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Abstract. Let (g5)n>1 be a sequence of independent and identically distributed (i.i.d.) d x d real
random matrices. For n > 1 set G, = g5 ... g1. Given any starting point x = Rv € pd-1 , con-
sider the Markov chain X;; = RG,v on the projective space P41 and define the norm cocycle
by o(Gn, x) = log(|Gnv| / |v|), for an arbitrary norm |- | on R4 Under suitable condltlons we
prove a Berry—Esseen-type theorem and an Edgeworth expansion for the couple (X7, 0(Gp, x)).
These results are established using a brand new smoothing inequality on complex plane, the saddle
point method and additional spectral gap properties of the transfer operator related to the Markov
chain X;}. Cramér-type moderate deviation expansions as well as a local limit theorem with mod-
erate deviations are proved for the couple (X;’,0(Gp, x)) with a target function ¢ on the Markov
chain X;}.

Keywords. Products of random matrices, Berry—Esseen bound, Edgeworth expansion,
Cramér-type moderate deviations, moderate deviation principle, spectral gap

1. Introduction

1.1. Background and objectives

For any integer d > 2, denote by GL(d, R) the general linear group of d x d invertible
matrices. Equip R with any norm | - | and let ||g|| = sup,era\ (o} |gv|/|v| be the operator
norm for g € GL(d,R). Denote by P2~ the projective space of R?. Let (gn)n>1 be
a sequence of i.i.d. d x d real random matrices of the same law p on GL(d, R). For any
n > 1, consider the product G, = g, ... g and the process

X =RGuv e P71,
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with the starting point x = Rv € P¢~!. The norm cocycle is defined by
|Gnv
vl

0(Gy, x) = log

where x = Rv € P41,

The study of the asymptotic properties of the Markov chain (X;’),>; and of the prod-
uct (G,)n>1 has attracted a good deal of attention since the groundwork of Furstenberg
and Kesten [19], where the strong law of large numbers (LLN) for the operator norm
|G|l has been established. In the same context, Furstenberg [20] proved the LLN for the
norm cocycle o (G,, x): for any x € P41,

nli)ngo —a(Gn,x) = hm EG(G,,,)C) =A P-as,
where A is a real number called upper Lyapunov exponent associated with the prod-
uct G,. Another cornerstone result is the central limit theorem (CLT) for the couple
(X;r,0(Gp, x)), established under contracting-type assumptions by Le Page [39]: for any
fixed y € R and any Holder continuous function ¢ : P4~! i R, it holds uniformly in
x € P41 that

lim E[w(x )1{M< }] =v(p)P(y),

where v is the unique stationary probability measure of the Markov chain X} on pa-1,

2 = limy >0 %E[(U(Gn, x) —nA)?] is the asymptotic variance independent of x (the
number ¢ should not be confused with the cocycle function o (-,-)), and & is the standard
normal distribution function. The optimal conditions for the CLT to hold true have been
established recently by Benoist and Quint [3].

The next step in these studies is to know how precise are the approximations in the
LLN and the CLT. The asymptotic of the large deviation probabilities describes the rate
of convergence in the LLN, and the Berry—Esseen bound characterizes that in the CLT.
For sums of independent random variables these topics have been extensively studied
over many decades, and have been proved to play the key role for many problems in
probability theory and mathematical statistics. For deep and optimal results in this direc-
tion we refer to the pioneering works of Cramér [13], Esseen [17], Bahadur and Rao [1],
Petrov [41] and to the monographs of Petrov [42], Stroock [46], Varadhan [47], Dembo
and Zeitouni [16] and Borovkov and Borovkov [6].

For products of random matrices the known results about the rate of convergence in
the LLN and the CLT are far from being optimal, although there are already important
studies on the topic. The main goal of the present paper is to fill in this gap by proving
large deviation asymptotics and Berry—Esseen-type bounds which are close to definitive.
Precise large deviation asymptotics originate from the work of Le Page [39] and more
recently have been considered e.g. by Guivarc’h [25], Benoist and Quint [5], Buraczewski
and Mentemeier [11], Sert [45], Xiao, Grama and Liu [50]. For moderate deviations,
very few results are known. Benoist and Quint [5] have recently established the moder-
ate deviation principle for reductive groups, which in our setting reads as follows: for
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any interval B C R, and positive sequence (b,),>1 satisfying = br 5 0 and f/”ﬁ — 00 as
n — 00, it holds uniformly in x € P4~ that

— 2
lim b—lo P(W c B) — —inf 2. (1.1)

n—>o00 n n

A functional moderate deviation principle has been established by Cuny, Dedecker and
Jan [12].

The first objective of our paper is to improve on the result (1.1) by establishing
a Cramér-type moderate deviation expansion for o (G, x): we prove that uniformly in
x € P4 Vand y € [0,0(y/n)], as n — oo,

P(0(Gp.x) —ni = ﬁay) 3 e y+1
o) S LGy

where ¢ > {(t) is the Cramér series of the logarithm of the eigenvalue related to the
transfer operator of the Markov walk associated to the product of random matrices (see
Section 2.3).

In many important models it is useful to extend the moderate deviation expansion (1.2)
for the couple (X;7, 0(Gy, x)) which describes completely the random walk (G,v);>1.
We prove that, for any Hélder continuous function ¢ on P41, uniformly in x € P4-1
and y € [0,0(/n)], as n — oo,

Ele(XiD o Gn-nizyiion] _ 22ec2 y+1
1—o(y) —¢ [V@H 0( NG )} (4

see Theorem 2.3 for a slightly stronger statement.

Our second objective, which is also the key point in proving (1.3), is a Berry—Esseen
bound for the couple (X;’,o(Gp,x)): for any Holder continuous function ¢ on pa-1,
asn — oo,

1
E|o(X5)1 n - o) =0 —), 1.4
xePdSHRyER( [sﬂ( ) o(Gunm y}] v(p) (y)‘ (ﬁ) (1.4)

see Theorem 2.1. This extends the result of Le Page [39] established for the particular
target function ¢ = 1 (see also Jan [36]). We further upgrade (1.4) to an Edgeworth expan-
sion under a non-arithmeticity condition, see Theorem 2.2, which is new even for ¢ = 1.

Our third objective is to establish the following local limit theorem with moderate
deviations: for any real numbers —oo < a1 < a; < 0o, we have, uniformly in x € Ppa-1
and |y| = o(/n), as n — oo,

E[(p(X:)ﬂ{o(Gn,x)—nke[al ,a2]+ﬁay}]
al (1.5)

2 3y
—v(p) 2 THED A +o(1)).

o 27Tl’l

For a more general version of (1.5), see Theorem 2.4, where a target function ¥ on
0(Gp, x) is considered. When |y| = o(n'/®), the term (y3//n)(y/+/n) tends to 0
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and can be removed in (1.5). In this case, (1.5) improves the local limit theorem of
[5, Theorem 17.10] established for |y| = O(+/logn). Local limit theorems with mod-
erate deviations of type (1.5) are used for instance in [2] for studying dynamics of group
actions on finite volume homogeneous spaces. As an important application of (1.5) we
establish a new local limit theorem with moderate deviations for the operator norm || Gy ||,
see Theorem 2.5.

All the results stated above concern invertible matrices, but we also establish analo-
gous theorems for positive matrices. Some limit theorems for o (G, x) in case of positive
matrices such as central limit theorem and Berry—Esseen theorem have been established
earlier by Furstenberg and Kesten [19], Hennion [29], and Hennion and Hervé [31]. Here,
we extend the Berry—Esseen theorem of [31] to the couple (X, ,0(G,, x)) with a tar-
get function ¢ on the Markov chain X;'. We also complement the results in [19,29,31]
by giving a Cramér-type moderate deviation expansion and a local limit theorem with
moderate deviations.

The results of the paper can be useful in number of models of growing interest in
probability and statistics. In particular, our study has been motivated by applications to
branching random walks and multitype branching processes in random environment; we
refer to [8,9,23,24] where large deviation asymptotics have been obtained in these settings
using the results of this paper. For an application to moderate deviations for the opera-
tor norm and the spectral radius of products of random matrices we refer to [49]. Other
fields of application include the financial mathematics, among them multidimensional
stochastic recursions and perpetuity sequences.

On the other hand with the approach developed in the paper, one can also study limit
theorems for Markov chains, dynamical systems, random walks on hyperbolic groups
and homogeneous spaces; for these topics we refer to Hennion and Hervé [30], Parry
and Pollicott [40], Gouézel [21], Guivarc’h [25], Benoist and Quint [4]. For example,
combining our approach with the techniques from Guivarc’h and Hardy [26], it is possible
to obtain extensions of our results to the setting of Anosov’s diffeomorphisms and more
general dynamical systems allowing a coding by mixing sub-shifts. As another example,
one can establish the analogs of the results of the paper for Markov chains with compact
state spaces. These aspects will be not considered here because of the limitation of the
length of the paper.

1.2. Key ideas of the approach

For the moderate deviation expansions (1.2) and (1.3), our proof is different from those
in [5] and [12]: in [5] the moderate deviation principle (1.1) is obtained by following
the strategy of Kolmogorov [38] suited to show the law of iterated logarithm (see also
de Acosta [15] and Wittman [48]); in [12] the proof of the functional moderate deviation
principle is based on the martingale approximation method developed in [3].

In order to prove (1.3), we need to rework the spectral gap theory for the transfer
operators P, and R;,, by considering the case when s can take values in the interval
(—=n,n) with n > 0 small, and z belongs to a small complex ball centered at the ori-
gin, see Section 3. This allows to define the change of measure QF and to extend the
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Berry—Esseen bound (1.4) for the changed measure Q7 , see Theorem 5.1. The moderate
deviation expansion (1.3) is established by adapting the techniques from Petrov [42].

It is surprising that the proof of the Berry—Esseen bound and of the Edgeworth ex-
pansion with a non-trivial target function ¢ # 1 is way more difficult than the analo-
gous results with ¢ = 1. This can be seen from the sketch of the proof which we give
below.

For simplicity, we assume that 0 = 1. Introduce the transfer operator P,: for any
Holder continuous function ¢ on P4landz e C,

Poo(x) = E[ezo(gl’x)(p(Xf)], x e Ppil,
Let F be the distribution function of W and let f be its Fourier transform:

ft)y=e ”““(Pﬁf,, )(x), { R,

The Berry—Esseen bound (1.4) with target function ¢ = 1 is usually proved using Esseen’s
smoothing inequality: there exists a constant C > 0 such that for all 7 > 0,

C
sup |F(y) — O(y)] < / dt + T (1.6)
yeR -T
Inserting the spectral gap decomposition
P! =k"(z)M, + L7 (n>1) (1.7)

into (1.6) allows us to obtain the Berry—Esseen bound (1.4) with ¢ = 1: after some
straightforward calculations, it reduces to showing that, with T = ¢4 /n, asn — oo,

/T 1 (L" i 1) (x)|dr = o(i). (1.8)
—r ] ~a NG

The bound (1.8) is proved using Taylor’s expansion

it
L1 = L1+ (L"l) to(z) withz = ——,
Jn
and the fact that L{1 = 0. However, when we replace the unit function 1 by a target
function ¢ for Wthh in general L¢ # 0, instead of (1.8), we have

T
/ m}L’i w p(x)|dt = (1.9)

even though |L{¢(x)| decays exponentially fast to 0 as n — oo. To overcome this dif-
ficulty, we have elaborated a new approach based on smoothing inequality on complex
contours, see Proposition 4.1, and on the saddle point method, see [14, 18]. More pre-
cisely, we formulate our smoothing inequality as follows: there exists a constant C > 0
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such that forany T > r > 0,

1 — ; oz
sup |F() = @] = sup| [ F@ee T dz
yeR T y<o|Jer
1 — : oz
+ — sup F(2)e'?e T gz
T yso|Jet

1 — oy bz
+ — sup F(2)e'?e'T dz
T y<o|Jer

1 — iz
+ — sup F(2)e'? T dz
T y>0 o+

1 _
" ; /rsltlsT |f(t)| a

2 (T, C
+n—T/_T}tf(t)|dt+T,

where

N

7(2) = M’

4
b > 01is a fixed constant, €, and €, are semicircles in the complex plane given by

€ ={zeC:|z|=r Iz <0},
et ={zeC:|z] =1, 3z >0}

Using the new smoothing inequality, together with the spectral gap property (1.7), leads
to the estimation of the following integrals:

22
n —_e~ 7 . .1z
/ K"(zZ)M;p(x) —e™ 2 o7V o FbF g7 (1.10)
etuer z
n
/ Lz‘p(x)eizye:l:ib% dz. (1.11)
etues  Z

The integral (1.10) is handled by using the saddle point method choosing a suitable path
for the integration in Section 5.2, which is one of the challenging parts of the proof. For
the integral (1.11) we use the facts that | L” ¢(x)| decays exponentially fast as n — oo and
that

eizy 1

’
forz € €7,y <0and r = c/n. In contrast to (1.9), the integral (1.11) is bounded by
Ce™“" uniformly in y. The case y > 0 is treated similarly, which allows us to establish
(1.4). Note that the non-arithmeticity condition is not needed for the validity of (1.4).
Under the non-arithmeticity condition, in Theorem 2.2 we obtain an Edgeworth expansion
for (X7, 0(G,, x)) with the target function ¢ on X;’, which is of independent interest.

z
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2. Main results

2.1. Notation and conditions

LetN ={0,1,2,...} and N* = N \ {0}. The real part, imaginary part and the conjugate
of a complex number z are denoted by iz, Iz and Z respectively. For y € R, we write
1,2 y J
= 2 =
b0 = =T wmd o) = [ pwar

For any 1 > 0, set B,(0) = {z € C : |z| < n} for the ball with center 0 and radius 7 in
the complex plane C. We denote by ¢, C, positive constants whose values may change
from line to line. By ¢, Cy We mean positive constants depending only on the index «.
We write 14 for the indicator function of an event A. For a measure v and a function ¢
we denote v(p) = [@dv.

For d > 2, let M(d,R) be the set of d x d matrices with entries in R. We shall
work with products of invertible or non-negative matrices. Denote by ¢4 = GL(d, R) the
group of invertible matrices of M(d, R). A non-negative matrix g € M(d, R) is said to be
allowable, if every row and every column of g has a strictly positive entry. Denote by ¥
the multiplicative semigroup of allowable non-negative matrices of M(d, R), which will
be called simply positive. We write &7 for the subsemigroup of ¢ with strictly positive
entries.

The space R? is equipped with any given norm | - |. Let

P4 = {x =Rv:veR?\ {0}
be the projective space of R¢. Let R‘i be the positive quadrant of R, and let
P¢! = {x =Rv:veRL\{0}}

be the set of directions corresponding to non-zero vectors in Ri. To unify the exposition,
we use the symbol § to denote P4~ in case of invertible matrices and Pi_l in case of
positive matrices. For any matrix g in ¢ or ¥4+ and x = Rv € §, we write g - x = Rgv
for the projective action of g on §. The space S is endowed with the metric d: for
invertible matrices, d is the angular distance, i.e., for any x = Rv,y = Ru € IP’d_l,
d(x,y) = |sinO(v,u)|, where 6(v, u) is the angle between v and u; for positive matri-
ces, d is the Hilbert cross-ratio metric, i.e., for any x = Rv € ]P’jf_l andy = Ru € P_‘i_l
with |v| = |u] = 1,

1 —m(v,u)m(u,v)
1+ m, w)m(u,v)’

d(x,y) =

where m(v,u) = sup{e > 0 : au; <v; foralli =1,...,d}. In both cases, there exists
a constant C > 0 such that

lv—u| < Cd(x,y) foranyx =Rv, y =Rue€s, |v|=u|=1. (2.1)

We refer to [27] and [29] for more details of the metric d.
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Let €(S) be the space of continuous complex-valued functions on § and let 1 be the
constant function with value 1. Let y > 0. For any ¢ € €(S), set

lo(x) — ()]
lelly :=llelloo + [ely.  l@lloo :=suplp()]. [¢], == sup ——————
Y 00 ’ OO X€ES Y X,y€S dy(xv y)
Introduce the Banach space 8, := {¢ € €(S) : |l¢|l, < +o0}.
Assume that on some probability space (2, .7, P) we are given a sequence of i.i.d.
random matrices (g5 )n>1 of the same law pon¥ or ;. Set G, = g, ...g1,n > 1; then
for any starting point x € §, the process

Xy=x, X, =G,-x, n>1
forms a Markov chain on §. Let

o(g,x) =log M
|v]
be the norm cocycle, where g € ¥ andx = Rv € P4~ !org € 4, and x = Rv € P41,
The goal of the present paper is to establish a Berry—Esseen bound and a Cramér-type
moderate deviation expansion for the couple (X, 0(Gy, x)) with a target function ¢ on
the Markov chain (X;;), for both invertible matrices and positive matrices.
For any g € M(d,R), set

and ((g) = inf M

. lgv]
lgll= sup ,
veR4\{0} |V]

veR4\{0} v

where ((g) > 0 for both g € & and g € ¥4, . In the following we denote

N(g) = max{|lgll,«(g)™"}.

From the Cartan decomposition it follows that the norm | g|| coincides with the largest
singular value of g, i.e. ||g|| is the square root of the largest eigenvalue of gTg, where g*
denotes the transpose of g. For an invertible matrix g € ¢, 1(g) = ||lg~'||~', hence ((g)
is the smallest singular value of g and N(g) = max{| ||, |g~'||}. We need the two-sided
exponential moment condition:

A1l. There exists a constant 1o € (0, 1) such that E[N(g1)"°] < +o0.

We denote by I', := [supp ] the smallest closed subsemigroup of M (d, R) generated
by supp i, the support of the measure p.

For invertible matrices, we need the strong irreducibility and proximality conditions.
Recall that a matrix g is called proximal if g has an eigenvalue A satisfying [ | > 1|
for all other eigenvalues /\;, of g. The normalized eigenvector vy (Jvg| = 1) correspond-
ing to the eigenvalue A is called the dominant eigenvector. It is easy to verify that A, € R.

A2. (i) (Strong irreducibility) No finite union of proper subspaces of R4 is I’} -invariant.

(ii) (Proximality) I';, contains at least one proximal matrix.
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For positive matrices, we use the allowability and positivity conditions.

A3. (i) (Allowability) Every g € I}, is allowable.
(i1) (Positivity) I';, contains at least one matrix belonging to %i

It follows from the Perron-Frobenius theorem that every g € ¢7 has a dominant
eigenvalue A, > 0, with the corresponding eigenvector vg € IP’J“:_I.

Under Conditions Al and A2 for invertible matrices, or Conditions Al and A3 for

positive matrices, there exists a unique p-stationary probability measure v on § ([10,27]):
for any ¢ € €(S),

(% )(p) = /S /F o(g1 - ) u(dgy) v(dx) = /S o) v(dx) = v(g).  (2.2)

Moreover, for invertible matrices, supp v (the support of v) is given by

V(Tu) = {ve € P4=1: g €T, gisproximal}; (2.3)

for positive matrices, supp v is given by

V(T,) ={ve e Pi7l:geT, N} (2.4)

In addition, for both cases, V(I',) is the unique minimal I, -invariant subset (see [27]
and [10]).

For positive matrices, it will be shown in Proposition 3.15 that under Conditions Al
and A3, the asymptotic variance

1
0 = lim —E[(0(Gp.x) —ni)?]
n—oo n
exists with value in [0, c0). To establish the Berry—Esseen theorem and the moderate
deviation expansion, we need the following condition:

A4. The asymptotic variance o2 satisfies 62 > 0.

We say that the measure  is arithmetic if there exist¢ > 0, 8 € [0, 27r) and a function
% : 8§ — R such that

explito(g,x) —if +id(g-x)—ivd(x)] =1

forany g € I'), and x € V(I'y,). To establish the Edgeworth expansion for positive matri-
ces, we impose the following condition:

AS (Non-arithmeticity). The measure p is non-arithmetic.

A simple sufficient condition introduced in [37] for the measure p to be non-arithmetic
is that the additive subgroup of R generated by the set {logA, : g € I, N 47} is dense
inR, see [11, Lemma 2.7].

We end this subsection by giving some implications among the above conditions. For
invertible matrices, it was proved in [28] that Condition A2 implies Condition AS. For
positive matrices, Conditions A1, A3 and AS imply Condition A4, see Proposition 3.15.
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2.2. Berry—Esseen bound and Edgeworth expansion

In this subsection we formulate the Berry—Esseen theorem and the Edgeworth expansion
for the couple (X, ,o0(Gy, x)). We first state the Berry—Esseen theorem with a target
function on X;7. Through the rest of the paper we assume that y > 0 is a fixed small
enough constant so that the spectral properties stated in Proposition 3.1 hold true.

Theorem 2.1. Assume either Conditions Al and A2 for invertible matrices, or Condi-
tions Al, A3 and A4 for positive matrices. Then there exists a constant C > 0 such that
foralln >1,xe€S8,yeRandyp € B,

x C
‘E[‘/’(Xn )H{U(Ggﬁ:nx sy}] - v((p)CD(y)‘ = ﬁ”‘l)”y (2.5)

The proof of this theorem follows the same line as the proof of the Edgeworth expan-
sion in Theorem 2.2 formulated below, and will be sketched at the end of Section 5. The
presence of the target function in Theorem 2.1 turns out to be crucial in the study of the
asymptotic of moderate deviations of the logarithm of the coefficients log | f, G,v)| with
f € (R?)* and v € R?, which will be done in a forthcoming paper.

Theorem 2.1 extends the Berry—Esseen bounds from [36, 39] for invertible matrices,
and [31] for positive matrices to versions with target functions on X;;. Note that the results
in [31, 36] have been established under some polynomial moment conditions. However,
proving (2.5) with the target function ¢ # 1 under the polynomial moments is still an
open problem.

The next result gives an Edgeworth expansion for o(G,, x) with a target function
¢ on X, . To formulate it, we introduce the necessary notation. Consider the following
transfer operator: for any s € (—n, ) with n > 0 small, and ¢ € €(S),

Psp(x) = E[e**®1g(g - x)], x€8.

It will be shown in Proposition 3.1 that there exists a unique Holder continuous function
on § such that
Psrs = k(s)rs, (2.6)

where « (s) is the unique dominant eigenvalue of Ps. Set A(s) = log«(s). We shall show
in Lemma 3.11 that for any ¢ € 8,, the function

by(x) = ,,IEEOE[(O(G”’X) —nMe(X;)]. x€S. 2.7)

is well defined, belongs to $B,, and has an equivalent expression (3.38) in terms of deriva-
tive of the projection operator Iy -, see Proposition 3.8.

Theorem 2.2. Assume either Conditions Al and A2 for invertible matrices, or Condi-
tions A1, A3 and AS for positive matrices. Then, as n — oo, uniformlyinx € §, y € R
and ¢ € By,

E[‘P(X;)]I{G(Gg.\%—nxsy}] —v(p) |:CD()’) +

- ||¢||yo(%).

A/// (0)
603./n

by (x)
o/n

(1- y2)¢(y)] + ¢(y)‘
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The proof of this theorem is postponed to Section 5 and is based on a new smoothing
inequality (Proposition 4.1) and the saddle point method. Even for ¢ = 1, Theorem 2.2
is new.

2.3. Moderate deviation expansions

Denote y; = A® (0), k > 1, where A = logk with the function « defined in (2.6). In
particular, y; = A and y, = 02, see Propositions 3.13 and 3.15, where we also give an
expression for y3. Throughout the paper, we write ¢ for the Cramér series of A (see [13]
and [42]):

vs . vay2—3v:  ysy:—10yayay2 + 15v3 ,
(@) = 32 + 3 L+ 9/2 !
6y5 24y; 120y,

N (2.8)

which converges for |z| small enough.

Now we formulate a Cramér-type moderate deviation expansion for the couple
(X;y,0(Gp, x)) with target function on X, for both invertible matrices and positive
matrices.

Theorem 2.3. Assume either Conditions Al and A2 for invertible matrices, or Condi-
tions A1, A3 and A4 for positive matrices. Then, uniformlyin x € S, y € [0, 0(/n)] and
@ € By, asn — oo,

3

E Xr)f]l —nA> Y22 1
W oG-z sion] eyﬂf(jﬁ)[v(w) + ||¢||y0(‘y 7 )}

11— () Vi
Ele(X) oG x)-ni<—vaop] —%f(—%) y+1
sl o L52)]

Note that the above asymptotic expansions remain valid even when v(¢) = 0. In this
case, for example, the first expansion becomes, as n — 00,

23 (o 1
E[(p(X;)H{O(Gn,x)—nAZﬁUY}] = [1 - q>(y)]e ﬁt(ﬁ) ||(p||y 0 (%)
It is an open question to extend the results of Theorem 2.3 to higher order expansions
under the additional condition of non-arithmeticity. We refer to Saulis [44] and Rozovsky
[43] for relevant results in the i.i.d. real-valued case. In the case of products of random
matrices this problem seems to us interesting because of the presence of the derivatives
in s of the eigenfunction ry and of the linear functional vy in the higher order terms.
In particular, under conditions of Theorem 2.3, with ¢ = 1 we obtain: as n — oo,

o(Gy,x)—nA
P =) 1 o 2E1)]
1—®(y) Vi )l

o(Gp,x)—nA _
P (20t < _y) :e‘fzf(wyﬁ)P +0(y+ 1)}
d(—y) NG

<

g
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When ¢ € B, is a real-valued function satisfying v(¢) > 0, Theorem 2.3 clearly implies
the followmg moderate deviation principle for o (G, x) with target function on X;: for
any Borel set B C R, and positive sequence (b,)n>1 satlsfymg 22 — 0 and f/lii — 00 as
n — oo, uniformly in x € §,

2

Y
_ylengo 257 = < hmlnfb— logE[go(X )H{U(Gn};z)_”A eB}]
32
< limsu —10 IE[ X 0Gyxr—n ]<—1nf—, 2.9
n—)oopb gEfo( ){MGB} o5 202 (2.9)

where B° and B are respectively the interior and the closure of B. In fact, it is enough to
show (2.9) only for the case where B is an interval, the result for general B can be estab-
lished using Lemma 4.4 of Huang and Liu [34]. With ¢ = 1, (2.9) implies the moderate
deviation principle (1.1) established in [5, Proposition 12.12] for invertible matrices. The
moderate deviation principle (2.9) with target function on X, is new for both invertible
matrices and positive matrices; (1.1) is new for positive matrices. Note that in (2.9) the
function ¢ is not necessarily strictly positive.

2.4. Local limit theorem with moderate deviations

In this subsection we state a local limit theorem with moderate deviations for o (G, x),
which is of independent interest and can not be deduced directly from Theorem 2.3.

Theorem 2.4. Assume either Conditions Al and A2 for invertible matrices, or Con-
ditions Al, A3 and A4 for positive matrices. Then, for any ¢ € 8, and any directly
Riemann integrable function  with compact support on R, we have, as n — 0o, uni-

formlyin x € § and |y| = o(s/n),

~54 27 (3)
E[o(X;)¥ (0(Gn, x) — nd — v/noy)] = e—[

oa2mn

In particular, for any ¢ € 8, and real numbers —oo < a; < a, < 0o, we have, as n — oo,
uniformly in x € § and |y| = o(s/n),

v(<p)/l;w(u)du+0(1):|.

e_yz2 + \/325(%1)

o~2mn

S

E[@(X;) (G, x)-nielay an]+vioyy] = ———=—=—=(az —a)v(p) + o(1)].

With ¢ = 1, we have, as n — oo, uniformly in x € § and |y| = o(\/n),
2 3

ot ()
o2mn

In the case of invertible matrices, a similar local limit theorem has been established
in [5] in a more general setting and plays an important role in studying dynamics of
group actions on finite volume homogeneous spaces, see [2, Proposition 4.7]. Specifically,
from [5, Theorem 17.10], by simple calculations we deduce that for any a; < a», it holds

P(0(Gn.x) —nA € [a1,az] + v/noy) = [az — a1 +o(D)].
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uniformly in x € P4~! and |y| = O(+/Togn) that, as n — oo,

_»2
e 2

oA 2mn

Theorem 2.4 extends the range of y in (2.10) beyond O(+/logn) and moreover, allows
a target function ¢ on the Markov chain X;’. Note also that in [5] the group SL(d, R) is
considered instead of GL(d, R), and the proximality Condition A2 (ii) is replaced by the
condition that the semigroup I';, is unbounded. For positive matrices, Theorem 2.4 and
its consequence (2.10) are new.

As an application of Theorem 2.4, we can establish a local limit theorem with moder-
ate deviations for the operator norm |G| in the case of invertible matrices.

P(0(Gn.x) —nA € [ay,az] + v/noy) =

[az — a1 +o(1)]. (2.10)

Theorem 2.5. Assume Conditions A1 and A2 for invertible matrices. Let —00 < a1 <

ap < 00 be real numbers. Then, for any ¢ € By, we have, as n — oo, uniformly in
x € P4 Vand |y| = o(n'/®),

»2

e 2
o+/2mn

With ¢ = 1, we have, as n — oo, uniformly in x € P41 and ly| = o(nl/ﬁ),

E[@(Xi) LitoglGyl-nrclar aslt oy} ] = [(a2 —a)v(e) +o(D)].

<
i

e

o+2mn

In the smaller range |y| = O(+/logn), the result (2.11) has been established for the
general framework of semisimple real Lie groups in [5, Theorem 17.7], under some
assumptions which reduce to ours for the general linear group GL(d,R). Thus Theo-
rem 2.5 extends the results in [5] to the wider range |y| = o(n'/9), and to the couple
(X;y,1log||G,||) with a target function ¢ on the Markov chain X;’. Note that it is an open
question to establish a local limit theorem with moderate deviation for log| G, | in the

whole range |y| = o(s/n).

P(log||G,,|| —nA € lay,az] + \/ﬁay) = [az —ap + 0(1)]. (2.11)

3. Spectral gap theory

This section is devoted to investigating the spectral gap properties of some linear operators
to be introduced below: the transfer operator P, its normalization Q¢ which is a Markov
operator, and the perturbed operator Rj ., for real-valued s and complex-valued z. The
properties for these operators have been studied in recent years, for instance in [5,7, 10,
11, 27,33, 39], where various results have been established under different restrictions
on s and z. We shall complete these results by investigating the case when s € (—n, )
with n > 0 small, and z belongs to a small ball of the complex plane centered at the
origin. The case of s < 0 turns out to be more difficult than the case s > 0 and requires a
deeper analysis. We also complement the previous results with some new properties to be
used in the proofs of the main results of the paper.
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3.1. Properties of the transfer operator P,

Recall that the Banach space 8B, consists of all y-Holder continuous complex-valued
functions on §. We write 8, for the topological dual of 8, endowed with the norm

Ivllg, = sup  |v(p)l,
EBy:lloly=1
for any linear functional v € J)’; Let £(B, B) be the set of all bounded linear operators
from B, to B, equipped with the operator norm || - || g, - 8, . Denote by o(Q) the spectral
radius of an operator Q € £(8, B), and by Q| its restriction to the subspace £ C B,.
For any z € C with |z| < ng, where 79 is given in Condition A1, define the transfer
operator P, as follows: for any ¢ € €(§),

P,p(x) = E[em(gl’x)(p(gl x)], xe€Ss. 3.1

The transfer operator P, acts from €($) to the space of bounded functions on §. The
proposition stated below gives the spectral gap properties of the operator P, for z in
a small enough neighborhood of 0 in the complex plane. In the sequel, even if it is not
stated explicitly, we assume that y > 0 is a sufficiently small constant.

Proposition 3.1. Assume that | satisfies either Conditions Al and A2 for invertible
matrices, or Conditions Al and A3 for positive matrices. Then P, € £(8B,, By) for any
z € Bpy/2(0), and the mapping z +— P; : By, ;>(0) — £(By, By) is analytic for y > 0
small enough, where ng > 0 is given in Condition A1. Moreover, there exists a constant
n > 0 such that for any z € By(0) and n > 1, we have the decomposition

P! =k"(z)M, + L7, (3.2)

V4

where the operator M; := v; @ r; is a rank one projection on B, defined by

vz(9)

z@ = UZ(VZ)rZ

for any ¢ € 8, and the mappings on By(0)

z+>k(z)€eC, zr>r; €8y, zn—>vz€§81’,, z+> L, € £(By, By)

are unique under the normalization conditions v(r;) = 1 and v;(1) = 1, where v is

defined in (2.2); all these mappings are analytic in By (0), and possess the following

properties:

(a) for any z € By(0), it holds that M, L, = L, M, =0,

(b) forany z € By(0), P;r, = k(2)r; and v; P; = k(z)v,

(©) k(0)=1,r9 =1, vog = v, and k(s) and rs are real-valued and satisfy k(s) > 0 and
rs(x) > Oforanys € (—n,n) and x € §,

(d) forany k € N, there exist constants Cy, > 0 and 0 < a; < ap < 1 such that

< Cr(1 —az)" forall z € By(0).

dk
lk(z)| >1—a; and ”—kLZ
dz B,—~>8,
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Let us point out the differences between Proposition 3.1 and the previous results in
[5,10,39]. Firstly, we complement the results in [5,39] by giving the explicit formula

vz ()

= r
¥ vz (rz) :

in (3.2), for z € B,(0), which is one of the crucial points in the proofs of the results of
the paper. Basically, it permits us to deduce the spectral gap properties of the Markov
operator Q and as well as the perturbed operator R, from those of P;. In particular,
this will enable us to obtain an explicit formula for the operators Ny and Ny in Propo-
sitions 3.4 and 3.8, and the uniformity of the bounds (3.35) and (3.36). Secondly, for
positive matrices, some points of Proposition 3.1 have been obtained in [10] only for real
z > 0. The difficulty here is the case when z € R is negative and when z is not real, so
Proposition 3.1 is new for positive matrices when |z| < 5. Thirdly, we show that x(z) and
r, take real positive values when z is real, which allows to define the change of measure
Q7 for real s, for both invertible matrices and positive matrices. Previously it was shown
in [5] that «(z) is real-valued for real z € (—n, ) for invertible matrices.

Remark 3.2. Define the conjugate transfer operator P} by
Pro(x) = E[e10g(g] - x)]. x €87,

where $* is the dual projective space of §, z € C with Rz € (—no, 10), and g] denotes
the transpose of the matrix g;. One can verify that P} satisfies all the properties of

Proposition 3.1: under conditions of Proposition 3.1, we have the decomposition
P =«™(Cwirl + L, ze€ By(0),n=>1,

and all the assertions in Proposition 3.1 hold for P}, «*(z), v}, r}, L} instead of P,
K(Z)’ UZ9 rZ’ LZ'

Proof of Proposition 3.1. We split the proof into three steps. In Steps 1 and 2 we con-
centrate on the case of positive matrices, since for invertible matrices the results of these
steps have been proved in [5,39]. In Step 1 we follow the same lines as in [5, 39]. In
Step 2 we follow [32] to prove the spectral gap property of the operator Py and we use
the perturbation theory to extend it to P,. In Step 3 the proof is new and is provided for
both invertible and positive matrices by complementing the results in [5, 10,39].

Step 1. We only need to consider the case of positive matrices. We will show that there
exists y € (0, %) such that P, € £(B,, B, ), and that the mapping z — P; is analytic
on By, /2(0). Forany m > 0, z € By,/2(0) and ¢ € 8B,, let

PIMo(x) = E[(0(g1,x)" e V(g1 - x)], x e P{T
It suffices to show that for any z € By,/»(0) and 0 € B;,/6(0),
x gm
Prpg =3 P, (3.3)

m=0
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and that there exists a constant C > 0 not depending on 6 and z such that

o 16
> el = Cllelly. (3:4)

m=0

From (3.4) we deduce that PZ(O) = P; € £(8,. By). Moreover, the bound (3.4) ensures
the validity of (3.3) which implies the analyticity of the mapping z — P, on By, ,2(0).
It remains to prove (3.4). We first give a control of || Pz(m ¢ || o Since

lo(g.x)| < logN(g)
forany g € ', and x € P41, we get

oo
0 m
> ) Pl < o[+ N < Clgll. G5)

m=0

To control [Pz(m)fp]y, note that for any ¢ € 8B,

PPl < sup E{(o(gl,x»m—(o(gl,y»m

7781 gy -X)N

ey & x.)
20(g1,%) _ oz0(g1,y)
+ sup E[(o(gl D)k » p(g1- X)] ‘
x,yePY™ x#y dr(x,y)
+  sup E[(a(gl,y))mew(gl,y) p(g1-x) — 98 'y)]’
x’yer{—l’x#y dy(xv Y)
= ]l,m + 12,m + I3,m- (3.6)
We then control each of the three terms 11,4, 12,m, 13,m.
Control of 11 ;. Sinceforanya,b e C,me Nand0 <y <1,
la™ — b™| < 2mmax{|a|™7Y, |b|""V}|a —b|”, (3.7

we get

(log N(g1))" " N(g1)"*!

Iim <2m|¢llco sup ]E[ Io(gl,X)—O(gl,y)l”}-
xX#y

x,yePd™, d”(x,y)
Using (2.1), we deduce that for any g € I',,
lo(g.x) —o(g.»)| < Cligll(g) "d(x. y). (3.8)

and hence

m

o0

0 _
> 1 = 2l o Gog N(gr)) 7O eNG0] 3
m=0 :
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Control of I . Using (3.7), we deduce that for any z;,z, € C,

le®t — e?2| < 2max{|z1 |77, |z2|' 7} max{e®1, %72V |z — 2, |7. (3.10)
By this inequality, we find that for any g € ',

|eza(g,X) — eza(g,y)| < 2(log N(g))' 7 e!M110eN @) |5 (5. x) — 6 (g, y)|”.

Combining this with (3.8) implies that
0 m
Z o D < 2]l E[(log N(g1))' 7 eI +2n loe Mg, (3.11)

Control of 13 ,,. Since ¢ € B, andd(g-x,g-y) <d(x,y) forany g € '), we get

Z |0 I’” 13,,, < llglly E[e(6HMzI-2n) e N (&),

m=0

Combining this with (3.5), (3.6), (3.9) and (3.11), we obtain (3.4).

Step 2. Again we only need to consider the case of positive matrices. We will prove
the decomposition formula (3.2) together with parts (a), (b) and (d). Our proof follows
closely [32]. Define the operator M on B, by Mo =v(¢)1,¢ € B,.Set E =ker MNB,.
We first show that ||¢||e < [¢], forany ¢ € E. Since v(¢) = Oforany ¢ € E, there exist
X1,X3 € Pf__l such that R (x;) = Jp(xz) = 0. Since d(x, y) € [0, 1], it follows that

@l < sup |Rp(x) —Re(x1)| + sup [Sp(x) — Se(x2)| < 2[pl,. (3.12)
XE]P’_‘i_1 )cell”_‘i_1
We next show that o(P|g) < 1, where P = Py (see (3.1)). Forany x, y € Pi_l,x #y,
and ¢ € B,, there exists a € (0, 1) such that for large n > 1,

[P o(x) — P"o(y)] d7(Gy - x.Gp - y) n
et < | T LS | <y

where for the last inequality we use [29, Lemma 3.2]. Observe that for any ¢ € 8B, we
have ¢ — Mg € E, thus P" (¢ — M¢) € E forany n > 1 since vP = v. Combining this
with (3.12) and the above inequality, we get

[P" (¢ — Mo)lly <2[P"(¢p — Mo)], <2a"[p], <2a"|plly.

which implies o(P|g) < 1. This, together with the definition of E and the fact that
P1 =1, shows that 1 is the isolated dominant eigenvalue of the operator P. Using
this and the analyticity of P, € £(8,, 8,) shown in Step 1, and applying the pertur-
bation theorem (see [30, Theorem II1.8]), we obtain the decomposition formula (3.2) with
M;(p) = c1v.(p)r, for some constant c1 # 0, as well as parts (a), (b) and (d). Using
P,r; =«k(z)ry, we getc; = and thus

vz (r
vz(9)
r

M =
F1% V2 (r2) z

forany ¢ € 8B,.
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Step 3. We prove part (c) for both invertible matrices and positive matrices. From P1 =1,
we see that ¥(0) = 1 and rg = 1. Letting z = 0 in v, P, = k(z)v;, we get voP = vy
and thus vo = v since v is the unique p-stationary probability measure. Now we fix
z € (—n,n) and we show that k(z) and r; are real-valued. Taking the conjugate in the
equality P,r; = k(z)rz, we get P;7; = k(2)7z, so that k(z) is an eigenvalue of the oper-
ator P,. By the uniqueness of the dominant eigenvalue of P;, it follows that k (z) = x(z),
showing that «(z) is real-valued for z € (—n, ). We now prove that r, is real-valued.
Write 7, in the form r, = u; + iv,, where u, and v, are real-valued functions on §.
From the normalization condition v(r;) = 1, we get v(u;) = 1 and v(v;) = 0. From the
equation P,r, = k(z)r, and the fact that x (z) is real-valued, we get that P,u, = k(z)u,
and P,v, = k(z)v,. By part (a), the space of eigenvectors corresponding to the eigen-
value «(z) is one-dimensional. Therefore, we have either u, = cv, for some constant
c € R, or v; = 0. However, the equality u, = cv, is impossible because we have seen
that v(u;) = 1 and v(v;) = 0. Hence v, = 0 and r; is real-valued for z € (—n, n). The
positivity of k(z) and r, then follows from x(0) = 1, ro = 1 and the analyticity of the
mappings z + k(z) and z — r,. This ends the proof of part (c), as well as the proof of
Proposition 3.1. ]

3.2. Definition of the change of measure Q}

Proposition 3.1 allows us to perform a change of measure. Note that this change of mea-
sure for positive s has been studied in [10, 11,27]; however, for negative s it is new. For
any s € (—n,n),x € § and g € I}, denote

so(g,x) .
¢ g oy, (3.13)
k™(s)  rs(x)

Then (g;)) satisfies the property: for any n,m > 1 and g1, g2 € T'y,

qn(x.8) =

qn(X. 814 (81X, 82) = ¢4 (X, 8281). (3.14)

Since « (s) and ry are strictly positive, it follows that g; (x, G,) (dg1) - .. u(dgn),n > 1,
is a sequence of probability measures, and forms a projective system on M (d, R)N.
By the Kolmogorov extension theorem, there is a unique probability measure QF on
M(d,R)N" with marginals qn(x,Gp)u(dgy) ... u(dgn). Denote by Eqx the corres-
ponding expectation. For any n € N and any bounded measurable function 4 on (§ x R)”,
it holds that for any s € (—7n,n) and x € §,

R o) xXx 50 (Gp,x) XX XX
TR [rs(X;)e h(XT.0(G1.x),.... X} . 0(Gp. x))]

=Eqg:[h(X{.0(G1.x).....X;.0(Gp.x))]. (3.15)

3.3. Properties of the Markov operator Qg

For any s € (—n, n), define the Markov operator Q; as follows: for any ¢ € B,,

Osp(x) = Ps(prs)(x), x€S.

1
K (s)rs(x)
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Under the changed measure Q7 , the process (X;)nen is a Markov chain with the transi-
tion operator given by QOs.

The next assertion will be useful to prove that the function « is strictly convex (see
Lemma 3.16). Recall that V(I",,) is the support of the measure v (cf. (2.3) and (2.4)).

Lemma 3.3. Assume the conditions of Proposition 3.1. Let s € (—n, 1), where n > 0 is
a small constant. If ¢ < Q¢ for some real-valued function ¢ € €(§), then

@(x) = supp(y)
yes

forany x € V(I'y).
Proof. We use the approach developed in [27]. Set

M = sup p(y)
yes

and
ST ={xe$:pkx)=M).
From the condition ¢ < Q¢ and the fact that

/ qi(x, g)u(dg) =1,

Ty

we getthatif x € ST, theng-x € §* forany g € ', sothat I, 1 < §*. Since V(I',,)
is the unique minimal I';,-invariant set (see [27] and [10]), we obtain V(I';,) C St and
the claim follows. [

We state the spectral gap property of the Markov operator Qg, whose proof is post-
poned to Section 3.5.

Proposition 3.4. Assume the conditions of Proposition 3.1. Then there exists n > 0 such
that for any s € (—n,n) and n > 1, we have

Q;’ = HS + Nsn’
where the mappings s — Ilg, s = Ny € £(B,, By) are analytic on (—n, ) and satisfy

the following properties:
(a) with tg(@) := valors) 1,0 have for any ¢ € 8,,

vs(rs) ’
L§ (prs)(x)
K"(s)  rs(x)

(@) (x) = ms(@)l, N (p)(x) = X €S,

where vy, 15, L are given in Proposition 3.1,

(b) IIgNg = NsIly = 0, and for each k € N, there exist constants Cy, > 0anda € (0, 1)
such that

dk
_Ns”

Ik < Cra". (3.16)

By —>By

sup
s€(—n,n)
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3.4. Quasi-compactness of the operator Q sy,

For any s € (—n,n) and ¢ € R, define the operator Q. as follows: for any ¢ € B,,

Os+irp(x) = Pstir(prs)(x)

1
K(s)rs(x)

1 .
= ME[e(S+’t)G(gl’x)<P(g1 -X)rg(gr-x)], xe€S.
The spectral gap properties of the operator Qs4;, for |f| small enough can be deduced
from Proposition 3.1. However, this approach does not work for large |7|. In order to
investigate the spectral gap properties of the operator Q4;; for 1 € R, we first prove
the Doeblin—Fortet inequality and then we apply the theorem of Ionescu-Tulcea and
Marinescu [35] to establish the quasi-compactness of the operator Q4 ;;. Using this prop-
erty, we shall apply the Non-arithmeticity Condition A5 to prove that the spectral radius
of Qgiy is strictly less than 1 when ¢ is different from O.

The following is the Doeblin—Fortet inequality for the operator Q4 ;;:

Lemma 3.5. Assume that the conditions of Proposition 3.1 hold. Then there exist con-
stants 0 < a < 1, and 1 > 0 small enough, such that for any s € (—n,n), t e R, n > 1
and ¢ € B,, we have

[Q?-Hz@]y < Csrnllolleo + Cs“”[ﬁ"]y- (3.17)

For positive-valued s, analogous results can be found in [27] for invertible matrices
and in [11] for positive matrices. The proofs in [11,27] rely essentially on the Holder
continuity of the mapping x — ¢; (x, g) defined in (3.13). However, this property does
not hold any more in the case when s is negative. Our proof of Lemma 3.5 is carried out
using the Holder inequality and the spectral gap properties of the operator P established
in Proposition 3.1.

Proof of Lemma 3.5. Using the definition of Q4;; and the cocycle property (3.14), we
get that for any n > 1,

O5tirp(x) = [org)(x), xes.

1 pn
Kk (s)rs(x) St
It follows that
|07, ,0(x) — 0%, 00

x,yeS xty a7 (x, y) < Ji(n) + Ja(n), (3.18)
where
Ji(n) = su 1 11 “Pn (0rs)(x)
1 N x,yeSgc;éy av (x, y)(s) | rs(x) rs(y) s+it\PTs s
1
Jo(n) = sup | Pl (or)(x) — Py (ors) ()]

X,yES, XxF#y rs(y)d” (x, y)" (s)
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Note that by Proposition 3.1, for any s € (—n, 1), we have

minrg(x) >0, maxrg(x) <oo, k(s)>0.
x€$8 x€S§

Control of J1(n). Observe that uniformly in x € §,
[Py (0rs) ()| = P (llrs) (x) < @llook™ ()75 lloo < Csll@ oo™ (5).-
Since ry € B,, this implies that for any s € (-1, 1) and t € R,
J1(n) = Csll¢|loo- (3.19)

Control of J,(n). Using the definition of Ps4;, and taking into account that r; is strictly
positive and bounded on §, we have

Jz(l’l) < CS(J21(H) + Jzz(n) + J23(I’l)), (3.20)
where

1 . .
J (I’l) — sup E (e(s+lt)()'(Gn,x)_e(s-‘rlt)(T(Gn,y))(p(XX) ,
)= S T )]

1 .
Jap(n) = sup  ————|E[e¢TINGC (o(X7) — 0(X]))]].
22(n) x,yesgc;éy dy(x,y)/c"(s)‘ [ (P (%) =l n))]

1 .
Jzn) = sup  —————— |E{CT (X)) [ro (X)) — re (X1}

X, yES, x#y d)/(x, y)K”(S)

Control of Jp1(n). Using (3.10) and the inequality logu < u®, u > 1, for ¢ > 0 small
enough, we obtain

|eSHD0Gn) _ (5 HIDIGnN | < 2 (N(Gn))¥I*¥]0(Gp, x) —0(Gu, ). (B21)
From inequality (2.1), by arguing as in the estimate of (3.8), we get
|0(Gn. x) = 0(Gn, y)|” < ClIGA|"L(Gn) 7" (x, ).
Using first (3.21) and then the last bound, we deduce that

Clelloo

) {]E[(N(gl))ls|+€|g1||Vt(gl)’y]}" < Csrnll@lloos (3.22)

Jo1(n) <

where the last inequality holds by Condition Al.
Control of Jp»(n). Since ¢ € By, applying the Holder inequality leads to
Cslely sup E|e’o@n) w

d”(x, y)

K" (S) X, yES, x#y
{]E[eZSO'(Gngy)]}% ]Edzy(th,X}‘)l)) %
Kn(s) dzy(xv J’)

Jaa(n) <

(3.23)

= Cslely  sup
X,YES, xF#y
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Since y > 0 is small enough, by [39, Theorem 1] for invertible matrices and [29, Lem-
ma 3.2] for positive matrices, there exists a constant ¢ € (0, 1) such that for sufficiently
large n > 1,

sup
X,yES, XF#Y
In view of Proposition 3.1, we have

E[e?7(Gn)] = k" (25)(Mas1)(y) + L31(y), y €S.

2y NG
LRACHTR.CON LR (3.24)
& (x,y) | ~7°

Since, by Proposition 3.1(d), || M2s1||s is bounded by some constant Cy, and || L} 1] oo
is bounded by Cs«™(2s) uniformly in n > 1, it follows that
E[e2sa(Gn,y)]

sup sup

— < ;. (3.25)
n>1yes  K"(2s) *

As k is continuous in the neighborhood of 0 and «(0) = 1, one can choose 1 > 0 small
enough and a constant « € (0, %) such that

k2 (25) <o,
KM(s)
uniformly in s € (—n, ). Substituting this inequality together with (3.24) and (3.25) into

(3.23), we obtain that for any s € (—7, ) with > 0 small, there exists 0 < a < 1 such
that uniformly inn > 1,

Iaa(n) < Cya" [l (3.26)

Control of Jo3(n). Using (3.25) and the fact that ry € B,,, and applying similar tech-
niques as in the control of J»5(n), one can verify that there exists a constant 0 < a < 1
such that uniformly inn > 1,

J23(n) = Csa"||@lloolrsly = Csa"|l¢|loo- (3.27)
Inserting (3.22), (3.26) and (3.27) into (3.20), we conclude that

Jo(n) < Cspnll@lloo + Csan[‘P]y'
Combining this with (3.19) and (3.18), we obtain inequality (3.17). ]

From Lemma 3.5 and the fact that | Qs+i:¢|lco < Csll¢|lco for any s € (—n, 1) and
t € R, we can deduce that Qi € £(B,, By). We next prove that the operator Q. ;; is
quasi-compact. Recall that an operator Q € £(B, B) is called quasi-compact if B can be
decomposed into two Q invariant closed subspaces 8 = E @ F such that dim £ < oo,
each eigenvalue of Q|g has modulus o(Q), and o(Q|r) < 0(Q) (see [30] for more
details).

Proposition 3.6. Assume the conditions of Proposition 3.1. Then there exists n > 0 such
that for any s € (—n,n) and t € R, the operator Qs is quasi-compact.

Proof. The proof consists of verifying the conditions of the theorem of Ionescu-Tulcea
and Marinescu [35]. We follow the formulation in [30, Theorem II.5].
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Firstly, by the definition of Q4 ;;, there exists a constant Cy > 0 such that

1Qs+it@lloo = Csll@lloo

forany s € (—7,n),t e Rand ¢ € B,.

Secondly, by Lemma 3.5, the Doeblin—Fortet inequality (3.17) holds for the opera-
tor Qs+is-

Thirdly, denoting K = {Qs+:¢ : |l¢|l, < 1}, we claim that for any s € (—n, ) and
t € R, the set K is conditionally compact in (B, || - ||oo)- Since || Qs+i1¢@loo < Csll@lloo
for any ¢ € 8,, we conclude that K is uniformly bounded in (8,, || - ||oc). Moreover, by
taking n = 1 in (3.17), we get that uniformly in ¢ € 8, with ||¢|, <1,

[Qs+it9(X) — Qs+irp(¥)| < CS’,dy(x,y).

This shows that K is equicontinuous in (By, || - ||0). Therefore, we obtain the claim by
the Arzela—Ascoli theorem.

The assertion of the proposition now follows from the theorem of Ionescu-Tulcea and
Marinescu. ]

The proposition below shows that the spectral radius of the operator Qg is strictly
less than 1 when ¢ is different from 0. The proof which relies on the non-arithmeticity
Condition AS, follows the standard pattern in [11,27]; it is included for the commodity of
the reader.

Proposition 3.7. Assume either Conditions Al and A2 for invertible matrices, or Con-
ditions A1, A3 and AS for positive matrices. Then there exists n > 0 such that for any
s € (—n,n)andt € R\ {0}, we have 0(Qs+ir) < 1.

Proof. By the definition of Q;4;;, we have

0(Qs+it) < 0(Qs) = 1.

Suppose that o(Q;+i¢) = 1 for some ¢ # 0. Then, applying Proposition 3.6, there exist

¢ € B, and B € R such that ]

Os+irp = ¢ Q.
From this equation, we deduce that |¢| < Qs|¢|. Using Lemma 3.3, this implies that
lp(x)| = sup,es |@(y)| forany x € V(I'y), so that p(x) = ce’?™) where ¢ # 0is acon-
stant and ¢ is a real-valued continuous function on §. Substituting this into the equation
Qs1it@ = ePy gives that for any x € V().

Eqy exp[ito(gr,x) —if +id(g1-x) —id(x)] = 1.
Since ¢ is real-valued, this implies
explito(g,x) —if+id(g-x)—id(x)] =1

for any x € V(I',) and p-a.e. g € I'y,, which contradicts to Condition AS. Therefore,
0(Qs+ir) < 1foranyt # 0.Recalling that Condition A2 implies Condition A5 for invert-
ible matrices, the proof of Proposition 3.7 is complete. ]
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3.5. Spectral gap properties of the perturbed operator Rj ;

For any s € (—n,n) and z € C such that s + Nz € (—ng, no), define the perturbed oper-
ator Rj ; as follows: for any ¢ € B,,

Rsz0(x) = Eqy[e?C@10)=MDp(xM)] xes5. (3.28)
With some calculations using (3.14), it follows that for any n > 1,
R!g(x) = Eqy[e7@ @M Ogxx)] xes. (3.29)

The following formula relates the operator RY , to the operator P", , and is of independent
interest: forany ¢ € 8,,n > 1,5 € (—n,1) and z € B;(0),

R! (p) = "N O Liralors)
’ K ($)7s
The identity in (3.30) is obtained by the definitions of Ry, and P, using the change of

measure (3.15).

There are two ways to establish spectral gap properties of the operator R ;: one is
to use the perturbation theory of operators [30, Theorem III.8], another is based on the
Ionescu-Tulcea and Marinescu theorem [35] about the quasi-compactness of operators.
The representation (3.30) allows us to deduce the spectral gap properties of Rj , directly
from the properties of the operator P,. This has some advantages: it ensures the unifor-
mity in s € (—n, 1), allows to deal with negative-valued s and provides an explicit formula
for the projection operator I1;,; and the remainder operator Ny', defined below.

Recall that A = log k', where « is defined in (2.6).

(3.30)

Proposition 3.8. Assume the conditions of Proposition 3.1. Then there exist n > 0 and
8 € (0, n) such that for any s € (—n,n) and z € Bs(0),

RY, =AYy, T + Ny, n>1, (3.31)
As,z = eA(s+z)—A(s)—A’(s)z 3.32)

and for ¢ € B,

Vs+z(@0Fs) Fstz

Vstz(Fs4z) Fs

s,z (p) = , (3.33)

’ Ln r
NI, () = e "A@+A )] —”Zr (v S), (3.34)
S

where 15, v, and L, are given in Proposition 3.1. In addition, we have:
(a) for fixed s, the mappings
z =I5 ; 1 Bs(0) > £(8B, B),
z+> N5z : Bs(0) > £(8, B),
z+> Agz  Bs(0) > C
are analytic,

(b) for fixed s and z, Il ; is a rank-one projection with Il o(¢)(x) = ms(@) for any
@ € Byandx €S, and Is; Ny ; = N, Il =0,
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(c) foranyk € N, there exist constants Cy, > 0 and 0 < a < 1 such that

dk
sup sup —kHS,Z < Cy, (3.35)
se(-n.m zeBs(0) |l 42 8,8,

dk
sup  sup —kNS'fZ < Cra”. (3.36)
se(-n.m zeBs(0) |l 42 8,8,

Note that, for s > 0, similar results have been obtained in [11]. The novelty here is
that s can account for negative values s € (—n, 0] and that the bounds (3.35) and (3.36)
hold uniformly in s € (—n, n). This plays a crucial role in establishing Theorem 2.3.

Proof of Proposition 3.8. The proof is divided into three steps.
Step 1. By Proposition 3.1, we have

Vs+z(@7s)
Vst z(Fsyz)
Substituting this into (3.30) shows (3.31), (3.32), (3.33) and (3.34).

Psn+z(‘/’rs) =«k"(s + 2) Ts4z + L?+z((ﬂrs)~

Step 2. We prove parts (a) and (b). The assertion in part (a) follows from the expressions
(3.32), (3.33) and (3.34), and the analyticity of the mappings z — k(2), z > r;, Z > v,
and z — L defined in Proposition 3.1. To show part (b), by (3.33), we have that II; , is

arank-one projection on the subspace {w % :w € C}. The identity I o(¢)(x) = 5(@)
follows from (3.33) and the fact that ‘
vs(@rs)
7s(p) = ) >
Vs (rs)

Using Proposition 3.1, we get that L,r; = 0 and v;(L,¢) = 0 for any ¢ € B,. This,
together with (3.33) and (3.34), shows that I1; ; Ny, = N, Il = 0.

Step 3. We prove part (c). By Proposition 3.1, there exists a constant > 0 such that
the mappings z +— k(z), z = 1z, z = V; are analytic and uniformly bounded on B, (0).
Combining this with (3.33), we obtain (3.35). We now prove (3.36). Since the function r;
is strictly positive on the compact set §, by Proposition 3.1(d), we deduce that there exists
a constant 0 < ag < 1 such that uniformly in ¢ € 8B,,

L?—{—z ((prs)

s

sup sup
s€(—n,n) z€By(0)

< Cllplyap. (3.37)
Y

Using the fact that the function A is continuous and A (0) = 0, there exist a small > 0,
8 € (0,n) and a constant a1 < % such that

sup sup |e—n[A(s)+A/(s)Z]| < Carll
s€(—n,n) zeBs(0)

Combining this with (3.37) proves (3.36) with k = 0. The proof of (3.36) when k > 1
can be carried out in the same way as in the case of k = 0. ]

Proof of Proposition 3.4. The assertion is obtained from Proposition 3.8 takingz = 0. m
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In order to establish the non-arithmeticity of the perturbed operator Ry ;;, we shall
need the following lemma from [30, Lemma II1.9]:

Lemma3.9. Lets € R, § > 0and I; 5 = (s — 8,5 + 8). Assume that the mapping
telgs— Pt) e £(B,B)

is continuous. Let r > o(P(s)). Then there exist constants ¢ = &(s) and ¢ = c(s) >0
such that
sip [P (0)ll 3,8, <cr".
te(s—e,s+¢)
Moreover, it holds that
1iftn_§;1P o(P (1)) = o(P(s)).

Proposition 3.10. Assume that the conditions of Proposition 3.7 hold. For any compact
set K € R\ {0}, there exist constants Cx > 0 and n > 0 such that for any n > 1 and
¢ € By,
sup sup sup |Rg;,0(x)| < e "CK lelly.
s€(—n,n) teK xe8

Proof. By Proposition 3.7, for any fixed s € (—n,n) and ¢ € R \ {0}, we have
y Frop y n.n

0(Rs+it) = 0(Qs+ir) < 1.

It follows that for any s € (—n,7n) and ¢ € R \ {0}, there exists a constant C(s,¢) > 0
such that, forany n > 1 and ¢ € 8B,,

sup R} ;,0(x)| < 6D o],
xes

From (3.30), we see that the operator Ry ;; is continuous in s and ¢. By Lemma 3.9, there
exist constants &(s) > 0 and §(¢) > 0 such that

sup sup sup |RY ;, ¢(x)] < e7"CED gl
s'e(s—e(s),s+e(s)) t/€(t—8(t),t+8(¢)) xS

Let I C (—n,n) and K € R\ {0} be any compact sets. Since

I {G—e().s+e(s) x (1 =8(1). 1 + 8(1)} DI x K,

(s,)elI xK

by Heine—Borel’s theorem, there exist an integer m¢ > 1 and a sequence {s,,, tm } 1 <m<m
such that

mo

U {(Sm —&msSm + €m) X (tm — S, tm + (Sm)} DI xK,

m=1
where ¢, = ¢(s;;) and 8, = §(s;). This concludes the proof of Proposition 3.10 by
taking

Cx = min C(sy,tn). ]
1<m<mg
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We will now give some properties of the function by, defined as follows: for any
s €(=n,n)and ¢ € By,

by p(x) 1= nli)n;o]E@? [(0(Gn.x) —nA'(s)p(X;)]. x€S8.

In particular, with s = 0, we have bg , = by, which is defined in (2.7).

Lemma 3.11. Assume the conditions of Proposition 3.1. Then the function by, is well-
defined, by, € B, and

dIl; ;
bs,p(x) = dz
Proof. In view of Proposition 3.8, we have that for any ¢ € B,,
]EQjF [ez(U(Gn,x)—nA (S))(p(X:l‘)] = Agjznsaz(p(x) + Nsn’zgp(x), x€S.

From (3.32), we have 5,0 = 1 and di”z |z=0 = 0. Differentiating both sides of the above

V4
equation with respect to z at the point 0 gives that for any x € §,

dnsz dN
Eq; [(0(Gn. x) —nA (5)e(X;)] = —=

o(x), xe€Ss. (3.38)

z=0

n
$,Z
e e Z=0<p(x). (3.39)

Using the bounds (3.35) and (3.36), we find that the first term on the right-hand side of
(3.39) belongs to B,, and the second term converges to 0 exponentially fast as n — oo.
Hence, letting n — oo in (3.39), we obtain (3.38). This shows that the function by, is
well-defined and b5, € B, . m

L Ow(x) +

For any s € (—n,n) with n > 0 small, define Q; = fs Q7F ms(dx). The following
result will be used to prove the strong law of large numbers for o(G,, x) under the
changed measure Q;:

Lemma 3.12. Assume the conditions of Proposition 3.1. There existn > 0 and c,C > 0
such that uniformly ins € (—n,n), ¢ € B, andn > 1,

|Eq,[(0(Gn.x) —nA (s)p(X;)]] < Cllgllye™". (3.40)

Proof. We follow the proof of the previous lemma. Integrating both sides of the identity
in (3.39) with respect to 7y, we get, for any ¢ € B,,

dns,z st’fz 341
z=0(p)+ﬂs( dz z=0(p)' (341)

dz
_ dns,z
z=0(p - dz

Integrating both sides of this equation with respect to g and using the fact that I, o = my,

we find that
dlls ;
T
\ dz

Eo,[(6(Gn.x) — nA'(s))p(X2)] = ns(

Since 113 ,¢ = Il ., we have

z=0(p.

Z=0(p) = 0. (3.42)
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It follows from (3.36) that uniformly in ¢ € 8, and s € (—n, n), the second term on the
right-hand side of (3.41) is bounded by C|/¢|,e~“". Therefore, from (3.41) and (3.42)
we obtain (3.40). [ ]

We now establish the strong laws of large numbers for o (G, x) under the measures
Q7 and Qg, which are of independent interest.

Proposition 3.13. Assume the conditions of Proposition 3.1. Then there exists n > 0 such
that for any s € (—n,n) and x € §,
. 0(Gp,x)
lim ———
n—o00 n

=A(s) QF-as.
Proof. By the Borel-Cantelli lemma, it suffices to show that for any ¢ > 0, s € (—n, )
and x € §, we have

> Qi (10(Gn.x) —nA'(s)] = ne) < oco. (3.43)
n=1

Now let us prove (3.43). By Markov’s inequality, we have for small § > 0,

Q3 (|o(Gp.x) —nN'(s)| = ne)
< e_nSEIEQ{c (eS(U(Gn,x)—nA’(s))) + e—n&s]EQx (e—S(U(Gn,x)—nA’(s))).

From (3.29) and Proposition 3.8, we deduce that there exist positive constants ¢, C inde-
pendent of s, x, § such that

Egx (68(0(6” ,x)—nA/(S))) + Eqx (8—5(0(Gn ,x)—nA/(S)))

< CMAGHD=AG—N 8] 4 0 pnAG—)-AG+A )] | cpmen
Using Taylor’s formula and taking § > 0 small enough, we conclude that
Q} (10(Gn, x) = 1A (5)] = ne) = Ce2%,
which implies the desired assertion (3.43). ]

Proposition 3.14. Assume the conditions of Proposition 3.1. Then there exists n > 0 such
that for any s € (—n,n) and x € S,

G 3
lig @G Y) A(s) Qy-as.
n—o0 n
Proof. Taking ¢ = 1in (3.40) leads to
1
lim —Eq, (0(Gn,x)) = A'(s). (3.44)
n—oon

LetQ =M (d/,\]R)N: and Q = § x Q. Following [27, Theorem 3.10], we define the shift
operator 8 on Q2 by 0(x,w) = (g1 - x, Qw), where w € Q2 and 0 is the shift operator on 2.
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Forany x € § and w € 2, set h(x,w) = 0(g1(w), x). Then & is Q,-integrable. Since

n—1
0(Gu.x) = Y (ho65)(x.0)
k=0

and Qy is g-ergodic, it follows from Birkhoft’s ergodic theorem that @ converges

Qs-a.s. to some constant ¢g as n — oo. If we suppose that ¢ is different from A’(s), then
this contradicts to (3.44). Thus ¢y = A’(s) and the assertion of the lemma follows. ]

Now we give the third-order Taylor expansion of A, , defined by (3.32), with respect
to z at the origin in the complex plane C.

Proposition 3.15. Assume the conditions of Proposition 3.1. Then there exist n > 0 and
8 > 0 such that for any s € (—17, n) and z € Bs(0),

///
Asz—1+ 24— ()3

2 +o(z?) as|z| =0, (3.45)

where
(@) 62 = A"(s) > 0and A" (s) € R;

(b) for invertible matrices, o5 > 0 under the stated conditions; for positive matrices,
os > 0 if additionally 0 = 0 > 0 or if the measure [ is non-arithmetic;

(¢) uniformlyins € (—n,n)and x € §,
1 2 .1 2
of = lim —Eoi[0(Gn.x) —nA'$)]" = lim ~Eq,[0(Gn.x) —nA' ()]

(d) uniformly ins € (—n,n),
" : 1 / 3
A"(s) = lim —Eq,[0(Gn.x) —nA'(s)] .
n—-oon

The proof of Proposition 3.15 is based on the following lemma:

Lemma 3.16. Assume the conditions of Proposition 3.1. Then the functions A and «
are convex on (—n,n) for n > 0 small enough. Moreover, A and k are strictly convex
for invertible matrices under the given conditions, and for positive matrices under the
additional Condition AS.

Proof. The proof follows [27]. Since A = logk, it suffices to prove Lemma 3.16 for the
function A. For any z € (0, 1), 51,52 € (=7, 1), set s’ = ts1 + (1 — t)s,. Using Holder’s
inequality and the fact that Psrg = k(s)ryg,

Py (ry rgy ") < (s T (s2)rg rgy " (3.46)
Since « (s”) is the dominant eigenvalue of the operator Py, we obtain

k(s < k" (s1)c T (s2)

and thus the function A is convex.
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To show that the function A is strictly convex, we suppose, by absurd, that there exist
s1 # s, and some ¢ € (0, 1) such that k(s") = «’(s1)k'7*(s2). Using this equality, the
definition of the Markov operator Q; and (3.46), we get

t .1—t t .1—t
re.r rer
Qs’( 5182 ) < S1_82 .

Vg’ rg/
Applying Lemma 3.3 with ¢ = _ﬁ”sl ri= S s !, this implies that
re el =crg on V()

for some constant ¢ > 0. Substituting this equality and the identity « (s") = k?(s1)k '™ (s2)
into (3.46), we see that the Holder inequality in (3.46) is actually an equality. This yields
that there exists a function c¢(x) > 0 such that for any g € I';, and x € V(I'y,),

esla(g”‘)rs1 (g-x)= c()c)eszc’(“)”x)rs2 (g - x). (3.47)
Integrating both sides of equation (3.47) with respect to p gives
K(s1)rs; (x)
K (52)7s, (x)
Substituting this into (3.47) and noting that 57 # 55, we find that there exist a constant
¢1 > 0 and a real-valued function ¢ on § such that
eo’(g,x) ) gD(g 'x)
¢ (x)
for any g € I', and x € V(I'y). This contradicts to the non-arithmetic Condition AS.

Recall that Condition A2 implies Condition AS for invertible matrices. Hence A is strictly
convex for invertible matrices under stated conditions. [

c(x) =

Proof of Proposition 3.15. Expansion (3.45) follows from (3.32) and Taylor’s formula.

For part (a), by Lemma 3.16, we have A”(s) > 0 forany s € (—n, ). Since A = logx
and it is shown in Proposition 3.1 that the function « is real-valued and strictly positive
on (—n,1n), we get A’ (s) € R.

For part (b), recall that it was shown in [11] that o9 > 0 for invertible matrices under
the stated conditions, and for positive matrices under the additional condition of non-
arithmeticity. Hence, using the continuity of the function A”, we obtain that o5 > 0.

For part (c), by Proposition 3.8, we get that for |z| small,

Egy[e? @m0 N O] = 41 (T, 1)(x) + (V] 1)(x). (3.48)
It follows from (3.45) that for |z| = o(n~1/3),
2
As, =1+ no? 7 + nA”’(s) + o(n|z)?). (3.49)

Using Taylor’s formula, the bound (3.35) and the fact I1;,01 = 1, we obtain
(Hs,zl)(x) =1+ Cs,x,1Z + Cs,x,222 + Cs,x,3Z3 + 0(|Z|3), (3.50)
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where the constants c¢; x,1, Cs,x,2, Cs,x,3 € C are bounded as functions of s and x. Simi-
larly, using the fact Ny o1 = 0 and the bound (3.36), there exist constants Cs x 5,1, Cs,x,n,25
Cs,x,n,3 € C which are bounded as functions of s, x and n such that

(Nsrle)(x) = Csxn1Z + Cs,x,n,ZZ2 + Cs,x,n,3Z3 + 0(|Z|3)~ (3.51)

Taking the second derivative on both sides of equation (3.48) with respect to z at 0, and
using the expansions (3.49)—(3.51), we deduce that

Eq;[0(Gp.x) — nA/(s)]2 =no2 +2¢sx2 + 2Cs xma- (3.52)

This, together with the definition of Q and the fact that the constants ¢y x 2, Cs x,n,2 are
bounded as functions of s, x, n, concludes the proof of part (c).

For part (d), integrating both sides of the equations (3.48), (3.50) and (3.51) with
respect to g, and using property (3.42) with ¢ = 1 (thus the second term on the right-
hand side of (3.50) vanishes), in the same way as in the proof of (3.52), we get

Eq, [0(Gn,x) —nA'(5)]> = nA"(s) + 6¢53 + 6Cs ..
This implies the desired assertion in part (d). ]

Remark 3.17. Inspecting the proof of Proposition 3.15, it is easy to see that the results
in parts (c) and (d) can be reinforced to the following bounds:

1 C

sup  sup —EQig[U(Gn,x)—nA’(s)]z— 2l < —,
se(=n.n) xe$ |1

1 ’ 3 " C

sup  |[—Eq,[0(Gn,x) —nA'(s)]" = A" (s)| < —.

se(=n,n) |1 n

The first bound above also holds with the measure Q7 replaced by Q.

4. Smoothing inequality on the complex plane

In this section we aim to establish a new smoothing inequality, which plays a crucial role
in proving the Berry—Esseen bound and Edgeworth expansion with a target function ¢
on X;7; see Theorems 2.1, 2.2, 5.1 and 5.3.

From now on, for any integrable function 22 : R — C, denote its Fourier transform by

h(t) = / e h(y)dy, teR.
R
If 71 is integrable on R, then using the inverse Fourier transform gives
1 PN
h(y) = —/ 'V h(t)dt
2 R

for almost all y € R with respect to the Lebesgue measure on R. Denote by /; * h, the
convolution of the functions /1, i, on the real line.
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For any r > 0, denote
D, ={zeC:|z| <r},
Df={zeC:|z| <r,3z >0},
D ={zeC:|z| <r,Jz <0}
We construct a density function pr which plays an important role in establishing a new

smoothing inequality. As in [42], we define the density function p on the real line R by
setting p(0) = % and

1 (sin%)?
p(y)=§( ) y € R\ {0}.

P
2
Then p is a non-negative function bounded by % and f]R p(y)dy = 1. Its Fourier trans-
form P is given by
. 1—Jt], tel[-1,1],
p(t) = :
0 otherwise.

For any T > 0 and the fixed constant b > 0 satisfying

b 3
/bp(y)dy =7

define the density function

pr(y) =Tp(Ty —b), yeR,

whose Fourier transform pr is given by

. t
eTibT (1 - U), te[-T, Tl
T

0 otherwise.

pr() = 4.1)

Note that the function p7 is not smooth at the point 0, so that it can not have an analytic
extension in a small neighborhood of 0 in the complex plane C.

Now we are ready to establish our new smoothing inequality. Its proof is based on
the properties of the density function pr, Cauchy’s integral theorem and some techniques
from [17,42].

Proposition 4.1. Assume that F is non-decreasing on R, and that H is differentiable of
bounded variation on R such that

sup |H'(y)| < oo.
yeR
Suppose that F(—o0) = H(—00) and F(o0) = H(00). Let

f(t):/Re_”de(y) and h(t):Ae_itde(y), t e R.
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Suppose that r > 0 and that f and h have analytic extensions on D,. Then, forany T > r,

f(2) _h(z)eizye—ib% dz
€ z

1
sup |[F(y) — H(y)| < — sup
yeR T y<0

+ ! sup J@ k@ e'#e T 4z
T yso|Jet z
1 h bz

+ —sup J@ —kE) s
T y<o|Jer z

+ ! sup f&) ~ ki) el
T y>0 ‘gr z

1 S @) —h()
— ——-\d
- 0 [sltlsT

t
2 (T 3b ,
+—[ (@) — h@)]dt + 22 sup [H'(y)].
aT -T Tye]R

where b > 0 is a fixed constant satisfying ffb p(y)dy = %, and €, and € are semi-
circles given by
={zeC:|z]=r,32<0}, €' ={zeC:|z|=r 3z >0} (4.2)

Proof. Let T > r. From the definition of p7 and the choice of the constant b, we have
2b

T 3
/ pr(y)dy = T
0

Since p < 5-, the function pr is bounded by T'/2m. The proof of Proposition 4.1 consists
in estabhshmg first an upper bound and then a lower bound.

Upper bound. Since the function F is non-decreasing on R and pr is a density function
on R, we find that for any y € R,

4 y+32
Fo =3[ Fwpra—ydu
y
4 y+%
= HO)+ 5 / [(FGu)— H@)pr i — y) + (H@) — HO)pr (i —y)] du
y
y+% b
<HG) + 2 / (Fu) — HO)or(u — v du + 2 sup |H'(). (43)
3 v T yeR
Let

Fi(y) = [R F)pru—y)du, Hy(y) = fR Hpr(u—y)du. y R,

Elementary calculations lead to

f e anm = q0prea. [ e ame = nopreo. <k
R R



H. Xiao, I. Grama, Q. Liu 2724

Restricted on the real line, the function p7 is supported on [—T, T]. By the Fourier
inversion formula we get

1 T ezty Py itv

Fi(y)— Fi(v) = T

1 T eity_etv
Hi(y)— Hi(v) = —
2

By the definition of pr (cf. (4.1)), we get
Fi(y) — Hi(y) — (F1(v) — H1(v))
/ f(t) h(t) oty sz dr — / f(t)_h(t) eltv lbt T dt
27r it 2

L [T 0K g L / SO0 oo W
t T 2 -T T

fOpr(—t)dt, y,veR,

h()pr(—t)dt, y,veR.

It follows that for any y, v € R,

|F1(y)—H1(Y)—(Fl(v)—Hl(U))|
f(t)—]’l(f) oty ledl / f(t) h(t) eitv lb} dt

<

2]1 it

1 T
+ﬁ/_T|f(l)—h(t)|dt. 4.4)

We shall use Cauchy’s integral theorem to change the integration path [T, T'] to a contour
in the complex plane. In order to estimate the difference | F;(y) — Hy(y)|, we are led to
consider two cases: y <0and y > 0.

Control of | F1(y) — H1(y)| when y < 0. Let
C_ =€ rue.,

where €, 7 = [-T,—r] U [r,T] and €, is the lower semicircle given in equation (4.2).
Since F(—o0) = H(—00) and F(0c0) = H(00), by the definition of f and %, we see that
f(0) = h(0). This, together with the condition that f and /& have analytic extensions
on D,, implies that z = 0 is a removable singular point of the function
L @) —h@) ) h(@)
zeD

Hence, using the fact that the function z — ei?Velb T g analytic on the domain D,,
applying Cauchy’s integral theorem, we obtain that for any y, v € R,

T
f(t)fh(t)eityeib% dr — / f(t)—h(t) it ib g
-T it

@ =0 oy ivi g, f(z) h(@) izv ivs

- dz, 4.5)
€_ iz €_ 1z
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where the integration is over the complex curve €_ oriented from —7 to 7. The second
integral in (4.5) converges to 0 as v — —oo, by using the Riemann-Lebesgue lemma
on the real segment €, 7 and by applying the Lebesgue convergence theorem on the
semicircle €. Note that F; (—o0) = H;(—00) since F(—oo) = H(—o0). Consequently,
letting v — —oo in (4.5) and substituting it into (4.4), we get

()~ Hi ()] < %‘/ﬁ LOHE) ey 7 g

1 T
+ — / | f(¢t) —h(t)| dt.
xT -T
Therefore, recalling that €_ = €, 7 U €., it follows that

f0=ho]

t

sup [F1 () — Hi ()] = ;/

y<0
+ — sup / - h(Z_) ¢! ?VeltT dz
27[ y=<0
+ —[ | f(t) —h(t)|dt. (4.6)
xT -T

Control of | F1(y) — H1(y)| when y > 0. Let
€y =6 ruer

where €, 7 = [-T,—r] U [r,T] and €, is the upper semicircle given in (4.2). In an
analogous way as in (4.5), applying Cauchy’s integral theorem we have

f(l)—/’l(f) o ib4 Fdr — / f(t) h(t) pitv lb7l—~ dt
-T it
f(Z) h(z) zzyeibT dz — f(Z) h(Z_) eizveib% dz,

4.7
e, iz e, iz @7

where the integration is over the complex curve € also oriented from —7 to 7. The sec-
ond integral in (4.7) converges to 0 as v — 400, by using again the Riemann-Lebesgue
lemma on the real segment €, 7 and by applying the Lebesgue convergence theorem
on the upper semicircle €;*. Note that F;(0o) = H;(00) since F(oco) = H(oco). Hence,
letting v — +o00 in (4.7), similarly to (4.6), we obtain

wplFi) — ol = 5 [ RO

y>0

1
+ —su
2w y>I())

SO =hG) iay ivi .

et z

+n—T/;T|f(t)—h(t)|dt. (4.8)
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Putting together (4.6) and (4.8) leads to
t)—h(t
SO =h@) dt

t

/ SO HE oy i g

) f(z) h@) ey iv7
©; z

1
sup |F1(y) — Hi(y)| < 7 /

+ s /_T | f(t) —h()|dt. 4.9)

Denote A = sup,cg |F(y) — H(y)|. Then, taking into account that pr is a density func-
tion on R, using (4.9) and the fact that

2b

T 3
/ pr(y)dy = T
0

we get that for any y € R,

y+ 2b
/ (F(u) — Ha)pr (u — y) du
y

IA

y+32
F(0) = Hi ()] + A(l —/ pr(u —y)du)
y

L 0 gy Lo [ SO g
27T fr,T t 27'[ y<0
1 Ch(z) s
+ Sup Melz-yele dZ
21 yso | Jet z

A
+ﬁ[T|f(t)—h(t)|dt+Z.

Substituting this inequality into (4.3), we obtain the following desired upper bound: for
any y € R,

R M

[IEGECEENEY
€,

z

. f(Z) h(z) lzy le dZ
€ z

4 T A 2b
— 1) —h(t)|d - H’ 4.10
t7 If() Oldt + — 3T T yszﬂgl . (4.10)
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Lower bound. Similarly to the upper bound (4.3), using the fact that F is non-decreasing
and pr is a density function on R, we have for any y € R,

4 [
FO) 2 5 [y F)pr(y —u) du

2b
T

Y b
= 1)+ 5 [ (PO = Huor(y =) du =2 sup ()],
-2 ye

Let F>(y) = (F * pr)(y) and H>(y) = (H * pr)(y), y € R. Then
/ I ARy (y) = f(OPr (). / ¢ dHy(y) = h(pr(D). 1 € R,
R R

Proceeding in the same way as in the proof of (4.9), one has

sup | F2(y) — Ha ()|

ye
<L / SOk 4 Loy / —f(Z) ME) gizy v g
2 Je, , t 27 y<o
1 —h(@) iy _ipz !
LI @ —h@) izy -ivs 4, +_/ | f(t) — h(1)| dt.
21 y>0 €r+ z nT -T

Following the proof of (4.10), we obtain the lower bound: for any y € R,

2 £(0) — h(t)
F(y)—H(y)z—Q/m SO0,

/ SO M) oy v g

su
37T y<p0
- isllp —f(Z) hE) izy e T 4z
37 y>0 ’6+ z
4 T A 2b
- ty—h(@)|dt — — — — H' . 4.11
T _Tlf() ] 3 Tyszﬂgl Ml @11
Combining (4.10) and (4.11), we conclude the proof of Proposition 4.1. [

5. Proofs of Berry—Esseen bound and Edgeworth expansion

5.1. Berry—Esseen bound and Edgeworth expansion under the changed measure
We first present a Berry—Esseen bound under the changed measure Q7.

Theorem 5.1. Assume either Conditions Al and A2 for invertible matrices, or Condi-
tions A1, A3 and A4 for positive matrices. Then there exist constants n > 0 and C > 0
such that foralln > 1,s € (—n,n),x €S,y e Rand ¢ € By,

C
Ear [0 piannavin | = w0120 = ol
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The next result gives an Edgeworth expansion for (X;, 0 (G, x)) with a target func-
tion ¢ on X, under Q. The function by 4 (x), x € §, which will be used in the formu-
lation of this result, is defined in Lemma 3.11 and has an equivalent expression (3.38) in
terms of derivative of the projection operator Il -, see Proposition 3.8.

Theorem 5.2. Assume either Conditions A1 and A2 for invertible matrices, or Condi-
tions A1, A3 and AS for positive matrices. Then there exists 1 > 0 such that as n — 00,
uniformly ins € (—n,n), x €S,y € Rand ¢ € 8,

I//( )
f

‘]E@:§ [‘P(X;f)ﬂ wq}] —Eqz [<P(X,f)][<1>(y) -
as/n
sw( x)

(1- 2)¢<y>}

¢<y>‘ = llgllyo (})

The followmg asymptotic expansion is slightly different from that in Theorem 5.2,
with the term Eqx [¢(X;;)] replaced by 75(¢):

Theorem 5.3. Under the conditions of Theorem 5.2, there exists n > 0 such that, as
n — oo, uniformlyins € (=n,n), x €S,y € Rand ¢ € B,

‘ D o anre }]—ns(w)[d>(y>+6 y(l— 2)¢(y)]
bs 1
#2250 = lolho( 7 ) 6.0

With fixed s > 0 and ¢ = 1, expansion (5.1) has been established earlier in [11].
The assertion of Theorem 5.3 follows from Theorem 5.2, since the bound (3.16)
implies that there exist constants ¢, C > 0 such that uniformly in ¢ € B,,,

sup sup [Eqx[p(X;)] — 7s(9)| < Ce™" ]y . (5.2)
se(—n,n) xes

Theorems 2.1 and 2.2 follow from the above theorems taking s = 0 and recalling the
fact that A’(0) = A, 09 = 0 and by, = by.

5.2. Proof of Theorem 5.2

Without loss of generality, we assume that the target function ¢ is non-negative on §. For
any x € §, denote

F(y) = EQf{ [‘P(er)ﬂ{o(ang)ﬁ/vm 5y}]7 y €R,
A/// s
HO) = s oD 00) + 45 (1 =300 | - 22260), € R,

Define

f(z):Ae—ideF(y), h(t):/Re_”de(y), t eR.
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By straightforward calculations we have that for any x € §,

_ . 0(Gp.x)—nA(s)
S0 =Eqpoxn)e™ IRETT = R g0, 1R, ()
e[ A T by ()
h(t)=e" 2 {[1—(11) 607 it RS op(x) — it o |’ t eR. (5.4)

It is clear that F(—o0) = H(—o00) = 0 and F(co) = H(0c0). Moreover, one can verify
that the functions F, H and their corresponding Fourier—Stieltjes transforms f, & satisfy
the conditions of Proposition 4.1 for r = §;+/n, with some §; > 0 sufficiently small.
Hence, by Proposition 4.1 we get that for any real T > r,

1
sup |[F(y) —H(Y)| = —(Ii + I + I3 + 14), (5.5)
yeR Y
where
3nb
Iy = ——sup [H'(y)],
yeR
t)—h
5 =/ fO-ho)]
r<|t|<T t
—h . oz —h ) .
I3 = sup / f@) = k) (Z)elzye_’bT dz| + sup / S —hG) (Z)elZye—le dz
y=<01[J%E z y>o|Jet z
tsup| [ LB iy ivg g,
y=<o0|Je- z
+ sup / Meiweib% dz
y>o0 | Jet z

=: 131 + I3p + I33 + I34,

2 T
Iy == —h()|dt, 5.6
=7 [ 1o -nola 5.6

with the constant b > 0 and the complex contours €;, €," defined in (4.2).
By virtue of (5.5), in order to establish Theorem 5.2 it suffices to prove that, as
n — oo, uniformly ins € (=1, 1), x € S and ¢ € By,

1
L+ L+ I+ 1 = gllyo(—=)- 5.7
1+ L+ I3+ 1= ey NG (5.7
Control of I;. From (5.2) we deduce that uniformly in ¢ € B,,
sup sup [Eqy[p(X;)]] < Cliglly. (5.8)
s€(—n,n) x€$

By formula (3.38) and the bound (3.35), we get that uniformly in ¢ € B,,

sup sup |bs(x)] = Clelly. (5.9)
s€(—n,n) xe€8



H. Xiao, I. Grama, Q. Liu 2730

Using the bounds (5.8) and (5.9), and taking into account that 62 > 0 and A”’(s) € R are
bounded by a constant independent of s € (—7, 17), we obtain that | H'(y)| is bounded by
cill¢lly, uniformly in s € (—n,7), x € §, y € R and ¢ € B,,. Hence, for any ¢ > 0, we
can choose a > 0 large enough such that for 7 = a+/n, uniformly in ¢ € 8B,,

nbcl

sup sup/; <
s€(—n,n) x€$

£
||§0||y ﬁ||¢||y (5.10)

Control of I,. Since 0y, := infse(—p,y) 05 > 0, we can pick §; small enough such that
0 < 61 < min{a, 80,,/2}, where § > 0 is the constant given in Proposition 3.8. Then,
with r = §;4/n we bound I, as follows:

J@)

t

@d[

; (.11

e
S1/n<lt|zayn

Let oy = SUPge(—n,y) Os- It holds that 0 < ops < 0o. On the right-hand side of (5.11),
using Proposition 3.10 with

I < /
S1/n<ltl<a/n

81 a
K = {teR —<|t|<—},

oM Om
the first integral is bounded by Ce™“"||¢||,,, uniformly ins € (—7n,7n),x € S and ¢ € B,;
the second integral, by the bounds (5.8) and (5.9) and direct calculations, is bounded
by Ce “"||¢||y, also uniformly in s € (—n,7), x € § and ¢ € B,. Consequently, we
conclude that uniformly in ¢ € B,,

sup sup I» < Ce " |¢lly. (5.12)
s€(—=n,n) xe$

Control of I5. Recall that the term I3 is decomposed into four terms in (5.6). We will
only deal with /31, since I3, 133, I34 can be treated in a similar way. In view of (5.3) and
(5.4), by the spectral gap decomposition (3.31), we get

(@)= h(z) = J1(2) + J2(2) + J3(2) + Ja(2), (5.13)
where
Ji(z) = ns(go){k" T e~z [1 —( )36[;/;5)_}}, (5.14)
2@ =X iz [n =tz 9 (X) = Ts(9) + iz “i_)} (5.15)
J3(2) = ;:)59< % - Aigiﬁ;)’ (5.16)

(5.17)

I4(2) = N iz 0(x) = Nigp(x)e™ 2[1_( 2y A’”(s)}

603/ |
With the above notation, we use the decomposition (5.13) to bound 73 in (5.6) as follows:

/ T @) jizy g-ib 4. (5.18)

4
131 < Ap, here Ay =
1_}; k., where Ay sup -

y=<0
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We now give bounds of Ay, 1 < k < 4, in a series of lemmata. Let us start by showing an
elementary inequality, which will be used repeatedly in the sequel. Let

[z1,22] ={z1 + 0(z2 —z1)) : 0= 0 < 1}
be the complex segment with the endpoints z; and z5.

Lemma 5.4. Let f be an analytic function on the open convex domain D C C. Then for
any z1,z2 € D, andn > 1,

(n)
'f(Z Z f(k)( 1) 21)k SUPze[z;,25] |f (Z)l

o |z2 — z1]".

Proof. The proof of this inequality can be carried out by induction. The inequality clearly
holds for n = 1 since for any z;,z, € D,

|f<22)—f(zl)|=‘ /[ S|z f@la-nl @9

z€[zy,22]

For n > 2, applying (5.19) to F(z) = f(z) — Y32} f(k)(zl)(z z1)*, z € D, leads to
the desired assertion. ™

Now we are ready to establish a bound for each term Ag. The proof is based on the
saddle point method, see [14, 18]. To be more precise, we deform the integration path,
which passes through a suitable point related to the saddle point, to minimize the integral
in A (see (5.18)).

Lemma 5.5. Let €, be defined by (4.2) withr = §;/n and 81 > 0 small enough. Then,
for T = a/n witha > 0 large enough, uniformly inx € §, s € (—n,n) and ¢ € 8B,,

/' Jl(z) e —le dz| < —”‘P“V

z

Ay = sup
y=0

Proof. In view of (3.32), using A = log x and Taylor’s formula, we have

2 A<k)(v> K
PUIES S = o (5.20)
S os i
For brevity, for any z € €,”, denote
1T nyoe A(k)(s)( ) AN iz
hi(z) = —|e =3 v iz)? e b7 5.21
@) Z[ - i) ok e (5.21)

Then, in view of (5.14), the term A; can be rewritten as

z2
/_ e~ 2 h(2)dz|. (5.22)

Ay = ms(p) sup
y=<0

The main contribution to the integral in (5.22) is given by the saddle point z = iy which
. . . d [ z2 . .
is the solution of the equation - (—% + izy) = 0. Denote by

D, ={zeC:|z| <2r Jz <0}
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the domain on analyticity of /1, where r = §;/n with §; > 0 small enough. Set
yn = min{—y, 8;/n}. (5.23)

When —8;/n <y <0, the saddle point iy belongs to D;,. By Cauchy’s integral theo-
rem, we change the integration in (5.22) to a rectangular path inside the domain on
analyticity D5, which passes through the saddle point. When y < —8;/n is large, the
saddle point 7y is outside the domain D5,. In this case we choose a rectangular path
inside D3, which passes through the point —iy, = —i§; /n. Note that 75(¢) is bounded
by c1|l¢lly uniformly in s € (—n,n) and ¢ € B, . Since the function /; has an analytic
extension on the domain D5, with r = §;/n, applying Cauchy’s integral theorem, we

deduce that
=81 /n—iyn S14/n 22,
{/ +/ }e_2+’zyh1(z)dz
)

Ar < cillelly sup
y<

1] —81/m 1/n—iyn
81«/5*1')’11 22 .
T erllolly sup f TN (2) dz
y=<0|J=8; /n—iyy
—: erllglly (Ann + Ara). (5.24)

Control of A11. Using a change of variable, we get

52 Yn 2 .
A = e~ sup / et7+’y_’81ﬁ(t+y)h1(—81ﬁ— it)dt
y=<0|Jo
-~ /y" o T A (5, /i — i) di
0
57 Yn o 2
<e 2"sup / e 2 T |y (=81 v/ —it)| + [hi($1/m —it)|} dt|.  (5.25)
y=<01]Jo

We first give a bound for |/11(48;+/n —if)|. Since t € [0, y,] and y, < 8;4/n, direct
calculations give

R[(=i)>(£81v/n —it)*] = 383nt — 17 < 25?’1%7

which implies that for §; > 0 sufficiently small,

o0 . .
A® (s) (—=i)k (L5 —ink 1
m{nz () 1) “/r_’k i) }5 ~82n. (5.26)
fa k! (05/1) 4
Observe that there exists a constant ¢ > 0 such that uniformly in ¢ € [0, y,] and s € (—7, 1),
1 1 c 3 A" (s)
—| = < .38V —in)? <cn. 5.27
z ‘iSlﬁ—it T 81/n (61 —it) 603 /n| (527

As |exp{—%(:|:81 /n —it)}|is bounded by some constant ¢ > 0, uniformly inz € [0, y,]
and n > 1, from the bounds (5.26) and (5.27), it follows that uniformly in s € (—7, 1),
62

52

1 C 1

(@T" —+ cn) < %eT".
n

|y (=81+/n —it)] + |hi(§14/n —it)] <

Sia/n
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2
In view of (5.23), we have ¢ < y, < —y and thus ezt <1 for any ¢ € [0, y,]. Note
that y, < 81+/n by (5.23). Consequently, we obtain the desired upper bound for A;;:

Yn % 9 57
n — — ——L
sup  Ars 5651—’16 2t < c5 e A" (5.28)

s€(—n,n) f

Control of A12. Using a change of variable z = ¢ — iy, leads to

1.2 Si/m 2.
A1p = sup efy"+y"y/ e_7+”(y”+y)h1(t —iyp)dt
y=0 —Slﬁ
1.2 Sivm 2
< sup efy""’y”y/ e Z|h(t —iyy)|dt|, (5.29)
y=0 —81/m

where the function £, is defined by (5.21). To estimate the term Aj,, the main task is to
give a control of |k (¢ — iy,)|. It follows from Lemma 5.4 that
|ezl —622| < emax{iﬁzl,iﬁzz}|21 . 22|
and |
2 —1—z5| < §|22|2e|22|

for any z, z, € C, and hence
1
€7t — 1 —z,| < ema"{mzl’mzzﬂzl — Zo| + §|22|Ze|22|. (5.30)

We shall make use of inequality (5.30) to derive a bound of |k (¢t — iy,)|. Since y—’;l <6
where §; > 0 can be sufficiently small, we get that, for |f| < §; /7 and large enough n,
uniformly in s € (—n, 1),

3A® . (312 — y2)A® 1
m{[—i(z —iy,,):| 6%3\(2} = %( g;; ) _ 7 (5.31)
, Z‘” ARG it —iy) )| _ v 62 =33DAD () 1,

Moreover, elementary calculations yield that there exists a constant ¢ > 0 such that, for
sufficiently large n, uniformly in s € (—7, ),

ARG -yl AP
n A - — [ =iy’ —
= ! os/1 603 /n
N (9] it —i k 4 4
—In O _ =iy |7 _ vy (5.33)
k! osa/n n
k=4
It is clear that
AP 5+ y8
sup |[—i(t —iyn)]? <c n (5.34)
s€(=n,n) " 603\/5 n
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Taking into account that both || and y, are less than §1/n, and the fact §; > 0 can be
small enough, it follows that

AB)(s)
sup exp{'[—i(l —iv))]?
se(=n.n) " eadyn

Combining this with the bounds (5.31), (5.32), (5.33) and (5.34), and using inequal-
ity (5.30), we conclude that

} < ed@HD,

o AM) iz \k A® (s
sup |e" k=3 TR Ca T (iz)? 3 9
s€(=n,m) 603 /n
4 4 6 6 4 4, 46 6

<ol In he U I @y o I O e 0d (535

- n n - n
Since |exp{—%(t —iy,)}| is bounded by some constant, uniformly in |¢| < §; 4/ and
n > 1, by (5.35) and the fact |t—§yn | = 1/4/t? + y2, we find that

1P+ v+t +ya 1
up {111 — iy = e L F I E I In ey,
s&(=n.m) n

Therefore, noting that y < —y, and 0 < y, < §; /1, we obtain

¢ 3,0, hvm 3 3 5 5
sup Ajp < —sup edlnTyny e 4(|t| +yn+|t| +yn)d[

se(=n.n) ny<o —81/m
c c
<—  sup ef%y’zl(l + y3 + y,f) <-.
"y, €[0,81 v/n] n
Substituting this and (5.28) into (5.24), we conclude the proof. [

Lemma 5.6. Let J»(z) be defined by (5.15), and let €, be defined by (4.2) withr = §1/n
and 81 > 0 small enough. Then, for T = a/n with a > 0 large enough, uniformly in
xes$, se(-nnandy € By,

/ Jz_(z)eiZye—ib% dz
€

Ay = sup
y=<0

< gl
z _n§0y~

Proof. Denote

A (5) (——iz

00 k b —ib%
hZ(Z) = enzk=3 k1 Uxﬁ) I:HS, _l\zr(p(x) — HS((D) 1z S,¢(x)i|e )

o5/ z

Using (5.20), we rewrite A, as

Ay = sup
y=<0

z2 .
/ e 2T hy(2) dz
e

As in the estimation of Lemma 5.5, the solution of the saddle point equation

d _22+_ .
dz 2 1Y) =
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isz = iy.Sety, = min{—y, §; /n}. Since y, € D5, where r = §; /n, and the function
h» is analytic on the domain D5, by Cauchy’s integral theorem we obtain

—81/n—iyn S14/n 22 .
Az < sup {/ +/ }e_2+’zyh2(z) dz
y=0 —81/n SIﬁ_iJ’n
Slﬁ_iJ’n 22 .
+ sup / e” 2 hy(2)dz| = Azy + Ao,
=<0 | J =8y /n—iyn

Control of A»1. Similarly to (5.25), we use a change of variable to get

52 yn 2
[ L= i)+ Gy~ in)] i
0

A < e 2N sup
y=0

Using Lemma 5.4, formula (3.38) and the bound (3.35), for any z = £8,/n — it with

t € [0, y,], we get that uniformly in s € (—1,7), x € § and ¢ € B,,

1 . bsp(x) |z| c

=T, —iz o(x)— z———| <c— < — . 5.36
2| 00 - 42220 < B, < gty 530
Note that |e 27 | is bounded uniformly in z = 48, /n — it, where ¢ € [0, y,]. There-
fore, taking into account the bounds in (5.26) and (5.36), we obtain that uniformly in
se(—nn),xeSandg € By,

. . c
o813/ = )] 4 [ha (G = 0] = e 3ol

2
Since y <0, for any ¢ € [0, y,], it follows that % + ty < 0 and thus ety < 1. Com-
bining this with the above inequality yields that uniformly in ¢ € 8,,
82 82

82
sup sup Azy < ce” 3" L, < ce 7 o]y (537)
s€(—n,n) xe$ \/ﬁ

Control of Az». Similarly to (5.29), we use a change of variable to get

1.2 hivm
efy"+y”y/ e Z|ha(t —iyy)| dt|.
—814/n
We first estimate |2 (¢ — iyy,)|. In the same way as in (5.36), with z = ¢t — iy,,, we obtain

that uniformly in s € (—7n,7), x € S and ¢ € B,,

l‘ bs,p(x)
N

Axy < sup
y=0

2 ]+
<elgly < e

Hs,iﬁw(x) —7s(p) + iz .

Os

lelly-

Combining this with the bound (5.32), we get that uniformly in ¢ € 8B,,

c 1,24 S14/n 2
sup sup dza = gl sup|e2F0n [ e el 4y ar
se(—n,n) x€$ n =0 —81/n
c _1.2 c
<—llelly sup e 2 (14 ys) < =lloly. (5.38)
n yn€[0,81 /1] n

Putting together (5.37) and (5.38) completes the proof. ]
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Lemma 5.7. Let J3(z) be defined by (5.16), and let €, be defined by (4.2) withr = §,/n
and 81 > 0 small enough. Then, for T = a/n with a > 0 large enough, uniformly in
xes, se(—nnandyp € By,

/ 3@ iz mib 7 g
€

Az = sup
z

y=<0

< Sl
=5 Plly-

Proof. We denote

o AR () iz 1z
hi(z) = ! [en Xk St o l]e_’bT.
o5/
Using the expansion (5.20) and the bound (5.9), we have that uniformly in s € (—n, 1),
xedandg € By,

A3 =< cllplly sup
y<0

z2 .
/ e 2TV hs(z)dz
€

As in Lemma 5.5, the saddle point equation

has the solution z = iy. Set y, = min{—y, §;/n}. It follows from Cauchy’s integral

theorem that
=8 ﬁ_iJ’n 81 \/ﬁ 22 .
{/ +/ }e_2+’zyh3(z) dz
- 8

A3z = cllelly sup
y=<

0 81/m 1+/n—iyn
814/n—iyn 2.
+cllelly sup / e 2 ha(z)dz
y=<0 | J=8; /n—iyn
=: A3 + Ass.

Control of A31. Similarly to (5.25), we use a change of variable to get

32
Az < C||‘P||ye_71n sup
y<0

[ B8 v i) + a1 i)

0

Using (5.26), we deduce that uniformly ins € (—n,7) and x € §,

c 8§ c
h3(=81/m —it)| + |h3(§14/n — it <—(eT"+1> < —e
|h3(=81+/n —it)| + |h3(81/n )l—ﬁ =7
2
Since % +ty <Oforany? € [0, y,] and y < 0, we have Ty < 1. This, together with
the above inequality, implies that uniformly in ¢ € B,,,

L

n

52 52
sup sup As; < c2e” 4 g, < ce” gl (5.39)
s€(—n,n) xe$ ﬁ
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Control of Azp. Similarly to (5.29), one has

1.2 bivm
efy"+y”y[ e” 2 |ha(t —iyn)|dt|.
—=814/n

We first give a control of |h3(f — iy,)|. By Lemma 5.4, it holds that

Aszx < cllelly sup
y<0

|ez _ 1| < emax{%z,0}|zl

for any z € C. Using this inequality and taking into account the bound (5.32), we obtain

oo AB) (5 __iz _\k 3 3
n2k=3 yal (m) -1 <Ce%t2|t| +yn

sup |e < )
SE(=n,n) \/ﬁ
and hence s s
. 12t]? +
sup sup |h3(t —iyy)| < ce‘lltzll—y".
se(—=n,n) xes$ n

It follows that uniformly in s € (—n,7), x € § and ¢ € B,,

C _ 1,2 81ﬁ _ﬁ 3 3 C
A2 = Sloly sup R [ @l o ar < Sl a0
n y<0 —81/n n
Putting together (5.39) and (5.40), we conclude the proof. ]

Lemma 5.8. Let J4(z) be defined by (5.17), and let €, be defined by (4.2) withr = §,/n
and 81 > 0 small enough. Then, for T = a+/n with a > 0 large enough, uniformly in
xes, se(—nnandyp € By,
J ; bz
A4 = sup / L) T
y=<0|JE~

<ce " )
: < ce™"lgll

Proof. Since Iz <0 on €, and y <0, we have |eizy| < 1. Using again the fact that
Xz < 0, we get that |e~'®7 | is uniformly bounded on €. From the bound (3.36) and the
fact that §; > 0 can be sufficiently small, we deduce that | J4(z)| < ce™"| ¢/, , uniformly
ins € (—n,n), x €8$ and ¢ € B,. Therefore, noting that |%| = (8§1+/n)"! and that the
length of €, is 81 4/, the desired result follows. |

End of the proof of Theorem 5.2. Combining Lemmata 5.5-5.8, we obtain that

c
I31 < —llelly,
n

uniformly in s € (—1,7), x € S and ¢ € B,.

Now we give a control of the term /3, defined in (5.6). Note that y > 0 in /3, and the
integral in /3, is taken over the semicircle €7, which lies in 2the upper part of the complex
plane. In this case we have the saddle point equation % (=% +izy) = 0 whose solution
z =iy also lies in the upper part of the complex plane. Similarly to (5.23), we choose
a suitable point y, = min{y, §; +/}. Proceeding in the same way as for bounding /3; we

obtain that I3, < £||¢||,, uniformly in s € (—n,7), x € § and ¢ € B,.
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Let us now bound the terms /33 and 34 defined in (5.6). Since the function z > e’ bt
is analytic on €, and ‘C’,‘" , the estimates of /33 and /34 are similar to those of /31 and I35,
respectively. From these bounds, we conclude that there exists a constant ¢ > 0 such that

uniformly ins € (—n,7), x € S andp € B,,
¢
I3 < ;||<P||y- (5.41)

It remains to estimate /4 defined in equation (5.6). We can decompose the difference
| f(¢) — h(t)| in the same way as we did in (5.13) (with real-valued ¢ = z). Then proceed-
ing in a similar way as in the estimation of /31, I35, 33 and /34, one can verify that there
exists a constant ¢ > 0 such that uniformly ins € (—n,7), x € S and ¢ € B,,

c
Iy < — .
4= n”‘P”y

Combining (5.41), (5.41) and the bounds for /; and I, in (5.10) and (5.12), and using
the fact that ¢ > O can be arbitrary small, we obtain (5.7), which finishes the proof of
Theorem 5.2. |

5.3. Proof of Theorem 5.1

Since the proof of Theorem 5.1 is quite similar to that of Theorem 5.2, we only sketch the
main differences. Denote
F() = Eqi [¢(X) faennnnin_yy | HO) = Egilp(X)] @0). v <R

os~/n

By the definition of the operator Rj ; in (3.28), direct calculations lead to
f@) = / e dF(y) = R! i, ¢(x).
R S’U‘Yﬁ
. 2
h(t) = / e 'Y dH(y) = e_tTRg’,(,(p(x), t €R.
R

One can verify that the functions F, H and their corresponding Fourier—Stieltjes trans-
forms f and h satisfy all the conditions stated in Proposition 4.1. Instead of using Propo-
sition 4.1 with r < T in the proof of Theorem 5.2, we apply Proposition 4.1 withr =T =
81+/n, where §; > 0 is a sufficiently small constant. Then we obtain a similar inequality
as (5.5) but with the term I, = 0. Since the non-arithmeticity Condition AS is only used in
the bound of the term 7, following the proof of Theorem 5.2 we show that under the con-
ditions of Theorem 5.1, the terms I, and /3 defined in (5.6) are bounded by c||¢|, / /7,
uniformly in s € (—1,1), x € § and ¢ € B,,. We omit the details of the rest of the proof.

6. Proof of moderate deviation expansions

In this section we prove Theorem 2.3. The proof is based on the Berry—Esseen bound
in Theorem 5.1 and follows the standard techniques in Petrov [42], and therefore some
details will be left to the reader.
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We start with the following lemma whose proof uses the analyticity of the eigenfunc-
tion rg and the linear functional vy, see Proposition 3.1:

Lemma 6.1. Assume either Conditions Al and A2 for invertible matrices, or Condi-
tions Al and A3 for positive matrices. Then there exists n > 0 such that uniformly in
s € (—n,n) and ¢ € By,

Irs =1lleo = Cls| and |vs(¢) —v(p)| = Clsllielly.

Proof. According to Proposition 3.1, we have ro = 1 and vy = v. In addition, the map-
pings s — rg and s — vy are analytic on (—n, 7). The assertions follow using Taylor’s
formula. ]

Proof of Theorem 2.3. When y € [0, 1], Theorem 2.3 is a direct consequence of Theo-
rem 5.1, so it remains to prove Theorem 2.3 in the case when y > 1 with y = o(/n).
We proceed to prove the first assertion in Theorem 2.3. Applying the change of measure
formula (3.15), we have

I = E[o(X;) Li6(Gyx)2n A (0)+ viiooy}]
= rs ()K" ()Eqz [(@ry NX)e ™ DL 6 oymnar @)+ ooy} - 6.1)

Under the assumptions of Theorem 2.3, by Proposition 3.15, 62 = A”(s) > 0 for any
s € (—n, n) with n > 0 small enough. We denote

W = 0(Gp,x) —nA'(s)
g os/n .

Recalling that A = log ', we rewrite (6.1) as follows:

I = rs(x)e_"[SA/(S)_A(S)]IEQx

X [((prs_l)(X,f)e—Sosﬁerch{W’f>ﬁ[A/(o)—A/<s)1+M}:|. (6.2)

By Proposition 3.1, the function A is analytic and hence for s € (-7, 1),

[e.o]

Vi
A(s) = Fsk,
k=1

where yx = A% (0). For any y > 1 with y = o(y/n), consider the equation
Vn[A'(s) = A'(0)] = 00y (6.3)
Choosing the unique real root s of (6.3), it follows from Petrov [42] that

2 3
y y y
A(s) = Als) = - — 2 _¢( =), 6.4
)~ AG) = nm;(ﬁ) 64)
where ¢ is the Cramér series defined by (2.8). Substituting (6.3) into (6.2), and using (6.4),
we get

_ﬁ ﬁ Yy X
I =r@e 7 T B [T HXDe i g | 69)
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For brevity, denote F(u) = Eqy [((pr;I)(X,f)]l{m;cﬁu}], u € R. In view of (6.5), using
Fubini’s theorem and integration by parts, we deduce that

2 3

-5+ (=) -1 x * —s05/nu
I =rg(x)e VitV Eox | (ers (X)) Lio<w; <uys0Os/n e 7V dy
0

2 3 o0
= rs(x)e_yTjLLﬁZ(%)/ eIV g F (), (6.6)
0
Let [(u) = F(u) — ms(pry )@ (u), u € R. It follows that
* s (pry')
eIV G () = I} + =2, (6.7)
/ ) = 1+ B,

where

[ed] o u2
I = / eV gy, I, = / eSVRosU=t gy
0 0

Estimate of 1. Integrating by parts, using the fact that ry € 8, and the Berry—Esseen
bound in Theorem 5.1 implies that uniformly in s € [0,7), x € S and ¢ € B,,

1] < [1(0)] + s/nos / ¢SV 1) du < 6.8)
0

\/— lelly-
Estimate of I,. As the function A is analytic on (—n,n) and o2 = A"(s) > 0, by Taylor’s
formula, we have A’(s) — A’(0) = so2[1 + O(s)] and 62 = o2[l + O(s)]. Thus, using
standard techniques from Petrov [42], one has

1 ) here I /‘°° _ﬁ[A’(s)—A/(O)]u_% J 69)
—— ], Wwhere [3 = e 90 u. .
N 0

Since oy is strictly positive and bounded uniformly in s € (0, ), using (6.3) and the fact
that y > 1, for sufficiently large n, we get that s/ 05 > ZLOS > ¢1 > 0. This implies
that C; < sf I, < C, for large enough n, where C; < C2 are two positive constants
independent of n and s. Combining this two-sided bound with (6.7), (6.8) and (6.9),

we obtain - .
—s/nosu _ ”S((pr;) ]
e dF(u) = Iz| ———=—— + o(s) |.
/0 (u) 3[ Nt lelly O(s)

12=I3+0(

Substituting (6.3) into (6.9), we get
00 o) -1
NI JF(0) = o5 / o b2 du[—ﬂS(wrs ) 4ol O(S):|.
/(.) y vV 2 i’
Together with (6.6), this implies

I = re(x)e vt T [1 = o ()] [mseri) + llelly 0)]:
where
Vs((p)

HS(WS_I) = Vs (r )
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By Lemma 6.1, we have ||y — 1|00 < Cs and |75(pr; ') — v(@)| < Cs|¢|y, uniformly
ins € [0,n) and ¢ € B,,. Since s = O(== f) this concludes the proof of the first assertion
of Theorem 2.3.

The proof of the second assertion of Theorem 2.3 can be carried out in a similar way.
Specifically, instead of using (6.3), we consider the equation /n[A’(s) — A’(0)] = —0ogy,
where y > 1 and s € (—n,0]. We then apply the spectral gap properties of operators
P, Q5. Ry, (see Section 3) for negative valued s to deduce the second assertion by
following the proof of the first one. We omit the details. ]

7. Proof of the local limit theorems

The goal of this section is to establish the local limit theorems with moderate deviations,
namely Theorems 2.4 and 2.5.

7.1. Proof of Theorem 2.4

We first establish an asymptotic expansion which will be used to prove Theorem 2.4.
Assume that ¥ : R — C is a continuous function with compact support in R, which is
differentiable in a small neighborhood of 0 on the real line.

Proposition 7.1. Assume either Conditions Al and A2 for invertible matrices, or Condi-
tions A1, A3 and A4 for positive matrices. Then there exist constants 1,8, ¢, C > 0 such
that forall s € (—n,n), x € 8, |I] < JLE ¢ €Byandn > 1,

ni2

oy 0357 /R RN () () (1) di mm«p)wm)'

fllwlly Cllsolly'fluf (v @)+ |y’ (t)|)+Ce“’”||<p||yfIw(t)ldt. (7.1)

Proof. For brevity, denote

CS(W) =

Taking a small constant § > 0 and using the spectral gap decomposition (3.31) with
z = it, we have

ni2

ﬁemfAe_”lnR?,it(@)(X)l/f(l)dl—Cs(l/f)'

IA

nl2 X
e o7 / R0y dr
t=

ni2

N / TN, () ()Y (¢) d
|t]<8

+

. n‘2/ —ztln)tgl” “t((p)(x)w(t)dt—cs(l/f)'
|t]<é

1+ I+ Js.
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For Ji, since the function ¥ is bounded and compactly supported on R, taking into
account Proposition 3.10 and the fact |e7/*/"| = 1, we get

sup_sup sup i = Coe gl / ()] dt. 7.2)
s€(—n,n) xe€8 |]|< [t]>68

For J;, by (3.36) there exist constants cs > 0 and a € (0, 1) such that

sup sup sup [N;, (@)(x)| = sup sup N7 |8, -, llelly < csa’llel,.

s€(—n,n) x€8 |t|<§ se(—n,n) |t]<é8
This implies that uniformly in s € (—n, ), |I| < f’ xedandg € By,
T < Coe= gl /| L old (13)
tl<

For J3, we make a change of variable t = t//n to get

n12 3«/> .
oo [ e 1 @0 () di - )
n 2

—§/n \/—)
N t
20S2 —ltlﬁ n . Ly o
¢ f_wﬁe "s,yﬁ[ns,ﬁ(w)(x)t/f(ﬁ) n(tp)w(O)] di

ni2 8\/; .
+ ns(go)W(O)ez"sz / fe_ltlﬁ/\;”% dt —Cs(lﬂ)' =:J31 + J32. (7.4)

—84/n

Using formula (3.32) and the fact that the function A is analytic in a small neighborhood
of 0 of the complex plane, we can check that there exists a constant C > 0 such that for
alls € (—n,n),t € [-8/n,84/n]landn > 1,

2,2

o2 C o212

AT _eT T2 | < e d 7.5
S,tTtn — ,\/E ( )

By (3.35) and the fact that IT; o (¢)(x) = ms(p), it follows that uniformly in s € (—n, ),

t €[-8/n,8/n]and x € §,

M, 1 (@) = ms(e)| = T, o0 — T,

el < e Ligl,.
[

Since the function y is differentiable in a small neighborhood of 0, we obtain that there
exists a constant C > 0 such that for all s € (—7n,7), x € § and ¢t € [-8+/n, §4/n],

M, @0 (77 ) = o)
< |1,y @z ) ~mtor (22 )|+ Moo (2 ) - mowo)
ol 1

fllwlly lf‘u<p ¥ ()| +C fllwlly f‘u<p AGIE
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Combining this with (7.5), we get the desired bound for J3;: there exists a constant C > 0
such that, foralln > 1, |/| < Ln,s € (—r) n),x €Sand gy € B,

Ja1 = 7”‘/’”1/ ||§0||y lf‘u<p (lvO1 + [y @OI). (7.6)

To estimate J3, in (7.4), we first notice that

ni2  p8a/n 0212
m(op e [ e, — e ) ar
—8.J/n v

J3z <

ni2

+ |75 () ¥ (0)e 0% / e Mme
[t|=8/n

1| =: J3z1 + J322.

For J351, from (7.5) it follows that

J321 —||<P||
Vs

For J3,5, using the basic inequality
[
e 2

y

J322 < e " olly.

Hence, there exists a constant C > 0 such that for all |/| <
it holds that

2
2

e

QL

I =

<] =

for y > 0, we get that

f,se( n.n) and ¢ € By,

C
J32 = N lelly-
This, together with (7.6) and (7.4), imphes the desired bound for J3: there exists a constant

C > Osuchthatforalln > 1, || < fse(n n),x €Sandgp € By,

J3 = ﬁ”‘ﬂ”y _”§0||y sup (|y ()] + ¥/ (1)]).

|t|<8
Combining this with (7.2) and (7.3), we conclude the proof of Proposition 7.1. ]
Now we are equipped to establish Theorem 2.4.

Proof of Theorem 2.4. We only need to establish the first assertion of the theorem since
the second and the third ones are its particular cases. By the change of measure formula
(3.15), we get that for any s € (—n, ) with sufficiently small n > 0,

Jn = E[p(X;)¥ (0(Gn, x) —nk — V/noy)]
= rs ()K" () Eqr [(ory N(XF)e Gy (0(Gu, x) — nA — /noy)].

For brevity, denote
T = 0(Gy,x) —nA'(s).
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By considering equation (6.3) for any |y| = o(4/n) (not necessarily |y| > 1), we get the
identity (6.4) for |y| = o(4/n). Hence, we have

y = rs(x)e N OZAOE Q[ (@r (XD )e S TH Y (T))]
2

_Z v ey _ o
=rs(x)e” 2V Vi Egr[(pry (X)e Ty (T)].

We denote
Ys(u) = e ¥y (u), ueR.

Taking into account Lemma 6.1, in order to establish Theorem 2.4, it is sufficient to prove
the following asymptotic: as n — oo,

A i= oV By [(ory YODRT] = vi) [ wodn. @)

To prove (7.7), we need to use some smoothing techniques. For sufficiently small ¢ > 0,
we denote for any s € (—n,n) and u € R,
Y = sup Y)Y () = inf ().
w eR:|u/—u|<e u' eR:|u'—ul<e

Denote respectively by {ﬁ\js and 1}\;8 the Fourier transform of 1//;,r . and ¥ . For the
moment we suppose that

lim {7, (0) = lim 75 ,(0) = / () du. (7.8)
g—0 ’ £—0 ’ R

Note that the Fourier transform of the function 1y may not be integrable on R. In the
sequel we shall use a smoothing inequality from [22, Lemma 5.2], which gives two-sided
bounds for . Let p be a non-negative density function on R with [ p(u) du = 1 and
p(u) < 1+Cu4 for all u € R, so that its Fourier transform p is supported on [—1, 1]. For
any 0 < ¢ < 1, define the rescaled density function p, by p.(u) = % p(%), u € R, whose
Fourier transform has a compact support on [—&~!,e7!]. Then there exists a positive

constant C,(¢) with C,(¢) — 0 as ¢ — 0 such that for any u € R,

Use ¥ pe2(u) — Ve = 0)p2 (V) dv < s (u) = (1 + Co())V, % pe2 (). (7.9)

[v]=e

Now we are going to prove (7.7). The proof will be done by establishing upper and lower
bounds for 4,. Without loss of generality, we assume that the target functions ¢ and ¥
are non-negative.

Upper bound. Applying the smoothing inequality (7.9) and the Fourier inversion formula
to the function ¥, * p,2, we get

An = (1+ Cp(e))oV2rn Eqr [(0ry VXD (W, * p)(T)]

=<1+cp(s)>a\/2z [ R @it wpa0d @10
T JR
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where R;;; is the perturbed operator defined by (3.28) with z = it. Applying Propo-
sition 7.1 with ¢ = ¢r; ! and ¥ = @Ieﬁsz (one can verify that the remainder term in
estimate (7.1) vanishes as n — oo, uniformly in s € (—7, n)), we obtain, uniformly in
se€(—n,n),lt|>6andx € §,

limsup 4, < (1 + Cp(s))v(qo)wais(o).

n—>0o0
Letting ¢ — 0, we get the desired upper bound for A,: uniformly in s € (—n,n) and
X €S,

limsup 4, < v(g) lim ¥ (0). (7.11)
&—0 ’

n—>o0
Lower bound. Similarly to (7.10), using the smoothing inequality (7.9), the fact that
Ve <¥s <(1+ Cp(&‘))lﬂ;’_ < ¥ pe2, and the Fourier inversion formula to the functions
Vs, * pe2 and ¥t * p,2, we obtain

An = oV Zn By [(ory XD W, * p2)(T)]
—ov2mn | Eor[lery X5 (T —0)]pea () dv
|

v|>e

> 0\/;/]1{R?,it(ws_l)(X)@;a(t)ﬁgz(t)dt

-1+ Cp(s))ff\/g

: /M [/Re_mR?’”(‘””s_ DTS (OPe2 (1) dti|Paz(v) dv
— o B (7.12)

For By (¢), in the same way as in the proof of (7.11), by considering the function ¥,
instead of l/f;: . and using Proposition 7.1, we have that uniformly in s € (—n, ) and
x€eSs,

liminflim i£f B, (g) = v(p) slg% 1}0_,8(0). (7.13)

e—>0 n—
For Dy (g), we first note that we can follow the proof of the upper bound for A, to check
the following asymptotic: for sufficiently small & > 0, uniformly in s € (—7,7), x € §

and v € [—/n, /7],
v2
lim o‘/%em / e VRY L (@ry )V (B2 (1) dt = v(p) Y, (0). (7.14)
R

n—>oo

To obtain an upper bound for the term D, (¢), we shall apply the Lebesgue dominated
convergence theorem to pass to the limit as n — oo through the integral f}y|>¢. The appli-
cability of this theorem is justified below. We split the integral [jy|>¢ in the term D, (g)
into two parts: fjy|>./x and [e<|v|<./n. For the first part [~ /z, since the density function

pg2 has polynomial decay, i.e. p,2 (v) < HC_*Z4, [v] > 4/n, we get that
Cs

L+ [v]?’

\/ﬁpez (v) =
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which is integrable on R. For the second part, using (7.14) we see that, the function under
the integral [;<[v|</x is dominated by Cp,> which is integrable on R. Therefore, we can
interchange the limit as 7 — oo and the integral [jy|>¢, and then use (7.14) again to obtain
that uniformly in s € (—n,n) and x € §,

limsup D, (¢) < (1 + Cop(e))v(@) ¥, (0) pe2 (v) dv.
n—»00 lv|>e
The integral on right-hand side converges to 0 as ¢ — 0, since p,2(v) = 23iz,o(e%) and the
function p is integrable on R. Together with (7.12) and (7.13), this implies the desired
lower bound for A4, uniformly in s € (—7,7n) and x € §,

liminf A, > v(p) lim ¥, (0). (7.15)
n—00 e—>0 ’

Combining (7.11) and (7.15), we obtain the assertion of Theorem 2.4, provided that
(7.8) holds. Condition (7.8) can be relaxed to the direct Riemann integrability condition
of the target function ¥, by applying the approximation techniques developed in [50]. So
the proof of Theorem 2.4 is complete. |

7.2. Proof of Theorem 2.5

In this subsection we prove Theorem 2.5 concerning the local limit theorem with moderate
deviations for the operator norm |G| in the case of invertible matrices. In this proof
Theorem 2.4 plays the key role. Another important ingredient is the following Lemma 7.2
established recently by Benoist and Quint [5], which provides a precise and interesting
comparison between log| G, || and o (G, x):

Lemma 7.2. Assume Conditions Al and A2 for invertible matrices. Then, for any a > 0,
there exist ¢ > 0 and kg € N, such that for alln > k > kg and x = Rv € pd-1

2 ([1og 162 _ 10 1901 _ et oy _ ek
Gl 1Gevl| = |

Proof of Theorem 2.5. Without loss of generality, we assume that the target function ¢ is
non-negative.

We first give the upper bound. By Lemma 7.2, we get that for any @ > 0, there exist
¢>0andky € N, suchthatforalln >k > kgand x = Rv € pa-1,

In = E[@(X;) L0l Gp —niclar azl+ oy} )

<E[p(X)1, 100

—ck
og 12 +10g] Gy ||—n/1e[a1—e—ak,a2+e—ﬂk]+ﬁay}] e eloo-

With the notation G, x = gn ... gk+1 forany n > k > 1, we have X7 = G« - X; and
0(Gp,x) —0(Gg,x) = 0(Gpk, Xj). Thus the first term of the right-hand side of the
above inequality can be rewritten as

X
El¢ G- X) ﬂ{a(Gn_k,X;)—(n—k)Ae[al—e—ak,az+e—ak1+ﬁay—<log||ck ||—kA)}]‘
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Now we fix a sufficiently large constant C; > 0 and we choose
k=1[C1y?],

where | y | denotes the integer part of y € R. For any & > 0, there exists a large enough
k1 > 1 such that for all k > kq,

[y — e % ay + %] C I :=la) — e as +el.

Using the large deviation bounds for log|| G || (see [5] or [50]), we see that for any § > 0,
there exists a constant ¢ > 0 such that for large enough k£ > 1,

P(|logl| G|l — kA| > k8) < ek,
Using this bound, it follows that

X
In < E[p(Gue Xk)ﬂ{o(Gn_k,X,):>—(n—k)xe1j+ﬁay—(1og||Gk ||—kx)}ﬂ{||1og||Gk ||—kx|sk8}]

+ e gl oo-

Taking conditional expectation given the o-algebra F; = o(g1,..., gr), We get

X
In = E{E[‘p(G"’k ' Xk)]l{a(Gn_k,ng)f(nfk)xelj+\/ﬁayf(1og||ck I~kA)}

Z, —ck
ﬂ{llogllell—kklsks}“/k]}+e e lloo-

Applying Theorem 2.4, we obtain, as n — oo, uniformly in x € P4~ and |y| = o(n'/®),

J, < sup ex {—l( y/n — " )2}(a2—a1+28)v(¢)+0(1)
" e U2\ Vn—k  ovn—k o~

+ ¥ )¢]l o (7.16)

Since k = | Cyy?], it follows that as n — oo,

2

e~ 2
o+2mn

We next give the lower bound. Since the proof is similar to that of the upper bound,
we only sketch the main differences. By Lemma 7.2, we get that for any a > 0, there exist
¢>0andky € N, such thatforalln > k > kgand x = Rv € pd-1,

Jn = Blo(X)1Ly

Jn =

[(a2 — a1 + 2e)v(p) + o(1)]. (7.17)

log [G17} +log]| G ||—nAe[a1+e—ﬂk,a2—e—ak]+ﬁay}]'

With the notation used in the proof of the upper bound, we have

P
Iz E[“’(G"”‘ ' Xk)ﬂ{o(Gn_k,Xz)—(n—k)xelg—+ﬁay—<log||Gk ||—kx)}ﬂ{|1og||ck ||—k/1\5k8}]’

where I := [a; + €,a, — €]. Notice that, for any ¢ > 0, there exists a large enough
k1 > 1 such that for all k > kq,

I, Clay +e7 % a4, —e_“k].
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In the same way as in the proof of (7.16), we take conditional expectation given .7} and
use Theorem 2.4 to obtain that as n — oo, uniformly in x € P41 and |y| = o(n'/),

| _ 1( yyn u ’
Jn > m[(dz —a; —2e)v(p) _0(1)] |u1|151£5 CXP{_E(\/n —k - ovn —k) }

As k = | C1y?], elementary calculations lead to

32

e~ 2
Jn = ———[(az — a1 + 2e)v(p) —o(1)]. (7.18)
oN2mn
Since ¢ > 0 can be arbitrary small, combining (7.17) and (7.18), we conclude the proof
of Theorem 2.5. [ ]
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