) and (4.5). Assume for contradiction that L�! is not a
mass point. Then there exist distinct x;y 2 suppL�! � suppL�, and so there exists k � 1
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with x 2 Ik and y 2 Jk . Since x; y 2 suppL�! and Ik ; Jk are open,

�!.L
�1.Ik// > 0 and �!.L

�1.Jk// > 0;

which contradicts (4.4). This shows that L�! is a mass point, which completes the proof
of the proposition.

4.4. Projections of components, revisited

We continue to assume non-conformality, total irreducibility, and dim� < 2.
As we discussed in Section 3.1, with the assumptions above, most cylinders of �

project well in most directions W 2 RP1 at the scale of their long axis. In fact, they
project well in a direction W precisely when W ? is not too close to the long axis of the
cylinder; that is an obstruction because in that case, at the scale of their long axis, the
cylinder projects to essentially a point mass on W .

Recall that ˇ is the dimension of the projection of � to ��-typical subspaces. We saw
in Section 3.2 that for a fixed W 2 RP1, with high probability, a random component
projects well to W in the sense that its normalized entropy at small scales is close to ˇ.
This was proved essentially by covering dyadic cells with cylinders. We now want to get
finer information and identify, for most components, which directions are the exceptions.
This is made possible by the result of the previous section: �x;n will project well to all
lines except those that are close to L.x/?. This is basically proved by applying Luzin’s
theorem toL WX!RP1 to conclude that for most small enough cells Dn.x/, the function
L.x/ is almost constant on the cell. This means that most cylinders that cover the cell
project well to every line except those that are close to L.x/?.

Recall the definition of‰n from Section 2.7, and that for ! 2ƒN we write‰n.!/ for
the unique w 2 ‰n for which ! 2 Œw�.

Lemma 4.6. For " > 0, m �M."/ � 1, and n � N.";m/ � 1,

PiDn

�
inf

W …B.L.x/;"/

1

m
H.�W?�x;i ;DiCm/ > ˇ � "

�
> 1 � ":

Proof. Let " > 0, let � > 0 be small with respect to ", let k � 1 be large with respect
to �, let m � 1 be large with respect to k, and let n � 1 be large with respect to m. By
Lemma 3.5, for each ı > 0 there exists � > 0, which does not depend on n, such that

�
� [
D2Dn

.@D/.2
�n�/

�
< ı:

From this and by assuming that k is sufficiently large with respect to �, it follows
that �.E/ > 1 � �, where E is the set of all x 2 R2 for which there exist distinct
wx;1; : : : ; wx;`x 2 ‰nCk , �x 2 P .R2/, cx > 0 and 0 � c0x < �, such that

�x;n D cx

`xX
jD1

pwx;j � 'wx;j�C c
0
x�x (4.6)

(here cx D .1 � c0x/=
P`x
jD1 pwx;j is a normalizing constant).
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By the definition of L and by assuming that n is large enough,

�¹! W dRP1.L.A‰nCk.!//; L.!// < �º > 1 � �
4:

From this we get
P
w2W pw > 1 � �

2, where W is the set of all w 2 ‰nCk with

�Œw�¹! W dRP1.L.Aw/; L.!// < �º > 1 � �:

Now since …�Œw� D 'w� and L factors through …, we have

'w�¹x W dRP1.L.Aw/; L.x// < �º > 1 � � for w 2 W :

Hence in view of
P
w2W pw > 1 � �

2 we can also require

'wx;j�¹y W dRP1.L.Awx;j /; L.y// < �º > 1 � � for x 2 E and 1 � j � lx ; (4.7)

and still have �.E/ > 1 �O.�/ and c0x D O.�/ for x 2 E.
Since L is Borel measurable and by Luzin’s theorem, for every ı > 0 there exists a

Borel set F � R2 such that �.F / > 1 � ı and LjF is uniformly continuous. From this,
since supp.'wx;j�/ � Dn.x/ for x 2 E and 1 � j � lx , and by assuming that n is large
enough, we may also require

'wx;j�¹y W dRP1.L.x/; L.y// < �º > 1 � � for x 2 E and 1 � j � lx ; (4.8)

and still have �.E/ > 1 �O.�/ and c0x D O.�/ for x 2 E.
Since �.E/ > 1 �O.�/ it suffices to show that

1

m
H.�W?�x;n;DnCm/ > ˇ �O.�/ for all x 2 E and W … B.L.x/; "/:

Let x 2 E, W … B.L.x/; "/, and 1 � j � lx . From (4.7) and (4.8) it follows that
dRP1.L.Awx;j /; L.x// < 2�, and so W … B.L.Awx;j /; "=2/. Now by Lemmas 3.1
and 3.3, and by assuming that m is large enough with respect to k and ",

1

m
H.�W?'wx;j�;DnCm/ �

1

m
H.�W?'wx;j�;DnCkCm/ � �

� ˇ �O.�/:

From this, the decomposition (4.6), the estimate c0x DO.�/, and the concavity of entropy,
we get

1

m
H.�W?�x;n;DnCm/ > ˇ �O.�/;

which completes the proof of the lemma.

We reformulate this as a statement which holds for components of components. Recall
from Section 2.6 the definition Nn D ¹1; : : : ; nº and Nn;nCk D ¹n;nC 1; : : : ; nC kºwith
the associated uniform measures �n and �n;nCk on them.
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Lemma 4.7. For "> 0,m�M."/� 1, k � 1, and n�N.";m;k/� 1we have �n ��.F /
> 1 � ", where F is the set of all .i; x/ 2 Nn �R2 such that

Pi�j�iCk

�
inf

W …B.L.x/;"/

1

m
H.�W?..�x;i /y;j /;DjCm/ > ˇ � "

�
> 1 � ": (4.9)

Proof. As noted above, since L is Borel measurable and by Luzin’s theorem, for every
" > 0 there exists a Borel set E � R2 such that �.E/ > 1 � " and LjE is uniformly
continuous. From this it follows easily that for every " > 0, k � 1, and n� 1 large enough,

�n � �
®
.i; x/ W �i;iCk � �x;i¹.j; y/ W dRP1.L.x/; L.y// < "º > 1 � "

¯
> 1 � ":

Hence it suffices to prove the lemma with L.y/ appearing in (4.9) instead of L.x/. This
together with Lemmas 4.6 and 2.3 completes the proof.

5. Some algebraic considerations

This section collects some algebraic facts that will play a role in the proof of the entropy
growth theorem in the next section. We assume that ˆ is non-conformal and totally irre-
ducible.

Throughout this section we work in the vector space Avec
2;2 of all affine maps, which

contains the groupA2;2 of invertible affine maps as a proper subset. We fix a norm onAvec
2;2

and refer to it whenever we speak of bounded sets of affine maps, the diameter of such
sets, etc.

Recall that for x 2 R2 n ¹0º we write x D Rx 2 RP1 for the line (or direction)
determined by it, and sometimes write the elements of RP1 as v even when v is not
specified. Similarly, for a map f W Y !R2 we write Nf W Y n f �1.0/!RP1 for the map
Nf .x/ D f .x/, and sometimes write Nf for a function whose range is RP1 even if it does

not arise in this way from a map f with range R2.

5.1. Families of affine maps which evaluate to lines

In this section, which is essentially linear algebra, we consider the evaluation operation
 7!  .x/ which for a fixed x 2 R2 sends an affine map  2 Avec

2;2 to a point in R2. We
study the situation where a family‰ of affine maps is mapped by the evaluation operation
into an affine line (which may depend on x), and show that if this is the case, then the
direction of the line must depend on x in an affine manner. We then obtain approximate
versions of this statement.

For ‰ � Avec
2;2 and x 2 R2 we write ‰x D ¹ x W  2 ‰º.

Lemma 5.1. Let ; ¤ ‰ � Avec
2;2 be a family of affine maps and Y � R2. Suppose the set

‰x is contained in an affine line for every x 2 Y . Then there is an affine map 0¤ 2Avec
2;2

such that ‰x is contained in an affine line in direction  .x/ for all x 2 Y n  �1.0/.
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Proof. If ‰ D ¹ 0º consists of a single map then ‰x D ¹ 0.x/º is a point and so lies on
a line in every direction; so any affine map  will satisfy the conclusion. Otherwise, let
 1; 2 2 ‰ be distinct maps, and define  .x/D  2.x/� 1.x/, so  ¤ 0. Then for any
x 2 Y n �1.0/, the set‰x contains the distinct points  1.x/; 2.x/, so if it is contained
in a line this line must have direction  .x/. This proves the claim.

Remark 5.2. It is possible to say more about the situation in the lemma: Assuming also
j‰j � 2, one of the following possibilities must hold:
(1) The set‰ lies on an affine line in the space of affine maps, i.e. there exist 1; 22Avec

2;2

such that ‰ �  1 CR 2.
(2) There are vectors 0 ¤ b 2 R2 and c 2 R2 and matrices A;B with image.B/ � Rb

such that every ' 2 ‰ is of the form '.x/ D Ax C sBx C tb C c for some s; t 2 R.

We next replace the pointwise version with one for measures. Recall that for
� 2 P .Avec

2;2/ and x 2 R2 we write �:x D �:ıx for the push-forward of � by the map
g 7! g.x/.

Lemma 5.3. Let � 2 P .R2/, and let � 2 P .Avec
2;2/ be a measure satisfying

�.x W �:x is supported on an affine line/ D 1

.this set is easily seen to be measurable, even closed/. Then there exists an affine map
0 ¤  2 Avec

2;2 such that �:x is supported on an affine line in direction  .x/ for �-a.e.
x 2 R2 n  �1.0/.

Proof. The hypothesis on �; � is that for �-a.e. x, there exists an affine line `x (which can
be chosen to vary measurably with x) such that

'.x/ 2 `x for �-a.e. x and � -a.e. ':

Write Y � R2 for the set of x for which '.x/ 2 `x for � -a.e. '. The last equation and
Fubini imply that �.Y / D 1. Fix x 2 Y and note that the condition '.x/ 2 `x is closed in
the variable ', so, since it holds for � -a.e. ', it holds for every ' 2 supp� . Thus, '.x/ 2 `x
is true for every pair .x; '/ 2 Y � supp � . We can now apply the previous lemma to the
sets Y and ‰ D supp � and we obtain the desired map  .

The next variant replaces the exact assumptions above by approximate versions: We
assume that �:x is mostly supported close to a line `x (rather than entirely supported on
the line itself). We conclude that, up to some deterioration of the constants, x 7! `x is
given by an affine map at a positive proportion of points.

Definition 5.4. Let W � R2 be a linear subspace and ı > 0. A measure � 2 P .R2/ is
.W; ı/-concentrated if there is a translate W C v of W such that 1 � ı of the mass of �
lies within a ı-distance of W C v.

Note that for v 2 RP1, saying that � is .v; "/-concentrated does not mean that � is
supported mostly near the line v, but rather, near some translate of v.



M. Hochman, A. Rapaport 48

Proposition 5.5. Let � 2 P .R2/ be a measure that gives mass zero to every affine line.
Then for every "; R > 0 there exists a ı D ı."; R/ > 0 such that the following holds. Let
� 2 P .Avec

2;2/ be a measure supported on a set of diameter R .with respect to the norm
on Avec

2;2/. Let ¹vxºx2R2 � RP1 be a family of lines such that x 7! vx is measurable, and

�¹x W �:x is .vx ; ı/-concentratedº > 1 � ı: (5.1)

Then there exists 0 ¤  2 Avec
2;2 such that

�¹x W �:x is . .x/; "/-concentratedº > 1 � "; (5.2)

and

�¹x W dRP1.vx ;  .x// < "º > �¹x W �:x is not .¹0º; "/-concentratedº � ": (5.3)

Remark 5.6. The reason that the probability on the right hand side of (5.3) appears is
that if x is a point for which �:x is .¹0º; "/-concentrated, then �:x is .v; "/-concentrated
for every v 2 RP1, which means that vx is not determined, and there is no reason for the
given function x 7! vx to agree with any affine map  . More concretely, fix x0 2 R2,
and let � be some non-trivial measure on the stabilizer of x0 in Avec

2;2. Thus �:x0 D ıx0
is a point mass. Now replace x0 by the uniform measure � on a small ball around x0; by
making the ball small, we ensure that �:x is still supported on a ı-ball for all x 2 supp �.
Thus �:x is .v; ı/-concentrated for any v 2 RP1, and any choice of the function x 7! vx
will satisfy the assumptions in the proposition above, and any affine map  will satisfy
the first conclusion. But many choices of the initial function x 7! vx will be far from
every affine map on �-most points.

Proof of Proposition 5.5. If the conclusion (5.2) were false, then there would exist an
"0 > 0 such that the statement fails for every ı > 0. Let �n and vn;x 2 RP1 be witnesses
of this failure for ın D 1=n; thus,
� �n is supported on a set of diameter R;
� with �-probability at least 1 � ın over the choice of x, the measure �n:x is .vn;x ; ın/-

concentrated;
� there is no affine map n such that �n:x is . n.x/; "0/-concentrated with �-probability
> 1 � "0.

We can further assume that the �n are supported on the ball of radiusR at the origin of the
normed spaceAvec

2;2, since otherwise we can fix 'n 2 supp�n and replace �n by the translate
T�'n�n (note that we are translating in the vector space Avec

2;2, not in the group A2;2).
Since all the �n are now supported on a common compact set, by passing to a subse-

quence we can assume that �n ! � weakly for some � 2 P .Avec
2;2/.

Fix � > 0. For large enough n0, we see that

�¹x W �n0:x is .vn0;x ; �/-concentratedº > 1 � �
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(this holds as long as 1=n0 < �). If n0 is also large enough (in a manner depending on �),
then for all n > n0 the measures �n; �n0 will be sufficiently close in the weak topology
that the previous equation implies

�¹x W �n:x is .vn0;x ; 2�/-concentratedº > 1 � 2�:

Taking n!1 and using �n ! � , we conclude that for every � > 0, if n0 D n0.�/ is
large enough, then

�¹x W �:x is .vn0;x ; 3�/-concentratedº > 1 � 3�:

Choose �k D 3 � 2�k and write wk;x D vn0.2�k/;x . By the last equation and Borel–
Cantelli, for �-a.e. x there is a sequence of affine lines `k;x in direction wk;x , intersecting
a common compact set in R2, such that for all large enough k (depending on x),

.�:x/.`.�k/
k;x

/ > 1 � �k :

Fix such an x 2 supp �, let `x D limi!1 `k.i/;x be an accumulation point of the affine
lines `k;x , and letwx denote the direction of `x , sowx D limwk.i/;x . LetKx D supp�:x;

then it is easily seen that Kx \ `
.�k.i//

k.i/;x
� `

."/
x for all " > 0 and all sufficiently large i

(depending on "), hence �:x.`."/x / D 1 for every " > 0, and so �:x.`x/ D 1.
Since this holds for �-a.e. x, we can apply the previous lemma to �; � and find that

there exists an affine map 0 ¤  2 Avec
2;2 such that �:x is supported on a line in direction

 .x/ for �-a.e. x 2 R2 n  �1.0/; since � gives mass zero to every affine line, this holds
unconditionally for �-a.e. x.

Write z̀x for the line in direction  .x/ that supports �:x; this is defined for �-a.e.
x (if �:x is not a point mass, we will have  .x/ D wx and `x D z̀x , but if �:x is a
point mass, wx is not determined). Since �n ! � weakly, also �n:x ! �:x weakly for
every x. For �-a.e. x, from �:x. z̀x/ D 1 we conclude that for large enough n we have
�n:x. z̀."0/x / > 1 � "0. Thus for all large enough n, with �-probability > 1 � "0 over x,
we have �n:x. z̀."0/x / > 1 � "0. This contradicts our choice of �n and completes the proof
of the first part of the statement.

We now turn to the proof of (5.3). Let "; R > 0 be given, let � > 0 be small with
respect to " (we assume � D O."2/), and let ı > 0 be small with respect to � and R.
Suppose that � 2 P .Avec

2;2/ is supported on a set of diameter R and that ¹vxºx2R2 � RP1

is a family of lines with

�¹x W �:x is .vx ; ı/-concentratedº > 1 � ı:

By the first part, we may assume that there exists an affine map 0 ¤  2 Avec
2;2 such that

�¹x W �:x is . .x/; �/-concentratedº > 1 � �:
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Let E be the set of all x 2 R2 for which �:x is both .vx ; �/-concentrated and
. .x/; �/-concentrated. Then �.E/ > 1 � 2� . Fix x 2 E and suppose that �:x is not
.¹0º; "/-concentrated. Since x 2 E there exist ax ; bx 2 R2 such that

�:x.ax C v.�/x / � 1 � � and �:x.bx C  .x/.�// � 1 � �:

Write
Q WD .ax C v

.�/
x / \ .bx C  .x/

.�//I

then �:x.Q/� 1� 2� . Since �:x is not .¹0º; "/-concentrated it follows that diamQ � ".
On the other hand, by elementary trigonometry and (2.2),

diamQ D O

�
�

sin.�.vx ;  .x///

�
D O

�
�

dRP1.vx ;  .x//

�
:

Hence, since � is assumed to be small relative to ",

dRP1.vx ;  .x// � O.�="/ < ";

which gives

�¹x 2 R2 W dRP1.vx ;  .x// < "º � �¹x 2 E W �:x is not .¹0º; "/-concentratedº:

Since �.E/ > 1 � 2� > 1 � ", this completes the proof of the proposition.

Corollary 5.7. Let � 2 P .R2/ be a measure that gives mass zero to every affine line and
let M W R2 ! RP1 be measurable and defined �-a.e. Suppose that for some "; R > 0

and every ı > 0 there exists a measure � 2 P .Avec
2;2/ that is supported on a set of norm

diameter R, and such that

�¹x W �:x is .M.x/; ı/-concentratedº > 1 � ı;

�¹x W �:x is not .¹0º; "/-concentratedº > ":

Then there is an affine map 0 ¤  2 Avec
2;2 such that M D  on a set of �-measure at

least ".

Proof. Fix a positive sequence "n & 0, and apply the previous proposition to get corre-
sponding ın, which we may assume satisfies ın� "n. Let �n be the measure corresponding
to ın in the hypothesis of the present corollary (we start with n large enough that "n < ").
We obtain affine maps  n ¤ 0 such that

�¹x W dRP1. n.x/;M.x// < "nº > " � "n:

We can assume that k nk D 1 (in the norm on Avec
2;2), since  n and  n=k nk induce

the same map R2 ! RP1. Thus, passing to a subsequence if necessary, we can assume
that  n!  2 Avec

2;2 in the norm metric on Avec
2;2, in particular k k D 1, so  ¤ 0. By the

last displayed equation, there is a set E � R2 with �.E/ � " and such that every x 2 E
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belongs to the event above for infinitely many n. Thus, for x 2 E there is a subsequence
n.i;x/, i D 1;2; : : : ; along which dRP1. n.i;x/.x/;M.x//! 0, i.e. n.i;x/.x/!M.x/;
but also  n.x/!  .x/ as n!1 in R2, and hence for x 2 E n �1.0/, which includes
�-a.e. x 2 E, we have  n.x/!  .x/ in RP1. Thus for �-a.e. x 2 E, both  .x/ and
M.x/ are limits of the same subsequence of  n.x/, so they are equal, as desired.

5.2. The �-measure of algebraic curves

LetX be the attractor of the affine systemˆD ¹'iºi2ƒ. In this section we show that non-
conformality and total irreducibility of ˆ imply that X is not contained in an algebraic
curve, and that � gives mass zero to every such curve. Here, by an algebraic curve we
mean the zero set p�1.0/ of a polynomial 0 ¤ p 2 RŒx; y�. When the total degree degp
of p is equal to 2 we say that the curve is quadratic.

Lemma 5.8. Let C be a quadratic curve containing X . For x 2 X let Cx denote the
connected component of C which contains x. Then for every x 2 X and i 2 ƒ we have
'iCx D C'i .x/.

Proof. Let C D p�1.0/ for a quadratic polynomial p. Fix x0 2 X and i 2 ƒ, and let
D D Dx0;i � Cx0 denote the set of points x 2 Cx0 \ '

�1
i C which are not isolated in

Cx0 \ '
�1
i C . This is a non-empty set because it contains Cx0 \ X , which is relatively

open in the perfect set X .
We claim that D is open and closed in Cx0 , and hence D D Cx0 . It is clear that it

is closed so we need only show that it is open. To this end fix x 2 D. Then we can find
ı > 0 such that Bı.x/ \ Cx0 is parameterized by an analytic (or even polynomial) curve

 W .�a; b/! R2. Then p.'i
.t// D 0 whenever 
.t/ 2 D, which happens on a non-
discrete set, by the definition of D. Thus p'i
 � 0, which means that the image of 'i

lies in C ; hence the image of 
 lies in D, and constitutes a neighborhood of x in D. This
shows that D is open in Cx0 , as claimed.

We have shown that every x 2 Cx0 is also in '�1i C , i.e. 'iCx0 � C . Since 'iCx0
is connected and contains 'i .x0/, it follows that 'iCx0 � C'i .x0/. Now apply the same
argument to C'i .x0/ and '�1i ; note that althoughX is not guaranteed to be mapped into C
by '�1i , certainly 'iX is, which is enough for the argument to go through. We conclude
that '�1i C'i .x0/ � Cx0 , and altogether, we have shown that 'iCx0 D C'i .x0/.

Corollary 5.9. Let C be a quadratic curve containing X , and let CX be the union of
those connected components of C that intersect X . Then for each i 2 ƒ the map 'i is a
bijection of CX .

Proof. Immediate since there are finitely many (in fact, at most two) connected compo-
nents.

Proposition 5.10. Assume that � is a self-affine measure generated by a non-conformal
and totally irreducible system ˆ without a common fixed point and a positive probability
vector. Then � gives mass zero to every algebraic curve.
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Proof. Suppose otherwise. Then there is an algebraic curve C D p�1.0/ such that
�.C/ > 0. We claim that � is then supported on a (possibly different) algebraic curve.
Indeed, choose a �-typical ! 2 …�1C (note that �.…�1C/ D �.C/ > 0). Then with
probability 1,

�.'�1!1:::!nC/ D '!1:::!n�.C/ D �Œ!1:::!n�.C / D �Œ!1:::!n�.…
�1C/

! 1 as n!1:

Now, '�1!1:::!nC D p
�1
n .0/ for pn D p ı '!1:::!n . Normalize each pn to be a unit vector

in the vector space of polynomials of total degree at most degp (normalization does not
affect the zero set), and pass to a subsequence along which pn converge to some non-zero
polynomial p0, and also such that p�1n .0/ converges to a set C 0 in the Hausdorff metric
on a ball in R2 that supports �. Then C 0 � p�10 .0/ and �.C 0/D 1. We can thus replace C
by p�10 .0/, and assume from the outset that �.C/ D 1.

Since X D supp� and �.C/ D 1, we have X � C . By irreducibility it follows that
deg p > 1. By the work of Feng and Käenmäki [13] it follows that the only non-linear
algebraic curves which can support a non-trivial planar self-affine set are quadratic curves;
thus, degp D 2 and C is quadratic. Let CX denote the union of those connected compo-
nents of C that intersect X . We have seen that 'iCX D CX for every i 2 ƒ.

Let M W C ! RP1 denote the map (defined at all but at most finitely many singular
points) that takes x 2 C to the direction of the tangent line to C at x. Clearly each 'i j�1CX
induces a map of tangent vectors of CX , hence for all but finitely many x 2 CX ,

M.'�1i x/ D A�1i M.x/:

Iterating this for a sequence i1; : : : ; in; : : : we have

M.'�1in : : : '
�1
i1
x/ D A�1in : : : A

�1
i1
M.x/: (5.4)

Choosing i1; i2; : : : to be i.i.d. with marginal p, for fixed x it is easy to see that
'�1in : : : '�1i1 x !1 a.s., due to the expanding nature of the maps '�1i (and the fact that
they do not have a common fixed point). It is also elementary that as one escapes to infin-
ity, the tangent vectors to C accumulate on a finite set of directions (namely, on a single
direction for a parabola or line, and a pair of directions for a hyperbola). Thus the distri-
bution of the left hand side of (5.4), with the indices chosen randomly, accumulates only
on atomic measures.

On the other hand, the right hand side of the last equation is a random walk on RP1

whose steps are chosen from ¹A�1i ºi2ƒ, a non-conformal and totally irreducible system,
and thus is attracted to the Furstenberg measure, which under our assumptions has no
atoms, in contradiction to the previous paragraph.

Remark. The last proposition actually also holds in the conformal case (i.e. when ˆ is
conjugate to a system of similarities) using a more direct re-scaling argument: if the mea-
sure gave positive mass to a smooth curve, then, by re-scaling cylinder measures which
are increasingly supported on this curve, we would find that the measure is supported on
a line (the re-scaling of the tangent line to the curve), contradicting irreducibility.
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5.3. The non-affinity of L

In this section we assume again non-conformality and total irreducibility, and also that
dim� < 2, which ensures that L is well defined as a function on X at �-a.e. point (The-
orem 1.5).

We prove that the function L W X ! RP1 from Section 4.3 does not arise from an
affine map. More precisely, we show that there does not exist an affine map 0¤  2 Avec

2;2

such thatL.x/D .x/ for �-a.e. x. Here WR2 n �1.0/!RP1 is the map x 7! .x/.
It is defined �-a.e. because, by total irreducibility, � does not give mass to any affine line.

Recall that 'i .x/D AixC bi for i 2ƒ and x 2 R2, and more generally for  2 Avec
2;2

we write  .x/ D A x C b .
Given i 2 ƒ and ! 2 ƒN denote the concatenation of i with ! by i!.
Also let � denote the uniform (rotation-invariant) probability measure on RP1.

Lemma 5.11. Let i 2 ƒ. Then L.i!/ D Ai .L!/ for �-a.e. ! 2 ƒN .

Proof. By one of the characterizations of L (see Section 2.10), for pN-a.e. !,

ıL.!/ D lim
n!1

A!1 : : : A!n� D A!1 lim
n!1

A!2 : : : A!n�

D ıA!1L.S!/;

where S is the left shift map. This is equivalent to the statement we are proving.

Given x; y 2 R2, write x k y to indicate that dim.span¹x; yº/ � 1 (this allows one or
both of the vectors to be 0). Denote the 2 � 2 identity matrix by I .

Lemma 5.12. Let B be a 2 � 2 matrix such that

BAix k AiBx for x 2 R2 and i 2 ƒ: (5.5)

Then there exists ˇ 2 R such that B D ˇI .

Proof. If B D 0 then the lemma holds with ˇ D 0, so assume that B ¤ 0.
We next claim that rank.B/ ¤ 1: For suppose that rank.B/ D 1. Set W D image.B/

and for each i 2 ƒ choose ` 2 RP1 such that `; Ai` ¤ kerB; then by (5.5),

W D BAi` D AiB` D AiW:

Thus W is a common fixed point of ¹Aiºi2ƒ, contradicting total irreducibility.
We next claim that BL.!/ D L.!/ for �-a.e. ! 2 ƒN . Indeed, choosing a typical !,

we have ıL.!/ D limn!1 A!1 : : : A!n�. Since B is invertible, B� is also a continuous
measure on RP1, so we have

ıB �L.!/ D B � limA!1 : : : A!n� D lim.BA!1 : : : A!n�/
D limA!1 : : : A!n.B�/ D ıL.!/:

Finally, the Furstenberg measure � D L� is continuous, so there exist infinitely many
lines which are preserved by B . It is now easy to see that there must exist a ˇ 2 R with
B D ˇI , which completes the proof of the lemma.
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Recall that for ' 2 Avec
2;2 we write '.x/ D A'x C b' .

Lemma 5.13. Let '; 2 A2;2 be such that A' D A and 'x k  x for all x 2 R2. Then
also b' D b .

Proof. By assumption, ';  are invertible. By '.0/ k  .0/ it follows that there exist
0 ¤ v 2 R2 and t' ; t 2 R such that b' D t'v and b D t v. For u 2 R2,

uC t'v D '.A
�1
' u/ k  .A

�1
' u/ D  .A

�1
 u/ D uC t v:

Hence, if u is independent of v,

0 D det
�
1 t'
1 t 

�
D t � t' :

This gives b' D b , which completes the proof of the lemma.

Proposition 5.14. There does not exist 0 ¤  2 Avec
2;2 with Lx D  x for �-a.e. x 2 R2.

Proof. Assume that there exists 0 ¤  2 Avec
2;2 with Lx D  x for �-a.e. x 2 R2. The

measure � D L� is continuous, hence  can not be constant, which implies A ¤ 0.
Let i 2 ƒ. Then by the definition of L W R2 ! RP1 (see Section 4) and Lemma 5.11

it follows that for �-a.e. ! 2 ƒN ,

L.'i .…!// D L.….i!// D L.i!/ D Ai .L!/ D Ai .L.…!//:

Hence L.'ix/ D Ai .Lx/ for �-a.e. x 2 R2, which gives

 'ix D  .'ix/ D Ai . x/ D Ai x for �-a.e. x 2 R2: (5.6)

For x 2 R2 write
p.x/ D det. 'ix j Ai x/I

then p 2 RŒX; Y � is a quadratic polynomial. By (5.6) we have �.p�1¹0º/ D 1, hence
p D 0 by Proposition 5.10.

From p D 0 we get  'ix k Ai x for x 2 R2. By expanding this,

A Aix C A bi C b k AiA x C Aib for x 2 R2: (5.7)

By letting jxj ! 1 and dividing by jxj, we get

A Aix k AiA x for x 2 R2:

Since this holds for all i 2 ƒ and from Lemma 5.12, it follows that A D ˇI for some
0 ¤ ˇ 2 R.

Let i 2 ƒ. Then by inserting A D ˇI into (5.7), we get

ˇAix C ˇbi C b k ˇAix C Aib for x 2 R2:
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From this and Lemma 5.13 we see that ˇbi C b D Aib or equivalently

bi D ˇ
�1.Ai � I /b :

Set w D �ˇ�1b . Then a direct computation gives 'i .w/ D w. As this holds for each
i 2 ƒ we have found that all 'i , i 2 ƒ, share a common fixed point. This contradicts our
basic assumptions (see Section 1.1) and completes the proof of the proposition.

Corollary 5.15. There does not exist 0¤ 2Avec
2;2 withLxD x on a set of x of positive

�-measure.

Proof. Suppose that E � R2, �.E/ > 0 and 0 ¤  2 Avec
2;2 satisfies Lx D  x for every

x 2 E. Let F D …�1E so �.F / D �.E/ > 0.
Let ı > 0. By regularity of � we can choose a cylinder set C D Œi1 : : : in� such that

�C .F / > 1 � ı. By Lemma 5.11 we have

L.….!// D A�1in : : : A
�1
i1
L.….i1 : : : in!// for �-a.e. !:

Now, i1 : : : in! 2 F if and only if ! 2 Sn.F \ C/ (recall that S is the left shift map,
and we have used the fact that Sn W C ! ƒN is a homeomorphism), and this occurs with
�-probability �.Sn.F \ C// D �C .F / > 1� ı. Hence, we find that with �-probability at
least 1 � ı over the choice of !,

L.….!// D A�1in : : : A
�1
i1
L.….i1 : : : in!// D A

�1
in
: : : A�1i1  .….i1 : : : in!//

D A�1in : : : A
�1
i1
 .'1 : : : 'n….!// D A

�1
in
: : : A�1i1  '1 : : : 'n.….!//:

Since A�1in : : : A
�1
i  '1 : : : 'n is affine, we have shown that if L agrees with an affine

function on a set of positive measure, then it agrees with a (possibly different) affine
function on a set of arbitrarily large measure. Normalizing these functions in the normed
space Avec

2;2 and passing to a subsequential limit, we conclude that L is a.e. affine, which
by the last proposition is impossible.

Finally, we combine this with the results of Section 5.1 to obtain:

Corollary 5.16. For every "; R > 0 there exists a ı > 0 with the following property. If
� 2 P .Avec

2;2/ is a measure supported on a set of diameter R, and such that

�¹x W �:x is not .¹0º; "/-concentratedº > ";

then
�¹x W �:x is .L.x/; ı/-concentratedº � 1 � ı:

Proof. If not, then, for some "; R > 0 and every ı > 0, we could find a measure
� 2 P .Avec

2;2/ with support of diameter at most R, for which the first inequality is valid
and the second one is reversed. But then Corollary 5.7 would imply that L agrees with an
affine map on a set of �-measure at least ", contradicting the previous corollary.
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6. Entropy growth under convolution

In this section we assume that ˆ is non-conformal and totally irreducible (but do not
assume exponential separation). We also assume that dim� < 2.

Recall that � denotes convolution on Rd , and that for � 2 P .A2;2/ and � 2 P .R2/
we write �:� for the push-forward of � � � by .g; x/ 7! gx. We also write �:x D �:ıx
etc.

Our purpose in this section is to prove Theorem 1.6, stating that when � has non-
negligible entropy and is supported within bounded distance of the identity map, �:� has
greater entropy than � alone. The proof has some features in common with results in the
literature, but also requires many new ideas (see the detailed discussion in Section 1.4).
In particular, the part of the argument which involves the non-affinity of L is completely
new.

6.1. Entropy growth under linear convolution in R2

The entropy of a convolution is generally at least as large as each of the convolved mea-
sures, although due to the discretization involved there may be a small loss: for every
boundedly supported �; � 2 P .R2/,

1

n
H.�;Dn/ �O

�
1

n

�
�
1

n
H.� � �;Dn/ �

1

n
H.�;Dn/C

1

n
H.�;Dn/CO

�
1

n

�
;

where the error depends on the diameter of the supports. Typically, one expects that
1
n
H.� � �;Dn/ is close to the upper bound, but in general this is not the case, and one

cannot rule out that the lower bound is achieved, i.e. there is no entropy growth at all.
In this section, we state an inverse theorem from [16] about the structure of probability
measures on R2 whose convolutions have essentially the same entropy as the original.

Recall Definition 5.4 of a .V; ı/-concentrated measure. Complementing this is the
following notion which describes measures whose (approximate) conditional measures
on translates of V are (almost) uniform.

Definition 6.1. Let V �R2 be a linear subspace, " > 0, andm� 1. A measure � 2P .R2/
is said to be .V; ";m/-saturated if

Hm.�/ � dimV CHm.�V?�/ � ":

It is not hard to see that if �; � 2 P .R2/ are compactly supported, and if � is .V; "/-
concentrated and � is .V; "; m/-saturated for some subspace V � R2, for some large m
and sufficiently small " > 0, then H.� � �;Dm/ � H.�;Dm/. The next theorem shows
that, in a local, statistical sense, this is the only way that this can happen.

Recall from Section 2.6 that �x;i denotes the re-scaled component, i.e. �x;i pushed
forward by a homothety from Di .x/ to Œ0; 1/2.

Theorem 6.2 ([16, Theorem 2.8]). For every " > 0 andm� 1 there exists ıD ı.";m/ > 0
such that for every n�N."; ı;m/ the following holds. Let k � 1 and �; � 2P .R2/ satisfy

diam.supp �/; diam.supp �/ D O.2�k/
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and
1

n
H.� � �;DkCn/ <

1

n
H.�;DkCn/C ı:

Then there exist linear subspaces Vk ; : : : ; VkCn � R2 such that

Pk�i�kCn

�
�x;i is .Vi ; ";m/-saturated and
�y;i is .Vi ; "/-concentrated

�
> 1 � ":

We have stated this in R2 but analogs are valid in any dimension.

6.2. Concentration persists through coordinate changes

The property in Theorem 6.2, that most components of a measure are .V; ı/-concentrated,
depends on the coordinate system one works with. One can easily give examples of mea-
sures with components which at some scale are with high probability concentrated, but for
another coordinate system this property is lost (this can happen if the measure looks like a
combination of measures supported on line segments which were contained in a different
neighboring cells, but, after the coordinate change, they lie in a common cell). However,
when taken across several scales, concentration of components is more robust, and does
persist under coordinate changes, albeit with some degradation of the parameters.

We need something slightly stronger, which allows us not only to change coordinates
in R2, but also to decompose a measure �:x for � 2 P .A2;2/ according to the dyadic
decomposition of � , and conclude that after this decomposition, the pieces �g;i:x are still
concentrated, assuming the components .�:x/y;i of the original measure �:x were con-
centrated. The issue which we need to overcome is that �g;i:x is supported on D

A2;2
i x,

and this set generally intersects more than one dyadic cell of D2
i . Thus, even if for a sub-

space W the components .�:x/y;i are highly concentrated on a translate of W (which
depends on y), taken together all one can say is that �g;i:x is concentrated on the union
of several translates ofW . The purpose of Lemma 6.4 below is to handle such a situation.

Definition 6.3. Let � 2 P .R2/, W � R2 a linear subspace, ı > 0, and m � 1. We say
that � is .W; ı/m-concentrated if there exist x1; : : : ; xm 2 R2 with

�
� m[
jD1

.xj CW /
.ı/
�
� 1 � ı:

Recall that A2;2 is endowed with an invariant metric d which is derived from a Rie-
mannian metric. It is not hard to see that for a bounded set Id 2 B � A2;2 there exists a
C D C.B/ > 0 such that

diamE:x � C.1C jxj/ � diamE for every E � B and x 2 R2; (6.1)

where diamE is taken with respect to d . We omit the proof of the following lemma. It
can be carried out by using (6.1) and by imitating the proof of [16, Lemma 5.4].
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Lemma 6.4. Let � 2 P .A2;2/, x 2 R2, k; m � 1, ı > 0, and fix a subspace W � R2.
Suppose that jxj D O.1/, d. ; Id/D O.1/ for  2 supp � , diam.supp �/D O.2�k/, and
S2k .�:x/ is .W; ı/m-concentrated. Then for n D

�
1
2

log.1=ı/
�

and ı0 D Om
� log log.1=ı/

log.1=ı/

�
we have

Pk�i�kCn.S2i .� ;i:x/ is .W; ı0/-concentrated/ > 1 � ı0:

The proof of the following proposition is also omitted. It can be carried out by using
the previous lemma and (6.1), and by imitating the proof of [16, Proposition 5.5].

Proposition 6.5. For every " > 0 there exist nD n."/� 1 and ı D ı."/ > 0, with n!1
and ı! 0 as "! 0, such that the following holds. Let � 2 P .A2;2/, x 2 R2, k � 1, and
fix a subspace W � R2. Suppose that jxj D O.1/, d. ; Id/ D O.1/ for  2 supp � , and

PiDk..�:x/y;i is .W; ı/-concentrated/ > 1 � ı:

Then
Pk�i�kCn.S2i .� ;i:x/ is .W; "/-concentrated/ > 1 � ":

6.3. Linearization

The action operation f W A2;2 � R2 ! R2, f .'; x/ D '.x/, induces the convolution
operation �:� D f .� � �/ on measures. Because f is differentiable, this action can be
linearized: if I � A2;2 and J � R2 are small sets of diameter ı, then f jI�J will be close
to linear: Specifically for .'0; x0/; .'; x/ 2 I � J , we will have

f .'; x/ D .'0 C .' � '0//.x0 C .x � x0//

� '0x0 C .' � '0/x0 C '0.x � x0/C .' � '0/.x � x0/

D 'x0 C '0x � '0x0 CO.ı
2/:

Letting � 2 P .I / and � 2 P .J / and choosing .'; x/ at random according to � � �, this
tells us that �:� D f .� � �/ is equal, up to some translations and a small error term, to
the distribution of the sum of 'x0 and '0x; which is nothing other than .�:x0/ � .'0�/.
This is, essentially, the proof of the following lemma (except for verifying that the error
term is small enough to affect entropy negligibly). The formal proof is similar to the proof
of [3, Lemma 4.2], and is omitted.

Theorem 6.6. Let Z � A2;2 �R2 be a compact set. For every " > 0, k > K."/, and 0 <
ı < ı.Z;";k/ the following holds. Let . 0;x0/ 2Z, � 2P .Bı. 0//, and � 2P .Bı.x0//.
Then ˇ̌̌̌

1

k
H.�:�;Dk�log ı/ �

1

k
H..�:x/ � . 0�/;Dk�log ı/

ˇ̌̌̌
< ":

The next proposition is needed to show that if � 2 P .A2;2/ has substantial entropy
then so do measures �:x obtained by “pushing it down” to R2. This is, actually, not true:
It may be that � is supported on the stabilizer of x, a condition which still allows it to have
large entropy, but in which case �:x D ıx is as concentrated as possible. However, for
a given � this cannot happen too often, because the stabilizers of any three non-colinear
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points in R2 intersect trivially (equivalently, the action on three such points determine an
affine map). One can make this more quantitative and show that if a set of points in R2

is far enough from being contained in an affine line, then the entropy of �:x will be a
constant fraction of the entropy of � for most points in the collection. This is the idea
behind the next result; we omit the formal proof which is very similar to the proof of
[3, Lemma 4.5].

In what follows we rely on the fact that � is not supported on a line. This follows from
our assumptions thatˆ is totally irreducible and that its members do not all have the same
fixed points.

Proposition 6.7. For every compact Z � A2;2 there exists a constant C D C.Z;�/ > 1
such that for every � 2 P .A2;2/ supported on Z and every k; i � 1,

�

²
x W

1

k
H.�:x;DiCk/ �

1

Ck
H.�;DiCk/ �

C

k

³
� C�1:

We use this to prove that, roughly, if � 2 P .A2;2/ has non-trivial entropy, then for a
non-negligible fraction of its components � ;i and a non-negligible fraction, with respect
to �, of points x 2 R2, the push-forward of � ;i via x is not too close to being an atom,
at least after re-scaling and translation by  �1. In fact, for the proof of Theorem 1.6 we
shall need a version of this which involves components of components of � . This is the
purpose of the following lemma.

Recall that �n denotes the uniform measure on Nn D ¹1; : : : ; nº (Section 2.5).

Lemma 6.8. For every "; R > 0 there exists ı D ı."; R/ > 0 such that for k �
K."; R; ı/ � 1 and n � N."; R; ı; k/ � 1 the following holds. Let � 2 P .A2;2/ be such
that diam.supp�/�R with respect to d and 1

n
H.�;Dn/ > ". Then �n � �.F / > ı, where

F D F.�/ is the set of all .i;  / 2 Nn � A2;2 such that

Pi�j�iCk

�
�

²
x W

S2j .. 
�1� ;i /';j /:x is

not .¹0º; ı/-concentrated

³
> ı

�
> ı:

Proof. Let C > 1 be a large global constant, which will be determined during the proof
of the lemma. Let ";R > 0, let m � 1 be large with respect to " and R, let ı > 0 be small
with respect to m, and let k � 1 be large with respect to ı, and n � 1 large with respect
to k. Suppose that m is so large with respect to " and that ı is so small with respect to "
and m, that for every � 2 P .R2/ with diam.supp �/ � C ,

� is .¹0º; ı/-concentrated H)
1

m
H.�;Dm/ <

"

C
: (6.2)

Let � 2P .A2;2/ satisfy diam.supp�/�R and 1
n
H.�;Dn/ > ". From 1

n
H.�;Dn/ > "

and Lemma 2.5,

E0�i�n

�
1

k
H. �1� ;i ;DiCk/

�
� " �O

�
k

n
C
1

k

�
>
"

2
: (6.3)
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By Lemma 2.2, the integrand on the left hand side of (6.3) isO.1/. Hence for some global
constant C0 > 1,

P1�i�n

�
1

k
H. �1� ;i ;DiCk/ �

"

C0

�
�

"

C0
:

From this and by applying Lemma 2.5 once more we find that �n � �.F 0/ > "=C0, where
F 0 is the set of all .i;  / 2 Nn � A2;2 such that

Ei�j�iCk

�
1

m
H.. �1� ;i /';j ;DjCm/

�
�

"

C0
�O

�
m

k

�
�

"

2C0
:

As above, the integrand on the left hand side of the last inequality is O.1/. Hence there
exists a global constant C1 > 1 such that for .i;  / 2 F 0,

Pi�j�iCk

�
1

m
H.. �1� ;i /';j ;DjCm/ �

"

C1

�
�

"

C1
:

Now by Proposition 6.7, by assuming that C is large enough, and by assuming thatm
is sufficiently large with respect to ", it follows that for .i;  / 2 F 0,

Pi�j�iCk

�
�

²
x W

1

m
H.S2j .. 

�1� ;i /';j /:x;Dm/ �
"

C

³
> C�1

�
�
"

C
:

Assume that C is large enough that the supports of the measures, appearing inside the
entropy in the last expression, almost surely have diameter at most C . By (6.2) and by
assuming that ı < "=C it now follows that F 0 � F , where F is the set defined in the
statement of the lemma. Since �n � �.F 0/ > "=C0 > ı this completes the proof.

The following is a variant of Lemma 2.5:

Lemma 6.9. Let R > 0, � 2 P .A2;2/ supported within distance R of the identity, and
� 2 P .R2/ supported within distance R of the origin. Then for every 1 � k � n,

1

n
H.�:�;Dn/ � E1�i�n

�
1

k
H.� ;i:�x;i ;DiCk/

�
�OR

�
k

n
C
1

k

�
:

Proof. Let ` be the integral part of n=k. As in the proof of [3, Lemma 4.3], for each
0 � r < k,

H.�:�;Dn/ �

`�2X
mD0

EiDmkCr .H.� ;i:�x;i ;DkCi jDi //:

Note that
diam.supp..� ;i /:�x;i // D OR.2�i /:

Hence supp.� ;i:�x;i / intersects OR.1/ elements of Di , and so

H.�:�;Dn/ �

`�2X
mD0

EiDmkCr .H.� ;i:�x;i ;DkCi // �OR.`/:

The rest of the proof proceeds exactly as in [3, Lemma 4.3].
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6.4. Entropy growth near the identity

Our main goal in this section is to prove our main entropy growth result, Theorem 1.6.
We recall the statement:

Theorem. Let � be a self-affine measure in R2 defined by a non-conformal, totally irre-
ducible system ˆ and satisfying dim � < 2. Then for every "; R > 0 there is a ı D
ı.�; "; R/ > 0 such that for every n > N.�; "; R/, the following holds. If � is a prob-
ability measure on the affine group supported within distance R of the identity, then

1

n
H.�;Dn/ > " H)

1

n
H.�:�;Dn/ >

1

n
H.�;Dn/C ı:

We begin the proof. Recall from Section 2.6 the definition Nn D ¹1; : : : ; nº and
Nn;nCk D ¹n; nC 1; : : : ; nC kº with the associated uniform measures �n and �n;nCk on
them.

Let 0 < " < 1 and R > 0, let k � 1 be large with respect to "; R, and let n � 1 be
large with respect to k. Let � 2 P .A2;2/ be supported within R of the identity in A2;2,
and assume that 1

n
H.�;Dn/ > ".

By Lemma 6.8 and by replacing " with a smaller quantity without changing the nota-
tion, we may assume that �n � �.F0/ > ", where F0 is the set of all .i;  / 2 Nn � A2;2
such that

Pi�j�iCk

�
�

²
x W

S2j .. 
�1� ;i /';j /:x is

not .¹0º; "/-concentrated

³
> "

�
> ":

Let ı > 0 be small with respect to "; R and suppose that k is large with respect to ı.
By Lemma 6.9,

1

n
H.�:�;Dn/ � E1�i�n

�
1

k
H.� ;i:�x;i ;DiCk/

�
�OR

�
k

n
C
1

k

�
� E1�i�n

�
1

k
H.� ;i:�x;i ;DiCk/

�
�
ı2

5
:

From this and Theorem 6.6,

1

n
H.�:�;Dn/ � E1�i�n

�
1

k
H..� ;i:x/ �  �x;i ;DiCk/

�
�
2ı2

5
:

Since � is supported on an R-neighborhood of the identity, the partitions DiCk and
 �1DiCk are OR.1/-commensurable, so taking k large relative to R and ı we get

1

n
H.�:�;Dn/ � E1�i�n

�
1

k
H.. �1� ;i:x/ � �x;i ;DiCk/

�
�
3ı2

5
: (6.4)

Write � D �n � � � � and set

E0 D

²
.i; x;  / 2 Nn �R2 � A2;2 W

1
k
H.. �1� ;i:x/ � �x;i ;DiCk/

< 1
k
H.�x;i ;DiCk/C ı

³
:
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Assuming as we are that k is large relative to ı, we have

1

k
H.. �1� ;i:x/ � �x;i ;DiCk/ �

1

k
H.�x;i ;DiCk/ �

ı2

10
: (6.5)

By dim� D ˛ and by Lemmas 2.4 and 2.5, since n is large,

E1�i�n

�
1

k
H.�x;i ;DiCk/

�
� ˛ �

ı2

5
: (6.6)

Now if �.E0/ � 1 � ı, then by (6.4)–(6.6),

1

n
H.�:�;Dn/ � E1�i�n

�
1

k
H.�x;i ;DiCk/

�
C ı�.Ec0/ �

7ı2

10
� ˛ C

ı2

10
;

which completes the proof of the Theorem. Hence it suffices to prove that �.E0/ � 1� ı.
Assume that �.E0/ > 1� ı. Let � > 0 be small with respect to ";R and suppose that

ı is small with respect to � . Let m � 1 be large with respect to � and suppose that ı is
small with respect tom. By Theorem 6.2 it follows that for each uD .i; x; / 2 E0 there
exist linear subspaces V ui ; : : : ; V

u
iCk
� R2 such that13

Pi�j�iCk

�
.�x;i /

y;j is .V uj ; �;m/-saturated and
. �1� ;i:x/z;j is .V uj ; �/-concentrated

�
> 1 � �: (6.7)

Lemma 6.10. We can assume that �.E1/ > 1 � � , where E1 is the set of all .i; x;  / 2
Nn �R2 � A2;2 with

Pi�j�iCk
�
. �1� ;i:x/z;j is .L.x/; �/-concentrated

�
> 1 � �: (6.8)

Proof. Let Z be the set of all .i; x;  / 2 Nn �R2 � A2;2 such that

Pi�j�iCk
�
jHm..�x;i /

y;j / � ˛j < �
�
> 1 � �=2:

Then by Proposition 3.15 and Lemma 2.3 it follows that �.Z/ > 1 � � . By Lemma 4.7
it follows that �.Y / > 1 � � , where Y is the set of all .i; x;  / with

Pi�j�iCk
�

inf
W …B.L.x/;�/

Hm.�W?..�x;i /
y;j // > ˇ � �

�
> 1 � �:

Note that �.E0 \ Z \ Y / > 1 � 3� , hence it suffices to show that (6.8) is satisfied for
.i; x;  / 2 E0 \Z \ Y with � replaced by O.�/.

Fix uD .i; x; / 2 E0 \Z \ Y and let Fu be the set of all .j; y/ 2Ni;iCk �R2 such
that
� .�x;i /

y;j is .V uj ; �;m/-saturated;

� jHm..�x;i /
y;j / � ˛j < � ;

� infW …B.L.x/;�/Hm.�W?..�x;i /
y;j // > ˇ � � .

13In (6.7) and later, x; and i are fixed, and the randomness is over y; z and j .
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Since u 2 E0 \Z \ Y we have �i;iCk ��x;i .Fu/ > 1� 3� . Let .j; y/ 2 Fu and assume
for contradiction that dimV uj D 2 or dimV uj D 1 with V uj … B.L.x/; �/. Then

˛ > Hm..�x;i /
y;j / � � � dimV uj CHm.�.V uj /

?.�x;i /
y;j / � 2�

> 1C ˇ � 3�: (6.9)

We have assumed that 0 < ˛ < 2, and by14 Corollary 4.2 we have ˇ � 1
2
˛, hence, by

assuming that � is small enough, we get a contradiction. It follows that we must have

dimV uj D 0 or dimV uj D 1 with V uj 2 B.L.x/; �/: (6.10)

Write
S D ¹j 2 Ni;iCk W �x;i¹y W .j; y/ 2 Fuº > 0º;

then �i;iCk.S/> 1� 3� since �i;iCk ��x;i .Fu/ > 1� 3� . Note that (6.10) holds for each
j 2 S . Let .j; z/ 2 Ni;iCk �R2 be such that j 2 S and � WD . �1� ;i:x/z;j is .V uj ; �/-
concentrated. If dim V uj D 0 then � is clearly .L.x/; �/-concentrated. If dim V uj D 1

with V uj 2 B.L.x/; �/ then � is .L.x/; O.�//-concentrated. Hence in any case � is
.L.x/;O.�//-concentrated. From this, �i;iCk.S/ > 1� 3� , and (6.7), it follows that (6.8)
is satisfied for u D .i; x;  / with � replaced by O.�/. This completes the proof of the
lemma.

Lemma 6.11. We can assume that �.E2/ > 1 � � , where E2 is the set of all .i; x;  / 2
Nn �R2 � A2;2 with

Pi�j�iCk

�
S2j .. 

�1� ;i /';j :x/ is
.L.x/; �/-concentrated

�
> 1 � �: (6.11)

Proof. Fix .i; x;  / 2 E1 with x 2 X , write � D  �1� ;i , and set

S D
®
j 2 Ni;iCk W PlDj

�
.�:x/y;l is .L.x/; �/-concentrated

�
� 1 �

p
�
¯
:

By (6.8) it follows that �i;iCk.S/ � 1 �
p
� . Let � 0 > 0 be small with respect to " > 0

and suppose that � is small with respect to � 0. By Proposition 6.5 there exists an integer
q D q.� 0/ � 1 such that, by assuming that � is small enough with respect to � 0, we have

Pj�l�jCq
�
S2l .�';l:x/ is .L.x/; � 0/-concentrated

�
� 1 � � 0 for j 2 S: (6.12)

Let � 00 > 0 be small with respect to " > 0 and suppose that � 0 is small with respect to � 00.
From �i;iCk.S/ � 1 �

p
� and (6.12), by assuming that �; � 0 are sufficiently small with

respect to � 00, and by assuming that k is sufficiently large with respect to q, it follows
by a statement similar to Lemma 2.3 that (6.11) is satisfied with � 00 in place of � . This
completes the proof of the lemma.

14In fact here we only want � ˛=2, not � ˛=2C � , so this is a much easier result which does
not require Bourgain’s theorem.
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By the previous lemma, by Fubini’s theorem, and by replacing � with a larger quantity
which is still small with respect to " (without changing the notation), we may assume that
�n � �.F1/ > 1 � � , where F1 is the set of all .i;  / 2 Nn � A2;2 such that

Pi�j�iCk

�
�

²
x W

S2j .. 
�1� ;i /';j /:x is

.L.x/; �/-concentrated

³
> 1 � �

�
> 1 � �:

Recall the set F0 from the beginning of the proof. Since � is small with respect to ",
and �n � �.F0/ > ", while �n � �.F1/ > 1 � � , we have �n � �.F0 \ F1/ > 0. In par-
ticular there exists .i;  / 2 F0 \ F1. Similarly, since � is small with respect to ", there
exist i � j � i C k and ' 2 A2;2 such that for � 0 WD S2j .. 

�1� ;i /';j / we have

�¹x W � 0:x is .L.x/; �/-concentratedº > 1 � �; (6.13)

�¹x W � 0:x is not .¹0º; "/-concentratedº > ": (6.14)

Also, observe that � 0 is the re-scaling by 2j of a level-j component . �1� ;i /';j of the
measure  �1� ;i , and  �1� ;i is contained in an O.1/-ball (with respect to the invariant
metric d ) around the identity. On the intersection of A2;2 with this ball, the invariant met-
ric and the norm metric ofAvec

2;2 are bi-Lipschitz equivalent. The diameter of the support of
. �1� ;i /';j is O.2�j / in the invariant metric, so it also has diameter O.2�j / in norm;
hence after re-scaling by 2j , the diameter of the support of � 0 is O.1/ with respect to the
norm metric.

In view of the last few paragraphs, and since � can be taken arbitrarily small compared
to ", we have a contradiction to Corollary 5.16. This completes the proof of the Theorem.

Finally, we prove the more basic fact that entropy does not decrease (a special case of
which is (2.17)):

Proposition 6.12. Let R > 0 and let � 2 P .R2/, � 2 P .A2;2/ be supported on R-neigh-
borhoods of the identities of R2; A2;2, respectively. Then for every n,

H.�:�;Dn/ � H.�;Dn/COR.1/:

Proof. Every h 2 supp � is bi-Lipschitz with constant OR.1/, which implies that
H.h�;Dn/ D H.�;Dn/ C OR.1/. Thus, using �:� D R

h� d�.h/ and concavity of
entropy, we conclude that

H.�:�;Dn/ D H

�Z
h� d�.h/;Dn

�
�

Z
H.h�;Dn/ d�.h/ � H.�;Dn/COR.1/:

7. The non-conformal partitions D
g
n and entropy growth

In this section we assume everything: namely, thatˆ is non-conformal, totally irreducible
and exponentially separated, and that dim� � 1.
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Our objective in this section is to prove an entropy growth result for �:� when � is far
from the identity, but still of bounded diameter. It is important to notice that entropy can
even decrease under such a convolution if we do not measure it in the right way. Indeed,
consider the matrix A D diag.1; 2�n/ for some large n. Then at resolution 2�n (corre-
sponding to Dn), the measure A� is extremely close to being supported on a horizontal
line, hence 1

n
H.A�;Dn/ � 1C o.1/. If � were supported on a bounded neighborhood

of A then, no matter how smooth � is, we would similarly have

1

n
H.�:�;Dn/ � 1C o.1/

since �:� is still close to a horizontal line. At the same time, if dim� > 1C ı, then we
will have

1

n
H.�;Dn/ D dim� � o.1/ > 1C ı � o.1/:

Thus, for large n we certainly have 1
n
H.�:�;Dn/ �

1
n
H.�;Dn/ � ı, which even gives

an entropy decrease.
The problem is, of course, that we are measuring entropy in the wrong coordinates.

The right way is in the coordinates induced byA: LetAxC aD g.x/2A2;2 and let VDU
be a singular value decomposition ofA. Assume that ˛1.A/ > ˛2.A/, where ˛1.A/;˛2.A/
are the singular values of A. For n � 0 we set

Dg
n D VD.Dn/: (7.1)

With respect to this partition, one does not have an entropy drop from � to �:�. Fur-
thermore, under our assumptions on �, we will be able to interpolate between D

g
n and

ordinary dyadic partitions at appropriate scales, to show that entropy growth generally
does occur.

It is worth pointing out that the phenomenon described above cannot occur in the
setup of previous related works. Indeed, in [15, 16] the objects of study were self-similar
measures on R and in Rd , in which all the linear operators involved are conformal. In [3]
the dimension of planar self-affine measures was computed, but, as noted above, the main
ingredient of the proof consisted of computing the dimension of projections of the self-
affine measure onto 1-dimensional subspaces. Thus, also in this case, we essentially dealt
only with 1-dimensional fractal measure. The introduction of the non-conformal parti-
tions D

g
n is a new feature of the present work and we expect they will play a role in future

developments in this area.

7.1. Interpolating between non-conformal and conformal partitions

The purpose of this section is to relate the entropy of a measure with respect to D
g
n to

the entropy with respect to the usual partitions Dn. This relies on analysis of projections
of the measure, and therefore requires the assumptions stated at the start of the section,
which, by Theorem 1.3, imply that

dim�V� D 1 for ��-a.e. V 2 RP1:
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In this section we fix the following notation. Let g 2 A2;2 and recall that we write
g.x/ D Agx C bg . Let n 2 N, and denote the singular values of Ag by ˛1 D ˛1.Ag/ D
2�c1n and ˛2 D ˛2.Ag/ D 2�c2n, with 0 < c1 < c2 (we introduce n because later we
will consider c1; c2 to be fixed and let n ! 1; one may imagine that ci D j�i j). Let
Ag D VDU be a singular value decomposition of Ag , and recall that D

g
n D VDDn, so it

consists of rectangular cells whose long edge has direction v D Ve1 and length 2�.1Cc1/n,
and whose short edge has direction v? and length 2�.1Cc2/n.

As a first consequence observe that for anyM � 0, and up to a translation, Dv˚v?

.MCc2/n

refines D
g
Mn; and in fact,

D
g
Mn _ �

�1
v D.MCc2/n is commensurable with D.MCc2/n:

It follows that for any measure � 2 P .R2/, and for M � 0,

H.�;D.MCc2/n jDc2n/ D H.�;D.MCc2/n/ �H.�;Dc2n/

D H.�;D
g
Mn _ �

�1
v D.MCc2/n/ �H.�;D

g
0 _ �

�1
v Dc2n/˙O.1/

D .H.�;D
g
Mn/CH.�; �

�1
v D.MCc2/n jD

g
Mn//

� .H.�;D
g
0 /CH.�; �

�1
v Dc2n jD

g
0 //˙O.1/: (7.2)

Lemma 7.1. Let R > 1, let g 2 A2;2 be as above, and suppose that c2 � c1 > R�1.
Let � 2 P .A2;2/ be supported in an R-neighborhood of g .with respect to the invariant
metric/. Let � D �:�, where � is a self-affine measure generated by a non-conformal and
totally irreducible system satisfying exponential separation and dim� � 1. Then

H.�;D
g
0 / D OR.1/;

and for all M 2 ¹0º [ Œ1;1/,

H.�; ��1v D.MCc2/n jD
g
Mn/ D .c2 � c1/nC oR.n/:

Proof. We prove the second statement first and adopt the notation from the previous dis-
cussion. Since D

g
Mn consists of rectangles of dimensions 2�.MCc1/n � 2�.MCc2/n with

long edge in direction v, and since ��1v D.MCc2/n consists of strips of width 2�.MCc2/n

in direction v?, every cell of the former partition is divided by the latter partition into
O.2.c2�c1/n/ cells. Therefore we have the trivial bound

H.�; ��1v D.MCc2/n jD
g
Mn/ � .c2 � c1/nCO.1/:

To prove the reverse inequality, use � D �:� D R h�d�.h/ and concavity of entropy
to conclude that

H.�; ��1v D.MCc2/n jD
g
Mn/ �

Z
H.h�; ��1v D.MCc2/n jD

g
Mn/ d�.h/; (7.3)

so it is enough to prove the lower bound for the integrand on the right hand side under
the assumption that d.h; g/ D OR.1/. Recall that Ag D VDU is a singular value decom-
position of Ag , so that D

g
Mn D VDDMn. By assumption, we can write h D gh0 with
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d.h0; Id/ D OR.1/, and therefore h D VDUAh0 C gbh0 D VDh00 C gbh0 , where we have
defined h00 D UAh0 . Note that h00 lies in an OR.1/-neighborhood of the identity. Substi-
tuting this into (7.3), and eliminating the translation gbh0 at the expense of absorbing an
additive O.1/ term into the o.n/ term, we see that it is enough to show that

H.VD.h00�/; ��1v D.MCc2/n jVDDMn/ � .c2 � c1/nC o.n/:

Applying .VD/�1 to all terms, we see that this is the same as

H.h00�; .VD/�1��1v D.MCc2/n jDMn/ � .c2 � c1/nC o.n/:

Now,
.VD/�1��1v D .�vVD/

�1
D .�e1D/

�1
D ��1e1 S2

c1n

(because v D Ve1 and D�1 D diag.2c1n; 2c2n/), so we must show that

H.h00�; ��1e1 D.MCc2�c1/n jDMn/ � .c2 � c1/nC o.n/:

For M � 1 this is a consequence of Proposition 3.6. For M D 0 this follows easily from
Lemma 3.3 and d.h00; Id/ D OR.1/.

The first statement is proved similarly: first write � D g� 0, with � 0 2 P .A2;2/ sup-
ported in an OR.1/-neighborhood of the identity. Write �0 D � 0:�, so � D g�0. Then,
by the same reasoning as above, for some map h00 2 A2;2 within distance OR.1/ of the
identity, we have

H.�;D
g
0 / D H.h

00�0;D0/ D OR.1/;

where the last bound is because �0, and hence h00�0, is supported on a set of diame-
ter OR.1/.

Proposition 7.2. Let R > 1, let � 2 P .A2;2/ be supported on a set of diameter R (in the
invariant metric), and let g 2 supp � . Let 2�c2n < 2�c1n < 1 denote the singular values
of Ag and suppose that c2 � c1 > R�1. Then for every M � 1,

H.�:�;D.MCc2/n jDc2n/ D H.�:�;Dg
Mn/C oR.n/:

Proof. By (7.2), the claim follows if we show that

H.�:�; ��1v D.MCc2/n jD
g
Mn/ �H.�:�;D

g
0 / �H.�:�; ��1v Dc2n jD

g
0 / D o.n/:

This, in turn, follows from the previous lemma, which says that the two extreme terms are
.c2 � c1/nC o.n/, so these cancel up to an o.n/ error, and the middle term is O.1/.

7.2. Entropy growth far from the identity

We can now prove our entropy growth results for �:� when � is far from the identity, but
still of bounded diameter.
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Theorem 7.3. Let � be a self-affine measure in R2 defined by a non-conformal, totally
irreducible systemˆ and satisfying dim�< 2. Then for every " > 0 andR> 1 there exists
ı D ı.�; ";R/ > 0 such that for n � N.�; ";R/, the following holds. Let � 2 P .A2;2/ be
supported in an R-neighborhood of a contraction g 2 A2;2. Then

1

n
H.�;Dn/ > " H)

1

n
H.�:�;Dg

n / > dim�C ı:

Furthermore, if we also assume exponential separation and dim � � 1, then for any
M � 1, writing ai D 1

n
log˛i .Ag/ for i D 1; 2 and assuming a1 � a2 > R�1, we have

1

Mn
H.�;DMn/ > " H)

1

Mn
H.�:�;D.MCja2j/n jDja2jn/ > dim�C ı:

Proof. The argument is identical to that for the previous proposition except that instead
of concavity we apply Theorem 1.6. In detail, let g.x/ D Ax C b and A D VDU be the
singular value decomposition. Let B D VD so that D

g
n D BDn. We claim that the state-

ment follows from Theorem 1.6 applied to � and the measure � 0 obtained by translating
B�1� by �B�1b. Indeed, by left-invariance of d ,

jH.� 0;Dn/ �H.�;Dn/j D O.1/:

Also, again by left-invariance, � 0 is supported on an R-neighborhood of B�1g � B�1b
D U , and since U lies in the compact (and hence bounded) group of orthogonal matrices,
� 0 is supported in an .R C c/-neighborhood of the identity in A2;2, where the constant
c is the diameter of the orthogonal group of R2. By Theorem 1.6 we find that for some
ı > 0, for n large enough,

1

n
H.� 0:�;Dn/ � dim�C ı:

Finally, we have

H.�:�;Dg
n / D H.�:�;BDn/ D H.B

�1.�:�/;Dn/ D H.�
0:�;Dn/CO.1/;

which completes our proof of the first part. The second part follows from Proposition 7.2
and from the first part of the present theorem (using Mn in place of n).

Finally, we have the softer fact that entropy can never substantially decrease under
convolution (if measured at appropriate scales).

Proposition 7.4. Let � be a self-affine measure in R2 defined by a non-conformal, totally
irreducible systemˆ. For everyR > 1, if n >N.R/, the following holds. Let � 2P .A2;2/

be supported in an R-neighborhood of a contraction g 2 A2;2. Then, as n!1,

1

n
H.�:�;Dg

n / � dim� � oR.1/:

Furthermore, if we also assume exponential separation and dim � � 1, then for any
M � 1, writing ai D 1

n
log˛i .Ag/ for i D 1; 2 and assuming a1 � a2 > R�1, as n!1,

1

Mn
H.�:�;D.MCja2j/n jDja2jn/ � dim� � oR.1/:
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Proof. We observe g�1� is supported on an R-neighborhood of the identity and apply
Proposition 6.12 to get

1

n
H.�:�;Dg

n / D
1

n
H.g�1�:�;Dn/CO

�
1

n

�
�
1

n
H.�;Dn/COR

�
1

n

�
D dim�C oR.1/:

The second statement is immediate from Proposition 7.2.

8. Surplus entropy of p�n at small scales

In this section we shall assume that ˆ is non-conformal, totally irreducible and satisfies
exponential separation. We also assume that dim� < 2.

As in the introduction, we identify the probability vector p D .pi /i2ƒ with the mea-
sure

P
i2ƒ pi � ı'i 2 P .A2;2/ and write p�n for the n-fold self-convolution of p in A2;2.

Our goal is to show that the level-0 component of p�n 2 P .A2;2/ has substantial
entropy at small scales, assuming p�n has non-negligible entropy when conditioned on
the fibers of the symbolic coding map ….

8.1. Distances in the affine group

Write G D GL3.R/. Recall that d is a left-invariant metric on A2;2. Identifying A2;2 in
the usual way as a subgroup of G, we may assume that d is the restriction to A2;2 of a
left-invariant metric onG, also denoted by d , which is derived from a Riemannian metric.

Given ˇ1; ˇ2; ˇ3 2 R n ¹0º, write diag.ˇ1; ˇ2; ˇ3/ 2 G for the diagonal matrix with
entries ˇ1; ˇ2; ˇ3 on the diagonal. Given E 2 G write kEk for the operator norm of E.

Lemma 8.1. Let ˇ1; ˇ2; ˇ3 > 0 and set D D diag.ˇ1; ˇ2; ˇ3/. Then

d.D; 1G/ D O.1Cmax ¹log kDk; log kD�1kº/:

Proof. Clearly we can assume that ˇi ¤ 1 for some 1 � i � 3. Write

M D dmax ¹jlogˇi j W 1 � i � 3ºe ;

and set
E D diag.ˇ1=M1 ; ˇ

1=M
2 ; ˇ

1=M
3 /:

Since ˇ1=Mi 2 Œ1=2; 2� for 1 � i � 3, we have d.E; 1G/ D O.1/. Hence,

d.D; 1G/ D d.E
M ; 1G/ �

MX
jD1

d.Ej ; Ej�1/ DM � d.E; 1G/ D O.M/:

Now since M � 1Cmax ¹log kDk; log kD�1kº, the lemma follows.
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Lemma 8.2. For any E 2 G,

d.E; 1G/ D O.1Cmax ¹log kEk; log kE�1kº/:

Proof. LetE D VDU be a singular value decomposition ofE. Since V;U are orthogonal,

d.V; 1G/; d.U; 1G/ D O.1/:

Therefore,

d.E; 1G/ � d.VDU; V /C d.V; 1G/ D d.DU; 1G/CO.1/

� d.DU;D/C d.D; 1G/CO.1/ D d.D; 1G/CO.1/:

Now since kEk D kDk and kE�1k D kD�1k, the lemma follows by Lemma 8.1.

Recall that for W1; W2 2 RP1 we write dRP1.W1; W2/ for the operator norm
k�W1 � �W2kop of the difference between the orthogonal projections onto W1 and W2.
Given A 2 GL2.R/ with ˛1.A/ > ˛2.A/ and singular value decomposition A D VDU ,
recall that we write L.A/ D Ve1 2 RP1.

Lemma 8.3. Let g1; g2 2 A2;2 satisfy gi .x/ D Bix C bi and ˛1.Bi / > ˛2.Bi / for i D
1; 2. Assume that

dRP1.L.B1/; L.B2// D O

�
˛2.B1/

˛1.B1/

�
; (8.1)

˛i .B2/ D ‚.˛i .B1// for i D 1; 2; (8.2)
jb1 � b2j D O.˛1.B1//; (8.3)
j�L.B1/?.b1 � b2/j D O.˛2.B1//: (8.4)

Then d.g1; g2/ D O.1/.

Proof. Note that d.g1; g2/ D d.g�12 g1; 1G/ and

g�12 g1.x/ D B
�1
2 B1x C B

�1
2 .b1 � b2/ for x 2 R2.

Set

E D

�
B�12 B1 B�12 .b1 � b2/

0 1

�
2 G:

Then by Lemma 8.2 it suffices to show that kEk; kE�1k D O.1/: We shall show that
kEk D O.1/. In an analogous manner it can be shown that kE�1k D O.1/. Note that

kEk D O.1C kB�12 B1k C jB
�1
2 .b1 � b2/j/: (8.5)

For i D 1; 2 let ViDiUi be a singular value decomposition of Bi . Then

jB�12 .b1 � b2/j D jD
�1
2 V �12 .hb1 � b2; V2e1iV2e1 C hb1 � b2; V2e2iV2e2/j

� ˛1.B2/
�1
jb1 � b2j C ˛2.B2/

�1
jhb1 � b2; V2e2ij:
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By assumptions (8.2) and (8.3),

˛1.B2/
�1
jb1 � b2j D O.1/:

Additionally,

jhb1 � b2; V2e2ij D j�L.B2/?.b1 � b2/j

� dRP1.L.B1/
?; L.B2/

?/ � jb1 � b2j C j�L.B1/?.b1 � b2/j:

From this and assumptions (8.1) to (8.4),

˛2.B2/
�1
jhb1 � b2; V2e2ij D O.1/;

which shows that
jB�12 .b1 � b2/j D O.1/: (8.6)

For i D 1; 2,

jB�12 B1U
�1
1 ei j D jD

�1
2 V �12 V1D1ei j D ˛i .B1/ � jD

�1
2 V �12 V1ei j

D ˛i .B1/ � jD
�1
2 V �12 .hV1ei ; V2e1iV2e1 C hV1ei ; V2e2iV2e2/j

�
˛i .B1/

˛1.B2/
jhV1ei ; V2e1ij C

˛i .B1/

˛2.B2/
jhV1ei ; V2e2ij

D O.1/C
˛i .B1/

˛2.B2/
jhV1ei ; V2e2ij:

From this and assumption (8.2) we get jB�12 B1U
�1
1 e2j D O.1/. Additionally,

jhV1e1; V2e2ij D j�L.B1/.V2e2/j � dRP1.L.B1/; L.B2//C j�L.B2/.V2e2/j:

From this, �L.B2/.V2e2/ D 0, and assumptions (8.1) and (8.2),

˛1.B1/

˛2.B2/
jhV1e1; V2e2ij D O.1/:

It follows that
jB�12 B1U

�1
1 ei j D O.1/ for i D 1; 2;

which shows that kB�12 B1k D O.1/. From this, (8.6) and (8.5) we get kEk D O.1/,
which completes the proof of the lemma.

8.2. Surplus entropy of components of p�n

Recall that � D pN 2 P .ƒN/ and … W ƒN ! R2 is the coding map associated with ˆ.
Let ¹�!º!2ƒN �P .ƒN/ be the disintegration of � with respect to…�1.B/, where B

is the Borel � -algebra of R2. The function ! 7! �! is measurable and defined �-a.e. We
also write this as ¹�xºx2X ; since the map ! 7! �! is measurable with respect to …�1B.
This is defined �-a.e. since � D …� .
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Given � 2 P .ƒN/ and n � 1 write

Œ��n D
X
w2ƒn

�Œw� � ı'w 2 P .A2;2/:

Lemma 8.4. For every n � 1,

p�n D

Z
Œ�! �n d�.!/:

Proof. We have

p�n D
X
w2ƒn

�Œw� � ı'w D
X
w2ƒn

Z
�! Œw� d�.!/ � ı'w

D

Z X
w2ƒn

�! Œw� � ı'w d�.!/ D

Z
Œ�! �n d�.!/;

which proves the lemma.

Let 0 > �1 > �2 >�1 be the Lyapunov exponents corresponding to
P
i2ƒpi � ıAi 2

P .GL2.R// (see Theorem 2.6(1)). For g 2 A2;2 recall that Ag 2 GL2.R/ and bg 2 R2

are the linear and translation parts of g respectively. Also recall that Pn is the partition
of ƒN into n-cylinders: Pn D ¹Œw� � ƒ

N W w 2 ƒnº.

Proposition 8.5. Let � be a self-affine measure defined by a non-conformal, totally irre-
ducible and exponentially separated system ˆ. Suppose that dim� < 2 and

H.�;P1 j…
�1B/ > 0:

Then there exist " > 0 and M � 1 so that for �-a.e. ! 2 ƒN and n > N.!/,

1

Mn
H.Œ�! �n;DMn jD0/ > ":

Furthermore, writing z�!;n for a random level-0 component of Œ�! �n,

lim inf
n!1

P

�
1

Mn
H.z�!;n;DMn/ > "

�
> "; (8.7)

and there exists a sequence ın & 0 .depending on !/ such that, for i D 1; 2,

lim
n!1

P

�ˇ̌̌̌
�i �

1

n
log˛i .Ag/

ˇ̌̌̌
< ın for all g 2 supp z�!;n

�
D 1: (8.8)

Proof. From H.�;P1 j…
�1B/ > 0 and [12, Theorem 2.2(iii)], there exists "0 > 0 such

that �! has exact dimension > "0 for �-a.e. ! 2 ƒN . Hence

lim
n!1

1

n
H.�! ;Pn/ > "

0 for �-a.e. ! 2 ƒN : (8.9)
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Since ˆ satisfies exponential separation, there exists M � 1 such that

DMn.'w1/ ¤ DMn.'w2/ for every n � 1 and distinct w1; w2 2 ƒn.

From this and (8.9),

lim
n!1

1

n
H.Œ�! �n;DMn/ > "

0 for �-a.e. ! 2 ƒn:

Setting " D "0=M we have, equivalently,

lim
n!1

1

Mn
H.Œ�! �n;DMn/ > " for �-a.e. ! 2 ƒn: (8.10)

We wish to show that this continues to hold when we condition on D0. For this, it suffices
to show that there are sets En D E!;n � A2;2 such that
(1) limn!1Œ�! �n.E!;n/ D 1 for �-a.e. !;
(2) E!;n can be covered by 2o.n/ cells from D0.
This is sufficient because, by (1) and by concavity and almost convexity of entropy, the
entropies

1

Mn
H.Œ�! �n;DMn jD0/ and

1

Mn
H..Œ�! �n/E!;n ;DMn jD0/

are asymptotic as n ! 1; and by (2), the second of these entropies is asymptotic to
1
Mn
H..Œ�! �n/E!;n ;DMn/, because (2) easily implies that

1

Mn
H..Œ�! �n/E!;n ;D0/ D o.1/:

For the remainder of the proof we fix a �-typical ! 2 ƒN , which we will assume
satisfies several full-measure conditions which arise in the course of the proof.

By Theorem 2.6 (and the identity � D
R
�! d�.!/), for i D 1; 2,

˛i .A� jn/ D 2
n.�iCo� .1// for �!-a.e. � 2 ƒN .

Furthermore, as a by-product of the proof of the Oseledets theorem (see. e.g. [25]),

dRP1.L.A� jn/; L.�// D 2
n.�2��1Co� .1// for �-a.e. � 2 ƒN .

Hence, by Proposition 4.4 and the assumption dim� < 2,

dRP1.L.A� jn/; L.!// D 2
n.�2��1Co� .1// for �!-a.e. � 2 ƒN .

It follows that there exists a sequence ın & 0 (which implicitly depends on !) such that
the sets Fn D F!;n defined by

Fn D

8<:� 2 ƒN
W

dRP1.L.A� jn/; L.!// � 2
n.�2��1Cın/;

2n.�i�ın/ � ˛i .A� jn/ � 2
n.�iCın/ for i D 1; 2;

and Œ� jn� \…�1.…!/ ¤ ;

9=; (8.11)
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satisfy
�!.Fn/! 1:

Note that Fn is a union of n-cylinders (since � 2 Fn depends on � jn). We define En D
E!;n � A2;2 by

En D ¹'� jn W � 2 Fnº:

Then, by definition of Œ�! �n, we have

Œ�! �n.En/ D �!.Fn/! 1;

giving the first required property of En.
It remains to show that we can cover En by 2o.n/ level-0 dyadic cells, or equivalently,

2o.n/ sets of diameter O.1/. To begin, observe that by (8.11), for each n � 1 and � 2 Fn,

dRP1.L.A� jn/; L.!// � 2
3ınn � inf

�2Fn

˛2.A� jn/

˛1.A� jn/

and
0 < ˛i .A� jn/ � 2

2ınn � inf
�2Fn

˛i .A� jn/ for i D 1; 2:

Hence we can partition Fn into 2o.n/ Borel sets in such a way that on each cell the values
of L.A� jn/ lie in an interval of diameter inf�2Fn ˛2.A� jn/=˛1.A� jn/ and the values of
˛i .A� jn/ lie in an interval of length 1

2
inf�2Fn ˛i .A� jn/. We obtain a finite Borel partition

Fn D F!;n of Fn such that jFnj D 2O.ınn/ D 2o.n/ and

dRP1.L.A� jn/; L.A� jn// �
˛2.A� jn/

˛1.A� jn/
for F 2 Fn and �; � 2 F , (8.12)

and for i D 1; 2,

j˛i .A� jn/ � ˛i .A� jn/j �
1
2
˛i .A� jn/ for F 2 Fn and �; � 2 F . (8.13)

Every F 2Fn is defined by conditions on n-cylinders so F is again a union of n-cylinders,
hence the collection En of corresponding sets

E D E.F / D ¹'� jn W � 2 F º

is a partition of En, and has the same size as Fn.
Therefore, it is sufficient to show that diamE.F / D O.1/ for all F 2 Fn. For this we

will use Lemma 8.3. Inequalities (8.12) and (8.13) establish the first two hypotheses of
that lemma, so it remains to establish the last two.

Let B � R2 be a ball with center 0 and supp� � B . Let n � 1 and � 2 ƒN with
Œ� jn� \…

�1.…!/ ¤ ;. For � 2 Œ� jn� \…�1.…!/ we have

¹….!/º D
\
k�1

'� jk .B/:
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Hence '� jn.0/;….!/ 2 '� jn.B/, which gives '� jn.0/;….!/ 2 '� jn.B/. It follows that

j'� jn.0/ �….!/j D O.˛1.A� jn//; (8.14)
j�L.A�jn /?

.'� jn.0/ �….!//j D O.˛2.A� jn//: (8.15)

Let n � 1, F 2 Fn and �; � 2 F . Set a� D '� jn.0/, a� D '� jn.0/, �� D �L.A�jn /?
and �� D �L.A�jn /? . By (8.14) and (8.13),

ja� � a� j � ja� �….!/j C j….!/ � a� j � O.˛1.A� jn/C ˛1.A� jn// D O.˛1.A� jn//:

This is the third hypothesis of Lemma 8.3.
Finally, by (8.15),

j�� .a� � a� /j � j�� .a� �….!//j C j�� .….!/ � a� /j

D j�� .a� �….!//j CO.˛2.A� jn//:

Since dRP1 is defined via the operator norm,

j�� .a� �….!//j � j�� .a� �….!//j C dRP1.L.A� jn/
?; L.A� jn/

?/ � ja� �….!/j:

Hence by (8.12)–(8.15),

j�� .a� �….!//j D O.˛2.A� jn/C
˛2.A� jn/

˛1.A� jn/
� ˛1.A� jn// D O.˛2.A� jn//;

which gives j�� .a� � a� /j D O.˛2.A� jn//, the last hypothesis of Lemma 8.3. Thus we
have shown that '� jn and '� jn satisfy all of the hypotheses of Lemma 8.3, and hence
d.'� jn ; '� jn/ D O.1/ for all �; � 2 F . This precisely means that diamE.F / D O.1/, as
needed.

To prove (8.7), we use the trivial identity

1

Mn
H.Œ�! �n;DMn jD0/ D

1

Mn
E.H.z�!;n;DMn//

(which is just a consequence of the definition of conditional entropy and the compo-
nent distribution), and the elementary fact that if a random variable H 2 Œ0; 1� satisfies
E.H/ > " then P .H > "=2/ > "=2. So (8.7) follows from what was already proved upon
replacing " by "=C for some universal constant C > 1.

As for (8.8), from our construction it is clear that

lim
n!1

P

�ˇ̌̌̌
�i �

1

n
log˛i .Ag/

ˇ̌̌̌
< ın for some g 2 supp z�!;n

�
D 1: (8.16)

If
ˇ̌
�i �

1
n

log ˛i .Ag/
ˇ̌
< ın for some g 2 supp z�!;n and if h 2 supp z�!;n then, since

d.g; h/ � R for some global R > 0 (because z�!;n is supported on a level-0 dyadic
cell), we have

ˇ̌
�i �

1
n

log˛i .Ah/
ˇ̌
< ın COR.1=n/ (because we can write h D gg0 with

d.g0; Id/ � R, and so clearly ˛i .h/=˛i .g/ D ‚R.1/ for i D 1; 2, from which the claim
follows). Thus in (8.16) we can replace “some” by “all” at the expense of replacing ın by
C max ¹ın; 1=nº for some universal constant C > 1.
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9. Proof of main results

9.1. Strongly irreducible case: proof of Theorem 1.1

As explained in the introduction, our main result (Theorem 1.1) follows from Theorem
1.4, which is the following statement:

Theorem. If � is a self-affine measure defined by a non-conformal, totally irreducible
and exponentially separated system, and if H.�;P1 j…�1B/ > 0 and dim� � 1, then
dim� D 2.

Proof. Assume for the sake of contradiction that dim� < 2.
Let " > 0 and M � 1 be as in Proposition 8.5. For n � 1 we have � D p�n:�. By

Lemma 8.4, � D p�n:� D R Œ�! �n:�d�.!/, so by concavity of conditional entropy,

1

Mn
H.�;D.MCj�2j/n jDj�2jn/

�

Z
1

Mn
H.Œ�! �n:�;D.MCj�2j/n jDj�2jn/ d�.!/: (9.1)

Let us write z�!;n for a random level-0 component of the measure Œ�! �n, so that for
each !,

Œ�! �n D E.z�!;n/:

Inserting this into (9.1) and using concavity again, we obtain

1

Mn
H.�;D.MCj�2j/n jDj�2jn/

�

Z
E

�
1

Mn
H.z�!;n:�;D.MCj�2j/n jDj�2jn/

�
d�.!/: (9.2)

Our goal is to get a lower bound for the integrand on the right hand side. Specifically we
will show that for �-a.e. !, with probability tending to 1 (over the choice of the compo-
nent), the entropy in the expectation is bounded below by ˛ � o.1/, and when n is large
enough, with some definite probability q > 0 it is greater than ˛ C ı (for another param-
eter ı > 0). This will imply that for large n the right hand side is � ˛C qı � o.1/, giving
a contradiction.

Let R > 1 be a global constant which is larger than the diameter of any level-0 dyadic
component of A2;2. Suppose also that R�1 < .�1 � �2/=2. From now on fix a �-typical
! 2 ƒN . Terms of the form o.1/ etc. are asymptotic as n!1 (but may depend on ! as
indicated).

Since " and M were chosen as in Proposition 8.5,

lim inf
n!1

P

�
1

Mn
H.z�!;n;DMn/ > "

�
> "; (9.3)
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and, for some ın & 0 (depending on !), for i D 1; 2,

lim
n!1

P

�ˇ̌̌̌
�i �

1

n
log˛i .Ag/

ˇ̌̌̌
< ın for all g 2 supp z�!;n

�
D 1: (9.4)

Fix a large n � 1, a component z�!;n in the event in (9.4), and some g 2 supp z�!;n.
Note that R bounds the diameter of supp z�!;n. Write

ai D
1

n
log˛i .Ag/ for i D 1; 2

so that
jai � �i j < ın for i D 1; 2:

Since ın & 0 we may assume that a1 � a2 > .�1 � �2/=2 > R�1. Then, by Proposi-
tion 7.4,

1

Mn
H.z�!;n:�;D.MCja2j/n jDja2jn/ � ˛ � o.1/;

which in view of jai � �i j < ın is the same as

1

Mn
H.z�!;n:�;D.MCj�2j/n jDj�2jn/ � ˛ � o!.1/: (9.5)

This is the general lower bound we wanted for the integrand in (9.2).
Next, assume that z�!;n is in the event in (9.3) and let ıD ı.";R/ > 0 be as in Theorem

7.3. Then, by15 Theorem 7.3,

1

Mn
H.z�!;n:�;D.MCja2j/n jDja2jn/ � ˛ C ı:

Using again the fact that j�i � ai j < ın, this is equivalent to

1

Mn
H.z�!;n:�;D.MCj�2j/n jDj�2jn/ � ˛ C ı � o!.1/: (9.6)

Combining (9.5), (9.6) with (9.2)–(9.4), we find that

1

Mn
H.�;D.MCj�2j/n jDj�2jn/ � ˛ C ı � " � o!.1/:

But since � has exact dimension ˛,

1

Mn
H.�;D.MCj�2j/n jDj�2jn/ D ˛ C o.1/:

This contradiction completes the proof of the theorem.

15This is where the assumption dim� < 2 is used.
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9.2. Triangular case: proof of Theorem 1.7

As in the introduction, let �1 denote projection to the x-axis e1 2 RP1, and also write
e2 2 RP1 for the vertical direction. We recall the statement of Theorem 1.7:

Theorem. Let� be a self-affine measure defined by a systemˆD¹'i .x/DAixC viºi2ƒ
as in (1.6), i.e. ¹Aiº are invertible and lower-triangular. Suppose that

� ¹Aiº are not simultaneously conjugate to a diagonal system;

� ˆ satisfies exponential separation;

� the Lyapunov exponents are distinct: �1 < �2 < �1 < 0 and e2 is contracted at
rate 2�2 . for example, this holds if jci j < jai j for all i 2 ƒ/;

� � is not supported on a quadratic curve;

� the projection �1� has the maximal possible dimension, i.e.

dim�1� D min ¹1; dim�º: (9.7)

Then
dim� D min ¹2; dimL �º:

Let us discuss what changes relative to the proof of the irreducible case are needed.

Furstenberg measures and Ledrappier–Young. Most of Theorem 2.6 continues to hold for
systems which are non-conformal and have distinct Lyapunov exponents, with the excep-
tion of the uniqueness of the limiting distribution (part (4)), and the pointwise convergence
in the last equation of part (5), which no longer holds for all initial lines. Neverthe-
less, the measures �; �� are well-defined as the limiting distributions of L.�n : : : �1/ and
L.��n : : : �

�
1 /, respectively, where .�i / are i.i.d. variables with distribution

P
i2ƒ pi � ıAi .

Under our assumptions that e2 is contracted asymptotically at rate 2�2 , and the matrices
are not jointly diagonalizable, one can show that
(1) � is continuous and has positive dimension, and it is the limiting distribution of

�n : : : �1W for every W 2 RP1 n ¹e2º;
(2) �� D ıe1 , and it is the limiting distribution of ��n : : : �

�
1W for every W 2 RP1.

The Ledrappier–Young formula is valid, but since �� D ıe1 , it simply states that

dim� D dim�1�C dim�e2x for �-a.e. x:

Recall from the introduction that �1� is self-similar. Also it is not supported on a point,
since then � would be supported on a translate of e2, contradicting our assumption that �
is not supported on a quadratic curve. Thus, we know at least that

dim�1� > 0:

This is still far from (9.7), but one cannot in general do better without further information
(see discussion after Theorem 1.7).
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Projections and slices. Due to the fact that �� D ıe1 has dimension 0, Theorem 1.3 no
longer holds. But �� D ıe1 still attracts the random walks started from all initial lines.
This, and the inequality �2 < �1 which we have assumed, mean that the results in Sec-
tion 3 continue to hold as stated.

Note that in the case considered in [3] (where e2 is contracted at asymptotic rate 2�1
instead of 2�2 ), the situation was different: there, we did not have convergence to �� from
all initial lines, and so many analogous results about projections needed to be modified to
non-uniform variants.

The function L. Because dim �� D 0, Corollary 4.2 is no longer valid. Nevertheless, we
have added the assumption

ˇ D dim�1� � min ¹1; dim�º;

hence Propositions 4.3 and 4.4 continue to hold.

Algebraic arguments. As noted in the introduction, in the triangular matrix case, the
attractor could be supported on a quadratic curve, and in such cases the dimension can
be smaller than the expected one even if the other hypotheses hold. We have therefore
added the condition that � is not supported on a quadratic curve as one of the hypotheses
of Theorem 1.7, so Section 5.2 is no longer needed, except for the easy observation that
if � gave positive mass to a quadratic curve, it would be supported on one.

For the non-affinity of L that is proved in Section 5.3, a few modifications are neces-
sary:

In Lemma 5.12, the conclusion is not as stated, but rather, that either B is scalar, or
else it has rank 1 and its image is the common eigenvector of the Ai , namely, e2.

In Proposition 5.14, several modifications are needed. First, as noted above, the fact
that � does not give mass to quadratic curves follows from our assumptions, rather than
from Proposition 5.10. Second, when invoking Lemma 5.12, one must deal with the pos-
sibility that image.A / D e2. Supposing that this is the case, it follows from (5.7) that
b 2 e2, but then e2 is an invariant line under all 'i and we conclude that � is supported
on this line, contradicting again the assumption that it is not supported on a quadratic
curve.

Entropy growth. The entropy growth result, Theorem 1.6, requires no change.

Bottom line. The remainder of the proof can now proceed as it did for Theorem 1.1.
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