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Abstract. We classify the irreducible representations of smooth, connected affine algebraic groups
over a field, by tackling the case of pseudo-reductive groups. We reduce the problem of calculating
the dimension for pseudo-split pseudo-reductive groups to the split reductive case and the pseudo-
split pseudo-reductive commutative case. Moreover, we give the first results on the latter, including
a rather complete description of the rank one case.
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1. Introduction

Let k be a field and let G be a smooth connected affine algebraic k-group. We are inter-
ested in the irreducible k-representations of G. Since the only irreducible representation
of a unipotent k-group is the trivial representation k itself, any normal unipotent sub-
group of G must act trivially on any irreducible representation of G. In particular, the
k-unipotent radical Ru;k.G/—that is, the largest smooth connected normal unipotent k-
subgroup of G—acts trivially and so we may as well assume Ru;k.G/ D 1; in other
words G is a pseudo-reductive group. The main result of this paper is to classify the irre-
ducible representations of G in terms of those of a maximal torus, in effect completing a
programme started in the 1950’s by Chevalley.

Pseudo-reductive groups have been the focus of a high degree of interest in recent
years, due for the most part to the monograph [2] which gives a remarkably transparent
structure theory. It says that almost all the time, G is standard, that is, isomorphic to a
certain type of systematic modification of Weil restrictions of connected reductive groups;
the modification process involves changing a Cartan subgroup—which is typically far
from a torus. For simplicity of exposition all our reductive groups are henceforth assumed
to be connected.
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When G is reductive and split, the representation theory of G over arbitrary fields is
rather extensive; the reader is referred to [7] to see this in all its glory, but we mention
some highlights. Firstly, there is, due to Chevalley, a parametrisation of the simple repre-
sentations by dominant weights, with such representations arising as the socles of certain
universal induced modules which are defined over Z—the latter have an elegant formula
for their characters and dimensions courtesy of Weyl. If the characteristic of k is 0, these
induced modules are irreducible, but even when they are not, there are effective methods
of calculating the characters of their simple socles in many cases, using the Anderson–
Jantzen sum formula, and informed by the so-called alcove geometry induced by the affine
Weyl group (in particular the Linkage Principle). These methods have been implemented
algorithmically by Frank Lübeck [8] and thousands of characters (in arbitrary character-
istic) are now available. Furthermore, when the characteristic is huge relative to the root
system, it is a result of a number of authors that Lusztig’s character formula holds, relating
the characters of simple modules to those of the induced modules via Kazhdan–Lusztig
polynomials; technically, this gives information only about the principal block, but the
remaining characters can be deduced by use of Jantzen’s translation functors and Stein-
berg’s tensor product theorem. It should be mentioned that work of G. Williamson [11]
tells us that the characteristic must be at least exponential in the rank of simple factors
for Lusztig’s formula to hold, so that there remains a conceptual hole in the theory, but
one which continues to be closed as time goes on; see [9] for the latest developments,
including a replacement conjecture.

The representation theory of split reductive groups is all predicated on the com-
mutative case: a split reductive commutative group is simply a product of copies of
the multiplicative group of the field and its representations are all well-known to be
semisimple, being just sums of one-dimensional weight spaces. Since this is completely
false in the context of commutative pseudo-reductive groups—and their classification is
thought to be out of reach—it has been expected that their representation theory should
be intractable. However, in the case where G is pseudo-split—that is, it contains a split
maximal torus—we are able to classify the simple representations by dominant weights
and reduce the case of giving a dimension formula to understanding the commutative
pseudo-reductive case together with the reductive case.

The possibility for a breakthrough owes itself to the following crucial theorem, [2,
Thm. 3.4.6] (or the simpler proof of [3, Thm. 5.4.4]):

Theorem 1.1 (Conrad–Gabber–Prasad). Let G be a pseudo-split pseudo-reductive
k-group with split maximal torus T . Then G has a Levi k-subgroup M containing T .

Recall that M is a Levi subgroup of G if M is reductive and G Nk D M Nk Ë Ru.G Nk/,
where Ru.G Nk/ is the unipotent radical of G Nk . Our main theorem constructs a correspon-
dence between the irreducible G-modules and the irreducible M -modules and reduces
a description of the dimension of irreducible G-modules to that of M -modules and C -
modules where C is a Cartan subgroup of G.

Theorem 1.2. Let G be a pseudo-split pseudo-reductive group with Cartan subgroup C
containing a split maximal torus T . Let M be a Levi subgroup of G containing T . Then
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the isomorphism classes of irreducible representations of G are in 1-1 correspondence
with the dominant weights of M . If X.T /C denotes the set of dominant weights for
T � M , then for � 2 X.T /C we denote by LG.�/ the corresponding irreducible rep-
resentation. On restriction, LG.�/ is M -isotypic and semisimple. Furthermore,

dimLG.�/ D dimLM .�/ � dimLC .�/:

For the dimension formula, note that since a Cartan subgroup C contains a split max-
imal torus T which must be its Levi subgroup, the first part of the theorem guarantees a
representation LC .�/ unique up to isomorphism for any weight � 2 X.T /.

As mentioned above, a complete description of dimLM .�/ is thought to be out of
reach for p small compared to the root system of M , though at least there are algorithms
that in principle compute any given example. By contrast, there are no results at all on
dimLC .�/. We can give a formula for the latter in the case C D Rk0=k.Gm/ for k0 a finite
non-zero reduced purely inseparable k-algebra (Theorem 5.8). Here is the simpler version
of this theorem when k0 is a purely inseparable field extension. In order to state the result,
we need some notation: Let k0=k be a purely inseparable extension of fields of degree
q D pr and let � 2 Z. Then we let k0.�/ denote the subfield of k0 generated by k and
.k0/�. Note that if � is coprime to p and k0=k is purely inseparable, then the kernel of
the group homomorphism x 7! x� on .k0/� is contained in k. The fundamental theorem
of homomorphisms now implies that any element of .k0/� lies in the product of k and the
image of this map, so in this case k0.�/D k0. More generally, one can see that if we write
� D p�p.�/� with � coprime to p then k0.�/ D k0.p�p.�//.

Theorem 1.3. Let k0=k be a purely inseparable extension of fields of degree q D pr and
let C D Rk0=k.Gm/. Then for any � 2 Z we have

dimLC .�/ D Œk
0.�/ W k�:

This is a good moment to point out that ifG is a general pseudo-split pseudo-reductive
group, most simple G-modules are not absolutely irreducible, in contrast with the split
reductive case. If V is an absolutely irreducible G-module then V Nk is an irreducible G Nk-
module and the Lie–Kolchin theorem implies that Ru.G Nk/must act trivially. For example,
if G D C is as in the theorem above, we have G Nk Š Gm �Ru.G Nk/, so that the simple
G Nk-modules are 1-dimensional, whereas this is true of simple G-modules if and only if
k0.�/ D k. Indeed, for any pseudo-split, pseudo-reductive G, unless dimLC .�/ D 1, the
representation LG.�/ is not even absolutely semisimple, though it is absolutely indecom-
posable, since the socle of LG.�/K is still irreducible for any extension of fields K=k;
see Remark 4.7 below.

In the case where G is a suitable Weil restriction, we describe a nice way to identify
the simpleG-modules themselves with Weil restrictions. For split reductiveG0, it follows
from Steinberg’s tensor product theorem [7, II.3.16] that the action of G0 on LG0.�/ fac-
tors through the Frobenius map F �p.�/ WG0!G0. Indeed, if �D p�p.�/�, then the action
of G0 on LG0.�/ can be identified with the composite homomorphism

G0
F �p.�/

�����! G0 ! GL.LG0.�//
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giving a module denoted LG0.�/Œ�p.�/�; see [7, I.9.2, I.9.10] for the definitions of Frobe-
nius maps and Frobenius twists. Weil restriction of the map F �p.�/ W G0 ! G0 gives
rise to a map G ! QG WD Rk0.�/=k.G0/. (Crudely speaking, this is because F �p.�/ raises
the coordinate functions of G0 to the power p�p.�/—rendering them functions from G0

to k.�/—hence it sendsG into the subgroup QG ofG.) Now applying Rk0.�/=k to the mod-
ule homomorphism G0 ! GL.LG0.�// affords a representation Rk0.�/=k.LG0.�// for QG
of high weight � and dimension dimLG0.�/ D dimL QG.�/; thus Rk0.�/=k.LG0.�// is a
simple QG-module and composing with Rk0=k.F �p.�// WG! QG gives aG-module of high
weight �, whose dimension, Œk0.�/ W k� � dimLG0.�/, is the same as that of LG.�/. Thus:

Corollary 1.4. Let k0=k be a finite purely inseparable extension of fields and G WD
Rk0=k.G0/ for G0 split reductive. Suppose � D p�p.�/� is a dominant weight and let
QG WD Rk0.�/=k.G0/. Then LG.�/ naturally identifies with L QG.�/ Š Rk0.�/=k.LG0.�//,

through Rk0=k.F �p.�// W G ! QG.
In particular, if p − �, we get a natural identification of LG.�/ with Rk0=k.LG0.�//.

We finish this introduction by returning to the general question of classifiying the
irreducible representations for an arbitrary smooth connected affine algebraic k-group.
First recall that the paper [10] describes how to relate the irreducible representations for
a non-split reductive k-group G to a split reductive group GK via Galois cohomology,
where K=k is an appropriate Galois extension. One associates isomorphism classes of
irreducible representations to orbits of the Galois group � D Gal.K=k/ on the dominant
weights of a maximal torus T of GK . The same programme is straightforward to apply
in our situation, reducing the classification of irreducible modules for general pseudo-
reductive groups to the pseudo-split case, and giving rise to the following theorem.

Theorem 1.5. Let G be a smooth connected affine algebraic k-group, and let G0 D
G=Ru;k.G/ be its maximal pseudo-reductive quotient. Given a maximal torus T 0 of G0,
there is a finite Galois extension K=k such that G0K is pseudo-split with split maximal
torus T 0K . The Galois group � D Gal.K=k/ acts on the dominant weights X.T 0K/C, and
there is a 1-1 correspondence between the �-orbits in X.T 0K/C and the isomorphism
classes of irreducible representations of G.

Moreover, if V is an irreducible representation of G corresponding to the �-orbit
¹�1; : : : ; �rº, then VK decomposes as a direct sum of the irreducible G0K-modules
LG0

K
.�i /, each of which appears with the same multiplicity.

2. Preliminaries

We collect some basic material in this section. Our main references for the theory of
algebraic groups are [2] and [7] and our notation will be kept consistent with those mono-
graphs. In particular all rings are commutative and unital.

For k a ring, let G be an affine algebraic k-group, that is a functor k-Alg ! Grp
which is represented by a finitely presented k-algebra kŒG�, in other words G.‹/ Š
Homk-Alg.kŒG�; ‹/. Note that we do not insist that algebraic groups be smooth.
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2.1. G-modules

LetM be a k-module (possibly infinitely generated). Then we may define a group functor
Ma W k-Alg! Grp so thatMa.A/DM ˝k A inherits a group structure from the additive
group on A. Note that even when k is a field, Ma is only an algebraic group when M is
finite-dimensional. Recall that an action ofG on a k-functorX is a morphism (i.e. a natu-
ral transformation) � WG �X!X such that �.A/ WG.A/�X.A/!X.A/ is an action of
the group G.A/ on X.A/ for each k-algebra A. In case G acts on Ma such that the action
of G.A/ on M.A/ is A-linear for each k-algebra A, we say M is a representation for G,
or more frequently in this paper, aG-module. Equivalently, one may use the Hopf algebra
structure on kŒG� to define a G-module M to be a comodule for kŒG�. These definitions
permit the possibility of working with infinitely generated modules, though if V Š kn is a
G-module then it corresponds to a homomorphism G ! GL.V / of algebraic groups. Of
course, if k! k0 is a homomorphism of rings andM is aG-module thenMk0 WDM ˝ k

0

acquires an action of the base change Gk0 of G making it into a Gk0 -module.

Remark 2.1. If G is smooth and k is an algebraically closed field then one may more
straightforwardly define a G-module to be a vector space M over k on which G.k/ acts
rationally through k-linear maps. Here to act rationally means that if g 2G.k/ and .vi /i2I
is a basis for M then g:vi D

P
j2J fj i .g/vi for fj i 2 kŒG� with cofinitely many of the

fij being zero.

The collection of G-modules forms a category G-Mod, with morphisms being G-
equivariant k-linear maps. If M and M 0 are G-modules, the full collection of such mor-
phisms is written HomG.M; M

0/. An important fact [7, I.2.10(7)] is that the HomG

bifunctor commutes with base change across flat extensions, i.e.

HomG.V;W /˝ k
0
Š HomGk0

.V ˝ k0; W ˝ k0/: (1)

If G is flat, then it is an immediate consequence of the definitions that all G-modules
are locally finite, that is, for any m 2 M.k/ there is a unique minimal finitely generated
submodule G-submodule kGm of M containing m. It follows that all simple G-modules
over a field are finite-dimensional. Furthermore, the category of G-modules is abelian.

One may consult [7, §I.2] for more details.

2.2. Representations of Gm

The Z-defined group scheme Gm is the functor Rng! Grp which returns the group of
units R� of any ring R. (It is represented by the algebra ZŒt; t�1�.) Let k be a ring and
let W be a non-zero .Gm/k-module. If there is � 2 Z such that a � w D a�w for any
k-algebra A, w 2 WA and a 2 .Gm/k.A/ D A

�, then we say W is a weight module (of
weight �). More typically k will be a field and so W will be a vector space over k, in
which case we refer to it as a weight space (of weight �). By [7, I.2.14(4)], any .Gm/k-
module V is semisimple, breaking into a sum of 1-dimensional irreducible weight spaces;
the resulting weights are referred to as the weights of V . If � is a weight of V then V�
is the sum of all submodules of V which are weight modules of weight �. When k is a
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field, an irreducible representation is a 1-dimensional weight space. We denote by k� a
1-dimensional weight space of weight �. We will usually abuse notation by identifying
the character group X.Gm/ with Z.

In many cases it will be simpler to consider Gm as a k-group over some ring k (which
will usually be a field), in which case we will just write Gm in place of .Gm/k .

2.3. Representations of unipotent groups

In this section let k be a field. Recall that a k-group U is unipotent if it is isomorphic
to a closed subgroup of the group Un of strictly upper triangular n � n matrices over k
for some n. If k is a field of characteristic p and U is a smooth k-group, for U to be
unipotent, it suffices for there to be some e such that the pe-map on U factors through
the identity. While the Lie–Kolchin theorem applies only to split solvable groups, such as
those over algebraically closed fields, the following theorem for unipotent groups holds
over arbitrary fields [6, Exp. XVII, Prop. 3.2]:

Proposition 2.2. Let U be any unipotent k-group. Then the only simple U -module is the
1-dimensional trivial module, k.

2.4. Induction

We construct simple modules by induction. The archetypal use of induction for reductive
algebraic groups is of simple modules for a maximal torus, lifted to a Borel subgroup B
and induced to G. Such modules are then finite-dimensional since G=B is a projective
variety. The reader is warned that the induced modules we consider are generally infinite-
dimensional.

The essential definition is this: Let k be a unital ring and M be an H -module for H a
closed flat subgroup scheme of the flat k-group scheme G and let Ma be the underlying
k-group functor of M . Then from [7, I.3.3] we have

IndGH .M/ D ¹f 2 Mor.G;Ma/ j f .gh/ D h
�1f .g/

for all g 2 G.A/; h 2 H.A/ and all k-algebras Aº;

is a G-module via .g1 � f /.g/ D f .g�11 g/. Of course, if H D 1 is the trivial subgroup
ofG then IndGH .k/D kŒG� is the coordinate algebra ofG, considered as a leftG-module.

A key feature of induction is Frobenius reciprocity. For a G-module N and an H -
module M , we have

HomG.N; IndGH .M// Š HomH .ResGH .N /;M/; (2)

where ResGH .N / D N jH is the obvious H -module obtained by restriction.
If G is unipotent and k is a field, then Proposition 2.2 asserts that k is the only simple

module, and taking H D 1, the above isomorphism gives

k Š HomH .k; k/ Š HomG.k; IndG1 .k// D HomG.k; kŒG�/: (3)

Thus kŒG� has a unique simple module in its socle (and is therefore indecomposable).
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This argument can be run in reverse, so if one shows that an induced module has a
simple socle then it will follow that there is exactly one simple G-module up to isomor-
phism which has an H -homomorphism to the H -module being induced.

Another fact we need is that induction commutes with base change [7, I.3.5(3)]. Let
k0 be a flat k-algebra. Then we have for each H -module M a canonical isomorphism

IndGH .M/˝ k0 Š IndGk0Hk0
.M ˝ k0/: (4)

Lastly, we recall the tensor identity [7, I.3.6]. Let N be a G-module that is flat over k.
For any closed flat subgroup scheme H of G and any H -module M there is a canonical
isomorphism of G-modules

IndGH .M ˝ ResGH .N // Š IndGH .M/˝N: (5)

2.5. Weil restriction

Since the notion of Weil restriction is at the heart of the structure theory of pseudo-
reductive groups, we recall some of the important features from [2, §A.5]. If B ! B 0

is a finite flat map of Noetherian rings, and X 0 a quasi-projective B 0-scheme, one may
define the Weil restriction X WD RB0=B.X 0/. Then X is a B-scheme of finite type satisfy-
ing the universal property

X.A/ D X 0.B 0 ˝B A/;

for A any B-algebra.
A key fact is that Weil restriction is right adjoint to base change along Spec.B/!

Spec.B 0/, that is, there is a bijection

HomB.Y;RB0=B.X 0// Š HomB0.YB0 ; X 0/; (6)

which is natural in X 0 and the B-scheme Y . Two situations are particularly important. If
X 0 D ZB0 for a B-scheme Z then taking Y D Z in (6), one has the identity map on the
right-hand side, giving a canonical map Z! RB0=B.X 0/; [2, A.5.7] implies that this map
is a closed immersion provided Spec.B 0/! Spec.B/ is surjective (which will be true if
B is a field and B 0 is non-zero, since then Spec.B/ is a single point). Conversely, if we
take Y D RB0=B.X 0/, the identity map on the left-hand side corresponds to a canonical
map q W RB0=B.X 0/B0 ! X 0; [2, A.5.10] implies this map is is surjective on all A-points
for A a B-algebra provided B is a field and B 0 is a finite local B-algebra with a purely
inseparable residue field over B .

In case X 0 D G0 is a B 0-group, we find G WD X is a B-group. When B D k is a field,
and B 0 D k0 is a non-zero finite reduced k-algebra, then G0 is pseudo-reductive whenever
G is reductive. If G0 is defined over k and we choose a k-descent H of G0, then the
remarks above show thatH embeds as a canonical subgroup in G; in particular this holds
when G0 is split reductive, hence:

If G is a split reductive k-group, then G embeds as a canonical subgroup of Rk0=k.Gk0/.
(7)
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3. Existence and uniqueness

Let k be an imperfect field of characteristic p and let G be a pseudo-split, pseudo-
reductive k-group. Then by [2, Thm. 3.4.6], G has a Levi subgroup M , containing a
split maximal torus T . A choice of Borel subgroup BM � T in M containing negative
root groups defines a partial ordering on weights together with a set of dominant weights,
X.T /C. Since everything is flat over k, we may apply all the results of the previous sec-
tion. Moreover, by [7, II.2.4], each simple module for M has a unique highest weight
� 2 X.T /C, and any such is isomorphic to LM .�/ WD SocM .IndMBM .�//.

Having fixed this notation, we prove essentially the same is true for G. DefineQG.�/
WD IndGM .LM .�// and let k0 be the minimal field of definition of the unipotent radical
of G, so that Gk0 Š Mk0 Ë Ru;k0.Gk0/. Therefore, the Mk0 -module LMk0 .�/ inherits
a Gk0 -structure by allowing U WD Ru;k0.Gk0/ to act trivially on LMk0 .�/; conversely,
U acts trivially on any simple Gk0 -module, so this structure is unique. Write LGk0 .�/ for
this module.

Theorem 3.1. The socle of QG.�/ is a simple G-module LG.�/. Any simple module for
G is isomorphic to LG.�/ for precisely one � 2 X.T /C.

Proof. Let � 2 X.T /C. Define LG.�/ WD SocG.QG.�// D SocG.IndGM .LM .�///. Then
LG.�/ is non-zero if and only if there is a module V such that HomG.V;QG.�// ¤ 0,
which is true if and only if 0¤HomG.V;QG.�//k0 ŠHomGk0

.Vk0 ;QG.�/k0/, using (1).
By Frobenius reciprocity and (4) we have

HomGk0
.LGk0 .�/;QG.�/k0/ Š HomMk0 .LMk0 .�/; LMk0 .�// Š k

0

and in particular QG.�/ ¤ 0. Furthermore, since Ru;k0.Gk0/ acts trivially on any simple
Gk0 -module, any simple Gk0 -module is isomorphic to LGk0 .�/ for some �. In particular,
we have dimk0 HomGk0

.LGk0 .�/; QG.�/k0/ D ı��, so QG.�/k0—thus also QG.�/—
is indecomposable, with simple socle. Therefore LG.�/ D SocG.QG.�// is a simple
G-module as required. Furthermore, since QG.�/k0 has simple socle LGk0 .�/, an iso-
morphism LG.�/ Š LG.�/ implies LMk0 .�/ Š LMk0 .�/, so that � D �.

Finally, take any simple G-module V . This is finite-dimensional by local finiteness
and so ResGM .V / has a simple M -quotient isomorphic to LM .�/, say, with � 2 X.T /C.
By Frobenius reciprocity, we get a homomorphism V ! QG.�/, giving an isomorphism
V Š LG.�/.

Remarks 3.2. (i) The proof of the theorem actually shows that for any affine algebraic
group G over a field k (not necessarily connected or smooth), if G admits a subgroup M
such that for some field extension k0=k, we have Gk0 Š Mk0 Ë U for some unipotent
k0-group U , then its isomorphism classes of irreducible representations are in 1-1 corre-
spondence with those of M .

(ii) The relationship between LG.�/k0 and LGk0 .�/ is not as straightforward as the
notation might suggest; in particular, LG.�/k0 is not even semisimple in general. See
Remark 4.7(i) below.
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4. Dimension formula and restriction to M

Keep the notation of the previous section. Let C D ZG.T / be a Cartan k-subgroup of G.
Then by Theorem 3.1, there is a unique simple C -module for any � 2 X.T /. (Note that
C is commutative so all weights are dominant for C .) Here we prove the following.

Theorem 4.1. Let � 2 X.T /C. Then

dimLG.�/ D dimLM .�/ � dimLC .�/:

Following [2, §2.1], as G is pseudo-split, we may take � a regular cocharacter with
C D ZG.�/. We may define B WD PG.�/ as the subgroup whose A-points for any
k-algebra A is the collection

PG.�/.A/ WD
°
g 2 G.A/

ˇ̌̌
lim
t!0

�.t/g�.t/�1 exists
±
:

Then B is a minimal pseudo-parabolic subgroup or pseudo-Borel subgroup, and we
may assume that it corresponds to the negative roots. Define also BC WD PG.��1/, the
corresponding opposite pseudo-Borel. We have the decompositions B WD C Ë U and
BC WD C Ë UC where U WD UG.�/ with

UG.�/.A/ WD
°
g 2 G.A/

ˇ̌̌
lim
t!0

�.t/g�.t/�1 D 1
±
;

and UC WD UG.�
�1/; indeed U D Ru;k.B/ and UC D Ru;k.B

C/. Furthermore, B \
BC D C , by inspection.

The commutativity of C implies that any weight space for T � C is stable under C .
From Theorem 3.1 we therefore must have a submodule isomorphic to LC .�/ in the
C -module LG.�/� for some � 2 X.T /. It is straightforward to see that we must have
�D �. Thus the �-weight space of LG.�/ is of dimension at least dimLC .�/. We aim to
exhibit a G-module whose highest weight is � and whose �-weight space is of dimension
dimLC .�/. Thence we will observe that ResGM .LG.�// is M -semisimple and isotypic
and the dimension formula will follow. For this we follow the programme of [7, §II.2].

For a G-module V , the fact that U and UC are unipotent implies by Proposition 2.2
that SocU .V / and SocUC.V / are non-zero modules for U and UC with trivial action.
Thus V U and V U

C

(the subspaces of U - and UC-fixed vectors) are both non-zero.
As C normalises U (resp. UC), V U (resp. V U

C

) is a B-submodule (resp. BC-sub-
module) of V on which U (resp. UC) acts trivially. A simple B-submodule W of V U

(resp.BC-submodule of V U
C

) restricts to a simple C -moduleW jC ŠLC .�/ (resp.W jC
ŠLC .�

0// guaranteed by Theorem 3.1; we denote the isomorphism class ofW byLB.�/
(resp. LBC.�

0/). Thus,

there are �; �0 2 X.T / with HomB.LB.�/; V / ¤ 0 ¤ HomBC.LB.�
0/; V /.

If V is finite-dimensional (for example if V is simple), then we may apply the above
to V � and dualise to find that

there are �; �0 2 X.T / with HomB.V; LB.�// ¤ 0 ¤ HomBC.V; LBC.�
0//.
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Now, using Frobenius reciprocity (2), we get

Lemma 4.2. If dimV <1, then there are �; �0 2 X.T / with

HomG.V; IndGB .LB.�/// ¤ 0 ¤ HomG.V; IndG
BC
.LBC.�

0///:

Denote the module IndGB .LB.�// by H 0.�/.
From [2, Prop. 2.1.8(3)] know that

UCB and UBC are dense in G: (8)

With this in hand, we can prove

Proposition 4.3. Let � 2 X.T / with H 0.�/ ¤ 0.

(a) We have dimH 0.�/U
C

D dimLB.�/ and H 0.�/U
C

D H 0.�/�.
(b) Each weight � of H 0.�/ satisfies w0.�/ � � � �, where w0 denotes the longest

element in the Weyl group W .

Proof. Recall that

H 0.�/D¹f 2Mor.G;LC .�// jf .gb/Db�1f .g/ for all g2G.A/;b2B.A/ and all Aº:

The action of G is given by left translation. Since UC acts trivially on H 0.�/U
C

and
U � B , given f 2 H 0.�/U

C

we have

f .u1cu2/ D c
�1f .1/

for all u1 2 UC.A/, c 2 C.A/, u2 2 U.A/, and all A. Thus f .1/ determines the restric-
tion of f to UCB , and hence in fact determines f itself as UCB is dense in G by
(8). Now f .1/ 2 LB.�/, so dimH 0.�/U

C

� dimLB.�/. Moreover, the evaluation map
� W H 0.�/ ! LB.�/ given by f 7! f .1/ is a homomorphism of B-modules which is
injective on H 0.�/U

C

. This implies

H 0.�/U
C

� H 0.�/�:

If � is a maximal weight ofH 0.�/ thenH 0.�/� �H
0.�/U

C

�H 0.�/�, but this allows
us to conclude both thatH 0.�/U

C

DH 0.�/� and that �� � for any weight � ofH 0.�/.
Now, restricting to the Levi subgroup M of G, we see that if � is a weight, then so is

w0.�/ by [7, II.1.19(1)], hence w0.�/ � � and w0.�/ � �.

We have thus found a module H 0.�/ of highest weight � whose �-weight space is of
dimension dimLC .�/ D dimLB.�/ as required. In fact, one also sees

Corollary 4.4. If H 0.�/ ¤ 0 then SocG.H 0.�// is simple.

Proof. IfL1 andL2 are two simple submodules ofH 0.�/ thenL1˚L2 �H 0.�/, hence
LU
C

1 ˚ LU
C

2 � H 0.�/U
C

and dimH 0.�/U
C

� 2 � dimLC .�/, contradicting Proposi-
tion 4.3(a).
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In order to finish, we first need to show that SocG.H 0.�// coincides with LG.�/
as defined in the previous section. Just for the following proof let us denote QLG.�/ WD
SocG.H 0.�//.

Lemma 4.5. We have QLG.�/ Š LG.�/.

Proof. Denote H 0
M .�/ WD IndMBM .�/ where BM is the lower Borel subgroup of M . This

module is the injective hull of LM .�/ in the category of modules with weights � � �;
see [7, A.6]. Since QLG.�/ has weights � � � it therefore admits a non-zero M -homo-
morphism to H 0

M .�/. Hence, by Frobenius reciprocity we get a non-zero homomor-
phism from QLG.�/ to IndGM .H

0
M .�//. Since there is an injection LM .�/ ! H 0

M .�/,
the left-exactness of the IndGM functor means that there is also an injection QG.�/ !
IndGM .H

0
M .�//. But as LG.�/ is the socle of QG.�/ we will be done if we can show

that IndGM .H
0
M .�// has a simple socle, for then LG.�/ and QLG.�/ must both map to that

simple socle. As in the proof of Theorem 3.1, base change everything to k0 and consider

HomGk0
.LGk0 .�/; IndGk0Mk0

.H 0
M .�/k0// Š HomMk0 .LMk0 .�/;H

0
M .�/k0/;

using Frobenius reciprocity. The latter has dimension ı�� over k0 owing to the simplicity
of the socle of H 0

M .�/k0 Š H
0
Mk0

.�/. This proves the claim.

Corollary 4.6. The simple G-module LG.�/ is isotypic and semisimple on restriction
to M .

Proof. In view of Lemma 4.5 and Proposition 4.3(b) the weights � of LG.�/ all satisfy
� � �. The Weyl module VM .�/ is the projective cover of LM .�/ in the category of
M -modules with this condition on weights, by [7, A.6] again. Thus it follows that any
M -submodule of LG.�/ whose head is isomorphic to LM .�/ is the image of VM .�/.
Suppose the image of VM .�/ is not precisely LM .�/. Then LG.�/ has an M -submodule
LM .�/ for some � < �. Thus

0 ¤ HomM .LM .�/; LG.�// Š HomM .LG.�/�; LM .�/�/:

We have LG.�/� Š LG.�w0.�// (resp. LM .�/� Š LM .�w0.�//) since the former is
a simple module of weight �w0.�/ (resp. �w0.�/)—see [7, II.2.5]. So using Frobenius
reciprocity we get a non-trivial G-homomorphism LG.�w0.�//! QG.�w0.�//. The
simplicity of the socle of QG.�w0.�// implies � D �, a contradiction.

Hence, theM -socle ofLG.�/ contains allM -composition factors of the formLM .�/.
If there are any other composition factors, then for some � < � we have

0 ¤ HomM .LG.�/; LM .�// Š HomG.LG.�/;QG.�//I

again, we conclude � D �, a contradiction. We have, incidentally, shown that
ResGM .LG.�// is equal to its socle, hence is semisimple.

Proof of Theorem 4.1. Since dimH 0.�/� D dimLC .�/, dimLM .�/� D 1 and LG.�/ is
M -isotypic with factors LM .�/, we are done.
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Remarks 4.7. (i) The proof of Theorem 3.1 shows that the Gk0 -module QG.�/k0 has a
simple socle; hence so does its submoduleLG.�/k0 . AsLG.�/k0 has a total of dimLC .�/
Gk0 -composition factors, by Theorem 4.1, it is rarely semisimple. Hence, LG.�/ is usu-
ally not absolutely semisimple. This is at odds with the situation for a finite group
G, where k0 is a splitting field for G iff it contains all the jGjth roots of unity. This
entails that any simple kG-module is split by a separable extension of k. Using a Galois
descent argument, it follows that any semisimple kG-module is absolutely semisimple.
See [4, Cor. 7.11].

(ii) If one of the root groups of G has dimension strictly bigger than one1 thenQG.�/
will not be isotypic (for G, or equivalently for its restriction to M ). To see this, observe
that QG.�/k0 Š LM .�/k0 ˝ k0ŒU �, by [7, I.3.8(2)], where Gk0 ŠMk0 Ë U . Here, U acts
on k0ŒU � by left translation and trivially onLM .�/k0 , andM acts by conjugation on k0ŒU �.
Since U contains non-trivial parts of the root groups ofG which are not inM , the weights
of Mk0 on Gk0 -module subquotients of U are not all zero. Ultimately, the same follows
for k0ŒU �. Hence k0ŒU � contains M -composition factors which are not trivial; but it also
contains the submodule isomorphic to the trivial module generated by the constants. It
follows that LM .�/k0 ˝ k0ŒU � is not M -isotypic. It would be interesting to understand
the structure of QG.�/ further, even in the case that G is a Weil restriction.

5. On representations of commutative pseudo-reductive groups

Recall our assumption that k is imperfect of characteristic p. In this section, we (amongst
other things) calculate dimLC .�/ whenever C is the Weil restriction Rk0=k.Gm/ for k0 a
non-zero finite reduced k-algebra whose factor fields are all purely inseparable over k.
This assumption guarantees that C is pseudo-split, so that by Theorem 3.1, the iso-
morphism classes of simple C -modules are in 1-1 correspondence with the weights of
a maximal torus of C .

To start with we may make some general remarks.

5.1. Blocks of commutative pseudo-split pseudo-reductive groups

Let C be a commutative pseudo-split pseudo-reductive group with maximal split torus
T . If V is any non-zero C -module, and � is any T -weight of C on V then V� is a C -
submodule, in view of the commutativity of C . By Theorem 3.1, V� is isotypic, with
composition factors all isomorphic to LC .�/. Indeed, the projection pr� of V to V� is a
C -module map which splits. In particular Ext1C .LC .�/; LC .�// ¤ 0 only if � D �, so it
follows that the blocks of C are in bijection with X.T /.

Remark 5.1. Any commutative (connected) reductive group G is linearly reductive,
hence all ExtnG.V; W / vanish for all G-modules V , W and integers n > 0. This in

1This condition on the root groups is equivalent to the statement that G=Z.G/ 6Š M=Z.M/.
We are thankful to Brian Conrad for confirmation of this point.
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contrast to the pseudo-reductive case: for example if G D Rk0=k.Gm/ for k0=k a finite
purely inseparable field extension then G acts on the unipotent group G=Gm, hence on
kŒG=Gm�. By (3), kŒG=Gm� is indecomposable, and infinite-dimensional. In particular
Ext1G.k; k/ ¤ 0.

5.2. The case Rk0=k.Gm/ for k0 a field

For the time being, we let k0 be a finite purely inseparable field extension of k. We recall
that the exponent of such an extension is the minimal e such that k0p

e
� k. Set C D

Rk0=k.C 0/, where C 0 D Gm. Following (7) we denote by T the canonical copy of Gm
inside C . Of course, T is a Levi subgroup of C .

5.2.1. The standard module. We identify C 0 with GL1, acting faithfully on the 1-dimen-
sional vector group S 0 Š Ga. Applying the Weil restriction function Rk0=k we see that
C acts faithfully on the Œk0 W k�-dimensional vector group S D Rk0=k.S 0/. Let k0 have
basis ¹1 D ˛1; ˛2; : : : ; ˛qº as a k-vector space. This choice allows us to identify C with
a k-subgroup of GLŒk0Wk�, where the matrix of g 2 C.A/ Š Gm.k

0 ˝k A/ on S.A/ is
calculated by acting on S 0.k0 ˝k A/ and taking coordinates relative to the given k-basis.

Since C 0.k0/ D .k0/� has two orbits on the vector space S 0.k0/ D k0 (one trivial and
one non-trivial) we see that C.k/ also has two orbits on S.k/D S 0.k0/. Thus we conclude
that S is an irreducible module for C and refer to it as the standard (or natural) module
for C . It is easy to see that the canonical subgroup T of G acts on C as scalars; more
precisely, if a 2 T .A/ D A� for a k-algebra A, then a � s D as for all s 2 S.A/. In other
words, ResCT S D .k1/

˚Œk0Wk�, the direct sum of Œk0 W k� copies of the weight space k1 with
weight 1. Of course, in light of Theorem 3.1 we must have

S Š LC .1/; (9)

and so dimLC .1/ D dimS D Œk0 W k�.
Following [7, I.2.15] we may twist any representation of any algebraic group G

by precomposing with an endomorphism � of G. If V is a G-module then we denote
the resulting representation by �V . This gives rise to a functor G-Mod ! G-Mod by
V 7! ��.V / D �V . For � 2 Z, by precomposing the representation of C 0 on S 0 with the
function � 0

�
W C 0 ! C 0 via c 7! c�, we get a representation .� 0

�
/�.S 0/ on which C 0 acts

with weight �, indeed .� 0
�
/�.S 0/ Š k�. Taking the Weil restriction of this representation

then gives the representation ��
�
.S/ where �� W C ! C via c 7! c� also.

If p − � it is quite easy to see that .��/�.S/ is irreducible, giving us the dimension
in this case, but we will show something stronger, namely that ��

�
is an equivalence of

categories, in fact, ��
�

has an inverse � . In order to do this, we will want to understand the
coordinate algebra kŒC � a little better. We prove more than we need and give a complete
description.

5.2.2. Description of kŒRk0=k.Gm/�. Recall our choice of k-basis ¹1 D ˛1; ˛2; : : : ; ˛qº
of k0. The coordinate algebra of C 0 is k0ŒC 0�D k0Œt; t�1�. To find the coordinate algebra of
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C D Rk0=k.C 0/, we should rewrite the generators t and t�1 in terms of our chosen k-basis
of k0. So we introduce new functions Ǫ i on C and write t D

Pq
iD1 ˛i Ǫ i . Equivalently,

when we identify C with a subgroup of GLŒk0Wk� via its (left) action on S , the Ǫ i can be
identified with the matrix coordinate functions from the first column, i.e., for g 2 C.A/,
Ǫ i .g/ gives the coefficient of ˛i in g � 1. If e is the exponent of the extension k0=k then
the pe-power map takes .k0/� into k�. Hence it takes C into its canonical copy of Gm,
which we have denoted T . We thus get a 1-dimensional representation Od of C , i.e. an
element of the character group X.C/. The function Od is a polynomial of degree pe in the
functions Ǫ i . Given any k-algebra A and any g 2 C.A/, gp

e
is represented by a scalar

matrix with diagonal entries all equal to Od.g/ 2 A�. Let det denote the element of kŒC �
given by taking determinants of matrices. Then we see that for any g 2 C.A/ we have

det.gp
e

/ D . Od.g//q;

so .det/p
e
D Odq . We conclude that the function det is a power of the function Od in kŒC �.

Now we can write t�1 D tp
e�1=tp

e
in terms of the Ǫ i and the function Od�1. Evidently

Ǫ i and Od�1 are elements of kŒC �.

Proposition 5.2. The natural map

F W kŒ Ǫ i ; Od
�1�1�i�q ! kŒC �

is an isomorphism.
As a C -module, the action of T induces a grading on the generators so that Ǫ i is in

degree 1 and Od is in degree pe .

To see that F is an isomorphism it suffices to see that it is an isomorphism after
extension to Nk. We have C Nk Š Gm � U , where U is the unipotent radical of C Nk and
the quotient Gm of C Nk corresponds to the subalgebra NkŒ Ǫ1; Ǫ�11 � of NkŒC �. Since U is a
connected unipotent algebraic group we have NkŒU � Š NkŒˇ2; : : : ; ˇq� for some indetermi-
nates ˇi in the image of the comorphism NkŒC Nk �! NkŒU �. We can find appropriate choices
for the ˇi from the following, which uses the natural embedding of C in Aq :

Lemma 5.3. LetA be a Nk-algebra and aD .a1; : : : ;aq/2C Nk.A/�Aq.A/. Then a2U.A/
if and only if a1 D 1 �

Pq
iD2 ai˛i .

Proof. It is an elementary calculation using the multiplication inherited from .k0/� as a
k-group to see that the given condition on a defines a subgroup all of whose elements are
unipotent. Since it is evidently .q � 1/-dimensional, the claim follows.

Proof of Proposition 5.2. Consider the short exact sequence 1! U
i
! C Nk

q
! Gm ! 1,

where q is the canonical map described in §2.5. At the level of k-algebras, this corre-
sponds to

0! IGm �
NkŒC Nk �

q�

! NkŒC Nk �
i�

! NkŒU �! 0;



Irreducible modules for pseudo-reductive groups 2547

where IGm is the image in NkŒC Nk � of the augmentation ideal in NkŒGm�. The lemma implies
that NkŒU � is the quotient of NkŒC Nk � by the ideal generated by Ǫ1 � 1 C

Pq
iD2 ˛i Ǫ i D

Odp
�e
� 1; thus IGm �

NkŒC Nk �D .
Odp
�e
� 1/ NkŒC Nk �, and NkŒGm�D NkŒ Od

p�e ; Od�p
�e
�. Since the

values of the Ǫ i on a point of C Nk determine it completely, and U is isomorphic to affine
.q � 1/-space, we may choose ˇi D i�. Ǫ i / for 2� i � q. Now,R WD NkŒ Ǫ1; : : : ; Ǫq; Od�1�D
NkŒ Ǫ1; : : : ; Ǫq; Od

�p�e �: the inclusion � is obvious, and for the other direction, note
Odp
�e
2 R. But as C Nk is a semidirect product, we have

NkŒC Nk � Š
NkŒGm�˝ NkŒAq�1� D NkŒ Od

p�e ; Od�p
�e

�˝ NkŒ Ǫ2; : : : ; Ǫq�

D NkŒ Ǫ1; : : : ; Ǫq; Od
�p�e � D R:

It remains to prove the second part. We define a grading by setting deg.f / D j if
z � f D z�jf for any z 2 T .k/D k�. By definition Ǫ i .g/ is the coefficient of ˛i in g � 1,
so that z � Ǫ i .g/ D Ǫ i .z�1g/ gives the coefficient of ˛i in z�1g � 1. But this is clearly just
z�1 Ǫ i .g/, and so Ǫ i is in degree 1. Now if f D gh is a product of functions in kŒC �, then
f .z�1g/D g.z�1g/h.z�1g/ so that a monomial in j of the Ǫ i ’s is in degree j . Lastly, Od
is by definition a function for which z � Od D z�p

e Od so that Od is in degree pe .

Remark 5.4. In [5, §1] a general method for computing the coordinate rings of Weil
restrictions is given. Applied to non-trivial separable field extensions, this generally gives
a much more complicated presentation than the one we have shown above. For example, if
one takesC 0DGm, kDR and k0DC, then k0ŒC 0�D k0Œx;y�=.xy � 1/ and kŒRk0=k.C 0/�
D kŒx1; x2; y1; y2�=.x1y1 � x2y2 � 1; x2y1 C y2x1/.

For the benefit of the reader, we give some concrete examples to illustrate the con-
structions above.

Example 5.5. (i) Suppose p D 3 and k0=k is a purely inseparable extension of fields of
degree 3. Write k0 D k.s/ so that k0 has k-basis 1; s; s2. Then the matrix representation
of G gives matrices of the form 0@a cs3 bs3

b a cs3

c b a

1A :
One can check that the cubing map sends such a matrix to a diagonal matrix with diagonal
entries a3 C b3s3 C c3s6. Thus, if the functions Ǫ1; Ǫ2; Ǫ3 are the coordinate functions
for the first column, then Od D Ǫ31 C s

3 Ǫ32 C s
6 Ǫ33 . One can also check that in this case we

get the same function by taking determinants of these matrices. Now k0ŒG0� D k0Œt; t�1�

and we can write t D Ǫ1 C s Ǫ2 C s2 Ǫ3. Then we calculate

t�1 D
1

Ǫ1 C s Ǫ2 C s2 Ǫ3
D
. Ǫ1 C s Ǫ2 C s

2 Ǫ3/
2

Od
;

which is a polynomial function of the Ǫ i and Od�1.
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(ii) Suppose p D 2 and k0=k is a purely inseparable extension of degree 4 such that
k0 D kŒs; u� with s2; u2 2 k n k2. Then k0 has k-basis 1; s; u; su and the extension has
exponent e D 1. This time our matrices have the form0BB@

a bs2 cu2 ds2u2

b a du2 cu2

c ds2 a bs2

d c b a

1CCA :
One checks that Od D Ǫ21 C s

2 Ǫ22 C u
2 Ǫ23 C s

2u2 Ǫ24 . The function coming from the deter-
minant is Od2.

5.2.3. Irreducible modules L.�/ with p − �. We can now define an inverse to ��
�

when
p − �. Let Od be the 1-dimensional representation from Section 5.2.2. Recall that Od arises
from the pe-power map for e the exponent of k0=k, and we have .pe; �/D 1. This means
that we may take � 2 Z to be an inverse to � in their projections to Z=.pe/, i.e., we can
choose � so that �� D 1C rpe for some r . Then set � to be the composition of ��� with
the tensor product functor ‹˝ Od�r . Thus �.V / D ���.V /˝ Od

�r .

Proposition 5.6. The functors � and � WD ��
�

are mutually inverse.

Proof. To see this, simply note that the map C ! C , x 7! x��x�rp
e
, is the identity

on C . Since C acts on .� ı �/.V / as x��x�rp
e

acts on V (considering x�rp
e

as an
element of k), it follows that � ı � and � ı � are both the identity functor on C -Mod as
required.

We conclude from the above that � and � are equivalences of categories, i.e. Morita
equivalences. Since the latter sends representations of weight 1 to representations of
weight �, of the same dimension, we deduce that for p − �,

��� .LC .1// Š LC .�/; dimLC .�/ D Œk
0
W k�: (10)

5.2.4. Irreducible modules L.�/ with p j �. Let Qk be the field generated by k and the
pth powers in k0 (this is the field k0.p/ in the notation introduced before the statement of
Theorem 1.3). Then Qk is in fact the k-span of the pth powers in k0. We see QC WD R Qk=k.C

0/

naturally as a subgroup of C because Qk � k0. We also have a quotient C1 of C which we
can realise as a subgroup of QC . Let F W Gm ! Gm denote the geometric Frobenius map
(with comorphism t 7! tp). Then since k0p � Qk we can see that Rk0=k.F / W C ! QC . Let
C1 be the image of this map; in general C1 is a k-subgroup of QC , but may not be all of QC .

We have a k-basis ˛1; : : : ; ˛q of k0, so ˛p1 ; : : : ; ˛
p
q span Qk over k. It follows that the

group algebra kC1.k/ equals k QC.k/. Since also the k-points of each of C1 and C are
dense in those groups, we deduce that

a QC -module V is irreducible if and only if it is irreducible on restriction to C1: (11)
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(Both groups are of course defined over k, hence V is in particular a k-module by defini-
tion.)

We now prove the counterparts to the last section.

Proposition 5.7. Let � 2 X.T /. Then LC .p�/ Š .Rk0=k.F //�.L QC .�//. Furthermore,

dimLC .�/ D Œk
0.�/ W k�:

Proof. Since L QC .�/ is irreducible, (11) implies that Rk0=k.F /�.L QC .�// is irreducible
for C . Since F �.k�/ Š kp� as T -modules, the first statement follows.

For the second, we proceed by induction on Œk0 W k�. If p − � then we are done by (10);
otherwise, let � D p�0. Then by induction,

dimL QC .�
0/ D Œ Qk.�0/ W k� D Œk0.p/.�0/ W k� D Œk0.�/ W k�;

and we are done by the first part.

5.3. The case Rk0=k.Gm/ for k0 a non-zero finite reduced k-algebra

With the results of the previous section in hand, we can now give a dimension formula
in the case where C D Rk0=k.Gm/ for k0 a non-zero finite reduced k-algebra. This is
precisely the case where C D

Qn
iD1 Rki=k.Gm/, and the ki are the factor fields of k0.

Since we insist C is pseudo-split, the ki are all purely inseparable extensions of k and
so k0 is a purely inseparable k-algebra. By [2, A.7.8] the minimal field of definition of
the unipotent radical of each factor Rki=k.Gm/ is ki itself. Since each ki is a finite purely
inseparable field extension of k, it embeds uniquely into the algebraic closure Nk, and the
unique minimal field of definitionK 0 for Ru.G Nk/ is the subfield of Nk generated by the ki .

Let T be the canonical Levi subgroup
Qn
iD1Gm inside C . By Theorem 3.1 there is up

to isomorphism a unique simple C -module LC .�/ of weight � D .�1; : : : ; �n/ 2 X.T /
Š Zn. The following theorem calculates its dimension:

Theorem 5.8. We have dimLC .�/ D ŒK W k�, where K is the subfield of K 0 generated
by k together with ki .�i / for each 1 � i � n.

Proof. We must exhibit an irreducible module of weight � and the correct dimension. For
each i write �i D pei�i where p − �i and put Qki D ki .pei /. Since ki=k is purely insep-
arable we must have Qki D ki .�i / and hence K is generated by the Qki . From §5.2.4 recall
there is a map Rki=k.F

ei / W Rki=k.Gm/ ! R Qki=k.Gm/. Precomposing a module M of
weight � for R Qki=k.Gm/with Rki=k.F

ei / gives a module Rki=k.F
ei /�.M/ of weight pe�

for Rki=k.Gm/.
Now by definition of K, each Qki is a subfield of K and hence we get an embedding

�i W R Qki=k.Gm/ ,! RK=k.Gm/ for each i . We also get a map

RK=k.�/ W
nY
iD1

RK=k.Gm/! RK=k.Gm/

corresponding to the weight � D .�1; : : : ; �n/.
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Now form the composite map

X W G Š
Y
i

Rki=k.Gm/

Q
i Rki =k.F

ei /

����������!

Y
i

R Qki=k.Gm/

Q
i �i
���!

Y
i

RK=k.Gm/
RK=k.�/
������! RK=k.Gm/: (12)

Then if S is the natural module for RK=k.Gm/, one sees easily that X�.S/ is a
module for C of weight �. We must see that X�.S/ is irreducible; in other words, that
X�.S/ Š LC .�/.

But as S is irreducible for RK=k.Gm/.k/, we need only see that X induces a surjection
of group algebras k.C.k//! k.RK=k.Gm//.k/ D K. This follows essentially from the
definition ofK: we know that kX.C /.k/ contains Qki D kR Qki=k.Gm/.k/D k Qk

�
i for each i

and so kX.C /.k/ D K as required.

Remark 5.9. We are indebted to the referee for the following observation. Starting from a
pseudo-split k-group C of the form Rk0=k.Gm/ for k0 a finite non-zero reduced k-algebra,
one may recover the k-algebra k0 up to (usually non-unique) isomorphism. For, let the
factor fields of k0 be k1; : : : ; kr . Then if K is a field which is minimal subject to the
requirement that CK contains a direct Gm-factor, then without loss of generality, K con-
tains k1 say, and as Ck1 has a direct Gm-factor, we have K D k1 by minimality. Thus
C has a direct factor Rk1=k.Gm/. Taking the quotient of C by this factor yields another
k-group of the same form and we are done by induction.

5.4. Rank 1 pseudo-split pseudo-reductive commutative groups

Let C be a pseudo-split pseudo-reductive commutative group with a maximal split
torus T . If k0 is the minimal field of definition of the unipotent radical of C then
we may form C WD Rk0=k.Ck0/ Š Rk0=k.Tk0 Ë Ru;k0.Ck0// D Rk0=k.Tk0/ Ë U , where
U D Rk0=k.Ru;k0.Ck0// is a unipotent normal subgroup of C . By the usual properties of
Weil restriction, C embeds as a canonical k-subgroup of C . Since U acts trivially on any
simple C -module, and since T can be naturally identified as a maximal torus in C , in
view of Theorem 3.1 we have natural correspondences

simple C -modules$ X.T /$ simple Rk0=k.Tk0/-modules$ simple C -modules;

and thus we may proceed by assuming that C is a subgroup of D WD Rk0=k.Tk0/. Now,
we know the dimensions of the simple D-modules, by the work of the previous sections,
so it is natural to ask how these modules restrict to C . In this section we give an answer
when the dimension of T is 1. Let us start with a lemma:

Lemma 5.10. Suppose k0=k is a finite extension and let G D Rk0=k.Gm/. Let W be a
proper non-trivial k-subspace of k0, and let S D StabG.W /. Then there exists an inter-
mediate field k � E ¨ k0 such that S � RE=k.Gm/.
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Proof. First recall that for the subspace W we have the corresponding (additive) group
functor Wa given by Wa.A/ WD W ˝k A (see Section 2.1). Then S is an algebraic sub-
group scheme of G and for every k-algebra A we have, by [7, I.2.12],

S.A/ D ¹g 2 G.A/ j gWa.A/ � Wa.A/º:

Now, since all multiplication here is commutative, given any non-zero w 2 W D Wa.k/
we can see that S also stabilizes the k-subspace w�1W of k0. Hence, we may assume that
1 2 W .

Now let E denote the intersection of all k-subspaces of k0 containing 1 and stabilized
by S (i.e., the intersection of all k-subspaces X such that 1 2 X and S.A/.X ˝k A/ �
X ˝k A for all k-algebras A). We show that E is an intermediate field and that S � Ea.
Given this, S is then contained in the corresponding multiplicative unit group, which is
precisely RE=k.Gm/.

To see that E is a field we just need to show E n ¹0º is a group under multiplication.
So let x 2 E n ¹0º. Appealing to the commutativity of multiplication again, we see that
the k-subspace x�1E is S -stable and contains x�1x D 1, so we must have x�1E D E,
as required. Since W is proper, E is properly contained in k0. The final step is to note
that since 1 2 E and E is S -stable, we have S.A/ � Ea.A/ for all k-algebras A. Hence
S � Ea.

Proposition 5.11. Let C be a pseudo-split commutative pseudo-reductive group of rank 1
and let k0 be the minimal field of definition of its unipotent radical. Set D D Rk0=k.Gm/.
Then the restriction of LD.�/ to C is irreducible.

Proof. Pick a weight � D pe�. Then the irreducible LD.�/ identifies with the field
k0.�/ D k.pe/ inside k0, and this contains a copy of the irreducible LC .�/. Now, by
the argument in the proof of Lemma 5.10, we may assume that LC .�/ contains some
C -stable subfield E; but LC .�/ is irreducible, so E D LC .�/. Therefore, the image of C
under the representation is contained in RE=k.Gm/. Let E 0 � k0 be the set of x such that
xp

e
2 E (the preimage of E under Frobenius).

Then E 0 is a subfield of k0 containing k because E is a subfield of k0 and k � E 0

obviously. Also, C is contained in RE 0=k.Gm/, so actually E 0 D k0 by minimality of k0.
But then E must be k0.�/ by definition of k0.�/.

Remark 5.12. From the observations at the start of this section and Lemma 5.10 one
can see that for any commutative pseudo-split pseudo-reductive group C , the irreducible
module LC .�/ naturally identifies as a subfield of the field of definition of the unipotent
radical ofC . Similar results have been proved by Brion [1, Prop. 3.1] in a slightly different
context, and using a different approach.

Example 5.13. Finally, we give an example to show that Proposition 5.11 will not gener-
alise in a straightforward way beyond rank 1. For brevity, let k be a field of characteristic
p D 2 and K D k.s; t; u/ be a degree 8 extension of k, with s2; t2; u2 algebraically inde-
pendent elements of k n k2. Define subfields k1 D k.s; u/ and k2 D k.t; u/ of K, and let
G D Rk1=k.Gm/ � Rk2=k.Gm/. Inside G there is a natural copy of C1 WD Rk.s/=k.Gm/ �
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Rk.t/=k.Gm/ and a diagonal copy of C2 WD Rk.u/=k.Gm/ embedded via x 7! .x; x�1/.
Let C D C1C2 be the product of these subgroups. Then, being a smooth subgroup of
the commutative pseudo-reductive group G, C is pseudo-reductive. We note that C is a
dimension 5, maximal rank subgroup of G containing the canonical maximal split torus
T WDGm �Gm�G. If �D .�1;�2/ is a weight inX.T / then one checksLC .�/ identifies
with one of k.s; t/, k.s; u/, k.t; u/ or k, depending on the parities of �1 and �2. We claim
that there is no set ¹�1; : : : ; �nº of purely inseparable field extensions of k such that C is
a subgroup of D WD R�1=k.Gm/ � � � � � R�n=k.Gm/ and D only has simple modules of
dimension 1 and 4. To see this, given such aD, let S DGn

m denote the maximal torus ofD
and let � denote the compositum of the �i . Then � is the field of definition of Ru.D Nk/

and also identifies with the simple module LD.1; : : : ; 1/, by Theorem 5.8. If C �D, then
because C and D are commutative, we have T � S and Ru.C Nk/ � Ru.D Nk/. Over �,
we have the canonical quotient q W D� ! S described in §2.5; restricting this �-defined
map to C� , we deduce that Ru.C Nk/ must also be defined over �. Since K is the minimal
field of definition for Ru.C Nk/, we see that � contains K, and hence LD.1; : : : ; 1/ has
k-dimension at least 8.
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