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Abstract. We prove that if p is a self-affine measure in the plane whose defining IFS acts totally

irreducibly on RP! and satisfies an exponential separation condition, then its dimension is equal to
its Lyapunov dimension. We also treat a class of reducible systems. This extends our previous work
on the subject with Bardny to the overlapping case.
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1. Introduction

1.1. Statement of results

Let X = J;cp i X € R? be a planar self-affine set, and let u = Y, pi - @it € P (R?)
be a planar self-affine measure, generated by a finite system ® = {¢; };ca of invertible
affine contractions of R? and a probability vector p = (p;)iea. To avoid trivial cases we
assume throughout this paper (and without further mention) that
o the maps ¢; do not have a common fixed point;
e p; >0foralli € A.
We write ¢; (x) = A;x + b; where A; is a 2 x 2 matrix and b; € R2, and for a general
affine map ¢ of R? we similarly write ¢(x) = Ayx + by.

It has been a longstanding problem to compute the dimensions dim X and dim pu.

General upper bounds have been known for some time: the affinity dimension dim, X
bounds the dimension of X [8], and the Lyapunov dimension dim;, i bounds the dimen-
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sion of u [18]." Another, trivial, upper bound is the dimension 2 of the ambient space R?;
thus we obtain the general bound

dim X < min {2, dim, X}, (1.1)
dim p < min {2, dimg pu}. (1.2)

It is a natural question to ask when X and p are “as spread out as possible”, that is, when
these bounds are achieved. Equality turns out to be the situation for “typical” ®, as has
been established in many instances over the past few decades, most often as the generic
behavior in various parametric families of systems, and in some special cases of concrete
systems; see e.g. [5,9, 17,26]. This behavior is not universal, and some counterexamples
are known, but they are rather special, consisting either of systems in which, in suitable
coordinates, the matrices A; are all diagonal [6,22] (see also [20]); or of systems with
many “overlaps”, that is, systems in which there are many algebraic relations in the semi-
group generated by .

Over the past few years results have emerged that apply to specific instances of sys-
tems [2, 10,23,24], under some separation assumption and assumptions on the dimension
of the associated Furstenberg measure. Most recently, in joint work with B. Bardny, we
removed the last assumption and proved the following general result:

Theorem ([3]). Suppose that ® = {; }ica is a finite system of invertible affine contrac-
tions in R? and satisfies the following conditions:

o Non-conformality: There is no coordinate system in which all the maps ¢; are simi-
larities.

o Total irreducibility: There is no finite set {{1, ..., L,} of lines in R? which is invariant
under all of the matrices Aj;.

o Strong open set condition: There is a bounded open set U € R? suchthat U N X # 0,
o;iU C U foralli € A, and ;U N ;U = @ for distinct i, j € A.

Then equality holds in (1.1) and (1.2).

The first assumption, non-conformality, is not actually necessary for the conclusion to
hold, because under the separation assumption given, the conformal (or self-similar) case
is easily dealt with using classical methods. It was stated here and in our earlier paper
because the methods in the conformal and non-conformal settings turn out to be quite
different.

The second assumption, total irreducibility, can be replaced with weaker assumptions
for some systems of triangular matrices [3, Proposition 6.6], but cannot be eliminated
entirely, as is shown by carpet-like examples.

The purpose of the present paper is to replace the third assumption, the strong open
set condition, with a substantially weaker one, analogous to the state-of-the-art in the
conformal case [15, 16]. This is of intrinsic interest, as it is a step towards eliminating
the separation assumption entirely (a possibility which, at present, is only conjectural).

IStrictly speaking, the affinity and Lyapunov dimensions depend on ® and p, not on X and u,
but we suppress this in our notation.
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As further motivation, we anticipate that understanding the overlapping two-dimensional
case will be an important step towards treating the separated case in higher dimensions; we
will explain this point in more detail below. Finally, although our previous work concerned
the same non-conformal class of fractals as here, in fact the proof there reduced to dealing
with a family of conformal-like fractals on the line. The present work requires genuinely
non-conformal techniques, which we introduce here. These are of independent interest.

To state our main result we fix a left-invariant metric d, derived from a Riemannian
metric, on the group A, » of invertible affine maps R? — R2. We say that the system {¢; }
satisfies exponential separation if there exists a constant ¢ > 0 such that for every n € N
and for every pair of sequences iy ...iy 7# ji...J, in A", we have

d(@iy - Qin, @iy - - Qjp) > " (1.3)

Note that the constant ¢ will depend on the choice of metric, but the existence of such
a constant is independent of the metric. Other metrics would also serve for this purpose,
e.g. the norm metric when the affine maps are viewed as 3 x 3 matrices in the standard
way.

Theorem 1.1. Let ® = {¢;};ca be a finite system of invertible affine contractions of R?,
and suppose that © has no common fixed point, satisfies the non-conformality and total
irreducibility assumptions, and is exponentially separated. Then, writing X for the attrac-
tor, we have

dim X = min {2, dim, X }.
Furthermore, for any positive probability vector p, the associated self-affine measure
W =" pi - @il satisfies

dim © = min {2, dimg, u}. (1.4)

The first statement follows from the second using a variational principle due to Morris
and Shmerkin [23]. We therefore focus on calculating the dimension of .

For Theorem 1.1 and other theorems below which assume exponential separation, it
is enough to assume the weaker property that there exists a ¢ > 0 for which, for infinitely
many 7, (1.3) holds over all distinct choices i, j € A”. This is true also for the results in [3]
and several other recent works on the subject. The proof requires almost no modification;
see [15] where it is given on the line. We continue to state our results in the case of expo-
nential separation because this has become customary and holds in many important cases,
but one should remember that it can be weakened, and can be significant (see e.g. [27]).

A version of Theorem 1.1 holds also in terms of random walk entropy. Specifically,
suppose that (1.3) holds for all n (or for arbitrarily large ) for all pairs i, j € A” such that
@i 7 ¢;j. Then (1.4) holds, but we must define the Lyapunov dimension not with respect to
the entropy H(p) of p, but rather with respect to the random walk entropy Hgw (®, p)
of the random walk on the affine group generated by ® and p. The proof of this requires
only minor modifications (specifically, to Proposition 8.5, although not to its statement),
and is by now well understood, so we omit the details.

We finish this subsection with a concrete example. Suppose A = {1,2},let0 <r <3/5

and set 0
ror r
Al = (0 r) and A2 = (}" r).
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Note that the operator norm of these matrices is strictly less than 1. Let b; = (¢, 51) and
by = (2. 52) be any vectors in R? which satisfy

r

-
si+ty#Ftp or s1#
—-r I—r

tr + 55.

Fori = 1,2 and x € R? set ¢;(x) = A;x + b;. Then from our assumption on by, b, it
follows that ¢1, ¢ do not have the same fixed point. We can apply the ping-pong lemma
to show that A, A, generate a free semigroup. Thus,

| 4i — 45| = " foralln > 1 and distinct i, j € A",

which shows that ® = {¢1, ¢} is exponentially separated. Additionally, it is easy to
verify that the non-conformality and total irreducibility assumptions hold in the present
case. Thus the conclusion of Theorem 1.1 is satisfied for the system ®.

1.2. Discussion and reduction

A central tool in this theory is the Ledrappier—Young formula, which in the setting of self-
affine measures is due to Barany and Kdenmiki [4,14], and which we now recall (see also
Section 2.10). Let n* denote the Furstenberg measure of the i.i.d. random matrix product
¢n - Cpr - ...+ &1 where {; takes the value A} with probability p;. This is the unique
measure on the projective line RIP! satisfying the relation n* = > pi- Afn*, where we let
matrices act on the space of lines, and on measures on this space, in the natural way. Also,
let —oo < y2 < x1 < 0 denote the Lyapunov exponents of this random matrix product,
which are negative because the matrices contract (this accounts for the absolute values
later on), and are distinct if we assume total irreducibility and non-conformality. For a
linear subspace W < R2, let my denote the orthogonal projection to W, and write ,u}:V
for the conditional measure of u on x + W, which is u-a.e. well defined. Write H(p) for
the Shannon entropy
H(p)=—Y_ pilogp;.
i€A

Let IT: AN — X denote the natural coding map of the attractor X, let B denote the Borel
o-algebra of R2, and let &; denote the partition of AN according to the first coordinate.

Theorem 1.2 (Ledrappier—Young formula [4]). Let i be a self-affine measure in R?, and,
in the notation above, assume ), < x1. Then the real number H(p) splits as a sum

H(p)=H1+H2+H3

such that
0 < Hi/lx1l < 1anddimmwpu = Hy/|x1| for n*-a.e. W;

0< Hy/|x2| <1and dimp,}f/L = H,/|x2| for n*-a.e. W and p-a.e. x;

dimp = Hy/|x1l + Ha/| x2l;
Hsz = Hy,n (P | 171 B) (in particular Hz > 0).
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The Ledrappier—Young theorem does not by itself determine dim u, because the
expression dim u = Hy/|x1| + H2/|x2| for the dimension is constrained primarily by
the identity H(p) = H; + H, + Hs, and this leaves two degrees of freedom.” But the
theorem also gives bounds for the H;, placing them in a certain compact convex set.
Regarding these parameters as free variables, we may proceed to maximize the linear
expression Hy/|y1| + Hz/|x2| on this compact domain; its maximal value is essentially
the Lyapunov dimension dim, p, and by the Ledrappier—Young formula it is automati-
cally an upper bound on the dimension, dim ;¢ < dimy, p. In order to compute this maximal
value, one relies on two observations:

o If H; < |x1| and if one of the other parameters H; is positive, then the target func-
tion Hy/|x1| + H2/|x2| can be increased by increasing H; and decreasing H;, while
keeping H; + H, + Hj constant.’

o If Hy < |y2|and H3 > 0 then the target function H;/|x1| + H2/|x2| can be increased
by increasing H, and decreasing H3, while keeping H; + H, + H3 constant.

In other words, the maximum is achieved if H; is maximal relative to the constraints, and
H, is maximal given the constraints and H;. From this, one easily derives the formula
for dimy in the cases* H(p) < |x1| + |x2l

e itH(p) < |0l
dimp = {14 2L it | < Hp) < |3l + |22),
2- AP i ]+ |xal < H(p).

In our previous work [3], we proved the following result under the same assumptions
as Theorem 1.1:

Theorem 1.3 ([3]). Under the assumptions of Theorem 1.1 and with the notation in the
Ledrappier—Young theorem,

dimmwpu = min{l, H(p)/|x1|}  for n*-a.e. W. (1.5)

It should be noted that Theorem 1.3 hinges on computing dim ww w, which is the
dimension of a fractal measure on R. In this sense, it does not confront the non-confor-
mality of ® and u directly. Nevertheless, it implies Theorem 1.1 in two important cases:

2There is an explicit description of Hy, H in terms of a conditional entropy, but computing
them is no easier than computing the dimension directly, so we do not present it here.

3Transferring from H, to Hj increases the target function because, due to our assumption
X2 < x1 <0, the coefficient 1/| 1| of Hj is larger than the coefficient 1/|y2| of Hs.

“#In the third case, H(p) > |x1| + | x2|, the formula for the Lyapunov dimension is not explained
by the Ledrappier—Young formula, but is motivated by considerations involving the affinity dimen-
sion. In this case the Lyapunov dimension is greater than 2, and since we take the minimum with 2
in Theorem 1.1, the details of this case do not interest us here.
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1. If H3 = 0, and, in particular, under the strong open set condition.” In this case we saw
that dim 4 = dimy, p provided that H; takes its maximal value given the constraints,
i.e. provided that either H; = H(p) Gf H(p) < |x1|) or Hy = |x1| Gf H(p) > |x1])-
This holds because Theorems 1.2 and 1.3 together imply

Hi/|x1|l = dimzwp = min {1, H(p)/|x1|} for n*-ae. W.

2. If dim u < 1. In this case, since projections are Lipschitz maps and cannot increase
dimension, we know that

dimmy <dimu <1 forall W € RP!.
By Theorems 1.2 and 1.3 we obtain
Hi/|x| =dimawp = H(p)/|x1| forn*-ae W,

hence H; = H(p) < |x1|,sodimu = H(p)/|x1| = dimg, .

Thus, in order to prove Theorem 1.1, we need to prove dim = dimg, u for the cases not
covered above, which is the following statement:

Theorem 1.4. Under the assumptions of Theorem 1.1 and with the notation in the
Ledrappier—Young theorem, if H3 > 0 and dim u > 1, then dim u = 2.

The bulk of this paper is devoted to proving this last result, but many of the interme-
diate steps are valid — and interesting — under weaker assumptions than those above, and
so we prove them under the minimal assumptions necessary. The reader should take note
of the exact assumptions made on @ in each of the sections of the paper; these are stated
at the start of each section and in the main theorems, but, for the sake of readability, not
in all the lemmas and propositions.

1.3. Overview of the argument

In the following paragraphs, we sketch the main ingredients of the proof of Theorem
1.4, and the main auxiliary results that go into it. We shall present it as an argument by
contradiction. Thus, for most of the following discussion, we assume that u is a self-affine
measure generated by ®, and that

e & is non-conformal, totally irreducible, and satisfies exponential separation;
o H; = HPN(?l | H_lo@) > 0;
o | <dimpu < 2.

The proof will depend heavily on the analysis of entropy of measures at a variety of dif-
ferent scales (for the basic definitions see Section 2). In this introduction we are purposely
vague about how we measure entropy, but during this exposition we use the convention

5The SOSC implies H3 = 0 [4, Corollary 2.8].
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that when measuring entropy at some small scale 27", we normalize the entropy by divid-
ing by m, so that after normalization the entropy is comparable to the dimension for
well behaved measures. Then non-negligible entropy means that (after dividing by m) the
entropy is bounded away from 0, perhaps by a very small constant; entropy of order 1
means that before normalization the entropy was of order m; etc.

Denote by * the convolution operation between measures on a group, usually R? or
the affine group; and for a measure @ on the affine group and a measure v on R?, denote
by 6.v the push-forward of § x v by the action map (¢, x) — @x; we also sometimes
write 8.x = 0.8x. The starting point of the analysis is the basic convolution structure of
w as a self-affine measure. By slight abuse of notation, write p = ), pi - 8y, for the
measure on the affine group corresponding to ® (with weights (p;)), so that

p=pp=(p*plpp=--=pT.u

for all n. The overall structure of the proof is similar to other recent results in the area:

Decomposing p*": Express p*" as an average of measures # which are supported on

sets of diameter O(1) in the affine group (with respect to the left-invariant metric d),
and such that a positive fraction of the 6 have non-negligible entropy at scale Cn for
some C > 0.

This step is where H3 > 0 and exponential separation are used.

Normalizing in the affine group: For each piece 6 of p*”, fix an affine map ¢ € supp 6
and replace 6 by its translate ¢ !0 in the affine group, which is supported on an
O(1)-neighborhood of the identity (by the left-invariance of the metric).

This step is meant to deal with some of the problems arising from the non-confor-
mality of the maps, since ¢~ '8 is now supported on maps with bounded distortion.

Entropy growth: Apply an entropy-growth result to the convolution (¢~'0).u, and
conclude that, for a positive fraction of the pieces # of p*”, the entropy of (¢~10).u
is substantially larger than that of u.

We establish the entropy growth result more generally for convolutions of the
form 6., assuming 0 is a measure near the identity of the affine group having non-
negligible entropy at a small scale. We do not require exponential separation of p for
this result.

Returning to the distorted setting: Re-interpreting this for the convolution 6.y =
©((¢™'0).11), we find that for a positive fraction of the pieces 8 of p*", the entropy
of 6.1, when measured in the correct way, is substantially larger than that of .
Here one must measure the entropy of ¢(¢ 6. 1) using partitions whose cells are
adapted to @; roughly speaking, they will be like the images under ¢ of square cells.
We shall loosely call this a non-conformal partition.

Interpolation: We show that the entropy increase observed for the non-conformal parti-
tions implies an increase with respect to appropriately chosen conformal partitions.

We do this by interpolating between the non-conformal and conformal partitions.

We must show this interpolation has a neutral effect on the entropy. This is done with

the aide of fine information provided by the Ledrappier—Young formula and a careful
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analysis of projections and slices of w. This step is the main place where we use the
assumption dim p > 1 (although it also simplifies some of the other arguments). This
step also uses exponential separation and total irreducibility.

Total entropy change: Observing that p*".u is an average (over the choice of the
piece ) of the convolutions of the form 6., we show that the extra entropy from
the last step accumulates to imply that the entropy of p*".u is substantially larger
than that of w, which in view of the identity p*”.u = u, is the desired contradiction.

1.4. Some more details

We now discuss some of these steps in more detail, and the new ingredients in them.

Analyzing the function L and the orientation of cylinders . One interesting new feature
in our proof, which holds without assuming exponential separation or dim y > 1, is an
observation about the orientation of cylinder measures in p. A cylinder measure of gen-
eration 7 is a measure of the form ¢;, ... ¢;, 1, and because the affine map ¢;, ... ¢;,
is highly non-conformal, the cylinder measure is supported very close to a line whose
direction L(A;, ... A;,) is the direction of the major axis of the image of the unit ball
under the matrix product 4;, ... A;,. It is a basic result in the theory of random matrix
products that this direction converges, for a pN-typical sequence i € AN and as n — oo,
to a direction L (i); and the distribution 7 of this direction, as a function of the pN-random
sequence i, is the associated Furstenberg measure. Note that we are now multiplying the
original matrices A; and not, as we did earlier, their transposes, so n # n* in general; see
Section 2.10 for more details.

We are assuming that the symbolic coding IT : AN — X is far from being injective
(since H3 > 0), so for a typical point x € X with respect to the measure & = I1(pY),
the function L potentially can take many values on the fiber IT1~! (x). However, under our
assumptions, it turns out that L does factor through X:

Theorem 1.5. Let i be a self-affine measure in R? of dimension < 2 generated by a
system ® that is totally irreducible and non-conformal. Then L is measurable with respect
1o 171 B (up to a pN-null ser).

Note that this theorem does not require exponential separation or dim p > 1.

The intuition behind the proof is simple. For simplicity assume for the moment expo-
nential separation and dim p > 1. Then, if L were not constant on typical IT-fibers, it
would mean that there is a set E € X of positive p-measure such that for x € E, the
cylinder sets which x belongs to “point” in substantially different directions. Now, these
cylinder measures are very nearly concentrated on a line segment and, heuristically, The-
orem 1.3 implies that their projection to this line has dimension 1 (the rigorous version of
this is given in Section 3.3). It follows that the measure w|g looks, at small scales, like
a collection of uniform measures on parallel line segments, but that this holds simulta-
neously for two different directions. It then follows by a Fubini type argument that the
dimension of u|g should be 2.
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This argument works also without exponential separation, and when dim ¢ < 1. Then
we do not know that the projections of u to lines have dimension 1, but using a projection
theorem due to Bourgain, and the fact that dim n* > 0, one can show that there isa § > 0
such that for n*-a.e. W we have dim mry 0 > % dim p + 8, and this is enough to carry out
the argument.

In summary, under the assumptions of Theorem 1.4, the function L : AN — RP!
descends to a j1-a.e. defined measurable function L : X — RP!,

For details see Section 4.

Decomposing p*". Under the assumptions of Theorem 1.4, we wish to decompose p*”
into “smaller” measures § whose supports have diameter O(1) but which still possess
non-negligible entropy. One should first note that p*” itself does not have this property;
it is a very spread out measure that is supported on exponentially many atoms, describing
a set of exponential diameter.

In this paper, the measures 6 are obtained by first covering the fibers IT™!(x) of the
symbolic coding map by cylinders of a given length n, interpreting the name of each
cylinder as a composition of affine maps in the group, and assigning it the weight that
the cylinder has under the conditional measure of p™ on IT~'(x). The assumption that
H3 = H,n (P | I17'8) > 0 means that these fiber-measures have positive dimension,
and so require exponentially many cylinders to cover them. This leads to 6 having positive
entropy as a discrete measure, and by exponential separation, it also has positive entropy
at scale Cn for some C > 1.

This construction does not give the necessary bound on the diameter of the support
of 6, and, in fact, 8 can still be very spread out. The measure 6 arising as above consists
of atoms at affine maps ¢;, ... ¢;, which correspond to cylinder sets containing x, and
if the directions L(¢;, ... ¢;,) of these cylinders vary enough, then the measure 6 will
be supported on a very large set. We would like to further decompose 6 into smaller
measures 6’ which are supported on sets of diameter O(1), but if we needed to partition
it into exponentially many such sets, then there is the risk that the entropy of each small
piece would be negligible, and that the entropy of 8 originally came from the variation in
directions.

Luckily, the orientation of the cylinder at a point x is controlled by the value L(x):
the n-th cylinder’s orientation converges to L(x) as n — 00, and there is some control of
the rates (this is a feature of standard proofs of the Oseledets ergodic theorem, and a result
of the (eventually) contractive nature of the action of matrix products on the flag space).
Using this, we can ensure that, in order to decompose 6 into pieces of support O(1), we
need only a subexponential number of pieces, and therefore a positive proportion of the
pieces will still have substantial entropy.

For details see Section 8.

Entropy growth. For the entropy growth part of the proof we establish another general
result which does not require the assumption of exponential separation or dim y > 1. In
the following statement, ,, denotes a dyadic-like partition of the affine group into cells
of diameter approximately 27"; see Section 2.5 for details.
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Theorem 1.6. Let 1 be a self-affine measure in R? defined by a non-conformal,® totally
irreducible system ® and satisfying dim u < 2. Then for every e, R > 0 there is a § =
8(i, &, R) > 0 such that for everyn > N(u, &, R), the following holds. If 0 is a probability
measure on the affine group supported within distance R of the identity, then

1 1 1
—HO,Dy) > = ~HO.u,Dp) > —H(w, Dy) + 6.
n n n

The proof is given in Section 6. It has some features in common with results in the lit-
erature, but also requires many new ideas. These are explained in the following summary
of the main steps.

(i) Linearization. This step is similar to previous work. In order to study the entropy
of 6.u, where 0 is a measure in a bounded neighborhood of the identity in the affine
group, we first decompose both 6 and u into pieces 6’ and u’ respectively, so that 0. is
the convex combination of 8. i’; and we choose the pieces so that they are supported on
sets of small diameter.

Next, we use the fact that on small balls (e.g. the supports of 6, '), the action
(¢, x) > @x is essentially linear. Thus we can approximate the action-convolution 6. '
by a Euclidean convolution (6.x) * (pu’) for some (any) choice of x € supp 1’ and
@ € supp b’

Gathering all the pieces together, and using the fact that entropy is concave, we con-
clude that the entropy of 6.y is at least the average entropies of 6’. ' (the average being
over the pieces), and if the pieces are small enough this is essentially the same as the
average of (0’.x) * (pu'), with x, ¢ as above.

This step is explained in more detail in Section 6.3.

(ii) Applying the multidimensional inverse theorem. The inverse theorem in R? from [16]
says that in order for a convolution 7 * v of measures in R? to have entropy that is essen-
tially the same as that of v alone, it must be the case that, at most scales §, there is a linear
subspace V = Vs < R? such that at T-most points x the restriction of 7 to the ball Bs(x)
is concentrated near a translate of V/, and for v-most points y, the measure v on Bs(y)
looks like a combination of uniform measures on translates of V. If 7 has positive entropy
then we know that Vs cannot be the trivial subspace {0} at too many scales, and if Vj
had dimension 2 at a substantial number of scales this is also to our advantage, since
this would mean that on many small balls v looks like 2-dimensional Lebesgue measure.
Thus, to ensure entropy growth, we want to rule out the possibility that dim Vs = 1 at
more than a fraction of all scales.

Now, in our case, with 7 = #’.x and v = @/, we aim to show that gu’ does not look
like a combination of uniform measures on line segments in direction Vy; but, unfortu-
nately, it is very likely that this is precisely what it looks like in some direction. Indeed,
W' is a piece of u, and u is a combination of cylinder measures ¢, ... ¢;, 4, Which,

61n fact, the conformal case is also true, but the proof is different, and we do not pursue this
here.
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as we already noted, look like copies of © squeezed onto a line segment in direction
L(¢i, - ..¢i,) ~ L(x); these look like the orthogonal projection of u to a line, and when
dim p > 1 it is entirely possible (even likely) that this projection has dimension 1. Thus
the fractal structure of y’ actually supports the possibility that its structure is “bad” from
the point of view of applying the inverse theorem, since it looks like uniform measure on
translates of L(x) (so ¢’ looks like the uniform measure on lines parallel to ¢ L(x)).

(iii) Identification of the direction L(x) and using total irreducibility. Summarizing, if
there is no entropy growth in the convolution (6’.x) * (pu’), then, at scale &, on the one
hand ¢’ is uniform when conditioned on translates of the 1-dimensional subspace Vs; on
the other hand, it is uniform when conditioned on translates of lines in direction ¢ L(x).
If these subspaces are transverse, this would lead to u’ having entropy 2, which would
eventually lead to p having dimension 2, contrary to our assumptions. So we conclude
that Vs must agree with ¢ L(x).

Now fix 6" and let ' vary, so also ¢ € supp 6 is fixed, but x € supp u’ varies. Then,
under the assumption that there is no entropy growth, we have found that the measure
0'.x is essentially supported on a translate of an affine line in direction ¢ L(x). Equiv-
alently, the measure ¢~ '6".x is essentially supported on a translate of an affine line in
direction L(x), and this holds for p-most x. We then show that in this situation, L(x)
must be an affine function of x; that is, there exists an affine function v : R2 — R2 such
that p-a.e. the value L(x) is the direction of the line Ry (x).

Finally, we show that if L is affine in the sense above, then w (and the attractor X)
must be supported on a quadratic curve in R2. This, in turn, can be shown to contradict
the total irreducibility of ®, completing the entropy growth part of the proof.

1.5. Triangular matrices

Systems in which the matrices A4; act reducibly on R? present additional challenges, and
our results for them are less complete. An extreme instance occurs when the matrices A;
are jointly diagonalizable, in which case some unusual behaviors can occur, e.g. Haus-
dorff and box dimensions may not agree. This situation has been extensively studied over
several decades, beginning with the work of Bedford [6] and McMullen [22], and we do
not discuss it here.

Our focus will be on the intermediate case, in which the A; have a single common
eigendirection. Then, in some coordinate system, the A; are given by triangular matrices
of the same kind (upper or lower), and we assume such coordinates have been chosen.
For concreteness we consider the lower-triangular case (the upper triangular case being
similar), and write systems ® = {; };ea as

a; 0
i(x) = X+ v;. 1.6
@i (x) (bl- c,-) + i (1.6)
As before, we assume that the maps ¢; are invertible, i.e. a;, ¢; # 0 foreachi € A. Write
€1, e, for the horizontal and vertical lines through the origin, respectively. Then e5 is the
common eigendirection of the matrices above, and e is the common eigendirection of
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their transposes. We are assuming that the matrices are not jointly diagonalizable, so there
is no other jointly invariant direction. Let us now note some of the differences between
this case and the totally irreducible one:

e Without total irreducibility, we shall need additional assumptions to ensure’ that the
Lyapunov exponents are distinct (previously this followed from non-conformality and
total irreducibility).

o Assuming that the Lyapunov exponents are distinct, one of the random walks driven by
{A;} or {A7} admits a unique stationary distribution equal to 8¢, or &, , respectively;
and the other random walk admits two ergodic stationary measures, one of which has
positive dimension, and one again being g, or 0z, , respectively (which of these occurs
is determined by whether the expansion rate of the { A; } acting on the invariant space e,
is 2X1 or 2X2), Either way, this breaks parts of our argument which relied on the uniform
convergence of the random walks to their stationary distribution, or on the stationary
measures 17, n* having positive dimension or being non-atomic.

Crucially, when the {A;‘}-walk is attracted to &¢,, Theorem 1.3 is not valid, and
we get no good bound on the dimension of n*-typical projections; and when {A7} is
attracted to a measure of positive dimension, but non-uniformly and not from all initial
lines, then the information we get about projections of p is also non-uniform.

e Due to the behavior of the random walks, the projection 7; = mg, onto e; plays a
distinguished role in the analysis. Because the foliation of R2 by lines parallel to e, is
invariant under the ¢;, there is an induced system ® = {; };ca of affine maps on R,
given by

@i (x) = a;ix + w1 (vi),
and satisfying
QT = T1¢;. (1.7)

The projection 714 is then a self-similar measure of the system ®. One should note,
however, that exponential separation of ® does not imply the same for &, so computing
dim 7r; p is not always possible with current methods.

e In contrast to the totally irreducible case, in the triangular case, it is actually possible
that X and p lie in a quadratic curve.® Such examples were first given by Bandt and
Kravchenko [1], and in fact they show that there is a 1-parameter family of affine maps
(with triangular linear parts) preserving a given parabola. It is then an easy matter to
choose an exponentially separated subfamily with an arbitrarily large number of maps.
In this way we can obtain a system ® whose attractor has dimension 1, but whose
affinity dimension (or Lyapunov dimension for e.g. the uniform choice of weights) is
larger than 2. This shows that being “trapped” in a quadratic curve is a real, rather than
just hypothetical, obstruction to achieving the Lyapunov dimension.

7If the Lyapunov exponents agree, one can apply the methods from the self-similar case more
directly.

8We remark that by work of Feng and Kienmiki [13], quadratic curves and, in trivial cases,
lines, are the only algebraic curves which can support a self-affine measure.
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Due to these many issues, our arguments do not work in the triangular case in general,
and we are able to handle only one of the scenarios above, namely, when 7 has positive
dimension and n* = &, :

Theorem 1.7. Let u be a self-affine measure defined by ® = {¢;(x) = A;x + v }iep as
in (1.6), i.e. {A;} are invertible and lower-triangular. Suppose that

o {A;} are not simultaneously conjugate to a diagonal system,
o O satisfies exponential separation;

e the Lyapunov exponents are distinct: —00 < y2 < y1 < 0, and e, is contracted at rate
2X2 (for example, this holds if |c;| < |a;| foralli € A);

e [ is not supported on a quadratic curve;

e the projection 11 |4 has the maximal possible dimension, i.e.
dim ;. = min {1, dim pu}. (1.8)

Then
dim y = min{2, dimg, u}.

Remark 1.8. The case covered by Theorem 1.7 is complementary to the one analyzed in
[3, Proposition 6.6]. Because Theorem 1.3 cannot be applied, we have been forced to add
an explicit assumption about dim 71 (where 77 is in fact the projection to a n*-typical
line). The case which the theorem above does not cover is when y» < y1 < 0 but e; is
contracted at rate 2X1; then Theorem 1.3 does hold, but we are unable to carry out the rest
of the argument, and are still not able to go beyond the case when H3 = 0, which already
follows from [3].

The situation in the theorem here is reminiscent of that of self-similar measures in the
plane generated by homotheties, and carpet fractals. In all these cases one gets informa-
tion about u (or X) only if one can show that certain projections are large (or that the
corresponding slices are small). This is unsatisfactory, but examples show that it reflects
the true state of affairs for self-similar and carpet measures, and it is likely that the same
is true in our setting.

There are currently two main ways to try to verify hypothesis (1.8). First, if
the induced system ® satisfies exponential separation, then we will have dim 7 =
min {1, dimg 77y}, in which case (1.8) clearly holds. Second, by the Ledrappier—Young
formula, a “dimension conservation” phenomenon holds:

dim p = dimm; u 4 dim ,uiz for p-a.e. x, (1.9)

where ,uiz denotes the conditional measure on e, + x. If we can show that all vertical
slices X N (x + €) of the attractor X satisfy dim(X N (x + €2)) < max {dim — 1,0},
we would get similar bounds for dim 132, and (1.8) follows from (1.9).
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1.6. Higher dimensions

The study of the overlapping case for planar self-affine measures is motivated not only by
its general interest, but because it is closely related to the higher-dimensional setting. In
this section we very briefly explain this connection.

One can see the connection already in our work on separated self-affine measures in
the plane [3]. There the key ingredient of the analysis was the computation of the dimen-
sion of projections, which are complicated for two reasons: first, they are not self-affine,
but nevertheless they do have some convolution structure, which helps in the analysis; but,
second, although p was separated, its projections to lines are generally not separated. This
makes it necessary to analyze overlapping fractals in the line in order to study separated
planar ones.

A similar situation holds in higher dimensions. As a demonstration, suppose that one
wants to study the separated case of self-affine measures in R3. Let u = Y p; - @i ju be
such a measure. Assume that there are distinct Lyapunov exponents y3 < y2 < x1 <0,
meaning that the normalized logarithms of the singular values of the random products
Aj, ... A;, converge to these constants a.s. The Furstenberg measure n* is also a more
complicated object: it is a measure on pairs (V, W) where V < R3isalineand W <R3 is
a 2-dimensional subspace containing V (this is the so-called flag space). The projections
1. n; to the first and second components now describe the asymptotic distribution of the
random walks A} . A"‘1 V on lines and 47 . A* W on planes.

The Ledrappler—Young formula in thls case says that the entropy H(p) decomposes
as a non-negative sum’ H(p) = H, + H, + H3, where

o dimmyu = Hy/|x1| for ny-a.e. line V;
o dimnwu = Hi/|x1| + H2/|x2| for n3-a.e. plane W;

o dimu = Hi/|x1| + Ha/|x2| + H3/|x3l-
Now, our results from [3] can be adapted to show that H; must be maximal, i.e. dimwy u
=min{l, H(p)/|x1l} for ni-a.e. V. However, that still leaves one degree of freedom to
determine H,, H3. To prove that the dimension is maximal subject to the constraints, it is
then necessary to show that 7y p is maximal.

Now, w14 is a measure in a plane W and is not, strictly speaking, self-affine, but it
shares some of that structure of a self-affine measure, in the sense that it can be written as

W = Zpi CTTW i

(note that the right hand side does not consist of affine images of the left hand side,
but when this identity is iterated the distribution of the measures on the right hand side
becomes consistent across scales).

Therefore, one may hope to analyze my i using the methods we have developed for
self-affine measures in the plane. However, although p is a separated self-affine measure
in R3, its projection 7y i on a plane W in general is not separated. Nevertheless it is

°If we did not assume separation, there would be a fourth term Hy = H(E, #1 | 171 8).
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likely to be exponentially separated for 15 -typical choices of W. One therefore hopes that
the methods from this paper can be applied there.

We anticipate that in this way one can, by a suitable induction on the dimension of
the ambient space, compute the dimension of exponentially separated self-affine mea-
sures in general, at least under the assumption of total irreducibility and, possibly, simple
Lyapunov spectrum. We hope to return to this in a future paper.

1.7. Organization of the paper

In the next section (Section 2) we develop notation and background, such as basic results
on entropy, the Oseledets theorem, Furstenberg measure and related material. Section 3
establishes many technical results about the entropy of projections and slices of w as well
as those of the cylinder measures of  and its components (restrictions to dyadic cells). In
Section 4 we study the function L describing the orientation of cylinders and show that it
is well-defined p-a.e. (Theorem 1.5). In Section 5 we give some algebraic results showing
among other things that L is not affine. Section 6 establishes the entropy growth theorem
(Theorem 1.6). Section 7 analyzes the entropy of non-conformal partitions. In Section 8
we construct the decomposition of p*” into high-entropy measures supported on sets of
diameter O(1). Finally, Section 9 contains the proof of the main theorem, Theorem 1.1.
We include a summary of our main notation:

Ak.m Space of maximal-rank affine maps R — R™
AL Vector space of all affine maps R¥ — R
Agp. by For ¢ € Az 5 with p(x) = Apx + by

Tw Orthogonal projection onto W

Te, Sa Scaling x + cx and translation x — x + a

D = {¢j}ien Affine invertible contractions of R?, no common fixed point
p = (Pi)ieA Positive prob. vector; identify with ) p; - 8y, € P(A42.2)
X Self-affine set

uw Self-affine measure, L = ) ;cp PiQi

a, B,y Dimension of p, its projections and slices (Section 2.2)

x2 <1 <0 Lyapunov exponents, Section 2.10

nn Furstenberg measure of products of A; and A7, resp.

Giy iy Aiy iy Composition ¢;, o --- o ¢;,, etc.

[alc AN Cylinder set corresponding to a € A"

S Shift map on AN

I1 Coding map AN - x

&= pN Product measure on AN

& Conditional measure on IT~ ! (IT(w))

/,L)‘C/ Conditional measure on x + V for line V < R?

RPT Projective space (space of lines in R?)

X € RP! element of RPT (sometimes associated to x € R? \ {0})

a1(4) > az(A4)

Singular values of a matrix A

L(A), L(w) € RP!

Major axis/asymptotic version (Sections 2.4, 2.10, 4)

Dy

Partition into level-n dyadic cells or equivalent (Section 2.5)
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!D,EV oW Dyadic partition in coordinates W & wt
Vx,n, V57 Dyadic components (Section 2.6)

v,,. Y, C A* See Section 2.7

I(n),K(n) See Section 2.7

d Left-invariant metric on A »

dpp! Metric on RP1: dpp1 (V. W) = |lny — ||
dry Total variation metric on measures
H(,€),H(v,€| &) | Entropy (resp. conditional)

V1 * Vp Convolution in RZ or Ao

0.v Convolution of § € P (A2 ) and v € P R?)

2. Preparations

2.1. Conventions

We equip R? with the Euclidean norm. Spaces of matrices and linear maps are given
the operator norm. In a metric space, B, (x) is the closed ball of radius r around x, and
E®™ is the open r-neighborhood of E, that is, all points of distance < r from E. We
write (X)) for the space of Borel probability measures on X. All measures are Borel
measures unless otherwise stated and all functions are assumed measurable even if not
mentioned explicitly. Convergence of measures in (X)) is by default understood to be
weak convergence, although we will sometimes also consider the total variation metric
on P (X), which we denote d7y . We use standard big-O and little-o notation.

2.2. Self-affine sets and measures

Throughout the paper, ® = {¢; (x) = A;x + b; }ien is a system of invertible affine con-
tractions of R? without a common fixed point, and X # @ is the associated compact
attractor, defined uniquely by the relation

X =Jaw).
ieA

We also fix a strictly positive probability vector p = (p;)iea, and let u denote the asso-
ciated self-affine measure, defined uniquely by the relation

M=ZPi'§0iﬂ-

ieA
We write A* for the set of all finite words over A. Forawordi =iy ...i, € A*, let
@i = Qiy - Piy»

and similarly write A; = A;, ... A;,, pi = Di, - .. Diy,» etc.
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We define the coding map, IT : AN — X, by
@) = lm ¢, (0),
n—o0

where the limit exists by contraction. Then X = image I1. We write

£=p"
for the product measure on AN with marginal p, so that
u = TIE.

Fori e A" we refer to the measure g;u as a (generation-n) cylinder measure. We also
define the generation-n cylinder set [i] € AN by

[l=4GeAN i jn=1i1...in},

which is closed and open in the product topology. The corresponding generation-n cylin-
der measure of § is defined by &3 = &([i])™! - €|, and we have

gin = T1&p,
so that the generation-n cylinder measures of u are the images under IT of generation-n

cylinder measures of £.
Throughout the paper, we write

o =dim pu,

and, when assuming non-conformality and total irreducibility, we let 8 denote the n*-
almost-sure value of orthogonal projections,

B =dimawypu forn*-ae W

(which exists by Theorem 1.2; for n* see that theorem or Section 2.10 below). Note that
if exponential separation is assumed, then § = min {1, H(p)/|x1|} by Theorem 1.3. Also
set

y=a—p
It is another consequence of the Ledrappier—Young theory that y is the a.s. dimension of
the conditional measures of y on translates of lines perpendicular to n*-typical directions.
For details see Theorem 1.2 above.

2.3. Affine maps, projections, dilations, translations

We write Ay, for the space of maximal-rank affine maps R¥ — R™, and Azefn for the

vector space of all affine maps R¥ — R™, so that Azp C A‘z"’c2
We endow A, , with a left-invariant metric d, derived from a Riemannian metric, and
endow AX°5 with a norm. These induce the same topology on A5 >, but the metrics are not

bi-Lipschitz equivalent.
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An affine map ¢ can be written as ¢(x) = Ax + b for a matrix A and vector b. In
general, we denote A, b by Ay, by, respectively.

For a subspace W < R2, we write my : R? — W for the orthogonal projection
onto W. We often identify a projection my with the affine map R? — R of norm 1,
obtained by endowing W with a unit vector and corresponding coordinate system. Con-
versely, a functional 77 of norm 1 corresponds to an orthogonal projection to (ker 77)*.
With this identification, for any line W and affine map ¢ : R? — R? with ¢(x) = Ax + b,
it is easy to check that

mw 0 9(x) = (£D|lww o Al| - maxw (x) + 7w (b), 2.1)

where the sign depends on the orientation we used to identify W and A*W with R.
The operations of dilation and translation in R¥ are denoted by S, and T}, respectively,
i.e., for ¢ € R we write Sq(x) = ¢ - x, and for a € R¥ we write T, (x) = x + a.

2.4. Projective space, singular values and the function L

We write RP! for the 1-dimensional projective space, i.e. the space of lines in R2. We
define the metric dpp1 (-, +) on RP! by

d]RPI(Vs W) = |y — ”W”opv
where || - ||op is the operator norm. We note that there is a constant ¢ > 1 such that
Isin X (V, W)| < dpp1(V, W) < c|sinx(V, W)|. (2.2)

For v € R?\ {0} we write 7 = Rv € RP!, and also denote elements of RIP! generi-
cally by X, even when no representative x was chosen. We continue to also denote linear
subspaces of R? by V, W etc.

Given A € GL,(R), let ¢ (A) > a2 (A) denote its singular values, i.e. if A= VDU isa
singular value decomposition, then D = diag(ct; (4),2(A)). These are also characterized
by a1 (A) = || A and a2 (A) = ||A~!|| 7!, and represent the length of the major and minor
axes of the ellipse which is the image A(B1(0)) of the unit ball.

Let e}, e, denote the standard basis vectors in R2. Assuming oy (A4) > a5 (A), write

L(A) = Ve, € RP!

for the direction of Ve; (L(A) is not defined if a1 (A) = az(A)).

Forie A" and ¢; = ¢;, ... @;, we call L(A;) the direction of ¢; and of the cylin-
der g;iu. We also say that a1 (4;) is the diameter, or length, of the cylinder ¢;u and that
oz (Aj) is its width.

Lemma 2.1. Ler W € RP! and A € GL,(R), and suppose that L(A) is well defined.
Then
1A]l - [sin st (L(A), WH)| < 7w o A|| < || All,

and in particular, for ¢ as in (2.2),

¢ A] - dgpi (L(A), W) < [lw o A|| < ||A].
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Proof. The inequality on the right follows from ||z A|| < ||7w ||||A]| = || A|| and the one
on the left by considering a unit vector v such that || Av|| = || 4]|, and noting that Av points
in direction L(A), so ||mw Av| = ||Av]| - |sin X (L(A), WL)|. |

2.5. Dyadic partitions

We work extensively with the dyadic partitions of R and R?. The level-n partition of R is
defined by
k k+1
D, = {[_ ) ke
n- on

We write D; = Dj;] when 7 € R is non-integer. In R¢ we write

DY ={I, x...x1y:1; € D).
and generally omit the superscript. For W € RP! and m > 0 write
4 — —
DWW = (! D) V (7. D).

This is just a dyadic partition in the coordinate system determined by W, W+,

Two partitions are C-commensurable if each element of one intersects at most C
elements of the other. If ¢ is an isometry of R or R¢ then D, and 9D, are O4(1)-
commensurable, and also DY W and D, are O(1)-commensurable.

We will need a similar system of partitions of A, . By [19, Remark 2.2], there exists

a collection of Borel sets
{Qni CAsp:neZ,ieN},

having the following properties:
(1) Az = ;en On,i forevery n € Z;
(2) On,iNQm,j=0Bor Qn; C Qp,; whenevern,m € Z,n > m, i, j € N;
(3) there exists a constant C > 1 such that forevery n € Z and i € N there exists ¥ € O, ;
with
B(y,C™'27") C Q4 C B(y,C27™),

where the balls are taken with respect to the left-invariant metric d.

For each n € Z, denote by JO,f >2 the partition {Q,; : i € N} of A, 5. These partitions
behave'” much like the dyadic partitions of R¢ and we usually denote them simply by D,
(whether we mean the partition of R or A > will be clear from the context).

100ne difference between D;, > and dyadic partitions in R4 is that there is no guarantee that

. . A . .
a decreasing sequence of cells E1 D E; D --- with E, € D, 2*? must be strictly decreasing. For
some 7 it might be that £, = Ej. But property (3) ensures that this can only happen for at most
boundedly many consecutive values of n. In any case, this will never be an issue.
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. A
Lemma 2.2. There exists a constant C' > 1 such that for everyn > 0 and Q € D;, >,

#HQO e D220 coy<C.

We omit the proof. For a similar statement with proof see [3, Lemma 2.4].

2.6. Component measures

For a partition @ (in R? or in A, » respectively) we write @Q(x) for the unique partition
element containing x. For a probability measure 6, write

1

"= 9w

0la
for the conditional measure of 8 on A, assuming 6(A) > 0.

For a probability measure 6 on a space equipped with refining partitions @, @5, .. .,
we define measure valued random variables 6y , such that 6 , = 0q,,(x) With probability
(@ (x)). We call Ox , an n-th level component of §. When several components appear
together, e.g. 6x , and 7, ,, we assume x, y are chosen independently unless stated oth-
erwise. Sometimes n is chosen randomly as well, usually uniformly in some range. For
example we write, for n, > n integers and an event U,

1

na
_ P(ux,n, € U). 2.3
T L Pl e W (2.3)

n=ni

Pnlsignz(ﬂx,i € u) =

We write E and E,,, <; <, for the expected value with respect to the probabilities P and

Pny <i<n,-
We also introduce notation for randomly chosen integers in interval ranges: Given
integers n > m > 1 let Ny, = {m,m + 1,...,n} and denote the normalized counting

measure on Ny, , by Ay p,ie. Ay p{i} =
in place of N, and A1 .

In Euclidean space we also introduce re-scaled components: For 8 € £ (R?), denote
by 0% the push-forward of 6y , by the unique homothety which maps Dy (x) onto [0, 1)2.
We view these as random variables using the same conventions as above.

Component distributions have the convenient property that they are almost invariant
under repeated sampling, i.e. choosing components of components. More precisely, for
Vv E J’(Rd )and m,n € N, let P, denote the distribution of components V5l 0<i<n,
as defined above; and let Q, ,, denote the distribution on components obtained by first
choosing a random component vy ;, 0 < 1 < n, and then, conditionally on § = v, ;, choos-
ing a component 67/, i < j <i 4+ m with the usual distribution (note that 7>/ = v¥»/
is indeed a component of v).

1 . .
7w foreachm < i <n. Write N, and A,

Lemma 2.3. Givenv € P (Rd) and m,n € N, the total variation distance between P,
and Q,, ,, satisfies

For the proof, see [16, Lemma 2.7].
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2.7. Random cylinder measures with prescribed geometry

The symbolic space AN comes with the natural partitions &, into level-n cylinder sets.
It will be convenient to consider more general partitions into cylinders of varying length.
Thus, if E € A™* is a collection of words such that the cylinder sets corresponding to the
words in E form a partition of AN, then we say that Z is a partition. In this case we also
let 8 denote the associated “name” function E : AN — A*, so E(i) is the unique word
in E such thati € [E(i)].

We return to our self-affine measure p, recalling the notation from Sections 2.2
and 2.3. We first note that by iterating the basic identity u = ) ",c, pi - i, for any
partition E C A* we get

w=_ pisiit, (2.4)

icE

and if V € RPP! then by applying 7y to the above, we get

Ty p = Zpi TV Pl (2.5)
i€k
In these identities, if £ = A” for large n then the measures ¢;u and 7y ¢;u exhibit sub-
stantial variation in geometry as i ranges over E. Instead, it is useful to choose other
partitions which make their behavior more uniform. We present these next.
First, we would like (the supports of) the measures ¢;u to all have roughly the same
diameter. To this end, forn > 1 let

U, = {ig,....im € A" 11 (Aig,...iy) < 27" < o1(Aig,...ipy_y)}

-lm

(we could have equivalently used norms instead of «;). Because the ¢; are contractions,
W, forms a partition of AN for every n > 1 and it is easy to see that there exists a constant
co > 0, depending on the matrices but independent of n, such that for every i € ,,,

co2™" < ai(4y) = |4 =27".

Next, we will sometimes want the “width” of the cylinder ¢; i to vary uniformly. Thus,
for n > 1 define

Yy ={i1...im € A" 1 02(Aj i) <277 < a2(Aiy iy}
Then there is a constant c(/) > 0 such that for every i € Y},
662_n < ay(4;) <27".

Every measure on Euclidean space has associated to it its dyadic components. For
a planar self-affine measure p, one can also decompose p into cylinder measures, i.e.
measures of the form ¢ fori € A*. As with dyadic components, it is natural to view the
cylinders as random measures, with the naturally defined probabilities.
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For any given n € N we introduce a random word U(n) € A" chosen according to the
probability measure p”. That is,

P(U®n) =i) = {Pi ifi e A",

0 otherwise.

Similarly, we define the random word I(n) € W, according to the probability vector p,
ie.

. pi ifie W,
PI(n) =1) =
() ) {O otherwise,
and define K(n) to be the random word taking values in Y, according to p, i.e.
if T,
PR =w) =17 "0
0 otherwise.

The representation of p as a convex combination of cylinder measures in equation (2.4)
then takes the form

u = E(pumm) = E(giomm) = E(pgmpi). (2.6)

The first represents (0 as a combination of cylinder measures of fixed length 7, the second
as a combination of cylinders having diameter equal to 27" up to a constant factor, and
the last as a combination of cylinders of width 27" up to a constant factor. We may also
randomize 7 in the same way as we do in the case of components, thus for example for
any observable F,

na
En, <i<n, (F(@riy)) = my i 1 igl E(F (g16)1))-

and use the same notation for probabilities and expectations over the random cylinders
PK(n) M-

2.8. Entropy

Let v be a probability measure and @, @’ finite or countable partitions of the underlying
probability space. The entropy of v with respect to the partition @ is denoted H (v, @),
and, when conditioned on @', by H(v, @ | @'). That is,

Hv, Q)= —Zv([)logv([)

lIe@
Hv.Q|Q)=H@v.Q@vQ@)—Hv Q) (2.7)
=Y v()-H(. Q). (2.8)

Ie@’
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assuming the sums are finite. Here @’ v @ denotes the common refinement of the parti-
tions @', @, and by convention the logarithms are in base 2, and 0log 0 = 0.

The entropy function is concave and almost convex in the measure argument. That is,
if v; are measures and (g;) a probability vector, then

Y aiHi, Q) < H(Zqz'vi,@) <Y qiH®i, Q) + H(g),

where H(q) = —}_gilogg;.
If @, @' are C-commensurable partitions (i.e. each atom of one intersects at most C

atoms of the other), then they have comparable entropies; more generally, replacing any
one of the partitions in the expression H(v, A v B | € Vv D) by a partition that is C-
commensurable to it results in an additive O¢ (1) change in value.

The entropy function v — H(v, @ | Q') is continuous in the total variation distance
dry(-,+). Infact, if dry (v, 0) < ¢ and if each atom of @’ intersects at most k atoms of @,
then as in [16, Lemma 3.4],

|[Hv,Q|Q)—H(,Q|Q")| <2elogk +2H(g/2). 2.9)

In particular, using the fact that for n > m each atom of JD,‘,{, intersects 24~ atoms
of JD,‘f, this implies that if d7y (v, 6) < &, then

1 2H(s/2
H(v. Dy | D) — ——— H©O.D, | Dy)| < 2d6 + ZLED  210)
n—m —m

n—m n

The same bound holds for dyadic partitions in any orthogonal coordinate system
Wewt

2.9. Entropy in R¢

Forav e P(R%) orv e P(Az2), we call H(v, D,) the scale-n entropy of v. We collect
some basic properties of this quantity.
We often normalize by 7, in which case

lH(v, D) <d+ 0(log(2 + diam(supp v))).
n

n

By the definition of the distribution on components, for n,m > 1,
HW, Onim | DOn) = E(HWx,n» Dntm))- (2.11)
Hence, for v € £ (R?) we have the bound
1
EH(V’ Dyyi | Op) < d,,

and similarly in A, » with another constant on the right hand side.
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Scale-n entropy is insensitive to coordinate changes: for v € #(R?) and W € RP!,
.. 4
the partitions O, and [O,E’V ®W are 04 (1)-commensurable, hence

|H(0. D) — HO. D ®V )| = 0(1), (2.12)

and similarly for conditional entropy.
Scale-n entropy transforms nicely under similarity maps: For any similarity f :
R? — R? and v € £ (R¥), writing Lip( f) for the Lipschitz constant of f, we have

H(fl), ;Dn) = H(V, i)n-l-logLip(f)) + 0(]) (213)
= H(, Dy) + O(1 + |logLip(f)])- (2.14)

In particular, recalling the notation T,, S, for translation and scaling,
H(T,v,D,) = Hw, D,) + 0(1) fora € RY, (2.15)

H(Scv,Dn) = HW, Optioge) + O(1)  fore > 0.

Thus, using equation (2.1) and Lemma 2.1, if ¢(x) = Ax +b € A, and W € RP!
satisfy dpp1 (L(A), W) > ¢, then for every measure v € P (R?) and every 7,

H(wwov, Dp) = H(mwaxwv, Dptiog4)) + Oc(1). (2.16)
Similarly, as a consequence of concavity and of (2.15), for any 6, v € £ (R?) we have
H@ xv,Dy) > Hv, Dy) + 0(1). (2.17)

Also, the entropy of images is nearly continuous in the map: If sup,, | f(x) — g(x)| < 27"
then

|H(fv,D,)— H(gv, Dy)| = O(1). (2.18)
For v € P (R?), the entropy dimension of v is defined as
H(l), i)n)

dim. v = lim
n—o00 n
if the limit exists (otherwise we take limsup or liminf as appropriate, denoted dim, v
and dim, v).

Lemma 2.4. Ifv € P (R?) is exact dimensional then dime v exists, and moreover
dimv = lim ————.
n—o0 n

The proof of the lemma can be found in e.g. [11].

The following lemma expresses entropy in terms of the contribution of different
“scales”. The proof is identical (or in the case of A, similar) to the proof of [15,
Lemma 3.4], and is therefore omitted.

Lemma 2.5. Let 6 € ?(Rd) or 0 € P(Azp), letn > m > 1, and let k > 0 be given.
Suppose that diam(supp 8) = O(27%). Then

1 1 m
—H(Q, i)k-‘rn) = Ek§i§k+n (—H(@ll,,,‘, @i+m)) + 0(—)
n m n
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2.10. Random matrix products, Furstenberg measure, and L again

We rely on the following classical results about random matrix products (see e.g. [7,
Chapter I11]).

Theorem 2.6. Let {B;}icr be a finite set of invertible matrices and q = ) ;cr ¢i - B,
a probability measure on GL;(R), with q; > 0. Assume that {B;} is non-conformal and
totally irreducible (in the sense of the introduction). Let {1, (>, ... be an i.i.d. sequence of
matrices with marginal distribution q.

(1) There exist constants y1 > x2 (called the Lyapunov exponents) such that with prob-
ability 1,

a1 (8y...8,) = 2(X1+0(1))n’ ar(by ... b)) = 2(xa+o(M))n

as n — 0o. The same holds if the order of the products is reversed (since B, B* have
the same singular values).

(2) For every v € R2?, with probability 1,
1 aoll = 200 gt gty = 2o

as n — oo (the o(n) error terms depend on the sample ({;) and on v). If the matrices
are multiplied in the opposite order, the limits exist in probability.

(3) There exists a random subspace W € RP (which is a measurable function of
1, 8o, .. .) such that with probability 1,

Jim LGy ... 8a) = W.

If the product is taken in the opposite order then W is still the limit in distribution
(but generally not in probability).

(4) The distribution t € P (RPY) of W is the Furstenberg measure associated to q. It is
the unique measure satisfying T = Y ;cr ¢i - Bit. It has no atoms and dim t > 0.

(5) For any continuous measure A on RP', we have
lim E(¢...8,(1) ==,
n—>00
and with probability 1,
lim ¢;...¢,(A) = éw.
n—>oQ
Furthermore,
lim &,...0,V =W indistribution and uniformly in V € RP'.
n—>0o0

We can view the function L on matrices (Section 2.4) as a partially defined function
on words in A* = (72, A", given by
L(iy...in) = L(A4;, ... Aj,)

(it is defined whenever A;, ... A;, have distinct singular values). In view of Theorem
2.6(3), we can extend the function L to a £-a.e. defined function of infinite sequences:
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Definition 2.7. Given our system {¢; };ca of affine maps with ¢; (x) = A;x + b;, and a
probability vector p = (p;)iea, we define L : AN — RP! by

L@) = lim L(A, - Ao,)-

The limit in the definition exists £-a.e. by Theorem 2.6. We also define n = L&, and note
that for any continuous measure A on RP!, by part (5) of the same theorem, for £-a.e.
w € AN,
SL(w) = lim Awl . Awnk-
n—oo

We define n* analogously, using the system (A7) of matrices and p.

The following is a variant of [3, Lemma 2.6]. We include it here for completeness:
Proposition 2.8. There exist constants Cy, Co, N > 1, which depend only on {A;}ien,
such that with the notation of Section 2.7 for every V.€ RP! and n > N we have

Elsisn(SAi*(j)V) < Elgiscln(SAa”V),

and the Radon—Nikodym derivative of the measures above is bounded by C,. Conse-
quently, if U € RP is an open set and n*(U) > 1 — & for some & > 0 then for n > n(e, U),

inf Elfifn(SA*. V(U)) >1— C2€.
VeRP! 1@

Furthermore, the proposition also holds with K in place of 1.

Proof. We carry out the proof for the random words I(i); the proof for K(i) is sim-
ilar. Choose C; such that max;ep ||A,'||C‘/2 < 1/2, write ¢ for min;ep o2(A4;), and
set C, = Cy(1 —logco). If u € A¥ appears as I(i) on the left hand side then |4, | >
€027 > 927" (recall the definition of I(i)), which using || 4, || < ]_[;c=1 Ay, || implies
that k < (C1/2)(n —logcg), which is < Cyn for n > —logcg; so u appears on the right
hand side as well.

Letl <i <j <nbewithu € ¥; N, then 27/ > a;(4,) > co2~*, and so j —i
< —logcyp. It follows that u appears on the left hand side at most 1 — log ¢ times, which
shows that its probability in the expectation on the left is at most (1 — log co) py/n. Fur-
thermore, on the right the corresponding term has probability p, /(Cin). This proves
absolute continuity and shows that the Radon—-Nikodym derivative is < C5.

For the last statement, by Theorem 2.6(5), Elﬁifcln(SA;([)V) — n* as n — oo uni-
formly in V' € RP'. We conclude that

limsup sup Ei<i<cin(Saz, v(RP'\ W) < n"(RP'\ W) <e,

n—>0o0 VERPI

and apply the first part to find that

limsup sup Elsifn(SAI*(i)V(]RIP’I \ U)) < Cae. |

n—>o0 VERPI
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3. Entropy of projections and slices of u

In this section we assume that @ is totally irreducible and non-conformal, but we do not
assume exponential separation or dim o > 1.
Recall that

a=dimyu, p=dimrypyu forn*ae W, y=oa-p

(B is well defined by Theorem 1.2). Lemma 2.4 tells us that for n*-a.e. W, the entropy
of 7y u at a large scale n is close to nf. In this section we get a similar lower bound for
all (rather than n*-almost-all) projections of w, uniformly in the direction of projection,
and also projections of cylinders ¢;, ... ¢;, i, and of components j, ;. We also examine
certain conditional measures of p along lines perpendicular to n*-typical directions, and
determine their entropies.

The methods here are mostly not new, and some of the statements have also appeared
elsewhere, but others have not. In particular, the uniform lower bound on the entropy of
projections of u is new. We give a full development for completeness.

3.1. Projections of | and its cylinders

One of the basic mechanisms in the study of self-affine measures is that projecting a
typical cylinder measure in a fixed direction is essentially the same as projecting p in
an n*-random direction, because the “orientation” of high-generation cylinders becomes
increasingly random. In the discussion below, the reader should note the different roles
of the Furstenberg measure 7 associated to the random matrix product of the A;, and the
Furstenberg measure n*, associated to the products of the transposed matrices, A.

To see how n* comes into the picture, observe thatifi =iy ...i, € A" and W € RP!
are fixed, then, writing t = t(i) = |[mw A4;, ... 4i, |, by (2.1) we have

ﬂWAil ...Ain = :l:StnA;-"n...A;-"lW

(recall that S;x = tx is the scaling operator). This means that, up to a translation and
reflection, the projection onto W of the cylinder ¢;, ... ¢;, it is just the projection of
to another line (the line A} ...A;‘l W), but scaled by ||ww A;, ... Ai,|. The subspace
A;‘n . A;."l W, when iy ...i, are chosen at random according to p”, is asymptotically (as
n — oo) distributed like n*.

To see how 7 enters the picture, note that in order for the analysis above to be use-
ful we must have control of the norm ¢ = ||ww A4;, ... A;,|. This norm depends on two
factors. The first is the norm || 4;, ... A;, || of the matrix product, which is a function of
the sequence iy ... i, (not only of n). Because of this, later we will usually not choose
a sequence of constant length 7, but rather condition the sequence on the desired norm.
This is what the random word I(n) does (see Section 2.7).!! The second factor controlling

"Choosing variable length words complicates the equidistribution properties of A;‘n e A;.kl w
and is the reason we need Proposition 2.8.
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the norm ¢ is how the direction L(4;, ... A;,) of the cylinder ¢;, ... @;, u lies in relation
to Whiif L(A;, ... A;,) is far from W+ then the norms of wy 4;, ... A;, and 4;, ... 4;,
will be comparable; if they are close, the former might be far smaller. The directions
L(A;, ... A;,), when iy ...i, is chosen at random according to p”, are asymptotically
distributed like 7.

These considerations underlie the following lemmas. Since our ultimate goal is to
compute entropies, they are formulated in that way. Recall the definition of W, and I(n)
from Section 2.7, and that W,, (@) denotes the unique word w € ¥, with w € [w].

Lemma 3.1. For every ¢ > 0 and p > 0, if m > M(e, p), the following holds for every
n > 1. For every W € RP! and every u € W, satisfying dppt (L(Ay), W) > p,

< é&.

1 1
—H(mwwouit, Dntm) — _H(”A;WNM D)
m m

Proof. Using || Ay || =27"t90 (because u € ¥,,) and the hypothesis d (L (A,), W) > p,
equation (2.16) implies

1 1 1
L Gt bt Duem) = ~ Htgz it D) + op(—),
m m m

which gives the claim provided m is large enough. ]

For this lemma to be useful we must bound the probability that L(A,) is close to W+,
We have already observed that when n is large, L(A,,) is distributed approximately like 7,
which is a continuous measure (has no atoms), and so the probability that L(A,,) is within
distance p of a fixed W+ is asymptotically n(B,(W ™)), which is negligible when p is
small. This argument is formalized in the next lemma.

Lemma 3.2. For every ¢ > 0 and every 0 < p < p(¢), if n > N(g, p) then for every
W e RP',
P(dgpt (L(Aim), Wh) = p) > 1 —e.

Proof. The measure n = L£ is continuous, hence there exists p(g) > 0 such that for any
0 < p < p(e) we have LE(B(W,2p)) < ¢/2 forall W € RP1.

By the definition of L, the sequence {L(Ay, ))}n=1 converges to L(w) for §-a.e.
w € AN, Foreach n > 1and w € A*, by definition

P(n) = w) = o : ¥p(0) = w}.

It follows that {L (Ay:))}n>1 converges in distribution to L, where we consider L as a
random variable on (AN, £). Hence for every n > 1 large enough in a manner depending
on ¢ and p, and for any W € RP!,

P(L(Axm)) € B(W,p)) < e,

as claimed. [
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What we have done so far shows that 7wy @y, is, with high probability, comparable
to myy wi at another scale. For this to be useful we must now understand the distri-
bution of A;‘( ) W . Here we meet the associated random matrix product of the transpose
matrices A*. These should heuristically converge to n*, but the equidistribution proper-
ties of this random walk are not as good, due to the fact that we have only convergence in
distribution (and not pointwise, due to the order of composition), and because we are inter-
ested in the behavior along a certain random subsequence of times (those which define the
lengths of I(n)). Nevertheless in the Cesaro sense the random walk Aik(n) W does equidis-
tribute to n*, allowing us in the next lemma to get information about the projections of
typical cylinders (and hence of p) in a fixed direction W.

Lemma 3.3. Foreverye > 0andn > N(¢g) > 1,

1
inf  —H(awp,Dy) > P —e.
WeRP! 1
Proof. Let ¢ > 0, choose p suitable for the previous lemma, and let n > m > 1, with m
large with respect to ¢ and p, and n large with respect to all parameters; we shall see the
relations later.

By Lemma 2.5 and by assuming that 7 is sufficiently large with respect to m, it follows
that for W € RP!,

n

1 1 1
—H(twp, Dp) = = Y —H(wwit, D ym | Di) + O(e).
n n pt m

For each k > 1 we have mw u = E;—¢ (mw @1 14), thus by the concavity of conditional
entropy,

n

1 1 1
LHOwi D)=+ 3 B How oo Dian | 90) - 06
n n =1 m

Since diam(supp(¢rg)u)) = ©(27%) and by assuming that m is sufficiently large with
respect to €, we can do away with the conditioning at the expense of a slight increase to
the error term:

1 1 & 1
Lt D) = =Y E(;H(ﬂwwuk)u, :D,-+m)) ~06)
k=1

1
= ]Elsisn(EH(ﬂWQDI(i),u, i)i+m)) —0(e).

By Lemmas 3.2 and 3.1, by our choice of p and by assuming m, n are large relative to ¢, p,
outside an event of probability < ¢, the expression in the last expectation can be replaced
with projection to Af(n) W at the expense of another ¢ error, hence

1 1
SH D) = Brsic (o B win D)) = 00 ()
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The point now is that, roughly speaking, Ai*(n)W equidistributes to n*. This is not pre-
cisely true; what is true is that Az(n)W equidistributes to n*. The two sequences are not
quite comparable, but the two distributions are close enough to hit high-probability events
with roughly proportional probabilities, and this is enough to complete the proof; the tech-
nical step is given by Proposition 2.8. In more detail, observe that since dim 7y u = S
for n*-a.e. V, if m is large enough then %H(nvu, D) > B —¢e/2 for a set of V of
n*-measure greater than 1 — . Hence, using also the almost-continuity of entropy of pro-
jections, we can find an open set U € RP! with n*(U) > 1 — ¢ and such that

1
—H(mypu, D) > P —e forallV e U
m

Applying Proposition 2.8 we conclude that for n large relative to &,

1
Plgsn(EH(nA* it D) > f— s) > 1-0().

13(0)
Combined with (3.1) this completes the proof. ]

Lastly, we obtain a similar result for cylinders:

Lemma 3.4. For every e > 0, form > M(g) andn > N(¢),

. 1
inf P(—H(nwgol(n)u, Dnym) = B — 8) >1—e.
W eRP! m

Proof. From Lemmas 3.2 and 3.1 again, it is enough to prove (perhaps for another ¢) that

1
I/Vil']llgPl P(EH(JTAT(MWIU,,@,”) > ,3 —5) > 1 — &,
€

and this follows from the previous lemma. ]

3.2. Projections of components of |4

Another basic method is “covering”, i.e. decomposition of measures as convex combi-
nations of well-behaved ones (and possibly a small remainder). For example, one can
cover (the restriction of u to) dyadic cells by cylinders of roughly the same diameter.
Since entropy is concave, if in a cell C € D, we can express i as a convex combination
of measures, most of which are cylinders which project with large entropy in direction
W € RP!, then the same should be true of the conditional measure jc. A complication
arises here because there will in general be cylinder measures which are partly, but not
completely, supported on C, and then we lose control of the behavior of the part of them
that lies inside C. But by controlling the mass of such cut-off cylinders, we can obtain
good decompositions of pc for most choices of C. This argument depends on controlling
the mass of small neighborhoods of dC. That is the purpose of the following lemma:
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Lemma 3.5. For every ¢ > 0 there is a 8 > 0 such that for every W € RP?,
aw(Bsr(x)) < e-awu(Br(x)) forallx e Rand0 <r < 1.

In particular, for every € > 0 there is a § > 0 such that for alln > 1,
/L( U (8D)(2_"8)) <e.
DeD;,

Proof. The first part is a direct consequence of [3, Lemma 3.13]. The second follows by
decomposing | p o, (0D)@™") into vertical strips and horizontal strips of width 217§
and using the first part to estimate their mass. We omit the details. ]

Proposition 3.6. For every compact E C Az, € >0, m > M(E,¢), andn > N(¢),
1
inf inf —H(hu, ;' D Dy) > B —-e.
h]eEW;R]pl m (hp Ty tm | On) = B

Proof. Let E C A, be compact. Givenh € E, W € RP!, and n,m > 1, note that k1D,
is Og (1)-commensurable with &D,, and also h_lnl},l Dntm is Og(1)-commensurable

with S ”_ﬂlW Ayl n;*lW Dy +m- Thus by basic properties of entropy (see Section 2.8) and the
h

bound |y o Ay|| = Og (1) (because E is compact),
H(hit, 75! D | Dn) = H(w, b 1! Dy | H 1 D)
= H(u, ”;£(W)i)n+m | Dn) + OE(1).

Hence it suffices to prove the proposition with £ = {Id}.
Lete > 0 and let m > M(g) and n > N(¢) be as in Lemma 3.4. Fix W € RP!. By
the concavity of conditional entropy and the fact that diam(supp(¢y,) i) = O2™"),

1 _ 1 _
n_1H(M’ 7'[W1<Dn+m | Dn) = Eizp (n_1H((pI(i)//~a JTWIc(Dn+m | c(Dn))

1 _ 1
= B Hlno 13 Drem) ) + 0 ).
m m
The proof is completed by an application of Lemma 3.4. ]

Lemma 3.7. Foreverye >0, m > M(g) > 1, andn > N(e),
1
inf P, (—H(JTW,ux,i, Diym) > B — 5) >1—e
WeRP! m

Proof. When 8 = 1 (which is the case under the assumptions of Theorem 1.4, and what is
needed to prove our main theorem) the lemma is immediate from the previous proposition
by starting with £ = {Id} and a smaller &, observing that

H(M, ﬂﬁ/'l c>(On+m | i)n) = ]Ei=n(H(7TWH«x,iv c:Di+m))v

and applying Markov’s inequality.
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We include the proof of the case B < 1 for completeness and future reference. Let
e >0, let § > 0 be small with respect to ¢, let k > 1 be large with respect to §, and
let m > 1 be large with respect to k. Also, let n > 1 be large with respect to ¢ and fix
W e RP!.

By Lemma 3.5 we may assume that

u( U (aD)@‘””) <.

DeDy,

Let C = diam(supp p). Since k is large with respect to §, we may assume that if
v € £ (R2) is such that diam(supp v) < C - 27"% and

#{D € D, : (suppv) N D # @} > 1,

then suppv € Upep, (9D)? 9. It follows that

P; —n+k (1) i is contained in a level-n dyadic cell)

> 1—/,L( U (8D)(2_”5)) >1—¢

DeD;,

On the other hand, by Lemma 3.4 (applied with n + k instead of n),
1
| — (ZH(”WWI(i)/Lv i)i+m) >B—e)>1-e

From the last two probability bounds and Markov’s inequality, for a 1 — O(4/¢) frac-
tion of dyadic cells D € D, all but a 1 — O(4/¢) fraction of the mass of up can be
expressed as a convex combination of cylinders ¢; @ whose projection in direction W
satisfies (1/m)H (rw @i b, Dyyk+m) > P — e. For such a component, by concavity of
entropy, we have (1/m)H (nw up ., Onikm) > B — O(4/¢), and adjusting the scale from
n+k + mton+ m at the cost of an O(k/m) error to entropy, and making m large
enough so that it can be absorbed in the error term, we obtain

Pi—n (%H(ﬂwﬂx,i, Ditm) > B — O(JE)) > 1—0(Ve).

This is what we wanted if we start from a smaller ¢. [

3.3. Entropy of thickened slices

In this section we use the eccentricity of cylinders in another way, to control the con-
ditional measures on fibers of an orthogonal projection. More precisely, we condition
the measure on nﬁ,l (1) for a short interval /. If ¢;, ... @;, 1 is a cylinder whose “long”
direction is approximately W+ then it will be contained in 711;,1 (I) for some interval
whose length is close to az(4;, ... A4;,). Its entropy, at scale |/|, will be comparable to
the entropy of its projection to W+, and this we know will be large. Thus, restricting u
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to the cylinders pointing in direction W+, we get good lower bounds on the conditional
entropy with respect to nV_VI Dy

For E C AN write ug = I(£g) (recall that £ = ﬁsﬂE)

Lemma 3.8. Foreverye, p> 0and everym > M (g, p), the following holds. Let E € AN
be a Borel set and J C RP! be an open interval with £(E N L™1(J)) > 0. Then for each
W € RP! with dgpi (WL, J) > pandn > Ny(e,p,m,E, J, W),

1 _ 1
n_iH(/LEﬂL*‘(J)»nW1°{OH+m | D)W ) > B—-e.

Proof. Let m > 1 be large in a manner depending on ¢, p, let E C AN be a Borel
set, let J C RP! be an open interval with £(E N L™1(J)) > 0, let W € RP! satisfy
dpp (WL,J) > p, and let n be large in a manner depending on all parameters.
Write F = E N L™!(J). Since £ is a Borel probability measure on A", it is a regular
measure, so there exists an open set V C AN with F C Vand §(V \ F) < ¢- £(F).
Let U € ¥, be the set'?

U={ueW,:[ulCVand L(4,) € J},

U=Jwml.

ueU

and write

Since V and J are open and L(Ay,..0,) = L(w) for £-a.e. w, by assuming that n is
sufficiently large we can ensure

Ey(U) > &y (F)—e>1—2e.

Since U, F € V and both differ in £-measure from V' by mass at most 2e£ (1), we con-
clude that F N U differs from both F and U by at most 4¢£(V'). Hence in the sum
¢|r = &|Fnu + E|F\v all but a relative O(e) of the mass is in the first term, and simi-
larly for §|y = &|Fru + &l F. It follows that

drv(u.&F) = O(g), hence dry(uy,ur) = O(s).

By the definition of U and Lemmas 3.1 and 3.3, the fact that diam(supp(¢,p)) =
©(2™") and dyp: (W+,J) > p, and assuming m large relative to € and p, we have

1 _ n 1 1
e H it 75 D | D) = it D) = 0 ()
m m m

>B—0() forueU. (3.2)

121 the definition of U we only take u for which L(Ay) is defined. It may not be defined for
all u, because it could be that A, has equal singular values; but the probability of this with respect
to £ tends to zero as n — oo.
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Since U is a union of cylinders from W,,,

no = Elpimp | 1n) € W),

so by concavity of entropy and the previous inequality,
1 _ 1
—H(1y, 7' Duim | D, ) 2 = O(e).

The result now follows from dry (uy, tr) = O(e) combined with (2.10). ]

Lemma 3.9. Let ¢ > 0. For every m > M3(¢) there exists § = §(g, m) > 0 such that
the following holds. Let E C AN be a Borel set and I C RP' be an open interval
with diam I < 8 and €(E N L™Y(I)) > 0. Then for each W € RP! with W+ e I and
n> Ny(e,m,8,E, I, W),

1 n 1
wew wew
D | D,

;H(/LEﬂLfl(l)’ n+m 4 JTI;/IJDTH-M) = 13 —¢&.

Proof. Letm > 1 be large in a manner depending on ¢, and let § > 0 be small in a manner
depending on ¢ and m. Let E C AN T C RP! and W € RP! be as in the statement and
let n be large in a manner depending on all parameters.

Write F = E N L™'(I). Since £ is regular there exists an open V € AN with F c V
and §E(V\ F) <¢e-&(F). Let

al(Au)
a2 (Ay)

‘u:{ue\ll,,:[u]gV, >2mandL(Au)€I},

and write

U=Jwml.

ueU
Since V and I are open, and by assuming that » is sufficiently large,

Ev(U)=éy(F)—e>1-2e.
For u € U we have L(A,) € I. Since W+ e I and diam I < § it follows (assuming

8 < 1/20, say) that d(W, L(A,)) > 1/100. Hence by Lemmas 3.1 and 3.3,

1 1
— H(gup. DIEWLy > —H(w gult. Dusm) = B = 0(6). (3.3)

n+m

Since [|Ay| = 27"9M we have diam(supp gy p) = 27"O0W 5o LH (g, pu, Dy) =
0( 1 ) and the last equation implies

m

n+m

1 1
—Hlgup. DY DYOVT) 2 - 0G).

Now assume that § < 27 From L(A4,) € I it follows dpp1 (L(4y), W) <27 Also,
o1(Ay) = 27710 and o4 (4,)/as(Ay) > 2™, hence az(A,) < 2-@+m+00)  Thig
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implies ¢, 1 is contained in the 2~*+™+0M) _pejohborhood of a translate of W+ . Hence
diam(supp w @up) = 027" ™),
and so

1 _ 1 1
—H(pup, 7TW1°Dn+m) = —H@woulk, Dpim) = 0(_)
m m m

Combined with the previous bound, this shows that for every u € U,

n+m

1 Waow-L 1 _
n_,lH((Pu//L» D ow | tD:VEBW \% T[WI(Dn+m) = ,6 — O(e).
Since py is a convex combination of measures ¢, it over u € U, concavity of entropy
implies
n+m

1 n 1 _
—H(uy, D557 | DYV 7y Dpm) = B = O(2).

The argument is now completed as in the previous lemma, by showing that uy, ur are
close in total variation. ]

3.4. Entropy of slices

Denote the Borel o-algebra by 8. For v € #(R?) and a 0-algebra 4 C B let {v*} g2
be the disintegration of v with respect to #. For W € RPP! we write By C 8 for the o-
algebra of W -saturated sets (that is, sets E such thatif x € E then W + x C E), and write

{v¥} . er2 in place of { vEw } xer?2, the family of conditional measures on translates of W'
The following is standard equivariance of measure disintegration, we omit the proof:

Lemma 3.10. Let ¢ € Ay 5, W € RP!, and v € P (R?) be given. Then for v-a.e. x € R?,

AZlw . 1 (Axw)+
(<pv)g; =¢(vx® "), orequivalently (gov)x =p(y “ ).

Remark 3.11. The last form is the one we will use. Usually W will be a subspace onto
which we are projecting (., and since nl,_Vlia’ consists of lines perpendicular to W, the

disintegration of y over this map is then given by {,u)‘;VL }.

Recall the definition of Y, and K(n) from Section 2.7 and that we write y for o — f.
As mentioned above, from Theorem 1.2 it follows that

dim ,l,LlC'VL =y forpn*-ae W and u-ae. x. (3.4)

Lemma 3.12. Fore > 0,m > M(¢g) > 1, andn > N({A4;}iepr) > 1,

1 k
[ Ersien (ool 2 H oo D) >y =} Jar o) > 1 -6 69
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Proof. Lete > 0, let m > 1 be large with respect to ¢, and let n > 1 be large in a manner
depending on {A4;};ea. Let C; > 1 be as in Proposition 2.8. From (3.4) it follows that we
may assume that

1 € "
/u{x : EJLI(;L;V*,;D,,,) >y — 5} dp*(W) > 1—e.

From this and the relation
n*t = Elsiscln(A;}(i)’/*),

we get
/Elsiscln(ﬂ{x : %H(MiAa”W)l, Dp) >y — ;}) dn*(W) > 1—e.
By Proposition 2.8 it now follows that
[ Erziza (il G5O D) >y = L)@y = 1= 06 o)

Let 1 <i < n.Then by Lemma 3.10 for each W € RP! and n-a.e. x,

1 (Af W)+
(@K(i)ﬂ)g;(,«)x = ok (x "7 ).

For w € Y;, the map ¢! expands by at most 0(2') in every direction. Therefore there
exist constants C, C’ > 0, independent of m and i, such that, for every w € Y;, each atom
of 93,1 (Dj+m) is of diameter at most C - 2™, so it intersects at most C’ atoms of Dy, . It
follows that

1 1 1 (Af W)+

EH((qu(i)u)Z((i)x, Dpyi) = ZH((PK(i)(Hx KOT), D)

1 (Ag i)+
pe

= n—qH(M Ok (i) Dm-+i)

1 (A5 W+ 1
_H(/’Lx K(i) ,i)m)‘}‘O(—)
m m

Hence, assuming that m is large enough with respect to &, the left hand side of (3.5) is at
least as large as the left hand side of (3.6), which completes the proof of the lemma. =

Lemma 3.13. Foreverye >0, m > M(g) > 1,andn > N(e) > 1,

1
/ Plgsn(ﬂ(ux,,-, Dism | 7 (B)) > y — e) (W) > 1 -,
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Proof. Let ¢ > 0 be small, let § > 0 be small with respect to ¢, let k > 1 be large with
respect to §, let m > 1 be large with respect to k, and let n > 1 be large with respect to k
and {A4;}iea. The measure L§ is continuous, hence we can assume that

P(L(Ak(i+k) € BOW,8)) <& foreachW e RP'and1 <i <n. (3.7
Itis not hard to see that foreach W e RP!, 1 <i <n,w e Y4k with L(Ay) ¢ B(Wl,S),
and @y, p-a.e. x € R2,
. i il
diam(supp (g 0)Y ) = 0527 75). (3.8)

Recall from Section 2.6 that we write N, for {1,...,n} and A, for the uniform mea-
sure on N, . Let Z be the set of all pairs (W, i) € RP! x N, such that,

1 n
IE(‘PK(i+k),U«{X : %H((ﬁﬂx(ﬂrk)/i)zv s Ditktm) >y — 8}) >1—e (3.9)

By Lemma 3.12, and since 7 is large with respect to k, we may assume that n* x 1, (Z) >
1 —¢&. Fix (W, i) € Z for the remainder of the proof.
Define ' € £ (Y4 x R?) by

I' = Z Pw 'S{w} X Quw .
weY 4k

Let F be the set of all (w, x) € Yj4x x R? such that (3.8) holds and

1
ZH((tpwu)ﬁVL, Ditm) >y —e. (3.10)

By (3.7) and (3.9), by recalling that m is large with respect to k, and by replacing & with
a larger quantity which is still small without changing the notation, we may assume that
['(F)>1-c¢.

By Lemma 3.5,

/L( U (8D)(2_i5)) <e.

De®D;

Since k is large with respect to 8, we may assume that if v € £ (R?), diam(supp v) =
05(27"%) and
#{D e D : (suppv) N D # @} > 1,

then suppv C Jpe ; (8D)(27i8). Also, it is possible to write w as

1
1= i) = E( / (Oxan ) dwK(Hk)u(x)). 3.11)

By these facts, since (3.8) holds for (w, x) € F, and by replacing ¢ with a larger quantity
without changing the notation, we may assume that for each (w, x) € F,

D € D; with supp () C D, (3.12)
while still having I'(F) > 1 — .



Hausdorff dimension of planar self-affine sets and measures with overlaps 39

Let E be the set of all x € R? for which there exist a probability space (Qy, 0x),
{(Vxwloea, C P[R?),0 < py <&, and v, € P(R?), such that

o txi = (1—px) f Vx,w dOx(w) + Px‘);&
° %H(vx,w, Diym) >y —eforw e Qy;
® V., is supported on a single atom of ;! (B) for w € Q4.

From the decomposition it = E;j—;(1x,;), by (3.11), since (3.10) and (3.12) hold for
(w,x) € F,since I'(F) > 1 — ¢, and by replacing ¢ with a larger quantity without chang-
ing the notation, we may assume that u(£) > 1 —e¢.

Let x € E. Then by concavity of conditional entropy,

1 _ 1 _
—H (b, Dim | ' (8)) = (1 —¢) / o Hxw Digm | T (B)) dx ().

Forw € Q,,
1
n_qH(Vx,w»c(Di+m) >y—¢

and vy 4 is supported on a single atom of JTﬁ/l (8). Hence,

1
S H (i Dim | i (8B)) = (1 =)y —e).

Since u(E) > 1 —e and n* x A,(Z) > 1 — ¢, this completes the proof of the lemma. =

3.5. Uniform entropy dimension

In this section we show that typical components of p have normalized entropy close to
o = dim p, a property referred to in [15] as uniform entropy dimension. This will be
used later on to conclude that typical components cannot look like uniform measure on a
dyadic cell, which we use to rule out one of the alternatives that one gets from the entropy
inverse theorem in R? (See Section 6.1).

Definition 3.14. We say that v € P (R?) has uniform entropy dimension t if for every
e>0,m> M(e) > 1,andn > N(e,m) > 1,

]P)Osiﬁanm(/va’i) —tl<e)>1-e

This property implies a uniformity among the components of the measure. If v has
uniform entropy dimension #, then it follows from Lemma 2.5 that its entropy dimension is
well defined and dim, v = ¢. The converse is false, i.e. the existence of entropy dimension
does not imply existence of uniform entropy dimension.

Proposition 3.15. pu has uniform entropy dimension «.

Proof. Lete > 0, let m > 1 be large with respect to ¢, and let n > 1 be large with respect
to m. Recall that for W € RP! and k > 1,

s — —
DO = (! Di) v (' Do),
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and that Oy and !DIZV ®" are commensurable partitions. Write
1 1 "
8= /]P’osisn (;H(/Lx,ia o@ziw )<a-— 8) dn™(W),

1 _ €
6 = /]P’osign (%H(Mx,iaﬂchDi+m) <p- 5) dn*(W),
and
8y = [ Pocian( — H(pns, DYV |t Dy) <y — &) dn®
2 = 0<i<n m (Hox,is i +m |7TW itm) <Y 2 n(W).
Since for each W € RP!,0 <i <n, and x € R2,
i _ N
H(pxi. OESY) = H(p i 7! Diem) + H(pwi . D5 | 7! Diem)
any component that belongs to the event defining § must also belong to one of the events
defining &, or 85, hence § < §; + 8.

By Lemma 3.7 we can assume that §; < ¢/2. By Lemma 3.13 we can assume that
8» < e/2.Hence § <81 + 6, < &, and so

1
/POsisn (EH(//Lx,i, !DK%WL) >« —8) dn*(W) > 1 —e.

. €
Since i)ivigw and D;4,, are commensurable, the entropy above depends on W only

up to an additive O(1) constant, so we can eliminate the outer integral by introducing an
additive O(1/m) error. Therefore, assuming m is large enough relative to &,

1
Po<i<n (ZH(,ux,i, Ditm) > o — 28) >1—e. (3.13)

By Lemma 2.5 and since we can assume that m/n < e,

1
a = Eo<i<n (EH(/Lx,i, @i+m)) + O(e).

This together with (3.13) completes the proof of the proposition (by starting from a
smaller ). [

4. The function L factors through I1

In this section we assume that @ is non-conformal and totally irreducible. We also assume
that dim & < 2. Exponential separation is not needed.

We shall study here the function L describing the orientation of cylinders and show
that it is p-a.e. well-defined (Theorem 1.5). This observation appears to be new.
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4.1. Bourgain’s projection theorem (entropy variant)

In the next sections we prove a result which requires, in its most general form, the follow-
ing theorem, whose proof will appear in more quantitative form separately. It is an entropy
version of Bourgain’s projection theorem, in which dimpg denotes box (Minkowski)
dimension (see e.g. [21]) and uniform entropy dimension is understood in the sense of
Definition 3.14.

Theorem 4.1. For every § > 0 there exists a Tt = t(8) > 0 such that the following holds.
Let v € P (R?) have uniform entropy dimension t € (8,2 — §), and let E C RP! satisfy
dimg E > 8. Then for everyn > N (8, v, E) there exists W € E (depending perhaps on n)
such that

1 1 1
—H@mwv,Dy) > =-—HW,Dy) + 7.
n 2 n

Corollary 4.2. If u is a self-affine measure defined by a non-conformal, totally irre-
ducible system, and if dim w < 2, then there exists t > 0 such that for all large enough n,
forall W € RP!,

1 1
—H(mwwu, Dy) > Edimu + t.
n

Proof. Since %H(,u, Dy) — dim u as n — oo, and since dim n* > 0, it follows that
for every set E C RP! of positive n*-measure, for every n large enough (depending on
E), there are W € E such that the inequality in the statement above holds. This implies
that for n*-a.e. W there exist arbitrarily large n for which the inequality holds. But for
n*-a.e. W we have %H(nwu, Dy) — B, where B > 0 is the n*-a.s. constant dimension
of dim 7y o of W; therefore f > % dim @ + t. The fact that one can take n uniformly in
W € RP! now follows from Lemma 3.3 (at the cost of a slight loss in 7). [

Remark. In the case that exponential separation holds, the conclusion of the last corol-
lary follows easily from Theorem 1.3 since when dim ;& < 2 we certainly have

dim 7y = min {1, dim u} > %dimu for n*-a.e. W.

Thus, Corollary 4.2 will be used only when exponential separation is not assumed.

4.2. Transversality of cylinders

Proposition 4.3. Let u = I1€ be a self-affine measure defined by a non-conformal and
totally irreducible system, and suppose that dim . < 2. Then for every p > 0 there exists
§ = 8(i, p) > 0 such that the following holds. Let I, J C RP! be such that I, J are
open intervals, LE(I), LE(J) > 0, dgp1 (I, J) > p, and diam [ < §. Then the measures
Kp—1(ry and jip -1y are singular.

Proof. We first give the proof under the simplifying assumptions (which are the ones used
in the proof of Theorem 1.1) that exponential separation holds and dim y« > 1. In this case,
dimmyp = 1forall W € RPL.
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Assume that there exists p > 0 for which the proposition fails. We will show that this
leads to a contradiction with the assumption dim pu < 2. Let ¢ > 0, My = M, (e, p) as
in Lemma 3.8, M, = M5(e) as in Lemma 3.9, m > max {M, M,}, and § = §(e, m) be
as in Lemma 3.9. Since the proposition fails for p there exist open intervals 7, J C RP!
such that LE(1), LE(J) > 0, dgp1 (I, J) > p,diam I <&, and py—1(yy, Ly -1y are not
singular.

Since iy -1(r), kp—1(¢y) are not singular, there exists a Borel set E C R? with
pr—1(ry(E) > 0 on which the measures are equivalent, thatis, (1tz—1(1))E ~ (Lp-1(7))E-
Therefore there exists a Borel set B C E with

ur-1(ry(B), ip—1(yy(B) >0 and dry((p—1(1))B: (hr-1(7))B) <&

(we can take B C E to be any Borel set of positive (j7-1())g-measure on which the
Radon-Nikodym derivative /' = d (u-1(1))E/d (jt-1(s)) E is positive and sufficiently
concentrated around one value, e.g. if f(B) C (¢ —¢&’,¢ + ¢’) forsome ¢ > 0 and ¢’ > 0
that is small relative to ¢ and ¢). Set u/ = KUr-1(BynL—1(r) and w! = HI—1(B)nL—1 (J)-
Then ! = (kr-1¢r))B and w = (1r—-1(s))B> and so dry(n!,u’) <e.

Fix W e RP! with WL € I,let Ny = Ny (e, p,m, 171 (B), J, W) be as in Lemma 3.8,
Ny = Ni(e,m, 8, TI"Y(B), I, W) as in Lemma 3.9, and N > max {N;, N»}. From
dpp! (W, J) > p and our choices of parameters,

1
—HW 757! Dy | DOy > 1—¢  forn > N. (4.1)
m

Similarly, since Wtel s

1
—Hu!, O¥eW " | 9Vt i Dyym) > 1—¢ forn>N. (42
m

n+m

By (4.1), (4.2), since dTv(,bLI, /,LJ) < ¢, inequality (2.10) (see also note after it)
implies that for n > N with N sufficiently large,

1 n n 1 - n
—H(u!, DS 1 DOV = —H(u! ! D | D)

1 1 1 _
+n_/lH(//«17£,I:[_/|_€3,W |cD,I:V€BW V”W1£n+m)

v

1 _
—H(W 7! D | DY V) 41 - 0(e)
> 2 — 0(e). (4.3)

Since 1! < and 1 has exact dimension «, it follows that 1/ also has exact dimen-
sion «. From this and Lemma 2.5 it follows that for k large enough,

1 1 1 1
oz LH DY) 6> Eosnfk(EHw’, DIEWE | piew )) —06).

n+m

This together with (4.3) shows that @« > 2 — O(¢). Since this holds for every ¢ > 0, it
implies a contradiction with & < 2, which is what we wanted.
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We now explain how to modify the proof for the general case, i.e. without exponential
separation. As above, assume that there exists p > 0 for which the proposition fails. Let
7 > 0 be as in Corollary 4.2, so that dim 7wy it > /2 4 7 forall W € RP!. Let & > 0 and
carry out the argument above. Then on the right hand side of (4.1) and (4.2) we will have
/2 4+ 1 — g; proceeding from there we eventually get @ > o + 27 — O(g). This holds for
every ¢ > 0 and so yields the required contradiction. ]

4.3. L factors through T1

Proposition 4.4. Let i1 be a self-affine measure defined by a non-conformal and totally
irreducible system, and suppose that dim 1 < 2. Let § = [ & dju(x) denote the decom-
position of £ with respect to the partition {I171(x)}xex. Then for p-a.e. x, the function
Lig—1(x) is &x-a.s. constant.

Remark 4.5. This implies that there is a Borel function L: X — RP!, defined p-ae.,
such that L(Tlw) = L(w) &-a.s. We shall write L instead of L from now on; which one
is intended will be clear from the context.

Proof of Proposition 4.4. For w € AN let £, = &4, which is defined £-a.e. It suffices to
show that for £-a.e. w € AN the measure L£, is a mass point. It follows by Proposition
4.3 that there exist sequences {/ }77 ; and {Ji }7=, such that

(1) I, Jx C RP! are open intervals with L& (1), LE(Jg) > O fork > 1;
(2) for any distinct X,y € supp L& there exists k > 1 withX € I and y € Ji;
(3) mr-1(1,) and L -1y, are singular for k > 1.

For each k > 1 there exists a Borel set E;, C R? with Kr—1(1)(Ex) =0and pup -1z, (Ep)
= 0. We have

0= &L IR)) - pp—1 ) (Ex) = E(L ™" (1) N T (Ep))
= [, B 0 dE@),
and similarly
Jos g B8 ) =0
It follows that for £-a.e. w € AN, foreach k > 1,
§o(L7N(I1) =0 or &u(L7'(Ji) =0. (4.4)
Additionally, it is clear that for £-a.e. w € AN,
supp L&, C supp LE. (4.5)

Fix @ € AN which satisfies (4.4) and (4.5). Assume for contradiction that L, is not a
mass point. Then there exist distinct X,y € supp L&, C supp L§, and so there exists k > 1
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withX € I andy € Ji. Since X,y € supp L&, and I, Ji are open,
(L™ (1K) > 0 and  £o(L7'(Jk)) > 0,

which contradicts (4.4). This shows that L&, is a mass point, which completes the proof
of the proposition. ]

4.4. Projections of components, revisited

We continue to assume non-conformality, total irreducibility, and dim p < 2.

As we discussed in Section 3.1, with the assumptions above, most cylinders of w
project well in most directions W € RP! at the scale of their long axis. In fact, they
project well in a direction W precisely when W= is not too close to the long axis of the
cylinder; that is an obstruction because in that case, at the scale of their long axis, the
cylinder projects to essentially a point mass on W.

Recall that f is the dimension of the projection of u to n*-typical subspaces. We saw
in Section 3.2 that for a fixed W € RP!, with high probability, a random component
projects well to W in the sense that its normalized entropy at small scales is close to .
This was proved essentially by covering dyadic cells with cylinders. We now want to get
finer information and identify, for most components, which directions are the exceptions.
This is made possible by the result of the previous section: pty , Will project well to all
lines except those that are close to L(x)L. This is basically proved by applying Luzin’s
theorem to L : X — RIP! to conclude that for most small enough cells D, (x), the function
L(x) is almost constant on the cell. This means that most cylinders that cover the cell
project well to every line except those that are close to L (x)~.

Recall the definition of W,, from Section 2.7, and that for € AN we write ¥, (w) for
the unique w € W, for which w € [w].

Lemma 4.6. Fore >0, m > M(¢) > 1,andn > N(g,m) > 1,
1
inf —H i, D; > f — >1—ec.
n (W@l&(x),s) H (L pxis Digm) > B 8) €
Proof. Let ¢ > 0, let p > 0 be small with respect to ¢, let k > 1 be large with respect

to p, let m > 1 be large with respect to k, and let n > 1 be large with respect to m. By
Lemma 3.5, for each § > 0 there exists 0 > 0, which does not depend on r, such that

,L( U (aD)(T”")) <§.

DeDy,

P;—

From this and by assuming that k is sufficiently large with respect to p, it follows
that (E) > 1 — p, where E is the set of all x € R? for which there exist distinct

Wy,1s--s Wyt € Uik, Ox € P(R?), cx >0and 0 < ¢}, < p, such that
Ly
Hx.n = Cx Z Pwy j Puy 1t C;Qx (4.6)
j=1

(here cxy = (1 —cl)/ Z_f’;l Pw,_; is a normalizing constant).
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By the definition of L and by assuming that » is large enough,
o dgp1 (L(Aw, @), L)) < p} > 1= p*.
From this we get Y, cw Pw > 1 — p?, where W is the set of all w € W, with
e © dyp1 (L(Aw). L)) < p} > 1= p.
Now since I1&[,] = @y and L factors through I1, we have
Puwpdx : dgpi (L(Ayw), L(x)) <p}>1—p forweW.

Hence in view of >, ey Pw > 1 — p* we can also require

Pw, ;MY dgpr (L(Aw, ), L(y)) <p}>1—p forxe Eandl <j <[, 4.7)

and still have u(E) > 1 — O(p) and ¢, = O(p) for x € E.

Since L is Borel measurable and by Luzin’s theorem, for every § > O there exists a
Borel set F C R? such that u(F) > 1 — § and L | is uniformly continuous. From this,
since supp(@uw, ; 4) C Dn(x) forx € E and 1 < j <[y, and by assuming that n is large
enough, we may also require

Pw, 1y dgp1 (L(x),L(y)) <p}>1—p forxe Eandl < j <I, (4.8)
and still have u(E) > 1 — O(p) and ¢, = O(p) for x € E.
Since w(E) > 1 — O(p) it suffices to show that
1
n—,lH(ﬂwJ_//Lx,ns Dytm) > P — O(p) forall x € E and W ¢ B(L(x),¢).

Let x € E, W ¢ B(L(x),¢), and 1 < j < [,. From (4.7) and (4.8) it follows that
dpp1 (L(Aw, ;), L(x)) < 2p, and so W ¢ B(L(Aw, ;),/2). Now by Lemmas 3.1
and 3.3, and by assuming that m is large enough with respect to k and &,

1 1
EH(”WUwa,,»M» Dpym) = EH(ﬂWMwa,,» Wy Dntic+m) — p

> p—0(p).
From this, the decomposition (4.6), the estimate ¢, = O(p), and the concavity of entropy,
we get
1
EH(nWiﬂx,n» Dntm) > B — O(p),

which completes the proof of the lemma. ]

We reformulate this as a statement which holds for components of components. Recall
from Section 2.6 the definition N, = {1,...,n} and N, ,4x ={n,n +1,...,n + k} with
the associated uniform measures A, and A,y on them.
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Lemmad.7. Fore>0,m> M(e)> 1,k >1,andn > N(e,m,k) > 1 we have A,, x (F)
> 1 — ¢, where F is the set of all (i, x) € N, x R? such that

i 1
Picj<itk (W¢Bl(fif(x),s) —H @y (xi)y. ) Djm) > B — 8) >l—e (49
Proof. As noted above, since L is Borel measurable and by Luzin’s theorem, for every
& > 0 there exists a Borel set E C R? such that u(E) > 1 — ¢ and L|g is uniformly
continuous. From this it follows easily that for every ¢ > 0, k > 1, and n > 1 large enough,

Ao X 4 30) A X {7 9) £ dgpt (L), L)) <6} > 1=} > 1 —&.

Hence it suffices to prove the lemma with L(y) appearing in (4.9) instead of L(x). This
together with Lemmas 4.6 and 2.3 completes the proof. ]

5. Some algebraic considerations

This section collects some algebraic facts that will play a role in the proof of the entropy
growth theorem in the next section. We assume that @ is non-conformal and totally irre-
ducible.

Throughout this section we work in the vector space A3 of all affine maps, which
contains the group A » of invertible affine maps as a proper subset. We fix a norm on 45
and refer to it whenever we speak of bounded sets of affine maps, the diameter of such
sets, etc.

Recall that for x € R? \ {0} we write ¥ = Rx € RP! for the line (or direction)
determined by it, and sometimes write the elements of RP! as U even when v is not
specified. Similarly, foramap f : YV — R2 we write f : Y \ f~1(0) - RP! for the map
f(x) = f(x), and sometimes write f for a function whose range is RP! even if it does
not arise in this way from a map f with range R2.

5.1. Families of affine maps which evaluate to lines

In this section, which is essentially linear algebra, we consider the evaluation operation
¥ > ¥ (x) which for a fixed x € R? sends an affine map ¥ € A} to a point in R?. We
study the situation where a family W of affine maps is mapped by the evaluation operation
into an affine line (which may depend on x), and show that if this is the case, then the
direction of the line must depend on x in an affine manner. We then obtain approximate
versions of this statement.

For ¥ C A¥ and x € R? we write Ux = {yx : ¥ € ¥},

Lemma 5.1. Let @ # WV C A3 be a family of affine maps and Y < R2. Suppose the set
Wx is contained in an affine line for every x € Y. Then there is an affine map 0 # y € A5

such that Ux is contained in an affine line in direction Y (x) for all x € Y \ ¥ ~1(0).
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Proof. If W = {4} consists of a single map then Wx = {y¢(x)} is a point and so lies on
a line in every direction; so any affine map ¥ will satisfy the conclusion. Otherwise, let
Y1, ¥, € W be distinct maps, and define ¥ (x) = ¥, (x) — ¥1(x), so ¥ # 0. Then for any
x €Y \ ¥ 1(0), the set Wx contains the distinct points 1 (x), ¥ (x), so if it is contained
in a line this line must have direction ¥ (x). This proves the claim. |

Remark 5.2. It is possible to say more about the situation in the lemma: Assuming also
|W| > 2, one of the following possibilities must hold:

(1) The set W lies on an affine line in the space of affine maps, i.e. there exist ¥1, Y2 € 437
such that ¥ C y; + R,.

(2) There are vectors 0 # b € R? and ¢ € R? and matrices A, B with image(B) C Rb
such that every ¢ € W is of the form ¢(x) = Ax + sBx + tb + c for some s,¢ € R.

We next replace the pointwise version with one for measures. Recall that for
0 € P(AY3) and x € R? we write §.x = 0.8, for the push-forward of § by the map

g+ gx).
Lemma 5.3. Letv € P(R?), and let 0 € P (AY3) be a measure satisfying

v(x : 0.x is supported on an affine line) = 1

(this set is easily seen to be measurable, even closed). Then there exists an affine map
0 # ¥ € A3 such that 6 .x is supported on an dffine line in direction y (x) for v-a.e.
x € R2\ y~1(0).

Proof. The hypothesis on v, 8 is that for v-a.e. x, there exists an affine line £, (which can
be chosen to vary measurably with x) such that

o(x) € £, forv-a.e. x and B-a.e. .

Write Y € R? for the set of x for which ¢(x) € £, for f-a.e. ¢. The last equation and
Fubini imply that v(Y) = 1. Fix x € Y and note that the condition ¢(x) € £ is closed in
the variable ¢, so, since it holds for 8-a.e. ¢, it holds for every ¢ € supp 6. Thus, p(x) € £,
is true for every pair (x, ¢) € Y x supp 8. We can now apply the previous lemma to the
sets Y and ¥ = supp 6 and we obtain the desired map . ]

The next variant replaces the exact assumptions above by approximate versions: We
assume that 6 .x is mostly supported close to a line £, (rather than entirely supported on
the line itself). We conclude that, up to some deterioration of the constants, x > £ is
given by an affine map at a positive proportion of points.

Definition 5.4. Let W < R? be a linear subspace and § > 0. A measure v € P (R?) is
(W, §)-concentrated if there is a translate W + v of W such that 1 — § of the mass of v
lies within a §-distance of W + v.

Note that for 7 € RP!, saying that v is (v, €)-concentrated does not mean that v is
supported mostly near the line v, but rather, near some translate of v.
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Proposition 5.5. Let v € P (R?) be a measure that gives mass zero to every affine line.
Then for every &, R > 0 there exists a § = §(e, R) > 0 such that the following holds. Let
0 € P(AY3) be a measure supported on a set of diameter R (with respect to the norm

on Ay%). Let {Ux}yer2 RP! be a family of lines such that x + Uy is measurable, and
v{x : 0.x is (Uy, 8)-concentrated} > 1 —§. (5.1)

Then there exists 0 # Y € A3 such that

v{x : 0.x is (Y (x),e)-concentrated) > 1 — ¢, (5.2)
and
vix @ dppt (U, ¥ (x)) < &} > v{x : 0.x is not ({0}, €)-concentrated) — «. (5.3)

Remark 5.6. The reason that the probability on the right hand side of (5.3) appears is
that if x is a point for which 8.x is ({0}, )-concentrated, then 6.x is (v, £)-concentrated
for every v € RIP 1 which means that vV, is not determined, and there is no reason for the
given function x — U, to agree with any affine map . More concretely, fix xo € R?,
and let 6 be some non-trivial measure on the stabilizer of x¢ in Ay Thus 0.x0 = 8x,
is a point mass. Now replace x¢ by the uniform measure v on a small ball around x¢; by
making the ball small, we ensure that 6. x is still supported on a §-ball for all x € supp v.
Thus 6.x is (U, §)-concentrated for any v € RP!, and any choice of the function x > U,
will satisfy the assumptions in the proposition above, and any affine map y will satisfy
the first conclusion. But many choices of the initial function x +— v, will be far from
every affine map on v-most points.

Proof of Proposition 5.5. 1f the conclusion (5.2) were false, then there would exist an
€0 > 0 such that the statement fails for every 6 > 0. Let 6, and v, » € RP! be witnesses
of this failure for 6,, = 1/n; thus,

e 0, is supported on a set of diameter R;

e with v-probability at least 1 — §, over the choice of x, the measure 8, .x is (U x, §»)-
concentrated;

e there is no affine map v, such that 8, .x is (¥, (x), &9)-concentrated with v-probability
> 1—gp.
We can further assume that the 6,, are supported on the ball of radius R at the origin of the
normed space A3, since otherwise we can fix ¢, € supp 6, and replace 6, by the translate
T_g, 0n (note that we are translating in the vector space A3, not in the group A4, »).
Since all the 6, are now supported on a common compact set, by passing to a subse-
quence we can assume that ¢, — 0 weakly for some 6 € P (A55).
Fix p > 0. For large enough n¢, we see that

V{X : Opy.x iS (Upg,x, p)-concentrated} > 1 —p
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(this holds as long as 1/ng < p). If ng is also large enough (in a manner depending on p),
then for all n > ng the measures 6,, 6,, will be sufficiently close in the weak topology
that the previous equation implies

V{X : 0y .x is (Uny,x, 2p)-concentrated} > 1 —2p.

Taking n — oo and using 6, — 6, we conclude that for every p > 0, if ng = ng(p) is
large enough, then

v{x : 0.x is (Vn,,x. 3p)-concentrated} > 1 — 3p.

Choose pr = 3 -27% and write wy , = Upo(2—k),x- BY the last equation and Borel-
Cantelli, for v-a.e. x there is a sequence of affine lines £, in direction Wk ., intersecting
a common compact set in R2, such that for all large enough k (depending on x),

O.0) ) > 1 - pr.

Fix such an x € supp v, let £ = lim; o £ (;),x be an accumulation point of the affine
lines £, and let W, denote the direction of £, so Wy = lim W), ». Let Ky = supp.x;

then it is easily seen that K, N Z,(([Zf)‘[;) c £ for all & > 0 and all sufficiently large i

(depending on ¢), hence 9.x(€§f)) = 1forevery e > 0,and so 0.x({yx) = 1.

Since this holds for v-a.e. x, we can apply the previous lemma to v, 6 and find that
there exists an affine map 0 # ¢ € A3 such that 6.x is supported on a line in direction
¥ (x) for v-a.e. x € R?\ ¢~1(0); since v gives mass zero to every affine line, this holds
unconditionally for v-a.e. x.

Write £. « for the line in direction ¥ (x) that supports 6.x; this is defined for v-a.e.
x (if #.x is not a point mass, we will have ¥ (x) = wy and £, = Zx, but if f.x is a
point mass, wy is not determined). Since 6, — 6 weakly, also 6, .x — 6.x weakly for
every x. For v-a.e. x, from G.x(zx) = 1 we conclude that for large enough n we have
On .x(zgf‘))) > 1 — g¢. Thus for all large enough n, with v-probability > 1 — &g over x,
we have 6, .x(fgf(’)) > 1 — gg. This contradicts our choice of 6,, and completes the proof
of the first part of the statement.

We now turn to the proof of (5.3). Let ¢, R > 0 be given, let 0 > 0 be small with
respect to & (we assume o = O(g?)), and let § > 0 be small with respect to o and R.
Suppose that 6 € 5 (A53) is supported on a set of diameter R and that {Ux }yep2 € RP!
is a family of lines with

v{x : 8.x is (vy, §)-concentrated} > 1 — 6.

By the first part, we may assume that there exists an affine map 0 # v € A% such that

v{x : 0.x is (¥ (x), o)-concentrated} > 1 — 0.
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__Let E be the set of all x € R? for which §.x is both (U, o)-concentrated and
(¥ (x), 0)-concentrated. Then v(E) > 1 — 20. Fix x € E and suppose that 6.x is not
({0}, e)-concentrated. Since x € E there exist a,, by € R? such that

0.x(ax +79) >1—0 and O.x(by + ¥ (x)?)>1—-0.

Write
0 := (ax +79) N (b + ¥ (x)):;

then 8.x(Q) > 1 —20. Since 0.x is not ({0}, e)-concentrated it follows that diam Q > &.
On the other hand, by elementary trigonometry and (2.2),

sin(<X(vx, ¥ (x))) dR]pl(U% Y (x))

Hence, since o is assumed to be small relative to &,
dyp1 (7.7 () < 0(0/¢) <.
which gives
v{x e R?: dgp (Vx. ¥ (x)) < &} > v{x € E : §.x is not ({0}, £)-concentrated}.
Since v(E) > 1 — 20 > 1 — ¢, this completes the proof of the proposition. ]

Corollary 5.7. Let v € P (R?) be a measure that gives mass zero to every affine line and
let M : R? — RP! be measurable and defined v-a.e. Suppose that for some &, R > 0
and every § > 0 there exists a measure 6 € P (AY) that is supported on a set of norm
diameter R, and such that

v{x : 0.x is (M (x),8)-concentrated) > 1 — §,
v{x : 0.x is not ({0}, &)-concentrated} > ¢.

Then there is an affine map 0 # ¢ € A3 such that M = on a set of v-measure at
least .

Proof. Fix a positive sequence &, \, 0, and apply the previous proposition to get corre-
sponding §,,, which we may assume satisfies §, < ¢,. Let 6, be the measure corresponding
to 8, in the hypothesis of the present corollary (we start with n large enough that g, < ¢€).
We obtain affine maps v,, # 0 such that

vix :dppi (Y, (x), M(x)) < &y} > & — &.

We can assume that ||/, || = 1 (in the norm on A43%), since ¥, and ¥ /|| ¥/ | induce

the same map R? — RP!. Thus, passing to a subsequence if necessary, we can assume
that ¥, — ¢ € A3 in the norm metric on A3, in particular [|{|| = 1, so ¥ # 0. By the
last displayed equation, there is a set E € R? with v(E) > ¢ and such that every x € E
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belongs to the event above for infinitely many 7. Thus, for x € E there is a subsequence
n(i,x),i =1,2,..., along which dp 1 (Jn(i,x) (x), M (x)) =0, i.e. Wn(i,x) (x) = M(x);
but also ¥, (x) — ¥ (x) as n — oo in R?, and hence for x € E \ ¥~1(0), which includes
v-ae. x € E, we have ¥, (x) — ¥(x) in RPL. Thus for v-a.e. x € E, both ¥ (x) and
‘M (x) are limits of the same subsequence of 1, (x), so they are equal, as desired. |

5.2. The p-measure of algebraic curves

Let X be the attractor of the affine system ® = {¢; };e . In this section we show that non-
conformality and total irreducibility of ® imply that X is not contained in an algebraic
curve, and that p gives mass zero to every such curve. Here, by an algebraic curve we
mean the zero set p~1(0) of a polynomial 0 # p € R[x, y]. When the total degree deg p
of p is equal to 2 we say that the curve is quadratic.

Lemma 5.8. Let C be a quadratic curve containing X. For x € X let Cy denote the
connected component of C which contains x. Then for every x € X andi € A we have

@i Cx = Cy, (v)-

Proof. Let C = p~1(0) for a quadratic polynomial p. Fix xo € X and i € A, and let
D = Dy,,i € Cy, denote the set of points x € Cyx, N ¢, 1C which are not isolated in
Cxo N@; IC. This is a non-empty set because it contains Cy, N X, which is relatively
open in the perfect set X .

We claim that D is open and closed in Cy,, and hence D = Cy,. It is clear that it
is closed so we need only show that it is open. To this end fix x € D. Then we can find
8 > 0 such that Bs(x) N Cy, is parameterized by an analytic (or even polynomial) curve
y : (—a,b) — R2. Then p(g;y(t)) = 0 whenever y(t) € D, which happens on a non-
discrete set, by the definition of D. Thus pg;y = 0, which means that the image of ¢; y
lies in C; hence the image of y lies in D, and constitutes a neighborhood of x in D. This
shows that D is open in Cy,, as claimed.

We have shown that every x € Cy, is also in (pi_lC, ie. 9;Cy, € C. Since ¢; Cy,
is connected and contains @; (xo), it follows that ¢; Cx, € C,, (x,)- Now apply the same
argument to Cy, (x,) and ¢; 1. note that although X is not guaranteed to be mapped into C
by ¢;” 1 certainly ¢; X is, which is enough for the argument to go through. We conclude
that 97! Cy, (xy) € Cx,. and altogether, we have shown that ¢; Cx, = Cy, (xy)- L

Corollary 5.9. Let C be a quadratic curve containing X, and let Cx be the union of
those connected components of C that intersect X. Then for eachi € A the map ¢; is a
bijection of Cx.

Proof. Immediate since there are finitely many (in fact, at most two) connected compo-
nents. u

Proposition 5.10. Assume that p is a self-affine measure generated by a non-conformal
and totally irreducible system ® without a common fixed point and a positive probability
vector. Then |4 gives mass zero to every algebraic curve.
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Proof. Suppose otherwise. Then there is an algebraic curve C = p~1(0) such that
w(C) > 0. We claim that p is then supported on a (possibly different) algebraic curve.
Indeed, choose a &-typical w € TI7'C (note that £(TT7'C) = u(C) > 0). Then with
probability 1,

1@ 0,C) = Coy..ont(C) = oy .0n](C) = Elw) ., (T C)

—1 asn — oo.

Now, ¢!, C = p,(0) for p, = p © ¢,..«,- Normalize each p,, to be a unit vector
in the vector space of polynomials of total degree at most deg p (normalization does not
affect the zero set), and pass to a subsequence along which p, converge to some non-zero
polynomial py, and also such that p, (0) converges to a set C’ in the Hausdorff metric
on a ball in R? that supports . Then C’ € py1(0) and u(C’) = 1. We can thus replace C
by py ' (0), and assume from the outset that u(C) = 1.

Since X = supp 1 and u(C) = 1, we have X C C. By irreducibility it follows that
deg p > 1. By the work of Feng and Kéenméki [13] it follows that the only non-linear
algebraic curves which can support a non-trivial planar self-affine set are quadratic curves;
thus, deg p = 2 and C is quadratic. Let Cy denote the union of those connected compo-
nents of C that intersect X. We have seen that ¢; Cy = Cx foreveryi € A.

Let M : C — RP' denote the map (defined at all but at most finitely many singular
points) that takes x € C to the direction of the tangent line to C at x. Clearly each ¢; |E)1(
induces a map of tangent vectors of Cy, hence for all but finitely many x € Cy,

M(p;'x) = A7 M(x).

Iterating this for a sequence iy, ..., I,,... we have
Mgt o' x) = A, A M(x). (5.4)
Choosing iy, iz, ... to be i.i.d. with marginal p, for fixed x it is easy to see that

@ L @i lx — o0 a.s., due to the expanding nature of the maps ®; ! (and the fact that
they do not have a common fixed point). It is also elementary that as one escapes to infin-
ity, the tangent vectors to C accumulate on a finite set of directions (namely, on a single
direction for a parabola or line, and a pair of directions for a hyperbola). Thus the distri-
bution of the left hand side of (5.4), with the indices chosen randomly, accumulates only
on atomic measures.

On the other hand, the right hand side of the last equation is a random walk on RP!
whose steps are chosen from {Al._1 }iea, a non-conformal and totally irreducible system,
and thus is attracted to the Furstenberg measure, which under our assumptions has no
atoms, in contradiction to the previous paragraph. ]

Remark. The last proposition actually also holds in the conformal case (i.e. when @ is
conjugate to a system of similarities) using a more direct re-scaling argument: if the mea-
sure gave positive mass to a smooth curve, then, by re-scaling cylinder measures which
are increasingly supported on this curve, we would find that the measure is supported on
a line (the re-scaling of the tangent line to the curve), contradicting irreducibility.
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5.3. The non-affinity of L

In this section we assume again non-conformality and total irreducibility, and also that
dim p < 2, which ensures that L is well defined as a function on X at p-a.e. point (The-
orem 1.5).

We prove that the function L : X — RP! from Section 4.3 does not arise from an

affine map. More precisely, we show that there does not exist an affine map 0 # € AYS

such that L(x) = ¥ (x) for u-a.e. x. Here ¥ : R% \ ¥ ~1(0) — RP! is the map x > ¥ (x).
It is defined p-a.e. because, by total irreducibility, ;0 does not give mass to any affine line.

Recall that ¢; (x) = A;x + b; fori € A and x € R?, and more generally for y € AYS
we write ¥ (x) = Ayx + by,.

Giveni € A and w € AN denote the concatenation of i with w by i w.

Also let v denote the uniform (rotation-invariant) probability measure on RIP.

Lemma 5.11. Leti € A. Then L(iw) = A; (Lw) for £-a.e. € AN.

Proof. By one of the characterizations of L (see Section 2.10), for pN-a.e. w,

SL(w) = nll)n;o Ap, - Awp,V = Ao, nli)rgo Apy .- Aw,V

= 844, L(Sw)-

where S is the left shift map. This is equivalent to the statement we are proving. ]

Given x, y € R2, write x || y to indicate that dim(span{x, y}) < 1 (this allows one or
both of the vectors to be 0). Denote the 2 x 2 identity matrix by /.

Lemma 5.12. Let B be a 2 x 2 matrix such that
BA;x | AiBx forx e R*?andi € A. (5.5)
Then there exists § € R such that B = B1I.

Proof. If B = 0 then the lemma holds with 8 = 0, so assume that B # 0.
We next claim that rank(B) # 1. For suppose that rank(B) = 1. Set W = image(B)
and for each i € A choose £ € RP! such that £, 4;£ # ker B; then by (5.5),

W = BA;{ = A; B = A; W.

Thus W is a common fixed point of {A; };e, contradicting total irreducibility.

We next claim that BL(w) = L(w) for £-a.e. o € AN. Indeed, choosing a typical o,
we have 07.(p) = limy o0 Aw, - - - Aw, V. Since B is invertible, Bv is also a continuous
measure on RP!, so we have

8B.L(w) = B-limA,, ... Ap,v =1im(BAy, ... Aw,V)
= lim Aa)1 . Aa),, (Bv) = 5L(w)-
Finally, the Furstenberg measure = L§& is continuous, so there exist infinitely many

lines which are preserved by B. It is now easy to see that there must exist a 8 € R with
B = BI, which completes the proof of the lemma. ]
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Recall that for ¢ € A3 we write p(x) = Agyx + by.

Lemma 5.13. Let ¢,y € As 5 be such that A, = Ay and x || Yx for all x € R%. Then
also by = by.

Proof. By assumption, ¢, ¥ are invertible. By ¢(0) || ¥ (0) it follows that there exist
0 # v € R? and 7,, 1, € R such that b, = 1,v and by, = tyv. Foru € R?,

U+ 10 = (A, ) | ¥ (4, ") = (4, u) = u +1yv.

Hence, if u is independent of v,

_ Lot _,
O_det(1 tw)_t,,, lo.

This gives b, = by, which completes the proof of the lemma. |

Proposition 5.14. There does not exist 0 # € AYS with Lx = Vx for p-a.e. x € R2.

Proof. Assume that there exists 0 # € A% with Lx = Yx for p-a.e. x € R2. The

measure 1) = L is continuous, hence ¥ can not be constant, which implies Ay #0.
Leti € A. Then by the definition of L : R? — RP! (see Section 4) and Lemma 5.11
it follows that for £-a.e. w € AN,

L(gi(Nw)) = L(Il(iw)) = L(iw) = Ai(Lw) = A;(L(ITlw)).
Hence L(p;x) = A; (Lx) for t-a.e. x € R?, which gives
Voix = U(pix) = A;(yx) = A;¥x for p-ae. x € R?. (5.6)

For x € R? write
p(x) = det(Yo;ix | Aiyx);

then p € R[X, Y] is a quadratic polynomial. By (5.6) we have u(p~'{0}) = 1, hence
p = 0 by Proposition 5.10.
From p = 0 we get ¥ ¢; x | A;¥x for x € R2. By expanding this,

Ay Aix + Ayb; + by || AiAyx + Aiby  for x € R?, (5.7)
By letting |x| — oo and dividing by | x|, we get
AyAix || AjAyx forx e R2.

Since this holds for all i € A and from Lemma 5.12, it follows that Ay = BI for some

0+# B eR.
Leti € A. Then by inserting Ay = B1 into (5.7), we get

BA;x + Bbi + by || BAix + A;by  for x € R%.
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From this and Lemma 5.13 we see that 8b; + by, = A; by or equivalently
bi = B~ (Ai = Dby.

Set w = —B~ by Then a direct computation gives ¢; (w) = w. As this holds for each
i € A we have found that all ¢;, i € A, share a common fixed point. This contradicts our
basic assumptions (see Section 1.1) and completes the proof of the proposition. |

Corollary 5.15. There does not exist 0 # € AY’S, with Lx = W x on a set of x of positive
-measure.

Proof. Suppose that E C R?, u(E) > 0and 0 # ¢ € AYS satisfies Lx = ¥ x for every
x€E. Lt F=TI"'Eso&(F) = u(E) > 0.

Let § > 0. By regularity of £ we can choose a cylinder set C = [iy ... i,] such that
§c(F)>1—4.ByLemma 5.11 we have

L(M(w)) = A;' .. A; ' L(T(Gy ... . iqw))  foré-ae. o.

Now, i1 ...iyw € F if and only if w € S*(F N C) (recall that S is the left shift map,
and we have used the fact that S : C — AN isa homeomorphism), and this occurs with
&-probability £(S"(F N C)) = &c(F) > 1 — . Hence, we find that with £-probability at
least 1 — § over the choice of w,

L(I(w)) = A" ... A7 LTy - L igw)) = A A Y (TG i)
= A A Y (1o T(0) = A AT e n(TT()).

Since A;'... A7'Yg1 ... gn is affine, we have shown that if L agrees with an affine
function on a set of positive measure, then it agrees with a (possibly different) affine
function on a set of arbitrarily large measure. Normalizing these functions in the normed
space Ay’ and passing to a subsequential limit, we conclude that L is a.e. affine, which
by the last proposition is impossible. |

Finally, we combine this with the results of Section 5.1 to obtain:

Corollary 5.16. For every g, R > 0 there exists a § > 0 with the following property. If
0 € P(A35) is a measure supported on a set of diameter R, and such that

ui{x : 0.x is not ({0}, &)-concentrated} > ¢,

then
u{x : 0.xis (L(x),8)-concentrated} < 1—2.

Proof. 1If not, then, for some ¢, R > 0 and every § > 0, we could find a measure
0 € P(A%%) with support of diameter at most R, for which the first inequality is valid
and the second one is reversed. But then Corollary 5.7 would imply that L agrees with an
affine map on a set of p-measure at least ¢, contradicting the previous corollary. ]
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6. Entropy growth under convolution

In this section we assume that ® is non-conformal and totally irreducible (but do not
assume exponential separation). We also assume that dim p < 2.

Recall that % denotes convolution on R¢, and that for 6 € P(Az) and v € P(R?)
we write 6.v for the push-forward of 6 x v by (g, x) — gx. We also write 8.x = 0.6y
etc.

Our purpose in this section is to prove Theorem 1.6, stating that when 6 has non-
negligible entropy and is supported within bounded distance of the identity map, 6. u has
greater entropy than u alone. The proof has some features in common with results in the
literature, but also requires many new ideas (see the detailed discussion in Section 1.4).
In particular, the part of the argument which involves the non-affinity of L is completely
new.

6.1. Entropy growth under linear convolution in R?

The entropy of a convolution is generally at least as large as each of the convolved mea-
sures, although due to the discretization involved there may be a small loss: for every
boundedly supported 8, v € L (R?),

1 1 1 1 | 1
—HW, Dy,) — 0(—) <-Hlx*v,D,) <-H(,D,)+ -HW,D,) + O(—),
n n n n n n

where the error depends on the diameter of the supports. Typically, one expects that
:—lH (0 % v, Dyp) is close to the upper bound, but in general this is not the case, and one
cannot rule out that the lower bound is achieved, i.e. there is no entropy growth at all.
In this section, we state an inverse theorem from [16] about the structure of probability
measures on R? whose convolutions have essentially the same entropy as the original.

Recall Definition 5.4 of a (V, §)-concentrated measure. Complementing this is the
following notion which describes measures whose (approximate) conditional measures
on translates of V' are (almost) uniform.

Definition 6.1. Let IV C R? be a linear subspace, ¢ > 0, and m > 1. A measure v € J’(Rz)
is said to be (V, &, m)-saturated if

H,(v) > dimV + Hp(mwy1v) —e.

It is not hard to see that if 6, v € $(R?) are compactly supported, and if 0 is (V, €)-
concentrated and v is (V, ¢, m)-saturated for some subspace V' < R2, for some large m
and sufficiently small ¢ > 0, then H (0 * v, Dy,) ~ H(v, Dy,). The next theorem shows
that, in a local, statistical sense, this is the only way that this can happen.

Recall from Section 2.6 that v™* denotes the re-scaled component, i.e. vy; pushed
forward by a homothety from 9; (x) to [0, 1)2.

Theorem 6.2 ([ 16, Theorem 2.8]). For every ¢ > 0 and m > 1 there exists § = §(g,m) >0
such that for every n > N(e, 8, m) the following holds. Letk > 1 and 0, v € P (R?) satisfy

diam(supp 0), diam(supp v) = 0(2_k)
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and

1 1
;H(G XV, ch+n) < ;H(U, CDk-l—n) + 6.

Then there exist linear subspaces Vi, ..., Viin C R? such that

voiis (Vi e, m)-saturated and
]P’kgigk+n( (Vi ) >1—s.

0+ is (Vi, €)-concentrated

We have stated this in R? but analogs are valid in any dimension.

6.2. Concentration persists through coordinate changes

The property in Theorem 6.2, that most components of a measure are (V, §)-concentrated,
depends on the coordinate system one works with. One can easily give examples of mea-
sures with components which at some scale are with high probability concentrated, but for
another coordinate system this property is lost (this can happen if the measure looks like a
combination of measures supported on line segments which were contained in a different
neighboring cells, but, after the coordinate change, they lie in a common cell). However,
when taken across several scales, concentration of components is more robust, and does
persist under coordinate changes, albeit with some degradation of the parameters.

We need something slightly stronger, which allows us not only to change coordinates
in R2, but also to decompose a measure 6.x for § € (A, 2) according to the dyadic
decomposition of 6, and conclude that after this decomposition, the pieces 0, ; ..x are still
concentrated, assuming the components (6.x)”* of the original measure 6.x were con-
centrated. The issue which we need to overcome is that 8, ; .x is supported on JDiAz’zx,
and this set generally intersects more than one dyadic cell of JDiz. Thus, even if for a sub-
space W the components (6.x)”-" are highly concentrated on a translate of W (which
depends on y), taken together all one can say is that 8, ; .x is concentrated on the union
of several translates of W. The purpose of Lemma 6.4 below is to handle such a situation.

Definition 6.3. Let v € #(R?), W C R? a linear subspace, § > 0, and m > 1. We say

that v is (W, §)™-concentrated if there exist X1, . .. , X, € R? with
m
V(U(xj + W)(8)> >1-6.
j=1

Recall that A, » is endowed with an invariant metric d which is derived from a Rie-
mannian metric. It is not hard to see that for a bounded set Id € B C A, , there exists a
C = C(B) > 0 such that

diam E.x < C(1 + |x]) -diam E  forevery E C B and x € R?, (6.1)

where diam E is taken with respect to d. We omit the proof of the following lemma. It
can be carried out by using (6.1) and by imitating the proof of [16, Lemma 5.4].
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Lemma 6.4. Let 0 € P(A25), x € R%, k,m > 1, § > 0, and fix a subspace W C R2.
Suppose that |x| = O(1), d(y,1d) = O(1) for ¥ € supp , diam(supp 8) = O(27%), and
Sox(0.x) is (W, §)™-concentrated. Then for n = [% log(l/S)] and §' = Om(%)
we have

Pr<i<ktn(Syi (Byi o« x) is (W, §')-concentrated) > 1 —§'.

The proof of the following proposition is also omitted. It can be carried out by using
the previous lemma and (6.1), and by imitating the proof of [16, Proposition 5.5].

Proposition 6.5. For every ¢ > 0 there existn = n(e) > 1 and § = §(¢) > 0, withn — oo
and 8§ — 0 as € — 0, such that the following holds. Let 6 € P (A3), x € R2 k> 1, and
fix a subspace W C R2. Suppose that |x| = O(1), d(¥,1d) = O(1) for € supp 0, and

]P’i=k((9.x)y’i is (W, 8)-concentrated) > 1 — 6.

Then
Pr<i<k+n(Syi (By.i . X) is (W, &)-concentrated) > 1 — e.

6.3. Linearization

The action operation f : A2 x R? — R2, f(¢, x) = ¢(x), induces the convolution
operation 6.v = f(6 x v) on measures. Because f is differentiable, this action can be
linearized: if I € A5, and J C R? are small sets of diameter §, then f |7« will be close
to linear: Specifically for (¢, xo), (¢, x) € I x J, we will have

S(@,x) = (po + (¢ — o)) (xo + (x — x0))
~ @oxo + (¢ — @o)xo + @o(x — xo) + (¢ — @o)(x — Xp)
= ¢xo + gox — poxo + O(5?).

Letting 6 € £ (1) and v € £ (J) and choosing (¢, x) at random according to 6 x v, this
tells us that 8.v = f(6 x v) is equal, up to some translations and a small error term, to
the distribution of the sum of ¢x¢ and ¢ox; which is nothing other than (6.x¢) * (@ov).
This is, essentially, the proof of the following lemma (except for verifying that the error
term is small enough to affect entropy negligibly). The formal proof is similar to the proof
of [3, Lemma 4.2], and is omitted.

Theorem 6.6. Let Z C Ay 5 x R? be a compact set. For every ¢ > 0, k > K(¢), and 0 <
8 <8(Z,¢,k) the following holds. Let (Yo, xo) € Z, 8 € P (Bs(¥y)), and t € P (Bs(xp)).
Then

1 1
%H(G.r, e{Dkflogbj) - EH((G‘X) * (¢0T)» ‘Dkflogb’) <eé.

The next proposition is needed to show that if 6 € P (A2 2) has substantial entropy
then so do measures #.x obtained by “pushing it down” to R2. This is, actually, not true:
It may be that 6 is supported on the stabilizer of x, a condition which still allows it to have
large entropy, but in which case 6.x = §x is as concentrated as possible. However, for
a given 6 this cannot happen too often, because the stabilizers of any three non-colinear
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points in R? intersect trivially (equivalently, the action on three such points determine an
affine map). One can make this more quantitative and show that if a set of points in R?
is far enough from being contained in an affine line, then the entropy of 6.x will be a
constant fraction of the entropy of 6 for most points in the collection. This is the idea
behind the next result; we omit the formal proof which is very similar to the proof of
[3, Lemma 4.5].

In what follows we rely on the fact that u is not supported on a line. This follows from
our assumptions that @ is totally irreducible and that its members do not all have the same
fixed points.

Proposition 6.7. For every compact Z C Ay there exists a constant C = C(Z, ) > 1
such that for every 0 € P (A2 ) supported on Z and every k,i > 1,

1 1 C _
M{x : %H(e'x»i)i-i-k) > EH(Q’ Di+x) — ;} >Cc .

We use this to prove that, roughly, if & € (A2 ) has non-trivial entropy, then for a
non-negligible fraction of its components 8y, ; and a non-negligible fraction, with respect
to u, of points x € R, the push-forward of 6y, ; via x is not too close to being an atom,
at least after re-scaling and translation by ¥ ~!. In fact, for the proof of Theorem 1.6 we
shall need a version of this which involves components of components of 6. This is the
purpose of the following lemma.

Recall that A,, denotes the uniform measure on N, = {1,...,n} (Section 2.5).

Lemma 6.8. For every ¢, R > 0 there exists § = §(e, R) > 0 such that for k >
K(e,R,8) > 1andn > N(e, R,8,k) > 1 the following holds. Let 0 € P (A2 ) be such
that diam(supp 0) < R with respect to d and %H(@, D) > e. Then Ay, x O(F) > 8, where
F = F(0) is the set of all (i,V) € Ny, X Az such that

. -1 . . H
Pi<j<ivi (M{x 521 (Y Bunide.j)-x is } > 5) > 4.

" not ({0}, 8)-concentrated

Proof. Let C > 1 be a large global constant, which will be determined during the proof
of the lemma. Let g, R > 0, let m > 1 be large with respect to € and R, let § > 0 be small
with respect to m, and let k > 1 be large with respect to §, and n > 1 large with respect
to k. Suppose that m is so large with respect to ¢ and that § is so small with respect to &
and m, that for every v € £ (R?) with diam(suppv) < C,

1
v is ({0}, §)-concentrated — — H(v, Dp,) < g (6.2)
m

Let 0 € $(A,2) satisfy diam(supp ) < R and %H(G, D,) > e. From %H(G, Dy)>e
and Lemma 2.5,

1 1 k1 €
Eo<i<n (EH(‘/f Oy i)i+k)) >&— 0(; + z) > 3 (6.3)
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By Lemma 2.2, the integrand on the left hand side of (6.3) is O(1). Hence for some global
constant Cog > 1,

Co - Co.

From this and by applying Lemma 2.5 once more we find that A, x 8(F’) > ¢/ Cy, where
F’isthe set of all (i, ¥) € N, x Az, such that

1 _
Eicj<itk (EH((T/f lew,i)rp,jac(Dj+m)) > Co O(E) > ¢y

As above, the integrand on the left hand side of the last inequality is O(1). Hence there
exists a global constant C; > 1 such that for (i, ¥) € F’,

1 _ e e
Pi<i<n (zH(Iﬂ Y0y, Ditk) > —) > —

1 _ e e
Picj<itk (ZH(W Y04.1)0,js Djtm) = C_1) > o

Now by Proposition 6.7, by assuming that C is large enough, and by assuming that m
is sufficiently large with respect to ¢, it follows that for (i, y) € F’,

1 _ ) _ e
Pisfswk(ﬂ{x : EH(Szj((llf Y04.1)0,7) X, Dm) > E} >C 1) z &

Assume that C is large enough that the supports of the measures, appearing inside the
entropy in the last expression, almost surely have diameter at most C. By (6.2) and by
assuming that § < ¢/C it now follows that F’ C F, where F is the set defined in the
statement of the lemma. Since A, x 8(F') > ¢/Cy > § this completes the proof. |

The following is a variant of Lemma 2.5:

Lemma 6.9. Let R > 0, 8 € P(Az,2) supported within distance R of the identity, and
v € P (R?) supported within distance R of the origin. Then for every 1 <k < n,

1 1 k 1
—H(@.U, °{Dn) > Elsign —H(Qw’i.\)x,i, <fD,'+k) —Orl—+-).
n k n k

Proof. Let £ be the integral part of n/k. As in the proof of [3, Lemma 4.3], for each
0<r<k,

(-2
H(Owv. Dp) = Y Eimmiyr (H(Oy i wvri, Dt | Di)).

m=0
Note that
diam(supp((fy,i).vx.i)) = Or(2™").
Hence supp(8y,; . vy ;) intersects Og(1) elements of D;, and so
)
H(0.v, Dy) > Z Ej—mi+r (H(Oy,i «vx,i, Dx+i)) — Or(D).

m=0

The rest of the proof proceeds exactly as in [3, Lemma 4.3]. ]
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6.4. Entropy growth near the identity

Our main goal in this section is to prove our main entropy growth result, Theorem 1.6.
We recall the statement:

Theorem. Let i be a self-affine measure in R? defined by a non-conformal, totally irre-
ducible system ® and satisfying dim u < 2. Then for every e, R > 0 there is a § =
8(u, &, R) > 0 such that for every n > N(u, €, R), the following holds. If 0 is a prob-
ability measure on the affine group supported within distance R of the identity, then

1 1 1
—HO,Dp) > e = ~HO.u,Dp) > —H(w, Dy) + 6.
n n n

We begin the proof. Recall from Section 2.6 the definition &, = {1,...,n} and
Non+k ={n,n +1,...,n + k} with the associated uniform measures A, and A,, , +x on
them.

LetO <e < 1and R > 0, let kK > 1 be large with respect to ¢, R, and let n > 1 be
large with respect to k. Let 6 € $(A,,2) be supported within R of the identity in A5 5,
and assume that %H(@, D,) > e.

By Lemma 6.8 and by replacing ¢ with a smaller quantity without changing the nota-
tion, we may assume that A, x 6(Fp) > ¢, where Fy is the set of all (i, V) € N, x A2

such that y
o S0 (W 0yi)g,j) X is
Fisjsivr (M{x " not ({0}, £)-concentrated ) R

Let 6 > 0 be small with respect to &, R and suppose that k is large with respect to §.
By Lemma 6.9,

1 1 k 1

—HO., Dn) = Er<i<n| mHOy,i o pix,i- Ditx) | — Or| — + —

n k n k
52

1
> Elfifn(%H(ezlf,i i, °®i+k)) -3

From this and Theorem 6.6,

1 282

1
;H(G-M, Dy) = Er<i<n (EH((QVI,Z' X))k Yhhx i, @i+k)) -5

Since 6 is supported on an R-neighborhood of the identity, the partitions ;4 and
V¥ 1D; 41 are Og(1)-commensurable, so taking k large relative to R and § we get

1 1 _ 382
;H(Q‘M,j)n) > Ei<i<n (zH((W 19w,i-x) * Ux,is o@i+k)) - ? (6.4)

Write ' = A, x u x 6 and set

Ey = {(l X, ) € N, X R2 x Azt %H((w_lew’i.X) * Mx’i’i)i+k)}.

< tH(tx,is Dii) + 68
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Assuming as we are that k is large relative to §, we have

1 1 82
TH T 0yi%) % i, Diek) = 7 H (i, Digr) = 15 (6.5)
By dim ¢t = o and by Lemmas 2.4 and 2.5, since n is large,
1 82
Ei<i<n %H(fo,ia Divk) | Za— 5 (6.6)
Now if ['(Ey) < 1 — 4, then by (6.4)—(6.6),
1 1 o 182 §2
—HO.u, DOn) =2 Er<i<n| mH(tx,i, Ditr) | +06T(Ey) — —— >0+ —,
n k 10 10

which completes the proof of the Theorem. Hence it suffices to prove that I'(Eg) < 1 — 6.

Assume that I'(Eg) > 1 — §. Let o0 > 0 be small with respect to ¢, R and suppose that
8 is small with respect to o. Let m > 1 be large with respect to o and suppose that § is
small with respect to m. By Theorem 6.2 it follows that for each u = (i, x, ) € Ej there
exist linear subspaces V*, ..., V%, C R? such that'?

(1x)? is (V¥, 6, m)-saturated and ) -0 (6.7)

Pisjsive ((W 10y .x)% J is (V}*, 0)-concentrated
Lemma 6.10. We can assume that T'(Ey) > 1 — o, where E is the set of all (i, x,V¥) €
Ny X R? x Ay 5 with
Picj<itk (W0 .X)% is (L(x), 0)-concentrated) > 1 — o. (6.8)
Proof. Let Z be the set of all (i, x,¥) € N, x R2? x A» » such that
IP’isjsi+k(|1"Im((/1»x,i)y’j) —a|<o0)>1-0/2.

Then by Proposition 3.15 and Lemma 2.3 it follows that I'(Z) > 1 — 0. By Lemma 4.7
it follows that I'(Y) > 1 — o, where Y is the set of all (i, x, ) with

Pi<j<it (Wi{ifm,o) Hy (ot (1)) > =) > 1 -0,

Note that '(Eo N Z NY) > 1 — 30, hence it suffices to show that (6.8) is satisfied for
(i,x,¥) € Eo N Z NY with o replaced by O(0).

Fixu = (i,x,¥) € Eo N Z NY and let F, be the setof all (j, y) € N; ;+x x R? such
that

o (px,))* is (V}*,0,m)-saturated;
o |Hp((px,i)”7) —a| <o;
o infw¢pLin,e) Hm(w o ((1x,i)*7)) > B —o0.

131 (6.7) and later, x, ¥ and i are fixed, and the randomness is over y, z and j.
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Sinceu € Eo N Z NY wehave A; ;4 X fx,;(Fy) >1—30.Let (j,y) € F, and assume
for contradiction that dim Vj" = 2 or dim V]“ = 1 with VJ” ¢ B(L(x),0). Then

o> Hm((,ux,i)y’j) —0 > dim V]u + Hm(”(Vj!‘)J- (/Lx,i)y’j) —20
>1+p8—30. (6.9)

We have assumed that 0 < o < 2, and by'* Corollary 4.2 we have B > %a, hence, by
assuming that o is small enough, we get a contradiction. It follows that we must have

dimV/* =0 or dimV} =1with V/* € B(L(x),0). (6.10)

Write
S ={J € Mtk : ixily : (. y) € Fu} > 0},
then A; ; 1 x(S) > 1 —30since A; ; yx X ix,i (Fy) > 1—30. Note that (6.10) holds for each
j€S.Let(j,z) €Ntk x R2besuchthat j € S and v := (Y 10y, .x)%/ is (Vj",a)-
concentrated. If dim V]” = 0 then v is clearly (L(x), 0)-concentrated. If dim V]” =
with V* € B(L(x), o) then v is (L(x), O(o))-concentrated. Hence in any case v is
(L(x), O(0))-concentrated. From this, A; ; 1 £ (S) > 1 — 30, and (6.7), it follows that (6.8)
is satisfied for u = (i, x, ¥) with o replaced by O(o). This completes the proof of the
lemma. ]

Lemma 6.11. We can assume that T'(E;) > 1 — o, where E; is the set of all (i,x, V) €
Ny X R2 x Az’z with

. -1 . . ;
Pi<j<itk (Sz‘/ (V" Opide.; -x) ls) >1-o0. (6.11)

(L(x), 0)-concentrated
Proof. Fix (i,x,¥) € Ey with x € X, write t = w_léh/,,i, and set
S={j €Nk :Pi=; ((t.x)y’l is (L(x), 0)-concentrated) > 1 — +/o}.

By (6.8) it follows that A; ;4 (S) > 1 — \/o. Let 6’ > 0 be small with respect to & > 0
and suppose that ¢ is small with respect to ¢’. By Proposition 6.5 there exists an integer
¢ = q(0’) > 1 such that, by assuming that ¢ is small enough with respect to o', we have

Pj<i<j+q (S (tp.x) is (L(x),0")-concentrated) > 1 —o’ for j € S.  (6.12)

Let 0” > 0 be small with respect to & > 0 and suppose that ¢’ is small with respect to ¢”.
From A; ;+£(S) > 1 — /o and (6.12), by assuming that o, 0’ are sufficiently small with
respect to ¢”, and by assuming that k is sufficiently large with respect to g, it follows
by a statement similar to Lemma 2.3 that (6.11) is satisfied with ¢” in place of o. This
completes the proof of the lemma. ]

141 fact here we only want > «/2, not > «/2 + t, so this is a much easier result which does
not require Bourgain’s theorem.
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By the previous lemma, by Fubini’s theorem, and by replacing o with a larger quantity
which is still small with respect to & (without changing the notation), we may assume that
An X 0(F1) > 1 — o, where Fj is the set of all (i, ¥) € N, x Az » such that

) -1 . . H
Picj<itk (,u{x  S2i (U Oy.idg ) -x 13} > 1—0) >1—o.

" (L(x), 0)-concentrated

Recall the set Fy from the beginning of the proof. Since o is small with respect to ¢,
and A, x 0(Fp) > &, while A, x 0(F;) > 1 — o, we have A,, x 0(Fy N F1) > 0. In par-
ticular there exists (i, ) € Fo N Fy. Similarly, since o is small with respect to ¢, there
existi < j <i +k and ¢ € Az, such that for 6 := S,; (¥ ~'6y.i)e,;) We have

w{x : 0.xis (L(x),0)-concentrated} > 1 — o, (6.13)
wix : 0'.x is not ({0}, &)-concentrated} > s. (6.14)

Also, observe that 0’ is the re-scaling by 2/ of a level-j component (~16y,;),,; of the
measure ¥ 10y ;, and ¥ 16y, is contained in an O(1)-ball (with respect to the invariant
metric d) around the identity. On the intersection of A, » with this ball, the invariant met-
ric and the norm metric of 437 are bi-Lipschitz equivalent. The diameter of the support of
(¥ 10y.1)p.; is O(277) in the invariant metric, so it also has diameter O(27/) in norm;
hence after re-scaling by 2/, the diameter of the support of 6 is O(1) with respect to the
norm metric.

In view of the last few paragraphs, and since o can be taken arbitrarily small compared
to &, we have a contradiction to Corollary 5.16. This completes the proof of the Theorem.

Finally, we prove the more basic fact that entropy does not decrease (a special case of
which is (2.17)):

Proposition 6.12. Let R > 0 and let v € P (R?), 6 € P(A2.2) be supported on R-neigh-
borhoods of the identities of R?, Ay », respectively. Then for every n,

H(0.v,Dp) = H(v, Dn) + Or(1).

Proof. Every h € supp 6 is bi-Lipschitz with constant Og(1), which implies that
H(hv, D,) = H(v, Dn) + Og(1). Thus, using 8.v = [ hv df(h) and concavity of
entropy, we conclude that

H(0.v,D,) = H([ hv dO(h), @n)

> / H(hv, D) dO(h) = H(v, D) + Or(1). -

7. The non-conformal partitions D5 and entropy growth

In this section we assume everything: namely, that ® is non-conformal, totally irreducible
and exponentially separated, and that dim & > 1.
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Our objective in this section is to prove an entropy growth result for 6. when 6 is far
from the identity, but still of bounded diameter. It is important to notice that entropy can
even decrease under such a convolution if we do not measure it in the right way. Indeed,
consider the matrix A = diag(1,27") for some large n. Then at resolution 27" (corre-
sponding to Dj,), the measure A is extremely close to being supported on a horizontal
line, hence %H (Ap, Dy) <14 0(1). If & were supported on a bounded neighborhood
of A then, no matter how smooth 6 is, we would similarly have

1
—H@. 1, Dy) < 1+0(1)
n

since 0. is still close to a horizontal line. At the same time, if dim & > 1 + §, then we
will have

1
—H(u,Dy) =dimpu —o(1) >1+68—o0(1).
n

Thus, for large n we certainly have %H(@ M, Dy) < %H(u, D,) — 8, which even gives
an entropy decrease.

The problem is, of course, that we are measuring entropy in the wrong coordinates.
The right way is in the coordinates induced by A: Let Ax +a = g(x) € A2 > andlet VDU
be a singular value decomposition of A. Assume that o1 (A) > oz (A), where 1 (A), o2 (A)
are the singular values of A. For n > 0 we set

DE = VD(Dy). (7.1)

With respect to this partition, one does not have an entropy drop from p to 8.u. Fur-
thermore, under our assumptions on , we will be able to interpolate between Df and
ordinary dyadic partitions at appropriate scales, to show that entropy growth generally
does occur.

It is worth pointing out that the phenomenon described above cannot occur in the
setup of previous related works. Indeed, in [15, 16] the objects of study were self-similar
measures on R and in R4, in which all the linear operators involved are conformal. In [3]
the dimension of planar self-affine measures was computed, but, as noted above, the main
ingredient of the proof consisted of computing the dimension of projections of the self-
affine measure onto 1-dimensional subspaces. Thus, also in this case, we essentially dealt
only with 1-dimensional fractal measure. The introduction of the non-conformal parti-
tions Oj is a new feature of the present work and we expect they will play a role in future
developments in this area.

7.1. Interpolating between non-conformal and conformal partitions

The purpose of this section is to relate the entropy of a measure with respect to D5 to
the entropy with respect to the usual partitions £,,. This relies on analysis of projections
of the measure, and therefore requires the assumptions stated at the start of the section,
which, by Theorem 1.3, imply that

dimmypu =1 forn*-ae. V e RPL
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In this section we fix the following notation. Let g € A, » and recall that we write
g(x) = Agx + by. Let n € N, and denote the singular values of Ag by a1 = o1(4g) =
27" and ap = ap(Ag) = 272", with 0 < ¢; < ¢, (we introduce n because later we
will consider cq, c2 to be fixed and let n — oo; one may imagine that ¢; = |y;|). Let
Ag = VDU be a singular value decomposition of Ag, and recall that DE =VDD,,soit
consists of rectangular cells whose long edge has direction v = Ve, and length 2~(+¢Dn
and whose short edge has direction 7t and length 2~ (1+e2)n

As a first consequence observe that for any M > 0, and up to a translation, QFSZZ) .

refines Q‘Dfl and in fact,

ns
JDfln \Y Jrglc‘D(MHz)n is commensurable with D(as+cp)n-

It follows that for any measure v € P (R?), and for M > 0,

H(”a °©(M+cz)n | O(Dczn) = H(V» c(D(M-H:z)n) - H(Us e{Dczn)
= HW, D}, vV 75 ' Dmteayn) — HO, DE V 75 Deyn) £ 0(1)
= (H(v, Djy,) + HW, 75" D v texyn | Diip))
— (H(, DE) + H, 75" Doy | DE)) £ O(1), (1.2)
Lemma 7.1. Let R > 1, let g € Az be as above, and suppose that ¢y — ¢y > R7L
Let 6 € P (A2 ) be supported in an R-neighborhood of g (with respect to the invariant

metric). Let v = 0., where  is a self-affine measure generated by a non-conformal and
totally irreducible system satisfying exponential separation and dim pu > 1. Then

H®,D§) = Or(1),
and for all M € {0} U [1, 00),
HW, 75 D +eayn | Dy;,) = (c2 —ci)n + or(n).

Proof. We prove the second statement first and adopt the notation from the previous dis-
cussion. Since Dj,, consists of rectangles of dimensions 27 (MFen x 2=(M+e2)n ity
long edge in direction U, and since 775! D(ps4-c,)n consists of strips of width 2~ (M+ex)n

in direction oL, every cell of the former partition is divided by the latter partition into
0(2(¢2=¢1)n) cells. Therefore we have the trivial bound

H(v,n{li)(MHz)n |£)f4n) <(cp—cy)n+ 0().

To prove the reverse inequality, use v = 6. = [ hj d6(h) and concavity of entropy
to conclude that

H(U’ T[gl"(,)(M-f—Cz)n | "(l)fln) 2 / H(h/"l’7 ﬂ%IQ(M-FCz)n | g)fln) de(h)’ (73)

so it is enough to prove the lower bound for the integrand on the right hand side under
the assumption that d(h, g) = Ogr(1). Recall that A, = VDU is a singular value decom-
position of Ag, so that D§,;, = VD Dpr,. By assumption, we can write & = gh’ with
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d(h',1d) = Og(1), and therefore h = VDUA, + gby = VDh" + gby/, where we have
defined i = UAj,. Note that 4" lies in an Og(1)-neighborhood of the identity. Substi-
tuting this into (7.3), and eliminating the translation gby at the expense of absorbing an
additive O(1) term into the o(n) term, we see that it is enough to show that

H(VD(W' ). 715" Diat+eayn | VD Datn) = (c2 — eI + o(n).
Applying (VD)™! to all terms, we see that this is the same as
H(h,//,L, (VD)_IT[U_IQ(M+02)I1 | cDMn) = (C2 - Cl)n + 0(”)

Now,
(VD) 'ny! = (mgVD) ™! = (e, D)7 = 15 Spern

(because U = Veq and D1 = diag(2€17",2¢2™)), so we must show that
H(h”[l,, JTe_IIQ(M+cz—cl)n | Darn) = (2 — c1)n + o(n).

For M > 1 this is a consequence of Proposition 3.6. For M = 0 this follows easily from
Lemma 3.3 and d(h”,1d) = Og(1).

The first statement is proved similarly: first write 8 = g6’, with 8’ € (A42,2) sup-
ported in an Og(1)-neighborhood of the identity. Write u’ = 6”.u, so v = gu’. Then,
by the same reasoning as above, for some map h” € A, within distance Og(1) of the
identity, we have

H(v,D§) = H(W"W', Do) = Or(1),

where the last bound is because ', and hence h”u’, is supported on a set of diame-
ter Ogr(1). |

Proposition 7.2. Let R > 1, let 0 € P (A, 2) be supported on a set of diameter R (in the
invariant metric), and let g € supp 0. Let 272" < 271" < 1 denote the singular values
of Ag and suppose that c; — ¢ > R™Y. Then for every M > 1,

H(O ot Dat+eyyn | Degn) = H(Ojr. Dy,) + or(n).
Proof. By (7.2), the claim follows if we show that
H@O.pu, JTU_IOD(M+c2)n | J)fln) —HO.u, D§)— HO .1, n{li)cﬂ, | D§) = o(n).

This, in turn, follows from the previous lemma, which says that the two extreme terms are
(c2 — c1)n + o(n), so these cancel up to an o(n) error, and the middle term is O(1). =

7.2. Entropy growth far from the identity

We can now prove our entropy growth results for 6.« when 6 is far from the identity, but
still of bounded diameter.
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Theorem 7.3. Let u be a self-affine measure in R? defined by a non-conformal, totally
irreducible system ® and satisfying dim u < 2. Then for every € > 0 and R > 1 there exists
8 = 8(i, &, R) > 0 such that forn > N(u, &, R), the following holds. Let 6 € P (A2 ) be
supported in an R-neighborhood of a contraction g € A 5. Then

1 1
—H(.Dyp) > e = —H(O. 0. DE) > dim i + 6.
n n

Furthermore, if we also assume exponential separation and dim w > 1, then for any
M > 1, writing a; = %log(xi (Ag) fori = 1,2 and assuming a; — a, > R7Y, we have

1 1 .
21y O Dan) > & = o H(Ow . Dt +laz pn | Diayjn) > dim pt + 6.

Proof. The argument is identical to that for the previous proposition except that instead
of concavity we apply Theorem 1.6. In detail, let g(x) = Ax + b and A = VDU be the
singular value decomposition. Let B = VD so that Dy = BD,. We claim that the state-

ment follows from Theorem 1.6 applied to u and the measure 6’ obtained by translating
B~16 by —B~!b. Indeed, by left-invariance of d,

|H (0", D) — H(6. Dp)| = O(1).

Also, again by left-invariance, 6’ is supported on an R-neighborhood of B~!g — B~ 1h
= U, and since U lies in the compact (and hence bounded) group of orthogonal matrices,
0’ is supported in an (R + c)-neighborhood of the identity in A, >, where the constant
c is the diameter of the orthogonal group of R2. By Theorem 1.6 we find that for some
§ > 0, for n large enough,

1
~H®® ., Dy) > dimp + 6.
n
Finally, we have
H(O ., DF) = HO.pt, BDy) = H(B™(0.11), Dy) = H(O'.1t, Dy) + O(1),

which completes our proof of the first part. The second part follows from Proposition 7.2
and from the first part of the present theorem (using M n in place of n). |

Finally, we have the softer fact that entropy can never substantially decrease under
convolution (if measured at appropriate scales).

Proposition 7.4. Let i be a self-affine measure in R? defined by a non-conformal, totally
irreducible system ®. For every R > 1, ifn > N(R), the following holds. Let 0 € P (A3 2)
be supported in an R-neighborhood of a contraction g € A3 ». Then, as n — oo,

1
—H(0., DE) > dim p — og(1).
n

Furthermore, if we also assume exponential separation and dim w > 1, then for any
M > 1, writing a; = %log(xi (Ag) fori = 1,2 and assuming a, — a, > R asn — oo,

1 .
M—nH(Q./,L, cD(M+|a2\)n | O(D|a2|n) > dim p — or(1).
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Proof. We observe g~16 is supported on an R-neighborhood of the identity and apply
Proposition 6.12 to get

1 1 1
LHO.10. D) = L0010, + 0 )
n n n
1 1
> ;H(,u, Dn) + OR(;) =dimu + og(1).

The second statement is immediate from Proposition 7.2. ]

8. Surplus entropy of p*” at small scales

In this section we shall assume that ® is non-conformal, totally irreducible and satisfies
exponential separation. We also assume that dim u < 2.
As in the introduction, we identify the probability vector p = (p;)iea With the mea-
sure ) ;cp Pi - 0p; € P(Az2) and write p*” for the n-fold self-convolution of p in A, 5.
Our goal is to show that the level-0 component of p*" € P (A,,2) has substantial
entropy at small scales, assuming p*”* has non-negligible entropy when conditioned on
the fibers of the symbolic coding map IT.

8.1. Distances in the affine group

Write G = GL3(R). Recall that d is a left-invariant metric on A, ». Identifying A, » in
the usual way as a subgroup of G, we may assume that d is the restriction to A, » of a
left-invariant metric on G, also denoted by d, which is derived from a Riemannian metric.
Given 1, B2, B3 € R\ {0}, write diag(B1, B2, B3) € G for the diagonal matrix with
entries B1, B2, B3 on the diagonal. Given E € G write | E| for the operator norm of E.

Lemma 8.1. Let 81, B2, B3 > 0 and set D = diag(B1, B2, B3). Then

d(D,16) = O(1 + max {log || D, log | D~"[I}).

Proof. Clearly we can assume that §; # 1 for some 1 <i < 3. Write
M = [max{|log B;|: 1 <i <3}],

and set Y Y u
. 1 1 1
E = dlag(ﬂl/ , 2/ , 3/ ).

/M
i

Since f e [1/2,2]for1 <i <3,wehave d(E, 1g) = O(1). Hence,

M
d(D. 1) = d(EM 16) <Y d(E/.E'™") = M -d(E. 1) = O(M).
j=1

Now since M < 1 4+ max {log || D||,log | D~!||}, the lemma follows. L]
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Lemma 8.2. Forany E € G,
d(E.1g) = O(1 + max {log || E||. log | E"[}}).
Proof. Let E = VDU be a singular value decomposition of E. Since V, U are orthogonal,
dV,1g),d(U,1g) = O(1).
Therefore,

d(E.1g) <d(VDU,V) +d(V.1g) = d(DU, 1g) + O(1)
<d(DU,D) +d(D,1g) + O(1) = d(D, 1) + O(1).

Now since ||E|| = ||[D| and ||[E~|| = || D™}, the lemma follows by Lemma 8.1. L]

Recall that for Wy, W, € RP! we write dgp1 (W, W) for the operator norm
lww, — 7w, |lop Of the difference between the orthogonal projections onto Wy and W,.
Given A € GL,(R) with a1 (A) > (A) and singular value decomposition A = VDU,
recall that we write L(A) = Ve; € RPL.

Lemma 8.3. Let g1, g2 € Az satisfy gi(x) = Bix + b; and a1(B;) > a2(B;) fori =
1,2. Assume that

(B1)
dgp1 (L(By), L(By)) = 0(2?(31)), 8.1)
ai(By) = O(a;(By)) fori =1,2, (8.2)
|b1 — b2| = O(a1(By)), (8.3)
7L B,)L (b1 — b2)| = O(a2(B1)). (8.4)

Then d(g1,g2) = O(1).
Proof. Note that d(g1, g2) = d(g5'g1, 1) and
g5 g1(x) = By 'Byx + By '(by —by) for x € R?.
Set
E— (Bz_;Bl Bz_l(bll —bz)) cG

Then by Lemma 8.2 it suffices to show that || E||, | E~!|| = O(1). We shall show that
|E| = O(1). In an analogous manner it can be shown that | E~!|| = O(1). Note that

IE| = O(1 + B ' Bill + By (b1 — b2))). (8.5)
Fori = 1,2 1et V; D; U; be a singular value decomposition of B;. Then

|Bz_1(b1 — b2)| = |D2_] Vz_l((bl — bz, V2€1>V2€1 + (bl — bz, V282)V282)|
< a1(B2) 7 by — ba| + aa(B2) (b1 — b2, Vaer)|.
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By assumptions (8.2) and (8.3),
a1 (B2) by — ba| = O(1).
Additionally,
[(b1 — b2, Vaea)| = |73,y 1 (b1 — b2)|
< dpp1(L(B1)". L(B2)"Y) - [by = ba| + |7y, 2 (b1 — b2).
From this and assumptions (8.1) to (8.4),
@2(B2) 7 (b1 — ba. Vaer)| = O(1),

which shows that
|B3' (b1 — by)| = O(1). (8.6)

Fori =1,2,

|By ' B iU ei| = |D3'V5 'ViDyei| = i(By) - D5 V5 e
a;(B1) - | D3 V5 Y(Viei, Vaer) Vaer + (Viei, Vaes) Vaes)|

< %B) CACIVTS

< al(Bz)HVle” Vaer)| + az(Bz)HVle” Vaes)|
= LISV

= 0(1) + 012(32) |<V1€l, V262>|~

From this and assumption (8.2) we get | By ! BiU; 'e;| = O(1). Additionally,
|(Vier, Vaea)| = |mp(s,)(Vae2)| < dppi (L(B1), L(B2)) + |7L(B,) (V2e2)].
From this, 77 (B,)(V2e2) = 0, and assumptions (8.1) and (8.2),

ap(By)
az(B3)

[(Vier, Vaez)| = O(1).

It follows that
|B;'BiU e;| = O(1)  fori = 1,2,

which shows that || B; ! B;|| = O(1). From this, (8.6) and (8.5) we get |E| = O(1),
which completes the proof of the lemma. ]

8.2. Surplus entropy of components of p*"

Recall that £ = pN € P(AN) and IT : AN — R2 is the coding map associated with ®.

Let {£,},ean C P(AN) be the disintegration of £ with respect to TT~! (8), where B8
is the Borel o-algebra of R2. The function w > &, is measurable and defined £-a.e. We
also write this as {£;}xex. since the map w +> &, is measurable with respect to I1~! 3.
This is defined p-a.e. since u = I1€.
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Given v € P(AN) and n > 1 write

vl = Z v[w] -8y, € P(A22).

weA”

Lemma 8.4. For everyn > 1,

P = / [Eoln dE(w).

Proof. We have

= Y Eul b, = Y [ oluldé) b,

weA”" weA
— [ 2 tolul 0, dt@) = [l dtte)
weA”"
which proves the lemma. u

Let0 > y; > y2 > —oo be the Lyapunov exponents corresponding to ) ", pi - 84; €
P(GL2(R)) (see Theorem 2.6(1)). For g € A, recall that A € GL»(R) and b, € R?
are the linear and translation parts of g respectively. Also recall that &, is the partition
of AN into n-cylinders: £, = {[w] € AN : w € A"}.

Proposition 8.5. Let i be a self-affine measure defined by a non-conformal, totally irre-
ducible and exponentially separated system ®. Suppose that dim u < 2 and

HE P TTTIB) > 0.
Then there exist ¢ > 0 and M > 1 so that for £-a.e. w € AN andn > N(w),

1

Mn H([Ew]nv i)Mn | 1)0) > €.

Furthermore, writing 0“"" for a random level-0 component of [E,]n,

1 ~
lim inf P (—H(@“””, Dyn) > 8) > ¢, (8.7)
n—o0o Mn
and there exists a sequence 8, \, 0 (depending on w) such that, fori = 1,2,
lim IP’(
n—>00

Proof. From H (¢, P | TI718) > 0 and [12, Theorem 2.2(iii)], there exists &’ > 0 such
that &, has exact dimension > ¢’ for £-a.e. w € AN. Hence

1 ~
Xxi — —logai(Ag)| < 8, forall g € supp 9‘”’") = 1. (8.8)
n

n—>oo

1
lim —H(E,, Pp) > ¢ foré-ae. we AN, (8.9)
n
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Since ® satisfies exponential separation, there exists M > 1 such that
Dpn(Pw,) # Omn(pw,) forevery n > 1 and distinct wy, wp € A”.
From this and (8.9),
1
lim — H([Epln, Dpn) > & foré-ae. w € A",
n—oo n
Setting ¢ = &'/ M we have, equivalently,
1
lim — H([Ep]n, Dyn) > & for E-ae. w € A", (8.10)

n—oo Mn

We wish to show that this continues to hold when we condition on Dy . For this, it suffices
to show that there are sets £, = Ey ,, C A3 such that

(D) limyeo[§w]n(Ew.n) = 1 for§-ae. w;
(2) Ey,n can be covered by 20 cells from Dy.

This is sufficient because, by (1) and by concavity and almost convexity of entropy, the
entropies

1

T H (ol Datn | D) and o H((ula)E,., Dot | Do)

are asymptotic as n — o0; and by (2), the second of these entropies is asymptotic to
ﬁH(([Sw]n)Ewin , Dprn), because (2) easily implies that

1

M_nH(([‘i:w]n)Ewn , Do) = o(1).

For the remainder of the proof we fix a &-typical w € AN, which we will assume
satisfies several full-measure conditions which arise in the course of the proof.
By Theorem 2.6 (and the identity § = [ &, d§(w)), fori = 1,2,

@i(Ag),) = 2"xitoo W) for g ae o e AN,
Furthermore, as a by-product of the proof of the Oseledets theorem (see. e.g. [25]),
dgp1 (L(Aq,), L(0)) = 2"0e711%00 () for£ae 0 € AN,
Hence, by Proposition 4.4 and the assumption dim u < 2,
dgpt (L(Ag),), L(w)) = 2"2mxitoe ) for g, ae. o € AN,

It follows that there exists a sequence &, \, 0 (which implicitly depends on w) such that
the sets F, = Fy, , defined by

d]RP1 (L(Ao\,,),L(w)) < 2"(X2_X1+5n)’
Fp=1q0e AN :0n(i=8n) < o(Ay),) < 2006+ fori = 1,2, (8.11)
and [o],] N TI™Y(Mw) # @
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satisfy
Eo(Fy) — 1.

Note that F, is a union of n-cylinders (since o € F, depends on o|,). We define E, =
Ew,n - A2,2 by
E, = {(pg|n 10 € Fy}.

Then, by definition of [£,],, we have

Ewln(En) = Eu(Fn) — 1,

giving the first required property of E,,.
It remains to show that we can cover E, by 2°( level-0 dyadic cells, or equivalently,
20(n) gets of diameter O(1). To begin, observe that by (8.11), foreachn > 1 and o € F,,

. Olz(AEI )
dgp1 (L(Ag),), L)) < 23" . inf ———2uc
RPI( ( O’|n) ( )) CGFn al(Acln)
and
0 < @i(Ag),) < 22" ';inﬁf @i(Ag,) fori=1.2.
€rp

Hence we can partition F), into 2°(") Borel sets in such a way that on each cell the values
of L(Ay),) lie in an interval of diameter infee g, o2 (Ag),)/@1(A¢|,) and the values of
@; (A |n) lie in an interval of length % infrep, o (A¢),). We obtain a finite Borel partition
Fn = Fon of F, such that | F,| = 20@an) — po(m) gpq

A
dgp1 (L(Aq),). L(Ag),)) < W for F e %, ando, ¢ € F, 8.12)
Oll( tln)
and fori =1, 2,
ot (Ag,) — ai (Ag),)| < %Oli(Aa,,) for F € ¥,and o, € F. (8.13)

Every F € ¥, is defined by conditions on n-cylinders so F is again a union of z#-cylinders,
hence the collection &, of corresponding sets

E=E(F) = {gs), 0 € F}

is a partition of E,, and has the same size as F,.

Therefore, it is sufficient to show that diam E(F) = O(1) for all F € %,,. For this we
will use Lemma 8.3. Inequalities (8.12) and (8.13) establish the first two hypotheses of
that lemma, so it remains to establish the last two.

Let B C R? be a ball with center 0 and supp # C B. Let n > 1 and o € AN with
[o],] NI (TTw) # @. For ¢ € [o]|,] N IT7!(ITw) we have

(M)} = () ee, (B)

k>1
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Hence ¢z, (0), [1(w) € ¢¢), (B), which gives ¢g|,, (0), II(w) € ¢y, (B). It follows that

|9s1, (0) — (@) = O(a1(4qg1,)). (8.14)
7L (A, )+ (@o, (0) — TH(w))| = O(2(4o,))- (8.15)

Letn>1,F e F,and o0, € F. Setas, = ¢5),(0), ar = ¢¢,,(0), 75 = TL(Ag),) -
and ¢ = TL(Agy, )L - By (8.14) and (8.13),

lag — a¢| < |ag — I(w)| + |TI(w) — a¢| < O(a1(Ag,) + a1(Ag),)) = O(a1(Ag,))-

This is the third hypothesis of Lemma 8.3.
Finally, by (8.15),

|t (ag — ag)| < |me(ae — (w))| + |me (M(w) — ag)|
= | (ag — M(w))] + O(a2(Ag),))-

Since dR]Pl is defined via the operator norm,
|7¢ (a5 — ()] < |76 (ag — ()| + dgpi (L(Ag),) " L(Ag,) 1) - lag — ().
Hence by (8.12)—(8.15),

az(Agj,)
a1 (Agl,)

which gives |7z (as — ag)| = O(a2(Ag),)), the last hypothesis of Lemma 8.3. Thus we
have shown that ¢, and ¢, satisfy all of the hypotheses of Lemma 8.3, and hence
d(¢s), . ¢t),) = O(1) for all o, ¢ € F. This precisely means that diam E(F) = O(1), as
needed.
To prove (8.7), we use the trivial identity
1

T H(lEobn, Duan | Do) = 2 E(H@", D)

(which is just a consequence of the definition of conditional entropy and the compo-
nent distribution), and the elementary fact that if a random variable H € [0, 1] satisfies
E(H) > ethen P(H > ¢/2) > £/2. So (8.7) follows from what was already proved upon
replacing ¢ by ¢/ C for some universal constant C > 1.

As for (8.8), from our construction it is clear that

lim IP’(
n—>0o0

If | i — 2 log i (Ag)| < 8, for some g € supp 6@ and if h € supp 6" then, since

|7z (a5 — (@) = O(@2(4qy,) + “a1(4q),)) = O(a2(Ag,)),

1 ~
xi — —logai(Ag)| < 8, for some g € supp 9“”") = 1. (8.16)
n

d(g,h) < R for some global R > 0 (because gon is supported on a level-0 dyadic
cell), we have |)(i — %log o (Ah)| < 8, + Or(1/n) (because we can write h = gg’ with
d(g’,1d) < R, and so clearly «;(h)/a;i(g) = Or(1) fori = 1,2, from which the claim
follows). Thus in (8.16) we can replace “some” by “all” at the expense of replacing 8, by
C max {6,, 1/n} for some universal constant C > 1. |
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9. Proof of main results

9.1. Strongly irreducible case: proof of Theorem 1.1

As explained in the introduction, our main result (Theorem 1.1) follows from Theorem
1.4, which is the following statement:

Theorem. If w is a self-affine measure defined by a non-conformal, totally irreducible
and exponentially separated system, and if H(§, Py | TI718) > 0 and dim p > 1, then
dimyu = 2.

Proof. Assume for the sake of contradiction that dim u < 2.
Let ¢ > 0 and M > 1 be as in Proposition 8.5. For n > 1 we have u = p*".u. By
Lemma 8.4, u = p* . = [[€n]n.p d€(w), so by concavity of conditional entropy,

1
1 H U D+ | Digaln)

1
Z/M_nH([Ew]n-l'Ls:D(MHXzI)n|°(D|X2|n)d§(w)- 9.1)

Let us write § for a random level-0 component of the measure [£4],, so that for
each w, _
[Eoln = E@O“").

Inserting this into (9.1) and using concavity again, we obtain

1

a1 H 0 Do+ ixapn | Dizan)

1 ~
> /E(mH(G“”” <1 DM +1x2hn | 50|x2|n)) dé§(®). (9.2)
Our goal is to get a lower bound for the integrand on the right hand side. Specifically we
will show that for £-a.e. w, with probability tending to 1 (over the choice of the compo-
nent), the entropy in the expectation is bounded below by a — 0(1), and when n is large
enough, with some definite probability ¢ > 0 it is greater than o + § (for another param-
eter § > 0). This will imply that for large n the right hand side is > o + g6 — o(1), giving
a contradiction.

Let R > 1 be a global constant which is larger than the diameter of any level-0 dyadic
component of A, 5. Suppose also that R™! < (x1 — y2)/2. From now on fix a &-typical
o € AN. Terms of the form o(1) etc. are asymptotic as 7 — oo (but may depend on w as
indicated).

Since ¢ and M were chosen as in Proposition 8.5,

n—o0o

1 -
liminf}P’(—H(Q“””, Dun) > 8) > g, 9.3)
Mn
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and, for some &, “\{ 0 (depending on w), fori = 1,2,
1 ~
lim P(')(i — —loga;(Ag)| < 8, forall g € supp 9“”") = 1. (9.4)
n—-oo n

Fix a large n > 1, a component 6@ in the event in (9.4), and some g € supp gon.
Note that R bounds the diameter of supp 0", Write

1
aj = —loga;(Ag) fori =1,2
n
so that
lai — yi| <6, fori =1,2.

Since 8, N\, 0 we may assume that a; — a» > (1 — x2)/2 > R™!. Then, by Proposi-
tion 7.4,

1 -
WH(Q“J’"-M, DM +lazhn | Diasln) = a —o(1),

which in view of |a; — y;| < 8, is the same as
1 ~
mH(Qw’n-Mv :D(M+|x2|)n | ‘Dlxz\n) > o —0y(1). 9.5)

This is the general lower bound we wanted for the integrand in (9.2).
Next, assume that 8" is in the event in (9.3) and let § = §(g, R) > 0 be as in Theorem
7.3. Then, by'> Theorem 7.3,

1 ~
mH((?w’"-/i, D +iazhn | Dlayin) = @ + 6.
Using again the fact that | y; — a;| < &y, this is equivalent to
1 ~
i O 1t Dt tixopn | Digaln) = @ + 8 = 0w (1). (9.6)
Combining (9.5), (9.6) with (9.2)—(9.4), we find that
1
M_H(I/«» Dt +1x20n | Diyon) = ¢ + 8- —0p(1).
n
But since p has exact dimension o,
1
mH(M’ DM +1x20n | Dyyain) = a + o(1).

This contradiction completes the proof of the theorem. ]

15This is where the assumption dim . < 2 is used.
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9.2. Triangular case: proof of Theorem 1.7

As in the introduction, let r; denote projection to the x-axis e; € RP!, and also write
¢, € RP! for the vertical direction. We recall the statement of Theorem 1.7:

Theorem. Let j be a self-affine measure defined by a system ® = {@; (x) = Ajx + v; }iea
as in (1.6), i.e. {A;} are invertible and lower-triangular. Suppose that

o {A;} are not simultaneously conjugate to a diagonal system,

® satisfies exponential separation;

the Lyapunov exponents are distinct: —oo < y, < x1 < 0 and e, is contracted at
rate 2X2 (for example, this holds if |c;| < |a;| foralli € N);

e [ is not supported on a quadratic curve;

the projection 1y |4 has the maximal possible dimension, i.e.
dim 7y = min {1, dim pu}. 9.7)

Then
dim g = min{2, dimg, u}.

Let us discuss what changes relative to the proof of the irreducible case are needed.

Furstenberg measures and Ledrappier—Young. Most of Theorem 2.6 continues to hold for
systems which are non-conformal and have distinct Lyapunov exponents, with the excep-
tion of the uniqueness of the limiting distribution (part (4)), and the pointwise convergence
in the last equation of part (5), which no longer holds for all initial lines. Neverthe-
less, the measures 71, n* are well-defined as the limiting distributions of L({, ... ;) and
L(¢y ... LY), respectively, where (¢;) are i.i.d. variables with distribution ) ;c, pi - 84,
Under our assumptions that e, is contracted asymptotically at rate 242, and the matrices
are not jointly diagonalizable, one can show that

(1) n is continuous and has positive dimension, and it is the limiting distribution of
tn... LW forevery W € RP!\ {&,);

(2) n* = 8,, and it is the limiting distribution of £ ...} W for every W € RP'.
The Ledrappier—Young formula is valid, but since n* = &z, , it simply states that

dim u = dimmpu + dim /L? for p-a.e. x.

Recall from the introduction that 7; u is self-similar. Also it is not supported on a point,
since then  would be supported on a translate of e,, contradicting our assumption that p
is not supported on a quadratic curve. Thus, we know at least that

dimm;pu > 0.

This is still far from (9.7), but one cannot in general do better without further information
(see discussion after Theorem 1.7).
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Projections and slices. Due to the fact that n* = ¢, has dimension 0, Theorem 1.3 no
longer holds. But n* = &g, still attracts the random walks started from all initial lines.
This, and the inequality y» < y; which we have assumed, mean that the results in Sec-
tion 3 continue to hold as stated.

Note that in the case considered in [3] (where e; is contracted at asymptotic rate 21
instead of 2%2), the situation was different: there, we did not have convergence to n* from
all initial lines, and so many analogous results about projections needed to be modified to
non-uniform variants.

The function L. Because dim n* = 0, Corollary 4.2 is no longer valid. Nevertheless, we
have added the assumption

B =dimm;u > min{l,dim u},

hence Propositions 4.3 and 4.4 continue to hold.

Algebraic arguments. As noted in the introduction, in the triangular matrix case, the
attractor could be supported on a quadratic curve, and in such cases the dimension can
be smaller than the expected one even if the other hypotheses hold. We have therefore
added the condition that u is not supported on a quadratic curve as one of the hypotheses
of Theorem 1.7, so Section 5.2 is no longer needed, except for the easy observation that
if u gave positive mass to a quadratic curve, it would be supported on one.

For the non-affinity of L that is proved in Section 5.3, a few modifications are neces-
sary:

In Lemma 5.12, the conclusion is not as stated, but rather, that either B is scalar, or
else it has rank 1 and its image is the common eigenvector of the A;, namely, e5.

In Proposition 5.14, several modifications are needed. First, as noted above, the fact
that i does not give mass to quadratic curves follows from our assumptions, rather than
from Proposition 5.10. Second, when invoking Lemma 5.12, one must deal with the pos-
sibility that image(Ay ) = €. Supposing that this is the case, it follows from (5.7) that
by € e,, but then e; is an invariant line under all ¢; and we conclude that y is supported
on this line, contradicting again the assumption that it is not supported on a quadratic
curve.

Entropy growth. The entropy growth result, Theorem 1.6, requires no change.

Bottom line. The remainder of the proof can now proceed as it did for Theorem 1.1.
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