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Abstract. Let .gn/n�1 be a sequence of independent and identically distributed (i.i.d.) d � d real
random matrices. For n � 1 set Gn D gn : : : g1. Given any starting point x D Rv 2 Pd�1, con-
sider the Markov chain Xxn D RGnv on the projective space Pd�1 and define the norm cocycle
by �.Gn; x/ D log.jGnvj=jvj/, for an arbitrary norm j � j on Rd . Under suitable conditions we
prove a Berry–Esseen-type theorem and an Edgeworth expansion for the couple .Xxn ; �.Gn; x//.
These results are established using a brand new smoothing inequality on complex plane, the saddle
point method and additional spectral gap properties of the transfer operator related to the Markov
chain Xxn . Cramér-type moderate deviation expansions as well as a local limit theorem with mod-
erate deviations are proved for the couple .Xxn ; �.Gn; x// with a target function ' on the Markov
chain Xxn .

Keywords. Products of random matrices, Berry–Esseen bound, Edgeworth expansion,
Cramér-type moderate deviations, moderate deviation principle, spectral gap

1. Introduction

1.1. Background and objectives

For any integer d � 2, denote by GL.d;R/ the general linear group of d � d invertible
matrices. Equip Rd with any norm j � j and let kgk D supv2Rd n¹0º jgvj=jvj be the operator
norm for g 2 GL.d;R/. Denote by Pd�1 the projective space of Rd . Let .gn/n�1 be
a sequence of i.i.d. d � d real random matrices of the same law � on GL.d;R/. For any
n � 1, consider the product Gn D gn : : : g1 and the process

Xxn D RGnv 2 Pd�1;
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with the starting point x D Rv 2 Pd�1. The norm cocycle is defined by

�.Gn; x/ D log
jGnvj

jvj
;

where x D Rv 2 Pd�1.
The study of the asymptotic properties of the Markov chain .Xxn /n�1 and of the prod-

uct .Gn/n�1 has attracted a good deal of attention since the groundwork of Furstenberg
and Kesten [19], where the strong law of large numbers (LLN) for the operator norm
kGnk has been established. In the same context, Furstenberg [20] proved the LLN for the
norm cocycle �.Gn; x/: for any x 2 Pd�1,

lim
n!1

1

n
�.Gn; x/ D lim

n!1

1

n
E �.Gn; x/ D � P -a.s.,

where � is a real number called upper Lyapunov exponent associated with the prod-
uct Gn. Another cornerstone result is the central limit theorem (CLT) for the couple
.Xxn ; �.Gn; x//, established under contracting-type assumptions by Le Page [39]: for any
fixed y 2 R and any Hölder continuous function ' W Pd�1 7! R, it holds uniformly in
x 2 Pd�1 that

lim
n!1

E
h
'.Xxn /1

®
�.Gn;x/�n�

�
p
n

�y
¯i D �.'/ˆ.y/;

where � is the unique stationary probability measure of the Markov chain Xxn on Pd�1,
�2 D limn!1

1
n

EŒ.�.Gn; x/ � n�/2� is the asymptotic variance independent of x (the
number � should not be confused with the cocycle function �. � ; � /), andˆ is the standard
normal distribution function. The optimal conditions for the CLT to hold true have been
established recently by Benoist and Quint [3].

The next step in these studies is to know how precise are the approximations in the
LLN and the CLT. The asymptotic of the large deviation probabilities describes the rate
of convergence in the LLN, and the Berry–Esseen bound characterizes that in the CLT.
For sums of independent random variables these topics have been extensively studied
over many decades, and have been proved to play the key role for many problems in
probability theory and mathematical statistics. For deep and optimal results in this direc-
tion we refer to the pioneering works of Cramér [13], Esseen [17], Bahadur and Rao [1],
Petrov [41] and to the monographs of Petrov [42], Stroock [46], Varadhan [47], Dembo
and Zeitouni [16] and Borovkov and Borovkov [6].

For products of random matrices the known results about the rate of convergence in
the LLN and the CLT are far from being optimal, although there are already important
studies on the topic. The main goal of the present paper is to fill in this gap by proving
large deviation asymptotics and Berry–Esseen-type bounds which are close to definitive.
Precise large deviation asymptotics originate from the work of Le Page [39] and more
recently have been considered e.g. by Guivarc’h [25], Benoist and Quint [5], Buraczewski
and Mentemeier [11], Sert [45], Xiao, Grama and Liu [50]. For moderate deviations,
very few results are known. Benoist and Quint [5] have recently established the moder-
ate deviation principle for reductive groups, which in our setting reads as follows: for
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any interval B � R, and positive sequence .bn/n�1 satisfying bn
n
! 0 and bnp

n
!1 as

n!1, it holds uniformly in x 2 Pd�1 that

lim
n!1

n

b2n
log P

�
�.Gn; x/ � n�

bn
2 B

�
D � inf

y2B

y2

2�2
: (1.1)

A functional moderate deviation principle has been established by Cuny, Dedecker and
Jan [12].

The first objective of our paper is to improve on the result (1.1) by establishing
a Cramér-type moderate deviation expansion for �.Gn; x/: we prove that uniformly in
x 2 Pd�1 and y 2 Œ0; o.

p
n/�, as n!1,

P
�
�.Gn; x/ � n� �

p
n�y

�
1 �ˆ.y/

D e
y3p
n
�. yp

n
/
�
1CO

�
y C 1
p
n

��
; (1.2)

where t 7! �.t/ is the Cramér series of the logarithm of the eigenvalue related to the
transfer operator of the Markov walk associated to the product of random matrices (see
Section 2.3).

In many important models it is useful to extend the moderate deviation expansion (1.2)
for the couple .Xxn ; �.Gn; x// which describes completely the random walk .Gnv/n�1.
We prove that, for any Hölder continuous function ' on Pd�1, uniformly in x 2 Pd�1

and y 2 Œ0; o.
p
n/�, as n!1,

E
�
'.Xxn /1¹�.Gn;x/�n��

p
n�yº

�
1 �ˆ.y/

D e
y3p
n
�. yp

n
/
�
�.'/CO

�
y C 1
p
n

��
; (1.3)

see Theorem 2.3 for a slightly stronger statement.
Our second objective, which is also the key point in proving (1.3), is a Berry–Esseen

bound for the couple .Xxn ; �.Gn; x//: for any Hölder continuous function ' on Pd�1,
as n!1,

sup
x2Pd�1; y2R

ˇ̌̌
E
h
'.Xxn /1

®
�.Gn;x/�n�

�
p
n

�y
¯i � �.'/ˆ.y/ˇ̌̌ D O� 1

p
n

�
; (1.4)

see Theorem 2.1. This extends the result of Le Page [39] established for the particular
target function ' D 1 (see also Jan [36]). We further upgrade (1.4) to an Edgeworth expan-
sion under a non-arithmeticity condition, see Theorem 2.2, which is new even for ' D 1.

Our third objective is to establish the following local limit theorem with moderate
deviations: for any real numbers �1 < a1 < a2 <1, we have, uniformly in x 2 Pd�1

and jyj D o.
p
n/, as n!1,

E
h
'.Xxn /1¹�.Gn;x/�n�2Œa1;a2�C

p
n�yº

i
D �.'/

a2 � a1

�
p
2�n

e
�
y2

2 C
y3p
n
�. yp

n
/
.1Co.1//:

(1.5)

For a more general version of (1.5), see Theorem 2.4, where a target function  on
�.Gn; x/ is considered. When jyj D o.n1=6/, the term .y3=

p
n/�.y=

p
n/ tends to 0
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and can be removed in (1.5). In this case, (1.5) improves the local limit theorem of
[5, Theorem 17.10] established for jyj D O.

p
logn/. Local limit theorems with mod-

erate deviations of type (1.5) are used for instance in [2] for studying dynamics of group
actions on finite volume homogeneous spaces. As an important application of (1.5) we
establish a new local limit theorem with moderate deviations for the operator norm kGnk,
see Theorem 2.5.

All the results stated above concern invertible matrices, but we also establish analo-
gous theorems for positive matrices. Some limit theorems for �.Gn; x/ in case of positive
matrices such as central limit theorem and Berry–Esseen theorem have been established
earlier by Furstenberg and Kesten [19], Hennion [29], and Hennion and Hervé [31]. Here,
we extend the Berry–Esseen theorem of [31] to the couple .Xxn ; �.Gn; x// with a tar-
get function ' on the Markov chain Xxn . We also complement the results in [19, 29, 31]
by giving a Cramér-type moderate deviation expansion and a local limit theorem with
moderate deviations.

The results of the paper can be useful in number of models of growing interest in
probability and statistics. In particular, our study has been motivated by applications to
branching random walks and multitype branching processes in random environment; we
refer to [8,9,23,24] where large deviation asymptotics have been obtained in these settings
using the results of this paper. For an application to moderate deviations for the opera-
tor norm and the spectral radius of products of random matrices we refer to [49]. Other
fields of application include the financial mathematics, among them multidimensional
stochastic recursions and perpetuity sequences.

On the other hand with the approach developed in the paper, one can also study limit
theorems for Markov chains, dynamical systems, random walks on hyperbolic groups
and homogeneous spaces; for these topics we refer to Hennion and Hervé [30], Parry
and Pollicott [40], Gouëzel [21], Guivarc’h [25], Benoist and Quint [4]. For example,
combining our approach with the techniques from Guivarc’h and Hardy [26], it is possible
to obtain extensions of our results to the setting of Anosov’s diffeomorphisms and more
general dynamical systems allowing a coding by mixing sub-shifts. As another example,
one can establish the analogs of the results of the paper for Markov chains with compact
state spaces. These aspects will be not considered here because of the limitation of the
length of the paper.

1.2. Key ideas of the approach

For the moderate deviation expansions (1.2) and (1.3), our proof is different from those
in [5] and [12]: in [5] the moderate deviation principle (1.1) is obtained by following
the strategy of Kolmogorov [38] suited to show the law of iterated logarithm (see also
de Acosta [15] and Wittman [48]); in [12] the proof of the functional moderate deviation
principle is based on the martingale approximation method developed in [3].

In order to prove (1.3), we need to rework the spectral gap theory for the transfer
operators Pz and Rs;z , by considering the case when s can take values in the interval
.��; �/ with � > 0 small, and z belongs to a small complex ball centered at the ori-
gin, see Section 3. This allows to define the change of measure Qx

s and to extend the
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Berry–Esseen bound (1.4) for the changed measure Qx
s , see Theorem 5.1. The moderate

deviation expansion (1.3) is established by adapting the techniques from Petrov [42].
It is surprising that the proof of the Berry–Esseen bound and of the Edgeworth ex-

pansion with a non-trivial target function ' 6D 1 is way more difficult than the analo-
gous results with ' D 1. This can be seen from the sketch of the proof which we give
below.

For simplicity, we assume that � D 1. Introduce the transfer operator Pz : for any
Hölder continuous function ' on Pd�1 and z 2 C,

Pz'.x/ D E
h
ez�.g1;x/'.Xx1 /

i
; x 2 Pd�1:

Let F be the distribution function of �.Gn;x/�n�p
n

and let f be its Fourier transform:

f .t/ D eit
p
n�
�
P n�itp

n

1
�
.x/; t 2 R:

The Berry–Esseen bound (1.4) with target function ' D 1 is usually proved using Esseen’s
smoothing inequality: there exists a constant C > 0 such that for all T > 0,

sup
y2R
jF.y/ �ˆ.y/j �

1

�

Z T

�T

ˇ̌̌̌
f .t/ � e�

t2

2

t

ˇ̌̌̌
dt C

C

T
: (1.6)

Inserting the spectral gap decomposition

P nz D �
n.z/Mz C L

n
z .n � 1/ (1.7)

into (1.6) allows us to obtain the Berry–Esseen bound (1.4) with ' D 1: after some
straightforward calculations, it reduces to showing that, with T D c

p
n, as n!1,Z T

�T

1

jt j

ˇ̌�
Ln
� itp

n

1
�
.x/
ˇ̌
dt D O

�
1
p
n

�
: (1.8)

The bound (1.8) is proved using Taylor’s expansion

Lnz1 D Ln01C z
d

dz
.Lnz1/C o.z/ with z D �

i t
p
n
;

and the fact that Ln01 D 0. However, when we replace the unit function 1 by a target
function ' for which in general Ln0' ¤ 0, instead of (1.8), we haveZ T

�T

1

jt j

ˇ̌
Ln
� itp

n

'.x/
ˇ̌
dt D1; (1.9)

even though jLn0'.x/j decays exponentially fast to 0 as n!1. To overcome this dif-
ficulty, we have elaborated a new approach based on smoothing inequality on complex
contours, see Proposition 4.1, and on the saddle point method, see [14, 18]. More pre-
cisely, we formulate our smoothing inequality as follows: there exists a constant C > 0
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such that for any T � r > 0,

sup
y2R
jF.y/ �ˆ.y/j �

1

�
sup
y�0

ˇ̌̌̌ Z
C�r

f .z/eizye�ib
z
T dz

ˇ̌̌̌
C
1

�
sup
y>0

ˇ̌̌̌ Z
C
C
r

f .z/eizye�ib
z
T dz

ˇ̌̌̌
C
1

�
sup
y�0

ˇ̌̌̌ Z
C�r

f .z/eizyeib
z
T dz

ˇ̌̌̌
C
1

�
sup
y>0

ˇ̌̌̌ Z
C
C
r

f .z/eizyeib
z
T dz

ˇ̌̌̌
C
1

�

Z
r�jt j�T

ˇ̌
f .t/

ˇ̌
dt

C
2

�T

Z T

�T

ˇ̌
tf .t/

ˇ̌
dt C

C

T
;

where

f .z/ D
f .z/ � e�

z2

2

z
;

b > 0 is a fixed constant, C�r and CCr are semicircles in the complex plane given by

C�r D ¹z 2 C W jzj D r; =z < 0º;

CCr D ¹z 2 C W jzj D r; =z > 0º:

Using the new smoothing inequality, together with the spectral gap property (1.7), leads
to the estimation of the following integrals:Z

C
C
r [ C�r

�n.z/Mz'.x/ � e
� z

2

2

z
eizye˙ib

z
T dz; (1.10)Z

C
C
r [ C�r

Lnz'.x/

z
eizye˙ib

z
T dz: (1.11)

The integral (1.10) is handled by using the saddle point method choosing a suitable path
for the integration in Section 5.2, which is one of the challenging parts of the proof. For
the integral (1.11) we use the facts that jLnz'.x/j decays exponentially fast as n!1 and
that ˇ̌̌̌

eizy

z

ˇ̌̌̌
�
1

r

for z 2 C�r , y � 0 and r D c
p
n. In contrast to (1.9), the integral (1.11) is bounded by

Ce�cn uniformly in y. The case y > 0 is treated similarly, which allows us to establish
(1.4). Note that the non-arithmeticity condition is not needed for the validity of (1.4).
Under the non-arithmeticity condition, in Theorem 2.2 we obtain an Edgeworth expansion
for .Xxn ; �.Gn; x// with the target function ' on Xxn , which is of independent interest.
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2. Main results

2.1. Notation and conditions

Let N D ¹0; 1; 2; : : :º and N� D N n ¹0º. The real part, imaginary part and the conjugate
of a complex number z are denoted by <z, =z and z respectively. For y 2 R, we write

�.y/ D
1
p
2�
e�

y2

2 and ˆ.y/ D

Z y

�1

�.t/ dt :

For any � > 0, set B�.0/ D ¹z 2 C W jzj < �º for the ball with center 0 and radius � in
the complex plane C. We denote by c, C , positive constants whose values may change
from line to line. By c˛ , C˛ we mean positive constants depending only on the index ˛:
We write 1A for the indicator function of an event A. For a measure � and a function '
we denote �.'/ D

R
' d�.

For d � 2, let M.d;R/ be the set of d � d matrices with entries in R. We shall
work with products of invertible or non-negative matrices. Denote by G D GL.d;R/ the
group of invertible matrices ofM.d;R/. A non-negative matrix g 2M.d;R/ is said to be
allowable, if every row and every column of g has a strictly positive entry. Denote by GC
the multiplicative semigroup of allowable non-negative matrices of M.d;R/, which will
be called simply positive. We write G ıC for the subsemigroup of GC with strictly positive
entries.

The space Rd is equipped with any given norm j � j. Let

Pd�1 D ¹x D Rv W v 2 Rd n ¹0ºº

be the projective space of Rd . Let RdC be the positive quadrant of Rd , and let

Pd�1C D ¹x D Rv W v 2 RdC n ¹0ºº

be the set of directions corresponding to non-zero vectors in RdC. To unify the exposition,
we use the symbol � to denote Pd�1 in case of invertible matrices and Pd�1C in case of
positive matrices. For any matrix g in G or GC and x D Rv 2 � , we write g � x D Rgv
for the projective action of g on � . The space � is endowed with the metric d: for
invertible matrices, d is the angular distance, i.e., for any x D Rv; y D Ru 2 Pd�1,
d.x; y/ D jsin �.v; u/j, where �.v; u/ is the angle between v and u; for positive matri-
ces, d is the Hilbert cross-ratio metric, i.e., for any x D Rv 2 Pd�1C and y D Ru 2 Pd�1C

with jvj D juj D 1,

d.x; y/ D
1 �m.v; u/m.u; v/

1Cm.v; u/m.u; v/
;

where m.v; u/ D sup¹˛ > 0 W ˛ui � vi for all i D 1; : : : ; dº: In both cases, there exists
a constant C > 0 such that

jv � uj � Cd.x; y/ for any x D Rv; y D Ru 2 � ; jvj D juj D 1: (2.1)

We refer to [27] and [29] for more details of the metric d.
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Let C.�/ be the space of continuous complex-valued functions on � and let 1 be the
constant function with value 1. Let 
 > 0. For any ' 2 C.�/, set

k'k
 WD k'k1 C Œ'�
 ; k'k1 WD sup
x2�

j'.x/j; Œ'�
 WD sup
x;y2�

j'.x/ � '.y/j

d
 .x; y/
:

Introduce the Banach space B
 WD ¹' 2 C.�/ W k'k
 < C1º:

Assume that on some probability space .�;F ;P / we are given a sequence of i.i.d.
random matrices .gn/n�1 of the same law � on G or GC. SetGn D gn : : : g1, n � 1; then
for any starting point x 2 � , the process

Xx0 D x; Xxn D Gn � x; n � 1

forms a Markov chain on � . Let

�.g; x/ D log
jgvj

jvj

be the norm cocycle, where g 2 G and x D Rv 2 Pd�1 or g 2 GC and x D Rv 2 Pd�1C .
The goal of the present paper is to establish a Berry–Esseen bound and a Cramér-type
moderate deviation expansion for the couple .Xxn ; �.Gn; x// with a target function ' on
the Markov chain .Xxn /, for both invertible matrices and positive matrices.

For any g 2M.d;R/, set

kgk D sup
v2Rd n¹0º

jgvj

jvj
and �.g/ D inf

v2Rd n¹0º

jgvj

jvj
;

where �.g/ > 0 for both g 2 G and g 2 GC. In the following we denote

N.g/ D max¹kgk; �.g/�1º:

From the Cartan decomposition it follows that the norm kgk coincides with the largest
singular value of g, i.e. kgk is the square root of the largest eigenvalue of gTg, where gT

denotes the transpose of g. For an invertible matrix g 2 G , �.g/ D kg�1k�1, hence �.g/
is the smallest singular value of g and N.g/ D max¹kgk; kg�1kº. We need the two-sided
exponential moment condition:

A1. There exists a constant �0 2 .0; 1/ such that EŒN.g1/�0 � < C1.

We denote by �� WD Œsupp�� the smallest closed subsemigroup ofM.d;R/ generated
by supp�, the support of the measure �.

For invertible matrices, we need the strong irreducibility and proximality conditions.
Recall that a matrix g is called proximal if g has an eigenvalue �g satisfying j�g j > j�0g j
for all other eigenvalues �0g of g. The normalized eigenvector vg (jvg j D 1) correspond-
ing to the eigenvalue �g is called the dominant eigenvector. It is easy to verify that �g 2R.

A2. (i) (Strong irreducibility) No finite union of proper subspaces of Rd is ��-invariant.
(ii) (Proximality) �� contains at least one proximal matrix.
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For positive matrices, we use the allowability and positivity conditions.

A3. (i) (Allowability) Every g 2 �� is allowable.
(ii) (Positivity) �� contains at least one matrix belonging to G ıC.

It follows from the Perron–Frobenius theorem that every g 2 G ıC has a dominant
eigenvalue �g > 0, with the corresponding eigenvector vg 2 Pd�1C .

Under Conditions A1 and A2 for invertible matrices, or Conditions A1 and A3 for
positive matrices, there exists a unique �-stationary probability measure � on � ([10,27]):
for any ' 2 C.�/,

.� � �/.'/ D

Z
�

Z
��

'.g1 � x/�.dg1/ �.dx/ D

Z
�

'.x/ �.dx/ D �.'/: (2.2)

Moreover, for invertible matrices, supp � (the support of �) is given by

V.��/ D ¹vg 2 Pd�1 W g 2 ��; g is proximalºI (2.3)

for positive matrices, supp � is given by

V.��/ D ¹vg 2 Pd�1C W g 2 �� \ G ıCº: (2.4)

In addition, for both cases, V.��/ is the unique minimal ��-invariant subset (see [27]
and [10]).

For positive matrices, it will be shown in Proposition 3.15 that under Conditions A1
and A3, the asymptotic variance

�2 D lim
n!1

1

n
E
�
.�.Gn; x/ � n�/

2
�

exists with value in Œ0;1/. To establish the Berry–Esseen theorem and the moderate
deviation expansion, we need the following condition:

A4. The asymptotic variance �2 satisfies �2 > 0.

We say that the measure � is arithmetic if there exist t > 0, ˇ 2 Œ0; 2�/ and a function
# W � ! R such that

expŒi t�.g; x/ � iˇ C i#.g � x/ � i#.x/� D 1

for any g 2 �� and x 2 V.��/. To establish the Edgeworth expansion for positive matri-
ces, we impose the following condition:

A5 (Non-arithmeticity). The measure � is non-arithmetic.

A simple sufficient condition introduced in [37] for the measure� to be non-arithmetic
is that the additive subgroup of R generated by the set ¹log�g W g 2 �� \ G ıCº is dense
in R, see [11, Lemma 2.7].

We end this subsection by giving some implications among the above conditions. For
invertible matrices, it was proved in [28] that Condition A2 implies Condition A5. For
positive matrices, Conditions A1, A3 and A5 imply Condition A4, see Proposition 3.15.
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2.2. Berry–Esseen bound and Edgeworth expansion

In this subsection we formulate the Berry–Esseen theorem and the Edgeworth expansion
for the couple .Xxn ; �.Gn; x//. We first state the Berry–Esseen theorem with a target
function on Xxn . Through the rest of the paper we assume that 
 > 0 is a fixed small
enough constant so that the spectral properties stated in Proposition 3.1 hold true.

Theorem 2.1. Assume either Conditions A1 and A2 for invertible matrices, or Condi-
tions A1, A3 and A4 for positive matrices. Then there exists a constant C > 0 such that
for all n � 1, x 2 � , y 2 R and ' 2 B
 ,ˇ̌̌

E
h
'.Xxn /1

®
�.Gn;x/�n�

�
p
n

�y
¯i � �.'/ˆ.y/ˇ̌̌ � C

p
n
k'k
 : (2.5)

The proof of this theorem follows the same line as the proof of the Edgeworth expan-
sion in Theorem 2.2 formulated below, and will be sketched at the end of Section 5. The
presence of the target function in Theorem 2.1 turns out to be crucial in the study of the
asymptotic of moderate deviations of the logarithm of the coefficients log jhf;Gnvij with
f 2 .Rd /� and v 2 Rd , which will be done in a forthcoming paper.

Theorem 2.1 extends the Berry–Esseen bounds from [36, 39] for invertible matrices,
and [31] for positive matrices to versions with target functions onXxn . Note that the results
in [31, 36] have been established under some polynomial moment conditions. However,
proving (2.5) with the target function ' 6D 1 under the polynomial moments is still an
open problem.

The next result gives an Edgeworth expansion for �.Gn; x/ with a target function
' on Xxn . To formulate it, we introduce the necessary notation. Consider the following
transfer operator: for any s 2 .��; �/ with � > 0 small, and ' 2 C.�/,

Ps'.x/ D E
�
es�.g1;x/'.g1 � x/

�
; x 2 � :

It will be shown in Proposition 3.1 that there exists a unique Hölder continuous function rs
on � such that

Psrs D �.s/rs; (2.6)
where �.s/ is the unique dominant eigenvalue of Ps . Set ƒ.s/ D log �.s/. We shall show
in Lemma 3.11 that for any ' 2 B
 , the function

b'.x/ D lim
n!1

E
�
.�.Gn; x/ � n�/'.X

x
n /
�
; x 2 � ; (2.7)

is well defined, belongs to B
 and has an equivalent expression (3.38) in terms of deriva-
tive of the projection operator …0;z , see Proposition 3.8.

Theorem 2.2. Assume either Conditions A1 and A2 for invertible matrices, or Condi-
tions A1, A3 and A5 for positive matrices. Then, as n!1, uniformly in x 2 � , y 2 R
and ' 2 B
 ,ˇ̌̌̌

E
h
'.Xxn /1

®
�.Gn;x/�n�

�
p
n

�y
¯i � �.'/�ˆ.y/C ƒ000.0/

6�3
p
n
.1 � y2/�.y/

�
C
b'.x/

�
p
n
�.y/

ˇ̌̌̌
D k'k
o

�
1
p
n

�
:
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The proof of this theorem is postponed to Section 5 and is based on a new smoothing
inequality (Proposition 4.1) and the saddle point method. Even for ' D 1, Theorem 2.2
is new.

2.3. Moderate deviation expansions

Denote 
k D ƒ.k/.0/, k � 1, where ƒ D log � with the function � defined in (2.6). In
particular, 
1 D � and 
2 D �2, see Propositions 3.13 and 3.15, where we also give an
expression for 
3: Throughout the paper, we write � for the Cramér series of ƒ (see [13]
and [42]):

�.t/ D

3

6

3=2
2

C

4
2 � 3


2
3

24
32
t C


5

2
2 � 10
4
3
2 C 15


3
3

120

9=2
2

t2 C � � � ; (2.8)

which converges for jt j small enough.
Now we formulate a Cramér-type moderate deviation expansion for the couple

.Xxn ; �.Gn; x// with target function on Xxn , for both invertible matrices and positive
matrices.

Theorem 2.3. Assume either Conditions A1 and A2 for invertible matrices, or Condi-
tions A1, A3 and A4 for positive matrices. Then, uniformly in x 2 � , y 2 Œ0; o.

p
n/� and

' 2 B
 , as n!1,

EŒ'.Xxn /1¹�.Gn;x/�n��
p
n�yº�

1 �ˆ.y/
D e

y3p
n
�
�
yp
n

��
�.'/C k'k
O

�
y C 1
p
n

��
;

EŒ'.Xxn /1¹�.Gn;x/�n���
p
n�yº�

ˆ.�y/
D e

�
y3p
n
�
�
�
yp
n

��
�.'/C k'k
O

�
y C 1
p
n

��
:

Note that the above asymptotic expansions remain valid even when �.'/ D 0. In this
case, for example, the first expansion becomes, as n!1,

E
h
'.Xxn /1

®
�.Gn;x/�n��

p
n�y
¯i D �1 �ˆ.y/�e y3pn �� yp

n

�
k'k
O

�
y C 1
p
n

�
:

It is an open question to extend the results of Theorem 2.3 to higher order expansions
under the additional condition of non-arithmeticity. We refer to Saulis [44] and Rozovsky
[43] for relevant results in the i.i.d. real-valued case. In the case of products of random
matrices this problem seems to us interesting because of the presence of the derivatives
in s of the eigenfunction rs and of the linear functional �s in the higher order terms.

In particular, under conditions of Theorem 2.3, with ' D 1 we obtain: as n!1,

P
�
�.Gn;x/�n�

�
p
n

� y
�

1 �ˆ.y/
D e

y3p
n
�
�
yp
n

��
1CO

�
y C 1
p
n

��
;

P
�
�.Gn;x/�n�

�
p
n

� �y
�

ˆ.�y/
D e

�
y3p
n
�
�
�
yp
n

��
1CO

�
y C 1
p
n

��
:
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When ' 2 B
 is a real-valued function satisfying �.'/ > 0, Theorem 2.3 clearly implies
the following moderate deviation principle for �.Gn; x/ with target function on Xxn : for
any Borel set B � R, and positive sequence .bn/n�1 satisfying bn

n
! 0 and bnp

n
!1 as

n!1, uniformly in x 2 � ,

� inf
y2Bı

y2

2�2
� lim inf

n!1

n

b2n
log E

h
'.Xxn /1

®
�.Gn;x/�n�

bn
2B
¯i

� lim sup
n!1

n

b2n
log E

h
'.Xxn /1

®
�.Gn;x/�n�

bn
2B
¯i � � inf

y2 NB

y2

2�2
; (2.9)

where Bı and NB are respectively the interior and the closure of B . In fact, it is enough to
show (2.9) only for the case where B is an interval, the result for general B can be estab-
lished using Lemma 4.4 of Huang and Liu [34]. With ' D 1, (2.9) implies the moderate
deviation principle (1.1) established in [5, Proposition 12.12] for invertible matrices. The
moderate deviation principle (2.9) with target function on Xxn is new for both invertible
matrices and positive matrices; (1.1) is new for positive matrices. Note that in (2.9) the
function ' is not necessarily strictly positive.

2.4. Local limit theorem with moderate deviations

In this subsection we state a local limit theorem with moderate deviations for �.Gn; x/,
which is of independent interest and can not be deduced directly from Theorem 2.3.

Theorem 2.4. Assume either Conditions A1 and A2 for invertible matrices, or Con-
ditions A1, A3 and A4 for positive matrices. Then, for any ' 2 B
 and any directly
Riemann integrable function  with compact support on R, we have, as n!1, uni-
formly in x 2 � and jyj D o.

p
n/,

E
�
'.Xxn / 

�
�.Gn; x/ � n� �

p
n�y

��
D
e
�
y2

2 C
y3p
n
�
�
yp
n

�
�
p
2�n

�
�.'/

Z
R
 .u/ duC o.1/

�
:

In particular, for any ' 2B
 and real numbers�1< a1 < a2 <1, we have, as n!1,
uniformly in x 2 � and jyj D o.

p
n/,

E
�
'.Xxn /1¹�.Gn;x/�n�2Œa1;a2�C

p
n�yº

�
D
e
�
y2

2 C
y3p
n
�
�
yp
n

�
�
p
2�n

�
.a2 � a1/�.'/C o.1/

�
:

With ' D 1, we have, as n!1, uniformly in x 2 � and jyj D o.
p
n/,

P
�
�.Gn; x/ � n� 2 Œa1; a2�C

p
n�y

�
D
e
�
y2

2 C
y3p
n
�
�
yp
n

�
�
p
2�n

�
a2 � a1 C o.1/

�
:

In the case of invertible matrices, a similar local limit theorem has been established
in [5] in a more general setting and plays an important role in studying dynamics of
group actions on finite volume homogeneous spaces, see [2, Proposition 4.7]. Specifically,
from [5, Theorem 17.10], by simple calculations we deduce that for any a1 < a2, it holds
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uniformly in x 2 Pd�1 and jyj D O.
p

logn/ that, as n!1,

P
�
�.Gn; x/ � n� 2 Œa1; a2�C

p
n�y

�
D

e�
y2

2

�
p
2�n

�
a2 � a1 C o.1/

�
: (2.10)

Theorem 2.4 extends the range of y in (2.10) beyond O.
p

logn/ and moreover, allows
a target function ' on the Markov chain Xxn . Note also that in [5] the group SL.d;R/ is
considered instead of GL.d;R/, and the proximality Condition A2 (ii) is replaced by the
condition that the semigroup �� is unbounded. For positive matrices, Theorem 2.4 and
its consequence (2.10) are new.

As an application of Theorem 2.4, we can establish a local limit theorem with moder-
ate deviations for the operator norm kGnk in the case of invertible matrices.

Theorem 2.5. Assume Conditions A1 and A2 for invertible matrices. Let �1 < a1 <

a2 < 1 be real numbers. Then, for any ' 2 B
 , we have, as n!1, uniformly in
x 2 Pd�1 and jyj D o.n1=6/,

E
�
'.Xxn /1¹logkGnk�n�2Œa1;a2�C

p
n�yº

�
D

e�
y2

2

�
p
2�n

�
.a2 � a1/�.'/C o.1/

�
:

With ' D 1, we have, as n!1, uniformly in x 2 Pd�1 and jyj D o.n1=6/,

P
�
logkGnk � n� 2 Œa1; a2�C

p
n�y

�
D

e�
y2

2

�
p
2�n

�
a2 � a1 C o.1/

�
: (2.11)

In the smaller range jyj D O.
p

logn/, the result (2.11) has been established for the
general framework of semisimple real Lie groups in [5, Theorem 17.7], under some
assumptions which reduce to ours for the general linear group GL.d;R/. Thus Theo-
rem 2.5 extends the results in [5] to the wider range jyj D o.n1=6/, and to the couple
.Xxn ; logkGnk/ with a target function ' on the Markov chain Xxn . Note that it is an open
question to establish a local limit theorem with moderate deviation for logkGnk in the
whole range jyj D o.

p
n/.

3. Spectral gap theory

This section is devoted to investigating the spectral gap properties of some linear operators
to be introduced below: the transfer operator Pz , its normalization Qs which is a Markov
operator, and the perturbed operator Rs;z , for real-valued s and complex-valued z. The
properties for these operators have been studied in recent years, for instance in [5, 7, 10,
11, 27, 33, 39], where various results have been established under different restrictions
on s and z. We shall complete these results by investigating the case when s 2 .��; �/
with � > 0 small, and z belongs to a small ball of the complex plane centered at the
origin. The case of s < 0 turns out to be more difficult than the case s � 0 and requires a
deeper analysis. We also complement the previous results with some new properties to be
used in the proofs of the main results of the paper.
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3.1. Properties of the transfer operator Pz

Recall that the Banach space B
 consists of all 
 -Hölder continuous complex-valued
functions on � . We write B 0
 for the topological dual of B
 endowed with the norm

k�kB0
 D sup
'2B
 W k'k
D1

j�.'/j;

for any linear functional � 2 B 0
 : Let L.B;B/ be the set of all bounded linear operators
from B
 to B
 equipped with the operator norm k � kB
!B
 . Denote by %.Q/ the spectral
radius of an operator Q 2 L.B;B/, and by QjE its restriction to the subspace E � B
 .

For any z 2 C with jzj < �0, where �0 is given in Condition A1, define the transfer
operator Pz as follows: for any ' 2 C.�/,

Pz'.x/ D E
�
ez�.g1;x/'.g1 � x/

�
; x 2 � : (3.1)

The transfer operator Pz acts from C.�/ to the space of bounded functions on � : The
proposition stated below gives the spectral gap properties of the operator Pz for z in
a small enough neighborhood of 0 in the complex plane. In the sequel, even if it is not
stated explicitly, we assume that 
 > 0 is a sufficiently small constant.

Proposition 3.1. Assume that � satisfies either Conditions A1 and A2 for invertible
matrices, or Conditions A1 and A3 for positive matrices. Then Pz 2 L.B
 ;B
 / for any
z 2 B�0=2.0/, and the mapping z 7! Pz W B�0=2.0/! L.B
 ;B
 / is analytic for 
 > 0
small enough, where �0 > 0 is given in Condition A1. Moreover, there exists a constant
� > 0 such that for any z 2 B�.0/ and n � 1, we have the decomposition

P nz D �
n.z/Mz C L

n
z ; (3.2)

where the operator Mz WD �z ˝ rz is a rank one projection on B
 defined by

Mz' D
�z.'/

�z.rz/
rz

for any ' 2 B
 , and the mappings on B�.0/

z 7! �.z/ 2 C; z 7! rz 2 B
 ; z 7! �z 2 B 0
 ; z 7! Lz 2 L.B
 ;B
 /

are unique under the normalization conditions �.rz/ D 1 and �z.1/ D 1, where � is
defined in (2.2); all these mappings are analytic in B�.0/, and possess the following
properties:

(a) for any z 2 B�.0/, it holds that MzLz D LzMz D 0,

(b) for any z 2 B�.0/, Pzrz D �.z/rz and �zPz D �.z/�z ,

(c) �.0/ D 1, r0 D 1, �0 D �, and �.s/ and rs are real-valued and satisfy �.s/ > 0 and
rs.x/ > 0 for any s 2 .��; �/ and x 2 � ,

(d) for any k 2 N, there exist constants Ck > 0 and 0 < a1 < a2 < 1 such that

j�.z/j > 1 � a1 and




 dkdzkLnz






B
!B


� Ck.1 � a2/
n for all z 2 B�.0/:
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Let us point out the differences between Proposition 3.1 and the previous results in
[5, 10, 39]. Firstly, we complement the results in [5, 39] by giving the explicit formula

Mz' D
�z.'/

�z.rz/
rz

in (3.2), for z 2 B�.0/, which is one of the crucial points in the proofs of the results of
the paper. Basically, it permits us to deduce the spectral gap properties of the Markov
operator Qs and as well as the perturbed operator Rs;z from those of Pz . In particular,
this will enable us to obtain an explicit formula for the operators Ns and Ns;z in Propo-
sitions 3.4 and 3.8, and the uniformity of the bounds (3.35) and (3.36). Secondly, for
positive matrices, some points of Proposition 3.1 have been obtained in [10] only for real
z � 0. The difficulty here is the case when z 2 R is negative and when z is not real, so
Proposition 3.1 is new for positive matrices when jzj � �: Thirdly, we show that �.z/ and
rz take real positive values when z is real, which allows to define the change of measure
Qx
s for real s, for both invertible matrices and positive matrices. Previously it was shown

in [5] that �.z/ is real-valued for real z 2 .��; �/ for invertible matrices.

Remark 3.2. Define the conjugate transfer operator P �z by

P �z '.x/ D E
�
ez�.g

T
1
;x/'.gT

1 � x/
�
; x 2 ��;

where �� is the dual projective space of � , z 2 C with <z 2 .��0; �0/, and gT
1 denotes

the transpose of the matrix g1. One can verify that P �z satisfies all the properties of
Proposition 3.1: under conditions of Proposition 3.1, we have the decomposition

P �nz D �
�n.z/��z ˝ r

�
z C L

�n
z ; z 2 B�.0/; n � 1;

and all the assertions in Proposition 3.1 hold for P �z , ��.z/, ��z , r�z , L�z instead of Pz ,
�.z/, �z , rz , Lz .

Proof of Proposition 3.1. We split the proof into three steps. In Steps 1 and 2 we con-
centrate on the case of positive matrices, since for invertible matrices the results of these
steps have been proved in [5, 39]. In Step 1 we follow the same lines as in [5, 39]. In
Step 2 we follow [32] to prove the spectral gap property of the operator P0 and we use
the perturbation theory to extend it to Pz . In Step 3 the proof is new and is provided for
both invertible and positive matrices by complementing the results in [5, 10, 39].

Step 1. We only need to consider the case of positive matrices. We will show that there
exists 
 2 .0; �0

6
/ such that Pz 2 L.B
 ;B
 /, and that the mapping z 7! Pz is analytic

on B�0=2.0/. For any m � 0, z 2 B�0=2.0/ and ' 2 B
 , let

P .m/z '.x/ D E
�
.�.g1; x//

mez�.g1;x/'.g1 � x/
�
; x 2 Pd�1C :

It suffices to show that for any z 2 B�0=2.0/ and � 2 B�0=6.0/,

PzC� D

1X
mD0

�m

mŠ
P .m/z ; (3.3)
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and that there exists a constant C > 0 not depending on � and z such that

1X
mD0

j� jm

mŠ
kP .m/z 'k
 � Ck'k
 : (3.4)

From (3.4) we deduce that P .0/z D Pz 2 L.B
 ;B
 /. Moreover, the bound (3.4) ensures
the validity of (3.3) which implies the analyticity of the mapping z 7! Pz on B�0=2.0/.

It remains to prove (3.4). We first give a control of kP .m/z 'k1. Since

j�.g; x/j � logN.g/

for any g 2 �� and x 2 Pd�1C , we get

1X
mD0

j� jm

mŠ
kP .m/z 'k1 � k'k1E

�
e.j� jCj<zj/ logN.g1/

�
� Ck'k1: (3.5)

To control ŒP .m/z '�
 , note that for any ' 2 B
 ,

ŒP .m/z '�
 � sup
x;y2Pd�1

C
; x¤y

ˇ̌̌̌
E

�
.�.g1; x//

m � .�.g1; y//
m

d
 .x; y/
ez�.g1;x/'.g1 � x/

�ˇ̌̌̌

C sup
x;y2Pd�1

C
; x¤y

ˇ̌̌̌
E

�
.�.g1; y//

m e
z�.g1;x/ � ez�.g1;y/

d
 .x; y/
'.g1 � x/

�ˇ̌̌̌

C sup
x;y2Pd�1

C
; x¤y

ˇ̌̌̌
E

�
.�.g1; y//

mez�.g1;y/
'.g1 � x/ � '.g1 � y/

d
 .x; y/

�ˇ̌̌̌
DW I1;m C I2;m C I3;m: (3.6)

We then control each of the three terms I1;m; I2;m; I3;m.

Control of I1;m. Since for any a; b 2 C, m 2 N and 0 < 
 < 1,

jam � bmj � 2mmax¹jajm�
 ; jbjm�
ºja � bj
 ; (3.7)

we get

I1;m � 2mk'k1 sup
x;y2Pd�1

C
; x¤y

E

�
.logN.g1//m�
N.g1/j<zj

d
 .x; y/
j�.g1; x/ � �.g1; y/j




�
:

Using (2.1), we deduce that for any g 2 ��,ˇ̌
�.g; x/ � �.g; y/

ˇ̌
� Ckgk�.g/�1d.x; y/; (3.8)

and hence
1X
mD0

j� jm

mŠ
I1;m � 2k'k1E

�
.logN.g1//1�
e.j� jCj<zjC2
/ logN.g1/

�
: (3.9)
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Control of I2;m. Using (3.7), we deduce that for any z1; z2 2 C,

jez1 � ez2 j � 2max¹jz1j1�
 ; jz2j1�
ºmax¹e<z1 ; e<z2ºjz1 � z2j
 : (3.10)

By this inequality, we find that for any g 2 ��,ˇ̌
ez�.g;x/ � ez�.g;y/

ˇ̌
� 2.logN.g//1�
ej<zj logN.g/

j�.g; x/ � �.g; y/j
 :

Combining this with (3.8) implies that
1X
mD0

j� jm

mŠ
I2;m � 2k'k1E

�
.logN.g1//1�
e.j� jCj<zjC2
/ logN.g1/

�
: (3.11)

Control of I3;m. Since ' 2 B
 and d.g � x; g � y/ � d.x; y/ for any g 2 ��, we get
1X
mD0

j� jm

mŠ
I3;m � k'k
E

�
e.j� jCj<zjC2
/ logN.g1/

�
:

Combining this with (3.5), (3.6), (3.9) and (3.11), we obtain (3.4).

Step 2. Again we only need to consider the case of positive matrices. We will prove
the decomposition formula (3.2) together with parts (a), (b) and (d). Our proof follows
closely [32]. Define the operatorM on B
 byM' D �.'/1, ' 2B
 . SetE D kerM\B
 .
We first show that k'k1 � Œ'�
 for any ' 2 E. Since �.'/ D 0 for any ' 2 E, there exist
x1; x2 2 Pd�1C such that <'.x1/ D ='.x2/ D 0. Since d.x; y/ 2 Œ0; 1�, it follows that

k'k1 � sup
x2Pd�1
C

j<'.x/ �<'.x1/j C sup
x2Pd�1
C

j='.x/ � ='.x2/j � 2Œ'�
 : (3.12)

We next show that %.P jE / < 1, where P D P0 (see (3.1)). For any x; y 2 Pd�1C ; x ¤ y,
and ' 2 B
 , there exists a 2 .0; 1/ such that for large n � 1,

jP n'.x/ � P n'.y/j

d
 .x; y/
� k'k
E

�
d
 .Gn � x;Gn � y/

d
 .x; y/

�
� k'k
a

n;

where for the last inequality we use [29, Lemma 3.2]. Observe that for any ' 2 B
 , we
have ' �M' 2 E, thus P n.' �M'/ 2 E for any n � 1 since �P D �. Combining this
with (3.12) and the above inequality, we get

kP n.' �M'/k
 � 2ŒP
n.' �M'/�
 � 2a

nŒ'�
 � 2a
n
k'k
 ;

which implies %.P jE / < 1: This, together with the definition of E and the fact that
P 1 D 1, shows that 1 is the isolated dominant eigenvalue of the operator P . Using
this and the analyticity of Pz 2 L.B
 ;B
 / shown in Step 1, and applying the pertur-
bation theorem (see [30, Theorem III.8]), we obtain the decomposition formula (3.2) with
Mz.'/ D c1�z.'/rz for some constant c1 ¤ 0, as well as parts (a), (b) and (d). Using
Pzrz D �.z/rz , we get c1 D 1

�z.rz/
and thus

Mz' D
�z.'/

�z.rz/
rz

for any ' 2 B
 .
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Step 3. We prove part (c) for both invertible matrices and positive matrices. FromP 1D 1,
we see that �.0/ D 1 and r0 D 1. Letting z D 0 in �zPz D �.z/�z , we get �0P D �0
and thus �0 D � since � is the unique �-stationary probability measure. Now we fix
z 2 .��; �/ and we show that �.z/ and rz are real-valued. Taking the conjugate in the
equality Pzrz D �.z/rz , we get Pzrz D �.z/rz , so that �.z/ is an eigenvalue of the oper-
ator Pz . By the uniqueness of the dominant eigenvalue of Pz , it follows that �.z/ D �.z/,
showing that �.z/ is real-valued for z 2 .��; �/. We now prove that rz is real-valued.
Write rz in the form rz D uz C ivz , where uz and vz are real-valued functions on � .
From the normalization condition �.rz/ D 1, we get �.uz/ D 1 and �.vz/ D 0. From the
equation Pzrz D �.z/rz and the fact that �.z/ is real-valued, we get that Pzuz D �.z/uz
and Pzvz D �.z/vz . By part (a), the space of eigenvectors corresponding to the eigen-
value �.z/ is one-dimensional. Therefore, we have either uz D cvz for some constant
c 2 R, or vz D 0. However, the equality uz D cvz is impossible because we have seen
that �.uz/ D 1 and �.vz/ D 0. Hence vz D 0 and rz is real-valued for z 2 .��; �/. The
positivity of �.z/ and rz then follows from �.0/ D 1, r0 D 1 and the analyticity of the
mappings z 7! �.z/ and z 7! rz . This ends the proof of part (c), as well as the proof of
Proposition 3.1.

3.2. Definition of the change of measure Qx
s

Proposition 3.1 allows us to perform a change of measure. Note that this change of mea-
sure for positive s has been studied in [10, 11, 27]; however, for negative s it is new. For
any s 2 .��; �/, x 2 � and g 2 ��, denote

qsn.x; g/ D
es�.g;x/

�n.s/

rs.g � x/

rs.x/
; n � 1: (3.13)

Then .qsn/ satisfies the property: for any n;m � 1 and g1; g2 2 ��,

qsn.x; g1/q
s
m.g1 � x; g2/ D q

s
nCm.x; g2g1/: (3.14)

Since �.s/ and rs are strictly positive, it follows that qsn.x;Gn/�.dg1/ : : : �.dgn/, n � 1,
is a sequence of probability measures, and forms a projective system on M.d;R/N

�

.
By the Kolmogorov extension theorem, there is a unique probability measure Qx

s on
M.d;R/N

�

with marginals qsn.x;Gn/�.dg1/ : : : �.dgn/. Denote by EQxs the corres-
ponding expectation. For any n 2 N and any bounded measurable function h on .� �R/n,
it holds that for any s 2 .��; �/ and x 2 � ,

1

�n.s/rs.x/
E
�
rs.X

x
n /e

s�.Gn;x/h
�
Xx1 ; �.G1; x/; : : : ; X

x
n ; �.Gn; x/

��
D EQxs

�
h
�
Xx1 ; �.G1; x/; : : : ; X

x
n ; �.Gn; x/

��
: (3.15)

3.3. Properties of the Markov operator Qs

For any s 2 .��; �/, define the Markov operator Qs as follows: for any ' 2 B
 ,

Qs'.x/ D
1

�.s/rs.x/
Ps.'rs/.x/; x 2 � :
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Under the changed measure Qx
s , the process .Xxn /n2N is a Markov chain with the transi-

tion operator given by Qs .
The next assertion will be useful to prove that the function � is strictly convex (see

Lemma 3.16). Recall that V.��/ is the support of the measure � (cf. (2.3) and (2.4)).

Lemma 3.3. Assume the conditions of Proposition 3.1. Let s 2 .��; �/, where � > 0 is
a small constant. If ' � Qs' for some real-valued function ' 2 C.�/, then

'.x/ D sup
y2�

'.y/

for any x 2 V.��/.

Proof. We use the approach developed in [27]. Set

M D sup
y2�

'.y/

and
�C D ¹x 2 � W '.x/ DMº:

From the condition ' � Qs' and the fact thatZ
��

qs1.x; g/�.dg/ D 1;

we get that if x 2 �C, then g � x 2 �C for any g 2 ��, so that ���C � �C. Since V.��/
is the unique minimal ��-invariant set (see [27] and [10]), we obtain V.��/ � �C and
the claim follows.

We state the spectral gap property of the Markov operator Qs , whose proof is post-
poned to Section 3.5.

Proposition 3.4. Assume the conditions of Proposition 3.1. Then there exists � > 0 such
that for any s 2 .��; �/ and n � 1, we have

Qn
s D …s CN

n
s ;

where the mappings s 7! …s , s 7! Ns 2 L.B
 ;B
 / are analytic on .��; �/ and satisfy
the following properties:

(a) with �s.'/ WD
�s.'rs/
�s.rs/

, we have for any ' 2 B
 ,

…s.'/.x/ D �s.'/1; N n
s .'/.x/ D

1

�n.s/

Lns .'rs/.x/

rs.x/
; x 2 � ;

where �s , rs , Ls are given in Proposition 3.1,

(b) …sNs D Ns…s D 0, and for each k 2 N, there exist constantsCk > 0 and a 2 .0; 1/
such that

sup
s2.��;�/





 dkdskN n
s






B
!B


� Cka
n: (3.16)
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3.4. Quasi-compactness of the operator QsCit

For any s 2 .��; �/ and t 2 R, define the operator QsCit as follows: for any ' 2 B
 ,

QsCit'.x/ D
1

�.s/rs.x/
PsCit .'rs/.x/

D
1

�.s/rs.x/
E
�
e.sCit/�.g1;x/'.g1 � x/rs.g1 � x/

�
; x 2 � :

The spectral gap properties of the operator QsCit for jt j small enough can be deduced
from Proposition 3.1. However, this approach does not work for large jt j. In order to
investigate the spectral gap properties of the operator QsCit for t 2 R, we first prove
the Doeblin–Fortet inequality and then we apply the theorem of Ionescu-Tulcea and
Marinescu [35] to establish the quasi-compactness of the operatorQsCit . Using this prop-
erty, we shall apply the Non-arithmeticity Condition A5 to prove that the spectral radius
of QsCit is strictly less than 1 when t is different from 0.

The following is the Doeblin–Fortet inequality for the operator QsCit :

Lemma 3.5. Assume that the conditions of Proposition 3.1 hold. Then there exist con-
stants 0 < a < 1, and � > 0 small enough, such that for any s 2 .��; �/, t 2 R, n � 1
and ' 2 B
 , we have

ŒQn
sCit'�
 � Cs;t;nk'k1 C Csa

nŒ'�
 : (3.17)

For positive-valued s, analogous results can be found in [27] for invertible matrices
and in [11] for positive matrices. The proofs in [11, 27] rely essentially on the Hölder
continuity of the mapping x 7! qsn.x; g/ defined in (3.13). However, this property does
not hold any more in the case when s is negative. Our proof of Lemma 3.5 is carried out
using the Hölder inequality and the spectral gap properties of the operator Ps established
in Proposition 3.1.

Proof of Lemma 3.5. Using the definition of QsCit and the cocycle property (3.14), we
get that for any n � 1,

Qn
sCit'.x/ D

1

�n.s/rs.x/
P nsCit .'rs/.x/; x 2 � :

It follows that

sup
x;y2�;x¤y

jQn
sCit'.x/ �Q

n
sCit'.y/j

d
 .x; y/
� J1.n/C J2.n/; (3.18)

where

J1.n/ D sup
x;y2�;x¤y

1

d
 .x; y/�n.s/

ˇ̌̌̌
1

rs.x/
�

1

rs.y/

ˇ̌̌̌ˇ̌
P nsCit .'rs/.x/

ˇ̌
;

J2.n/ D sup
x;y2�;x¤y

1

rs.y/d
 .x; y/�n.s/
ˇ̌
P nsCit .'rs/.x/ � P

n
sCit .'rs/.y/

ˇ̌
:
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Note that by Proposition 3.1, for any s 2 .��; �/, we have

min
x2�

rs.x/ > 0; max
x2�

rs.x/ <1; �.s/ > 0:

Control of J1.n/. Observe that uniformly in x 2 � ,

jP nsCit .'rs/.x/j � P
n
s .j'jrs/.x/ � k'k1�

n.s/krsk1 � Csk'k1�
n.s/:

Since rs 2 B
 , this implies that for any s 2 .��; �/ and t 2 R,

J1.n/ � Csk'k1: (3.19)

Control of J2.n/. Using the definition of PsCit and taking into account that rs is strictly
positive and bounded on � , we have

J2.n/ � Cs.J21.n/C J22.n/C J23.n//; (3.20)

where

J21.n/ D sup
x;y2�; x¤y

1

d
 .x; y/�n.s/
ˇ̌
E
�
.e.sCit/�.Gn;x/ � e.sCit/�.Gn;y//'.Xxn /

�ˇ̌
;

J22.n/ D sup
x;y2�; x¤y

1

d
 .x; y/�n.s/
ˇ̌
E
�
e.sCit/�.Gn;y/.'.Xxn / � '.X

y
n //
�ˇ̌
;

J23.n/ D sup
x;y2�; x¤y

1

d
 .x; y/�n.s/
ˇ̌
E
®
e.sCit/�.Gn;y/'.Xyn /Œrs.X

x
n / � rs.X

y
n /�
¯ˇ̌
:

Control of J21.n/. Using (3.10) and the inequality logu � u", u > 1, for " > 0 small
enough, we obtainˇ̌

e.sCit/�.Gn;x/ � e.sCit/�.Gn;y/
ˇ̌
� 2.N.Gn//

jsjC"
ˇ̌
�.Gn; x/ � �.Gn; y/

ˇ̌

: (3.21)

From inequality (2.1), by arguing as in the estimate of (3.8), we getˇ̌
�.Gn; x/ � �.Gn; y/

ˇ̌

� CkGnk


 �.Gn/
�
d
 .x; y/:

Using first (3.21) and then the last bound, we deduce that

J21.n/ �
Ck'k1

�n.s/

®
E
�
.N.g1//

jsjC"
jg1k


 �.g1/
�

�¯n
� Cs;t;nk'k1; (3.22)

where the last inequality holds by Condition A1.

Control of J22.n/. Since ' 2 B
 , applying the Hölder inequality leads to

J22.n/ �
CsŒ'�


�n.s/
sup

x;y2�; x¤y

E

�
es�.Gn;y/

d
 .Xxn ; X
y
n /

d
 .x; y/

�

� CsŒ'�
 sup
x;y2�; x¤y

¹EŒe2s�.Gn;y/�º
1
2

�n.s/

�
E

d2
 .Xxn ; X
y
n /

d2
 .x; y/

� 1
2

: (3.23)
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Since 
 > 0 is small enough, by [39, Theorem 1] for invertible matrices and [29, Lem-
ma 3.2] for positive matrices, there exists a constant a0 2 .0; 1/ such that for sufficiently
large n � 1,

sup
x;y2�;x¤y

�
E

d2
 .Xxn ; X
y
n /

d2
 .x; y/

� 1
2

� an0 : (3.24)

In view of Proposition 3.1, we have

E
�
e2s�.Gn;y/

�
D �n.2s/.M2s1/.y/C Ln2s1.y/; y 2 � :

Since, by Proposition 3.1(d), kM2s1k1 is bounded by some constant Cs , and kLn2s1k1
is bounded by Cs�n.2s/ uniformly in n � 1, it follows that

sup
n�1

sup
y2�

EŒe2s�.Gn;y/�

�n.2s/
� Cs : (3.25)

As � is continuous in the neighborhood of 0 and �.0/ D 1, one can choose � > 0 small
enough and a constant ˛ 2 .0; 1

a0
/ such that

�
n
2 .2s/

�n.s/
� ˛n;

uniformly in s 2 .��; �/. Substituting this inequality together with (3.24) and (3.25) into
(3.23), we obtain that for any s 2 .��; �/ with � > 0 small, there exists 0 < a < 1 such
that uniformly in n � 1,

J22.n/ � Csa
nŒ'�
 : (3.26)

Control of J23.n/. Using (3.25) and the fact that rs 2 B
 , and applying similar tech-
niques as in the control of J22.n/, one can verify that there exists a constant 0 < a < 1
such that uniformly in n � 1,

J23.n/ � Csa
n
k'k1Œrs�
 � Csa

n
k'k1: (3.27)

Inserting (3.22), (3.26) and (3.27) into (3.20), we conclude that

J2.n/ � Cs;t;nk'k1 C Csa
nŒ'�
 :

Combining this with (3.19) and (3.18), we obtain inequality (3.17).

From Lemma 3.5 and the fact that kQsCit'k1 � Csk'k1 for any s 2 .��; �/ and
t 2 R, we can deduce thatQsCit 2 L.B
 ;B
 /. We next prove that the operatorQsCit is
quasi-compact. Recall that an operatorQ 2 L.B;B/ is called quasi-compact if B can be
decomposed into two Q invariant closed subspaces B D E ˚ F such that dimE <1,
each eigenvalue of QjE has modulus %.Q/, and %.QjF / < %.Q/ (see [30] for more
details).

Proposition 3.6. Assume the conditions of Proposition 3.1. Then there exists � > 0 such
that for any s 2 .��; �/ and t 2 R, the operator QsCit is quasi-compact.

Proof. The proof consists of verifying the conditions of the theorem of Ionescu-Tulcea
and Marinescu [35]. We follow the formulation in [30, Theorem II.5].
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Firstly, by the definition of QsCit , there exists a constant Cs > 0 such that

kQsCit'k1 � Csk'k1

for any s 2 .��; �/, t 2 R and ' 2 B
 .
Secondly, by Lemma 3.5, the Doeblin–Fortet inequality (3.17) holds for the opera-

tor QsCit .
Thirdly, denoting K D ¹QsCit' W k'k
 � 1º, we claim that for any s 2 .��; �/ and

t 2 R, the setK is conditionally compact in .B
 ; k � k1/. Since kQsCit'k1 � Csk'k1
for any ' 2 B
 , we conclude that K is uniformly bounded in .B
 ; k � k1/. Moreover, by
taking n D 1 in (3.17), we get that uniformly in ' 2 B
 with k'k
 � 1,

jQsCit'.x/ �QsCit'.y/j � Cs;td
 .x; y/:

This shows that K is equicontinuous in .B
 ; k � k1/. Therefore, we obtain the claim by
the Arzelà–Ascoli theorem.

The assertion of the proposition now follows from the theorem of Ionescu-Tulcea and
Marinescu.

The proposition below shows that the spectral radius of the operator QsCit is strictly
less than 1 when t is different from 0. The proof which relies on the non-arithmeticity
Condition A5, follows the standard pattern in [11,27]; it is included for the commodity of
the reader.

Proposition 3.7. Assume either Conditions A1 and A2 for invertible matrices, or Con-
ditions A1, A3 and A5 for positive matrices. Then there exists � > 0 such that for any
s 2 .��; �/ and t 2 R n ¹0º, we have %.QsCit / < 1.

Proof. By the definition of QsCit , we have

%.QsCit / � %.Qs/ D 1:

Suppose that %.QsCit / D 1 for some t ¤ 0. Then, applying Proposition 3.6, there exist
' 2 B
 and ˇ 2 R such that

QsCit' D e
iˇ':

From this equation, we deduce that j'j � Qsj'j. Using Lemma 3.3, this implies that
j'.x/j D supy2� j'.y/j for any x 2 V.��/, so that '.x/ D cei#.x/, where c ¤ 0 is a con-
stant and # is a real-valued continuous function on � . Substituting this into the equation
QsCit' D e

iˇ' gives that for any x 2 V.��/,

EQxs exp
�
i t�.g1; x/ � iˇ C i#.g1 � x/ � i#.x/

�
D 1:

Since # is real-valued, this implies

expŒi t�.g; x/ � iˇ C i#.g � x/ � i#.x/� D 1

for any x 2 V.��/ and �-a.e. g 2 ��, which contradicts to Condition A5. Therefore,
%.QsCit / < 1 for any t ¤ 0. Recalling that Condition A2 implies Condition A5 for invert-
ible matrices, the proof of Proposition 3.7 is complete.
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3.5. Spectral gap properties of the perturbed operator Rs;z

For any s 2 .��; �/ and z 2 C such that s C<z 2 .��0; �0/, define the perturbed oper-
ator Rs;z as follows: for any ' 2 B
 ,

Rs;z'.x/ D EQxs

�
ez.�.g1;x/�ƒ

0.s//'.Xx1 /
�
; x 2 � : (3.28)

With some calculations using (3.14), it follows that for any n � 1,

Rns;z'.x/ D EQxs

�
ez.�.Gn;x/�nƒ

0.s//'.Xxn /
�
; x 2 � : (3.29)

The following formula relates the operatorRns;z to the operatorP nsCz and is of independent
interest: for any ' 2 B
 , n � 1, s 2 .��; �/ and z 2 B�.0/,

Rns;z.'/ D e
�nzƒ0.s/

P nsCz.'rs/

�n.s/rs
: (3.30)

The identity in (3.30) is obtained by the definitions of Rs;z and Pz using the change of
measure (3.15).

There are two ways to establish spectral gap properties of the operator Rs;z : one is
to use the perturbation theory of operators [30, Theorem III.8], another is based on the
Ionescu-Tulcea and Marinescu theorem [35] about the quasi-compactness of operators.
The representation (3.30) allows us to deduce the spectral gap properties of Rs;z directly
from the properties of the operator Pz . This has some advantages: it ensures the unifor-
mity in s 2 .��; �/, allows to deal with negative-valued s and provides an explicit formula
for the projection operator …s;z and the remainder operator N n

s;z defined below.
Recall that ƒ D log �, where � is defined in (2.6).

Proposition 3.8. Assume the conditions of Proposition 3.1. Then there exist � > 0 and
ı 2 .0; �/ such that for any s 2 .��; �/ and z 2 Bı.0/,

Rns;z D �
n
s;z…s;z CN

n
s;z ; n � 1; (3.31)

�s;z D e
ƒ.sCz/�ƒ.s/�ƒ0.s/z (3.32)

and for ' 2 B,

…s;z.'/ D
�sCz.'rs/

�sCz.rsCz/

rsCz

rs
; (3.33)

N n
s;z.'/ D e

�nŒƒ.s/Cƒ0.s/z�
LnsCz.'rs/

rs
; (3.34)

where rz , �z and Lz are given in Proposition 3.1. In addition, we have:

(a) for fixed s, the mappings

z 7! …s;z W Bı.0/! L.B;B/;

z 7! Ns;z W Bı.0/! L.B;B/;

z 7! �s;z W Bı.0/! C

are analytic,

(b) for fixed s and z, …s;z is a rank-one projection with …s;0.'/.x/ D �s.'/ for any
' 2 B
 and x 2 � , and …s;zNs;z D Ns;z…s;z D 0,
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(c) for any k 2 N, there exist constants Ck > 0 and 0 < a < 1 such that

sup
s2.��;�/

sup
z2Bı.0/





 dkdzk…s;z






B
!B


� Ck ; (3.35)

sup
s2.��;�/

sup
z2Bı.0/





 dkdzkN n
s;z






B
!B


� Cka
n: (3.36)

Note that, for s > 0, similar results have been obtained in [11]. The novelty here is
that s can account for negative values s 2 .��; 0� and that the bounds (3.35) and (3.36)
hold uniformly in s 2 .��; �/. This plays a crucial role in establishing Theorem 2.3.

Proof of Proposition 3.8. The proof is divided into three steps.

Step 1. By Proposition 3.1, we have

P nsCz.'rs/ D �
n.s C z/

�sCz.'rs/

�sCz.rsCz/
rsCz C L

n
sCz.'rs/:

Substituting this into (3.30) shows (3.31), (3.32), (3.33) and (3.34).

Step 2. We prove parts (a) and (b). The assertion in part (a) follows from the expressions
(3.32), (3.33) and (3.34), and the analyticity of the mappings z 7! �.z/, z 7! rz , z 7! �z
and z 7! Lz defined in Proposition 3.1. To show part (b), by (3.33), we have that …s;z is
a rank-one projection on the subspace ¹w rsCz

rs
Ww 2Cº. The identity…s;0.'/.x/D �s.'/

follows from (3.33) and the fact that

�s.'/ D
�s.'rs/

�s.rs/
:

Using Proposition 3.1, we get that Lzrz D 0 and �z.Lz'/ D 0 for any ' 2 B
 . This,
together with (3.33) and (3.34), shows that …s;zNs;z D Ns;z…s;z D 0.

Step 3. We prove part (c). By Proposition 3.1, there exists a constant � > 0 such that
the mappings z 7! �.z/, z 7! rz , z 7! �z are analytic and uniformly bounded on B2�.0/.
Combining this with (3.33), we obtain (3.35). We now prove (3.36). Since the function rs
is strictly positive on the compact set � , by Proposition 3.1(d), we deduce that there exists
a constant 0 < a0 < 1 such that uniformly in ' 2 B
 ,

sup
s2.��;�/

sup
z2B�.0/





LnsCz.'rs/rs









� Ck'k
a
n
0 : (3.37)

Using the fact that the function ƒ is continuous and ƒ.0/ D 0, there exist a small � > 0,
ı 2 .0; �/ and a constant a1 < 1

a0
such that

sup
s2.��;�/

sup
z2Bı.0/

ˇ̌
e�nŒƒ.s/Cƒ

0.s/z�
ˇ̌
� Can1 :

Combining this with (3.37) proves (3.36) with k D 0. The proof of (3.36) when k � 1
can be carried out in the same way as in the case of k D 0.

Proof of Proposition 3.4. The assertion is obtained from Proposition 3.8 taking z D 0.
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In order to establish the non-arithmeticity of the perturbed operator Rs;it , we shall
need the following lemma from [30, Lemma III.9]:

Lemma 3.9. Let s 2 R, ı > 0 and Is;ı D .s � ı; s C ı/. Assume that the mapping

t 2 Is;ı 7! P.t/ 2 L.B;B/

is continuous. Let r > %.P.s//. Then there exist constants " D ".s/ and c D c.s/ > 0
such that

sup
t2.s�";sC"/

kP n.t/kB
!B
 < cr
n:

Moreover, it holds that
lim sup
t!s

%.P.t// � %.P.s//:

Proposition 3.10. Assume that the conditions of Proposition 3.7 hold. For any compact
set K � R n ¹0º, there exist constants CK > 0 and � > 0 such that for any n � 1 and
' 2 B
 ,

sup
s2.��;�/

sup
t2K

sup
x2�

jRns;it'.x/j � e
�nCKk'k
 :

Proof. By Proposition 3.7, for any fixed s 2 .��; �/ and t 2 R n ¹0º, we have

%.RsCit / D %.QsCit / < 1:

It follows that for any s 2 .��; �/ and t 2 R n ¹0º, there exists a constant C.s; t/ > 0
such that, for any n � 1 and ' 2 B
 ,

sup
x2�

jRns;it'.x/j � e
�nC.s;t/

k'k
 :

From (3.30), we see that the operator Rs;it is continuous in s and t . By Lemma 3.9, there
exist constants ".s/ > 0 and ı.t/ > 0 such that

sup
s02.s�".s/;sC".s//

sup
t 02.t�ı.t/;tCı.t//

sup
x2�

jRns0;it 0'.x/j � e
�nC.s;t/

k'k
 :

Let I � .��; �/ and K � R n ¹0º be any compact sets. Since[
.s;t/2I�K

®
.s � ".s/; s C ".s// � .t � ı.t/; t C ı.t//

¯
� I �K;

by Heine–Borel’s theorem, there exist an integerm0 � 1 and a sequence ¹sm; tmº1�m�m0
such that

m0[
mD1

®
.sm � "m; sm C "m/ � .tm � ım; tm C ım/

¯
� I �K;

where "m D ".sm/ and ım D ı.sm/. This concludes the proof of Proposition 3.10 by
taking

CK D min
1�m�m0

C.sm; tm/:
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We will now give some properties of the function bs;' defined as follows: for any
s 2 .��; �/ and ' 2 B
 ,

bs;'.x/ WD lim
n!1

EQxs

�
.�.Gn; x/ � nƒ

0.s//'.Xxn /
�
; x 2 � :

In particular, with s D 0, we have b0;' D b' , which is defined in (2.7).

Lemma 3.11. Assume the conditions of Proposition 3.1. Then the function bs;' is well-
defined, bs;' 2 B
 and

bs;'.x/ D
d…s;z

dz

ˇ̌̌
zD0

'.x/; x 2 � : (3.38)

Proof. In view of Proposition 3.8, we have that for any ' 2 B
 ,

EQxs

�
ez.�.Gn;x/�nƒ

0.s//'.Xxn /
�
D �ns;z…s;z'.x/CN

n
s;z'.x/; x 2 � :

From (3.32), we have �s;0 D 1 and d�s;z
dz
jzD0 D 0. Differentiating both sides of the above

equation with respect to z at the point 0 gives that for any x 2 � ,

EQxs

�
.�.Gn; x/ � nƒ

0.s//'.Xxn /
�
D
d…s;z

dz

ˇ̌̌
zD0

'.x/C
dN n

s;z

dz

ˇ̌̌
zD0

'.x/: (3.39)

Using the bounds (3.35) and (3.36), we find that the first term on the right-hand side of
(3.39) belongs to B
 , and the second term converges to 0 exponentially fast as n!1.
Hence, letting n!1 in (3.39), we obtain (3.38). This shows that the function bs;' is
well-defined and bs;' 2 B
 .

For any s 2 .��; �/ with � > 0 small, define Qs D
R

�
Qx
s �s.dx/. The following

result will be used to prove the strong law of large numbers for �.Gn; x/ under the
changed measure Qs:

Lemma 3.12. Assume the conditions of Proposition 3.1. There exist � > 0 and c; C > 0

such that uniformly in s 2 .��; �/, ' 2 B
 and n � 1,ˇ̌
EQs

�
.�.Gn; x/ � nƒ

0.s//'.Xxn /
�ˇ̌
� Ck'k
e

�cn: (3.40)

Proof. We follow the proof of the previous lemma. Integrating both sides of the identity
in (3.39) with respect to �s , we get, for any ' 2 B
 ,

EQs

�
.�.Gn; x/ � nƒ

0.s//'.Xxn /
�
D �s

�
d…s;z

dz

ˇ̌̌
zD0

'

�
C �s

�
dN n

s;z

dz

ˇ̌̌
zD0

'

�
: (3.41)

Since …2
s;z' D …s;z', we have

2…s;0

�
d…s;z

dz

ˇ̌̌
zD0

'

�
D
d…s;z

dz

ˇ̌̌
zD0

':

Integrating both sides of this equation with respect to �s and using the fact that…s;0 D �s ,
we find that

�s

�
d…s;z

dz

ˇ̌̌
zD0

'

�
D 0: (3.42)
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It follows from (3.36) that uniformly in ' 2 B
 and s 2 .��; �/, the second term on the
right-hand side of (3.41) is bounded by Ck'k
e�cn. Therefore, from (3.41) and (3.42)
we obtain (3.40).

We now establish the strong laws of large numbers for �.Gn; x/ under the measures
Qx
s and Qs , which are of independent interest.

Proposition 3.13. Assume the conditions of Proposition 3.1. Then there exists � > 0 such
that for any s 2 .��; �/ and x 2 � ,

lim
n!1

�.Gn; x/

n
D ƒ0.s/ Qx

s -a.s.

Proof. By the Borel–Cantelli lemma, it suffices to show that for any " > 0, s 2 .��; �/
and x 2 � , we have

1X
nD1

Qx
s

�
j�.Gn; x/ � nƒ

0.s/j � n"
�
<1: (3.43)

Now let us prove (3.43). By Markov’s inequality, we have for small ı > 0,

Qx
s

�ˇ̌
�.Gn; x/ � nƒ

0.s/
ˇ̌
� n"

�
� e�nı"EQxs

�
eı.�.Gn;x/�nƒ

0.s//
�
C e�nı"EQxs

�
e�ı.�.Gn;x/�nƒ

0.s//
�
:

From (3.29) and Proposition 3.8, we deduce that there exist positive constants c; C inde-
pendent of s; x; ı such that

EQxs

�
eı.�.Gn;x/�nƒ

0.s//
�
C EQxs

�
e�ı.�.Gn;x/�nƒ

0.s//
�

� CenŒƒ.sCı/�ƒ.s/�ƒ
0.s/ı�
C CenŒƒ.s�ı/�ƒ.s/Cƒ

0.s/ı�
C Ce�cn:

Using Taylor’s formula and taking ı > 0 small enough, we conclude that

Qx
s

�
j�.Gn; x/ � nƒ

0.s/j � n"
�
� Ce�n

ı
2 ";

which implies the desired assertion (3.43).

Proposition 3.14. Assume the conditions of Proposition 3.1. Then there exists � > 0 such
that for any s 2 .��; �/ and x 2 � ,

lim
n!1

�.Gn; x/

n
D ƒ0.s/ Qs-a.s.

Proof. Taking ' D 1 in (3.40) leads to

lim
n!1

1

n
EQs

�
�.Gn; x/

�
D ƒ0.s/: (3.44)

Let� DM.d;R/N
�

and b� D � ��. Following [27, Theorem 3.10], we define the shift
operatorb� on b� byb�.x; !/ D .g1 � x; �!/, where ! 2 � and � is the shift operator on�.
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For any x 2 � and ! 2 �, set h.x; !/ D �.g1.!/; x/. Then h is Qs-integrable. Since

�.Gn; x/ D

n�1X
kD0

.h ıb�k/.x; !/
and Qs isb� -ergodic, it follows from Birkhoff’s ergodic theorem that �.Gn;x//

n
converges

Qs-a.s. to some constant cs as n!1. If we suppose that cs is different fromƒ0.s/, then
this contradicts to (3.44). Thus cs D ƒ0.s/ and the assertion of the lemma follows.

Now we give the third-order Taylor expansion of �s;z defined by (3.32), with respect
to z at the origin in the complex plane C.

Proposition 3.15. Assume the conditions of Proposition 3.1. Then there exist � > 0 and
ı > 0 such that for any s 2 .��; �/ and z 2 Bı.0/,

�s;z D 1C
�2s
2
z2 C

ƒ000.s/

6
z3 C o.jzj3/ as jzj ! 0; (3.45)

where

(a) �2s D ƒ
00.s/ � 0 and ƒ000.s/ 2 R;

(b) for invertible matrices, �s > 0 under the stated conditions; for positive matrices,
�s > 0 if additionally � D �0 > 0 or if the measure � is non-arithmetic;

(c) uniformly in s 2 .��; �/ and x 2 � ,

�2s D lim
n!1

1

n
EQxs

�
�.Gn; x/ � nƒ

0.s/
�2
D lim
n!1

1

n
EQs

�
�.Gn; x/ � nƒ

0.s/
�2
I

(d) uniformly in s 2 .��; �/,

ƒ000.s/ D lim
n!1

1

n
EQs

�
�.Gn; x/ � nƒ

0.s/
�3
:

The proof of Proposition 3.15 is based on the following lemma:

Lemma 3.16. Assume the conditions of Proposition 3.1. Then the functions ƒ and �
are convex on .��; �/ for � > 0 small enough. Moreover, ƒ and � are strictly convex
for invertible matrices under the given conditions, and for positive matrices under the
additional Condition A5.

Proof. The proof follows [27]. Since ƒ D log �, it suffices to prove Lemma 3.16 for the
function ƒ. For any t 2 .0; 1/, s1; s2 2 .��; �/, set s0 D ts1 C .1 � t /s2. Using Hölder’s
inequality and the fact that Psrs D �.s/rs ,

Ps0.r
t
s1
r1�ts2

/ � �t .s1/�
1�t .s2/r

t
s1
r1�ts2

: (3.46)

Since �.s0/ is the dominant eigenvalue of the operator Ps0 , we obtain

�.s0/ � �t .s1/�
1�t .s2/

and thus the function ƒ is convex.



H. Xiao, I. Grama, Q. Liu 2720

To show that the function ƒ is strictly convex, we suppose, by absurd, that there exist
s1 ¤ s2 and some t 2 .0; 1/ such that �.s0/ D �t .s1/�1�t .s2/. Using this equality, the
definition of the Markov operator Qs and (3.46), we get

Qs0

�
r ts1r

1�t
s2

rs0

�
�
r ts1r

1�t
s2

rs0
:

Applying Lemma 3.3 with ' D � 1
rs0
r ts1r

1�t
s2

, this implies that

r ts1r
1�t
s2
D crs0 on V.��/

for some constant c > 0. Substituting this equality and the identity �.s0/ D �t .s1/�1�t .s2/
into (3.46), we see that the Hölder inequality in (3.46) is actually an equality. This yields
that there exists a function c.x/ > 0 such that for any g 2 �� and x 2 V.��/,

es1�.g;x/rs1.g � x/ D c.x/e
s2�.g;x/rs2.g � x/: (3.47)

Integrating both sides of equation (3.47) with respect to � gives

c.x/ D
�.s1/rs1.x/

�.s2/rs2.x/
:

Substituting this into (3.47) and noting that s1 ¤ s2, we find that there exist a constant
c1 > 0 and a real-valued function ' on � such that

e�.g;x/ D c1
'.g � x/

'.x/

for any g 2 �� and x 2 V.��/. This contradicts to the non-arithmetic Condition A5.
Recall that Condition A2 implies Condition A5 for invertible matrices. Henceƒ is strictly
convex for invertible matrices under stated conditions.

Proof of Proposition 3.15. Expansion (3.45) follows from (3.32) and Taylor’s formula.
For part (a), by Lemma 3.16, we haveƒ00.s/ � 0 for any s 2 .��; �/. Sinceƒ D log �

and it is shown in Proposition 3.1 that the function � is real-valued and strictly positive
on .��; �/, we get ƒ000.s/ 2 R.

For part (b), recall that it was shown in [11] that �0 > 0 for invertible matrices under
the stated conditions, and for positive matrices under the additional condition of non-
arithmeticity. Hence, using the continuity of the function ƒ00, we obtain that �s > 0.

For part (c), by Proposition 3.8, we get that for jzj small,

EQxs

�
ez.�.Gn;x/�nƒ

0.s//
�
D �ns;z.…s;z1/.x/C .N n

s;z1/.x/: (3.48)

It follows from (3.45) that for jzj D o.n�1=3/,

�ns;z D 1C n�
2
s

z2

2
C nƒ000.s/

z3

6
C o.njzj3/: (3.49)

Using Taylor’s formula, the bound (3.35) and the fact …s;01 D 1, we obtain

.…s;z1/.x/ D 1C cs;x;1z C cs;x;2z2 C cs;x;3z3 C o.jzj3/; (3.50)
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where the constants cs;x;1; cs;x;2; cs;x;3 2 C are bounded as functions of s and x. Simi-
larly, using the factNs;01D 0 and the bound (3.36), there exist constantsCs;x;n;1,Cs;x;n;2,
Cs;x;n;3 2 C which are bounded as functions of s; x and n such that

.N n
s;z1/.x/ D Cs;x;n;1z C Cs;x;n;2z2 C Cs;x;n;3z3 C o.jzj3/: (3.51)

Taking the second derivative on both sides of equation (3.48) with respect to z at 0, and
using the expansions (3.49)–(3.51), we deduce that

EQxs

�
�.Gn; x/ � nƒ

0.s/
�2
D n�2s C 2cs;x;2 C 2Cs;x;n;2: (3.52)

This, together with the definition of Qs and the fact that the constants cs;x;2, Cs;x;n;2 are
bounded as functions of s; x; n, concludes the proof of part (c).

For part (d), integrating both sides of the equations (3.48), (3.50) and (3.51) with
respect to �s , and using property (3.42) with ' D 1 (thus the second term on the right-
hand side of (3.50) vanishes), in the same way as in the proof of (3.52), we get

EQs

�
�.Gn; x/ � nƒ

0.s/
�3
D nƒ000.s/C 6cs;3 C 6Cs;n;3:

This implies the desired assertion in part (d).

Remark 3.17. Inspecting the proof of Proposition 3.15, it is easy to see that the results
in parts (c) and (d) can be reinforced to the following bounds:

sup
s2.��;�/

sup
x2�

ˇ̌̌̌
1

n
EQxs

�
�.Gn; x/ � nƒ

0.s/
�2
� �2s

ˇ̌̌̌
�
C

n
;

sup
s2.��;�/

ˇ̌̌̌
1

n
EQs

�
�.Gn; x/ � nƒ

0.s/
�3
�ƒ000.s/

ˇ̌̌̌
�
C

n
:

The first bound above also holds with the measure Qx
s replaced by Qs .

4. Smoothing inequality on the complex plane

In this section we aim to establish a new smoothing inequality, which plays a crucial role
in proving the Berry–Esseen bound and Edgeworth expansion with a target function '
on Xxn ; see Theorems 2.1, 2.2, 5.1 and 5.3.

From now on, for any integrable function h W R! C, denote its Fourier transform by

bh.t/ D Z
R
e�ityh.y/ dy; t 2 R:

Ifbh is integrable on R, then using the inverse Fourier transform gives

h.y/ D
1

2�

Z
R
eitybh.t/ dt

for almost all y 2 R with respect to the Lebesgue measure on R. Denote by h1 � h2 the
convolution of the functions h1, h2 on the real line.
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For any r > 0, denote

Dr D ¹z 2 C W jzj < rº;

DCr D ¹z 2 C W jzj < r;=z > 0º;

D�r D ¹z 2 C W jzj < r;=z < 0º:

We construct a density function �T which plays an important role in establishing a new
smoothing inequality. As in [42], we define the density function � on the real line R by
setting �.0/ D 1

2�
and

�.y/ D
1

2�

�
sin y

2
y
2

�2
; y 2 R n ¹0º:

Then � is a non-negative function bounded by 1
2�

and
R

R �.y/ dy D 1. Its Fourier trans-
formb� is given by

b�.t/ D ´1 � jt j; t 2 Œ�1; 1�;

0 otherwise:

For any T > 0 and the fixed constant b > 0 satisfyingZ b

�b

�.y/ dy D
3

4
;

define the density function

�T .y/ D T�.Ty � b/; y 2 R;

whose Fourier transformb�T is given by

b�T .t/ D
8<:e�ib

t
T

�
1 �
jt j

T

�
; t 2 Œ�T; T �;

0 otherwise:
(4.1)

Note that the functionb�T is not smooth at the point 0, so that it can not have an analytic
extension in a small neighborhood of 0 in the complex plane C.

Now we are ready to establish our new smoothing inequality. Its proof is based on
the properties of the density function �T , Cauchy’s integral theorem and some techniques
from [17, 42].

Proposition 4.1. Assume that F is non-decreasing on R, and that H is differentiable of
bounded variation on R such that

sup
y2R
jH 0.y/j <1:

Suppose that F.�1/ D H.�1/ and F.1/ D H.1/. Let

f .t/ D

Z
R
e�itydF.y/ and h.t/ D

Z
R
e�itydH.y/; t 2 R:
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Suppose that r > 0 and that f and h have analytic extensions onDr . Then, for any T � r ,

sup
y2R
jF.y/ �H.y/j �

1

�
sup
y�0

ˇ̌̌̌ Z
C�r

f .z/ � h.z/

z
eizye�ib

z
T dz

ˇ̌̌̌
C
1

�
sup
y>0

ˇ̌̌̌ Z
C
C
r

f .z/ � h.z/

z
eizye�ib

z
T dz

ˇ̌̌̌
C
1

�
sup
y�0

ˇ̌̌̌ Z
C�r

f .z/ � h.z/

z
eizyeib

z
T dz

ˇ̌̌̌
C
1

�
sup
y>0

ˇ̌̌̌ Z
C
C
r

f .z/ � h.z/

z
eizyeib

z
T dz

ˇ̌̌̌
C
1

�

Z
r�jt j�T

ˇ̌̌̌
f .t/ � h.t/

t

ˇ̌̌̌
dt

C
2

�T

Z T

�T

jf .t/ � h.t/j dt C
3b

T
sup
y2R
jH 0.y/j;

where b > 0 is a fixed constant satisfying
R b
�b
�.y/ dy D 3

4
, and C�r and CCr are semi-

circles given by

C�r D ¹z 2 C W jzj D r; =z < 0º; CCr D ¹z 2 C W jzj D r; =z > 0º: (4.2)

Proof. Let T � r . From the definition of �T and the choice of the constant b, we haveZ 2b
T

0

�T .y/ dy D
3

4
:

Since � � 1
2�

, the function �T is bounded by T=2� . The proof of Proposition 4.1 consists
in establishing first an upper bound and then a lower bound.

Upper bound. Since the function F is non-decreasing on R and �T is a density function
on R, we find that for any y 2 R,

F.y/ �
4

3

Z yC 2bT

y

F.u/�T .u � y/ du

D H.y/C
4

3

Z yC 2bT

y

�
.F.u/�H.u//�T .u�y/C .H.u/�H.y//�T .u�y/

�
du

� H.y/C
4

3

Z yC 2bT

y

.F.u/ �H.u//�T .u � y/ duC
2b

T
sup
y2R
jH 0.y/j: (4.3)

Let

F1.y/ D

Z
R
F.u/�T .u � y/ du; H1.y/ D

Z
R
H.u/�T .u � y/ du; y 2 R:

Elementary calculations lead toZ
R
e�ity dF1.y/ D f .t/b�T .�t /; Z

R
e�ity dH1.y/ D h.t/b�T .�t /; t 2 R:
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Restricted on the real line, the function b�T is supported on Œ�T; T �. By the Fourier
inversion formula we get

F1.y/ � F1.v/ D
1

2�

Z T

�T

eity � eitv

i t
f .t/b�T .�t / dt; y; v 2 R;

H1.y/ �H1.v/ D
1

2�

Z T

�T

eity � eitv

i t
h.t/b�T .�t / dt; y; v 2 R:

By the definition ofb�T (cf. (4.1)), we get

F1.y/ �H1.y/ � .F1.v/ �H1.v//

D
1

2�

Z T

�T

f .t/ � h.t/

i t
eityeib

t
T dt �

1

2�

Z T

�T

f .t/ � h.t/

i t
eitveib

t
T dt

�
1

2�

Z T

�T

f .t/ � h.t/

i t
eityeib

t
T
jt j

T
dt C

1

2�

Z T

�T

f .t/ � h.t/

i t
eitveib

t
T
jt j

T
dt:

It follows that for any y; v 2 R,

jF1.y/ �H1.y/ � .F1.v/ �H1.v//j

�
1

2�

ˇ̌̌̌ Z T

�T

f .t/ � h.t/

i t
eityeib

t
T dt �

Z T

�T

f .t/ � h.t/

i t
eitveib

t
T dt

ˇ̌̌̌
C

1

�T

Z T

�T

jf .t/ � h.t/j dt: (4.4)

We shall use Cauchy’s integral theorem to change the integration path Œ�T; T � to a contour
in the complex plane. In order to estimate the difference jF1.y/ �H1.y/j, we are led to
consider two cases: y � 0 and y > 0.

Control of jF1.y/ �H1.y/j when y � 0. Let

C� D Cr;T [ C�r ;

where Cr;T D Œ�T;�r� [ Œr; T � and C�r is the lower semicircle given in equation (4.2).
Since F.�1/ D H.�1/ and F.1/ D H.1/, by the definition of f and h, we see that
f .0/ D h.0/. This, together with the condition that f and h have analytic extensions
on Dr , implies that z D 0 is a removable singular point of the function

z 2 Dr 7!
f .z/ � h.z/

z
2 C:

Hence, using the fact that the function z 7! eizyeib
z
T is analytic on the domain Dr ,

applying Cauchy’s integral theorem, we obtain that for any y; v 2 R,Z T

�T

f .t/ � h.t/

i t
eityeib

t
T dt �

Z T

�T

f .t/ � h.t/

i t
eitveib

t
T dt

D

Z
C�

f .z/ � h.z/

iz
eizyeib

z
T dz �

Z
C�

f .z/ � h.z/

iz
eizveib

z
T dz; (4.5)



Limit theorems for products of random matrices 2725

where the integration is over the complex curve C� oriented from �T to T . The second
integral in (4.5) converges to 0 as v ! �1, by using the Riemann–Lebesgue lemma
on the real segment Cr;T and by applying the Lebesgue convergence theorem on the
semicircle C�r . Note that F1.�1/ D H1.�1/ since F.�1/ D H.�1/. Consequently,
letting v ! �1 in (4.5) and substituting it into (4.4), we get

jF1.y/ �H1.y/j �
1

2�

ˇ̌̌̌ Z
C�

f .z/ � h.z/

iz
eizyeib

z
T dz

ˇ̌̌̌
C

1

�T

Z T

�T

jf .t/ � h.t/j dt:

Therefore, recalling that C� D Cr;T [ C�r , it follows that

sup
y�0

jF1.y/ �H1.y/j �
1

2�

Z
Cr;T

ˇ̌̌̌
f .t/ � h.t/

t

ˇ̌̌̌
dt

C
1

2�
sup
y�0

ˇ̌̌̌ Z
C�r

f .z/ � h.z/

z
eizyeib

z
T dz

ˇ̌̌̌
C

1

�T

Z T

�T

jf .t/ � h.t/j dt: (4.6)

Control of jF1.y/ �H1.y/j when y > 0. Let

CC D Cr;T [ CCr ;

where Cr;T D Œ�T;�r� [ Œr; T � and CCr is the upper semicircle given in (4.2). In an
analogous way as in (4.5), applying Cauchy’s integral theorem we haveZ T

�T

f .t/ � h.t/

i t
eityeib

t
T dt �

Z T

�T

f .t/ � h.t/

i t
eitveib

t
T dt

D

Z
CC

f .z/ � h.z/

iz
eizyeib

z
T dz �

Z
CC

f .z/ � h.z/

iz
eizveib

z
T dz; (4.7)

where the integration is over the complex curve CC also oriented from �T to T . The sec-
ond integral in (4.7) converges to 0 as v !C1, by using again the Riemann–Lebesgue
lemma on the real segment Cr;T and by applying the Lebesgue convergence theorem
on the upper semicircle CCr . Note that F1.1/ D H1.1/ since F.1/ D H.1/. Hence,
letting v !C1 in (4.7), similarly to (4.6), we obtain

sup
y>0

jF1.y/ �H1.y/j �
1

2�

Z
Cr;T

ˇ̌̌̌
f .t/ � h.t/

t

ˇ̌̌̌
dt

C
1

2�
sup
y>0

ˇ̌̌̌ Z
C
C
r

f .z/ � h.z/

z
eizyeib

z
T dz

ˇ̌̌̌
C

1

�T

Z T

�T

jf .t/ � h.t/j dt: (4.8)
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Putting together (4.6) and (4.8) leads to

sup
y2R
jF1.y/ �H1.y/j �

1

2�

Z
Cr;T

ˇ̌̌̌
f .t/ � h.t/

t

ˇ̌̌̌
dt

C
1

2�
sup
y�0

ˇ̌̌̌ Z
C�r

f .z/ � h.z/

z
eizyeib

z
T dz

ˇ̌̌̌
C

1

2�
sup
y>0

ˇ̌̌̌ Z
C
C
r

f .z/ � h.z/

z
eizyeib

z
T dz

ˇ̌̌̌
C

1

�T

Z T

�T

jf .t/ � h.t/j dt: (4.9)

Denote � D supy2R jF.y/ �H.y/j. Then, taking into account that �T is a density func-
tion on R, using (4.9) and the fact thatZ 2b

T

0

�T .y/ dy D
3

4
;

we get that for any y 2 R,ˇ̌̌̌ Z yC 2bT

y

.F.u/ �H.u//�T .u � y/ du

ˇ̌̌̌

� jF1.y/ �H1.y/j C�

�
1 �

Z yC 2bT

y

�T .u � y/ du

�
�

1

2�

Z
Cr;T

ˇ̌̌̌
f .t/ � h.t/

t

ˇ̌̌̌
dt C

1

2�
sup
y�0

ˇ̌̌̌ Z
C�r

f .z/ � h.z/

z
eizyeib

z
T dz

ˇ̌̌̌
C

1

2�
sup
y>0

ˇ̌̌̌ Z
C
C
r

f .z/ � h.z/

z
eizyeib

z
T dz

ˇ̌̌̌
C

1

�T

Z T

�T

jf .t/ � h.t/j dt C
�

4
:

Substituting this inequality into (4.3), we obtain the following desired upper bound: for
any y 2 R,

F.y/ �H.y/ �
2

3�

Z
Cr;T

ˇ̌̌̌
f .t/ � h.t/

t

ˇ̌̌̌
dt

C
2

3�
sup
y�0

ˇ̌̌̌ Z
C�r

f .z/ � h.z/

z
eizyeib

z
T dz

ˇ̌̌̌
C

2

3�
sup
y>0

ˇ̌̌̌ Z
C
C
r

f .z/ � h.z/

z
eizyeib

z
T dz

ˇ̌̌̌
C

4

3�T

Z T

�T

jf .t/ � h.t/j dt C
�

3
C
2b

T
sup
y2R
jH 0.y/j: (4.10)
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Lower bound. Similarly to the upper bound (4.3), using the fact that F is non-decreasing
and �T is a density function on R, we have for any y 2 R,

F.y/ �
4

3

Z y

y� 2bT

F.u/�T .y � u/ du

� H.y/C
4

3

Z y

y� 2bT

.F.u/ �H.u//�T .y � u/ du �
2b

T
sup
y2R
jH 0.y/j:

Let F2.y/ D .F � �T /.y/ and H2.y/ D .H � �T /.y/, y 2 R. ThenZ
R
e�ity dF2.y/ D f .t/b�T .t/; Z

R
e�ity dH2.y/ D h.t/b�T .t/; t 2 R:

Proceeding in the same way as in the proof of (4.9), one has

sup
y2R
jF2.y/ �H2.y/j

�
1

2�

Z
Cr;T

ˇ̌̌̌
f .t/ � h.t/

t

ˇ̌̌̌
dt C

1

2�
sup
y�0

ˇ̌̌̌ Z
C�r

f .z/ � h.z/

z
eizye�ib

z
T dz

ˇ̌̌̌
C

1

2�
sup
y>0

ˇ̌̌̌ Z
C
C
r

f .z/ � h.z/

z
eizye�ib

z
T dz

ˇ̌̌̌
C

1

�T

Z T

�T

jf .t/ � h.t/j dt:

Following the proof of (4.10), we obtain the lower bound: for any y 2 R,

F.y/ �H.y/ � �
2

3�

Z
Cr;T

ˇ̌̌̌
f .t/ � h.t/

t

ˇ̌̌̌
dt

�
2

3�
sup
y�0

ˇ̌̌̌ Z
C�r

f .z/ � h.z/

z
eizye�ib

z
T dz

ˇ̌̌̌
�

2

3�
sup
y>0

ˇ̌̌̌ Z
C
C
r

f .z/ � h.z/

z
eizye�ib

z
T dz

ˇ̌̌̌
�

4

3�T

Z T

�T

jf .t/ � h.t/j dt �
�

3
�
2b

T
sup
y2R
jH 0.y/j: (4.11)

Combining (4.10) and (4.11), we conclude the proof of Proposition 4.1.

5. Proofs of Berry–Esseen bound and Edgeworth expansion

5.1. Berry–Esseen bound and Edgeworth expansion under the changed measure

We first present a Berry–Esseen bound under the changed measure Qx
s .

Theorem 5.1. Assume either Conditions A1 and A2 for invertible matrices, or Condi-
tions A1, A3 and A4 for positive matrices. Then there exist constants � > 0 and C > 0

such that for all n � 1, s 2 .��; �/, x 2 � , y 2 R and ' 2 B
 ,ˇ̌̌
EQxs

h
'.Xxn /1

®
�.Gn;x/�nƒ0.s/

�s
p
n

�y
¯i � �s.'/ˆ.y/ˇ̌̌ � C

p
n
k'k
 :
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The next result gives an Edgeworth expansion for .Xxn ; �.Gn; x// with a target func-
tion ' on Xxn under Qx

s . The function bs;'.x/, x 2 � , which will be used in the formu-
lation of this result, is defined in Lemma 3.11 and has an equivalent expression (3.38) in
terms of derivative of the projection operator …s;z , see Proposition 3.8.

Theorem 5.2. Assume either Conditions A1 and A2 for invertible matrices, or Condi-
tions A1, A3 and A5 for positive matrices. Then there exists � > 0 such that as n!1,
uniformly in s 2 .��; �/, x 2 � , y 2 R and ' 2 B
 ,ˇ̌̌̌

EQxs

h
'.Xxn /1

®
�.Gn;x/�nƒ0.s/

�s
p
n

�y
¯i � EQxs

�
'.Xxn /

��
ˆ.y/C

ƒ000.s/

6�3s
p
n
.1 � y2/�.y/

�
C
bs;'.x/

�s
p
n
�.y/

ˇ̌̌̌
D k'k
o

�
1
p
n

�
:

The following asymptotic expansion is slightly different from that in Theorem 5.2,
with the term EQxs Œ'.X

x
n /� replaced by �s.'/:

Theorem 5.3. Under the conditions of Theorem 5.2, there exists � > 0 such that, as
n!1, uniformly in s 2 .��; �/, x 2 � , y 2 R and ' 2 B
 ,ˇ̌̌̌

EQxs

h
'.Xxn /1

®
�.Gn;x/�nƒ0.s/

�s
p
n

�y
¯i � �s.'/�ˆ.y/C ƒ000.s/

6�3s
p
n
.1 � y2/�.y/

�
C
bs;'.x/

�s
p
n
�.y/

ˇ̌̌̌
D k'k
o

�
1
p
n

�
: (5.1)

With fixed s > 0 and ' D 1, expansion (5.1) has been established earlier in [11].
The assertion of Theorem 5.3 follows from Theorem 5.2, since the bound (3.16)

implies that there exist constants c; C > 0 such that uniformly in ' 2 B
 ,

sup
s2.��;�/

sup
x2�

ˇ̌
EQxs Œ'.X

x
n /� � �s.'/

ˇ̌
� Ce�cnk'k
 : (5.2)

Theorems 2.1 and 2.2 follow from the above theorems taking s D 0 and recalling the
fact that ƒ0.0/ D �, �0 D � and b0;' D b' .

5.2. Proof of Theorem 5.2

Without loss of generality, we assume that the target function ' is non-negative on � . For
any x 2 � , denote

F.y/ D EQxs

h
'.Xxn /1

®
�.Gn;x/�nƒ0.s/

�s
p
n

�y
¯i; y 2 R;

H.y/ D EQxs Œ'.X
x
n /�

�
ˆ.y/C

ƒ000.s/

6�3s
p
n
.1 � y2/�.y/

�
�
bs;'.x/

�s
p
n
�.y/; y 2 R:

Define

f .t/ D

Z
R
e�itydF.y/; h.t/ D

Z
R
e�itydH.y/; t 2 R:
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By straightforward calculations we have that for any x 2 � ,

f .t/ D EQxs

h
'.Xxn /e

�it �.Gn;x/�nƒ
0.s/

�s
p
n

i
D Rn

s; �it
�s
p
n

'.x/; t 2 R; (5.3)

h.t/ D e�
t2

2

²�
1 � .i t/3

ƒ000.s/

6�3s
p
n

�
Rns;0'.x/ � i t

bs;'.x/

�s
p
n

³
; t 2 R: (5.4)

It is clear that F.�1/ D H.�1/ D 0 and F.1/ D H.1/. Moreover, one can verify
that the functions F;H and their corresponding Fourier–Stieltjes transforms f; h satisfy
the conditions of Proposition 4.1 for r D ı1

p
n, with some ı1 > 0 sufficiently small.

Hence, by Proposition 4.1 we get that for any real T � r ,

sup
y2R
jF.y/ �H.y/j �

1

�
.I1 C I2 C I3 C I4/; (5.5)

where

I1 D
3�b

T
sup
y2R
jH 0.y/j;

I2 D

Z
r�jt j�T

ˇ̌̌̌
f .t/ � h.t/

t

ˇ̌̌̌
dt;

I3 D sup
y�0

ˇ̌̌̌ Z
C�r

f .z/ � h.z/

z
eizye�ib

z
T dz

ˇ̌̌̌
C sup
y>0

ˇ̌̌̌ Z
C
C
r

f .z/ � h.z/

z
eizye�ib

z
T dz

ˇ̌̌̌
C sup
y�0

ˇ̌̌̌ Z
C�r

f .z/ � h.z/

z
eizyeib

z
T dz

ˇ̌̌̌
C sup
y>0

ˇ̌̌̌ Z
C
C
r

f .z/ � h.z/

z
eizyeib

z
T dz

ˇ̌̌̌
DW I31 C I32 C I33 C I34;

I4 D
2

T

Z T

�T

jf .t/ � h.t/j dt; (5.6)

with the constant b > 0 and the complex contours C�r ;C
C
r defined in (4.2).

By virtue of (5.5), in order to establish Theorem 5.2 it suffices to prove that, as
n!1, uniformly in s 2 .��; �/, x 2 � and ' 2 B
 ,

I1 C I2 C I3 C I4 D k'k
o
� 1
p
n

�
: (5.7)

Control of I1. From (5.2) we deduce that uniformly in ' 2 B
 ,

sup
s2.��;�/

sup
x2�

ˇ̌
EQxs Œ'.X

x
n /�
ˇ̌
� Ck'k
 : (5.8)

By formula (3.38) and the bound (3.35), we get that uniformly in ' 2 B
 ,

sup
s2.��;�/

sup
x2�

jbs;'.x/j � Ck'k
 : (5.9)
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Using the bounds (5.8) and (5.9), and taking into account that �2s > 0 andƒ000.s/ 2 R are
bounded by a constant independent of s 2 .��; �/, we obtain that jH 0.y/j is bounded by
c1k'k
 , uniformly in s 2 .��; �/, x 2 � , y 2 R and ' 2 B
 . Hence, for any " > 0, we
can choose a > 0 large enough such that for T D a

p
n, uniformly in ' 2 B
 ,

sup
s2.��;�/

sup
x2�

I1 �
3�bc1

T
k'k
 <

"
p
n
k'k
 : (5.10)

Control of I2. Since �m WD infs2.��;�/ �s > 0, we can pick ı1 small enough such that
0 < ı1 < min¹a; ı�m=2º, where ı > 0 is the constant given in Proposition 3.8. Then,
with r D ı1

p
n we bound I2 as follows:

I2 �

Z
ı1
p
n<jt j�a

p
n

ˇ̌̌̌
f .t/

t

ˇ̌̌̌
dt C

Z
ı1
p
n<jt j�a

p
n

ˇ̌̌̌
h.t/

t

ˇ̌̌̌
dt: (5.11)

Let �M WD sups2.��;�/ �s . It holds that 0 < �M <1. On the right-hand side of (5.11),
using Proposition 3.10 with

K D

²
t 2 R W

ı1

�M
� jt j �

a

�m

³
;

the first integral is bounded by Ce�cnk'k
 , uniformly in s 2 .��; �/, x 2 � and ' 2 B
 ;
the second integral, by the bounds (5.8) and (5.9) and direct calculations, is bounded
by Ce�cnk'k
 , also uniformly in s 2 .��; �/, x 2 � and ' 2 B
 . Consequently, we
conclude that uniformly in ' 2 B
 ,

sup
s2.��;�/

sup
x2�

I2 � Ce
�cn
k'k
 : (5.12)

Control of I3. Recall that the term I3 is decomposed into four terms in (5.6). We will
only deal with I31, since I32; I33; I34 can be treated in a similar way. In view of (5.3) and
(5.4), by the spectral gap decomposition (3.31), we get

f .z/ � h.z/ D J1.z/C J2.z/C J3.z/C J4.z/; (5.13)

where

J1.z/ D �s.'/

²
�n
s; �iz
�s
p
n

� e�
z2

2

�
1 � .iz/3

ƒ000.s/

6�3s
p
n

�³
; (5.14)

J2.z/ D �
n

s; �iz
�s
p
n

�
…
s; �iz
�s
p
n

'.x/ � �s.'/C iz
bs;'.x/

�s
p
n

�
; (5.15)

J3.z/ D iz
bs;'.x/

�s
p
n

�
e�

z2

2 � �n
s; �iz
�s
p
n

�
; (5.16)

J4.z/ D N
n

s; �iz
�s
p
n

'.x/ �N n
s;0'.x/e

� z
2

2

�
1 � .iz/3

ƒ000.s/

6�3s
p
n

�
: (5.17)

With the above notation, we use the decomposition (5.13) to bound I31 in (5.6) as follows:

I31 �

4X
kD1

Ak ; where Ak WD sup
y�0

ˇ̌̌̌ Z
C�r

Jk.z/

z
eizye�ib

z
T dz

ˇ̌̌̌
: (5.18)
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We now give bounds of Ak , 1 � k � 4, in a series of lemmata. Let us start by showing an
elementary inequality, which will be used repeatedly in the sequel. Let

Œz1; z2� D ¹z1 C �.z2 � z1// W 0 � � � 1º

be the complex segment with the endpoints z1 and z2:

Lemma 5.4. Let f be an analytic function on the open convex domain D � C. Then for
any z1; z2 2 D, and n � 1,ˇ̌̌̌

f .z2/ �

n�1X
kD0

f .k/.z1/

kŠ
.z2 � z1/

k

ˇ̌̌̌
�

supz2Œz1;z2� jf
.n/.z/j

nŠ
jz2 � z1j

n:

Proof. The proof of this inequality can be carried out by induction. The inequality clearly
holds for n D 1 since for any z1; z2 2 D,

jf .z2/ � f .z1/j D

ˇ̌̌̌ Z
Œz1;z2�

f 0.z/ dz

ˇ̌̌̌
� sup
z2Œz1;z2�

jf 0.z/jjz2 � z1j: (5.19)

For n � 2, applying (5.19) to F.z/ D f .z/ �
Pn�1
kD1

f .k/.z1/
kŠ

.z � z1/
k , z 2 D, leads to

the desired assertion.

Now we are ready to establish a bound for each term Ak . The proof is based on the
saddle point method, see [14, 18]. To be more precise, we deform the integration path,
which passes through a suitable point related to the saddle point, to minimize the integral
in Ak (see (5.18)).

Lemma 5.5. Let C�r be defined by (4.2) with r D ı1
p
n and ı1 > 0 small enough. Then,

for T D a
p
n with a > 0 large enough, uniformly in x 2 � , s 2 .��; �/ and ' 2 B
 ,

A1 D sup
y�0

ˇ̌̌̌ Z
C�r

J1.z/

z
eizye�ib

z
T dz

ˇ̌̌̌
�
c

n
k'k
 :

Proof. In view of (3.32), using ƒ D log � and Taylor’s formula, we have

�n
s; �iz
�s
p
n

D e�
z2

2 e
n
P1
kD3

ƒ.k/.s/
kŠ

.� iz

�s
p
n
/k

: (5.20)

For brevity, for any z 2 C�r , denote

h1.z/ D
1

z

�
e
n
P1
kD3

ƒ.k/.s/
kŠ

.� iz

�s
p
n
/k

� 1 � .�iz/3
ƒ000.s/

6�3s
p
n

�
e�ib

z
T : (5.21)

Then, in view of (5.14), the term A1 can be rewritten as

A1 D �s.'/ sup
y�0

ˇ̌̌̌ Z
C�r

e�
z2

2 Cizyh1.z/ dz

ˇ̌̌̌
: (5.22)

The main contribution to the integral in (5.22) is given by the saddle point z D iy which
is the solution of the equation d

dz
.� z

2

2
C izy/ D 0: Denote by

D�2r D ¹z 2 C W jzj < 2r; =z < 0º
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the domain on analyticity of h1, where r D ı1
p
n with ı1 > 0 small enough. Set

yn D min
®
�y; ı1

p
n
¯
: (5.23)

When �ı1
p
n � y � 0, the saddle point iy belongs to D�2r . By Cauchy’s integral theo-

rem, we change the integration in (5.22) to a rectangular path inside the domain on
analyticity D�2r which passes through the saddle point. When y < �ı1

p
n is large, the

saddle point iy is outside the domain D�2r . In this case we choose a rectangular path
inside D�2r which passes through the point �iyn D �iı1

p
n. Note that �s.'/ is bounded

by c1k'k
 uniformly in s 2 .��; �/ and ' 2 B
 . Since the function h1 has an analytic
extension on the domain D�2r with r D ı1

p
n, applying Cauchy’s integral theorem, we

deduce that

A1 � c1k'k
 sup
y�0

ˇ̌̌̌² Z �ı1pn�iyn
�ı1
p
n

C

Z ı1
p
n

ı1
p
n�iyn

³
e�

z2

2 Cizyh1.z/ dz

ˇ̌̌̌

C c1k'k
 sup
y�0

ˇ̌̌̌ Z ı1
p
n�iyn

�ı1
p
n�iyn

e�
z2

2 Cizyh1.z/ dz

ˇ̌̌̌
DW c1k'k
 .A11 C A12/: (5.24)

Control of A11. Using a change of variable, we get

A11 D e
�
ı2
1
2 n sup

y�0

ˇ̌̌̌ Z yn

0

e
t2

2 Cty�iı1
p
n.tCy/h1.�ı1

p
n � i t/ dt

�

Z yn

0

e
t2

2 CtyCiı1
p
n.tCy/h1.ı1

p
n � i t/ dt

ˇ̌̌̌
� e�

ı2
1
2 n sup

y�0

ˇ̌̌̌ Z yn

0

e
t2

2 Cty
®
jh1.�ı1

p
n � i t/j C jh1.ı1

p
n � i t/j

¯
dt

ˇ̌̌̌
: (5.25)

We first give a bound for jh1.˙ı1
p
n � i t/j. Since t 2 Œ0; yn� and yn � ı1

p
n, direct

calculations give

<
�
.�i/3.˙ı1

p
n � i t/3

�
D 3ı21nt � t

3
� 2ı31n

3
2 ;

which implies that for ı1 > 0 sufficiently small,

<

²
n

1X
kD3

ƒ.k/.s/

kŠ

.�i/k.˙ı1
p
n � i t/k

.�s
p
n/k

³
�
1

4
ı21n: (5.26)

Observe that there exists a constant c >0 such that uniformly in t 2 Œ0; yn� and s 2 .��; �/,ˇ̌̌̌
1

z

ˇ̌̌̌
D

ˇ̌̌̌
1

˙ı1
p
n � i t

ˇ̌̌̌
�

c

ı1
p
n
;

ˇ̌̌̌
i3.˙ı1

p
n � i t/3

ƒ000.s/

6�3s
p
n

ˇ̌̌̌
� cn: (5.27)

As jexp¹� ib
T
.˙ı1

p
n � i t/ºj is bounded by some constant c > 0, uniformly in t 2 Œ0; yn�

and n � 1, from the bounds (5.26) and (5.27), it follows that uniformly in s 2 .��; �/,

jh1.�ı1
p
n � i t/j C jh1.ı1

p
n � i t/j �

c

ı1
p
n

�
e
ı2
1
4 n C cn

�
�
cı1
p
n
e
ı2
1
4 n:
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In view of (5.23), we have t � yn � �y and thus e
t2

2 Cty � 1 for any t 2 Œ0; yn�. Note
that yn � ı1

p
n by (5.23). Consequently, we obtain the desired upper bound for A11:

sup
s2.��;�/

A11 � cı1
yn
p
n
e�

ı2
1
2 ne

ı2
1
4 n � cı1e

�
ı2
1
4 n: (5.28)

Control of A12. Using a change of variable z D t � iyn leads to

A12 D sup
y�0

ˇ̌̌̌
e
1
2y
2
nCyny

Z ı1
p
n

�ı1
p
n

e�
t2

2 Cit.ynCy/h1.t � iyn/ dt

ˇ̌̌̌

� sup
y�0

ˇ̌̌̌
e
1
2y
2
nCyny

Z ı1
p
n

�ı1
p
n

e�
t2

2 jh1.t � iyn/j dt

ˇ̌̌̌
; (5.29)

where the function h1 is defined by (5.21). To estimate the term A12, the main task is to
give a control of jh1.t � iyn/j. It follows from Lemma 5.4 that

jez1 � ez2 j � emax¹<z1;<z2ºjz1 � z2j

and
jez2 � 1 � z2j �

1

2
jz2j

2ejz2j

for any z1; z2 2 C, and hence

jez1 � 1 � z2j � e
max¹<z1;<z2ºjz1 � z2j C

1

2
jz2j

2ejz2j: (5.30)

We shall make use of inequality (5.30) to derive a bound of jh1.t � iyn/j. Since ynp
n
� ı1

where ı1 > 0 can be sufficiently small, we get that, for jt j � ı1
p
n and large enough n,

uniformly in s 2 .��; �/,

<

²�
� i.t � iyn/

�3
ƒ.3/.s/

6�3s
p
n

³
D

yn
p
n

.3t2 � y2n/ƒ
.3/.s/

6�3s
�
1

4
t2; (5.31)

<

²
n

1X
kD3

ƒ.k/.s/

kŠ

�
�
i.t � iyn/

�s
p
n

�k³
�
yn
p
n

.6t2 � 1
2
y2n/ƒ

.3/.s/

6�3s
�
1

4
t2: (5.32)

Moreover, elementary calculations yield that there exists a constant c > 0 such that, for
sufficiently large n, uniformly in s 2 .��; �/,ˇ̌̌̌

ˇn
1X
kD3

ƒ.k/.s/

kŠ

�
�
i.t � iyn/

�s
p
n

�k
� Œ�i.t � iyn/�

3ƒ
.3/.s/

6�3s
p
n

ˇ̌̌̌
ˇ

D

ˇ̌̌̌
n

1X
kD4

ƒ.k/.s/

kŠ

�
�
i.t � iyn/

�s
p
n

�k ˇ̌̌̌
� c

t4 C y4n
n

: (5.33)

It is clear that

sup
s2.��;�/

ˇ̌̌̌
Œ�i.t � iyn/�

3ƒ
.3/.s/

6�3s
p
n

ˇ̌̌̌2
� c

t6 C y6n
n

: (5.34)
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Taking into account that both jt j and yn are less than ı1
p
n, and the fact ı1 > 0 can be

small enough, it follows that

sup
s2.��;�/

exp
²ˇ̌̌̌
Œ�i.t � iyn/�

3ƒ
.3/.s/

6�3s
p
n

ˇ̌̌̌³
� e

1
4 .t

2Cy2n/:

Combining this with the bounds (5.31), (5.32), (5.33) and (5.34), and using inequal-
ity (5.30), we conclude that

sup
s2.��;�/

ˇ̌̌̌
e
n
P1
kD3

ƒ.k/.s/
kŠ

.� iz

�s
p
n
/k

� 1 � .�iz/3
ƒ.3/.s/

6�3s
p
n

ˇ̌̌̌
� c

t4 C y4n
n

e
1
4 t
2

C c
t6 C y6n
n

e
1
4 .t

2Cy2n/ � c
t4 C y4n C t

6 C y6n
n

e
1
4 .t

2Cy2n/: (5.35)

Since jexp¹� ib
T
.t � iyn/ºj is bounded by some constant, uniformly in jt j � ı1

p
n and

n � 1, by (5.35) and the fact j 1
t�iyn

j D 1=
p
t2 C y2n , we find that

sup
s2.��;�/

jh1.t � iyn/j � c
jt j3 C y3n C jt j

5 C y5n
n

e
1
4 .t

2Cy2n/:

Therefore, noting that y � �yn and 0 � yn � ı1
p
n, we obtain

sup
s2.��;�/

A12 �
c

n
sup
y�0

ˇ̌̌̌
e
3
4y
2
nCyny

Z ı1
p
n

�ı1
p
n

e�
t2

4 .jt j3 C y3n C jt j
5
C y5n/ dt

ˇ̌̌̌
�
c

n
sup

yn2Œ0;ı1
p
n�

e�
1
4y
2
n.1C y3n C y

5
n/ �

c

n
:

Substituting this and (5.28) into (5.24), we conclude the proof.

Lemma 5.6. Let J2.z/ be defined by (5.15), and let C�r be defined by (4.2) with r D ı1
p
n

and ı1 > 0 small enough. Then, for T D a
p
n with a > 0 large enough, uniformly in

x 2 � , s 2 .��; �/ and ' 2 B
 ,

A2 D sup
y�0

ˇ̌̌̌ Z
C�r

J2.z/

z
eizye�ib

z
T dz

ˇ̌̌̌
�
c

n
k'k
 :

Proof. Denote

h2.z/ D e
n
P1
kD3

ƒ.k/.s/
kŠ

.� iz

�s
p
n
/k
�
…
s; �iz
�s
p
n

'.x/ � �s.'/C iz
bs;'.x/

�s
p
n

�
e�ib

z
T

z
:

Using (5.20), we rewrite A2 as

A2 D sup
y�0

ˇ̌̌̌ Z
C�r

e�
z2

2 Cizyh2.z/ dz

ˇ̌̌̌
:

As in the estimation of Lemma 5.5, the solution of the saddle point equation

d

dz

�
�
z2

2
C izy

�
D 0
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is z D iy. Set yn D min¹�y; ı1
p
nº. Since yn 2 D�2r , where r D ı1

p
n, and the function

h2 is analytic on the domain D�2r , by Cauchy’s integral theorem we obtain

A2 � sup
y�0

ˇ̌̌̌² Z �ı1pn�iyn
�ı1
p
n

C

Z ı1
p
n

ı1
p
n�iyn

³
e�

z2

2 Cizyh2.z/ dz

ˇ̌̌̌

C sup
y�0

ˇ̌̌̌ Z ı1
p
n�iyn

�ı1
p
n�iyn

e�
z2

2 Cizyh2.z/ dz

ˇ̌̌̌
DW A21 C A22:

Control of A21. Similarly to (5.25), we use a change of variable to get

A21 � e
�
ı2
1
2 n sup

y�0

ˇ̌̌̌ Z yn

0

e
t2

2 Cty
�
jh2.�ı1

p
n � i t/j C jh2.ı1

p
n � i t/j

�
dt

ˇ̌̌̌
:

Using Lemma 5.4, formula (3.38) and the bound (3.35), for any z D ˙ı1
p
n � i t with

t 2 Œ0; yn�, we get that uniformly in s 2 .��; �/, x 2 � and ' 2 B
 ,ˇ̌̌̌
1

z

ˇ̌̌̌ˇ̌̌̌
…
s; �iz
�s
p
n

'.x/ � �s.'/C iz
bs;'.x/

�s
p
n

ˇ̌̌̌
� c
jzj

n
k'k
 �

c
p
n
k'k
 : (5.36)

Note that je�ib
z
T j is bounded uniformly in z D ˙ı1

p
n � i t , where t 2 Œ0; yn�. There-

fore, taking into account the bounds in (5.26) and (5.36), we obtain that uniformly in
s 2 .��; �/, x 2 � and ' 2 B
 ,

jh2.�ı1
p
n � i t/j C jh2.ı1

p
n � i t/j �

c
p
n
e
ı2
1
4 nk'k
 :

Since y � 0, for any t 2 Œ0; yn�, it follows that t
2

2
C ty � 0 and thus e

t2

2 Cty � 1. Com-
bining this with the above inequality yields that uniformly in ' 2 B
 ,

sup
s2.��;�/

sup
x2�

A21 � ce
�
ı2
1
2 n

yn
p
n
e
ı2
1
4 nk'k
 � ce

�
ı2
1
4 nk'k
 : (5.37)

Control of A22. Similarly to (5.29), we use a change of variable to get

A22 � sup
y�0

ˇ̌̌̌
e
1
2y
2
nCyny

Z ı1
p
n

�ı1
p
n

e�
t2

2 jh2.t � iyn/j dt

ˇ̌̌̌
:

We first estimate jh2.t � iyn/j. In the same way as in (5.36), with z D t � iyn, we obtain
that uniformly in s 2 .��; �/, x 2 � and ' 2 B
 ,ˇ̌̌̌

1

z

ˇ̌̌̌ˇ̌̌̌
…
s; �iz
�s
p
n

'.x/ � �s.'/C iz
bs;'.x/

�s
p
n

ˇ̌̌̌
� c
jzj

n
k'k
 � c

jt j C yn

n
k'k
 :

Combining this with the bound (5.32), we get that uniformly in ' 2 B
 ,

sup
s2.��;�/

sup
x2�

A22 �
c

n
k'k
 sup

y�0

ˇ̌̌̌
e
1
2y
2
nCyny

Z ı1
p
n

�ı1
p
n

e�
t2

4 .jt j C yn/ dt

ˇ̌̌̌
�
c

n
k'k
 sup

yn2Œ0;ı1
p
n�

e�
1
2y
2
n.1C yn/ �

c

n
k'k
 : (5.38)

Putting together (5.37) and (5.38) completes the proof.
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Lemma 5.7. Let J3.z/ be defined by (5.16), and let C�r be defined by (4.2) with r D ı1
p
n

and ı1 > 0 small enough. Then, for T D a
p
n with a > 0 large enough, uniformly in

x 2 � , s 2 .��; �/ and ' 2 B
 ,

A3 D sup
y�0

ˇ̌̌̌ Z
C�r

J3.z/

z
eizye�ib

z
T dz

ˇ̌̌̌
�
c

n
k'k
 :

Proof. We denote

h3.z/ D
1

�s
p
n

h
e
n
P1
kD3

ƒ.k/.s/
kŠ

.� iz

�s
p
n
/k

� 1
i
e�ib

z
T :

Using the expansion (5.20) and the bound (5.9), we have that uniformly in s 2 .��; �/,
x 2 � and ' 2 B
 ,

A3 � ck'k
 sup
y�0

ˇ̌̌̌ Z
C�r

e�
z2

2 Cizyh3.z/ dz

ˇ̌̌̌
:

As in Lemma 5.5, the saddle point equation

d

dz

�
�
z2

2
C izy

�
D 0

has the solution z D iy. Set yn D min¹�y; ı1
p
nº. It follows from Cauchy’s integral

theorem that

A3 � ck'k
 sup
y�0

ˇ̌̌̌² Z �ı1pn�iyn
�ı1
p
n

C

Z ı1
p
n

ı1
p
n�iyn

³
e�

z2

2 Cizyh3.z/ dz

ˇ̌̌̌

C ck'k
 sup
y�0

ˇ̌̌̌ Z ı1
p
n�iyn

�ı1
p
n�iyn

e�
z2

2 Cizyh3.z/ dz

ˇ̌̌̌
DW A31 C A32:

Control of A31. Similarly to (5.25), we use a change of variable to get

A31 � ck'k
e
�
ı2
1
2 n sup

y�0

ˇ̌̌̌ Z yn

0

e
t2

2 Cty
�
jh3.�ı1

p
n � i t/j C jh3.ı1

p
n � i t/j

�
dt

ˇ̌̌̌
:

Using (5.26), we deduce that uniformly in s 2 .��; �/ and x 2 � ,

jh3.�ı1
p
n � i t/j C jh3.ı1

p
n � i t/j �

c
p
n

�
e
ı2
1
4 n C 1

�
�

c
p
n
e
ı2
1
4 n:

Since t2

2
C ty � 0 for any t 2 Œ0; yn� and y � 0, we have e

t2

2 Cty � 1. This, together with
the above inequality, implies that uniformly in ' 2 B
 ,

sup
s2.��;�/

sup
x2�

A31 � c
yn
p
n
e�

ı2
1
4 nk'k
 � ce

�
ı2
1
4 nk'k
 : (5.39)
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Control of A32. Similarly to (5.29), one has

A32 � ck'k
 sup
y�0

ˇ̌̌̌
e
1
2y
2
nCyny

Z ı1
p
n

�ı1
p
n

e�
t2

2 jh3.t � iyn/j dt

ˇ̌̌̌
:

We first give a control of jh3.t � iyn/j. By Lemma 5.4, it holds that

jez � 1j � emax¹<z;0º
jzj

for any z 2 C. Using this inequality and taking into account the bound (5.32), we obtain

sup
s2.��;�/

ˇ̌̌
e
n
P1
kD3

ƒ.k/.s/
kŠ

.� iz

�s
p
n
/k

� 1
ˇ̌̌
� ce

1
4 t
2 jt j3 C y3n
p
n

;

and hence

sup
s2.��;�/

sup
x2�

jh3.t � iyn/j � ce
1
4 t
2 jt j3 C y3n

n
:

It follows that uniformly in s 2 .��; �/, x 2 � and ' 2 B
 ,

A32 �
c

n
k'k
 sup

y�0

ˇ̌̌̌
e�

1
2y
2
n

Z ı1
p
n

�ı1
p
n

e�
t2

4 .jt j3 C y3n/ dt

ˇ̌̌̌
�
c

n
k'k
 : (5.40)

Putting together (5.39) and (5.40), we conclude the proof.

Lemma 5.8. Let J4.z/ be defined by (5.17), and let C�r be defined by (4.2) with r D ı1
p
n

and ı1 > 0 small enough. Then, for T D a
p
n with a > 0 large enough, uniformly in

x 2 � , s 2 .��; �/ and ' 2 B
 ,

A4 D sup
y�0

ˇ̌̌̌ Z
C�r

J4.z/

z
eizye�ib

z
T dz

ˇ̌̌̌
� ce�cnk'k
 :

Proof. Since =z � 0 on C�r and y � 0, we have jeizy j � 1. Using again the fact that
=z � 0, we get that je�ib

z
T j is uniformly bounded on C�r . From the bound (3.36) and the

fact that ı1 > 0 can be sufficiently small, we deduce that jJ4.z/j � ce�cnk'k
 , uniformly
in s 2 .��; �/, x 2 � and ' 2 B
 . Therefore, noting that j 1

z
j D .ı1

p
n/�1 and that the

length of C�r is �ı1
p
n, the desired result follows.

End of the proof of Theorem 5.2. Combining Lemmata 5.5–5.8, we obtain that

I31 �
c

n
k'k
 ;

uniformly in s 2 .��; �/, x 2 � and ' 2 B
 :

Now we give a control of the term I32 defined in (5.6). Note that y > 0 in I32 and the
integral in I32 is taken over the semicircle CCr , which lies in the upper part of the complex
plane. In this case we have the saddle point equation d

dz
.� z

2

2
C izy/ D 0 whose solution

z D iy also lies in the upper part of the complex plane. Similarly to (5.23), we choose
a suitable point yn D min¹y; ı1

p
nº. Proceeding in the same way as for bounding I31 we

obtain that I32 � c
n
k'k
 , uniformly in s 2 .��; �/, x 2 � and ' 2 B
 .
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Let us now bound the terms I33 and I34 defined in (5.6). Since the function z 7! eib
z
T

is analytic on C�r and CCr , the estimates of I33 and I34 are similar to those of I31 and I32,
respectively. From these bounds, we conclude that there exists a constant c > 0 such that
uniformly in s 2 .��; �/, x 2 � and ' 2 B
 ,

I3 �
c

n
k'k
 : (5.41)

It remains to estimate I4 defined in equation (5.6). We can decompose the difference
jf .t/ � h.t/j in the same way as we did in (5.13) (with real-valued t D z). Then proceed-
ing in a similar way as in the estimation of I31, I32, I33 and I34, one can verify that there
exists a constant c > 0 such that uniformly in s 2 .��; �/, x 2 � and ' 2 B
 ,

I4 �
c

n
k'k
 :

Combining (5.41), (5.41) and the bounds for I1 and I2 in (5.10) and (5.12), and using
the fact that " > 0 can be arbitrary small, we obtain (5.7), which finishes the proof of
Theorem 5.2.

5.3. Proof of Theorem 5.1

Since the proof of Theorem 5.1 is quite similar to that of Theorem 5.2, we only sketch the
main differences. Denote

F.y/ D EQxs

h
'.Xxn /1

®
�.Gn;x/�nƒ0.s/

�s
p
n

�y
¯i; H.y/ D EQxs Œ'.X

x
n /� ˆ.y/; y 2 R:

By the definition of the operator Rs;z in (3.28), direct calculations lead to

f .t/ D

Z
R
e�ity dF.y/ D Rn

s; �it
�s
p
n

'.x/;

h.t/ D

Z
R
e�ity dH.y/ D e�

t2

2 Rns;0'.x/; t 2 R:

One can verify that the functions F;H and their corresponding Fourier–Stieltjes trans-
forms f and h satisfy all the conditions stated in Proposition 4.1. Instead of using Propo-
sition 4.1 with r < T in the proof of Theorem 5.2, we apply Proposition 4.1 with r D T D
ı1
p
n, where ı1 > 0 is a sufficiently small constant. Then we obtain a similar inequality

as (5.5) but with the term I2 D 0. Since the non-arithmeticity Condition A5 is only used in
the bound of the term I2, following the proof of Theorem 5.2 we show that under the con-
ditions of Theorem 5.1, the terms I1 and I3 defined in (5.6) are bounded by ck'k
=

p
n,

uniformly in s 2 .��; �/, x 2 � and ' 2 B
 . We omit the details of the rest of the proof.

6. Proof of moderate deviation expansions

In this section we prove Theorem 2.3. The proof is based on the Berry–Esseen bound
in Theorem 5.1 and follows the standard techniques in Petrov [42], and therefore some
details will be left to the reader.
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We start with the following lemma whose proof uses the analyticity of the eigenfunc-
tion rs and the linear functional �s , see Proposition 3.1:

Lemma 6.1. Assume either Conditions A1 and A2 for invertible matrices, or Condi-
tions A1 and A3 for positive matrices. Then there exists � > 0 such that uniformly in
s 2 .��; �/ and ' 2 B
 ,

krs � 1k1 � C jsj and j�s.'/ � �.'/j � C jsjk'k
 :

Proof. According to Proposition 3.1, we have r0 D 1 and �0 D �. In addition, the map-
pings s 7! rs and s 7! �s are analytic on .��; �/. The assertions follow using Taylor’s
formula.

Proof of Theorem 2.3. When y 2 Œ0; 1�, Theorem 2.3 is a direct consequence of Theo-
rem 5.1, so it remains to prove Theorem 2.3 in the case when y > 1 with y D o.

p
n/.

We proceed to prove the first assertion in Theorem 2.3. Applying the change of measure
formula (3.15), we have

I WD E
�
'.Xxn /1¹�.Gn;x/�nƒ0.0/C

p
n�0yº

�
D rs.x/�

n.s/EQxs

�
.'r�1s /.Xxn /e

�s�.Gn;x/1¹�.Gn;x/�nƒ0.0/C
p
n�0yº

�
: (6.1)

Under the assumptions of Theorem 2.3, by Proposition 3.15, �2s D ƒ
00.s/ > 0 for any

s 2 .��; �/ with � > 0 small enough. We denote

W x
n D

�.Gn; x/ � nƒ
0.s/

�s
p
n

:

Recalling that ƒ D log �, we rewrite (6.1) as follows:

I D rs.x/e
�nŒsƒ0.s/�ƒ.s/�EQxs

�

h
.'r�1s /.Xxn /e

�s�s
p
nW x

n 1®
W x
n �

p
nŒƒ0.0/�ƒ0.s/�

�s
C
�0y

�s

¯i: (6.2)

By Proposition 3.1, the function ƒ is analytic and hence for s 2 .��; �/,

ƒ.s/ D

1X
kD1


k

kŠ
sk ;

where 
k D ƒ.k/.0/: For any y > 1 with y D o.
p
n/, consider the equation

p
nŒƒ0.s/ �ƒ0.0/� D �0y: (6.3)

Choosing the unique real root s of (6.3), it follows from Petrov [42] that

sƒ0.s/ �ƒ.s/ D
y2

2n
�

y3

n3=2
�

�
y
p
n

�
; (6.4)

where � is the Cramér series defined by (2.8). Substituting (6.3) into (6.2), and using (6.4),
we get

I D rs.x/e
�
y2

2 C
y3p
n
�. yp

n
/
EQxs

h
.'r�1s /.Xxn /e

�s�s
p
nW x

n 1¹W x
n �0º

i
: (6.5)
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For brevity, denote F.u/ D EQxs Œ.'r
�1
s /.Xxn /1¹W x

n �uº
�, u 2 R: In view of (6.5), using

Fubini’s theorem and integration by parts, we deduce that

I D rs.x/e
�
y2

2 C
y3p
n
�. yp

n
/
EQxs

�
.'r�1s /.Xxn /

Z 1
0

1¹0�W x
n �uº

s�s
p
n e�s�s

p
nu du

�
D rs.x/e

�
y2

2 C
y3p
n
�. yp

n
/
Z 1
0

e�s
p
n�su dF.u/: (6.6)

Let l.u/ D F.u/ � �s.'r�1s /ˆ.u/, u 2 R. It follows thatZ 1
0

e�s
p
n�su dF.u/ D I1 C

�s.'r
�1
s /

p
2�

I2; (6.7)

where

I1 D

Z 1
0

e�s
p
n�su dl.u/; I2 D

Z 1
0

e�s
p
n�su�

u2

2 du:

Estimate of I1. Integrating by parts, using the fact that rs 2 B
 and the Berry–Esseen
bound in Theorem 5.1 implies that uniformly in s 2 Œ0; �/, x 2 � and ' 2 B
 ,

jI1j � jl.0/j C s
p
n�s

Z 1
0

e�s
p
n�sujl.u/j du �

C
p
n
k'k
 : (6.8)

Estimate of I2. As the functionƒ is analytic on .��; �/ and �2s D ƒ
00.s/ > 0, by Taylor’s

formula, we have ƒ0.s/ �ƒ0.0/ D s�20 Œ1CO.s/� and �2s D �
2
0 Œ1CO.s/�. Thus, using

standard techniques from Petrov [42], one has

I2 D I3 CO

�
1
p
n

�
; where I3 D

Z 1
0

e
�

p
nŒƒ0.s/�ƒ0.0/�

�0
u�u

2

2 du: (6.9)

Since �s is strictly positive and bounded uniformly in s 2 .0; �/, using (6.3) and the fact
that y > 1, for sufficiently large n, we get that s

p
n �s �

y
2�0
�s � c1 > 0. This implies

that C1 � s
p
nI2 � C2 for large enough n, where C1 < C2 are two positive constants

independent of n and s. Combining this two-sided bound with (6.7), (6.8) and (6.9),
we obtain Z 1

0

e�s
p
n�su dF.u/ D I3

�
�s.'r

�1
s /

p
2�

C k'k
O.s/

�
:

Substituting (6.3) into (6.9), we getZ 1
0

e�s
p
n�su dF.u/ D e

y2

2

Z 1
y

e�
1
2u
2

du

�
�s.'r

�1
s /

p
2�

C k'k
O.s/

�
:

Together with (6.6), this implies

I D rs.x/e
y3p
n
�. yp

n
/�
1 �ˆ.y/

��
�s.'r

�1
s /C k'k
O.s/

�
;

where

�s.'r
�1
s / D

�s.'/

�s.rs/
:
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By Lemma 6.1, we have krs � 1k1 � Cs and j�s.'r�1s / � �.'/j � Csk'k
 , uniformly
in s 2 Œ0; �/ and ' 2 B
 . Since s D O. yp

n
/, this concludes the proof of the first assertion

of Theorem 2.3.
The proof of the second assertion of Theorem 2.3 can be carried out in a similar way.

Specifically, instead of using (6.3), we consider the equation
p
nŒƒ0.s/ �ƒ0.0/� D ��0y;

where y > 1 and s 2 .��; 0�. We then apply the spectral gap properties of operators
Ps;Qs; Rs;z (see Section 3) for negative valued s to deduce the second assertion by
following the proof of the first one. We omit the details.

7. Proof of the local limit theorems

The goal of this section is to establish the local limit theorems with moderate deviations,
namely Theorems 2.4 and 2.5.

7.1. Proof of Theorem 2.4

We first establish an asymptotic expansion which will be used to prove Theorem 2.4.
Assume that  W R 7! C is a continuous function with compact support in R, which is
differentiable in a small neighborhood of 0 on the real line.

Proposition 7.1. Assume either Conditions A1 and A2 for invertible matrices, or Condi-
tions A1, A3 and A4 for positive matrices. Then there exist constants �; ı; c; C > 0 such
that for all s 2 .��; �/, x 2 � , jl j � 1p

n
, ' 2 B
 and n � 1,ˇ̌̌̌

�s
p
n e

nl2

2�2s

Z
R
e�itlnRns;it .'/.x/ .t/ dt �

p
2��s.'/ .0/

ˇ̌̌̌
�

C
p
n
k'k
 C

C

n
k'k
 sup

jt j�ı

�
j .t/j C j 0.t/j

�
C Ce�cnk'k


Z
R
j .t/j dt: (7.1)

Proof. For brevity, denote

cs. / D

p
2�

�s
�s.'/ .0/:

Taking a small constant ı > 0 and using the spectral gap decomposition (3.31) with
z D i t , we haveˇ̌̌̌

p
ne

nl2

2�2s

Z
R
e�itlnRns;it .'/.x/ .t/ dt � cs. /

ˇ̌̌̌
�

ˇ̌̌̌
p
ne

nl2

2�2s

Z
jt j�ı

e�itlnRns;it .'/.x/ .t/ dt

ˇ̌̌̌
C

ˇ̌̌̌
p
ne

nl2

2�2s

Z
jt j<ı

e�itlnN n
s;it .'/.x/ .t/ dt

ˇ̌̌̌
C

ˇ̌̌̌
p
ne

nl2

2�2s

Z
jt j<ı

e�itln�ns;it…s;it .'/.x/ .t/ dt � cs. /

ˇ̌̌̌
DW J1 C J2 C J3:
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For J1, since the function  is bounded and compactly supported on R, taking into
account Proposition 3.10 and the fact je�itlnj D 1, we get

sup
s2.��;�/

sup
x2�

sup
jlj� 1p

n

J1 � Cıe
�cınk'k


Z
jt j�ı

j .t/j dt: (7.2)

For J2, by (3.36) there exist constants cı > 0 and a 2 .0; 1/ such that

sup
s2.��;�/

sup
x2�

sup
jt j<ı

jN n
s;it .'/.x/j � sup

s2.��;�/

sup
jt j<ı

kN n
s;itkB
!B
 k'k
 � cıa

n
k'k
 :

This implies that uniformly in s 2 .��; �/, jl j � 1p
n

, x 2 � and ' 2 B
 ,

J2 � Cıe
�cınk'k


Z
jt j<ı

j .t/j dt: (7.3)

For J3, we make a change of variable t D t 0=
p
n to get

J3 D

ˇ̌̌̌
e
nl2

2�2s

Z ı
p
n

�ı
p
n

e�itl
p
n�n
s; itp

n

…
s; itp

n

.'/.x/ 
� t
p
n

�
dt � cs. /

ˇ̌̌̌
�

ˇ̌̌̌
e
nl2

2�2s

Z ı
p
n

�ı
p
n

e�itl
p
n�n
s; itp

n

�
…
s; itp

n

.'/.x/ 
� t
p
n

�
� �s.'/ .0/

�
dt

ˇ̌̌̌
C

ˇ̌̌̌
�s.'/ .0/e

nl2

2�2s

Z ı
p
n

�ı
p
n

e�itl
p
n�n
s; itp

n

dt � cs. /

ˇ̌̌̌
DW J31 C J32: (7.4)

Using formula (3.32) and the fact that the function ƒ is analytic in a small neighborhood
of 0 of the complex plane, we can check that there exists a constant C > 0 such that for
all s 2 .��; �/, t 2 Œ�ı

p
n; ı
p
n� and n � 1,ˇ̌̌

�n
s; itp

n

� e�
�2s t

2

2

ˇ̌̌
�

C
p
n
e�

�2s t
2

4 : (7.5)

By (3.35) and the fact that …s;0.'/.x/ D �s.'/, it follows that uniformly in s 2 .��; �/,
t 2 Œ�ı

p
n; ı
p
n� and x 2 � ,ˇ̌

…
s; itp

n

.'/.x/ � �s.'/
ˇ̌
�


…

s; itp
n

�…s;0




B
!B


k'k
 � c
jt j
p
n
k'k
 :

Since the function  is differentiable in a small neighborhood of 0, we obtain that there
exists a constant C > 0 such that for all s 2 .��; �/, x 2 � and t 2 Œ�ı

p
n; ı
p
n�,ˇ̌̌̌

…
s; itp

n

.'/.x/ 

�
t
p
n

�
� �s.'/ .0/

ˇ̌̌̌
�

ˇ̌̌̌
…
s; itp

n

.'/.x/ 

�
t
p
n

�
��s.'/ 

�
t
p
n

�ˇ̌̌̌
C

ˇ̌̌̌
…s;0.'/.x/ 

�
t
p
n

�
��s.'/ .0/

ˇ̌̌̌
� C

jt j
p
n
k'k
 sup

jt j�ı

j .t/j C C
jt j
p
n
k'k
 sup

jt j�ı

j 0.t/j:
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Combining this with (7.5), we get the desired bound for J31: there exists a constant C > 0

such that, for all n � 1, jl j � 1p
n

, s 2 .��; �/, x 2 � and ' 2 B
 ,

J31 �
C
p
n
k'k
 C

C

n
k'k
 sup

jt j�ı

�
j .t/j C j 0.t/j

�
: (7.6)

To estimate J32 in (7.4), we first notice that

J32 �

ˇ̌̌̌
�s.'/ .0/e

nl2

2�2s

Z ı
p
n

�ı
p
n

e�itl
p
n
�
�n
s; itp

n

� e�
�2s t

2

2

�
dt

ˇ̌̌̌
C

ˇ̌̌̌
�s.'/ .0/e

nl2

2�2s

Z
jt j�ı

p
n

e�itl
p
ne�

�2s t
2

2 dt

ˇ̌̌̌
DW J321 C J322:

For J321, from (7.5) it follows that

J321 �
C
p
n
k'k
 :

For J322, using the basic inequalityZ 1
y

e�
t2

2 dt �
1

y
e�

y2

2

for y > 0, we get that
J322 � e

�cn
k'k
 :

Hence, there exists a constant C > 0 such that for all jl j � 1p
n

, s 2 .��; �/ and ' 2 B
 ,
it holds that

J32 �
C
p
n
k'k
 :

This, together with (7.6) and (7.4), implies the desired bound for J3: there exists a constant
C > 0 such that for all n � 1, jl j � 1p

n
, s 2 .�; �/, x 2 � and ' 2 B
 ,

J3 �
C
p
n
k'k
 C

C

n
k'k
 sup

jt j�ı

�
j .t/j C j 0.t/j

�
:

Combining this with (7.2) and (7.3), we conclude the proof of Proposition 7.1.

Now we are equipped to establish Theorem 2.4.

Proof of Theorem 2.4. We only need to establish the first assertion of the theorem since
the second and the third ones are its particular cases. By the change of measure formula
(3.15), we get that for any s 2 .��; �/ with sufficiently small � > 0,

Jn WD E
�
'.Xxn / 

�
�.Gn; x/ � n� �

p
n�y

��
D rs.x/�

n.s/EQxs

�
.'r�1s /.Xxn /e

�s�.Gn;x/ 
�
�.Gn; x/ � n� �

p
n�y

��
:

For brevity, denote
T xn D �.Gn; x/ � nƒ

0.s/:
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By considering equation (6.3) for any jyj D o.
p
n/ (not necessarily jyj > 1), we get the

identity (6.4) for jyj D o.
p
n/. Hence, we have

Jn D rs.x/e
�nŒsƒ0.s/�ƒ.s/�EQxs

�
.'r�1s /.Xxn /e

�sT xn  .T xn /
�

D rs.x/e
�
y2

2 C
y3p
n
�. yp

n
/
EQxs

�
.'r�1s /.Xxn /e

�sT xn  .T xn /
�
:

We denote
 s.u/ D e

�su .u/; u 2 R:

Taking into account Lemma 6.1, in order to establish Theorem 2.4, it is sufficient to prove
the following asymptotic: as n!1,

An WD �
p
2�nEQxs

�
.'r�1s /.Xxn / s.T

x
n /
�
! �.'/

Z
R
 .u/ du: (7.7)

To prove (7.7), we need to use some smoothing techniques. For sufficiently small " > 0,
we denote for any s 2 .��; �/ and u 2 R,

 Cs;".u/ D sup
u02RWju0�uj�"

 s.u
0/;  �s;".u/ D inf

u02RWju0�uj�"
 s.u

0/:

Denote respectively by b Cs;" and b �s;" the Fourier transform of  Cs;" and  �s;". For the
moment we suppose that

lim
"!0

b C0;".0/ D lim
"!0

b �0;".0/ D Z
R
 .u/ du: (7.8)

Note that the Fourier transform of the function  s may not be integrable on R. In the
sequel we shall use a smoothing inequality from [22, Lemma 5.2], which gives two-sided
bounds for  s . Let � be a non-negative density function on R with

R
R �.u/ du D 1 and

�.u/ � C
1Cu4

for all u 2 R, so that its Fourier transform b� is supported on Œ�1; 1�. For
any 0 < " < 1, define the rescaled density function �" by �".u/ D 1

"
�.u
"
/, u 2 R, whose

Fourier transform has a compact support on Œ�"�1; "�1�. Then there exists a positive
constant C�."/ with C�."/! 0 as "! 0 such that for any u 2 R,

 �s;" � �"2.u/�

Z
jvj�"

 �s;".u� v/�"2.v/dv �  s.u/� .1CC�."// 
C
s;" � �"2.u/: (7.9)

Now we are going to prove (7.7). The proof will be done by establishing upper and lower
bounds for An. Without loss of generality, we assume that the target functions ' and  
are non-negative.

Upper bound. Applying the smoothing inequality (7.9) and the Fourier inversion formula
to the function  Cs;" � �"2 , we get

An � .1C C�."//�
p
2�nEQxs

�
.'r�1s /.Xxn /. 

C
s;" � �"2/.T

x
n /
�

D .1C C�."//�

r
n

2�

Z
R
Rns;it .'r

�1
s /.x/b Cs;".t/b�"2.t/ dt; (7.10)
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where Rs;it is the perturbed operator defined by (3.28) with z D i t . Applying Propo-
sition 7.1 with ' D 'r�1s and  D b Cs;"b�"2 (one can verify that the remainder term in
estimate (7.1) vanishes as n!1, uniformly in s 2 .��; �/), we obtain, uniformly in
s 2 .��; �/, jt j � ı and x 2 � ,

lim sup
n!1

An � .1C C�."//�.'/b C0;".0/:
Letting "! 0, we get the desired upper bound for An: uniformly in s 2 .��; �/ and
x 2 � ,

lim sup
n!1

An � �.'/ lim
"!0

b C0;".0/: (7.11)

Lower bound. Similarly to (7.10), using the smoothing inequality (7.9), the fact that
 �s;" �  s � .1C C�."// 

C
s;" � �"2 , and the Fourier inversion formula to the functions

 �s;" � �"2 and  Cs;" � �"2 , we obtain

An � �
p
2�nEQxs

�
.'r�1s /.Xxn /. 

�
s;" � �"2/.T

x
n /
�

� �
p
2�n

Z
jvj�"

EQxs

�
.'r�1s /.Xxn / 

�
s;".T

x
n � v/

�
�"2.v/ dv

� �

r
n

2�

Z
R
Rns;it .'r

�1
s /.x/b �s;".t/b�"2.t/ dt

� .1C C�."//�

r
n

2�

�

Z
jvj�"

� Z
R
e�itvRns;it .'r

�1
s /.x/b Cs;".t/b�"2.t/ dt��"2.v/ dv

DW Bn."/ �Dn."/: (7.12)

For Bn."/, in the same way as in the proof of (7.11), by considering the function  �s;"
instead of  Cs;" and using Proposition 7.1, we have that uniformly in s 2 .��; �/ and
x 2 � ,

lim inf
"!0

lim inf
n!1

Bn."/ � �.'/ lim
"!0

b �0;".0/: (7.13)

For Dn."/, we first note that we can follow the proof of the upper bound for An to check
the following asymptotic: for sufficiently small " > 0, uniformly in s 2 .��; �/, x 2 �

and v 2 Œ�
p
n;
p
n�,

lim
n!1

�

r
n

2�
e

v2

2n�2s

Z
R
e�itvRns;it .'r

�1
s /.x/b Cs;".t/b�"2.t/ dt D �.'/b C0;".0/: (7.14)

To obtain an upper bound for the term Dn."/, we shall apply the Lebesgue dominated
convergence theorem to pass to the limit as n!1 through the integral

R
jvj�". The appli-

cability of this theorem is justified below. We split the integral
R
jvj�" in the term Dn."/

into two parts:
R
jvj>
p
n and

R
"�jvj�

p
n. For the first part

R
jvj>
p
n, since the density function

�"2 has polynomial decay, i.e. �"2.v/ �
C"
1Cv4

, jvj >
p
n, we get that

p
n�"2.v/ �

C"

1C jvj3
;
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which is integrable on R. For the second part, using (7.14) we see that, the function under
the integral

R
"�jvj�

p
n is dominated by C�"2 which is integrable on R. Therefore, we can

interchange the limit as n!1 and the integral
R
jvj�", and then use (7.14) again to obtain

that uniformly in s 2 .��; �/ and x 2 � ,

lim sup
n!1

Dn."/ � .1C C�."//�.'/b C0;".0/ Z
jvj�"

�"2.v/ dv:

The integral on right-hand side converges to 0 as "! 0, since �"2.v/ D
1
"2
�. v
"2
/ and the

function � is integrable on R. Together with (7.12) and (7.13), this implies the desired
lower bound for An: uniformly in s 2 .��; �/ and x 2 � ,

lim inf
n!1

An � �.'/ lim
"!0

b �0;".0/: (7.15)

Combining (7.11) and (7.15), we obtain the assertion of Theorem 2.4, provided that
(7.8) holds. Condition (7.8) can be relaxed to the direct Riemann integrability condition
of the target function  , by applying the approximation techniques developed in [50]. So
the proof of Theorem 2.4 is complete.

7.2. Proof of Theorem 2.5

In this subsection we prove Theorem 2.5 concerning the local limit theorem with moderate
deviations for the operator norm kGnk in the case of invertible matrices. In this proof
Theorem 2.4 plays the key role. Another important ingredient is the following Lemma 7.2
established recently by Benoist and Quint [5], which provides a precise and interesting
comparison between logkGnk and �.Gn; x/:

Lemma 7.2. Assume Conditions A1 and A2 for invertible matrices. Then, for any a > 0,
there exist c > 0 and k0 2 N, such that for all n � k � k0 and x D Rv 2 Pd�1,

P

�ˇ̌̌̌
log
kGnk

kGkk
� log

jGnvj

jGkvj

ˇ̌̌̌
� e�ak

�
> 1 � e�ck :

Proof of Theorem 2.5. Without loss of generality, we assume that the target function ' is
non-negative.

We first give the upper bound. By Lemma 7.2, we get that for any a > 0, there exist
c > 0 and k0 2 N, such that for all n � k � k0 and x D Rv 2 Pd�1,

Jn WD E
�
'.Xxn /1¹logkGnk�n�2Œa1;a2�C

p
n�yº

�
� E

�
'.Xxn /1

®
log jGnvj
jGkvj

ClogkGkk�n�2Œa1�e�ak ;a2Ce�ak �C
p
n�y
¯�C e�ckk'k1:

With the notation Gn;k D gn : : : gkC1 for any n � k � 1, we have Xxn D Gn;k �X
x
k

and
�.Gn; x/ � �.Gk ; x/ D �.Gn;k ; X

x
k
/. Thus the first term of the right-hand side of the

above inequality can be rewritten as

E
�
'.Gn;k �X

x
k /1

®
�.Gn�k ;X

x
k
/�.n�k/�2Œa1�e�ak ;a2Ce�ak �C

p
n�y�.logkGkk�k�/

¯�:
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Now we fix a sufficiently large constant C1 > 0 and we choose

k D bC1y
2
c;

where byc denotes the integer part of y 2 R. For any " > 0, there exists a large enough
k1 � 1 such that for all k � k1,

Œa1 � e
�ak ; a2 C e

�ak � � IC" WD Œa1 � "; a2 C "�:

Using the large deviation bounds for logkGkk (see [5] or [50]), we see that for any ı > 0,
there exists a constant c > 0 such that for large enough k � 1,

P
�ˇ̌

logkGkk � k�
ˇ̌
> kı

�
� e�ck :

Using this bound, it follows that

Jn � E
�
'.Gn;k �X

x
k /1

®
�.Gn�k ;X

x
k
/�.n�k/�2I

C
" C
p
n�y�.logkGkk�k�/

¯1®
klogkGkk�k�j�kı

¯�
C e�ckk'k1:

Taking conditional expectation given the � -algebra Fk D �.g1; : : : ; gk/, we get

Jn � E
°
E
h
'.Gn;k �X

x
k /1

®
�.Gn�k ;X

x
k
/�.n�k/�2I

C
" C
p
n�y�.logkGkk�k�/

¯
� 1®

jlogkGkk�k�j�kı
¯ˇ̌̌Fk

i±
C e�ckk'k1:

Applying Theorem 2.4, we obtain, as n!1, uniformly in x 2 Pd�1 and jyj D o.n1=6/,

Jn � sup
juj�kı

exp
²
�
1

2

�
y
p
n

p
n � k

�
u

�
p
n � k

�2³
.a2 � a1 C 2"/�.'/C o.1/

�
p
2�n

C e�ckk'k1: (7.16)

Since k D bC1y2c, it follows that as n!1,

Jn �
e�

y2

2

�
p
2�n

�
.a2 � a1 C 2"/�.'/C o.1/

�
: (7.17)

We next give the lower bound. Since the proof is similar to that of the upper bound,
we only sketch the main differences. By Lemma 7.2, we get that for any a > 0, there exist
c > 0 and k0 2 N, such that for all n � k � k0 and x D Rv 2 Pd�1,

Jn � E
h
'.Xxn /1

®
log jGnvj
jGkvj

ClogkGkk�n�2Œa1Ce�ak ;a2�e�ak �C
p
n�y
¯i:

With the notation used in the proof of the upper bound, we have

Jn � E
h
'.Gn;k �X

x
k /1

®
�.Gn�k ;X

x
k
/�.n�k/�2I�" C

p
n�y�.logkGkk�k�/

¯1®
jlogkGkk�k�j�kı

¯i;
where I�" WD Œa1 C "; a2 � "�: Notice that, for any " > 0, there exists a large enough
k1 � 1 such that for all k � k1,

I�" � Œa1 C e
�ak ; a2 � e

�ak �:
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In the same way as in the proof of (7.16), we take conditional expectation given Fk and
use Theorem 2.4 to obtain that as n!1, uniformly in x 2 Pd�1 and jyj D o.n1=6/,

Jn �
1

�
p
2�n

�
.a2 � a1 � 2"/�.'/ � o.1/

�
inf
juj�kı

exp
²
�
1

2

�
y
p
n

p
n � k

�
u

�
p
n � k

�2³
:

As k D bC1y2c, elementary calculations lead to

Jn �
e�

y2

2

�
p
2�n

�
.a2 � a1 C 2"/�.'/ � o.1/

�
: (7.18)

Since " > 0 can be arbitrary small, combining (7.17) and (7.18), we conclude the proof
of Theorem 2.5.
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