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Abstract. In 1932 von Neumann proposed classifying the statistical behavior of differentiable sys-
tems. In modern language this is interpreted as classifying diffeomorphisms of compact manifolds
up to measure isomorphism. This paper proves that this is impossible in a rigorous sense.
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1. Introduction

The isomorphism problem in ergodic theory was formulated by von Neumann in 1932
in his pioneering paper [23].1 The problem has been solved for some classes of trans-
formations that have special properties. Halmos and von Neumann [15] used the unitary
operators defined by Koopman to completely characterize ergodic measure preserving
transformations with pure point spectrum. They showed that these are exactly the transfor-
mations that can be realized as translations on compact groups. Another notable success in
solving this problem was the classification of Bernoulli shifts using the notion of entropy
introduced by Kolmogorov.

Starting in the late 1990s a different type of result began to appear: anti-classification
results that demonstrate in a rigorous way that classification is not possible. This type of
theorem requires a precise definition of what a classification is. Informally, a classifica-
tion is a method of determining isomorphism between transformations by computing (in
a liberal sense) other invariants for which equivalence is easy to determine.

The key words here are method and computing. For negative theorems, the more lib-
eral a notion one takes for these words, the stronger the theorem. One natural way of
what a computation is uses the Borel/non-Borel distinction. Saying a set X or function
f is Borel is a loose way of saying that membership in X or the computation of f can
be done using a countable (possibly transfinite) protocol whose basic input is member-
ship in open sets. Saying that X or f is not Borel is saying that determining membership
in X or computing f cannot be done with any countable amount of resources. (See [6]
for an elementary discussion and a comparison with the more strict notion of recursive
computation, which requires inherently finite resources.)

In the context of classification problems, saying that an equivalence relation E on
a space X is not Borel is saying that there is no countable amount of initial information
and no countable, potentially transfinite, protocol based on this information for determin-
ing, for arbitrary x; y 2 X whether xEy. Any such method must inherently use uncount-
able resources.2

An example of a positive theorem in the context of ergodic theory is due to Halmos
([14]) who showed that the collection of ergodic measure preserving transformations
is a dense Gı set in the space of all measure preserving transformations of .Œ0; 1�; �/
endowed with the weak topology. Moreover, he showed that the set of weakly mixing
transformations is also a dense Gı .3

1Two measure preserving transformations (abbreviated to ‘MPTs’ in the paper) T and S are
isomorphic if there is an invertible measurable mapping between the corresponding measure spaces
which commutes with the actions of T and S .

2Many well known classification theorems have as immediate corollaries that the resulting
equivalence relation is Borel. An example of this is the Spectral Theorem, which has a consequence
that the relation of Unitary Conjugacy for normal operators is a Borel equivalence relation.

3Relatively straightforward arguments show that the set of strongly mixing transformation is
a first category …30 set. See [5].
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The first anti-classification result in the area is due to Beleznay and Foreman [3] who
showed that the class of measure distal transformations used in early ergodic theoretic
proofs of Szemeredi’s theorem is not a Borel set. Later Hjorth [16] introduced the notion
of turbulence and showed that there is no Borel way of attaching algebraic invariants
to ergodic transformations that completely determine isomorphism. Foreman and Weiss
[10] improved this result by showing that the conjugacy action of the measure preserving
transformations is turbulent – hence no generic class can have a complete set of algebraic
invariants.

In considering the isomorphism relation as a collection I of pairs .S; T / of measure
preserving transformations, Hjorth ([17]) showed that I is not a Borel set. However the
pairs of transformations he used to demonstrate this were inherently non-ergodic, leaving
open the essential problem:

Question. Is isomorphism of ergodic measure preserving transformations Borel?

This question was answered in the negative by Foreman, Rudolph and Weiss in [8].
This answer can be interpreted as saying that determining isomorphism between ergodic
transformations is inaccessible to countable methods that use countable amounts of infor-
mation.

In the same foundational paper from 1932 von Neumann expressed the likelihood that
any abstract MPT is isomorphic to a continuous MPT and perhaps even to a differentiable
one. This brief remark eventually gave rise to one of the yet outstanding problems in
smooth dynamics, namely:

Question. Does every ergodic MPT with finite entropy have a smooth model?4

By a smooth model it is meant an isomorphic copy of the MPT which is given by
smooth diffeomorphism of a compact manifold preserving a measure equivalent to the
volume element. Soon after entropy was introduced, A. G. Kushnirenko showed that such
a diffeomorphism must have finite entropy, and up to now this is the only restriction that
is known. The current paper is the culmination of a series whose purpose is to show that
the variety of ergodic transformations that have smooth models is rich enough so that the
abstract isomorphism relation, when restricted to these smooth systems, is as complicated
as the general isomorphism problem for ergodic measure preserving systems. We show
that even when restricting to diffeomorphisms of the 2-torus that preserve Lebesgue mea-
sure this is the case. The formal statement of our solution to the isomorphism problem
is:

Theorem 1. If M is either the torus T2, the disk D or the annulus then the measure-
isomorphism relation among pairs .S; T / of measure preserving C1-diffeomorphisms
of M is not a Borel set with respect to the C1-topology.

4In [23] on page 590, “Vermutlich kann sogar zu jeder allgemeinen Strömung eine isomor-
phe stetige Strömung gefunden werden [footnote 13], vielleicht sogar eine stetig-differentiierbare,
oder gar eine mechanische. Footnote 13: Der Verfasser hofft, hierfür demnächst einen Beweis
anzugeben.”
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Thus the isomorphism problem is impossible even for diffeomorphisms of compact
surfaces.

How does one prove a result such as Theorem 1? The main tool is the idea of a reduc-
tion (see [6] and Section 4.6). A function f W X ! Y reduces A to B if and only if for
all x 2 X :

x 2 A if and only if f .x/ 2 B:

IfX and Y are completely metrizable spaces and f is a Borel function, then f is a method
of reducing the question of membership in A to membership in B . Thus if A is not Borel
then B cannot be either.

In the current context, the C1-topology on the smooth transformations refines the
weak topology. Thus, by Halmos’ result quoted earlier, on the torus (disk, etc.), the
ergodic transformations are still a Gı -set. (However the famous KAM theory shows that
the ergodic transformations are no longer dense.) In particular, the C1-topology induces
a metrizable complete and perfect topology on the measure preserving diffeomorphisms
of T2. If M is a manifold with supporting a measure �, we denote the space of C1,
�-measure preserving diffeomorphisms of M with the notation Diff1.M;�/. Elements
of Diff1.M;�/ are also members of the group MPT of �-measure preserving transfor-
mations. For T 2 Diff1.M;�/ the centralizer of T in MPT is denoted C.T /.

If X is perfect and completely metrizable, a set A � X is analytic if and only if A is
the continuous image of a Borel set. A is complete analytic if and only if every analytic
set can be reduced to A. It is a classical fact that complete analytic sets are not Borel.

The proof of Theorem 1 uses a well-known example of a complete analytic set. The
underlying space X is the space Trees and A is the collection of ill-founded trees; those
that have infinite branches. A precise statement of the main result of the paper:

Theorem 2. There is a continuous function F s W Trees! Diff1.T2; �/, taking values
among the ergodic transformations, such that for T 2 Trees, if T D F s.T /:
(1) T has an infinite branch if and only if T Š T �1, and

(2) T has two distinct infinite branches if and only if

C.T / ¤ ¹T n W n 2 Zº:

Corollary 3. The following statements hold:

� ¹T 2 Diff1.T2; �/ W T is ergodic and T Š T �1º is complete analytic.

� ¹T 2 Diff1.T2; �/ W T is ergodic and C.T / ¤ ¹T n W n 2 Zº is complete analytic.

Since the map
�.T / D .T; T �1/

is a continuous mapping of Diff1.T2; �/ to Diff1.T2; �/ � Diff1.T2; �/ and reduces
¹T W T Š T �1º to ¹.S; T / W S Š T º, it follows that:

Corollary 4. The set

¹.S; T / W S and T are ergodic diffeomorphisms of T2 and are isomorphicº

is complete analytic and hence not Borel.
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We note that the problem of finding even one measure preserving transformation not
isomorphic to its inverse is difficult. This was not done until Anzai in [2]. In Math Review
MR0047742, Halmos said, “By constructing an example of the type described in the title
the author solves (negatively) a problem proposed by the reviewer and von Neumann
[Ann. of Math. (2) 43, 332?350 (1942): MR0006617]”.

More fine-grained information is now known and will be published elsewhere. For
example, Foreman, in unpublished work, showed that the problem of “isomorphism of
countable graphs” is Borel reducible to the isomorphism problem for ergodic measure
preserving transformations.

The techniques of this paper also have foundational interest. A close analysis of
our construction shows that the problem of whether T is isomorphic to its inverse is
“…0

1-hard.” (See [7]). This enables one to prove that truth or falsity of various open prob-
lems like the Riemann hypothesis is equivalent to the question of is TRH isomorphic or
not to its inverse for a specific measure preserving diffeomorphism TRH of the torus given
by our construction. Another consequence is the existence of a different diffeomorphism
TZFC such that the question of whether TZFC is isomorphic to its inverse is independent
of ZFC, the usual axioms for mathematics.

Here are two problems that remain open:

Problem 1. In contrast to [10], where the authors were able to show that the equiva-
lence relation of isomorphism on abstract ergodic measure preserving transformations is
turbulent, this remains open for ergodic diffeomorphisms of a compact manifold.

Problem 2. The problem of classifying diffeomorphisms of compact surfaces up to topo-
logical conjugacy remains largely open. Work of the first author with A. Gorodetski
shows that the isomorphism relation itself is not Borel, but for a very specific type of
diffeomorphisms of manifolds of dimension 5 and above. It is not know, for example for
topologically minimal transformations.

We owe a substantial debt to everyone who has helped us with this project. Jean-Paul
Thouvenot brought the Anosov–Katok technique to our attention and suggested using it
to solve the von Neumann problem. Philipp Kunde aided us by reading the paper and pro-
viding comments and corrections. Others include Eli Glasner, Anton Gorodetski, Alekos
Kechris, and Anatole Katok.

We particularly want to acknowledge the contribution of the late Dan Rudolph, who
helped pioneer these ideas and was a co-author in [8], contributing techniques fundamen-
tal to this paper.

2. An outline of the argument

This section gives an outline of the argument for Theorem 2. It uses the main results
from our earlier papers: A symbolic representation of Anosov–Katok systems ([11]) and
From odometers to circular systems: A global structure theorem ([12]) which we briefly
summarize. In [11], the Anosov–Katok technique of Approximation by Conjugacy is used
to give a new symbolic representation for a class of measure preserving diffeomorphisms
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that are extensions of the rotations by certain Liouvillean ˛. These are called strongly
uniform Circular Systems.5

In [12] two classes of symbolic systems are defined. The first, called Odometer Based
systems, contains representatives of every finite entropy measure preserving transforma-
tion with an odometer factor. The second class is the collection of Circular Systems.
These classes are made into categories by taking as morphisms synchronous and anti-
synchronous factor maps. The main result is that there is a functorial isomorphism between
F between these categories that takes strongly uniform systems to strongly uniform
systems.

Since the main construction in [8] uses Odometer Based systems this map enables
us to adapt that construction to the smooth setting. However in order to prove our main
result we still have to take into account potential isomorphisms of Circular Systems that
are neither synchronous nor anti-synchronous. It is to deal with this difficulty that we
analyze what we call the displacement function.

To each ˛ arising as a rotation factor of a circular system T one can associate a dis-
placement function (Section 7.1) and use it to associate the set of central values, a sub-
group of the unit circle. Its significance is the following:
(1) (Theorem 84) If ˇ is central, then there is an � 2 ¹T n W n 2 Zº such that the rotation

factor of � is rotation by ˇ.
(2) (Theorem 90) If T is built from sufficiently random words,6 and � 2 C.T /, then the

canonical rotation factor of � is rotation by a central value.
(3) It follows that if there is a � 2 C.T / and � … ¹T n W n 2 Zº, then there is a syn-

chronous  2 C.T / such that  … ¹T n W n 2 Zº.
(4) (Theorem 92) The analogous results relating isomorphisms � between T and T �1

with central values is proved, allowing us to conclude that if T is isomorphic to T �1,
then there is an anti-synchronous isomorphism between T and T �1.

(5) The previous two items are the content of Theorem 93, which says that for T satisfy-
ing the Timing Assumptions, to decide whether T Š T �1 or C.T / ¤ ¹T n W n 2 Zº
it suffices to consider anti-synchronous and synchronous isomorphisms.

In [8] a continuous function F from the space of Trees to the strongly uniform odometer
based transformations is constructed that:
� reduces the set of ill-founded trees to the transformations T that are isomorphic

to their inverses (and if T Š T �1, then this is witnessed by an anti-synchronous
isomorphism) and
� reduces the set of trees with two infinite branches to the transformations T whose

centralizer is different from the powers of T (and if the centralizer contains an exotic
element, it contains a synchronous exotic element).

5In a forthcoming paper we show how to drop the “strongly uniform” assumption.
6That is, T satisfies the Timing Assumptions.
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Moreover, in the second case, there is a synchronous element of the centralizer with
a specific piece of evidence that it is not the identity (it moves a Q1

1-equivalence class).
Composing one concludes that F ı F :
� reduces the set of ill-founded trees to collection of circular systems that are isomorphic

to their inverses and
� reduces the set of trees with two infinite branches to the circular systems whose

centralizer is different from the closure of the powers of T .
Continuously realizing the circular systems byR (as in [11]) completes the proof that:
� The collection of ergodic measure preserving diffeomorphisms T of the torus that are

isomorphic to their inverses is complete analytic. Consequently, the set of pairs .S; T /
of ergodic conjugate measure preserving diffeomorphisms is a complete analytic set.
� The collection of ergodic measure preserving diffeomorphisms T whose centralizer

is different from the closure of the powers of T is complete analytic.
Figure 1 illustrates F s D R ı F ıG.

Fig. 1. The reduction F s .

The next two sections review basic facts in ergodic theory and descriptive set theory,
define odometer based and circular systems and review their properties and the facts
shown in [11] and [12].

The analysis of the displacement function and the associated central values, which are
a subgroup of the circle canonically associated to the Liouvillean ˛, is carried out in Sec-
tions 5–7. Finally, the proof of the main theorems are given in Section 8 modulo certain
properties which impose some additional conditions on the parameters of the construc-
tion in [8]. These are verified in Section 9 and in Section 10 we spell out the dependencies
between the various parameters and show that they can be realized.

3. Numerical requirements

The proof of Theorem 2 uses a construction with many interconnecting pieces, most of
which are built by taking limits. This results in a large number of related sequences of
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variables, each having their own requirements and the estimates for the different pieces
must be compatible.

The least interesting part of this paper is verifying the consistency of the numerical
requirements. Sorting these requirements out is completely independent of the rest of the
paper. For this reason, we list the numerical requirements in Section 11.1, and then give
an argument for their consistency. We also note the specific requirement by number in the
text as they are posited and used.

Contributing to the complexity of the situation is that many of the relationships
between the variables come from internal arguments of the general form “taking ı small
enough you can guarantee that x < �”, with various variables in place of �; ı and x. The
exact relationship between � and ı is not clear from the argument, but there is a require-
ment of the form “ı is small as a function of �.” A typical example of this is Sublemma 99
which says that, as a function of Qn

1 , if �n is take sufficiently small then an involved
inequality involving I �; u0i ; v

0
i and Qn

1 holds.
Complicating this task further is the fact that the construction in this paper depends

on the construction in [8], which has its own numerical requirements. For a reader track-
ing the correspondence, in the appendix, we include a table for translating between the
notation in this paper and the notation in [8].

The variables. Here is a list of variable sequences that have to be chosen during the
construction:

kn; ln; qn; sn; e.n/; pn; qn; ˛n; �n; "n; �n;Q
n
1 :

Some of these variables have clear relationships that are externally determined. The main
construction is of a function that has a tree as in input. That tree directly determines
a sequence of parameters, such as Gn1 and hM.s/ W s � ni that are not chosen during
the construction. (In Section 11, we call these exogenous variables.) These parameters
determine some of the numerical requirements.

Example 5. The words in the collection WnC1 are built by a sequence of M substitu-
tions into equivalence classes of the relations QnC1

i , where M D supS M.s/ for S the
collection of heights on nodes in the given tree at stage n. These substitution instances are
closed under a sequence of Z2 actions of the groups hGni W i �M i. The number M and
the dimensions of the Z2 actions are also determined by the tree. Thus snC1 is determined
by the exogenous variablesGni ,M.s/, and the internally chosen variable e.nC 1/. In this
particular example, It is possible to give a completely explicit formula for e.nC 1/ in
terms snC1 and vice versa.7

However that would be uninformative. What we need to see is that if e.nC 1/ is large,
then snC1 is and vice versa and that each determines the other. This is the only relevant
information for determining the consistency of the numerical requirements. We have thus
eliminated one variable.

It would perhaps be more conventional to define all of the variables in advance, write
down the list of inequalities and then show they are consistent. However the examples

7We have snC1 D .2Me.nC1//G for numbers M and G determined exogenously.
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above illustrate the difficulties with this. The inequalities are intimately intertwined with
the details of the construction and are completely enigmatic without that context. For this
reason we note the numerical requirements one by one as they accumulate and collect
them in Section 11.1. We then proceed to show that they are consistent by the method
we describe next. A reader with a preference for the conventional presentation is advised
to skip directly to Section 11, read the reconciliation and then return to read the rest of
the paper.

What could possibly go wrong? The only potential issue is that there may be a situation
where the requirements are circular: for example, ı might have to be small as a function
of �, � small as a function of � and � small as a function of ı. In symbols

� ! ı ! �! �:

So if you choose � first, then ı then�, you might find that your choice of � was inadequate.
Indeed, because there is a cycle in the dependency diagram there is no variable you can
choose first and be certain of consistency.

Method for showing consistency. In Section 11 we analyze the dependencies and draw
a dependency diagram giving the order of choice. Since that diagram is cycle free, all of
the variables can be chosen to satisfy the accumulated requirements.

4. Preliminaries

The reader is referred to standard texts such as [22], [24] or [21]. Facts that are not
standard and are simply cited here are proved in [12], [11] and [8].

4.1. Measure spaces

We will call separable non-atomic probability spaces standard measure spaces and denote
them .X;B; �/, where B is the Boolean algebra of measurable subsets of X and � is
a countably additive, non-atomic measure defined on B. Maharam and von Neumann
proved that every standard measure space is isomorphic to .Œ0; 1�;B; �/, where � is
Lebesgue measure and B is the algebra of Lebesgue measurable sets.

If .X;B; �/ and .Y;C ; �/ are measure spaces, an isomorphism between X and Y
is a bijection � W X ! Y such that � is measure preserving and both � and ��1 are
measurable. We will ignore sets of measure zero when discussing isomorphisms; i.e. we
allow the domain and range of � to be subsets of X and Y of measure one.

A measure preserving system is an object .X;B; �; T /, where T W X ! X is a mea-
sure isomorphism. A factor map between two measure preserving systems .X;B; �; T /
and .Y;C ; �; S/ is a measurable, measure preserving function � W X ! Y such that

S ı � D � ı T :

A factor map is an isomorphism between systems iff � is a measure isomorphism.
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Let T W .X;B; �; T /! .X;B; �; T / be measure preserving, let .Y;C/ be a measur-
able space, S W Y ! Y a measurable map and � W X ! Y a measurable map such that
�T D S�. Then we can define a measure � D ��� by setting �.A/ D �.��1.A//. This
measure makes � a factor map from .X;B; �; T / to .Y;C ; �; S/.

4.2. Presentations of measure preserving systems

Measure preserving systems occur naturally in many guises with diverse topologies. As
far as is known, the Borel/non-Borel distinction for dynamical properties is the same in
each of these presentations and many of the presentations have the same generic classes.
(See the forthcoming paper [9] which gives a precise condition for this.)

Here is a review the properties of the types of presentations relevant to this paper,
which are: abstract invertible preserving systems, smooth transformations preserving vol-
ume elements and symbolic systems.

4.2.1. Abstract measure preserving systems. Since every standard measure space is iso-
morphic to the unit interval with Lebesgue measure, every invertible measure preserving
transformation of a standard measure space is isomorphic to an invertible Lebesgue mea-
sure preserving transformation on the unit interval.

In accordance with the conventions of [5] we denote the group of measure preserving
transformations of Œ0; 1/ by MPT.8 Two measure preserving transformations are identified
if they are equal on sets of full measure.

Two measure preserving transformations are isomorphic if and only if they are conju-
gate in the group MPT and we will use isomorphic and conjugate as synonyms. However
some caution is order. If .M;�/ is a manifold, T WM !M is a smooth measure pre-
serving transformation and � is an arbitrary measure preserving transformation from M

to M , then �T��1 is unlikely to be smooth. Thus, the equivalence relation of isomor-
phism of diffeomorphisms is not given by an action of the group of measure preserving
transformations in an obvious way.

Given a measure space .X; �/ and a measure preserving transformation T W X ! X ,
define the centralizer of T to be the collection of measure preserving S W X ! X such
that ST D TS . This group is denoted C.T /. Note that this is the centralizer in the group
of measure preserving transformations. In the case that X is a manifold and T is a diffeo-
morphism, C.T / differs from the centralizer of T inside the group of diffeomorphisms.

To each invertible measure preserving transformation T 2MPT, associate a unitary
operator UT W L2.Œ0; 1�/! L2.Œ0; 1�/ by defining U.f / D f ı T . In this way MPT can
be identified with a closed subgroup of the unitary operators on L2.Œ0; 1�/ with respect to
the weak operator topology9 on the space of unitary transformations. This makes MPT
into a Polish group. We will call this the weak topology on MPT. Halmos ([14]) showed
that the ergodic transformations, which we denote E , is a dense Gı set in MPT. In
particular, the weak topology makes E into a Polish subspace of MPT.

8Recently several authors have adopted the notation Aut.�/ for the same space.
9Which coincides with the strong operator topology in this case.
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There is another topology on the collection of measure preserving transformations
of X to Y for measure spaces X and Y . If S; T W X ! Y are measure preserving trans-
formations, the uniform distance between S and T is defined to be

dU .S; T / D �¹x W Sx ¤ T xº:

This topology refines the weak topology and is a complete, but not a separable topology.

4.2.2. Diffeomorphisms. Let M be a Cm-smooth compact finite-dimensional manifold
and let � be a standard measure on M determined by a smooth volume element. For
each k � m there is a Polish topology on the k-times differentiable homeomorphisms
of M , the C k-topology. If M is C1, then the C1-topology is the coarsest topology
refining the C k-topology for each k 2 N. It is also a Polish topology and a sequence of
C1-diffeomorphisms converges in the C1-topology if and only if it converges in the
C k-topology for each k 2 N.

The collection of �-preserving diffeomorphisms forms a closed nowhere dense set in
the C k-topology on the C k-diffeomorphisms, and as such, inherits a Polish topology.10

We will denote this space by Diffk.M;�/.
Viewing M as an abstract measure space one can also consider the space of abstract

�-preserving transformations onM with the weak topology. In [4] it is shown that the col-
lection of a.e.-equivalence classes of smooth transformations form a…0

3-set in MPT.M/,
and hence the collection has the Property of Baire.

4.2.3. Symbolic systems. Let † be a countable or finite alphabet endowed with the dis-
crete topology. Then †Z can be given the product topology, which makes it into a sepa-
rable, totally disconnected space that is compact if † is finite.

Notation. If u D h�0; : : : ; �n�1i 2 †<1 is a finite sequence of elements of †, then we
denote the cylinder set based at k in†Z by writing huik . If k D 0, we abbreviate this and
write hui. Explicitly: huik D ¹f 2 †Z W f � Œk; k C n/ D uº. The collection of cylinder
sets form a base for the product topology on †Z.

Let u; v be finite sequences of elements of† having length q. Given intervals I and J
in Z of length q, we can view u and v as functions having domain I and J , respectively.
We will say that u and v are located at I and J . We will say that u is shifted by k relative
to v iff I is the shift of the interval J by k. We say that u is the k-shift of v iff u and v are
the same words and I is the shift of the interval j by k.

The shift map
sh W †Z

! †Z

defined by setting
sh.f /.n/ D f .nC 1/

10One can also consider the space of measure preserving homeomorphisms with the k � k1
topology, which behaves in some ways similarly.
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is a homeomorphism. If � is a shift-invariant Borel measure, then the resulting measure
preserving system .†Z;B; �; sh/ is called a symbolic system. The closed support of � is
a shift-invariant closed subset of †Z called a symbolic shift or sub-shift.

Symbolic shifts are often described intrinsically by giving a collection of words that
constitute a clopen basis for the support of an invariant measure. Fix a language †, and
a sequence of collections of words hWn W n 2 Ni with the properties that:
(1) for each n all of the words in Wn have the same length qn,
(2) each w 2 Wn occurs at least once as a subword of every w0 2 WnC1,
(3) there is a summable sequence h�n W n 2 Ni of positive numbers such that for each n,

every word w 2 WnC1 can be uniquely parsed into segments

u0w0u1w1 : : : wlulC1 (4.1)

such that each wi 2 Wn, ui 2 †<qn and for this parsingP
i jui j

qnC1
< �nC1: (4.2)

The segments ui in condition 4.1 are called the spacer or boundary portions of w.

Definition 6. A sequence hWn W n 2 Ni satisfying properties (1)–(3) will be called a con-
struction sequence.

If W is a collection of words in an alphabet†, we will say that W is uniquely readable
if and only if whenever u; v;w 2 W and uv D pws then either:
� p D ; and u D w or
� s D ; and v D w.

Equation (4.1) of clause (3) implies that each Wn is uniquely readable. We will need
unique readability to parse elements of K, the symbolic shift associated with the con-
struction sequence.

Definition 7. Let K be the collection of x 2 †Z such that every finite contiguous sub-
word of x occurs inside some w belonging to some Wn. Then K is a closed shift-invariant
subset of †Z that is compact if † is finite.

The symbolic shifts built from construction sequences coincide with transformations
built by cut-and-stack constructions.

Notation. For a word w 2 †<N we will write jwj for the length of w.

Here is a natural set of measure one for the relevant measures:

Definition 8. Suppose that hWn W n 2 Ni is a construction sequence for a symbolic sys-
tem K with each Wn uniquely readable. Let S be the collection x 2 K such that there are
sequences of natural numbers ham W m 2 Ni, hbm W m 2 Ni going to infinity such that for
all m there is an n; x � Œ�am; bm/ 2 Wn.

Note that S is a dense shift-invariant Gı set.
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Lemma 9 ([11]). Fix a construction sequence hWn W n 2 Ni for a symbolic system K in
a finite language. Then:

(1) K is the smallest shift-invariant closed subset of†Z such that for all n, and w 2 Wn,
K has non-empty intersection with the basic open interval hwi � †Z.

(2) Suppose that there is a unique invariant measure � on S � K, then � is ergodic.

(3) (See [12].) If � is an invariant measure on K concentrating on S , then for �-almost
every s there is anN for all n >N , there are an � 0 < bn such that s � Œan; bn/ 2Wn.

Example 10. Let hWn W n 2 Ni be a construction sequence. Then hWn W n 2 Ni is uni-
form if there is a summable sequence of positive numbers h�n W n 2 Ni and hdn W n 2 Ni,
where dn WWn! .0; 1/ such that for each n all wordsw 2Wn andw0 2WnC1 if f .w;w0/
is the number of i such that w D wiˇ̌̌̌

f .w;w0/

qnC1=qn
� dn.w/

ˇ̌̌̌
<
�nC1

qn
: (4.3)

It is shown in [11] that uniform construction sequences are uniquely ergodic. A special
case of uniformity is strong uniformity: when eachw 2 Wn occurs exactly the same num-
ber of times in each w0 2 WnC1. This property holds for the circular systems considered
in [11] and that are used for the proof of the main theorem of this paper (Theorem 2).

4.2.4. Locations. Let hWn W n 2 Ni be a uniquely readable construction sequence and
let � be a shift invariant measure on S . For s 2 S and each n either s.0/ lies in a well-
defined subword of s belonging to Wn or in a spacer of a subword of s belonging to
some WnCk . By Lemma 9 for �-almost all x and for all large enough n there is a unique
k with 0 � k < qn such that s � Œ�k; qn � k/ 2 Wn.

Definition 11. Let s 2 S and suppose that for some 0 � k < qn; s � Œ�k; qn � k/ 2 Wn.
Define rn.s/ to be the unique k with this property. We will call the interval Œ�k; qn � k/
the principal n-block of s, and s � Œ�k; qn � k/ its principal n-subword. The sequence
of rn will be called the location sequence of s.

Thus rn.s/ D k is saying that s.0/ is the k-th symbol in the principal n-subword of
s containing 0. We can view the principal n-subword of s as being located on an inter-
val I inside the principal nC 1-subword. Counting from the beginning of the principal
nC 1-subword, the rnC1.s/ position is located at the rn.s/ position in I .

Remark 12. It follows immediately from the definitions that if rn.s/ is well-defined and
n � m, the rm.s/-th position of the word occurring in the principal m-block of s is in the
rn.s/-th position inside the principal n-block of s.

Lemma 13. [12] Suppose that s; s0 2 S and hrn.s/ W n � N i D hrn.s0/ W n � N i and for
all n � N , s and s0 have the same principal n-subwords. Then s D s0.

Thus an element of s is determined by knowing any tail of the sequence

hrn.s/ W n � N i

together with a tail of the principal subwords of s.
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Remark 14. Here are some consequences of Lemma 13:
(1) Given a sequence hun WM � ni with un 2 Wn, if we specify which occurrence of

un in unC1 is the principal occurrence, then hun WM � ni determines an s 2 K
completely up to a shift k with jkj � qM .

(2) A sequence hrn W N � ni and sequence of words wn 2 Wn comes from an infinite
word s 2 S if both rn and qn � rn go to infinity and that the rnC1 position in wnC1
is in the rn position in a subword of wnC1 identical to wn. (Caveat: just because
hrn WN � ni is the location sequence of some s 2 S and hwn WN � ni is the sequence
of principal subwords of some s0 2 S , it does not follow that there is an x 2 S with
location sequence hrn W N � ni and sequence of subwords hwn W N � ni.)

(3) If x; y 2 S have the same principal n-subwords and rn.y/ D rn.x/C 1 for all large
enough n, then y D sh.x/.

4.2.5. A note on inverses of symbolic shifts. We define operators we label rev. � /, and
apply them in several contexts.

Definition 15. If x is in K, define the reverse of x by setting rev.x/.k/ D x.�k/. For
A � K, define

rev.A/ D ¹rev.x/ W x 2 Aº:

If w is a word, let rev.w/ to be the reverse of w sitting on the same interval. Explicitly, if
w W Œan; bn/! † is the word, then rev.w/ W Œan; bn/! † and

rev.w/.i/ D w..an C bn/ � .i C 1//:

If W is a collection of words, rev.W/ is the collection of reverses of the words in W .

If .K; sh/ is an arbitrary symbolic shift, then its inverse is .K; sh�1/. It will be conve-
nient to have all of the shifts go in the same direction, thus:

Proposition 16. The map � sending x to rev.x/ is a canonical isomorphism between
.K; sh�1/ and .rev.K/; sh/.

Note that the notation L�1 stands for the system .L; sh�1/ and rev.L/ for the system
.rev.L/; sh/.

4.3. Generic points

Let T be a measure preserving transformation from .X; �; �/ to .X; �; �/, where � is
a compact separable topology, and � is a standard measure. Then a point x 2 X is generic
for T if and only if for all f 2 C.X/,

lim
N!1

�
1

N

�N�1X
0

f .T n.x// D

Z
X

f .x/d�.x/: (4.4)

The Ergodic Theorem tells us that for a given f and ergodic T equation (4.4) holds for
a set of �-measure one. Intersecting over a countable dense set of f 2 C.X/ gives a set
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of �-measure one of generic points. For symbolic systems K � †Z the generic points are
those x such that the �-measure of all basic open intervals hui0 is equal to the density of
k such that u occurs in x at k.

4.4. Stationary codes and Nd -distance

In this subection we briefly review a standard idea, that of a stationary code. A reader
unfamiliar with this material who is interested in the proofs of the facts cited here should
see [22].

Definition 17. Suppose that † is a countable language. A code of length 2N C 1 is
a function ƒ W †Œ�N;N� ! † (where Œ�N;N � is the interval of integers starting at �N
and ending at N ).

Given a code ƒ, the stationary code determined by ƒ is the function Nƒ W †Z ! †Z,
where, given s

Nƒ.s/.k/ D ƒ.s � Œk �N; k CN�/:
Let .†Z;B; �; sh/ be a symbolic system. Given two codesƒ0 andƒ1 (not necessarily

of the same length), define

D D ¹s 2 †Z
W ƒ0.s/.0/ ¤ Nƒ1.s/.0/º and d.ƒ0; ƒ1/ D �.D/:

Then d is a semi-metric on the collection of codes. The following is a consequence of the
Borel–Cantelli lemma.

Lemma 18. Suppose that hƒi W i 2 Ni is a sequence of codes such thatX
i

d.ƒi ; ƒiC1/ <1:

Then there is a shift-invariant Borel map S W †Z ! †Z such that for �-almost all s,
limi!1ƒi .s/ D S.s/.

A shift-invariant Borel map S W †Z ! †Z, determines a factor .†Z;B; �; sh/ of
.†Z;B; �; sh/ by setting � D S��. Hence a convergent sequence of stationary codes
determines a factor of .†Z;B; �; sh/.

Let ƒ0 and ƒ1 be codes. Define Nd. Nƒ0.s/; Nƒ1.s// to be

lim
N!1

j¹k 2 Œ�N;N � W Nƒ0.s/.k/ ¤ Nƒ1.s/.k/ºj

2N C 1
:

More generally define the Nd metric on †Œa;b� by setting

NdŒa;b�.x; y/ D
j¹k 2 Œa; b/ W x.k/ ¤ y.k/ºj

b � a
:

For x; y 2 †Z, we set
Nd.x; y/ D lim

N!1

NdŒ�N;N�.x � Œ�N;N �; y � Œ�N;N �/;

provided this limit exists.
To compute distances between codes we will use the following application of the

Ergodic Theorem.
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Lemma 19. Suppose that � is ergodic. Let ƒ0 and ƒ1 be codes. Then for almost all
s 2 †Z,

d.ƒ0; ƒ1/ D Nd. Nƒ0.s/; Nƒ1.s//:

The next proposition is used to study alleged isomorphisms between measure preserv-
ing transformations. We again refer the reader to [22] for a proof.

Proposition 20. Suppose that K and L are symbolic systems and � W K! L is a factor
map. Let � > 0. Then there is a code ƒ such that for almost all s 2 K,

Nd. Nƒ.s/; �.s// < �: (4.5)

To show that equation (4.5) cannot hold (and hence show that L is not a factor
of K), we will want to view Nƒ.s/ as limits of ƒ-images of large blocks of the form
s � Œa; b� with a < 0 < b. There is an ambiguity in doing this: if the code ƒ has length
2N C 1, it does not make sense to apply it to s � Œk �N; k CN� for k 2 Œa; aC 2N �
or k 2 Œb � 2N; b�. However if b � a is quite large with respect to N , then filling in
the values for ƒ.s � Œk �N; k CN�/ arbitrarily as k ranges over these initial and final
intervals makes a negligible difference to the Nd -distances of the result. In particular, if
Nd. Nƒ.s/; �.s// < �, then for all large enough a; b 2 N, we have

NdŒ�a;b�. Nƒ.s � Œ�a; b�/; �.s/ � Œ�a; b�/ < �;

no matter how we fill in the ambiguous portion.
The general phenomenon of ambiguity or disagreement at the beginning and end of

large intervals is referred to by the phrase end effects. Because the end effects are usually
negligible on large intervals we will often neglect them when computing Nd distances.

The next proposition is standard:

Proposition 21. Suppose that .†Z;B; �; sh/ is an ergodic symbolic system and that
hTn W n 2 Ni is a sequence of functions from †Z ! †Z that commute with the shift.
Then the following are equivalent:

(1) The sequence hTni converges to S in the weak topology.

(2) �.¹s W Tn.s/.0/ ¤ S.s/.0/º/! 0.

(3) For �-almost all s; Nd.Tn.s/; S.s//! 0.

(4) For some �-generic s, for all  > 0 we can find an N for all n � N , for all large
enough a; b, the distance Nd.Tn.s/ � Œ�a; b/; S.s/ � Œ�a; b// <  .

We finish with a remark that we will use in several places:

Remark 22. If w1 and w2 are words in a language† defined on an interval I and J � I
with jJ j

jI j
� ı, then NdI .w1; w2/ � ı NdJ .w1; w2/.

4.5. Rotations of the circle

Many of the arguments in this paper are based on an understanding of rational approxi-
mations to rotations of the circle. It is usually convenient to adopt additive notation and
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work on the unit interval Œ0; 1/, but this introduces ambiguities. Fix an ˛ 2 R. We use the
symbol R˛ in two ways. The first way is that

R˛ W S
1
! S1

by rotating the circle by ˛ � 2� radians. The second, equivalent, way is that

R˛ W Œ0; 1/! Œ0; 1/

and is given by the formula
x 7! x C ˛ mod 1:

We note in both cases that we are really concerned with Œ˛� .mod 1/.

4.6. Descriptive set theory basics

Let X and Y be Polish spaces and A � X;B � Y .11 A function f W X ! Y reduces A
to B if and only if for all x 2 X ,

x 2 A if and only if f .x/ 2 B:

For this definition to have content there must be some definability restriction on f . The
relevant restrictions for this paper are either that f is a Borel function (i.e. the inverse
image of an open set is Borel) or that f is a continuous function (i.e. the inverse image
of an open set is open). The latter is clearly a stronger condition. If B is Borel and f is
a Borel reduction, then A is clearly Borel. Taking the contrapositive, if A is not Borel,
then B is not. If A is Borel (resp. continuously) reducible to B , we will write A �B B
(resp. A �c B). Both �B and �c are clearly pre-partial-orderings.12

If � is a collection of pairs .A;X/ and .B; Y / 2 � , then B is �-complete for Borel
reductions (resp. continuous reductions) if and only if every .A;X/ 2 � is Borel reducible
(resp. continuously reducible) to .B; Y /. Being complete is interpreted as being at least
as complicated as each set in � .

For this to be useful there must be examples of sets that are not Borel. If X is a Polish
space andB � X , thenB is analytic (†

�

1
1) if and only if it the continuous image of a Borel

subset of a Polish space. This is equivalent to there being a Polish space Y and a Borel set
C � X � Y such that B is the projection to the X -axis of C .

Correcting a famous mistake of Lebesgue, Suslin proved that there are analytic sets
that are not Borel. It follows immediately that complete analytic sets are not Borel. This
paper uses a canonical example of such a set.

Let h�n W n 2 Ni be an enumeration of N<N , the finite sequences of natural numbers.
Using this enumeration subsets S � N<N can be identified with functions

�S W N ! ¹0; 1º:

11The ideas in this subsection are just summaries, they are exposited in [5] and [19].
12The reader should be aware that this is a different notion than the notion of a reduction of

equivalence relations.
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A tree is a set T � N<N such that if � 2 T and � is an initial segment of � , then
� 2 T . The set ¹�T W T is a treeº is a closed subset of ¹0; 1ºN , hence a Polish space with
the induced topology. We call the resulting space Trees. (In the sequel we will not always
distinguish between T and�T .)

Because the topology on the space of trees is the “finite information” topology, inher-
ited from the product topology on ¹0; 1ºN , the following characterizes continuous maps
defined on Trees.

Proposition 23. Let Y be a topological space and f W Trees! Y . Then f is continuous
if and only if for all open O � Y and all T with f .T / 2 O there is an M 2 N for all
T 0 2 Trees:

if T \ ¹�n W n �M º D T 0 \ ¹�n W n �M º, then f .T 0/ 2 O .

An infinite branch through T is a function f W N ! N such that for all n 2 N,
f � ¹0; 1; 2; : : : ; n�1º 2 T . A tree T is ill-founded if and only if it has an infinite branch.

The following theorem is classical; proofs can be found in [19] and [20].

Fact 24. Let Trees be the space of trees. Then:
(1) The collection of ill-founded trees is a complete analytic subset of Trees.
(2) The collection of trees that have at least two distinct infinite branches is a complete

analytic subset of Trees.

The main results of this paper (Theorem 2 and Corollary 3) are proved by reducing
the sets mentioned in Fact 24 to conjugate pairs of diffeomorphisms and concluding that
the sets of conjugate pairs is complete analytic – so not Borel.

5. Odometer and circular systems

Two types of symbolic shifts play central roles for the proofs of the main theorem, the
odometer based and the circular systems. Most of the material in this section appears
in [12] in more detail and is reviewed here without proof.

5.1. Odometer based systems

We now define the class of odometer based systems. In a sequel to this paper ([13]), we
prove that these are exactly the finite entropy transformations that have non-trivial odome-
ter factors. We recall the definition of an odometer transformation. Let hkn W n 2 Ni be
a sequence of natural numbers greater than or equal to 2. Let

O D

1Y
nD0

Z=knZ

be the hkni-adic integers. Then O naturally has a compact abelian group structure and
hence carries a Haar measure �. The set O becomes a measure preserving system O by
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defining T W O ! O to be addition by 1 in the hkni-adic integers. Concretely, this is the
map that “adds one to Z=k0Z and carries right”. Then T is an invertible transformation
that preserves the Haar measure � on O. Let Kn D k0 � k1 � k2 � � � � � kn�1.

The following results are standard:

Lemma 25. Let O be an odometer system. Then:

(1) O is ergodic.

(2) The map x 7! �x is an isomorphism between .O;B; �; T / and .O;B; �; T �1/.

(3) Odometer maps are transformations with discrete spectrum and the eigenvalues of
the associated linear operator are the Kn-th roots of unity (n > 0).

Any natural number a < Kj can be uniquely written as

a D a0 C a1k0 C a2.k0k1/C � � � C aj .k0k1k2 : : : kj�1/

for some sequence of natural numbers a0; a1; : : : ; aj with 0 � aj < kj .

Lemma 26. Suppose that hrn W n 2 Ni is a sequence of natural numbers with 0 � rn <
k0k1 : : : kn and rn � rnC1 mod .k0k1 : : : kn/. Then there is a unique element x 2 O such
that rn D x.0/C x.1/k0 C � � � C x.n/.k0k1 : : : kn�1/ for each n.

We now define the collection of symbolic systems that have odometer maps as their
timing mechanism. This timing mechanism can be used to parse typical elements of the
symbolic system.

Definition 27. Let hWn W n 2 Ni be a uniquely readable construction sequence with the
properties that W0 D † and for all n;WnC1 � .Wn/

kn for some kn. The associated
symbolic system will be called an odometer based system.

Thus odometer based systems are those built from construction sequences

hWn W n 2 Ni

such that the words in WnC1 are concatenations of words in Wn of a fixed length kn.
The words in Wn all have length Kn and the words ui in equation (4.1) are all the empty
words.

Equivalently, an odometer based transformation is one that can be built by a cut-and-
stack construction using no spacers. An easy consequence of the definition is that for
odometer based systems, for all s 2 S and for all n 2 N, rn.s/ exists.13

The next lemma justifies the terminology.

Lemma 28. Let K be an odometer based system with each WnC1 � .Wn/
kn . Then there

is a canonical factor map
� W S ! O;

where O is the odometer system determined by hkn W n 2 Ni.

13S is defined in Definition 8.
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Proof. For each s 2 S , for all n; rn.s/ is defined and both rn and kn � rn go to infinity.
By Lemma 26, the sequence hrn.s/ W n 2 Ni defines a unique element �.s/ in O. It is
easily checked that � intertwines sh and T .

Heuristically, the odometer transformation O parses the sequences s in S � K by
indicating where the words constituting s begin and end. Shifting s by one unit shifts this
parsing by one. We can understand elements of S as being an element of the odometer
with words in Wn filled in inductively.

The following remark is useful when studying the canonical factor of the inverse of
an odometer based system.

Remark 29. If � W L! O is the canonical factor map, then the function � W L! O is
also factor map from .L; sh�1/ to O�1 (i.e. O with the operation “�1”). If hWn W n 2 Ni
is the construction sequence for L, then hrev.Wn/ W n 2 Ni is a construction sequence for
rev.L/. If � W L�1 ! rev.L/ is the canonical isomorphism given by Proposition 16, then
Lemma 25 tells us that the projection of � to a map �� W O ! O is given by x 7! �x.

The following is proved in [12]:

Proposition 30. Let K be an odometer based system and suppose that � is a shift invari-
ant measure. Then � concentrates on S .

5.2. Circular systems

We now define circular systems. In [11] it is shown that the strongly uniform circular
systems give symbolic characterizations of certain smooth diffeomorphisms defined by
the Anosov–Katok method of conjugacies.

These systems are called circular because they are related to the behavior of rotations
by a convergent sequence of rationals ˛n D pn=qn. The rational rotation by p=q permutes
the 1=q intervals of the circle cyclically in a manner that the interval Œi=q; .i C 1/=q/
occurs in position14

ji Ddef p
�1i .mod q/:

The operation C which we are about to describe models the relationship between rotations
by p=q and p0=q0 when p0=q0 is very close to p=q.

Let k; l; p; q be positive natural numbers with p < q relatively prime. For 0 � i < q,
setting

ji �q .p/
�1i (5.1)

with ji < q, it is easy to verify that

q � ji D jq�i : (5.2)

For notational convenience later we set jq D q.

14We assume that p and q are relatively prime and the exponent �1 indicates the multiplicative
inverse modulo q.
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Let† be a non-empty set such that neither b nor e belongs to† and let w0; : : : ; wk�1
be words in † [ ¹b; eº. Define

C.w0; w1; w2; : : : ; wk�1/ D

q�1Y
iD0

k�1Y
jD0

.bq�jiwl�1j eji /: (5.3)

We note that the product symbol … is repeated concatenation as is the exponent. If w
is a word, then w0 is the empty string, w1 D w, w2 D ww and so forth. The formula in
equation (5.3) is a concatenation of q words, each of which is itself, a concatenation of k
words. The words inside the parenthesis in equation (5.3) start with q � ji letters b, fol-
lowed by concatenating l � 1many wordsw, followed by concatenating ji many letters e.
Written with parenthesis

C.w0; w1; w2; : : : ; wk�1/ D

q�1Y
iD0

 
k�1Y
jD0

..bq�ji /.wl�1j /.eji //

!
: (5.4)

Informally, the i -th term,
Qk�1
jD0.b

q�jiwl�1j eji / can be written as a block of q � ji letters
b followed by w0 concatenated with itself l � 1 times, followed by a block of ji many
letters e, followed by a block of q � ji letters b followed by w1 concatenated with itself
l � 1 times followed by a block of ji letters e and so forth, ending with a block of wk�1
repeated l � 1 times followed by e repeated ji many times

.bbb : : : /.w0w0 : : : /.ee : : : e/.bb : : : b/.w1w1 : : : w1/.ee : : : e/ : : :

: : : .bb : : : b/.wk�1wk�1wk�1 : : : wk�1/.ee : : : e/:

Remark 31. We make the following observations.
� Suppose that each wi has length q. Then the length of C.w0; w1; : : : ; wk�1/ is klq2.
� For each occurrence of an e in C.w0; : : : ; wk�1/ there is an occurrence of b to the left

of it.
� Suppose that n < m and b occurs at n and e occurs at m and neither occurrence is in

a wi . Then there must be some wi occurring between n and m.
� Words constructed with C are uniquely readable.

The C operation is used to build a collection of symbolic shifts. Circular systems will
be defined using a sequence of natural number parameters kn and ln that is fundamental
to the version of the Anosov–Katok construction presented in [18].

Fix an arbitrary sequence of positive natural numbers hkn W n 2 Ni. Let hln W n 2 Ni
be an increasing sequence of natural numbers such that

Numerical Requirement 1. One has l0 > 20 andX
k�n

1

lk
<

1

ln�1
:
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From the kn and ln we define sequences of numbers: hpn; qn; ˛n W n 2 Ni. Begin by
letting p0 D 0 and q0 D 1 and inductively set

qnC1 D knlnqn
2 (5.5)

(thus q1 D k0l0) and take
pnC1 D pnqnknln C 1: (5.6)

Then clearly pnC1 is relatively prime to qnC1.15

By setting ˛n D pn=qn, it is easy to check that there is an irrational ˛ such that the
sequence ˛n converges rapidly to ˛.

Definition 32. A sequence of integers hkn; ln W n 2 Ni such that kn � 2,
P
1=ln <1

will be called a circular coefficient sequence.

Let † be a non-empty finite or countable alphabet. Build collections of words Wn in
† [ ¹b; eº by induction as follows:
� Fix a circular coefficient sequence hkn; ln W n 2 Ni.
� Set W0 D † [ ¹b; eº.
� Having built Wn choose a set PnC1 � .Wn/

kn and form WnC1 by taking all words of
the form C.w0; w1; : : : ; wkn�1/ with .w0; : : : ; wkn�1/ 2 PnC1.16

We call the elements of PnC1 prewords. The C operator automatically creates uniquely
readable words, however we will need a stronger unique readability assumption for our
definition of circular systems.

Strong Unique Readability Assumption. Let n 2 N, and view Wn as a collection ƒn
of letters. Then each element of PnC1 can be viewed as a word with letters in ƒn. In the
alphabet ƒn, each w 2 PnC1 is uniquely readable.

Definition 33. A construction sequence hWn W n 2 Ni will be called circular if it is built
in this manner using the C -operators, a circular coefficient sequence and each PnC1
satisfies the strong unique readability assumption.

Definition 34. A symbolic shift K built from a circular construction sequence will be
called a circular system.

Notation. We will often write Kc and hWc
n W n 2 Ni to emphasize that we are building

circular systems and circular construction sequences. Circular words will often be denoted
wc for emphasis.

Definition 35. Suppose thatw D C.w0; w1; : : : ; wk�1/. Thenw consists of blocks ofwi
repeated l � 1 times, together with some letters b and e that are not in the words wi . The

15pn and qn being relatively prime for n � 1, allows us to define the integer ji in equation (5.1).
For q0 D 1, Z=q0Z has one element, Œ0�, so we set p0�1 D p0 D 0.

16Passing from Wn to WnC1, use C with parameters k D kn; l D ln; p D pn and q D qn and
take ji D .pn/�1i modulo qn. By Remark 31, the length of each of the words in WnC1 is qnC1.
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interior of w is the portion of w in the words wi . The remainder of w consists of blocks
of the form bq�ji and eji . We call this portion the boundary of w.

In a block of the form wl�1j the first and last occurrences of wj will be called the
boundary occurrences of the block wl�1j . The other occurrences will be the interior
occurrences.

While the boundary consists of sections of w made up of letters b and e, not all letters
b and e occurring in w are in the boundary, as they may be part of a power wl�1i .

The boundary of w constitutes a small portion of the word:

Lemma 36. Suppose thatw D C.w0; w1; : : : ; wk�1/ and eachwi has length q. Then the
proportion of the word w that belongs to its boundary is 1=l . Moreover, the proportion of
the word that is within q letters of boundary of w is 3=l .

Proof. The length of w is klq2. The boundary portions are q � k � q long. The number
of letters within q letters of the boundary is q � k � 3 � q.

Remark 37. Let v0; : : : ; vk�1 and w0; : : : ; wk�1 be sequences of words of length q. The
boundary portions of C.v0; : : : ; vk�1/ and C.w0; : : : ; wk�1/ occur in the same positions
and by Lemma 36 have proportion 1=l of the length. Since all of the words vi and wi
have the same length and the same multiplicity in the circular words, we see that

Nd.C.v0; : : : ; vk�1/;C.w0; : : : ; wk�1//

�

�
1 �

1

l

�
Nd.v0v1v2 : : : vk�1; w0w1 : : : wk�1/;

where v0v1v2 : : : vk�1 and w0w1 : : : wk�1 are the concatenations of the various words.17

For proofs of the next lemma see [11, Lemma 20] and [12].

Lemma 38. Let Kc be a circular system and let � be a shift-invariant measure on Kc .
Then the following are equivalent:

(1) � has no atoms.

(2) � concentrates on the collection of s 2 Kc such that ¹i W s.i/ … ¹b; eºº is unbounded
in both Z� and ZC.

(3) � concentrates on S .

If Kc is a uniform circular system (Example 10), then there is a unique invariant measure
concentrating on S .

Moreover, there are only two ergodic invariant measures with atoms: the one concen-
trating on the constant sequence Eb and the one concentrating on Ee.

Remark 39. If Kc is circular and s 2 Kc has a principal n-subword and m > n, then s
has a principal m-subword.

17Equality holds, a fact we will not use.
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5.3. An explicit description of rev.Kc/

The symbolic system Kc is built by an operation C applied to collections of words. The
system rev.Kc/ is built by a similar operation applied to the reverse collections of words.
In analogy to equation (5.3), we define C r as follows.

Definition 40. Suppose that w0; w1; : : : ; wk�1 are words in a language †. Given coeffi-
cients p; q; k; l with p and q relatively prime, let ji �q .p�1/i with 0 � ji < q. Define

C r .w0; w1; w2; : : : ; wk�1/ D

q�1Y
iD0

k�1Y
jD0

.eq�jiC1.wk�j�1
l�1/bjiC1/: (5.7)

From equation (5.3), a w 2 Wc
nC1 is of the form C.w0; : : : ; wkn�1/:

w D

q�1Y
iD0

k�1Y
jD0

.bq�jiwl�1j eji /; (5.8)

where q D qn; k D kn; l D ln and ji �qn .pn/
�1i with 0 � ji < qn. By examining this

formula, we see that

rev.w/ D
qY
iD1

kY
jD1

ejq�i rev.wk�j /l�1bq�jq�i :

Applying the identity in formula (5.2) and recalling that we take jq D q, so q � jq D 0,
we see that this can be rewritten as

rev.w/ D
qY
iD1

kY
jD1

.eq�ji rev.wk�j /l�1bji /: (5.9)

Thus

rev.w/ D C r .rev.w0/; rev.w1/; : : : ; rev.wk�1//: (5.10)

In particular, if hWc
n W n 2 Ni is a construction sequence of a circular system Kc , then

rev.Wc
nC1/ is the collection

¹C r .rev.w0/; rev.w1/; : : : ; rev.wkn�1// W w0w1 : : : wkn�1 2 Pnº

and hrev.Wc
n/ W n 2 Ni is a construction sequence for rev.Kc/.

5.4. Understanding the words

The words used to form circular transformations have quite specific combinatorial prop-
erties. Fix a sequence hWc

n W n 2 Ni defining a circular system. Each u 2 Wc
nC1 has three

subscales.
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� Subscale 0, the scale of the individual powers of w 2 Wc
n of the form wl�1. We call

each such occurrence of a wl�1 a 0-subsection.
� Subscale 1, the scale of each term in the product

Qk�1
jD0.b

q�jiwl�1j eji / that has the
form .bq�jiwl�1j eji /. We call these terms 1-subsections.
� Subscale 2, the scale of each term of

Qq�1
iD0.

Qk�1
jD0.b

q�jiwl�1j eji // that has the formQk�1
jD0.b

q�jiwl�1j eji /. We call these terms 2-subsections.

Summary. We have

Whole word:
Qq�1
iD0

Qk�1
jD0.b

q�jiwl�1j eji /,

2-subsection:
Qk�1
jD0.b

q�jiwl�1j eji /,

1-subsection: .bq�jiwl�1j eji /,

0-subsection: wl�1j .

For m � n, we will discuss “m-subwords” of a word w. These will be subwords that
lie in Wc

m, the m-th stage of the construction sequence. We will use “m-block” to mean
the location of the m-subword.

Lemma 41. Letw D C.w0; : : : ; wkn�1/ for some n and let q D qn, k D kn, l D ln. View
w W ¹0; 1; 2 : : : ; klq2 � 1º ! † [ ¹b; eº.

(1) If m0 and m1 are such that w.m0/ and w.m1/ are at the beginning of n-subwords in
the same 2-subsection, then m0 �q m1.

(2) If m0 and m1 are such that w.m0/ is the beginning of an n-subword occurring
in a 2-subsection

Qk�1
jD0.b

q�jiwl�1j eji / and w.m1/ is the beginning of an n-subword
occurring in the next 2-subsection

Qk�1
jD0.b

q�jiC1wl�1j ejiC1/, thenm1�m0 �q �j1.

Proof. To see the first point, the indices of the beginnings of n-subwords in the same
2-subsection differ by multiples of q coming from powers of a wj and intervals of w of
the form bq�ji eji .

To see the second point, let u and v be consecutive 2-subsections. In view of the first
point it suffices to consider the last n-subword of u and the first n-subword of v. These sit
on either side of an interval of the form eji bq�jiC1 . Since

ji C q � jiC1 �q .p/
�1i � p�1.i C 1/ �q �p

�1
�q �j1;

we see that
m0 �m1 D q C ji C q � jiC1 �q �j1:

Assume that u 2 Wc
nC1 and v 2 Wc

nC1 [ rev.Wc
nC1/ and v is shifted with respect

to u. On the overlap of u and v, the 2-subsections of u split each 2-subsection of v into
either one or two pieces. Since the 2-subsections all have the same length, the number
of pieces in the splitting and the size of each piece is constant across the overlap except
perhaps at the two ends of the overlap. If u splits a 2-subsection of v into two pieces, then
we call the leftmost piece of the pair the even piece and the rightmost the odd piece.
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If v is shifted only slightly, it can happen that either the even piece or the odd piece
does not contain even one entire 1-subsection. In this case we will say that the split is
trivial on the left or trivial on the right.

Lemma 42. Assume that u 2 Wc
nC1 and v 2 Wc

nC1 [ rev.Wc
nC1/ and v is shifted with

respect to u. Suppose that the 2-subsections of u divide the 2-subsections of v into two
non-trivial pieces. Then:

(1) The boundary portion of u occurring between each consecutive pair of 2-subsections
of u completely overlaps at most one n-subword of v.

(2) There are two numbers s and t such that the positions of the 0-subsections of v in
even pieces are shifted relative to the 0-subsections of u by s and the positions of the
0-subsections of v in odd pieces are shifted relative to the 0-subsections of u by t .
Moreover, s �q t � j1.

Proof. This follows easily from Lemma 41.

In the case where the split is trivial Lemma 42 holds with just one coefficient, s or t .
A special case of Lemma 42 that we will use is:

Lemma 43. Assume that u 2 Wc
nC1 and v 2 Wc

nC1 [ rev.Wc
nC1/ and v is shifted with

respect to u. Suppose that the 2-subsections of u divide the 2-subsections of v into two
pieces and that for some occurrence of a n-subword in an even (resp. odd) piece is lined
up with an occurrence of some n-subword in u. Then every occurrence of a n-subword in
an even (resp. odd) piece of v is either

(a) lined up with some n-subword of u or

(b) lined up with a section of a 2-subsection that has the form eji bq�ji .

Moreover, no n-subword in an odd (resp. even) piece of v is lined up with a n-subword
in u.

5.5. Full measure sets for circular systems

Fix a sequence h"n W n 2 Ni such that the following hold:

Numerical Requirement 2. h"n W n 2 Ni is a decreasing sequence of numbers in Œ0; 1/
such that 6

P
n>N "n < "N .

From Lemma 36, the boundary of a word wn 2 Wn has proportion 1=ln. Hence
Numerical Requirement 1 implies that for all choices hwn W n 2 Ni with wn 2 Wn, the
sum of the proportion of the boundary sections of the words wn is finite.

Definition 44. Let:
(1) En be the collection of s 2 S such that either s does not have a principal n-block or

s.0/ is in the boundary of the principal n-block of s,
(2) E0n D ¹s W s.0/ is in the first or last "nln copies of w in a power of the form wln�1,

where w 2 Wc
nº,
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(3) E1n D ¹s W s.0/ is in the first or last "nkn 1-subsections of the 2-subsection in which
s.0/ is locatedº,

(4) E2n D ¹s W s.0/ is in the first or last "nqn 2-subsections of its principal nC 1-blockº.

Lemma 45. Assume Numerical Requirements 1 and 2. Let � be a shift-invariant measure
on S � Kc , where Kc is a circular system. Then:

(1) One has X
n

�.En/ <1:

(2) For i D 0; 1; 2, X
n

�.Ein/ <1:

Proof. By the Ergodic Theorem we have �.En/ < 1=ln, and for i D 0; 1; 2; �.Ein/ < "n.
The result then follows by the summability of 1=ln and 1="n.

In particular, we see:

Corollary 46. For �-almost all s there is an N D N.s/ such that for all n > N ,

(1) s.0/ is in the interior of its principal n-block,

(2) for i D 0; 1; 2, s … Ein.

In particular, for almost all s and all large enough n,

(3) if s � Œ�rn.s/;�rn.s/C qn/ D w, then

s � Œ�rn.s/ � qn;�rn.s// D s � Œ�rn.s/C qn;�rn C 2qn/ D w;

(4) s.0/ is not in a string of the form w
ln�1
0 or wln�1

kn�1
.

Proof. Apply the Borel–Cantelli lemma using the previous lemma.

The elements s of S such that some shift shk.s/ fails one of conclusions (1)–(4)
of Corollary 46 form a measure zero set. Consequently, we work on those elements of
S whose whole orbit satisfies the conclusions of Corollary 46. Note however that for
t D shk.s/, the N.t/ in Corollary 46, depends on k.

Definition 47. We will call n mature for s (or say that s is mature at stage n) iff n is so
large that s … Em [

S
0�i�2E

i
m for all m � n.

If s is mature at stage n, then s is mature at stage nC 1. Moreover, if shk.s/ has the
same principal n-block as s does, then shk.s/ is mature if and only if s.k/ is not in the
boundary portion of the principal n-block.

Numerical Requirement 3. The following hold:

"nkn !1;

"nln !1;

"nqn !1:
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Definition 48. We will use the symbol @n in multiple equivalent ways. If s 2 S or s 2Wc
m,

define @n D @n.s/ � Z to be the collection of i 2 Z such that shi .s/.0/ is in the boundary
portion of an n-subword of s. In the spatial context define s 2 @n � Kc by putting s 2 @n
if s.0/ is the boundary of an n-subword of s.

For s 2 S ,
@n.s/ �

[
¹Œl; l C qn/ W s � Œl; l C qn/ 2 Wc

nº:

The relationship between @n.s/ � Z and @n � Kc is that for s 2 Kc ,

i 2 @n.s/ � Z iff shi .s/ 2 @n � Kc :

The next lemma says that if s is mature at stage n, then we can detect locally those i
for which the i -shifts of s are mature.

Lemma 49. Suppose that s 2 S , n is mature for s and n < m.

(1) Assume the first three numerical requirements. Suppose that i 2 Œ�rm.s/; qm�rm.s//.
Then n is mature for shi .s/ iff

(a) i …
S
n�k�m @k.s/ and

(b) shi .s/ …
S
n�k<m.E

0
k
[E1

k
[E2

k
/.

(2) For all but at most .
P
n<k�m 1=lk/C .

P
n�k<m 6"k/ proportion of the indices

i 2 Œ�rm.s/; qm � rm.s//, the point shi .s/ is mature for n.

Hence by Numerical Requirement 2, the proportion of i 2 Œ�rm.s/; qm� rm.s// for which
the i -shift of s is not mature for n is less than 1=ln�1 C "n�1.

Proof. The first item is immediate from the definition of mature. For the second item, first
note that[
n�k�m

@k.s/ [
[

n�k<m

.E0k [E
1
k [E

2
k/ D @m.s/ [

[
n�k<m

.@k.s/ [E
0
k [E

1
k [E

2
k/:

Let I D Œ�rm.s/; qm � rm.s//. Since @m has proportion 1=lm of I , it suffices to show that
for a fixed k 2 Œn;m/, the proportion of i 2 I such that shi .s/ 2 @k [E0k [E

1
k
[E2

k
is

less than 1=lk C 6�k .
There are at most qm=qk k-words appearing in s � I . There are at most 1=lk many i

in the boundary of each of these k-words. So total number of i in @k.s/ \ I is less than
or equal to .qm

qk
/.qk=lk/, hence has proportion less than or equal to 1=lk of I .

Similarly for j D 0; 1; 2 the number of i with shi .s/ 2 Ej
k

and i is in the block cor-
responding to a k-subword of s � I is at most .qm=qk/2"kqk , and hence those i have
proportion bounded by �

.qm=qk/2"kqk

qm

�
D 2"k

in I . It follows that the collection of i 2 I such that shi .s/ 2 E0
k
[E1

k
[E2

k
is bounded

by 3 � 2"k .
Numerical Requirements 1 and 2 imply that the sum in item (2) of the lemma is

bounded by 1=ln�1 C "n�1.
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A very similar statement is the following:

Lemma 50. Suppose that s 2 S and s has a principal n-block. Then n is mature provided
that s …

S
n�mE

0
m [E

1
m [E

2
m. In particular, if n is mature for s and s is not in a bound-

ary portion of its principal n � 1-block or in E0n�1 [E
1
n�1 [E

2
n�1, then n � 1 is mature

for s.

5.6. The circle factor

Let hkn; ln W n 2 Ni be a circular coefficient sequence and let hpn; qn W n 2 Ni be the
associated sequence defined by formulas 5.5 and 5.6. Let ˛n D pn=qn and ˛ D lim˛n.

For a natural number q � 1, let Iq be the partition of the interval Œ0; 1/ with atoms
hŒi=q; .i C 1/=q/ W 0 � i < qi, and refer to Œi=q; .i C 1/=q/ as I qi .18 Since pn and qn are
relatively prime, the rotation R˛n enumerates the partition Iqn starting with I qn0 . Thus
Iqn has two natural orderings – the usual geometric ordering and the dynamical ordering
given by the order that R˛n enumerates Iqn . Since ji D p�1i (mod q), I qi is the ji -th
interval in the dynamical ordering.

Definition 51. For x 2 Œ0; 1/ we will write Dn.x/ D j if x belongs to the j -th interval
in the dynamical ordering of Iqn . Equivalently, Dn.x/ D j if x 2 I qnjpn .

Informal description. Following [11], for each stage n, we have a periodic approximation
�n to Kc consisting of towers T of height qn whose levels correspond to subintervals
of Œ0; 1/. This approximation refines the periodic permutation of Iqn determined by R˛n .
If s is mature, then s lies is the r thn .s/ level of Iqn in the dynamical ordering. Passing
from �n to �nC1 the mature points remain in the same levels of the n-towers as they are
spread into the nC 1-towers in �nC1. The towers of �nC1 can be viewed as cut-and-stack
constructions–filling in boundary points between cut n-towers. The fillers are taken from
portions of the n-towers.

With this view each mature point remains in the same interval of Iqn when viewed
in �nC1. Moreover, if s 2 J 2 IqnC1 and J � I 2 Iqn , then R˛nC1J � R˛nI .

Thus the nC 1-tower for R˛nC1 has multiple contiguous sequences of levels of length
qn that are sublevels of the n-tower and the action of R˛n and R˛nC1 agree on these
levels.

Definition 52. Let †0 D ¹�º. We define a circular construction sequence such that each
Wc
n has a unique element as follows:

(1) Wc
0 D ¹�º and

(2) if Wc
n D ¹wnº, then Wc

nC1 D ¹C.wn; wn; : : : ; wn/º.
Let K be the resulting circular system.

It is easy to check that K has unique non-atomic measure since the unique n-word,
wn, occurs exactly kn.ln � 1/qn many times in wnC1. This measure is ergodic.

18If i > q, then I qi refers to I q
i 0

, where i 0 < q and i 0 � i mod q.
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Let Kc be an arbitrary circular system with coefficients hkn; ln W n 2 Ni. Then Kc has
a canonical factor isomorphic to K . This canonical factor plays a role for circular systems
analogous to the role odometer transformations play for odometer based systems.

To see K is a factor of Kc , define the following function:

�.x/.i/ D

´
x.i/ if x.i/ 2 ¹b; eº;
� otherwise:

(5.11)

Notation. Write w˛n for the unique element of Wc
n in the construction sequence for K .

Then w˛n lies in the principal n-block of the projection to K of any s 2 Kc for which n
is mature.

Theorem 53 ([11, Theorem 43]). Let � be the unique non-atomic shift-invariant measure
on K . Then

.K;B; �; sh/ Š .S1;D ; �;R˛/;

where R˛ is the rotation of the unit circle by ˛ � 2� radians and B;D are the � -algebras
of measurable sets.

The isomorphism �0 WK ! S1 asserted to exist in Theorem 53 is constructed as
a limit of functions �n, where �n is defined by setting

�n.s/ D
i

qn
(5.12)

iff I qni is the rn.s/-th interval in the dynamical ordering.19 Equivalently, since the rn-th
interval in the geometric ordering is I qn

pnrn.s/
,

i � pnrn.s/ mod qn: (5.13)

The following follows from [11, Proposition 44].

Proposition 54. Suppose that n is mature for s. Then

rn.s/ D Dn.�0.s//:

The proof of Theorem 2 requires understanding the correspondence between the geo-
metric construction and its symbolic representation. The words in Wn correspond to
cut-and-stack constructions, passing from stage n to nC 1 via the C operator corresponds
to basing the cut and stack construction on R˛nC1 which agrees with the R˛n for most
consecutive intervals of length qn. A first step in understanding this correspondence is the
next remark and lemma.

Remark 55. It will be helpful to understand ��10 explicitly. To each point x in the range
of �0, s D ��10 .x/ belongs to S . By Lemma 13, to determine s it suffices to know

19Thus rn and �n both have the same subset of S as their domain and contain the same informa-
tion. They map to different places rn W S ! N, whereas �n W S ! Œ0; 1/ and is the left endpoint of
the rn-th interval in the dynamical ordering.
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hrn.s/ W n � N i for some N as well as the sequence hwn W n � N i of principal subwords
of s. Since we are working with K , the only choice for wn is w˛n . For mature n, Proposi-
tion 54 tells us that rn.s/ D Dn.x/. Thus s is the unique element of S with the property
that hrn.s/ W n 2 Ni agrees with hDn.x/ W n 2 Ni for all large n.

We isolate the following fact for later use:

Lemma 56. Suppose that �0.s/ D x and n < m are mature for s. Then if I and J are
the Dn.x/-th and Dm.x/-th intervals in the dynamical orderings of Iqn and Iqm , then
J � I .

The natural way of representing the complex unit circle as an abelian group is multi-
plicatively: the rotation by 2�˛ radians is multiplication by e2�i˛ . It is often convenient
to identify the unit circle with Œ0; 1/. In doing so, multiplication by e2�i˛ corresponds to
“mod one” addition and the complex conjugate Nz corresponds to �z.

The following result is standard:

Proposition 57. Let ˛ 2 Œ0; 1/ be irrational. Suppose that T W S1 ! S1 is an invertible
measure preserving transformation that commutes with R˛ . Then for some ˇ, T D Rˇ

almost everywhere. Identifying S1 with Œ0; 1/ there is a ˇ such that for almost all x 2 S1,

T .x/ D x C ˇ mod 1: (5.14)

It follows that if T is an isomorphism between R˛ and R�1˛ , then T .x/ D �x C ˇ mod 1.

Definition 58. Using the identification of S1 with Œ0; 1/ we view �0 WK ! Œ0; 1/. Given
a rotation Rˇ , we get a map �ˇ WK !K such that

�ˇ .s/ D �
�1
0 Rˇ�0.s/:

We will occasionally abuse notation and write s C ˇ for �ˇ .s/.

5.7. Points of view

Circular systems can be viewed from multiple perspectives: geometrically, as limits of
periodic processes20 and as symbolic shifts.

The n-th periodic process consists of a collection of sn periodic towers with each tower
having one level designated as a base. To pass from �n to �nC1 the bulk of the �n-towers
are repeated qn.kn/.ln � 1/ many times in blocks of length ln � 1 in each �nC1-tower. In
between these blocks there are filler levels.

The words w 2 Wc
n are in one-to-one correspondence with the towers in �n. The

“C” operation encodes the transition from �n to �nC1. The towers in �nC1 correspond to
words C.w0; : : : ; wkn�1/. Each �n-tower Tj has a corresponding wordwj 2 Wn. Repeat-
ing stacking of Tj corresponds to the powers of wj in C.w0; : : : ; wkn�1/. The levels of
a tower in �nC1 are either contained in levels of �n-tower or are filler blocks labelled “b”

20See [11, Section 5] for the formal definition.
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or “e.” The repetitions of each wi in 0-subsections correspond to stacking parts of the
levels of the corresponding tower in �n periodically ln � 1 times.

The circle factor K˛ captures exactly the structure of the levels of the towers and
how they interact as one moves from �n to �nC1. This is the idea behind for the con-
struction of the isomorphism between .K˛; �; sh/ and .S1; �;R˛/ and made explicit in
Proposition 54.

Given an s 2 Kc that is mature for n � m we can view its restriction to its principal
m-subword as a particular tower in �m. Since s is mature for m, the principal subword is
repeated many times on either side of s.0/. In particular, we see:

Remark 59. Suppose that n is mature for s 2 S � Kc , n � m and 0 � d < qm. Then

rn.shd .s// �qn d C rn.s/: (5.15)

The circle factor K˛ of Kc punctuates the elements of S � Kc . Since there is only one
word in each element of the construction sequence for K˛ , we can view the levels of its
tower as being of the form Œi=qn; .i C 1/=qn/ in the dynamical ordering. Then the cyclic
permutation of these levels given by Rpn=qn . This permutation preserves the dynamical
ordering and, for s that are mature at stage n, reflect the behavior of rn.s/.

5.8. The natural map

A specific isomorphism \ W .K; sh/! .rev.K/; sh/ will serve as a benchmark for under-
standing of potential maps � W Kc ! rev.Kc/. Viewing R˛ as a rotation of the unit circle
by ˛ � 2� radians one can view the transformation \ as a symbolic analogue of complex
conjugation z 7! Nz on the unit circle, which is an isomorphism between R˛ and R�˛ .
Indeed, by Theorem 53, K Š R˛ and so rev.K/ Š R�˛ . Copying \ over to a map on
the unit circle will give an isomorphism � between R˛ and R�˛ . If we view z and ˛ as
elements of the unit interval and the rotation as addition modulo 1, Proposition 57 says
that such an isomorphism must be of the form

�.z/ D �z C ˇ

for some ˇ. It follows immediately from this characterization that \ is an involution.21

The map \ is defined as the limit of a sequence of codes hƒn W n 2 Ni that converge
to an isomorphism from K to rev.K/ (see [12] for more details). Theƒn will be shifting
and reversing words. The amount of shift is determined by the Anosov–Katok coefficients
pn; qn defined in equations (5.6) and (5.5).

Let A0 D 0 and inductively

AnC1 D An � .pn/
�1: (5.16)

It is easy to check that
jAnC1j < 2qn: (5.17)

21The particular ˇ given by \ is determined by the specific variation of the definition one uses –
indeed any central value can occur as a ˇ. (See Section 8 for the definition and use of central
values.)



Measure preserving diffeomorphisms of the torus are unclassifiable 33

Define a stationary codeƒn with domain S that approximates elements of rev.K/ by
defining

ƒn.s/ D

´
shAnC2rn.s/�.qn�1/.rev.s//.0/ if rn.s/ is defined,
b otherwise.

(5.18)

The following result appears in [12]:

Theorem 60. The sequence of stationary codes hƒn W n 2 Ni converges to a shift invari-
ant function \ WK ! .¹�º [ ¹b; eº/Z that induces an isomorphism \ from K to rev.K/.

Remark 78 of [12] implies that the convergence is prompt: for a typical s and all large
enough n, \.s/ agrees with Nƒn.s/ on the principal n-block of s.

Caveat. Since .Kc/�1 D .Kc ; sh�1/ is trivially isomorphic to .rev.Kc/; sh/, we often do
not distinguish them. However, as in Definition 63 of the synchronous and anti-synchron-
ous joinings, the notational distinction becomes important.

When viewing .Kc/�1 and Kc with the backwards shift and considering the action on
the circle factor instead of using \, one must use

rev. � / ı \ (5.19)

instead of simply \.

5.9. Categories and the functor F

Fix a circular coefficient sequence hkn; ln W n 2Ni. Let† be a language and hWn W n 2Ni
a construction sequence for an odometer based system with coefficients hkn W n 2Ni.
Then for each n the operation Cn is well-defined. We define a construction sequence
hWc

n W n 2 Ni and bijections cn W Wn ! Wc
n by induction as follows:

(1) Let Wc
0 D † and c0 be the identity map.

(2) Suppose that Wn;W
c
n and cn have already been defined.

Wc
nC1 D ¹Cn.cn.w0/; cn.w1/; : : : ; cn.wkn�1// Wwi 2Wn; w0w1 : : :wkn�1 2WnC1º:

(Words in WnC1 are concatenations of kn words in Wn and so can be written in the
required form: as w0w1 : : : wkn�1 with wj 2 Wn.) Define the map cnC1 by setting

cnC1.w0w1 : : : wkn�1/ D Cn.cn.w0/; cn.w1/; : : : ; cn.wkn�1//:

Note in case 2 the prewords are

PnC1 D ¹.cn.w0/; cn.w1/; : : : ; cn.wkn�1// W w0w1 : : : wkn�1 2 WnC1º:

Remark 61. Some useful facts are:
� It follows from Lemma 36 and Numerical Requirement 1 that if hWn W n 2 Ni is an

odometer based construction sequence, then hWc
n W n 2 Ni is a construction sequence;

i.e. the spacer proportions are summable.
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� If each w 2 Wn occurs exactly the same number of times in every element of WnC1,
then hWc

n W n 2 Ni is strongly uniform.
� Odometer words in Wn have lengthKn. The length of the circular words in Wc

n is qn.

Definition 62. Define a map F from the set of odometer based subshifts to circular sub-
shifts as follows. Suppose that K is an odometer based shift built from a construction
sequence hWn W n 2 Ni. Define

F .K/ D Kc ;

where Kc has construction sequence hWc
n W n 2 Ni.

The map F is one to one by the unique readability of words in W . Suppose that Kc

is a circular system with coefficients hkn; ln W n 2 Ni. We can recursively build functions
cn
�1 from words in † [ ¹b; eº to words in †. The result is a odometer based system
hWn W n 2 Ni with coefficients hkn W n 2 Ni. If K is the resulting odometer based system
then F .K/ D Kc . Thus F is a bijection.

If K is an odometer based system, denote the odometer base by K� and let � WK!K�

be the canonical factor map. If Kc is a circular system, let .Kc/� be the rotation factor K

and let � W Kc !K be the canonical factor map. For both odometer based and circular
systems the underlying canonical factors serve as timing mechanisms. This motivates the
following.

Definition 63. Synchronous and anti-synchronous joinings are defined as follows:22

(1) Let K and L be odometer based systems with the same coefficient sequence, and
� a joining between K and L˙1. Then � is synchronous if � joins K and L and
the projection of � to a joining on K� � L� is the graph joining determined by the
identity map (the diagonal joining of the odometer factors); � is anti-synchronous if
� is a joining of K with L�1 and its projection to K� � .L�1/� is the graph joining
determined by the map x 7! �x.

(2) Let Kc and Lc be circular systems with the same coefficient sequence and � a joining
between Kc and .Lc/˙1. Then � is synchronous if � joins Kc and Lc and the projec-
tion to a joining of .Kc/� with .Lc/� is the graph joining determined by the identity
map of K with L, the underlying rotations; � is anti-synchronous if it is a join-
ing of Kc with .Lc/�1 and projects to the graph joining determined by rev. � / ı \
on K �L�1.

The categories. Let OB be the category whose objects are ergodic odometer based sys-
tems with coefficients hkn W n 2 Ni. The morphisms between objects K and L will be
synchronous graph joinings of K and L or anti-synchronous graph joinings of K and L�1.
We call this the category of odometer based systems.

22We use L for the notation for the rotation factor of a circular system Lc . In this context, when
taking inverses of symbolic systems we keep the same orientation for the symbolic system and
use sh�1.
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Let CB be the category whose objects consists of all ergodic circular systems with
coefficients hkn; ln W n 2 Ni. The morphisms between objects Kc and Lc will be synchro-
nous graph joinings of Kc and Lc or anti-synchronous graph joinings of Kc and .Lc/�1.
We call this the category of circular systems.

The main theorem of [12] is the following:

Theorem 64. For a fixed circular coefficient sequence hkn; ln W n 2 Ni the categories
OB and CB are isomorphic by a function F that takes synchronous joinings to syn-
chronous joinings, anti-synchronous joinings to anti-synchronous joinings, isomorphisms
to isomorphisms and weakly mixing extensions to weakly mixing extensions.23

It is also easy to verify that the map hWn W n 2 Ni 7! hWc
n W n 2 Ni takes uniform

construction sequences to uniform construction sequences and strongly uniform construc-
tion sequences to strongly uniform construction sequences.

Remark 65. Were we to be completely precise we would take objects in OB to be pre-
sentations of odometer based systems by construction sequences hWn W n 2 Ni without
spacers and the objects in CB to be presentations by circular construction sequences. This
subtlety does not cause problems in the sequel so we ignore it.

5.10. Propagating equivalence relations and actions

In [8], the number M.s/ is the first stage in the tree for which �m has length s. It is the
first stage that the equivalence relation Qm

s is defined.
The main result of [8] is the existence of a continuous function from the space of trees

to odometer based transformations that reduces ill-founded trees to ergodic transforma-
tions isomorphic to their inverses. Components of the construction include equivalence
relations hQn

s WM.s/ � n; s 2 Ni and groups hGns WM.s/ � n; s 2 Ni. Some of their
properties are:
(1) M is a monotone, strictly increasing function from N to N.
(2) Q0

0 is the trivial equivalence relation with one equivalence class on W0 D †.
(3) Qn

s is an equivalence relation on Wn.
(4) For integers n �M.s/C 1, viewing elements of Wn as concatenations of words

in WM.s/, Qn
s is the product equivalence relation of Q

M.s/
s . Hence we can view

Wn=Q
n
s as sequences of elements of WM.s/=Q

M.s/
s and similarly for rev.Wn=Q

n
s /.

These sequences have length Kn and are made of Kn=KM.s/ many constant blocks
of length KM.s/.

(5) The groups hGns WM.s/ � n; s 2 Ni are direct sums of copies of Z2 that have a des-
ignated canonical collection of free generators.24 Each GnC1s D Gns ˚H , where H
is either Z=2Z or H is trivial.

23Glasner showed that it takes compact extensions to compact extensions.
24These groups are described in detail in Section 10.2.
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(6) Each group Gns acts freely on Wn=Q
n
s [ rev.Wn=Q

n
s / in a manner that even parity

group elements preserve the sets Wn=Q
n
s and rev.Wn=Q

n
s / and the odd parity group

elements send elements of Wn=Q
n
s to rev.Wn=Q

n
s /.

(7) The action ofGns � G
nC1
s on WnC1 [ rev.WnC1/ is propagated from Wn [ rev.Wn/

by the skew-diagonal action: if g 2 Gns is a canonical generator and if the word
w 2 WnC1 [ rev.WnC1/ is of the form w0w1 : : : wkn�1, then

gw D gwkn�1 : : : gw1gw0:

We define corresponding equivalence relations and group actions on hWc
n W n 2 Ni.

They will be used in Section 8.2.1 to state the timing assumptions and in Section 10.2
which gives the construction specifications from [8].25

An inductive understanding of .Qn
s /
s and the Gns -actions is quite useful.

Inductive definition of .Qn
s /
c . Define

� .Qn
0/
c to have exactly one class in each Wc

n ,
� for w0; w1 2 WM.s/ put .cM.s/.w0/; cM.s/.w1// 2 .Q

M.s/
s /c iff .w0; w1/ 2 Q

M.s/
s .

Suppose we are given .Qn
s /
c on Wc

n . Define an equivalence relation Q on Wc
nC1 by

setting C.w0; : : : ; wkn�1/ equivalent to C.w00; : : : ; w
0
kn�1

/ if and only if for all i; wi is
.Qn

s /
c-equivalent to w0i .

Rather than a full definition of the action of GnC1s on

Wc
nC1=.Q

nC1
s /c [ rev.Wc

nC1=.Q
nC1
s //c ;

we describe the how the action of Gns propagates: via the circular skew diagonal action:
Identify rev.Wc

nC1=.Q
nC1
s /c/ with the collection of sequences of the form

C r .rev.Œw0�.Qns /c /; rev.Œw1�.Qns /c /; : : : ; rev.Œwkn�1�.Qns /c //

as w0w1 : : : wkn�1 ranges over the elements of Pn.
To define the skew-diagonal action of Gns on classes of circular words, it suffices to

specify it on the canonical generators, This is done by setting26

gC.Œw0�; Œw1� : : : Œwk�1�/ Ddef C r .Œgw0�; Œgw1�; : : : ; Œgwk�1�/

whenever g is a canonical generator of Gns . We observe that the skew-diagonal action
has the property that the canonical generators take elements of Wc

nC1=.Q
nC1
s /c to ele-

ments of rev.Wc
nC1=.Q

nC1
s /c/. It follows that the even parity elements ofG leave the sets

Wc
nC1=.Q

nC1
s /c and rev.Wc

nC1=.Q
nC1
s /c/ invariant and odd parity elements of G take

Wc
nC1=.Q

nC1
s /c to elements of rev.Wc

nC1=.Q
nC1
s /c/ and vice versa.

As in [8] the equivalence relations hQn
s W n 2 Ni define factors Ks of K and similarly

h.Qn
s /
c W n 2 Ni define factors Ks of Kc The equivariant definitions given here imply that

F takes each Ks to Kc
s and respects the actions of the Gns .

25If Q is an equivalence relation on Wc define rev.Q/ by .rev.w0/; rev.w1// 2 rev.Q/ if and
only if .w0; w1/ 2 Q. In abuse of notation we will not distinguish between .Qns /

c as a relation
on Wc

n , .Qns /
c [ rev..Qns /

c/ as a relation on Wc
n [ rev.Wc

n/ or Wc
n=.Q

n
s /
c [ rev.Wc

n=.Q
n
s /
c/.

26We use Œwi � to denote Œwi �=.Qns /
c .
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6. Understanding rotations

Let K be a rotation factor of a circular system with coefficient sequence hkn; ln W n 2 Ni.
This section analyzes how automorphisms of K affect the parsing of elements of K .

Let .Kc ; �c/ and .Lc ; �c/ be two circular systems that share a given circular coeffi-
cient sequence and let ˛ D lim˛n. Any isomorphism between Kc and .Lc/˙1 induces
a unitary isomorphism U� from L2..Lc/˙1/ to L2.Kc/, and this isomorphism sends
eigenfunctions for n˛ to eigenfunctions for n˛. Thus every isomorphism has to send
the canonical factor K˛ of Kc to the canonical factor K˙1˛ of .Lc/˙1. Explicitly: sup-
pose that � W Kc ! .Lc/˙1 is an isomorphism. Then U� W L2..Lc/˙1/! L2.Kc/, and
U� takes the space generated by eigenfunctions of Ush in L2..Lc/˙1/ with eigenvalues
¹˛n W n 2 Zº to the space generated by corresponding eigenfunctions in L2.Kc/. Conse-
quently, there is a measure preserving transformation �� making the following diagram
commute:

Kc .Lc/˙1

K˛ K˙1˛

-
�

?

�

?

�

-�
�

(6.1)

By Theorem 53, K˛ is conjugate to the rotation R˛ of the unit circle by a map �0.
Hence (using additive notation) �� must be conjugate to a transformation defined on
the unit interval of the form x 7! z C ˇ for some ˇ 2 Œ0; 1/, where z is either x or �x,
depending on whether �� maps to K˛ or K�1˛ . Since rev. � / ı \ WK˛ !K�1˛ is an iso-
morphism, if � maps to .Lc/�1, rev. � / ı \.x/ can serve as an alternative to the benchmark
to the map x 7! �x. Explicitly: the ˇ associated to � is the number making

��.s/ D rev. � / ı \.�ˇ .s//I

equivalently, rev. � / ı \�1 ı ��.s/ D �ˇ .s/.27

Summarizing,
(A) If � W Kc ! Lc is an isomorphism, then viewed as a map from Œ0; 1/ to Œ0; 1/, there

is a unique ˇ 2 Œ0; 1/ such that for almost every x,

��.s/ D �ˇ .s/:

(B) If � W Kc ! .Lc/�1, then there is a unique ˇ such that for almost every s,

��.x/ D rev. � / ı \.�ˇ .s//:

Definition 66. In cases (A) and (B), we call the map �ˇ the rotation associated with �.

We record the following facts.

27The reader is referred to the caveat at the end of Section 5.8, for the reason rev. � / ı \ is used.
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Lemma 67. Let Kc be a circular system. Then

(1) The set of ˇ associated with automorphisms of Kc form a group.

(2) If � WKc! .Kc/�1 and  WKc!Kc are isomorphisms, where �� D rev. � /ı \ı�ˇ
and  � D � , then .� ı  /� D rev. � / ı \ ı �ı , where ı D ˇ C  .

Proof. It is easy to check that
� If �; are isomorphisms from Kc to Kc with �� D �ˇ and  � D � , then .� ı  /

is also an isomorphism from Kc to Kc and .� ı  /� D �ı , where ı D ˇ C  .
� If � is an isomorphism from Kc to Kc , and �� D �ˇ , then .��1/� D ��ˇ .

The second assertion is similar.

Given a rotation Rˇ , set
S.ˇ/ D

\
n2Z

�nˇ .S/:

This can be described independently of �ˇ as

¹s 2 S W for all n 2 Z; �0.s/ 2 .�0ŒS�C nˇ/º:

It is clear that �.S.ˇ// D 1.
Define a sequence of functions hdn W n 2 Ni. Each

dn W S.ˇ/! ¹0; 1; 2; : : : ; qn � 1º:

For s 2 S.ˇ/ and t D �ˇ .s/ we have t 2 S.ˇ/ and �0.t/ D Rˇ�0.s/. All large enough
n are mature for t , and t is determined by a tail segment of hrn.t/ W n 2 Ni.

Definition 68. If n is mature for both s and t D �ˇ .s/, let

dn.s/ �qn rn.t/ � rn.s/; (6.2)

and dn.s/ D 0 otherwise. (We could have made a more general definition dn.s; t/ for
arbitrary t and take t D �ˇ .s/ when we want to use dn.s/.)

Explicitly: from the definition of rn, �0.s/C ˇ belongs to the .rn.s/C dn.s//-th
interval in the dynamical ordering of Iqn .28

Fix an n and suppose that ˇ is not a multiple of 1=qn. Then the interval Œˇ; ˇ C 1=qn/
intersects two geometrically consecutive intervals of the form Œi=qn; .i C 1/=qn/.

Lemma 69. Suppose that the integer n is mature for s and �ˇ .s/. Then dn.s/ belongs
to ¹Dn.ˇ/;Dn.ˇ C 1=qn/º. Thus there are only two possible values for dn.s/ and these
values differ by j1.

28More accurately: if j < qn and j �qn rn.s/C d
n.s/, then �0.s/C ˇ belongs to the j -th

interval in the dynamical ordering of Iqn . Recall the relationship between symbolic shifts and the
towers of intervals in the dynamical ordering given in Section 5.7.
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Fig. 2. Left lane and Right lane of the qn-tower.

Proof. Suppose that ˇ 2 Œi=qn; .i C 1/=qn/ and  D .i C 1/=qn � ˇ. ThenDn.ˇ/ D ji .
We claim that, relative to those s for which n is mature for both s and �ˇ .s/, dn is constant
on ��10 .

S
j<qn

Œj=qn; .j C 1/=qn � // and ��10 .
S
j<qn

Œ.j C 1/=qn � ; .j C 1/=qn//,
where it takes values Dn.ˇ/ and Dn.ˇ C 1=qn/, respectively (see Figure 2).

We show that dn is constant on the first set. Suppose that n is mature for s; �ˇ .s/
and �0.s/ D x belongs to the interval Œ0; /. Then x C ˇ 2 Œi=qn; .i C 1/=qn/. Hence
rn.�ˇ .s// D ji D Dn.ˇ/. Since rn.s/ D 0, we know that dn.s/ D ji . Now suppose that
s� 2 ��10 .

S
j<qn

Œj=qn; .j C 1/=qn � // and that n is mature for s� and �ˇ .s
�/. Let

k D rn.s
�/. Then

�0.t/ D x C
kpn

qn

for some x 2 Œ0; /. So �0.s� C ˇ/ 2 Œ.i C 1C kpn/=q/ � ; .i C 1C kpn/=q/. Hence

rn.�ˇ .s
�// D .pn/

�1.i C kpn/ D ji C k:

Thus
dn.s�/ D rn.�ˇ .s

�// � rn.s
�/ D ji C k � k D ji :

If s� 2 ��10 .
S
j<qn

Œ.j C 1/=qn � ; .j C 1/=qn//, the proof is parallel.
Finally, ˇ and ˇ C 1=qn fall into consecutive intervals of Iqn in the geometric order-

ing, and hence Dn.ˇ C 1=qn/ D Dn.ˇ/C j1.

Define dnL and dnR by setting

dnL D Dn.ˇ/ and dnR D Dn

�
ˇ C

1

qn

�
:

Let
Ln D ¹s W s is mature at stage n and rn.s/C dnL �qn rn.�ˇ .s//º

and
Rn D ¹s W s is mature at stage n and rn.s/C dnR �qn rn.�ˇ .s//º:

We refer to Ln and Rn as the left lane and right lane, respectively.
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Notation. Let ˇLn ; ˇ
R
n be the measures of the left and right lanes at stage n.

Lemma 70. Consider .K; �; sh/ and let �n be the measure of the collection fM n of s that
are not mature at stage n. Then:

(1) dqnˇe � qnˇ � ˇLn � dqnˇe � qnˇ � �n,

(2) qnˇ � bqnˇc � ˇRn � qnˇ � bqnˇc � �n,

(3) ˇLn C ˇ
R
n C �n D 1.

In particular,
P
ˇLn <1 if and only if

P
.dqnˇe � ˇ/ <1 and

P
ˇRn <1 if and only

if
P
.qnˇ � bqnˇc/ <1.

Proof. LetMn be the collection of S that are mature at stage n. In the proof of Lemma 69,
we showed that Ln is

��10

� [
j<qn

Œj=qn; .j C 1/=qn � /

�
\Mn

and Rn is

��10

� [
j<qn

Œ.j C 1/=qn � ; .j C 1/=qn/

�
\Mn;

where  D .i C 1/=qn � ˇ and ˇ 2 Œi=qn; .i C 1/=qn/. Since there are qn many levels
and qn D dqnˇe � qnˇ the inequalities in item (1) follow. Item (2) is similar. Item (3)
follows since

S D ��10

� [
j<qn

Œj=qn; .j C 1/=qn � / [
[
j<qn

Œ.j C 1/=qn � ; .j C 1/=qn/

�
[fM n:

The final assertion follows from Lemma 45.

Restating the discussion:

Lemma 71. For almost all s 2 S � Kc that are mature at stage n, �ˇ .s/.0/ D s.i/,
where i �qn d

n
L if s 2 Ln and i �qn d

n
R if s 2 Rn.

Proof. Assume that n is mature for s. Then on its principal n-block, the projection of s to
K˛ agrees withw˛n .29 The values s.0/ and �ˇ .s/.0/ are the rn.s/-th and the rn.�ˇ .s///-th
values of the word w˛n . From equation (6.2),

rn.�ˇ .s/// D rn.s/C d
n.s/:

Hence
�ˇ .s/.0/ D s.d

n.s//;

and the lemma follows.

29Recall w˛n is the notation for the unique member of the n-th element Wc
n of the construction

sequence for K˛ .
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The items in the following lemma are essentially Remark 12 and Lemma 56 in a dif-
ferent context.

Lemma 72. For almost all s and for n < m that are mature for s and �ˇ .s/ the following
hold:

(1) If i �qn rn.s/C d
n.s/ and j �qm rm.s/C d

m.s/, then the j -th place in the princi-
pal m-block of �ˇ .s/ is in the i -th place of the principal n-block of �ˇ .s/.

(2) Let I be the rn.s/C dn.s/-th interval of Iqn and J the rm.s/C dm.s/-th interval of
Iqm in the dynamical orderings. Then J � I .

Proof. This follows from Remark 55 and Lemma 56. To see this, note that

rn.�ˇ .s// �qn rn.s/C d
n.s/I

i.e. �ˇ .s/.0/ is in the i -th place of the principal n-block of s, where

i �qn rn.s/C d
n.s/:

Thus typical points in Rn and Ln are those in which the n-block of �ˇ .s/ containing
0 is the shift of the block of s containing 0 by dnR and dnL , respectively.

We now describe how dn.shk.s// changes. As k varies, dn.shk.s// measures the
shift between shk.s/.0/ and �ˇ .shk.s//.0/. In regions where the principal n-subwords
of both shs.s/ and �ˇ .shk.s// exist and are repeating dn.shk.s// is constant. It is also
constant as it crosses boundary regions of shk.s/ and �ˇ .shk.s// as long as those bound-
ary regions have length qn and are lined up with adjacent n-subwords. However for
m � nC 1, if the boundary section of an m-word of s or �ˇ .s/ has length not divisi-
ble by qn, the relative alignment between s and �ˇ .s/ changes. This happens on regions
of
S
m�nC1 @m.s/ [

S
m�nC1 @.�ˇ .s//.

If n is mature for s, the principal n-word of s repeats on both sides of s.0/ and thus
we see:

Lemma 73. If s is mature at stage n, then dn.s/ is constant on the principal n-block of s.
Moreover, on dn.s/ is constant on the even and odd overlaps of 2-subsections of nC 1
subwords of s and �ˇ .s/.

The next lemma is used for the “nesting” arguments in Section 7.3. It says that the
measure of the set of s 2 S with dn.s/ D dnL or dn.s/ D dnR can be closely computed as
a density in every scale bigger than n.

Remark. The notation dnL and dnR are supposed to be suggestive of the left and right
lanes. To a close approximation, if s is mature and in a left lane, then

dn.s/ D dnL

and similarly for the right lanes.

Lemma 74. Let n < m 2 N be natural numbers. Then

¹0; 1; 2; : : : ; qm � 1º D P
n
L [ U [ P

n
R
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such that for almost every s for which n is mature:30

(1) if rm.s/ 2 P nL , then s 2 Ln,

(2) if rm.s/ 2 P nR, then s 2 Rn,

(3) jU j � 2qn,

(4) jjP nL j=qm � ˇ
L
mj < 2qn=qm, and

(5) jjP nRj=qm � ˇ
R
mj < 2qn=qm.

Proof. As in Lemma 69, let

 D
i C 1

qn
� ˇ;

where i D pnDn.ˇ/ (see Figure 2). The partition Iqm splits each interval I 2 Iqn into
qm=qn subintervals. Let U be the indices of the Iqm intervals that lie over or under  and
 C 1=qm. Explicitly: suppose that  2 Imi0 and  C 1=qm 2 Imi1 . Let

U D ¹i W for some 0 � j < qn; Imi D Rj
˛n
Imi0 º

[ ¹i W for some 0 � j < qn; Imi D Rj
˛n
Imi1 º:

Then jU j D 2qn, and if i … U , then either

Imi �
[
j<qn

Œj=qn; .j C 1/=qn � / or (6.3)

Imi �
[
j<qn

Œ.j C 1/=qn � ; .j C 1/=qn/ (6.4)

For i … U , put i 2 P nL if it satisfies equation (6.3) and i 2 P nR if it satisfies equation (6.4).
It follows that for almost all s, if n is mature for s and rn.s/ 2 P nL , then dn.s/ D dnL and
similarly for P nR. Since P nR [ P

n
L [ U is a partition of qm and jU j � 2qn, the lemma

follows.

Lemma 75. Let f 2 ¹0; 1ºN and let s be a typical member of S.ˇ/.

(1) Let ˇ�n D pnDn.ˇ/C f .i/=qn. Then the sequence hRˇ�n
W n 2 Ni converges to Rˇ

in the C1-topology.

As a result, in the language of symbolic systems:

(2) Let An D Dn.ˇ C f .i/=qn/ and T the shift map on K˛ . Then An is either dnL or dnR,
depending on the value of f and for almost every s 2 S; limn!1 T

Ans D �ˇ .s/.

(3) With An as in item (2) and Kc an arbitrary circular system with the given coeffi-
cient sequence hkn; ln W n 2 Ni, define an and bn to be the left and right endpoints
of the principal n-block of T An.s/. Then for almost all s, limn!1 an D �1 and
limn!1 bn D1.

30Properly speaking the P n
R

and P n
L

notation should indicate m as well. Without any contextual
indication of what m is we take m D nC 1.
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Proof. The first item follows because jˇ�n � ˇj < 2=qn. Hence ˇ�n converges rapidly to ˇ.
The second item follows from the first via the isomorphism ��10 . The third item follows
because �ˇ .s/ 2 S and T An.s/ converges to �ˇ .s/ topologically. Hence for all n there
is an N such that for all m � N , the principal n-block of T Am.s/ is the same as the
principal n-block of �ˇ .s/. Since the principal m-block of T Am contains the principal
n-block of �ˇ .s/ and �ˇ .s/ 2 S , item (3) follows.

If an and bn are as in item (3), then

an D �rn.s/C An and bn D qn � rn.s/C An: (6.5)

7. The displacement function

In this section we define a function � from S1 to the extended positive real numbers that
will eventually be shown to have the properties that
� �.ˇ/ <1 implies that there is an element of the centralizer of Kc having Rˇ as its

associated rotation.
� if Kc is built suitably randomly, then every element of the centralizer of Kc , or

isomorphism from Kc to .Kc/�1 has rotation factor ˇ with �.ˇ/ <1.
The idea behind the displacement function is simple: the number ˇ determines �ˇ and
hence a shift at each scale n. The words in Wc

nC1 are of the form C.w0; : : : ; wkn�1/. If
the shift at stage n lines up most n-words with other n-words in the same argument of C ,
then it is possible to build an element of the centralizer of any Kc having rotation factor
ˇ. If not, and we build Kc suitably randomly, then we can arrange that ˇ is not a central
value.

Fix ˇ for the rest of this section, and let T WK˛ !K˛ be the shift map. The next
lemma says that the principal n-blocks of T d

n.s/.s/ and �ˇ .s/ are exactly aligned.

Lemma 76. Let s; s� 2K˛ be typical and n < m be mature for both. Define

t� D T d
m.s/�dn.s/.s�/:

Then t�.0/ is in the same position of its principal n-block as s�.0/ is in the principal
n-block of s�. In particular, T dm.s/�dn.s/.s�/ has its zero in a position inside an n-word
in the construction sequence for some copy of w˛n .

Proof. Since the n-blocks of s� repeat on either side of the principal n-block of s�, and
these have length qn, it suffices to show dm.s/ � dn.s/ �qn 0. Let t D T d

m.s/�dn.s/.s/

and consider the point s0 D T d
m.s/.s/. Then s0.0/ is in the .rm.s/C dm.s//-th place in its

principal m-block. By Lemma 72, s0.0/ is in the .rn.s/C dn.s//-th place in its principal
n-block. Since t D T �d

n.s/.s0/, the point t has its 0 in the rn.s/-th place of its principal
n-block. Hence rn.t/ D rn.s/ and by so by Remark 59, dm.s/ � dn.s/ �qn 0.

At first glance Lemma 76 looks puzzling as we are not assuming that any of

dm.s/ D dm.s�/; dn.s/ D dn.s�/; or rn.s/ D rn.s
�/:
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However, the assertion is a statement about how the n-towers sit inside the nC 1-towers.
For mature s; s� this nesting repeats on either side of the principal n-blocks and hence
behaves as in the cyclical approximations. Thus it is independent of the value of dn.s�/,
dm.s�/ or rn.s�/, and simply reflects the cyclical structure.

For a particular s 2K , the sequence of shifts T d
n.s/.s/ converges to �ˇ .s/. Lemma 76

tells us that this happens promptly: for mature n, T d
n.s/.s/ has its 0-th place in the same

position of its principal n-block as �ˇ .s/ does.
Consider the location of 0 in the principal nC 1-block of the point T d

nC1.s/�dn.s/.s/

relative to the position of 0 in the principal nC 1-block of s. For some j0 and j1 the
principal n-block of T d

nC1.s/�dn.s/.s/ arises from the j0-th argument of C.w˛n ; : : : ; w
˛
n /

and the principal n-block of s.0/ is in a position coming from the j1-st argument.

Definition 77. Let s 2K . With indices j0 and j1 as just described, the j0-th argument
of C.w˛n ; : : : ; w

˛
n / ˇ-matches the j1-st argument. The point s 2K is well-ˇ-matched

at stage n if s is mature at n and j0 D j1. If n is mature for s and j0 ¤ j1, then s is
ill-ˇ-matched.

Lemma 78. Let Kc be a circular system and consider S � Kc . Let s; s� 2 S and sup-
pose that n is mature for �.s/; �.s�/; �ˇ .�.s// and �ˇ .�.s

�// and that �.s/ is well-
ˇ-matched at stage n. Let An D dn.s/ and AnC1 D dnC1.s/. Then:

(1) one has
rn.T

Ans�/ D rn.T
AnC1s�/

and

(2) if I is the interval Œ�rn.T Ans�/; qn � rn.T Ans�// � Z, then

.T Ans� � I / D .T AnC1s� � I /: (7.1)

Proof. Lemma 76 asserts that 0 is located in the same place in the principal n-block
of T AnC1�An.�.s�//.0/ as 0 is in the principal n-block of �.s�/. Since n is mature
for s�, the principal n-block of s� is repeated on either side of s�.0/. Since n is mature
for �ˇ .�.s

�//, the principal n-block of T AnC1s� is repeated at least twice on either
side of T AnC1.s�/.0/. It follows that 0 is in the same place in the principal n-block of
T An.T AnC1�An.s�// as 0 is in the principal n-block of T An.s�/.0/. This proves the first
assertion.

A repetition of this argument shows the second assertion as well, using the fact that
s is well-ˇ-matched. Indeed the definition of well-ˇ-matched implies that the principal
n-words of T AnC1�Ans and s are identical. Applying T An to both, and using the fact
that the principal n-words repeat one sees that the principal n-words T AnC1s and T Ans
are identical. Since the issue of alignment only involves �.s/, item (2) holds for all s�

with �.s/ D �.s�/. Moreover, arguing as in the last paragraph using the repetition of the
principal n-blocks, shifting by an l < qn does not change this.

Comment. The terminology in this definition extends easily to general circular systems by
saying that j0-th argument and j1-st arguments are ˇ-matched in s 2 Kc if and only if this
is true in s� , where s� is the projection of s to K . Similarly we write dn.s/ for dn.�.s//.
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7.1. The definition of �

Let .X;B; �; T / D .Kc ;B; �; sh/ be a circular system. Define

�n.ˇ/ D �.¹s W s is ill-ˇ-matched at stage nº/ (7.2)

and set31

�.ˇ/ D
X
n

�n.ˇ/: (7.3)

Definition 79. The number ˇ 2 S1 is a central value iff �.ˇ/ <1:

Note that�.ˇ/ is defined using the block structure of the Wc
n and hence is determined

by ˇ together with the sequences hkni and hlni. Thus for ˇ 2 S1 the property of being
central depends only on the circular coefficient sequence hkn; ln W n 2 Ni, rather than on
the particular circular system Kc .

In Section 8.1, we show that if �.ˇ/ is finite, then there is an element T � in the weak
closure of ¹T n W n 2 Zº such that .T �/� D �ˇ : In particular, ˇ is the rotation factor of an
element of the centralizer. That result does not use the results of the rest of this section.

7.2. Deconstructing �.ˇ/

Fix a ˇ. Recall that h"n W n 2 Ni is the sequence satisfying Numerical Requirement 2:
"N > 6

P
n>N "n.

Suppose that s is typical, n is mature and s is ill-ˇ-matched. Then there are four
possibilities:
(1) dn.s/ D dnL or dnR and
(2) dnC1.s/ D dnC1L or dnC1R

Call these possibilities PLL; PLR; PRL; PRR.

Lemma 80. Let n;m 2 N with nC 1 < m. There is a partition

¹P
n;m
hd1;hd2

W hd1; hd2 2 ¹L;Rºº [ ¹U º

of the set ¹0; 1; : : : ; qm � 1º such that for s 2 S , if n is mature for s, then

(1) rm.s/ 2 P
n;m
hd1;hd2

implies .dn.s/; dnC1.s// D .dn
hd1
; dnC1
hd2

/,

(2) jU j � 2qn C 2qnC1.

Proof. This follows immediately from Lemma 74 by holding m fixed and applying the
lemma successively to n and nC 1. Except for a set U Ddef Un [ UnC1 that has at most
2qnC2qnC1 elements, every point in ¹0; 1; : : : ; qm�1º belongs to some P ni \P

nC1
j .

The levels of the qm-tower reflect the construction of w˛m from n-words with n < m.
If s and �ˇ .s/ are mature at stage n < m, the locations of s.0/ and T dnC1.s/�dn.s/.s/.0/

31Since being well or ill-matched only depends on �.s/ in this section we will not carefully
distinguish between s and �.s/.
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in their principal m-block and the pair .dn.s/; dnC1.s// determine whether s is ill-ˇ-
matched or not. For particular choices of hd1; hd2 2 ¹L;Rº either all typical s inPhd1;hd2
with n mature for both s and �ˇ .s/ are well-ˇ-matched or none are.

In the next section we will fix a particular choice of hd1 and hd2. For now let n; hd1
and hd2 be such that all n-mature s in configuration Phd1;hd2 are ill-ˇ-matched. We use
the symbol 6+n (In LaTeX: \not\Downarrow) to indicate the misaligned points at stage
n. Let

6+n D ¹s W s is ill-ˇ-matched at stage n and in configuration Phd1;hd2º: (7.4)

We need to localize the sets 6+n. The next lemma tells us that they are uniformly close to
open sets:

Proposition 81. Let n;m 2 N with nC 1 < m. Then there is a set

dn;m � ¹0; 1; : : : ; qm � 1º

such that if s 2 S , n is mature for s and rm.s/C k 2 dn;m, then

(1) n is mature for shk.s/,
(2) dn.shk.s// D dn

hd1
and dnC1.shk.s// D dnC1

hd2
,

(3) shk.s/ 2 6+n andˇ̌̌̌
jdn;mj

qm
� �.6+n/

ˇ̌̌̌
< 2

�
qn C qnC1

qm

�
C

1

ln�1
C "n�1:

Proof. Let s be an arbitrary point in S that is mature for n. Take dn;m to be those numbers
of the form rm.s/C k (where k 2 Œ�rm.s/; qm � rm.s//) such that shk.s/ has its zero
point in the set P n;m

hd1;hd2
and n is mature for shk.s/. Then dn;m is independent of the

choice of s. By Lemma 49, the collection of k such that shk.s/ is not mature for n has
density at most 1

ln�1
C "n�1.

7.3. Red zones

Suppose that ˇ is not central, i.e. �.ˇ/ D1. Then for some fixed choice of .hd1; hd2/,
with hdi belonging to ¹L;Rº,X

n

�.¹s W s is ill-ˇ-matched at stage n and in configuration Phd1;hd2º/

is infinite. Fix such an hd1; hd2. Then with this choice for all n; 6+n is well-defined, and
moreover there is a set G � N such that if n < m belong to G, then nC 2 < m andX

n2G

�. 6+n/ D1: (7.5)

Let s be a point in K˛ such that all of the shifts of s and �ˇ .s/ are generic with respect
to basic open sets, the sets Ein, 6+n, P n;m

hd1;hd2
and the sets Ln, Rn. For large enough M ,

we will describe how to use s and the union
S
n2G 6+n to identify a subset of the inter-

val Œ�rM .s/; qM � rM .s// consisting of misaligned points and having density arbitrarily
close to one.
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Assume that s 2 6+n and n is mature for s and �ˇ .s/. In defining 6+n, the choice that
.dn.s/; dnC1.s// D .hd1; hd2/ together with s.0/, give us the relative locations of the
overlap of the principal nC 1-blocks of s and �ˇ .s/.

Let u be the principal nC 1-block of s and v be the principal nC 1-block of �ˇ .s/.
and assume that they are in the position determined by dnC1.s/. By Lemma 42, on the
overlap the 2-subsections of v split the 2-subsections of u into either one or two pieces,
and the positions of all of the even pieces are shifted by the same amount relative to the
2-subsections of v and similarly for the odd pieces.

We analyze the case where s.0/ occurs in an nC 1-block, where the 2-subsections
are split into two pieces. If they are only split into one piece (i.e. they are not split) the
analysis is similar and easier. Without loss of generality we will assume that s.0/ occurs
in an even overlap.

Since neither s.0/, nor �ˇ .s/.0/ occur in the first or last "nkn 1-subsections of the
principal 2-subsection that contains them, we know that the overlaps of the principal
2-subsections of s.0/ and �ˇ .s/.0/ contain at least "nkn 1-subsections. The 0-subsections
of the form w

ln�1
j of each 1-subsection of s in this overlap are split into at most three

pieces, powers of the form w
sn0
i , wri and ws

n
1

i , where 0 � r � 2, ln � .sn0 C s
n
1 / � 3 and

the middle power wri crosses a boundary section of �ˇ .s/. The powers sn0 and sn1 are
constant on the overlap of the 2-subsections, constant in all of the even pieces of the over-
lap of the 2-subsections of the principal nC 1-block, and are determined by .hd1; hd2/.
Moreover, sni > "nln. Again, without loss of generality we assume that s.0/ is in the left
overlap corresponding to the power sn0 .

Observation. There is a number j0 between 0 and kn � 1 that is determined by the pair
.dn.s/; dnC1.s// such that the even piece of a 2-subsection that contains s.0/ is of the
form Y

j<j0

bqn�jiwl�1j eji ;

except that the last 1-subsection may be truncated. Moreover, since dnC1.shk.s// is
constant for k in the principal nC 1-block of s, if

t D kn � j0; (7.6)

then t ¤ 0 and for all j < j0 the powersws
n
0

j are ˇ-matched withws
n
0

jCt except for portions
of the first and last power.

In particular, if k is such that the 0 position of shk.s/ lies in the interior of initial power
w
sn0
j in an even overlap and j < j0, then shk.s/ 2 6+n because it is lined up with wjCt .

Lemma 82. Let s 2K and suppose that s and �ˇ .s/ are generic, and that s is mature
at n. Suppose that m > nC 2. Then there is a set Bn � ¹0; : : : ; qm � 1º such that if
k 2 Œ�rm.s/; qm � rm.s// and rm.s/C k 2 Bn, then:

(1) shk.s/ has its zero located in Bn,

(2) n is mature for shk.s/,
(3) shk.s/ 2 6+n,
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(4) there exist a j0 > "nkn and a t ¤ 0 such that Bn is:

(a) a union of sets, each of the form
S
j<j0

Uj ,

(b) each set
S
j<j0

Uj is a subset of a position of an occurrence in s of an nC 1-sub-
word C.u0; u1; : : : ; ukn�1/ of w˛m (with ui D w˛n ),

(c) each Uj is a collection of non-n-boundary positions in us
n
0

j such that us
n
0

j is
ˇ-matched with us

n
0

jCt , except perhaps for the first or last copy of uj in us
n
0

j , and

(d) each set
S
j<j0

Uj is the collection of all non-n-boundary positions in u
sn
0

j in
a block of the form Y

j<j0

bqn�jiu
ln�1
j eji :

and ˇ̌̌̌
Bn

qm
� �. 6+n/

ˇ̌̌̌
< 2

�
qn C qnC1

qm

�
C

1

ln�1
C "n�1:

Proof. The first statement is automatic since Bn � ¹0; 1; : : : ; qm � 1º. Let dn;m be as in
Proposition 81. If k 2 dn;m, then, as in the discussion before the statement of Lemma 82,
shk.s/.0/ occurs in the position of a power us

n
0 , where u is the principal n-block of shk.s/

and usn0 occurs on the left overlap of 1-subsections of the principal nC 1-block of shk.s/.
As in the observation before this lemma, to each k 2 dn;m we can associate a setS

j<j0
Uj containing k by taking all of the positions of the powers us

n
0

j in the even overlap
determined shk.s/.0/, where k is not in the boundary of a uj . Let Bn be the union of all
of the collections

S
j<j0

Uj as k ranges over dn;m.
Assertion (4) (c) follows from the observation and the fact that dn and dnC1 are

constant (and equal to dn
hd1

and dnC1
hd2

) on dn;m.
We show that if k0 2 Bn, then n is mature for shk

0

.s/ and that shk
0

.s/ 2 6+n. The matu-
rity of n follows immediately from the maturity of s and the fact that the location of 0
in shk.s/ is in a non-boundary portion of an n-subword of its principal nC 1-block. That
shk
0

.s/ 2 6+n follows from the fact that us
n
0

j is ˇ-matched with us
n
0

jCt , and t ¤ 0.
To finish, note that

dn;m �
[ [

j<j0

Uj � 6+n:

Hence
jdn;mj

qn
�
j
SS

j<j0
Uj j

qn
� �.6+n/:

Thus Lemma 82 follows from Lemma 81.

We now define the red zones corresponding to ˇ. Recall that if n < m 2 G, then

nC 2 < m and
X
n2G

�.6+n/ D1:

For n < m consecutive elements of G, define

ın D 4

�
qnC1

qm

�
C

1

ln�1
C "n�1:
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Then we see that:
�
P
n2G ın <1, so

�
P
n2G.�.6+n/ � ın/ D1,

and if Bn is the set defined in Lemma 82, then �. 6+n/ � ın �
jBnj
qm
� �.6+n/.

Lemma 83. LetN be a natural number and ı > 0. Suppose that s and �ˇ .s/ are generic,
and that s is mature at N . Then there is a sequence of natural numbers hni W 1 � i � i�i,
an M and sets Ri � ¹0; 1; 2; : : : ; qM � 1º, for 1 � i � i�, such that

(1) N < n1 and ni C 2 < niC1 < M ,

(2) Ri is disjoint from Rj for i ¤ j ,

(3) Ri is a union of blocks of the form Bni described in condition (4) in Lemma 82 inside
niC1-subwords of w˛M ,

(4) if k 2 Ri , then shk.s/ 2 6+ni ,
(5) the density of

S
i Ri in ¹0; 1; : : : ; qM � 1º is at least 1 � ı.

Proof. We can assume that N is so large that
S
n�N @n has measure less than ı=100 and

1=lN C "N < ı=100. From the definition of G we can find a collection hni W i � i�i of
consecutive elements of G so thatY

1�i�i�

.1 � �. 6+ni /C ıni / <
ı

100
:

Choose an M > ni� C 2, and for notation purposes set ni�C1 DM .
Define sets Ri and Ii by reverse induction from i D i� to i D 1 with the following

properties:
(i) ¹0; 1; : : : ; qM � 1º n ..

S
i��j�i Ij / [ .

S
i��j�i Rj // consists of entire locations

of words w˛ni in w˛M ,
(ii) Ri � ¹0; 1; : : : ; qM � 1º n ..

S
i��j>i Ij / [ .

S
i��j>i Rj // and has relative den-

sity at least �.6+ni / � ıni ,
(iii) the set Ii �

SniC1
jDniC1

@j \ ¹0; 1; : : : ; qM � 1º and hence,
(iv) Ii has density less than or equal to 1=lni in ¹0; 1; : : : ; qM � 1º

To start, apply Lemma 82 with m D ni�C1, to get a set Bni� � ¹0; 1; : : : ; qM � 1º of
density at least �. 6+ni� / � ıni� satisfying conditions (3)–(4) of the lemma we are proving.
Set Ri� D Bni� . Let

Ii� D

M[
jDni�C1

@j \ ¹0; 1; : : : ; qM � 1º:

Suppose that we have defined hRj W i� � j > ii and hIj W i� � j > ii satisfying the
induction hypothesis (i)–(iv).

Apply Lemma 82 again to get a set B D Bni a subset of ¹0; 1; : : : ; qniC1 � 1º. Inside
each copy ¹k; k C 1; : : : ; k C qniC1 � 1º corresponding to a location in w˛M of a w˛niC1
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in the complement of ..
S
i��j>i Ij / [ .

S
i��j>i Rj //, we have a translated copy of

B , k C B . Let Ri be the union of the sets k C B , where k runs over the locations the
words w˛niC1 in the complement of ..

S
i��j>i Ij / [ .

S
i��j>i Rj //.

Then the density of Ri relative to

¹0; 1; : : : ; qM � 1º n

�� [
i��j>i

Ij

�
[

� [
i��j>i

Rj

��
is at least �.6+ni / � ıni . It follows from conclusion (3) of Lemma 82 that Ri is a union
of non-boundary portions of blocks of length qs

0
ni
�1

ni
corresponding to positions of w˛ni

in w˛M .
Since Ri consists of a union of the non-boundary portion of locations of words w˛ni ,

¹0; 1; : : : ; qM � 1º n

�� [
i��j>i

Ij

�
[

� [
i��j>i

Rj

�
[Ri

�
consists of the entire blocks of locations of w˛ni together with elements of

SniC1
jDni

@j . The
latter set has density less than or equal to 1=lni�1. Let

Ii D

 
¹0; 1; : : : ; qM � 1º \

niC1[
jDni

@j

!
n

�� [
i��j>i

Ij

�
[

� [
i��j>i

Rj

�
[Ri

�
:

It remains is to calculate the density of
S
1�i�i� Ri . At each step in the induction, we

remove a portion of density at least �. 6+ni / � ıni from

¹0; 1; : : : ; qM � 1º n

�� [
i��j>i

Ij

�
[

� [
i��j>i

Rj

��
:

Let @ D
S
1�i�M @ni . Then the density of the union of the sets Ri is at least

1 �
Y

i��i�1

.1 � 6+ni / �
j@j

qm
;

which is at least 1 � ı:

8. The centralizer and central values

In the first part of this section we show that every central value is a rotation factor of an
element of the closure of the powers of T and hence an element of the centralizer.

The second part shows a converse: if Kc is built sufficiently randomly, then the rota-
tion factor of every element of the centralizer is a rotation by a central value.

We note in passing that every circular system is rigid: if s is mature for n, then
T qn.ln�2/.s/ has the same principal n-block as s does. It follows that ¹T n W n 2 Zº is
a perfect Polish monothetic group.
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8.1. Building elements of the centralizer

If�.ˇ/ is finite, then the Borel–Cantelli lemma implies that for �-almost every s, there is
an n0 such that for all n � n0, s is well-ˇ-matched at stage n. As a consequence, certain
sequences of translations converge. Precisely:

Theorem 84. Suppose that Kc is a uniform circular system with coefficient sequence
hkn; ln W n 2 Ni. Let T be the shift map on Kc and let ˇ 2 Œ0; 1/ be a number such that
�.ˇ/ <1. Then there is a sequence of integers hAn W n 2 Ni such that hT An W n 2 Ni
converges pointwise almost everywhere to a T � 2 C.T / with .T �/� D �ˇ . In particular,
there is a sequence hAn W n 2 Ni such that hT An W n 2 Ni converges in the weak topology
to a T � with .T �/� D �ˇ .

Corollary 85. If ˇ is central, then there is a � 2 ¹T n W n 2 Zº such that �� D �ˇ .

Proof. Let T be the tree of finite sequences � 2 ¹L;Rº<1. Choose an n0 such that

G D ¹s W n0 is mature for s and for all m � n0; s is well-ˇ-matched at stage mº

has positive measure. By the König Infinity Lemma there is a function

f W ¹m W m � n0º ! ¹L;Rº

such that for allm � n0, ¹s 2 G W dn.s/ D dn
f .n/

for all n with n0 � n � mº has positive
measure. Let An D dnf .n/.

By Lemma 75, item (3) it follows that for a typical s the left and right endpoints of
the principal n-blocks of T Ans go to negative and positive infinity, respectively. Let s�

be a typical element of S ; e.g. �.s�/ and �ˇ .�.s
�// both belong to S� , large enough n

are mature for s� and for all large n, �.s�/ is well-ˇ-matched at stage n. Then for all
large n, the left and right endpoints of the principal n-block of T Ans and T AnC1s are the
same. If s� is well-ˇ-matched at stage n, then the words constituting principal n-block of
T Ans and T AnC1s are the same. It follows that for typical s� 2 S , the sequence T Ans�

converges in the product topology on .† [ ¹b; eº/Z.
We now show that the map

s 7! limT Ans

is one-to-one. If s ¤ s0, then either �.s/ ¤ �.s0/ or there is an N such that for all n � N
the principal n-blocks of s and s0 differ. We can assume that this N is so large that n is
mature and well-ˇ-matched for �.s/; �.s0/.

If �.s/ ¤ �.s0/, then �ˇ .�.s// ¤ �ˇ .�.s
0//. Hence the limits of T Ans and T Ans0

differ. So assume that �.s/ D �.s0/. Then, since T An is a translation by at most qn � 1
and n is mature for all parties (so the principal n-blocks of T Ans and T Ans0 repeat),
we know that the principal n-blocks of T Ans and T Ans0 differ. But for all m > n, the
principal n-blocks of T Ams agree with the principal n-blocks of T Ans (and similarly
for s0). Hence for allm > N the principalN -blocks of T Ams and T Ams0 differ. It follows
that the limit map is one-to-one.

We need to see that for almost all s; limn!1 T
Ans belongs to Kc . By the definition

of Kc this is equivalent to showing that for almost all s if I � Z is an interval, then
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limn!1 T
Ans � I is a subword of some w 2 Wc

m for some m. However, by Lemma 78,
for almost all s we can find an n so large that:
(1) I � Œ�rn.s/; qn � rn.s//,
(2) T Ans and limn!1 T

Ans agree on the location of the principal n-block of contain-
ing I , and

(3) T Ans and limn!1 T
Ans agree on what word lies on the principal n-block.

Since the principal n-block of T Ans belongs to Wc
n , we are done.

Summarizing, if one has T � D limn!1 T
Ans, then for almost all s, T �s is defined

and belongs to S . Moreover, T � is one-to-one and commutes with the shift map.
Define a measure �� on S by setting ��.A/ D �..T �/�1A/. Then �� is a non-atomic,

shift invariant measure on S . By Lemma 38, we must have �� D �. In particular, we have
shown that T � W Kc ! Kc is an invertible measure preserving transformation belonging
to ¹T n W n 2 Zº, with .T �/� D �ˇ .

We make the following remark without proof as it is not needed in the sequel:

Remark 86. Suppose that Kc satisfies the hypothesis of Theorem 84 and ˇ is a cen-
tral value. Then for any sequence of natural numbers hAn W n 2 Ni such that An˛ con-
verges to ˇ sufficiently fast, the sequence hT An W n 2 Ni converges to a T � 2 C.T / with
.T �/� D �ˇ .

8.2. Characterizing central values

The main result of this subsection is a converse of Corollary 85. If Kc is a circular system
built from sufficiently random collections of words and � is an isomorphism between Kc

and Kc , then �� D �ˇ for some central ˇ. Moreover, if � is an isomorphism between Kc

and .Kc/�1, then �� is of the form rev. � / ı \ ı �ˇ for some central ˇ.
In this subsection we will return to considering .Kc/�1 as .rev.Kc/; sh/ with the

forward shift, and hence can use \ instead of rev. � / ı \.

8.2.1. The timing assumptions. Randomness assumptions about the words in the sets Wc
n

will allow us to assert that the rotations associated with elements of the centralizer of
Kc or isomorphisms between Kc and .Kc/�1 arise from central elements ˇ. The last
part of the paper shows that these additional randomness assumptions are consistent with
the randomness assumptions used in [8] and describes how to build words with both
collections of specifications.

Recall from Definition 34 that to specify a circular system with coefficient sequence
hkn; ln W n 2Ni it suffices to inductively specify collections of prewordsPnC1 � .Wc

n/
kn ,

and define Wc
nC1 as the collection of words

¹C.w0; : : : ; wkn�1/ W w0w1 : : : wkn�1 2 PnC1º:

In the construction, there will be an equivalence relation Q1
1 on Wc

1 that is lifted from
an analogous equivalence relation on the first step of the odometer construction W1. It
is built in Section 10; we describe its properties here. Let hQn

1 W n 2 Ni be the sequence
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of propagations of Q1
1. As the construction progresses there are groups Gn1 acting freely

on the set of Qn
1 equivalence classes of words in Wc

n . Each Gn1 is a finite sum of copies
of Z2. Inductively,GnC11 D Gn1 orGnC11 D Gn1 ˚ Z2. The action ofGn1 on Wc

nC1 arising
from theGnC11 action via the inclusion map ofGn1 intoGnC11 is the skew-diagonal action.
We will write Œw�1 for the Qn

1-equivalence class of a w 2 Wc
n and Gn1 Œw�1 for the orbit of

Œw�1 under Gn1 . If w 2 Wc
nC1 and C 2 Wc

n=Q
n
1 , then we say that C occurs at t if there is

a v 2 Wc
n sitting on the interval Œt; t C qn/ inside w and C D Œv�1.

Numerical Requirement 4. One hasX jGn1 j

jQn
1 j
<1:

This can be satisfied by taking jG
n
1
j

jQn
1
j
< 2�n.

We note that Gn1 is determined directly by the first n-nodes in tree we are using in the
domain of the reduction, and hence jGn1 j is determined by the tree. So this requirement on
jQn
1 j does not depend on any of the other variables being chosen during the construction.

In what follows we call such requirements absolute requirements.

Notation. As an aid to tracking corresponding variables, script letters are used for sets
and non-script Roman letters for the corresponding cardinalities. For example we will
use Qn for an equivalence relation and Qn for the number of classes in that equivalence
relation.

Here are the assumptions used to prove the converse to Corollary 85. The first three
assumptions follow immediately from the definitions in Section 5.10.
(T1) The equivalence relation QnC1

1 is the equivalence relation on Wc
nC1 propagated

from Qn
1 .

(T2) The group Gn1 acts freely on Wn=Q
n
1 [ rev.Wn=Q

n
1/

(T3) The canonical generators of the group Gn1 send elements of Wc
n=Q

n
1 to elements of

rev.Wc
n=Q

n
1/ and vice versa.

The next axiom states that the Qn
1 classes are widely separated from each other.

(T4) There is a number  such that 0 <  < 1=4 such that for each n and each pair
w0; w1 2 Wc

n [ rev.Wc
n/ and each j � qn=2 if Œw0�1 ¤ Œw1�1, then

Nd.w0 � Œ0; j /; w1 � Œ0; j // � ;
Nd.w0 � Œqn � j; qn/; w1 � Œqn � j; qn// � 

Nd.w0 � Œ0; j /; w1 � Œqn � j; qn// � :
Remark 87. In axioms (T5)–(T7) we write jxnj � 1

yn
to mean that jjxnj � 1

yn
j < �n,

where �n � min."n; 1=Qn
1/.

Numerical Requirement 5. �n is chosen small relative to min."n; 1=Qn
1/. Explicitly: if

tn D min."n; 1=Qn
1/, then

0 < �n < tn min
k�n

2�n�2
1

tk
:
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In the next assumption we count the occurrences of particular n-word v that are lined
up in an nC 1-preword w0 with the occurrences of a particular Qn

1-class in the shift of
another nC 1-preword w1 or its reverse. The shift (by t n-subwords), must be non-zero
and be such that there is a non-trivial overlap after the shift.
(T5) Let w0; w1 be prewords in PnC1, and w01 be either w1 or rev.w1/. Write

w0 D v0v1 : : : vkn�1 and w01 D u0u1 : : : ukn�1;

with ui ; vj 2 Wc
n [ rev.Wc

n/. Let C 2 Wc
n=Q

n
1 or C 2 rev.Wc

n/=Q
n
1 according to

whether w01 D w1 or w01 D rev.w1/. For all integers t with 1 � t � .1 � "n/.kn/,
v 2 Wc

n , we have:
(a) (This is comparing w0 with shtqn.w01/.) Let

J.v/ D ¹k < kn � t W v D vkº:

Then
j¹k 2 J.v/ W utCk 2 Cºj

jJ.v/j
�

1

Qn
1

:

(b) (This is comparing shtqn.w0/ with w01.) Let

J.v/ D ¹k W t � k � kn � 1 and v D vkº:

Then
j¹k 2 J.v/ W ut�k 2 Cºj

jJ.v/j
�

1

Qn
1

:

(T6) Suppose that w0w1 : : : wkn�1; w
0
0w
0
1 : : : w

0
kn�1

2 PnC1 are prewords, and suppose
that 1 � t � .1 � "n/kn and "nkn � j0 � kn � t . Let

S D ¹k < j0 W for some g 2 Gn1 ; gŒwk �1 D Œw
0
kCt �1º:

Then
jS j

j0
�
jGn1 j

Qn
1

:

(T7) Let w0; w1 be prewords in PnC1, and let w01 be either w1 or rev.w1/. Suppose that
Œw01�1 … G

n
1 Œw0�1. Write

w0 D v0v1 : : : vkn�1 and w01 D u0u1 : : : ukn�1;

with ui ; vj 2 Wc
n [ rev.Wc

n/. Let C 2 Wc
n=Q

n
1 or C 2 rev.Wc

n/=Q
n
1 according to

whether w01 D w1 or w1 D rev.w1/. Then for all v 2 Wc
n if

J.v/ D ¹t W vt D vº;

then
j¹t 2 J.v/ W ut 2 Cºj

jJ.v/j
�

1

Qn
1

: (8.1)

Definition 88. We will call the collection of axioms (T1)–(T7) the timing assumptions
for a construction sequence and an equivalence relation Q1

1.
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8.2.2. Codes and Nd -distance. We now prove some lemmas about Nd .32

Lemma 89. Let w0 2 Wc
nC1 and w1 2 Wc

nC1 [ rev.Wc
nC1/ such that Œw0�1 … Gn1 Œw1�1.

Let r > 1000 and let J0; J1 be intervals in Z of length r � qnC1. Let I be the intersection
of the two intervals. Put wr0 on J0 and wr1 on J1 and suppose that all but (possibly) the
first or last copies of w0 are included in I . Let Nƒ be a stationary code such that the length
of ƒ is less than qn=10000. Then:

Nd. NƒŒwr0 � I �; wr1 � I / >
1

50

�
1 �

1

Qn
1

�
: (8.2)

Proof. Since the length of the code ƒ is much smaller than qn and r > 10000, the end
effects of ƒ are limited to the first and last copies of w0 and thus affect at most .1=5000/
proportion of Nd. NƒŒwr0 � I �; wr1 � I /. Removing the portion of I across from the first or
last copy of w0 leaves a segment of I of proportion at least 4999=5000.

For all of the copies ofw0, except perhaps at most one at the end of J0, there is a corre-
sponding copy ofw1 that overlapsw0 in a section of at least qnC1=2. Discard the portions
of I arising from copies of w0 not overlapping the corresponding copies of w1. After the
first two removals we have a portion of I of proportion at least .1=2/.4999=5000/.

Because w0 and w1 have the same lengths, the relative alignment between any two
corresponding copies of w0 and w1 in the powers wr0 and wr1 are the same. In particular,
the “even overlaps” and “odd overlaps” are the same in each remaining portion of the
corresponding copies of w0 and w1.

By Lemma 42, there are s; t < qn such that on the even overlaps all of the n-subwords
of shs.wr0/ are either lined up with an n-subword of wr1 or with a boundary section of w1,
and all of the n-subwords of w0 in an odd overlap are lined up with an n-subword or
a boundary section of wr1 by sht .wr0/.

Either the even overlaps or the odd overlaps contain at least 1=2 of the n-subwords
that are not across from boundary portions of w1. Assume that 1=2 of the n-subwords lie
in even overlaps and discard the portion of I on the odd overlaps. (If more than 1=2 of
the n-subwords are in odd overlaps, we would focus on those.)

Let .w�0 /
r D shs.wr0/ on the even overlaps. Denote any particular copy ofw0 in .w�0 /

r

as w�0 . Then, except for Wc
n -words that get lined up with a boundary section of w1,

every n-subword of .w�0 /
r coming from an even overlap of .w0/r gets lined up with an

n-subword of .w1/r . Write w0 D C.v1; v2; : : : ; vkn�1/ and w1 D C.u1; u2; : : : ; ukn�1/

(or, respectively, w1 D C r .rev.u1/; rev.u2/; : : : ; rev.ukn�1//). Then each n-subword of
w�0 coming from an even overlap is of the form vi for some i . There is a t such that for
all i if vi occurs in any copy of w�0 and comes from an even overlap, then either:
(a) vi is lined up with uiCt (respectively rev.ukn�.iCt/�1/) or
(b) vi is lined up with a boundary portion of w1 or
(c) vi is lined up with uiCtC1 (respectively rev.ukn�.iCtC1/�1/).

32Basic notation and facts about stationary codes are reviewed in Section 4.4.



M. Foreman, B. Weiss 56

On copies of vi coming from even overlaps of 2-subsections the powers of vi in alter-
natives a.) and c.) are constant. Since the even overlaps of the 2-subwords has size at least
half of the lengths of the 2-subwords, it follows that 0 � t � kn=2.

Since all of vln�1i satisfies (a), (b), or (c), after discarding the words vi in case (b) half
of the remaining words vi satisfy (a) or (c). Keep the larger alternative and discard the
other. What is left after all of the trimming has size at least

.4999=5000/.1=2/.1=2/.1 � 2j@nC1j/ > 1=10

proportion of I .
For some t what remains consists of n-subwords vi in even overlaps of .w0/r that,

after being shifted by s to be subwords of .w�0 /
r , are aligned with occurrences of n-sub-

words of .w1/r of the form uiCt (rev.ukn�.iCt/�1/ respectively). For the rest of this proof
of Lemma 89 we will call these the good occurrences of n-subwords.

Claim. Suppose that v 2 Wc
n and let

J �.v/ D ¹y 2 I W y is at the beginning of a good occurrence of v in .w�0 /
r
º:

Furthermore, let C 2 Wc
n=Q

n
1 or C 2 rev.Wc

n/=Q
n
1 depending on whether w1 2 Wc

nC1

or w1 2 rev.Wc
nC1/. Thenˇ̌̌̌
j¹y 2 J �.v/ W some element of C occurs at y in w1ºj

jJ �.v/j
�

1

Qn
1

ˇ̌̌̌
(8.3)

is bounded by 2=qn C 2=ln C �n.

We prove the claim. We have two cases:

Case 1: t D 0. In this case we have a trivial split in the language of Section 5.4. The
overlap of the 2-subsections contains the whole of the two subsections except for a por-
tion of one 1-subsection. Since Œw0�1 … Gn1 Œw1�1, we can apply axiom (T7) to the words
w0 and w1. The claim follows from inequality (8.1), which is the preword version of for-
mula (8.3), after taking into account the boundary and the words at the ends of the blocks
of .w�0 /

r and the truncated 1-subsections.

Case 2: t ¤ 0. In this case the split is non-trivial. Because the even overlaps are at least
as big as the odd overlaps of 2-subsections, the even overlap looks like

t�Y
jD0

.bq�ji vl�1j eji /

but with a portion of its last 1-subsection possibly truncated. In particular, it has an initial
segment of the form

t��1Y
jD0

.bq�ji vl�1j eji /;

where t� � kn=2.



Measure preserving diffeomorphisms of the torus are unclassifiable 57

It follows from the timing assumption (T5) that if J 0 D ¹y 2 J.v/ W some element of
C occurs across from a word starting at y in the first t� � 1 1-subsectionsº, thenˇ̌̌̌

jJ 0j

jJ.v/j
�

1

Qn
1

ˇ̌̌̌
< �n:

Any variation between the quantity in formula (8.3) and the estimate in (T5) is due to
the portion of the last 1-subsection of the even overlaps. This takes up a proportion of the
remaining even overlap less than or equal to 1=t� � 2=qn. This proves the Claim.33

We now shift .w�0 /
r back to be wr0 and consider s. There is an l 0 � l=2 � 1 � l=3

such that all of the good occurrences of a v 2 Wc
n in .w�0 /

r are in a power vl
0

. Depending
on whether s � qn=2 or s > qn=2, for each good occurrence of a vj in .w�0 /

r either:
(a) there are at least l 0 � 1 powers of vj in the corresponding occurrence in w0 such that

their left overlap with ujCt has length at least qn=2 or
(b) there are at least l 0 � 1 powers of vj in the corresponding occurrence in w0 such that

their right overlap with ujCt has length at least qn=2
Without loss of generality we assume alternative (a). Suppose that the overlap has

length o in all of the good occurrences. Then the left side of vj overlaps the right side of
ujCt by at least qn=2.

By axiom (T4), if v 2 Wc
n ,

Nd. NƒŒ.v � Œ0; o/�; ujCt � Œqn � o � 1; qn// < =2;
Nd. Nƒ.v � Œ0; o/; uj 0Ct � Œqn � o � 1; qn// < =2;

then ŒujCt �1 D Œuj 0Ct �1. It follows that if we fix a v 2 Wc
n and let

J.v/ D ¹j W vj D vº;

then

j¹j 2 J.v/ W Nd.c.vj � Œ0; o/; ujCt � Œqn � o � 1; qn � 1// < =2ºj
jJ.v/j

<
1

Qn
1

C �n:

Since at least 1=20 proportion of I consists of left halves of good occurrences of the
various v’s belonging to Wc

n , it follows that

Nd. NƒŒwr0 � I �; wr1/ �
1

20

�
1 �

1

Qn
1

� �n

�
.=2/: (8.4)

The lemma follows.

8.2.3. Elements of the centralizer. In this subsection we prove the theorem linking central
values to elements of the centralizer of Kc .

33Axiom (T5b) takes care of the case where the relevant overlaps is odd.
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Theorem 90. Suppose that .Kc ;B; �; sh/ is a circular system built from a circular con-
struction sequence satisfying the timing assumptions. Let � W Kc ! Kc be an automor-
phism of .Kc ;B; �; sh/. Then �� D �ˇ for some central value ˇ.

Proof. Fix a � and suppose that �� D �ˇ . We must show that ˇ is central. Suppose not.
The idea of the proof is to choose a stationary code ƒ� well approximating � and an N
such for all M > N , passing over the principal M -block of most s 2 Kc with ƒ� gives
a string very close to �.s/ in Nd -distance. Consider an s where ƒ� codes well on this
principal M -block.

Use Lemma 83 to build a red zone corresponding to M . Lemma 89 implies that ƒ�
cannot code well on the red zone. Since the red zone takes up the vast majority of the prin-
cipal M -block, ƒ� cannot code well on the principal M -block, yielding a contradiction.
In more detail:

Let  be as in axiom (T4). By Proposition 20 there is an code ƒ� such that for almost
all s 2 Kc ,

Nd. Nƒ�.s/; �.s// < 10�9:

By the Ergodic Theorem there is an N0 so large that for a set E � Kc of measure 7=8
for all s 2 E and all N > N0, s is mature for N and if B is the principal N -block of s,
then

Nd.ƒ�.s � B/; �.s/ � B/ < 10�9: (8.5)

Let s 2 E. Choose an N > N0 such that the code length of ƒ� is much smaller than qN ,
1=QN

1 < 10�9 and lN > 1012. Apply Lemma 83, with ı D 10�9 to find an integer M
and hRi W i < i�i satisfying the conclusions of Lemma 83. Since

S
i<i� Ri � qM , we

view
S
i<i� Ri as a subset of the principal M -block of s.

Each Ri is a union of collections of locations of the form[
j<j0

Uj ;

with each Uj consisting of the locations of u
s
ni
0

j for j 2 Œ0; j0/ (for some j0).34 Moreover,
there is a t such that each power

u
s
ni
0

j

is ˇ-matched with a v
s
ni
0

jCt in �.s/ for some t ¤ 0.
Because j0 > "nkn, axiom (T6) applies and thus for at least�

1 �
jG
ni
1 j

Q
ni
1

C �ni

�
proportion of ¹u0; u1; : : : ; uj0�1º, uj and vjCt are in different Gni1 -orbits. In Lemma 89,
inequality (8.2) implies that if ui and viCt are in different Gni1 orbits, then, restricted to
the overlaps of the locations of all of the

u
s
ni
0

j and v
s
ni
0

jCt ;

34Note that sni0 is as in condition 4 (c) of Lemma 82.
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the Nd distance between Nƒ�.s/ � Uj and �.s/ � Uj is at least

1

50

�
1 �

1

Q
ni
1

�
:

Since the first and last powers of uj in u
s
ni
0

j ’s take up 2=sni0 of u
s
ni
0

j and sni0 � lni =2 � 2,
we know that

Nd.ƒ�.s/ � Uj ; �.s/ � Uj / � .1 � 10�11/
1

50

�
1 �

1

Q
ni
1

�
:

Because the proportion of indices j for which uj and vjCt are in different Gni1 -orbits is
at least

1 �
jG
ni
1 j

Q
ni
1

C �ni ;

it follows that

Nd

�
Nƒ�.s/ �

[
j<j0

Uj ; �.s/ �
[
j<j0

Uj

�
is at least �

1 �
jG
ni
1 j

Q
ni
1

C �ni

�
.1 � 10�11/

1

500

�
1 �

1

Q
ni
1

�
:

This in turn is at least =1000. Since Ri is a union of sets of the form
S
j<j0

Uj , we have

Nd.ƒ�.s/ � Ri ; �.s/ � Ri / �


1000
:

Since
S
i<i� Ri has density at least 1 � 10�9 ifB is the principalM -block of s, it follows

that
Nd.ƒ�.s � B/; �.s/ � B/ >



104
:

However, this contradicts inequality (8.5).

Corollary 91. Let Kc be a circular system built from a circular construction sequence
satisfying the timing assumptions. Then ˇ is a central value if and only if there is an
element � 2 ¹T n W n 2 Nº with �� D �ˇ . It follows that for each construction sequence
hkn; ln W n 2 Ni satisfying the numerical requirements collected in Section 11, the central
values form a subgroup of the unit circle.

Proof. Theorem 84 says that if ˇ is central, there is a � 2 ¹T n W n 2 Nº with �� D �ˇ .
Theorem 90 is the converse. To see the last statement, we prove in Section 10 that for
every coefficient sequence satisfying the numerical requirements, we can find a circular
construction sequence satisfying the timing assumptions.

8.2.4. Isomorphisms between Kc and .Kc/�1. We now prove a theorem closely related
to Theorem 90.
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Theorem 92. Suppose that .Kc ;B; �; sh/ is a circular system built from a circular con-
struction sequence satisfying the timing assumptions. Suppose that

� W .Kc ;B; �; sh/! ..Kc/�1;B; �; sh/

is an isomorphism. Then �� D \ ı �ˇ for some central value ˇ.

Proof. We concentrate here on the differences with the proof of Theorem 90. The general
outline is the same: Fix a �. Then there is a unique ˇ such that �� D \ ı �ˇ . Suppose
that ˇ is not central. Choose a stationary code ƒ� that well approximates � in terms of
Nd distance (say within =1010), and derive a contradiction by choosing a large M and

getting lower bounds for Nd distance along the principal M -block of a generic s.
This is done by first comparing a typical s with �ˇ .s/. As in Theorem 90, a definite

fraction of a large principal M -block of s is misaligned with �ˇ .s/. But most of the
n-blocks of �ˇ .s/ are aligned with reversed n-blocks of \.�ˇ .s// that have been shifted
by a very small amount. This can be quantified by looking at the codes Nƒn for large n,
which agree with \ on the M -block of �ˇ .s

�/.
Here are more details. Recall \ is the limit of a particular sequence of stationary codes

h Nƒn W n 2 Ni. The proof of Theorem 60 showed that for almost all s� 2K for all large
enough n the principal n-blocks of Nƒn.s�/ and NƒnC1.s�/ agree. Fix a generic s 2 Kc

and a large N such that:
(1) the code ƒ� codes � well on the principal n-block of s for all n � N ,
(2) for all n � N the principal n-blocks of Nƒn.�ˇ .�.s/// and NƒnC1.�ˇ .�.s/// agree,
(3) s is mature at N ,
(4) the length of ƒ is very small relative to N , and
(5) lN is very large.
Comparing �.s/ and �ˇ .�.s//, Lemma 83 gives us an M > N and a red zone in the
principal M -block s. We assume that the red zones take up at least 1 � 10-9 proportion
of the principal M -block and have the form given in Lemma 83.

We will derive a contradiction by showing that ƒ� cannot code well. This is done
by considering the blocks of �.s/ that are lined up with the red zones of the principal
M -block of s and using Lemma 89 to see that ƒ� cannot code well on these sections.
This is possible because the mismatched n-blocks of �ˇ .�.s// are lined up closely with
the n-blocks of \.�ˇ .�.s/// D ��.s/. Explicitly: Use Lemma 83 to choose red zones
hRi W i < i

�i that take up a 1 � 10�9 proportion of the principal M -block of s.35

The boundary portions of n-words with n < M C 1 take up at most 2=lM proportion
of the overlap of the principal M -blocks of s and �.s/. Since this proportion is so small,
Remark 22 allows us to completely ignore blocks corresponding to ni -words in s that are
lined up with boundary in �.s/ and vice versa.

We now examine the how \.�ˇ .�.s/// compares with �ˇ .�.s//. Temporarily denote
�ˇ .�.s// by s0. By the choice of s, for all n 2 ŒN;M� the alignments of the principal
n-blocks of Nƒn.s0/ and NƒM .s0/ agree.

35We use the notation in Lemma 83 and Theorem 60.
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The red zones of s� line up blocks of the form u
s
ni
0

j with blocks of the form v
s
ni
0

jCt

occurring in s0 that are shifted by dni .s/ (so t ¤ 0). Except for those blocks that line
up with boundary portions of \.s0/ these blocks are lined up with blocks of the form
shAni .rev.vkni�.jCt/�1// in \.s0/.36 Inequality (5.17), says that Ani < 2qni�1. In partic-
ular, the blocks of powers of vjCt are lined up with a very small shift of rev.vkni�.jCt/�1/
in \.s0/.

Thus vast majority of blocks Uj that are positions of u
s
ni
0

j in s� are lined up with
a shift by less than qni of a block of \.s�/ in a position of

v
s
ni
0

kni�.jCt/�1

in \.s0/ . Consider s and �.s/. Suppose that uj are the ni -words of s corresponding to the
Uj and vkni�.jCt/�1 are the ni -words of �.s/ across from them. By axiom (T5a), at most

1

Q
ni
1

C �ni

of the j < j0 happen to have Œuj �1 2 G
ni
1 Œvkni�.jCt/�1�1. At least

1 �
1

Q
ni
1

C �ni

proportion of the powers of uj the Nd -distance between ƒ� and � is at least

1

500

�
1 �

1

Qn
1

�
:

It follows that on Ri the Nd -distance is at least =1000. If we choose
S
i<i� Ri to have

density at least 1 � 10�9 and let B be the principalM -block of s, then (as in Theorem 90)

Nd.ƒ�.s � B/; �.s/ � B/ > =104;

a contradiction.

8.3. Synchronous and anti-synchronous isomorphisms

View a circular system .Kc ;B; �; sh/ as an element T of the space MPT endowed with
the weak topology.

Theorem 93. Suppose that Kc is a circular system satisfying the timing assumptions.
Then:

(1) If there is an isomorphism � W Kc ! Kc such that � … ¹T n W n 2 Zº, there is an iso-
morphism  W Kc ! Kc such that  … ¹T n W n 2 Zº and  � is the identity map.

(2) If there exists an isomorphism � W Kc ! .Kc/�1, then there exists an isomorphism
 W Kc ! .Kc/�1 such that  � D \.

36See the qualitative discussion of \ that occurs after its definition in [12].
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Proof. To see assertion (1), let � W Kc ! Kc be an isomorphism with � … ¹T n W n 2 Zº.
Then by Theorem 90, �� D �ˇ for a central ˇ. Corollary 91 implies that there exists
a � 2 ¹T n W n 2 Nº such that �� D ��ˇ . Then � ı � W Kc ! Kc is an isomorphism such
that .� ı �/� is the identity map. Since ¹T n W n 2 Nº is a group, � ı � … ¹T n W n 2 Nº.

The proof of assertion (2) is very similar. Suppose that � W Kc ! .Kc/�1 is an iso-
morphism. Then, by Theorem 92, �� D \ ı �ˇ for a central ˇ. Let � 2 ¹T n W n 2 Nº
be such that �� D ��ˇ . Then � ı � is an isomorphism between Kc and .Kc/�1 with
.� ı �/� D \.

9. The proof of the main theorem

In this section we prove the main theorem of this paper, Theorem 2. By Fact 24, it suffices
to prove the following:

Theorem 94. There is a continuous function F s W Trees! Diff1.T2; �/ such that for
T 2 Trees, if T D F s.T /,

(1) T has an infinite branch if and only if T Š T �1,

(2) T has two distinct infinite branches if and only if

C.T / ¤ ¹T n W n 2 Zº:

We split the proof of this theorem into three parts. In the first we assume the timing
assumptions hold, define F s and show that it is a reduction. In the second part we show
that F s is continuous.

The third part of the proof augments the specifications of [8] with two additional
randomness properties, shows that the additional properties imply the timing assump-
tions and describes how to perform the word construction from [8] with these additional
requirements. We present the third part of the proof separately in Section 10.

We begin by defining F s . The main result of [8] relied on the construction of a con-
tinuous function F W Trees!MPT such that for all T 2 Trees, if S D F.T /, then:

Fact 1. The tree T has an infinite branch if and only if S Š S�1.

Fact 2. The tree T has two distinct infinite branches if and only if

C.S/ ¤ ¹Sn W n 2 Zº:

Fact 3. The function F took values in the strongly uniform odometer based transforma-
tions and for S in the range of F , S Š S�1 if and only if there is an anti-synchronous
isomorphism � between S and S�1.

Fact 4 ([8, Corollary 40, p. 1565]). If S is in the range of F and C.S/ ¤ ¹Sn W n 2 Zº,
then there is a synchronous � 2 C.S/ such that for some n, non-identity element g 2 Gn1
and all generic s 2 K and all large enough m, if u and v are the principal m-subwords of
s and �.s/ respectively, then

Œv�1 D gŒu�1:
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Fact 5 ([8, Equations 1 and 2 on p. 1546 and p. 1547]). For all n0 there is anM such that
if T and T 0 are trees and37

T \ ¹�n W n �M º D T 0 \ ¹�n W n �M º;

then the first n0-steps of the construction sequences forF.T / are equal to the first n0-steps
of the construction sequence for F.T 0/; i.e. hWk.T / W k < n0i D hWk.T

0/ W k < n0i.

Fact 6. The construction sequence for F.T / satisfies the specifications given in [8]. In
Section 10.2, these specifications are augmented by the addition of (J10.1) and (J11.1).
In Section 10.3 we argue that if hWn W n 2 Ni is a construction sequence for an odome-
ter based system that satisfies the augmented specifications, then the associated circular
construction sequence hWc

n W n 2 Ni satisfies the timing assumptions.
Moreover, the construction sequence for F.T / is strongly uniform and hence the

construction sequence for F ı F.T / is strongly uniform.

Fact 7. Construction sequences satisfying the augmented specifications are easily built
using the techniques of [8] with no essential changes; consequently we can assume that
the construction sequences for F.T / satisfy the augmented specifications.

In [11, Theorem 60] it is shown that if hW c
n W n 2 Ni is a strongly uniform circular

construction sequence with coefficients hkn; ln W n 2 Ni, where hln W n 2 Ni grows fast
enough and jWc

n j goes to infinity then there is a smooth measure preserving diffeomor-
phism T 2 Diff1.T2; �/ measure theoretically isomorphic to Kc . This gives a map R
from circular systems with fast growing coefficients to Diff1.T2; �/.

If F is the canonical functor from odometer systems to circular systems, we define

F s D R ı F ı F

(see Figure 3).

!
!
!
!
!

!
!
!
!
!
!
!
!

! !

Trees Odometer
Based

Circular
Systems

Di↵1(T2,�)

F

F s

R

F

Fig. 3. The definition of F s .

37See Section 4.6 for notation.
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9.1. F s is a reduction

Because R preserves isomorphism, to show that F s D R ı F ı F is a reduction, it is
suffices to show that F ı F is a reduction. Let S be the transformation corresponding to
the system K D F.T / and T the transformation corresponding to Kc D F ı F.T /.

Item (1) of Theorem 94. Suppose that T is a tree and T has an infinite branch. By Facts 1
and 3, there is an anti-synchronous isomorphism � W K! K�1. By [12, Theorem 105],
if Kc D F .K/, there is an isomorphism �c W Kc ! .Kc/�1.

Now suppose that F s.T / Š .F s.T //�1. Then we have Kc Š .Kc/�1. By Fact 6,
the construction sequence hWc

n W n 2 Ni for F s.T / satisfies the timing assumptions. By
Theorem 93, there is an anti-synchronous isomorphism �c W Kc ! .Kc/�1. Again by
[12, Theorem 105], there is an isomorphism between K and K�1. By [8], T has an infinite
branch.

Item (2) of Theorem 94. Suppose that T has at least two infinite branches. Then the
centralizer of S D F.T / is not equal to the powers of S . By Fact 4, we can find a syn-
chronous � 2 C.S/ n ¹Sn W n 2 Zº. Let  D F .�/; then  is synchronous. We claim
that  … ¹T n W n 2 Zº. Using Fact 4, and lifting the group action of Gn1 and the equiva-
lence relation Qn

1 , we see that for all generic sc 2 Kc , and all large enough m, if uc and
vc are the principal m-subwords of sc and  .sc/, respectively, then

Œvc �1 D gŒu
c �1

for some g ¤ e. In particular, Œvc �1 ¤ Œuc �1.
By the timing assumption (T4), there is a  > 0 such that for all large m and all

shifts A with jAj of size less than qm=2, we have

Nd.T A.uc/; vc/ > : (9.1)

Suppose that  2 ¹T n W n 2 Zº. Then, by Proposition 21, we can find an A 2 Z and
a generic sc such that

Nd.T A.sc/;  .sc// < =2: (9.2)

But inequality (9.2) and the Ergodic Theorem imply that for large enough m� A if uc

and vc are the principal m-blocks of sc and  .sc/, then
Nd.T A.uc/; vc/ < ;

contradicting inequality (9.1).
Now suppose that there is a  2 C.T / such that  … ¹T n W n 2 Zº. Then by Theo-

rem 93, there is such a  that is synchronous. In particular, for all n,  ¤ T n. Thus if
S is the transformation corresponding to F.T /, then F �1. / belongs to the centralizer
of S and is not a power of S .

9.2. F s is continuous

Fix a metric d on Diff1.T2; �/ yielding the C1-topology. For each circular system T ,
let hP Tn W n 2 Ni be the sequence of collections of prewords used to construct T . By
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[11, Proposition 61], given T D F s.T / and a C1-neighborhood B of T , there is a large
enoughM , for all S 2 range.R/ if hP Sn W n �M i D hP

T
n W n �M i, then S 2 B . For all

odometer based transformations, the sequence hWn W n �M i determines hPn W n �M i.
Hence for all T 0, if the first M members of the construction sequence for F.T 0/ are the
same as the first M members of the construction sequence for F.T /, then F.T 0/ 2 U .
By Fact 5, there is a basic open interval V � Trees that contains T and is such that the
firstM members of the construction sequence are the same for all T 0 2 V . It follows that
for all T 0 2 V; F s.T 0/ 2 U .

9.3. Numerical requirements arising from smooth realizations

The construction of R depends on various estimates that put lower bounds on the growth
of the coefficient sequences. We now list these numerical requirements. The claims in this
subsection presuppose a knowledge of [11].

The map R depends on various smoothed versions hsn of the permutations hn of the
unit interval arising from hWn W n 2 Ni. To solve this problem, we fix in advance such
approximations, making sure that each approximation hsn agrees sufficiently well with hn
as to not disturb the other estimates.

This introduces various numerical constraints on the growth of the coefficients ln. The
diffeomorphism T is built as a limit of periodic approximations Tn. To make the sequence
of Tn converge at each stage, ln must be chosen sufficiently large. Thus the growth rate
of ln depends on hkm; sm; hm W m � ni; hlm W m < ni, snC1; hnC1. Since there are only
finitely many possibilities for sequences hhm W m � ni corresponding to a given sequence
hkm W m � ni, hsm W m � nC 1i, we can find one growth rate that is sufficiently fast to
work for all choices of permutations hm. This is discussed in detail in [11, p. 34], where
the lower bound is called l�n .

Numerical Requirement 6. The coefficient ln is big enough relative to a lower bound
determined by hkm; sm W m � ni, hlm W m < ni and snC1 to make the periodic approxi-
mations to the diffeomorphism converge. Moreover, kn � ln.

Remark 95. Choosing ˛nC1 close to ˛n is a fundamental idea of the method of Approx-
imation by Conjugacy, due to Anosov and Katok. By equations (5.5) and (5.6), this is
equivalent to taking ln large. The magnitude of ln is not calculated, but instead it shown
that as ln increases a sequence of periodic diffeomorphisms well approximates a given
periodic diffeomorphism. Then in the original sources [1] and [18], one simply takes ln
sufficiently large. This is what Numerical Requirement 6 is repeating.

The argument for the ergodicity of the diffeomorphism formally required that:

Numerical Requirement 7. We have sn !1 as n!1, snC1 is a multiple of sn.

The reader is referred to Example 5 for a discussion of s.n/ and its growth.
The next requirement makes it possible to choose snC1 and then, by making kn

sufficiently large, construct snC1 sufficiently random words using elements of Wn.

Numerical Requirement 8. We have snC1 � s
kn
n .
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10. The specifications

In this section we describe how the timing assumptions are related to the specifications
given in [8], show that they are compatible and indicate how to construct odometer words
so that both sets of assumptions hold. This completes the proof of Theorem 94, subject to
the verification that all of the numerical requirements we have introduced are consistent
with the numerical requirements of [8]. We take this up in Section 11. We will assume
that the reader is familiar with [8, Sections 7 and 8].

10.1. Corresponding specifications

Table 1 links the timing assumptions we use in this paper to the corresponding specifi-
cation in [8]. (We remind the reader that Appendix A has a table giving corresponding
notation between [8] and this paper.)

Timing assumption Specification

(T1) Q5
(T2) Q7
(T3) A8
(T4) New
(T5) J10
(T6) J10
(T7) J11

Tab. 1. The specifications in [8] related to the timing assumptions in this paper.

Specification (T4) does not directly correspond to one of the specifications, but (as
we will show) holds naturally in the circular words lifted from an odometer construction
satisfying the specifications.

Numerical Requirement 9. In the current construction we have two summable sequen-
ces: h�n W n 2 Ni and h"n W n 2 Ni. We use the lunate “�n” notation for the specifica-
tions from [8] and the classical “"n” notation (“varepsilon” in LaTeX) for the numeri-
cal requirements relating to circular systems and their realizations as diffeomorphisms.
A requirement for the construction is that

�n < "n:

We also assume that the �n are decreasing and �0 < 1=40.

10.2. Augmenting the specifications from [8]

The paper [8] constructs a reduction F from the space of trees to the odometer based
systems. The system K D F.T / was built according to a list of specifications which we
reproduce here in order to show how to strengthen them to imply the timing assumptions
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used in the proofs of Theorems 93 and 94 and to verify that the strengthened assump-
tions are consistent. The specifications directly relevant to the timing assumptions are
(J10) and (J11). The others, which describe the scaffolding for the construction, are only
relevant in that they set the stage for the application of the functor F defined in Section 5.

Here are some definitions from [8] that are used in the specifications. We advise
the reader that a table giving the notational changes between [8] and this paper is in
Appendix A.

Fix an enumeration of the finite sequences of natural numbers, h�n W n 2 Ni, with the
property that if � is an initial segment of � , then � is enumerated before � . Let T be
a tree whose elements are h�ni W i 2 Ni. Here are the specifications for the construction
sequence W D W.T / used to build F .T /.

There is a sequence of groups Gns built as follows. For all n, Gn0 is the trivial group
.e/ and if we let

Xns D ¹�ni W i � n and �ni has length sº;

then
Gns D

X
�2Xns

.Z2/� ;

i.e. Gns is a direct sum of copies of Z2 indexed by elements of Xns . There are canoni-
cal homomorphisms from GnsC1 to Gns that send a generator of GnsC1 corresponding to
a sequence of the form �_j to the generator of Gns corresponding to � .

The sequence hWn W n 2 Ni, equivalence relations Qn
s and the group actions of Gns

are constructed inductively. The words in Wn are sequences of elements of† D ¹0; 1º. To
start, W0 D ¹0; 1º and Q0

0 is the trivial equivalence relation with one class. The collection
of words Wn is built when the n-th element of T is considered. We will say that words in
Wn have even parity and words in rev.Wn/ have odd parity.

We begin by restating the specifications from [8] using the indexing conventions in
this paper (n 7! nC 1 vs m 7! n). (E1)–(A9) are exactly the same, however we modify
the joining specifications (J10), (J11) slightly for the needs of this paper.
(E1) Any pair w1; w2 of words in Wn have the same length.
(E2) Every word in WnC1 is built by concatenating words in Wn. Every word in Wn

occurs in each word of WnC1 exactly p2n times, where pn is a large prime number
chosen when the n-th element of T is considered.

(E3) (Unique readability) If w 2 WnC1 and

w D pw1 : : : wks

where each wi 2 Wn and p or s are sequences of 0’s and 1’s that have length less
than that of any word in Wn, then both p and e are the empty word. Ifw;w0 2 WnC1

are such that w D w1w2 : : : wkn and w0 D w01w
0
2 : : : w

0
kn

with wi ; w0i 2 Wn, and
k D Œkn=2�C 1, then we have wkwkC1 : : : wkn ¤ w

0
1w
0
2 : : : w

0
kn�Œk��1

, i.e. the first
half of w0 is not equal to the second half of w.

Let s.n/ be the length of the longest sequence among the first n sequences in T and if
T D h�ni W i 2 Ni, then M.s/ is the least i such that �ni has length s.
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The equivalence relations Qn
s on Wn are defined for all s � s.n/. The equivalence

relation Q0
0 on W0 is the trivial equivalence relation with one class.

(Q4) Suppose that n DM.s/. Then any two words in the same Qn
s equivalence class

agree on an initial segment of proportion least .1 � �n/.
(Q5) For n �M.s/C 1, Qn

s is the product equivalence relation of Q
M.s/
s . Hence we

can view Wn=Q
n
s as sequences of elements of WM.s/=Q

M.s/
s and similarly for

rev.Wn/=Q
n
s .

(Q6) Qn
sC1 refines Qn

s and each Qn
s class contains 2e.n/ many Qn

sC1 classes, where e is
a strictly increasing function. The speed of growth of e is discussed in Section 11.

(A7) Gns acts freely on Wn=Q
n
s [ rev.Wn=Q

n
s / and the Gns action is subordinate to the

Gns�1 action via the natural homomorphism �s;s�1 from Gns to Gns�1.
(A8) The canonical generators of GM.s/s send elements of WM.s/=Q

M.s/
s to elements of

rev.WM.s//=Q
M.s/
s and vice versa.

(A9) If M.s/ � n and we view
GnC1s D Gns ˚H;

the action of the group Gns on Wn=Q
n
s [ rev.Wn=Q

n
s / is extended to an action on

WnC1=Q
nC1
s [ rev.WnC1=Q

nC1
s / by the skew diagonal action. If H is non-trivial,

then H D Z2 and its canonical generator maps WnC1=Q
nC1
s to rev.WnC1=Q

nC1
s /.

Note. While it is not explicitly given as a specification in [8], the construction sequence
has the property that if g 2 Gns is a canonical generator, then for m > n;Wm=Q

m
s is

closed under the skew diagonal action of g.

Suppose that u and v are elements of WnC1 [ rev.WnC1/ and .u0; v0/ an ordered pair
from Wn [ rev.Wn/. Suppose that u and v are in positions shifted relative to each other
by t units. Then an occurrence of .u0; v0/ in .sht .u/; v/ is a t 0 such that u0 occurs in u
starting at t C t 0 and in v starting at t 0. LetQn

s be the number of classes of Qn
s and let C ns

be the number of elements of each Qn
s class.38

To prove the timing assumptions, we need to strengthen specifications (J10) and (J11)
to deal with Nd -distance on initial and tail segments and on words that are shifted. The spirit
of specification (J10) is that pairs of n-words .u0; v0/ occur randomly in the overlap of u
and v when u is shifted by a suitable multiple t of the lengths of n-words. Specification
(J10.1) says the same thing relative to non-trivial initial segments of the overlap of the
shift of u and v.

Specification (J11) says that if Œu�s is in the Gns -orbit of Œv�s and s is maximal with
this property, then the occurrences of .u0; v0/ are approximately conditionally random.
More explicitly, suppose that gŒu�s D Œv�s , and we are given u0 2 Wn. Then there areQn

s

many pairs of Qn
s -classes .Œu��s; Œv��s/ with gŒu��s D Œv��s , and so .Œu0�s; Œv0�s/ should

occur randomly 1=Qn
s proportion of the time. There are C ns many elements of Wn in

38We have changed the variables used in the statement of J10 in [8] to conform to the notation
described in Appendix A.
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the Qn
s -classes, and conditional on gŒu0�n D Œv0�n, the chances of such a pair .u0; v0/

randomly matching is 1=.C ns /
2. Specification (J11.1) strengthens this (but only for Qn

0 ,
which is the trivial equivalence relation and Gn0 D hei) by asking that this holds over any
non-trivial interval of length j0Kn at the beginning or end of an nC 1-word.

Here are the joining specifications as given in [8]:
(J10) Let u and v be elements of WnC1 [ rev.WnC1/. Let 1 � t < .1 � �n/.kn/ be an

integer. Then for each pair u0; v0 2 Wn [ rev.Wn/ such that u0 has the same parity
as u and v0 has the same parity as v, let r.u0; v0/ be the number of occurrences of
.u0; v0/ in .shtKn.u/; v/ on their overlap. Thenˇ̌̌̌

r.u0; v0/

kn � t
�
1

s2n

ˇ̌̌̌
< �n:

(J11) Suppose that u 2 WnC1 and v 2 WnC1 [ rev.WnC1/. We let s D s.u; v/ be the
maximal i such that there is a g 2 Gni such that gŒu�i D Œv�i . Let g D g.u; v/ be
the unique g with this property and .u0; v0/ 2 Wn � .Wn [ rev.Wn// be such that
gŒu0�s D Œv

0�s . Let r.u0; v0/ be the number of occurrences of .u0; v0/ in .u; v/. Thenˇ̌̌̌
r.u0; v0/

kn
�

1

Qn
s

�
1

C ns

�2 ˇ̌̌̌
< �n:

The strengthening of (J10) is:
(J10.1) Let u and v be elements of WnC1 [ rev.WnC1/. Let 1 � t < .1 � �n/.kn/. Let j0

be a number between �nkn and kn � t . Then for each pair u0; v0 2 Wn [ rev.Wn/

such that u0 has the same parity as u and v0 has the same parity as v, let r.u0; v0/
be the number of j < j0 such that .u0; v0/ occurs in .shtKn.u/; v/ in the .jKn/-th
position in their overlap. Thenˇ̌̌̌

r.u0; v0/

j0
�
1

s2n

ˇ̌̌̌
< �n:

The next assumption is a strengthening of a special case of (J11).
(J11.1) Suppose that u 2 WnC1 and v 2 WnC1 [ rev.WnC1/ and Œu�1 … Gn1 Œv�1.39 Let

j0 be a number between �nkn and kn. Suppose that I is either an initial or a tail
segment of the interval ¹0; 1; : : : ; KnC1 � 1º having length j0Kn. Then for each
pair u0; v0 2 Wn [ rev.Wn/ such that u0 has the same parity as u and v0 has
the same parity as v, let r.u0; v0/ be the number of occurrences of .u0; v0/ in
.u � I; v � I /. Then ˇ̌̌̌

r.u0; v0/

j0
�
1

s2n

ˇ̌̌̌
< �n:

We have augmented the specifications in [8] with (J10.1) and (J11.1). Formally, we must
argue that it is possible to build construction sequences satisfying the additional specifi-
cations. This means constructing snC1 many pseudo-random words. This is done using

39In the language of (J11): s.u; v/ D 0, Qn0 D 1 and Cn0 D sn.
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a routine modification of the techniques of [8], where the collections of words Wn are
built probabilistically. For n � 1 the words in WnC1 are built by iteratively substituting
words into KnC1=KM.i/-sequences of classes Qn

i , by induction on i � i�, where i� is
maximal with M.i�/ � n. The classes of words WnC1=Q

i
nC1 are built by induction on i .

A wordw 2 WnC1=Q
nC1
iC1 (or in WnC1 if i D i�) can be viewed as a result of substituting

elements of Wn=Q
n
iC1 (or Wn) into a word in WnC1=Q

nC1
i .

Suppose that Œw�i 2 WnC1=Q
nC1
i has been built and is given by KnC1=KM.i/ many

consecutive classes C1C2 : : : CKnC1=KM.i/ . Then Œw�iC1 2
Q
j<KnC1=KM.i/

Cj . Viewing
these as independent trials and taking kn large enough (so thatKnC1=KM.i/ is very large)
the finitary Law of Large Numbers shows that the vast majority of choices of 2e.n/ words
satisfy (J10), (J10.1), (J11) and (J11.1):

Remark 96. As noted in Example 5, given the number of substitutions to be made (which
is one more than the maximal s such that Qn

s is defined) and the size of the groups Gns
one can give an explicit formula relating the sizes of e.nC 1/ and snC1. Given one of the
two, one can solve for the other. Moreover, when one goes up the other does as well. This
co-determination means that the requirements can be stated in terms of either variable.
We state the requirements in terms of the sn.

In the construction, getting the additional .1 for (J10) and (J11) only involves taking
kn larger than was necessary in [8]. This is described in this notation in [7].

This leads to a numerical requirement:

Numerical Requirement 10. The number kn is chosen sufficiently large relative to
a lower bound determined by snC1 for the Law of Large Numbers arguments to work.

10.3. Verifying the timing assumptions

In this subsection we prove that the augmented specifications (E1)–(J11.1) imply the
timing assumptions, introduced in Section 8.2.1. The first three timing assumptions, i.e.
(T1)–(T3), follow easily from the results in Section 5.10 together with specifications (Q5),
(A7) and (A8).

The following remark is easy and illustrates the idea behind the demonstrations of
(T4)–(T7).

Remark 97. Suppose that L is an alphabet with s symbols in it and C �L with jC j D C .
For u; v words in L of the same length and x; y 2 L, set r.x; y/ to be the number of
occurrences of .x; y/ in .u; v/, r.x;C/ to be the number of occurrences of some element
of C opposite an occurrence of x in u and f .x/ to be the number of occurrences of x
in u. Then for all � > 0 there is an � D �.�; s/ such that whenever u; v are two words in
L of the same length `, if for all x; y 2 L,ˇ̌̌̌

r.x; y/

`
�
1

s2

ˇ̌̌̌
< �;

then for all x, ˇ̌̌̌
r.x;C/

f .x/
�
C

s

ˇ̌̌̌
< �:
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Proof. Because f .x/ D
P
y r.x; y/, by taking � sufficiently small we can arrange that

f .x/

`
�
1

s
;

and the approximation improves as � gets smaller. Simplemindedly,

r.x; y/

f .x/
D
r.x; y/

`

`

f .x/
�

1

s2
s �

1

s
:

Since r.x;C/ D
P
y2C r.x; y/, we see that

r.x;C/

f .x/
�
C

s
:

As we take � smaller, the final approximation improves.

We now establish the timing assumptions (T4)–(T7). Recall that in the context of the
timing assumptions the notation a � b means that ja � bj < �n.

Assumption (T5). Assume that specification (J10) holds for sufficiently small �n. To use
Remark 97 to see (T5), take L D Wn, the number f .x/ to be jJ.v/j and C to be the
cardinality of any equivalence class of Qn

1 and s D sn. Since each class of Qn
1 has the

same number of elements, s
C

is equal to the number of classes: s
C
D Qn

1 . Thus C
s
D

1
Qn
1and (T5) follows.

Assumption (T6). We can write the set S as

S D
[
v2Wc

n

[
g2Gn

1

¹k < j0 W v D wk and w0kCt 2 gŒv�1º:

which can be written in turn as

S D
[
v2Wc

n

[
g2Gn

1

[
v02gŒv�1

¹k < j0 W v D wk and w0kCt D v
0
º:

Thus, using (J10.1), we can estimate the size of S as

jS j � snjG
n
1 jC

n
1

�
j0

s2n

�
:

Since C n1 D
sn
Qn
1

, we can simplify this to jG
n
1
j

Qn
1

j0. Assumption (T6) follows.

Assumption (T7). Under the assumption that Œw01�1 … G
n
1 Œw0�1, s D 0 and Qn

0 is the
trivial equivalence relation. The estimate in (J11) simplifies toˇ̌̌̌

r.u0; v0/

kn
�
1

s2n

ˇ̌̌̌
< �n: (10.1)

To apply Remark 97, we again set L D Wn and x D v and jJ.v/j D f .x/, in the lan-
guage of the remark. With this notation, l D kn and equation (10.1) is the hypothesis of
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Remark 97. The conclusion of the remark is that
j¹t 2 J.v/ W C occurs at t in Œu01�1Œu

0
2�1 : : : Œu

0
kn�1

�1ºj

jJ.v/j
�
C 1n
sn
: (10.2)

Since C1n
sn
D

1

Q1n
, assumption (T7) follows.

Note that the verification of (T5)–(T7) uses Remark 97 for a small enough �.�n; sn/.
We make this a requirement on �n.

Numerical Requirement 11. The number �n is sufficiently small relative to �n that the
timing assumptions (T5)–(T7) hold.

Assumption (T4). Note that (T4) is the hardest timing assumption to verify. We motivate
the proof by remarking that if u; v are long mutually random words in a language L that
has s letters, then Nd.u; v/ � 1 � 1=s2. Thus u and v are far apart. Specifications (J10.1)
and (J11.1) imply that most .u; v/ and their relative shifts are nearly mutually random.
We use this to establish that w0 and w1 are distant in Nd .

Numerical Requirement 12. One has �0k0 > 20, the �nkn are increasing and
P
1=�nkn

is finite.

Let
1 D .1 � 1=4 � �0/.1 � 1=�0k0/.1 � 1=l0/:

For n � 2, set

n D 1
Y

0<m<n

.1 � 10.1=km�m C 1=qm C 1=lm C 1=Q
m
1 C �m�1//

and finally

 D 1
Y
0<m

.1 � 10.1=km�m C 1=qm C 1=lm C 1=Q
m
1 C �m�1//:

Assumption (T4) says that if w0; w1 2 Wc
n [ rev.Wc

n/ are not Qn
1-equivalent, then

the overlaps of sufficiently long initial segments, or sufficiently long tail segments or of
a sufficiently long initial segment with a tail segment of w0 and w1 are at least  distant
in Nd . In (T4) sufficiently long means at least half of the length of the word. We prove
something stronger by induction on n:

Proposition 98. Let n � 0 and w0; w1 2 Wc
nC1 [ rev.Wc

nC1/ with Œw0�1 ¤ Œw1�1. Let
I be an initial segment and let T be a tail segment of ¹0; 1; : : : ; qnC1 � 1º of the same
length ` > �nqnC1. Then we have

Nd.w0 � I; w1 � I / � nC1; (10.3)
Nd.w0 � T;w1 � T / � nC1; (10.4)
Nd.w0 � I; w1 � T / � nC1: (10.5)

Proof. We will consider the situation where w0; w1 2 Wc
nC1. The situation where they

both belong to rev.Wc
nC1/ follows, and the argument in the case where w0; w1 have

different parities is a small variation of the basic argument.
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The strategy for the proof is to consider nC 1-words w0 and w1 and gradually elim-
inate small portions of I and T so that we are left with only segments of n-words that
align in w0 and w1 in such a way that they have large Nd -distance. The remaining portions
of the w0 and w1 are far apart and they constitute most of the segments of each word. By
Remark 22, we get an estimate on the distance of w0 and w1.

Suppose that
w0 D C.u0; u1; : : : ; ukn�1/;

w1 D C.v0; v1; : : : ; vkn�1/;

and let u0i D c
�1
n .ui /; v

0
i D c

�1
n .vi /.

A general initial segment w � I of a word w 2 Wc
nC1 has the following form with

q D qn; k D kn; l D ln. For some 0 � i0 � qn; 0 � j0 � kn,Y
i<i0

�Y
j<k

bq�jiwl�1j eji
�
�

� Y
j<j0

bq�ji0wl�1j eji0

�
� .bq

�

wl
�

j0
w�ej

�

/;

wherew� is a possibly empty, possibly incomplete n-word, 0 � j � < ji0 , 0 � l� � l �1,
0 � q� � q � ji0 . This is a block of complete 2-subsections, followed by a block of
complete 1-subsections, followed by a possibly empty, incomplete 1-subsection.

Similarly, a general tail segment w � T as the following form:

.bq
�

w�wl
�

j0
ej
�

/ �

� Y
j0�j<k

bq�ji0wl�1j eji0

�
�

Y
i0�i<q

�Y
j<k

bq�jiwl�1j eji
�
:

Initial segments. We now argue for inequality (10.3). To start, we take n D 0. In this case
q0 D 1 and q1 D k0l0. The initial segment wi � I are of the formY

j<j0

bw
l0�1
j � u;

where u is a proper initial segment of a word of the form bw
l0�1
j0

that has length M , for
some M < l0.

If we throw away the tail segment u, we have thrown away proportion M=�0k0l0.
SinceM < l0, we have removed a portion of less than �0k0 and the segment I0 that is left
has proportion at least 1 � .1=�0k0/ and is made up of a product of j0 many 1-subsections.

We now consider n > 0. Since �nqnC1 D .�nknlnqn/�qn, one of the following holds:
(1) There are no complete 2-subsections, in which case we must have j0 C 1 > �nknqn.
(2) There is at least one complete 2-subsection and j0 � �nkn.
(3) There is at least one complete 2-subsection and j0 < �nkn.
In the first case, since j0 C 1 > �nknqn, we know that j0 > �nkn. Thus eliminating the
partial 1-subsection at the end we are left with a concatenation of at least �nkn complete
1-subsections and we have removed less than 1=�nkn portion of I . Similarly in the second
case we can eliminate the incomplete 1-subsection at the end by removing proportion less
than 1=�nkn of I . In the final case by removing both the final incomplete 1-subsection
and .

Q
j<j0

bq�ji0wl�1j eji0 / we eliminate at most 1=qn proportion of I .
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In all three cases, we are left an I0 such that w0 � I0 and w1 � I0 are made up of
a possibly empty initial segment of complete 2-subsections followed either by no com-
plete 1-subsections or at least �nkn complete 1-subsections. We now delete the boundary
portions ofw0 � I0, which are aligned with the boundary portions ofw1 � I0. These have
proportion 1=ln in each complete 1-subsection – hence proportion 1=ln of I0. Let I1 be
the remaining portion of I . Then I1 contains proportion at least

.1 � 1=�nkn � 1=qn/.1 � 1=ln/

of I .

Case 1: Œw0�1 … Gn1 Œw1�1.40 Let u0 be the concatenation of .u00; u
0
1 : : : u

0
kn�1

/, and v0 sim-
ilarly the concatenation of the v0i . Then u0; v0 2 WnC1 and Œu0�1 … Gn1 Œv

0�1. Let u; v 2 Wn

and I � be an initial or final segment of ¹0; 1; : : : ; kn � 1º of length at least �nkn.

Sublemma 99. If �n is sufficiently small as a function of Qn
1 , then

j¹i 2 I � W Œu0i �1 D Œv
0
i �1ºj

jI �j

is within 1
Qn
1

of 1
Qn
1

.

Proof. Let .u�; v�/ be the concatenations of ¹u0i W i 2 I
�º and ¹v0i W i 2 I

�º. By (J11.1),
we see that the number r.u; v/ of occurrences of .u; v/ in .u�; v�/ satisfies

r.u; v/

jI �j
�

�
1

sn

�2
: (10.6)

Fix such an I � and let C be a Qn
1-class. Then C has C n1 elements. It follows from equation

(10.6) that the number of occurrences of a pair .u; v/ in .u�; v�/ with u; v 2 C takes
proportion of jI �j approximately

.C n1 /
2

s2n
D

�
1

Qn
1

�2
Since there are Qn

1 many classes C that need to be considered we see that the number of
pairs u0i and v0i with Œu0i �1 D Œv

0
i �1 is approximately

.1=Qn
1/jI

�
j: (10.7)

Hence for small enough �n, we can see the conclusion of the sublemma.

Numerical Requirement 13. The numbers �n should be small enough as a function of
Qn
1 that estimate in the conclusion of Sublemma 99 hold:ˇ̌̌̌

j¹i 2 I � W Œu0i �1 D Œv
0
i �1ºj

jI �j
�

1

Qn
1

ˇ̌̌̌
<

1

Qn
1

: (10.8)

40We note that because G01 D hei, if n D 0 we are in Case 1.
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The locations in w0 � I1 are made up of powers ul�1i . These fall into two categories,
those locations occurring in whole 2-subsections and those occurring in the final product
of 1-subsections. Applying the previous reasoning separately to the whole 2-subsections
and the either-empty-or-relatively-long product of 1-subsections at the end of I , we see
that the proportion of ui occurring in w0 � I1 across from a vi in w1 � I1 that is Qn

1

equivalent is also extremely close to 1=Qn
1 .

If n D 0, then specification (J11.1) implies thatˇ̌̌̌
Nd.u�; v�/ �

3

4

ˇ̌̌̌
< �0:

So Nd.w0 � I1; w1 � I1/ > .1 � 1=4 � �0/ and hence

Nd.w0 � I; w1 � I / > 1:

In general, the induction hypothesis yields that Qn
1-inequivalent words have Nd -distance at

least n-apart. Thus on I1,

Nd.w0 � I1; w1 � I1/ > .1 � 2=Qn
1/n: (10.9)

Allowing for agreement on boundary portions and applying Remark 22 we see that

Nd.w0 � I; w1 � I / �
�
1 � 2

�
1

Qn
1

C
1

�nkn
C

1

qn
C
1

ln

��
n > nC1:

Case 2: Œw0�1 2 Gn1 Œw1�1. In this case n ¤ 0. Let g 2 Gn1 with gŒw1�1 D Œw0�1. Since
Œw0�1 ¤ Œw1�1, g is not the identity. SinceGn1 acts diagonally, for all i with ui intersecting
the interval I1, we have Œui �1 D gŒvi �1. In particular, Œui �1 ¤ Œvi �1.

Hence Nd.w0 � I1; w1 � I1/ � n, and thus

Nd.w0 � I; w1 � I / �
�
1 � 2

�
1

�nkn
C

1

qn
C
1

ln

��
n > nC1:

Tail segments. The argument for tail segments (inequality (10.4)) follows the argument
for initial segments, except that we delete small parts of the beginning of T , instead of the
end of I .

Tail Segments compared to initial segments. To show inequality (10.5), we proceed by
induction, considering w0; w1 2 Wc

nC1. In the comparing two initial segments or two tail
segments, not only did the 2 and 1-subsections line up, but the n-subwords did as well.
When comparing initial segments with tail segments, the n-subwords may be shifted,
causing additional complications. The proof proceeds as in the easier cases, eliminating
small sections of I (or equivalently T ) a bit at a time until we are left with n-words. The
alignment of these n-words allows us to apply the induction hypothesis and conclude that
the vast majority of I and T have Nd -distance at least n.

(a) Of the 2-subsections ofw0 that intersect I , at most one is not a subset of I (namely
the last one), and similarly except for possibly the first 2-subsection intersecting w1 � T ,
w1 � T is made up of whole 2-subsections.
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(b) Each 2-subsection of w0 � I overlaps one or two 2-subsections of w1 � T . An
overlap of a 2-subsection of w0 � I with a 2-subsection of w1 � T that has proportion
bigger than �n of the 2-subsection implies that the overlap contains at least �nkn complete
1-subsections.
(1) Among the complete 2-subsections of w0 � I , delete overlaps of proportion less

than �n.
(2) Delete the possible partial 2-subsection at the end of w0 � I if it contains less than

�nkn complete 1-subsections.
The proportion of I that has been deleted is less than 2�n.

(c) It could be that some of the portions of the remaining 2-subsections start or end
with incomplete 1-subsections; i.e. not a whole word of the form bqn�ji v

ln
j e

ji . Delete
these incomplete sections. This leaves initial or tail segments of 2-subsections of the formQ
j<kn

bqn�ji v
ln�1
j eji that consist of at least �nkn whole 1-subsections. This trimming

removes at most 1=kn�n proportion of I .
(d) We also remove the boundary sections of w0 � I . This removes at most 1=ln of

what remains of I at this stage.
(e) We are left with a portion I 0 � I such that w0 � I 0 consisting entirely of 0-sub-

sections. These are blocks of the form ul�1j , where uj 2 Wc
n . Each individual n-word ui

can occur opposite a portion of w1 � T in various ways. These are:
(i) ui might occur exactly opposite a viCt 41 or
(ii) ui might span portions of two copies of viCt in a power vl�1iCt . The two copies have

the form viCtviCt , or
(iii) ui might overlap a portion of the boundary of w1. This can happen in two ways:

boundary inside a 2-subsection (i.e. boundary of the form eji bqn�ji ) and boundary
between consecutive 2-subsections (i.e. boundary of the form eji bqn�jiC1 ). In each
u
ln�1
i there are at most three copies of ui overlapping boundary portions of w1.

Hence by removing proportion at most 4=ln we are left with a portion of w0 � I consist-
ing of powers of the words uj that do not overlap any boundary in w1.

(f) After the deletions described in (a)–(e) the remaining portions of w0 � I consists
of blocks of powers of ui ’s in initial segments of 2-subsections:

u0u0 : : : u0 � u0 : : : u0 # u1u1 : : : u1 � u1 : : : u1 # � � � # uk : : : uk � uk : : : uk

and in tail segments of 2-subsections:

ujuj : : : uj � uj : : : uj # ujC1ujC1 : : : ujC1 � ujC1 : : : ujC1 # � � �
# ukn�1 : : : ukn�1 � ukn�1 : : : ukn�1;

where �’s stand for u’s deleted opposite boundary of w1 and #’s stand for the boundary
of w0 that has been deleted. An important point for us is that in each block k � �nkn and
kn � j � 1 � �nkn.

41This is what happens in the case that n D 0.



Measure preserving diffeomorphisms of the torus are unclassifiable 77

Consider the words uj in situation described in item (e) (ii) above. The viCt ’s split
ui into two pieces. By deleting a portion of the individual uj ’s of size less than �n�1qn
we can assume that all of the overlap of uj ’s is in sections of length at least �n�1qn. By
doing this for all uj ’s we remove a parts of the remaining elements of w0 of proportion at
most �n�1.

(g) We now look more carefully at the two types of blocks of words described in item
(f). The case in item e.)i. is similar and easier than the case in item (e) (ii) so we omit it.
Along the blocks described in (f) the initial portions of ui are lined up with viCt and the
second portions are lined up with viCtC1. Critically, the t is constant along the block.

According to whether t D 0 or not, we apply specifications (J11.1) (as in Case 1 of
the Initial segments argument) and (J10) to see that at most proportion 2=Qn

1 of the words
ui in a segment of the forms in (f) are lined up with viCt are Qn

1-equivalent. Hence we
can make a final deletion of proportion at most 2=Qn

1 to get a portion I � � I consisting
of relatively long pieces of Wc

n -words in w0 � I 0 overlapping Wc
n -words in w1 � T that

lie in different Qn
1 equivalence classes.

We now finish the argument using Remark 22. After all of the deletions we are left
with I � having at least .1 � .2�n C 1=�nkn C 5=ln C �n�1 C 2=Qn

1//-proportion of I
and w0 � I � consists of relatively long pieces of Wc

n words that are overlapping portions
of Wc

n words in w1 � T that lie in different Wn
1 -classes.

By the induction hypothesis each of the pieces of n-words in w0 � I � of Nd -distance
at least n from the corresponding portion of w1. Consequently,

Nd.w0 � I; w1 � T / > n.1 � .2�n C 1=�nkn C 5=ln C �n�1 C 2=Qn
1// > nC1;

thus finishing the proof of Proposition 98.

Since assumption (T4) is an immediate corollary of Proposition 98, we have finished
verifying the timing assumptions.

We note in passing that inequality (10.5) holds even if w0 D w1 provided that the
choice of initial and tail segment misalign corresponding 1-subsections.

We have proved:

Theorem 100. Suppose that Kc is a system in the range of F s with construction sequence
hWc

n W n 2 Ni. Then hWc
n W n 2 Ni satisfies the timing assumptions.

11. The consistency of the numerical requirements

During the course of this construction we have accumulated numerical conditions about
growth and decay rates of several sequences. The majority of the numerical constants
are not inductively determined – they are given immediately by knowing a small por-
tion of the tree T . We call these exogenous requirements. Other sequences of numbers
depend on previous choices for the numbers – hence are determined recursively. In this
section we list the recursive requirements, explicate their interdependencies and resolve
their consistency.
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Some of the conditions are easy to satisfy, as they do not refer to other sequences. For
example, Numerical Requirement 1 (that

P
n 1=ln <1) can be satisfied once and for all

by assuming that ln > 20 � 2n. Others are trickier, in that they depend on the growth rates
of the other sequences. For example, in defining the sequence of kn’s we require that kn be
large relative to the choice of snC1. We call the former type of conditions Absolute and the
latter Dependent. The Dependent conditions introduce the risk of circular or inconsistent
growth and decay rate conditions.

Our approach here is to gather all of the conditions arising in this paper and its prede-
cessors and classify them as Absolute or Dependent. We label them A or D accordingly.
This process allows us to make a diagram of the Dependent conditions to verify that there
are no circularities. The lack of a cycle in the diagram gives a clear method of recursively
satisfying all of the numerical conditions.

Due to an overabundance of numerical parameters we were forced into some awk-
ward notational choices. As noted before we have two types of epsilons: the lunate �n,
often used for set membership and the classical "n. They play similar but slightly dif-
ferent roles. The lunate epsilons come from construction requirements arising in [8] and
their strengthenings. The classical epsilons come from requirements related to circular
systems and realizing them as smooth systems. As is to be expected there is interaction
between the two. This occurs via the intermediary numbers we called �n’s in Numerical
Requirements 5 and 11.

11.1. The numerical requirements collected

In this subsection we collect the relevant numerical requirements. Specifically, in con-
structing F s.T / we are presented with T as a subsequence h�ni W i 2 Ni of a fixed
enumeration of N<N .

In the formal statements of the specifications in [8] for the construction sequence cor-
responding to T , Wn is built just in case �n 2 T . This leads to a construction sequence
of the form hWni W i 2 Ni with gaps corresponding to m’s, where �m … T . To sim-
plify notation, we reindex hWni W i 2 Ni as hWi W i 2 Ni, where hWi W i < j i is deter-
mined by h�ni W i < j i. In [8], the specifications discussed “successive” (or “consecu-
tive”) elements of T . These are �m and �n that belong to T , but have no �j 2 T with
j 2 .m; n/. In our new notation successive elements �m and �n of T correspond to
Wi and WiC1, where m D ni . Having adopted this convention we do not distinguish
between hWi W i 2 Ni and hWn W n 2 Ni. To emphasize the dependence on T , we will
occasionally write hWn.T / W n 2 Ni.

We begin with the requirements inherited from [8].

Inherited numerical requirements. We have changed the notation from [8] as described
in Appendix A. The number of elements of Wm is denoted sm; the numbers Qm

s and Cms
denote the number of classes and sizes of each class of Qm

s , respectively. In [8] we have
sequences h�n W n 2 Ni, hsn; kn; e.n/; pn W n 2 Ni

Inherited Requirement 1. The sequence h�n W n 2 Ni is summable.
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Inherited Requirement 2. The number of Qn
sC1 classes inside each Qn

s class is 2e.n/.
The numbers e.n/ will be chosen to grow fast enough that

2n2�e.nC1/ < �n: (11.1)

If s is the maximal length of an element of T \ ¹�m W m � nº and

jT \ ¹�m W m � nºj D i0;

then we set
C i0s D 2

e.i0/

as well. This forces sn;Qn
s and C ns all to be powers of 2 that are determined by e.n/. In

particular, let �m and �n be successive elements of T . Then sn is the number of words
one gets by iteratively substituting e.n/many elements into words in W i

n=Q
n
i and closing

under Gmi are successive for i D 0; 1; : : : ; s.42

By Remark 96, sn and e.n/ are monotonically co-determined. Hence we can state this
requirement as saying:

snC1 is large enough in terms of �n that inequality (11.1) holds.

Inherited Requirement 3. If T D h�ni W i 2 Ni, then

2�is
2
i < �i�1: (11.2)

Inherited Requirement 4. We have

�ikis
�2
i�1 !1 as i !1: (11.3)

Inherited Requirement 5. We haveY
n2N

.1 � �n/ > 0: (11.4)

Since this is equivalent to the summability of the �n-sequence, it is redundant and we will
ignore it in the rest of this paper.

Inherited Requirement 6. There will be prime numbers pn such that

Kn D p
2
nsn�1Kn�1

(i.e. kn D p2nsn�1). The pn’s grow fast enough to allow the probabilistic arguments in [8]
involving kn to go through.

Inherited Requirement 7. The number sn is a power of 2.

Inherited Requirement 8. The construction of F.T / requires that if T D h�in W n 2 Ni,
then �n < 2�in .

42It is possible to give a closed form formula for this, but it is complicated and uninformative.
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Numerical requirements introduced in this paper.

Numerical Requirement 1. One has l0 > 20 and
P
kDn 1=lk < 1=ln�1.

Numerical Requirement 2. h"n W n 2 Ni is a sequence of numbers in Œ0; 1/ such that
6
P
n>N "n < "N .

Numerical Requirement 3. The numbers kn; ln and qn grow fast enough that "nkn!1,
"nln !1, "nqn !1.

Numerical Requirement 4. One hasX jGn1 j

Qn
1

<1;

which is satisfied if jG
n
1
j

Qn
1

< 2�n.

Numerical Requirement 5. �n is chosen small relative to min."n; 1=Qn
1/.

Numerical Requirement 6. The number ln is big enough relative to a lower bound deter-
mined by hkm; sm W m � ni, hlm W m < ni and snC1 to make the periodic approximations
to the diffeomorphism converge.43 Moreover, kn � ln.

Numerical Requirement 7. We have sn !1 as n!1 and snC1 is a power of sn.

Numerical Requirement 8. We have snC1 � s
kn
n .

Numerical Requirement 9. The �n are decreasing, �0 < 1=40 and �n < "n:

Numerical Requirement 10. The number kn is chosen sufficiently large relative to
a lower bound determined by snC1; �n so that the Law of Large Numbers argument from
[8] works.

Numerical Requirement 11. The number �n is small relative to �n:

Numerical Requirement 12. One has �0k0 > 20, the �nkn are increasing and
P
1=�nkn

is finite.

Numerical Requirement 13. The numbers �n should be small enough, as a function
of Qn

1 , that estimate (10.8) holds.

11.2. Resolution

A list of parameters, their first appearances and their constraints. We classify the con-
straints on a given sequence according to whether they refer to other sequences or not.
Requirements that inductively refer to the same sequence are straightforwardly consis-
tent. Those that refer to other sequences risk the possibility of being circular and thus
inconsistent. As noted above refer to the former as Absolute conditions and the latter as
Dependent conditions.

43This is discussed in detail in [11, pp. 34–35], where the lower bound is called l�n .
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(1) The sequence hkn W n 2 Ni.
Absolute conditions: None for hkn W n 2 Ni.
Dependent conditions:

(D1) Numerical Requirement 10, kn depends on snC1; �n.
(D2) Inherited Requirement 6. We can satisfy Inherited Requirement 6 by taking kn

large enough to satisfy Numerical Requirement 10 and of the form

kn D p
2
nsn�1:

(D3) From Inherited Requirement 4, equation (11.3) requires that �nkns�2n�1 goes
to 1 as n goes to 1. This can be satisfied by choosing kn large enough as
a function of �n; sn�1. We note that equation (11.3) implies that

P
1=�nkn is

finite.
(D4) Numerical Requirement 12 says that �0k0 > 20 and the �nkn are increasing andP

1=�nkn is finite. As noted the last condition follows from D3. The other parts
of Numerical Requirement 12 are satisfied by taking kn large relative to �n.

(D5) Numerical Requirement 8 implies that kn is large enough that snC1 � s
kn
n . This

implies that kn is large relative to snC1.
From (D1)–(D5), we see that kn is dependent on the choices of hkm; lm W m < ni,
hsm W m � nC 1i, and �n.

(2) The sequence hln W n 2 Ni.
Absolute conditions:

(A1) Numerical Requirement 1 says that 1=ln >
P1
kDnC1 1=lk . We also require that

ln > 20 � 2
n, an exogenous requirement.

Dependent conditions:

(D6) By Numerical Requirement 6, the number ln is bigger than a number deter-
mined by hkm; sm W m � ni; hlm W m < ni and snC1.

(D7) The sequence hln W n 2 Ni must grow fast enough that "nC1qnC1 !1. This
can be arranged by making "nC1qnC1 > nC 1. Since qnC1 D knlnq2n, this puts
lower bound on ln dependent on "nC1.

Thus ln depends on hkm; sm W m � ni, hln W m < ni, "nC1 and snC1.
(3) The sequences hsn W n 2 Ni and he.n/ W n 2 Ni. We treat these sequences as equiv-

alent since sn is a power of 2 determined by e.n/ and the elements of the tree in the
domain of the reduction. Moreover, increasing one increases the other and vice versa.
Since they are co-determined, they are chosen at the same time.
Absolute conditions:

(A2) Inherited Requirement 7 says that sn is a power of 2.
Numerical Requirement 7 says that:
(A3) The sequence sn goes to infinity.
(A4) snC1 is a multiple of sn.
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(A5) As e.n/ determinesQn
1 , Numerical Requirement 4 puts an exogenous sequence

of lower bounds on e.n/, for example that

jGn1 j

Qn
1

< 2�n:

This requires that e.n/ be chosen large and, since e.n/ and sn are inter-deter-
mined, can be satisfied by taking s.n/ large.

Dependent conditions:

(D8) Numerical Requirement 3 makes sn depend on �n�1.
The result is that the number snC1 depends on the first nC 1 elements of the
tree T , hkm; sm; lm W m < ni, sn, and �n.44

(4) The sequence h�n W n 2 Ni.
Absolute conditions:

(A6) Numerical Requirement 9 and Inherited Requirement 1 require that h�n W n 2Ni
is decreasing and summable and �0 < 1=40.

(A7) Inherited Requirement 8 says that if T D h�in W n 2 Ni, then �n < 2�in

Dependent conditions:

(D9) Numerical Requirement 9 requires that �n < "n.
(D10) Equation (11.2) of Inherited Requirement 3 says 2�ns2n < �n�1.
(D11) Numerical Requirement 11 says that �n must be small enough relative to �n.
(D12) Numerical Requirement 13 says that �n is small as a function of Qn

1 .
The result is that �n depends exogenously on the first n elements of T , and onQn

1 ; sn,
"n, �n�1 and �n.

(5) The sequence h"n W n 2 Ni.
Absolute conditions:

(A8) Numerical Requirement 2 says that 6
P
n>N "n < "N . This can be arranged by

taking "n < 12�n"n�1.
Dependent conditions: Numerical Requirement 3 imposes three Dependent condi-
tions on "n: "nkn !1, "nln !1, "nqn !1. We deal with these in turn.
(a) The requirement that h"nkn W n 2 Ni goes to infinity already follows from the

fact that �n < "n and item (D4).
(b) h"nln W n 2 Ni goes to infinity. This follows from kn � ln, which is covered in

Dependent condition (D6).
(c) h"nqn W n 2 Ni goes to infinity. This follows from Dependent condition (D7).
Thus there are no new Dependent conditions.

(6) The sequence hQn
1
W n 2 Ni.

Absolute conditions: There are no new Absolute conditions.

44It is important to observe that the choice of snC1 does not depend on kn or ln.



Measure preserving diffeomorphisms of the torus are unclassifiable 83

Dependent conditions:

(D13) Numerical Requirement 4 says that

jGn1 j

Qn
1

< 2�n:

But since Qn
1 is determined by sn and the first n-elements of the tree, Numer-

ical requirement 4 is taken care of by (A5).
There are no new Dependent conditions.

(7) The sequence h�n W n 2 Ni. This sequence gives the required pseudo-randomness
in the timing assumptions.
Absolute conditions: There are no new Absolute conditions.
Dependent conditions:

(D14) Numerical Requirement 5 requires that�n be very small relative to "n and 1
Qn
1

.
The number �n is dependent on "n andQn

1
.

The recursive dependencies of the various coefficients are summarized in Figure 4, in
which an arrow from a coefficient to another coefficient shows that the latter is dependent
on the former. Here is the order the coefficients can be chosen consistently.

Qn1

�n

�n

snC1

kn "nC1

ln

?

@
@@R

�
�
�	

?

?

A
A
A
A
A
A
AU

@
@@R ?

Fig. 4. Order of choice of Numerical parameters dependency diagram.
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11.3. The inductive order of choices

We begin by setting s0 D 2; s1 D 8; p0 D 0; q0 D k0 D 1; l0 D 21; Q0
1 is not defined,

but Q1
1 is determined by s1; �0 D �0 D k0 D l0 D 1, "0 D 1:1, "1 D "0=12,

Assume:

The coefficient sequences hkm; lm;Qm
1 ; �m; �m W m < ni, h"m W m � ni and

sn have been chosen. The first nC 1 sequences on the tree T are known.

To do:

Choose kn; ln;Qn
1 ; �n; �n; "nC1 and snC1. Each requirement is to choose the

corresponding variable large enough or small enough where these adjectives
are determined by the dependencies enumerated above.

Figure 4 gives an order to consistently choose the next elements on the sequences. Choose
the successor coefficients in the following order:

Qn
1 ; "nC1; �n; �n; snC1; kn; ln:

We note that Qn
1 is redundant in the diagram above since it is determined by sn, but we

include it as a bridge from stage n � 1.

Appendix A. Notation table

In this paper we have adopted the notation used in [1], which conflicts with the notation
in [8], accordingly we provide a table for translating between the two. In the table, NEW
means the notation used in this paper, OLD means the notation used in [8].

NEW OLD Description

sn Wn sn is the number of words in Wc
n

kn lnC1=ln the number of words concatenated to make WnC1 from Wn

e.n/ k.n/ controls the number of QsC1 classes in each Qs class
 s1 the separation between Qn1 classes
Kn ln Kn is this paper’s notation for the lengths of the odometer based words

in Wn, ln was the notation for the lengths of the words in [8]
qn ln the lengths of the circular words in current paper vs. odometer based

words in [8]; the new qn refers to the lengths of the words in Wc
n

ln no analogue coefficient needed to grow fast for smooth transformations

An equivalent description of the numbers we are calling kn in this paper is that they
are the number of words in Wc

n concatenated to form elements of PnC1. The number kn
is equal to the number KnC1=Kn and lnC1=ln in the old notation of [8].

Funding. The first author would like to acknowledge partial support from the US National Science
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