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Abstract. We study maps from a smooth scheme to a motivic sphere in the Morel–Voevodsky
A1-homotopy category, i.e., motivic cohomotopy sets. Following Borsuk, we show that, in the
presence of suitable hypotheses on the dimension of the source, motivic cohomotopy sets can be
equipped with functorial abelian group structures. We then explore links between motivic coho-
motopy groups, Euler class groups à la Nori–Bhatwadekar–Sridharan and Chow–Witt groups. We
show that, again under suitable hypotheses on the base field k, if X is a smooth affine k-variety of
dimension d , then the Euler class group of codimension d cycles coincides with the codimension
d Chow–Witt group; the identification proceeds by comparing both groups with a suitable motivic
cohomotopy group. As a byproduct, we describe the Chow group of zero cycles on a smooth affine
k-scheme as the quotient of the free abelian group on zero cycles by the subgroup generated by
reduced complete intersection ideals; this answers a question of S. Bhatwadekar and R. Sridharan.
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Introduction

Suppose k is a field, and X is a smooth affine k-scheme. The goal of this paper is to
establish concrete connections between “obstruction groups” attached to X in the sense
of M. Nori, S. Bhatwadekar and R. Sridharan (e.g., Euler class or weak Euler class groups)
and “motivic groups” attached to X (e.g., Chow or Chow–Witt groups). In brief, we will
(i) show that obstruction groups can be interpreted as “cohomotopy groups” and
(ii) using an algebro-geometric analog of the classical comparison between cohomo-

topy and cohomology groups, identify “obstruction groups” with motivic groups in
a number of cases.
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We begin by discussing the historical setting for the problems we consider. Suppose
X has dimension d and E is a rank d vector bundle on X . By means of the dictionary
of Serre [49], one views this setup as analogous to that of a rank d real vector bundle
over a smooth manifold of dimension d . In the topological setup, there is precisely one
cohomological obstruction to writing a given rank d vector bundle as a Whitney sum of
a bundle of rank d � 1 and trivial bundle of rank 1, i.e., the triviality of the Euler class
(taking values in integral cohomology, twisted by an orientation character associated with
the bundle) [39].

In parallel with the situation in topology, one would like to develop a theory of Euler
classes in algebraic geometry allowing one to answer the question: what is the (primary)
obstruction to E splitting as the sum of a rank d � 1 vector bundle and a trivial bundle
of rank 1? When k is algebraically closed, this question was completely answered by
M. P. Murthy [44], building on earlier work [35, 46]: under these hypotheses, E splits if
and only if 0 D cd .E/ 2 CHd .X/. If k is not algebraically closed, it has been known for
a long time that triviality of the top Chern class does not necessarily guarantee existence
of a splitting (e.g., the tangent bundle on the real algebraic sphere of dimension 2 provides
a counterexample).

In response to the splitting problem above, different “Euler class theories” have been
constructed. Motivated by the work of Murthy and following ideas of M. V. Nori,
S. Bhatwadekar and R. Sridharan [13–15] developed what we will call an “algebraic”
approach to Euler classes. They gave an explicit description, using generators and rela-
tions, of an Euler class group Ed .X/. Under suitable assumptions, this group houses an
Euler class that provides an obstruction to splitting. More precisely, if E is an oriented
vector bundle (i.e., an algebraic vector bundle on X equipped with a fixed trivialization
of the determinant), then there is an associated class e.E/ 2 Ed .X/ whose vanishing is
equivalent to E splitting as a sum of an oriented vector bundle of rank d � 1 and a trivial
bundle of rank 1.

J. Barge and F. Morel gave a “cohomological” version of the Euler class theory on
smooth affine schemes: they introduced Chow–Witt groups and an Euler class for any
oriented vector bundle taking values in the top dimensional Chow–Witt group [11, Sec-
tion 2.1]. Establishing the link with the splitting problem is more difficult: Barge–Morel
proved that their Euler class governed the splitting problem for varieties of dimension
� 2 (see [11, Théorème 2.3]) and conjectured that the same result held for higher dimen-
sional smooth affine varieties [11, Section 2.1 Conjecture]. In contrast, the approach of
Barge–Morel was much more computationally satisfying: Chow–Witt groups do underlie
a cohomology theory on smooth schemes having a number of good formal properties.

Barge and Morel observed that there is a comparison map from the Bhatwadekar–
Sridharan Euler class groups to Chow–Witt groups [11, Remarque 2.4] when both groups
are defined. However, beyond this link, the two theories could not be more different. The
Bhatwadekar–Sridharan approach has the benefit of being very explicit and thus making
it relatively easy to see that vanishing of the Euler class does in fact control the splitting
problem (and moreover gives a theory for possibly singular affine schemes). However,
the groups Ed .X/ are, practically speaking, very difficult to compute: for example, the
groups Ed .X/ do not obviously underlie a cohomology theory.
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The Barge–Morel conjecture was eventually resolved by F. Morel [42, Theorem 1.32]
(see also [31, Theorem 6] for the case of varieties of dimension 3) by introducing a third
“homotopical” approach to Euler classes (the main result of [6, Theorem 1] shows that
the homotopical approach coincides with the cohomological approach). Proving that the
various approaches to the theory of the Euler class coincide was an interesting and difficult
problem (cf. [42, Remark 1.33 (2)]).

Our approach to the problem of comparing Euler class groups and Chow–Witt groups
involves relating both with a third “cohomotopy” group. To explain our techniques, we
begin by recalling some classical homotopy theory. Borsuk showed [16] that, if M is
a manifold of dimension d � 2n � 2, the set of free homotopy classes of maps ŒM; Sn�
admits a (functorial) abelian group structure; this set is called the n-th cohomotopy group
of M . The Hopf classification theorem [32] states that if dimM D n, then the group
ŒM; Sn� coincides with the cohomology group Hn.M;Z/; the isomorphism is induced
by a (dual) Hurewicz map ŒM; Sn�! Hn.M;Z/ [50], which we describe momentarily.

In fact, Borsuk showed that ifX is any .n � 1/-connected space andM has dimension
d � 2n � 2 as above, then the set ŒM;X� admits an abelian group structure, functorially
inX . Granting this, observe that the first stage of the Postnikov tower for Sn yields a map
of .n � 1/-connected spaces Sn ! K.Z; n/. One then shows:
� the (dual) Hurewicz map is simply the map ŒM; Sn�! ŒM;K.Z; n/� D Hn.M;Z/

induced by functoriality in Borsuk’s construction, and
� the Hopf classification theorem can be deduced by an elementary obstruction theory

argument.
Via the Freudenthal suspension theorem, one may view Borsuk’s group structure as a “sta-
ble” phenomenon in the sense of stable homotopy theory and thus one may view the
cohomotopy groups as part of a cohomology theory.

We will analyze similar ideas in the algebro-geometric setting. The idea of studying
algebro-geometric cohomotopy groups goes back (at least) to van der Kallen’s group law
on orbit sets of unimodular rows [51]. We work in the setting of the Morel–Voevodsky
A1-homotopy category [43] in order to access basic homotopic constructions. LetQ2n be
the even-dimensional smooth affine quadric in A2nC1 given by the equation

nX
iD1

xiyi D z.1 � z/:

We observed in [2, Theorem 2.2.5] thatQ2n is a sphere from the standpoint of the Morel–
Voevodsky A1-homotopy theory [43]. As a consequence, if X is a smooth scheme, by
analogy with the ideas of Borsuk, we will call the set ŒX;Q2n�A1 of morphisms in the
A1-homotopy category a motivic cohomotopy set (see Definition 1.3.1).

Paralleling our discussion of cohomotopy above, our goals in this paper are
(i) to equip the set of free A1-homotopy classes of maps ŒX;Q2n�A1 with a functorial

abelian group structure,
(ii) to study algebro-geometric analogs of the Hurewicz homomorphism and Hopf clas-

sification theorem and
(iii) to describe a presentation of ŒX;Q2n�A1 with explicit generators and relations.
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Write eCHn.X/ for the Chow–Witt groups defined by J. Barge–F. Morel [11] and stud-
ied in detail in [28] (see Section 1.1 for more precise references). If X has dimension
d � 2n � 2, then write En.X/ for the Euler class group of Bhatwadekar–Sridharan [15]
mentioned above (see Definition 3.1.5 and Remark 3.1.6).

Theorem 1 (see Theorems 1.3.4, 3.1.13 and 3.2.1 and Proposition 3.1.10). Suppose k is a
field having characteristic not equal to 2, n and d are integers, n � 2, and X is a smooth
affine k-scheme of dimension d � 2n � 2.
(1) The set ŒX;Q2n�A1 has a functorial abelian group structure;
(2) there is a functorial “Hurewicz” homomorphism

ŒX;Q2n�A1 ! eCHn.X/;

which is an isomorphism if d � n; and
(3) there is a functorial and surjective “Segre class” homomorphism

s W En.X/! ŒX;Q2n�A1 :

(4) If, furthermore, k is infinite and d � 2, then the morphism s is an isomorphism.
In particular, under the hypotheses in point (4), if X is a smooth affine k-scheme of
dimension d , then there is a functorial isomorphism

Ed .X/ ��! eCHd .X/:

Remark 2. Note that Theorem 1 essentially completely resolves the comparison prob-
lem of Barge–Morel mentioned above; see Remark 3.1.14 for more detailed discussion
of assumptions on the base field. We say “essentially” because Chow–Witt groups as
used above are well-behaved for smooth schemes over a field. Recently, M. Schlichting
introduced another homotopical approach to the obstruction problem for commutative
Noetherian rings with infinite residue fields [48, Theorem 6.18]. Schlichting’s obstruction
group coincides with the Chow–Witt group for smooth schemes over an infinite perfect
field [48, Remark 6.19]. Therefore, it makes sense to ask whether the Bhatwadekar–
Sridharan Euler class group can be compared with Schlichting’s obstruction group for
a commutative Noetherian ring with infinite residue fields.

Our construction clarifies the functorial and cohomological properties (e.g., pullbacks,
Mayer–Vietoris-type sequences, products) of Euler class groups developed in [37] and
[38]; see Remark 3.1.15 for more details. Finally, our approach explains why Euler class
groups, à la Bhatwadekar–Sridharan, are not suitable for the study of splitting problems
for bundles of rank below the dimension: in fact, for such vector bundles there is no reason
one should even be able to attach an “Euler class” with values in this group. In contrast,
Morel’s homotopic approach does yield a suitable obstruction theory for the splitting
problem for bundles of rank below the dimension and this theory has been studied in detail
in [5]: in analogy with the topological situation there are further obstructions beyond the
primary Euler class obstruction.

The above result has a concrete “classical” consequence that can be deduced from the
comparison, which we believe is of independent interest. Let Z0.X/ be the group of zero
cycles on X , CI0.X/ � Z0.X/ the subgroup generated by zero-dimensional reduced
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complete intersections in X , and set E0.X/ WD Z0.X/=CI0.X/ (see Definition 3.2.2).
Cycles in the subgroup CI0.X/ are known to be rationally equivalent to zero, and there
is an induced (surjective) homomorphism E0.X/! CH0.X/ (see [13, Lemma 2.5]).

Theorem 3 (see Theorem 3.2.6). If k is an infinite field having characteristic not equal
to 2 and X is a smooth affine k-scheme of dimension d � 2, then the map

E0.X/! CH0.X/

is an isomorphism.

Remark 4. The idea that CH0.X/ should be related to complete intersection subvarieties
goes back to the work of M. Pavaman Murthy and R. Swan in the 1970s [46, Theorem 2]
(see also [55] and the references therein). The question of whether the homomorphism
in Theorem 3 is an isomorphism was posed explicitly by S. Bhatwadekar–R. Sridharan
[13, Remark 3.13] (see also the survey of Murthy [45, Question 5.3]). That question was
already known to have a positive answer if:
(i) k is algebraically closed [45, Theorem 5.2],
(ii) k is the field of real numbers [13, Theorem 5.5], or
(iii) dimX � 2 (unpublished work of Bhatwadekar).

Overview. Section 1 is devoted to equipping the set ŒX;Q2n�A1 with a functorial abel-
ian group structure and studying the properties of this group in detail. The existence of
a functorial abelian group structure on this set of homotopy classes of maps is largely
formal–at least given A1-analogs of classical connectivity results. The necessary connec-
tivity results follow from F. Morel’s unstable A1-connectivity theorem and his A1-analog
of Freudenthal’s classical suspension theorem [42, Section 6].

We give two equivalent constructions of the abelian group structure; the first, using the
aforementioned suspension theorem, is useful for analyzing various functorial properties
of the group structure, and the second, modeled on Borsuk’s original construction, is
useful for giving a geometric interpretation of the composition. In particular, we observe
that the abelian group structure on ŒX;Q2n�A1 arises via an identification with stable
cohomotopy groups. Since stable cohomotopy is a ring cohomology theory, we obtain
Mayer–Vietoris-type exact sequences and product structures on these groups.

As mentioned above, the variety Q2n is a motivic sphere, and we appeal to the
computations of A1-homotopy sheaves of spheres due to F. Morel [42, Chapter 5]. In
particular, one knows that the first non-vanishing A1-homotopy sheaf of Q2n is the n-th,
and this sheaf is the unramified Milnor–Witt K-theory sheaf [42, Chapter 3] (see Proposi-
tion 1.1.5). If K.KMW

n ; n/ is the Eilenberg–Mac Lane space representing sheaf cohomol-
ogy [34, Chapter 8.3, p. 212], then the first non-trivial stage of the A1-Postnikov tower as
described in [4, Section 6.1] yields a morphism Q2n ! K.KMW

n ; n/. One may define the
n-th Chow–Witt group of a smooth schemeX asH i .X;KMW

n / and the functoriality of our
abelian group structure immediately yields the Hurewicz homomorphism in the statement.
Techniques of obstruction theory as studied, e.g., in [4] or [5] imply the isomorphism
statement.
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In Section 2 we provide a concrete description of the abelian group structure on
ŒX;Q2n�A1 ; this uses two tools. First, we appeal to the affine representability results
of [7]; these results allow us to identify the abstract set ŒX;Q2n�A1 in terms of “naive”
A1-homotopy classes of morphisms of k-schemes X ! Q2n. Then we use the relation-
ship between naive A1-homotopy classes of morphisms with target Q2n and complete
intersection ideals studied in [30]. In short, morphisms f W SpecR! Q2n determine
(non-uniquely) pairs .I; !I /, where I � R is an ideal, and !I W R=I˚n ! I=I 2 is a sur-
jection; the naive A1-homotopy class of f essentially only depends on I . Combining
these ideas, we give an explicit “ideal-theoretic” description of the product in Theo-
rem 2.2.10.

Finally, Section 3 studies applications of the above ideas. Using our concrete descrip-
tion of the product in cohomotopy, the existence of the “Segre class” homomorphism is
straightforward and described in Section 3 after some recollections on Euler class groups
(we slightly recast the definition to fit more naturally in our context). Surjectivity in the
case of interest follows from a moving lemma and holds with minimal hypotheses. In
order to establish injectivity of the Segre class homomorphism, we define an explicit
inverse. In order to define the inverse homomorphism, we appeal to homotopy invariance
of Euler class groups. Finally, Theorem 3 is deduced from the comparison of Euler class
groups and Chow–Witt groups, which appeal to results of Das–Zinna [20]. Appendix A
provides streamlined treatment of homotopy invariance for Euler class groups (see Theo-
rem A.1.4) and some variations on the techniques of [20] (see Proposition A.2.2) tailored
for this paper. With these results in mind, Remark 3.1.14 explains the presence of the
hypotheses in the statements above.

Note on related work. The first version of this paper was posted to the ArXiv in January
2016. The original argument for injectivity of the map s in Theorem 1 (4) contained a gap;
this version closes that gap. In October 2016, S. Mandal and B. Mishra posted a prelim-
inary version of [36], the results of which have some overlap with this one. Using our
notation, and under suitable hypotheses on R, they equip �0.SingA1 Q2n.R// with an
explicit group structure [36, Theorem 6.5] defined ideal-theoretically (cf. Theorem 2.2.10
below); comparing [36, Definition 6.1] and Construction 2.2.8 below, one deduces that
their group structure coincides with all the variants studied in this paper. Again under
suitable hypotheses on R, Mandal and Mishra construct [36, Section 7] a surjective map
En.R/! �0.SingA1 Q2n.R// (cf. Proposition 3.1.10 below). Furthermore, they prove
(see [36, Theorem 7.3]) that the preceding map is an isomorphism (cf. Theorem 3.1.13
below). Nevertheless, the techniques of [36] differ rather significantly from those used
in this paper.

Notation/preliminaries. In this paper, the word ring will mean always mean commutative
unital ring. If R is a ring and a D .a1; : : : ; am/ 2 Rm, we write hai � R for the ideal
generated by a1; : : : ; am. If I is an ideal, we write ht.I / for the height of I .

Fix a base field k and write Smk for the subcategory of schemes over Spec k that are
separated, smooth and have finite type over Spec k. We consider the categories Spck and
Spck;� of simplicial and pointed simplicial presheaves on Smk ; objects of these categories
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will be called (pointed) k-spaces; if k is clear from context, we will simply call objects of
this category (pointed) spaces.

We equip the category of (pointed) simplicial presheaves on Smk with its usual injec-
tive Nisnevich local model structure [34, Section 5.1]; the associated homotopy category,
which we denote by HNis

s .k/ (HNis
s;�.k/), will be referred to as the (pointed) simplicial

homotopy category. If .X; x/ and .Y; y/ are pointed spaces, we set

ŒX;Y�s WD HomHNis
s .k/

.X;Y/

and
Œ.X; x/; .Y; y/�s WD HomHNis

s;�.k/
.X;Y/:

An element of ŒX;Y�s will also be called a free simplicial homotopy class of maps.
The category of (pointed) simplicial presheaves can be further localized to obtain

the Morel–Voevodsky A1-homotopy category H.k/ (H�.k/); this localization is a left
Bousfield localization of Spck (see [43]). In particular, there is an endo-functor LA1 of
the category of (pointed) simplicial presheaves, together with a natural transformation
� W Id! LA1 such that if Y is a space, then Y! LA1Y is a cofibration and A1-weak
equivalence and LA1Y is simplicially fibrant and A1-local. We refer the reader to [10, Pro-
position 2.2.1] for a convenient summary of properties of the A1-localization functor and
note in passing that LA1 commutes with the formation of finite products. We set

ŒX;Y�A1 WD HomH.k/.X;Y/

and
Œ.X; x/; .Y; y/�A1 WD HomH�.k/.X;Y/:

Similarly, an element of ŒX;Y�A1 will be called a free A1-homotopy class of maps.
We begin by recalling some notation. Write S1 for the simplicial circle and S i for the

simplicial i -sphere, i.e., the i -fold smash product of S1 with itself. More generally, set

S iCj;j WD S i ^G^jm :

If Y is any pointed space, then we write †iY for the smash product S i ^ Y and �iY
for the derived i -fold loop space, i.e., Hom�.S i ;Yf /, where .�/f is a functorial fibrant
replacement functor. Looping and suspension are adjoint, and the unit map of the loop-
suspension adjunction yields a functorial morphism Y! �i†iY for any integer i .

A pointed space .X; x/ will be called simplicially m-connected if its stalks are all
m-connected simplicial sets. Similarly, we will say that X is A1-m-connected if LA1X is
simplicially m-connected. We freely use K. Brown’s homotopy-theoretic formulation of
sheaf cohomology; we refer the reader to [34, Part III] for more details. For example, if �

is a Nisnevich sheaf of abelian groups on Smk , there are Eilenberg–Mac Lane objects
K.�; n/ (see [34, p. 212]) such that

ŒX;K.�; n/�s Š H
n
Nis.X;�/

(see [34, Theorem 8.25]). Unless we mention otherwise, sheaf cohomology will always
be taken with respect to the Nisnevich topology.
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1. Motivic stable cohomotopy

In this section, we establish an analog in the A1-homotopy category of a result of Borsuk:
if U 2 Smk has Krull dimension � 2n � 2 and .X; x/ is a pointed A1-.n � 1/-connected
space, then, if n � 2, the set ŒU;X�A1 of free A1-homotopy classes of maps admits an
abelian group structure, functorial in both inputs. Section 1.2 studies the properties of the
construction in this generality. In Section 1.3 we specialize these results to the cases of
interest. The main results used from this section in subsequent sections are Theorems 1.1.1
and 1.3.4.

1.1. A primer on motivic spheres

Let Q2n�1 be the smooth quadric in A2nZ defined by the equation
nX
iD1

xiyi D 1:

Let Q2n be the smooth quadric in A2nC1Z defined by the equation
nX
iD1

xiyi D z.1 � z/:

In [2], the notation Q2n was used for an isomorphic quadric, namely change variables
xi 7! �xi , and z 7! �z for the isomorphism, and we implicitly use this isomorphism to
appeal to the results of [2] below. We equip Q2n with the base-point given by the class of
x1 D � � � D xn D y1 D � � � D yn D 0; z D 1. Our goal in this section is to recall various
facts about the geometry and A1-homotopy theory of such quadrics.

Naive homotopy classes. IfR is a ring, write as usual��R for the cosimplicial affine space
over R, i.e.,

�nR WD SpecRŒt0; : : : ; tn�=
�X
i

ti D 1
�
;

equipped with the usual coface and codegeneracy morphisms. If Y is a (pointed) smooth
k-scheme, then the assignment sending any k-algebra R to

SingA1 Y.R/ WD Y.��R/

defines a presheaf of simplicial sets on the category of smooth affine schemes. We refer
the reader to [43, p. 87] for more details; this construction extends in an evident way to
a presheaf of simplicial sets on Smk .

Since SingA1 Y is a presheaf of simplicial sets, we may take connected components
to obtain the naive connected components presheaf

�0.SingA1 Y /.R/ WD �0.SingA1 Y.R//:

The presheaf �0.SingA1 Y / extends in an evident way to a presheaf of sets on Smk

that is pointed if Y is pointed. The set �0.SingA1 Y /.R/ is also called the set of naive
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A1-homotopy classes of maps SpecR! Y . The following result connects the set of naive
homotopy classes of maps to “true” A1-homotopy classes (see [7, Definition 2.1.1] for the
definition of A1-naive simplicial presheaves).

Theorem 1.1.1. Assume k is a field, X D SpecR is a smooth affine k-scheme and n � 0
is an integer; if n is even and � 8, assume further that k has characteristic different
from 2. The quadric Qn is A1-naive; in particular, the map

�0.SingA1 Qn.R//! ŒX;Qn�A1

is a bijection, functorially in X .

Proof. See [7, Theorems 4.2.1 and 4.2.2] for the case where either n is odd or n is
even and � 4. If n D 6, then combine [8, Theorem 2.3.5 and Proposition 3.1.1] with
[7, Theorem 2.2.4]. To treat the case where k is finite, we appeal to [9, Theorem 2.11].

Remark 1.1.2. Below, we will routinely use the following consequence of this result:
every element of f 2 ŒX;Qn�A1 can be represented by an actual morphism of schemes
f W X ! Qn. In particular, building off this result and Proposition 1.2.5, we give a geo-
metric description of the abelian group structure on ŒX;Qn�A1 from Proposition 1.2.1.

Base change and perfect subfields. We refer the reader to [34, Chapter 8.3, p. 212] for
a discussion of sheaf cohomology formulated in terms of the local homotopy theory and
[6, Section 3.3] for some complementary results. Recall that a Nisnevich sheaf of groups
G is called strongly A1-invariant if the simplicial classifying space BG is A1-local.
A Nisnevich sheaf of abelian groups A is called strictly A1-invariant if the cohomol-
ogy presheaves U 7! H i .U;A/ are homotopy invariant for any i � 0. A sheaf of abelian
groups A is strictly A1-invariant if and only if the Eilenberg–Mac Lane spacesK.A; i/ are
A1-local for every i � 0. We use the following variant of Morel’s unstable A1-connec-
tivity property (see [10, Sections 2.2–2.3] for an axiomatic treatment).

Theorem 1.1.3 (Morel). Assume k is a field, and F � k is a perfect subfield. Suppose
.X; x/ 2 Spck;� is a pointed space that is pulled back from F . The following statements
hold:

(1) For any integer i � 1 (resp. i � 2), the homotopy sheaves �A1
i .X/ are strongly

A1-invariant (resp. strictly A1-invariant).

(2) If furthermore, �A1
1 .X/ is abelian, then it is strictly A1-invariant.

Proof. The results hold for F by appeal to [42, Theorem 6.1] and [42, Theorem 5.46].
The results for k follow immediately by standard base-change results [33, Lemmas A.2
and A.4].

Connectivity and cohomology of quadrics. We now introduce a notion of “cohomological
dimension” for a space by restricting attention to strictly A1-invariant sheaves.

Definition 1.1.4. If X 2 Smk , then say that X has A1-cohomological dimension � d if,
for any strictly A1-invariant sheaf B, H i .X;B/ vanishes for i > d . Likewise, say X has
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A1-cohomological dimension d (write d D cdA1.X/) if d is the smallest integer such
that X has A1-cohomological dimension � d .

We now collect some results describing the sense in which the varietiesQi are motivic
spheres and the sense in which they behave, cohomologically, like spheres in classical
homotopy theory.

Proposition 1.1.5. Assume k is a field. The following statements hold:

(1) The quadric Qi is a smooth affine scheme of dimension i .

(2) Q2n�1 is A1-weakly equivalent to †n�1G^nm and Q2n is A1-weakly equivalent
to †nG^nm ; thus

(a) the quadric Qi is at least A1-.b i
2
c � 1/-connected,

(b) the first non-vanishing homotopy sheaf of Qi appears in degree b i
2
c and, if

i D 2n � 1 or i D 2n, is isomorphic to KMW
n .

(3) If n > 0, for any strictly A1-invariant sheaf M,

H j .Q2n;M/ D

8̂<̂
:

M.k/ if j D 0;
M�n.k/ if j D n;
0 otherwise,

H j .Q2nC1;M/ D

8̂<̂
:

M.k/ if j D 0;
M�n�1.k/ if j D n;
0 otherwise.

Proof. The first statement is immediate from the definition. The second statement is
[2, Theorem 2.2.5]; the substatements follow from Morel’s unstable A1-connectivity the-
orem [42, Theorem 6.38] since an i -fold simplicial suspension is at least simplicially
.i � 1/-connected and Morel’s computation of the first non-vanishing A1-homotopy sheaf
of a motivic sphere [42, Theorem 6.40]; we implicitly appeal to Theorem 1.1.3 to make
statements over an arbitrary field (since spheres are defined over Spec Z). Since the map
Q2nC1 ! AnC1 n 0 (say projecting onto the x-variables) is an A1-weak equivalence,
the final statement follows from [3, Lemma 4.5] and the suspension isomorphism for
cohomology.

Chow–Witt groups of spheres. Chow–Witt groups were initially defined in [11] (though
they were called “oriented Chow groups” there) and studied in detail in [27, 28]. The
original definition is via cohomology of an explicit “twisted Gersten complex” (see, e.g.,
[28, Définition 10.2.16]). In [6, Theorem 2.11 (p. 611)], we showed that for any line bun-
dle L on a smooth schemeX , there is a twisted version of the Milnor–Witt K-theory sheaf
KMW.L/ on X and an identification

Hn.X;KMW
n .L// Š eCHn.X;L/

that respects the contravariant functoriality on Smk of each side. (Note: A priori the
twisted Chow–Witt groups on the right-hand side are Zariski cohomology groups, among
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other things, Zariski and Nisnevich cohomology groups of (twisted) strictly A1-invariant
sheaves on smooth schemes coincide.)

Chow–Witt groups also are equipped with localization sequences: ifZ �X is a closed
immersion of smooth schemes of codimension c and normal bundle �, then there is
a localization long exact sequence

� � �eCH i�c.Z; det �_/! eCH i .X/! eCH i .X nZ/! � � � ;

where det � is the determinant of � and the right-hand map is not in general surjective
[28, Corollaire 10.4.11].

The subvariety Zn � Q2n defined by

x1 D � � � D xn D z D 0

is isomorphic to An and comes equipped with a trivialization of the normal bundle. The
complementX2n WD Q2n nZn is A1-contractible by [2, Theorem 3.1.1]. Using the local-
ization sequence for this inclusion and A1-homotopy invariance of Chow–Witt groups
[28, Corollaire 11.3.3], there is a distinguished isomorphism

Hn.Q2n;KMW
n / Š KMW

0 .k/:

We want to write an explicit generator for Hn.Q2n;KMW
n /; we do this in terms of the

Gersten–Schmid resolution of KMW
n (see [42, Section 5.1 and Corollaries 5.43–5.44]). The

generic point of Zn is an element zn of Q.n/
2n . The maximal ideal of OQ2n;zn is generated

by the classes of x1; : : : ; xn and we can consider x1 ^ � � � ^ xn 2 ^n.mzn=m
2
zn
/. Finally,

we obtain an element in KMW
0 .k.zn/;^

n.mzn=m
2
zn
//:

˛ D h1i ˝ x1 ^ � � � ^ xnI

by unwinding the devissage isomorphism, one may establish the following result, which
shows that the element just described provides an explicit generator for eCHn.Q2n/.

Lemma 1.1.6 ([2, Lemma 4.2.6]). The element

˛n 2 KMW
0 .k.zn/;^

n.mzn=m
2
zn
//

is a cycle in the Gersten–Schmid complex. Moreover, its class generates eCHn.Q2n/ as
a KMW

0 .k/-module.

1.2. Abelian group structures on mapping sets

In this subsection, we give two equivalent constructions of a functorial abelian group
structure on sets of homotopy classes of maps. The second is essentially Borsuk’s clas-
sical construction, transplanted in our context; this version has the benefit that it can be
made very explicit and will be used to derive concrete formulas for the composition in
special cases (see Proposition 1.2.3). The first construction we present is a modernized
version of Borsuk’s construction (see Proposition 1.2.1); this version has the benefit of
rendering various properties of the group structure entirely formal. The equivalence of
the two constructions is established in Proposition 1.2.5 and various functorial properties,
including the existence of the Hurewicz homomorphism, are studied in Proposition 1.2.6.
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Group structures on mapping sets: A modern approach. Recall the notion of h-cogroup
[1, Definition 2.2.7] and h-group [1, Definition 2.2.1]. The quintessential example of an
h-cogroup is given by the classical sphere S itop, i � 1, and the fold map S itop ! S itop _ S

i
top.

By choosing a suitable simplicial model of S itop, one obtains an h-cogroup structure on
the simplicial sphere S i . It follows that the constant simplicial presheaf S i has the struc-
ture of an h-co-group object in the category of simplicial presheaves, inherited from the
sectionwise h-cogroup structure of the simplicial set S i . More generally, one obtains
a functorial in Y h-cogroup structure on †iY for any pointed space Y.

By adjunction, and appeal to the corresponding facts for simplicial sets, the space
�iY then carries a functorial h-group structure; if i � 2, it has a functorial structure
of homotopy commutative h-group. In particular, for any U 2 SmS , the set of pointed
maps ŒUC; �i†iY� has the structure of a group, functorially in both inputs; this group is
automatically abelian whenever i � 1.

By appeal to the loop-suspension adjunction, for any pointed space Y, there are maps
Y! �i†iY for every i � 0. The Freudenthal suspension theorem identifies the con-
nectivity of the map Y! �i†iY at least under assumptions on the connectivity of Y.
By appeal to obstruction theory arguments, we will now transport the group structure on
ŒUC; �

i†iY� to one on ŒU;Y�A1 , at least under suitable hypotheses on the Krull dimension
of U and on the connectivity of Y.

Proposition 1.2.1. Assume k is a field, and n � 2 is an integer. Suppose X is a pointed
k-space that is A1-.n � 1/-connected and pulled back from a perfect subfield of k (e.g.,
the prime field). If U 2 Smk has A1-cohomological dimension d � 2n � 2, then for any
integer i � 1, the map

ŒU;X�A1 Š ŒUC; .X; x/�A1 ! ŒUC; �
i†i .X; x/�A1

induced by the pointed map .X; x/! �i†i .X; x/ is a bijection, functorial in both inputs.
Moreover, the group structure on ŒU;X�A1 induced in this fashion is abelian, and functo-
rial with respect to both inputs.

Proof. Under the stated assumptions on k, we may appeal to the results of Morel in
[42, Section 6]; see [10, Sections 2–3] for a more axiomatic treatment of these results.
We begin by collecting a number of connectivity statements. By assumption, X is at least
A1-.n � 1/-connected for some integer n � 2. In particular, it is at least A1-1-connected.
Note that LA1X is then simplicially .n � 1/-connected by definition, and thus †iLA1X

is at least simplicially .nC i � 1/-connected. Morel’s unstable A1-connectivity theorem
[42, Theorem 6.38] implies that†iLA1X is also at least A1-.nC i � 1/-connected. Since
the map X! LA1X is an A1-weak equivalence, we conclude by appeal to [43, Section 2,
Lemma 2.13] that †iX is also at least A1-.nC i � 1/-connected.

Since n � 2, we deduce that the canonical map LA1�†X! �LA1†X is a simpli-
cial weak equivalence by [42, Theorem 6.46] (see also [10, Theorem 2.4.1]). For later
use, the above connectivity estimates and an induction argument guarantee that the map
LA1�

i†iX! �iLA1†
iX is a simplicial weak equivalence as well. Since X is at least

A1-.n � 1/-connected, the above connectivity estimates also allow us to conclude that
�iLA1†

iX is at least A1-.n � 1/-connected.
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Morel’s A1-suspension theorem [42, Theorem 6.61] states that, under the above hypo-
theses, the map X! �LA1†X is an A1-.2n � 2/-connected (i.e., the A1-homotopy fiber
F of this morphism is at least A1-.2n � 2/-connected). Granted this, we may appeal to the
A1-Moore–Postnikov factorization of the map X! �LA1†X (see [5, Theorem 6.1.1])
in order to analyze whether a pointed map f W UC ! �LA1†X lifts to X. Since the
fundamental groups of X! �LA1†X are both trivial, the A1-Moore–Postnikov factor-
ization becomes a tower of principal fibrations (so the statement of [5, Theorem 6.1.1] is
considerably simplified).

Now, suppose we have a morphism f W UC ! �LA1†X. Using the assumption on
the A1-cohomological dimension ofU and appealing to the lifting procedure described on
[5, p. 1055], one sees that f lifts uniquely up to A1-homotopy to a map Qf W UC ! X. In
more detail, the obstructions to lifting UC to a morphism UC ! X are inductively defined
elements of the group H iC1.U;�i .F//. If a given obstruction vanishes, then the space of
lifts is parameterized by a quotient of H i .U;�i .F//. Since �i .F/ D 0 for i � 2n � 2
by assumption, and H i .U;M/ D 0 for any strictly A1-invariant sheaf M and any integer
i > 2n � 2 by the assumption on the A1-cohomological dimension of U , it follows that
the obstruction groups at every stage are always trivial, and that there is a uniquely defined
lift at every stage. Furthermore, by [3, Lemma 2.1], since X is A1-1-connected, the map
ŒUC;X�A1 ! ŒU;X�A1 “forgetting the base-point” and the corresponding map with X

replaced by �†X are bijections, functorially in both inputs. By transport of structure,
ŒU;X�A1 inherits a group structure.

To see that the group structure on ŒU;X�A1 described above is abelian is also straight-
forward. The connectivity estimates of the first paragraph combined with Morel’s simpli-
cial suspension theorem imply that the map †X! �†2X is A1-2n-connected and the
map�†X! �2†2X is A1-.2n � 1/-connected. Since the map in the previous line is an
h-map and�2†2X is homotopy commutative, for U as in the statement the induced map
ŒU;�†X�A1 ! ŒU;�2†2X�A1 is an isomorphism of groups and thus the former is nec-
essarily abelian; this also establishes the result for i D 1, and also for i D 2. For i � 2,
one proceeds inductively and shows that the map ŒU;�i�1†i�1X�A1 ! ŒU;�i†iX�A1
is always a bijection.

We now show that set of free homotopy classes of maps ŒU;X�A1 can be identified
with maps in a stable homotopy category. Write SHS1A1 for the S1-stable A1-homotopy
category (see, for example, [41, Definition 4.1.1]). This category may be constructed
using an “injective” model structure similar to that we used for the unstable A1-homotopy
category. However, filtered colimits of fibrant objects are not particularly well-behaved in
the injective model structure, so it will be helpful to use different model structures, namely
the motivic model structure of [24, Theorem 2.12]; in this model structure filtered colimits
in Spck;� preserve fibrant objects by [24, Corollary 2.16].

Recall from [24, Definition 2.3] that a (pointed) simplicial presheaf F is fibrant with
respect to the motivic model structure if for every smooth scheme X the following con-
ditions hold: (i) F.X/ is a Kan complex, (ii) the projection X �A1 ! X induces a weak
equivalence of simplicial sets F.X/! F.X �A1/, (iii) F satisfies Nisnevich excision,
i.e., F takes Nisnevich distinguished squares to homotopy pullback squares and F.;/ is
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contractible. The category Spck;� is a simplicial model category with the usual notion
of simplicial mapping space Map.X;Y/ (see [43, p. 47]). The weak equivalences in the
motivic model structure on Spck;� coincide with the Morel–Voevodsky weak equiva-
lences, and [24, Theorem 2.17] shows that the identity functor induces a Quillen equiva-
lence between this model category and the version of the unstable A1-homotopy category
we have used so far.

Write Sptk for the category of S1-spectra of motivic spaces: this is constructed just as
in [24, Section 2.2], i.e., an S1-spectrum is a sequence of motivic spacesEn together with
structure maps � W †En ! EnC1, and morphisms of spectra are morphisms of sequences
commuting with the structure maps. An S1-spectrum E is fibrant if and only if it is level-
wise fibrant and an�-spectrum. The category Sptk is a simplicial model category as well,
and we abuse notation slightly by writing Map.�;�/ for the simplicial mapping space in
this category. The category Sptk is a stable simplicial model category (this follows from
the fact that the threefold permutation on S1 ^ S1 ^ S1 acts as the identity, which one
deduces immediately from the corresponding fact for simplicial sets).

If Y is a pointed space, we write †1Y for the S1-suspension spectrum attached to Y.
There are then standard simplicial Quillen adjunctions

†1 W Spck;� � Sptk W �
1:

If E and E 0 are S1-spectra, we will abuse notation and write

ŒE;E 0�A1 WD Hom
SHS

1

A1
.E;E 0/:

Our next result says that ŒU;X�A1 can, under suitable hypotheses, be identified in terms
of mappings in the S1-stable homotopy category.

Proposition 1.2.2. Suppose k is a field, X is a pointed k-space pulled back from a perfect
subfield, and fix an integer n � 2. If X is A1-.n � 1/-connected space, and U 2 Smk has
A1-cohomological dimension d � 2n � 2, then the map

ŒU;X�A1 ! Œ†1UC; †
1X�A1

is a bijection, functorial in both inputs.

Proof. This result is essentially a compactness argument, and we give a detailed outline
of the proof; related results are established in [23, Section 9]. Let .En/n�0 be a level-
wise fibrant replacement of †1X (i.e., En is a fibrant replacement of †nX) and let E be
a fibrant replacement of †1X. Since filtered colimits in Spck;� preserve fibrant objects,
it follows that there is a simplicial weak equivalence of the form �1E Š colimn�

nEn.
If F is a pointed fibrant space, then there is an identification of unpointed mapping

spaces Map.U;F/ D F .U /. Thus, we conclude that there is an identification of pointed
mapping spaces Map.UC;F / D F .U / as well. Since UC is !-compact in Spck;�, we
conclude that

Map.UC; colimn�
nEn/ Š colimn Map.UC; �nEn/:

Combining this fact with the evident adjunctions, we see that there is a sequence of
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homotopy equivalences of Kan complexes of the form

MapSptk
.†1UC; †

1X/ Š MapSpt.†
1UC; E/

Š Map.UC; �1E/
Š Map.UC; colimn�

nEn/

Š colimn Map.UC; �nEn/
Š colimn Map.†nUC; En/:

Since �0 preserves filtered colimits of simplicial sets, we conclude that

colimnŒ†
nUC; †

nX�A1 Š Œ†
1UC; †

1X�A1 :

By adjunction there are functorial identifications ŒUC; �n†nX�A1 Š Œ†nUC; †nX�A1 .
Using Proposition 1.2.1, we conclude that the transition maps in colimnŒ†

nUC; †
nX�A1

are all bijections.

Borsuk’s original construction. In this subsection, we give the analog of Borsuk’s clas-
sical construction of the composition on cohomotopy. If Y is a pointed space, we use the
following notation: � W Y! Y � Y is the diagonal map, r W Y _ Y! Y is the fold map,
and Y _ Y! Y � Y is the canonical cofibration.

If X is an .n � 1/-connected space, U 2 Smk , and f; g W U ! X are morphisms, then
we can contemplate the following diagram:

X _ X

��

r // X.

U
� // U � U

f �g
// X � X

If we can lift the composite .f � g/ ı� to a morphism .f; g/ W U ! X _ X, then com-
posing with the fold map, we obtain a map r.f; g/ that we can think of as the product
of f and g. In general, there is an obstruction to producing such a lift, and even if a lift
exists it need not be unique. However, with suitable dimension restrictions imposed on U ,
lifts exist and will be unique.

Proposition 1.2.3. Assume k is a field, X is a pointed k-space that is pulled back from
a perfect subfield of k and n � 2 is an integer. If X is A1-.n � 1/-connected space and
if U 2 Smk has A1-cohomological dimension d � 2n � 2, then composition with the
canonical map X _ X! X � X induces a bijection

ŒU;X _ X�A1 ! ŒU;X � X�A1

functorial in both U and X.

Proof. It follows from [10, Corollary 3.3.11] that the map

X _ X! X � X

is an A1-.2n � 2/-equivalence and the argument is a straightforward obstruction theory
argument completely parallel to that in Proposition 1.2.1.
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Definition 1.2.4. Assume k is a field, n � 2 is an integer, X is a pointed A1-.n � 1/-con-
nected space pulled back from a perfect subfield of k, andU 2 Smk has A1-cohomological
dimension d � 2n � 2. Given two elements f; g 2 ŒU;X�A1 , we set �.f; g/ WD r.f; g/,
where .f; g/ W U ! X _ X is the unique lift of .f � g/ ı� W U ! X � X guaranteed to
exist by Proposition 1.2.3.

Comparing the composition operations. The next result shows that when the composition
operations of Propositions 1.2.1 and 1.2.3 are both defined, they coincide.

Proposition 1.2.5. Assume k is a field and fix an integer n � 2. If X is an A1-.n � 1/-con-
nected space pulled back from a perfect subfield of k andU 2 Smk has A1-cohomological
dimension d � 2n � 2, then given f; g 2 ŒU;X�A1 , the class �.f; g/ coincides with the
product of f; g from Proposition 1.2.1.

Proof. If Y is any pointed h-space with multiplication m, then the unit condition can be
phrased as the existence of a homotopy commutative diagram of the form

Y _ Y
r //

��

Y

Y � Y
m
// Y.

(1.1)

We now apply this observation with Y D X and Y D �†X , where X is A1-.n � 1/-con-
nected and contemplate some obvious diagrams.

First, there is a homotopy commutative diagram of the form

X _ X //

��

�†X _�†X

��

X � X // �†X ��†X.

Thus, if the element h 2 ŒU;X � X�A1 lifts to Qh 2 ŒU;X _ X�A1 , then the induced class in
ŒU;�†X ��†X�A1 lifts to ŒU;�†X _�†X� as well.

Now, the homotopy commutativity of diagram (1.1) together with functoriality of the
fold map yields a homotopy commutative diagram of the form

X _ X //

��

X

��

�†X _�†X //

��

�†X

��

�†X ��†X
m // �†X.

Given maps f; g 2 ŒU;X�A1 , since the map ŒU;X�A1 ! ŒU;�†X�A1 is a bijection, the
homotopy commutativity of the above diagram together with the lifting observation of the
previous paragraph show that �.f; g/ D m.f; g/.
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Further functoriality properties. Note that if X is an A1-.n � 1/-connected space, setting
� D �A1

n .X/, the first non-trivial layer of the A1-Postnikov tower provides an A1-homo-
topy class of maps X! K.�; n/. The space K.�; n/ is also an A1-.n � 1/-connected
space. If U 2 Smk has Krull dimension � 2n � 2, then the set ŒU;K.�; n/�A1 a priori
admits two abelian group structures: one coming from Proposition 1.2.1 (i.e., induced by
the h-group structure on �†K.�; n/) and one from the h-space structure of Eilenberg–
Mac Lane spaces. The stabilization map K.�; n/! �†K.�; n/ is a map of h-groups,
and thus in the range of dimensions under consideration, the two abelian group structures
under consideration necessarily coincide. The map X! K.�; n/ yields a homomorphism

ŒU;X�A1 ! Hn.U;�/

arising from the functoriality clause of Proposition 1.2.1; this homomorphism is often
referred to as a Hurewicz homomorphism. The map X!K.�; n/ corresponds to a canon-
ically defined cohomology class ˛X 2 Hn.X;�/ (in fact, the coskeletal description of the
Postnikov tower [25, Section 1.2 (vi)] provides a canonical representing cocycle) that we
will refer to as a fundamental class.

Proposition 1.2.6. Assume k is a field, n � 2 is an integer, X is a pointed A1-.n�1/-con-
nected space pulled back from a perfect subfield of k, � WD �A1

n .X/, and U 2 Smk is
a smooth scheme of A1-cohomological dimension d � 2n � 2.

(1) The Hurewicz homomorphism

ŒU;X�A1 ! Hn.U;�/:

is surjective if d � nC 1 and an isomorphism if d � n.

(2) If f 2 ŒU;X�A1 is an A1-homotopy class of maps, and ˛X 2 Hn.X;�/ is the funda-
mental class, then the image of f under the Hurewicz homomorphism is f �˛X, where
f � W Hn.X;�/! Hn.U;�/ is the pullback by f .

Proof. For the first statement, begin by observing that K.�; n/ is precisely the n-th stage
of the A1-Postnikov tower of X. Then the obstructions to lifting to the .nC i/-st stage of
the A1-Postnikov tower lie in HnCiC1.U;�A1

nCi .X//, and the space parameterizing lifts
are quotients of HnCi .U;�A1

nCi .X//. If U has A1-cohomological dimension � nC 1,
then all the obstruction groups vanish. If U furthermore has A1-cohomological dimen-
sion � n, then the possible choices of lifts are necessarily unique. Combining these
observations yields the stated surjectivity and bijectivity assertions.

The second statement follows immediately from the definition of the Hurewicz map
and the fundamental class.

1.3. Motivic cohomotopy sets made concrete

We now specialize the results of the previous section to the cases of interest in this
paper, namely the quadrics Q2n�1 and Q2n. In this context, we define motivic coho-
motopy sets, observe in Theorem 1.1.1 that these group structures have concrete algebro-
geometric interpretations, and then study the Hurewicz homomorphism in great detail
(Theorem 1.3.4).
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Motivic cohomotopy groups. The following definition is a motivic analog of the classical
notion of cohomotopy (we have chosen indexing to agree with the indexing in motivic
cohomology); by the observations just made, these cohomotopy sets can be identified as
maps into suitable quadrics in certain cases. We refer the reader to the preliminaries for
our conventions regarding spheres.

Definition 1.3.1 (Motivic cohomotopy). Assume i; j are positive integers and U 2 Smk .
The unstable motivic cohomotopy sets of U are defined by the formula

� i;j .U / WD ŒU; S i;j �A1 :

The stable motivic cohomotopy groups are defined by the formula

� i;js .U / WD Œ†1UC; †
1S i;j �A1 :

Theorem 1.3.2. Assume k is a field. The following statements are true:

(1) If n � 2, i � j � n, and U 2 Smk has A1-cohomological dimension d � 2n � 2,
then the evident map � i;j .U /! �

i;j
s .U / is a bijection.

(2) If j W W ! X is an open immersion and ' W V ! X is an étale morphism such that
the pair .j; '/ give rises to a Nisnevich distinguished square, i.e., if

'�1.X nW /red ! .X nW /red

is an isomorphism, then there is a Mayer–Vietoris long exact sequence of the form

� � � ! � i;js .X/! � i;js .W /˚ � i;js .V /! � i;js .W �X V /! � iC1;js .X/! � � � :

Proof. Since spheres are defined over Spec Z (in particular over the prime field) and
i � j � n, Morel’s unstable A1-connectivity theorem [42, Theorem 6.38] implies that
the space S i;j is at least A1-.n � 1/-connected. Bearing this in mind, the first statement
is then an immediate consequence of Proposition 1.2.1.

The second statement follows from the existence of a Mayer–Vietoris distinguished
triangle:

†1.W �X V /C ! †1.W t V /C ! †1XC:

Remark 1.3.3. There are also external product maps for motivic cohomotopy sets. For
suitable choices of base-point there are pointed A1-weak equivalences of the form

Q2m ^Q2n Š Q2.nCm/:

Therefore, given morphisms f W X ! Q2m and g W X ! Q2n, we can form the compos-
ite morphism

XC
ı
���! XC ^XC

f ^g
���! Q2m ^Q2n

�
���! Q2.nCm/:

This composite defines a functorial morphism

�2m;m.X/ � �2n;n.X/! �2.mCn/;mCn.X/:
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The resulting composite depends on the chosen weak-equivalence

Q2m ^Q2n Š Q2.nCm/

only up to isomorphism, and a straightforward computation of the A1-homotopy class of
the map switching factors [10, proof of Theorem 4.4.1] shows that the resulting product
is .��/-graded commutative (in m and n), where �� D �h�1i 2 GW.k/ in the notation
of [42, Section 3.1].

The Hurewicz map made concrete. We analyze the Hurewicz map of Proposition 1.2.6 in
the case where X D Q2n. Indeed, in that case, recall from Proposition 1.1.5 that Q2n is
A1-.n � 1/-connected, and has �A1

n .Q2n/ Š KMW
n . In Lemma 1.1.6, we gave an explicit

generator of the KMW
0 .k/-moduleHn.Q2n;KMW

n /. Since the fundamental class of Propo-
sition 1.2.6 (2) is another module generator of Hn.Q2n;KMW

n /, it follows that ˛n and
˛Q2n differ from each other by a constant unit � 2 KMW

0 .k/.
By the discussion preceding Lemma 1.1.6, there are canonical and functorial iso-

morphismsHn.U;KMW
n / Š eCHn.U / for any smooth k-scheme U . Then, combining the

isomorphism of Theorem 1.1.1 and Proposition 1.2.6 the Hurewicz morphism may be
viewed as a morphism:

�0.SingA1 Q2n/.U /
�
�! ŒU;Q2n�A1 �! Hn.U;KMW

n / Š eCHn.U /

sending a morphism f W U ! Q2n to the class f �˛n 2 eCHn.U /. Putting everything
together with Proposition 1.2.1 and using the notation of Definition 1.3.1, we may sum-
marize the discussion so far in the following omnibus result.

Theorem 1.3.4. Fix an integer n � 2. If k is a field having characteristic not equal to 2
andU is a smooth k-scheme of A1-cohomological dimension d � 2n � 2, then the binary
operation � of Definition 1.2.4 equips �2n;n.X/ with a functorial structure of abelian
group. The Hurewicz homomorphism

�2n;n.U / D ŒU;Q2n�A1 ! eCHn.U /;

has the following properties:

(1) It is surjective if d � nC 1 and an isomorphism if d � n.

(2) It sends a map f W U ! Q2n representing a class in �2n;n.X/ to ��1f �˛n, where
the class ˛n differs from the “fundamental class” ˛Q2n of eCHn.Q2n/ by a constant
unit � 2 KMW

0 .k/�.

2. Group structures and naive A1-homotopy classes

This section is the algebraic and geometric heart of the paper. Recall from Theorem 1.1.1
that there is an identification �0.SingA1 Q2n/.U / Š ŒU;Q2n�A1 for U a smooth affine
k-scheme. Combining this fact with Proposition 1.2.5 (with X D Q2n), we see that if U
has A1-cohomological dimension � 2n � 2, the set �0.SingA1 Q2n/.U / inherits a func-
torial abelian group structure via the operation � .



A. Asok, J. Fasel 2794

In Section 2.1, we review some results of [30] and some preliminary moving lemmas
that allow us to identify maps U ! Q2n in “ideal-theoretic” terms. In Section 2.2 we use
these ideas to give a completely algebraic description of the composition operation � ; this
is achieved in Theorem 2.2.10.

2.1. Naive homotopies of maps to quadrics

IfR is a ring, then elements ofQ2n.R/ are sequences .a1; : : : ; an; b1; : : : ; bn; s/ 2R2nC1

satisfying the equation definingQ2n; we will write .a; b; s/ for such a triple with implicit
understanding that a D .a1; : : : ; an/, and b D .b1; : : : ; bn/. As the notation indicates,
we will frequently think of a 2 Rn as a row vector, and write at for the column vector
obtained by transposing a. Given a; b 2 Rn, and s 2 R the assertion that .a; b; s/ defines
a class in Q2n.R/ can equivalently be written as the equality abt D s.1 � s/.

If .a; b; s/ defines a class in Q2n.R/, we can consider the ideal

I WD ha; si WD ha1; : : : ; an; si � R:

We write ai for the image of ai under the map I ! I=I 2. The next result shows that,
conversely, given an ideal I in R together with lifts of generators of I=I 2, there is an
induced morphism SpecR! Q2n.

Lemma 2.1.1 ([40, Lemma, p. 533]). Given an ideal I and a sequence .a1; : : : ; an/ of
elements in I such that I=I 2 D ha1; : : : ; ani, there exist s 2 I and b1; : : : ; bn 2 R such
that I D ha1; : : : ; an; si and .a; b; s/ is an element of Q2n.R/.

Proof. By construction,M WD I=ha1; : : : ; ani is a finitely generated R-module such that
M=IM D 0. Nakayama’s lemma implies that there exists an element s 2 I such that
.1 � s/M D 0. For any element m 2 I , we conclude that m D

P
liai Cms and thus

I D ha1; : : : ; an; si. The statement follows by considering the special case m D s.

Using this observation, the naive A1-homotopy class of an element .a; b; s/ 2Q2n.R/
is essentially determined by ha; si; this idea is encoded in the following lemmas.

Lemma 2.1.2. Suppose R is a commutative unital ring. If a; b; b0 2 Rn and s 2 R are
such that .a; b; s/ and .a; b0; s/ are elements of Q2n.R/, then Œ.a; b; s/� D Œ.a; b0; s/� in
�0.SingA1 Q2n/.R/.

Proof. We construct an explicit naive homotopy. Set B WD b C T .b0 � b/ and note that
B.0/ D b and B.1/ D b0. Unwinding the definition, we see that .a; B; s/ 2 Q2n.RŒT �/
gives the required naive homotopy.

Lemma 2.1.3. Suppose R is a commutative ring and I � R is a finitely generated ideal.
Suppose we are given elements a1; : : : ; an; s; s0 2 I such that .1� s/I � ha1; : : : ; ani
and .1� s0/I � ha1; : : : ; ani. If b; b0 2 Rn are such that .a; b; s/; .a; b0; s0/ 2 Q2n.R/,
then Œ.a; b; s/� D Œ.a; b0; s0/� in �0.SingA1 Q2n/.R/.

Proof. Set S WD s0 C T .s � s0/ 2 RŒT � so S.0/ D s0 and S.1/ D s. Since s0 and s � s0

lie in I , we see that S 2 I ŒT �. By assumption ha; si � I and .1 � s/I � hai; we thus
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conclude I D ha; si. We claim that .1 � S/I ŒT � � ha1; : : : ; ani � RŒT �, and to show
this it suffices to check that .1 � S/s 2 hai � RŒT �.

Since .1 � s0/I � hai, we know that .1 � s0/s � hai and we may find c1; : : : ; cn 2 R
such that .1� s0/s D act . Then abt �act D s� s2� .s� s0s/ D s.s0� s/ 2 hai. It fol-
lows that

.1 � S/s D .1 � s0 � T .s � s0//s D .1 � s0/s � T s.s � s0/

lies in ha1; : : : ; ani as well. By appeal to Lemma 2.1.1, we conclude that there exists an
element B 2 RŒT �n such that .a; B; S/ 2 Q2n.RŒT �/ and Œ.a; B.0/; s0/� D Œ.a; B.1/; s/�
in �0.SingA1 Q2n/.R/.

To conclude, we appeal to Lemma 2.1.2 to deduce that Œ.a; B.1/; s/� D Œ.a; b; s/� in
�0.SingA1 Q2n/.R/ and also that Œ.a; B.0/; s0/� D Œ.a; b0; s0/�.

Lemma 2.1.4. Suppose R is a commutative ring and I � R is a finitely generated ideal.
If .a; b; s/ and .a0; b0; s0/ determine elements of Q2n.R/ satisfying the following proper-
ties:

(i) the elements a1; : : : ; an; a01; : : : ; a
0
n 2 I ,

(ii) for i D 1; : : : ; n, ai � a0i 2 I
2, and

(iii) I=I 2 D ha1; : : : ; ani D ha1
0; : : : ; an

0
i,

then the naive A1-homotopy classes Œ.a; b; s/� and Œ.a0; b0; s0/� coincide in the presheaf
�0.SingA1 Q2n/.R/.

Proof. Set A WD .a1 C .a01 � a1/T; : : : ; an C .a
0
n � an/T /. Since I=I 2 D ha1; : : : ; ani,

we conclude that the classes of ai � .a0i � ai /T modulo I ŒT �2 generate I ŒT �=.I ŒT �/2. By
appeal to Lemma 2.1.1, we conclude that there exist elements S 2 I ŒT � and B 2 RŒT �n

such that .A;B; S/ 2 Q2n.RŒT �/. Thus,

Œ.a; B.0/; S.0//� D Œ.a0; B.1/; S.1//�

in �0.SingA1 Q2n/.R/. The elements .a; S.0// and .a; s/ satisfy the hypotheses of Lem-
ma 2.1.3 and the same statement holds for .a0; S.1// and .a0; s0/. Thus, we conclude that
these classes are also naively homotopic and conclude.

Moving maps with target Q2n. In order to describe the abelian group structure on
�0.SingA1 Q2n.R// geometrically, it will be helpful to be able to move maps toQ2n into
“general position". We now describe a procedure to do this, inspired by [37, Lemma 4.3]
(or [14, Corollary 2.14] when n D dim.R/). If .a; b; s/ 2 Q2n.R/ as above, then the ideal
ha; si need not have height n, however, Lemma 2.1.5 will demonstrate that .a; b; s/ is
naively A1-homotopic to an element of Q2n.R/ for which the associated ideal does have
height n.

Lemma 2.1.5. SupposeR is a Noetherian ring and .a; b; s/ 2Q2n.R/. If J1; : : : ; Jr �R
are ideals such that dim.R=Ji / � n � 1 for i D 1; : : : ; r , then there exists a sequence
� D .�1; : : : ; �n/ 2 R

n and an ideal

N WD haC �.1 � s/2; s C �bt .1 � s/i;
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such that the following statements hold:

(1) the sequence .aC.1�s/2�;b.1��bt /; sC�bt .1�s// yields an element ofQ2n.R/,

(2) the naive A1-homotopy classes Œ.aC �.1 � s/2; b.1 � �bt /; s C �bt .1 � s//� and
Œ.a; b; s/� coincide,

(3) ht.N / � n, and

(4) Ji CN D R for i D 1; : : : ; r .

Proof. We appeal to the results of Eisenbud and Evans [26], as generalized by Plumstead
[47, p. 1420]. To this end, let A � SpecR be the set of prime ideals p � R such that
.1 � s/ 62 p and ht.p/ � n � 1. Let moreover

Bi WD V..Ji /.1�s// � SpecR.1�s/ � SpecR for i D 1; : : : ; r

and B D
S
i Bi . Since R is Noetherian, the restriction of the usual dimension function

on Spec.R.1�s// to A is a generalized dimension function d W A! N in the sense of
[47, Definition, p. 1419] (cf. [47, Example 1]). Likewise, let di W Bi ! N be the usual
dimension function on V..Ji /.1�s//. As in [47, Example 2], we obtain a generalized
dimension function ı W A [B ! N such that ı.p/ � n � 1 for any p 2 A [B.

Now, we apply the Eisenbud–Evans theorems to the finitely generated free R-module
Rn with the generalized dimension function ı on A [B. Then, if .a; .1 � s/2/ is unimod-
ular at A [B, we conclude that there exists a sequence � D .�1; : : : ; �n/ 2 Rn such
that the row .a1 C �1.1 � s/

2; : : : ; an C �n.1 � s/
2/ is unimodular at A [B (a priori

the Eisenbud–Evans results are formulated in terms of basic elements, however the two
notions coincide for finitely generated free modules [26, Lemma 1]).

To establish points (1) and (2), observe that if we set A D aC T .1 � s/2� 2 RŒT �n,
then

Abt D abt C T .1� s/2�bt D s.1� s/C T .1� s/2�bt D .1� s/� .1� s/2.1� T�bt /:

Multiplying both sides by .1 � T�bt /, we obtain the equality

Abt .1 � T�bt / D .1 � s/.1 � T�bt / � .1 � s/2.1 � T�bt /2:

Setting B D .1 � T�bt /b, one deduces that .A;B; .1 � s/.1 � T�bt // 2 Q2n.RŒT �/.
It follows that .A;B; 1 � .1 � s/.1 � T�bt // D .A;B; s C T�bt .1 � s// 2 Q2n.RŒT �/.
The first two points then follow by evaluating the homotopy at T D 0; 1.

To establish points (3) and (4), observe that

haC�.1� s/2i D haC�.1� s/2; .1� s/.1��bt /i \ haC�.1� s/2; sC�bt .1� s/i

D haC�.1� s/2; .1� s/.1��bt /i \N:

If p is a prime ideal such thatN � p, it follows that s C �bt .1 � s/ 2 p and therefore that
1 � .s C �bt .1 � s// D .1 � s/.1 � �bt / 62 p. Consequently, .1 � s/ 62 p. Moreover, we
have haC�.1� s/2i �N � p. As .a1C�1.1� s/2; : : : ; anC�n.1� s/2/ is unimodular
at A [B, it follows that p 62 A [B. Therefore, p 62 [iV.Ji / and condition (4) follows.
Similarly, p 62 A and condition (3) is also satisfied.
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2.2. A geometric description of the composition on cohomotopy groups

In order to describe the group structure on ŒU;Q2n�A1 explicitly, it is convenient to use the
description of the product given in Definition 1.2.4; recall that this composition coincides
with that described in Proposition 1.2.1 by appealing to Proposition 1.2.5. More precisely,
given f; g W U ! Q2n, we consider the following diagram:

Q2n _Q2n
r //

��

Q2n.

U
� // U � U

f �g
// Q2n �Q2n

In order to make these constructions more explicit, we will provide a model ofQ2n _Q2n
as a smooth affine scheme. Given such a model, appeal to Theorem 1.1.1 allows us to
deduce that the mapsQ2n _Q2n ! Q2n �Q2n andQ2n _Q2n ! Q2n may be repre-
sented by explicit morphisms of smooth affine schemes, unique up to naive A1-homotopy.

A smooth model of Q2n _Q2n. As discussed before Lemma 1.1.6, recall that Zn is the
closed subscheme of Q2n defined by x1 D � � � D xn D z D 0 and the open complement
X2n WD Q2n nZ2n is A1-contractible by [2, Theorem 3.1.1]. As X2n is A1-contractible,
the inclusion of the base-point inX2n yields a commutative diagram of smooth k-schemes
of the form

Q2n

��

�oo //

��

Q2n

��

Q2n �X2n X2n �X2noo // X2n �Q2n,

where all vertical morphisms are A1-weak equivalences. In particular, the evident map of
homotopy colimits is also an A1-weak equivalence.

Since all the horizontal morphisms in this diagram are cofibrations, the homotopy
colimit of each row coincides with the actual colimit. The colimit of the top row is, by
definition, the wedge sum. On the other hand, the colimit of the bottom row is simply the
union in Q2n �Q2n of Q2n �X2n and X2n �Q2n, i.e., it is the open subscheme of the
product Q2n �Q2n whose closed complement is Zn �Zn. The induced map of colimits
thus yields a morphism

Q2n _Q2n ! .Q2n �Q2n/ n .Zn �Zn/

that we will refer to as the natural inclusion. The next result is an immediate consequence
of these observations.

Lemma 2.2.1. Fix a base-point in X2n and point Q2n by its image. The coproduct-to-
product map Q2n _Q2n ! Q2n �Q2n factors as

Q2n _Q2n ! .Q2n �Q2n/ n .Zn �Zn/! Q2n �Q2n;

where the first morphism is the natural inclusion and is an A1-weak equivalence, and the
second morphism is an open immersion.
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A smooth affine model ofQ2n _Q2n. Granted thatQ2n _Q2n admits an explicit model
as a smooth scheme, we may use the Jouanolou trick to obtain a smooth affine model.
More precisely, the Jouanolou trick shows that there exists an affine vector bundle torsor

� WEQ2n _Q2n ! .Q2n �Q2n/ n .Zn �Zn/;

see [56, Definition 4.2]. The following example gives a general construction of Jouanolou
devices.

Construction 2.2.2. SupposeX is any regular affine scheme, andZ � X is a closed sub-
scheme equipped with a choice f1; : : : ; fr of generators of the ideal corresponding to Z.
There is an induced morphism f W X ! Ar such that f �1.0/ D Z. Pulling back the
morphismQ2r�1 ! Ar n 0 (which one can check is a torsor under a trivial vector bundle
of rank r � 1) along f one obtains a torsor under a vector bundle AX nZ ! X nZ. More
explicitly, the scheme AX nZ is the closed subscheme of X �Ar defined by the equationP
i fiyi D 1 and the map to X nZ is induced by projection onto the first factor.
We now take X D Q2n �Q2n and Z D Zn �Zn, which has codimension 2n in X ,

but is cut out by 2nC 2-equations. We embed Q2n �Q2n in A2nC1 �A2nC1 with coor-
dinates

.x1; : : : ; xn; y1; : : : ; yn; z/ D .x; y; z/

and
.x01; : : : ; x

0
n; y
0
1; : : : ; y

0
n; z
0/ D .x0; y0; z0/:

If we give A2nC2 the coordinates

.u1; : : : ; un; unC1; u
0
1; : : : ; u

0
n; u
0
nC1/ D .u; unC1; u

0; u0nC1/;

the construction above yields a closed subscheme of X �X �A2nC2 with coordinates
.x; y; z; x0; y0; z0; u; unC1; u

0; u0nC1/ and coordinate ring

kŒx; y; z; x0; y0; z0; u; unC1; u
0; u0nC1�=hxy

t
D z.1 � z/; x0.y0/t D z0.1 � z0/;

uxt C u0.x0/t C unC1z C u
0
nC1z

0
D 1i:

The projection morphism for the Jouanolou device in these coordinates is induced by the
projection onto x; y; z; x0; y0; z0; in particular, it has relative dimension 2nC 1. Hence-
forth, EQ2n _Q2n will be the Jouanolou device just described.

Recall that Q2n is pointed with base point .0; : : : ; 0; 0 : : : ; 0; 1/ and thus the product
has an induced base-point. The maps Q2n ! Q2n �Q2n obtained by inclusion of the
base-point in one component factor through closed immersions

il ; ir W Q2n ! .Q2n �Q2n/ n .Zn �Zn/:

We may lift il and ir through morphisms

Qil ; Qir W Q2n !EQ2n _Q2n
that agree on the base-point. Explicitly, we may define Qil in the coordinates x; y; z; x0; y0,
z0; u; unC1; u

0; u0nC1 by setting x0 D y0 D u D u0 D 0, unC1 D 0, and z0 D u0nC1 D 1.
Similarly, we define Qir by setting x D y D u D u0 D 0, u0nC1 D 0 and z D unC1 D 1.
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Remark 2.2.3. The pullback of a torsor under a vector bundle is a torsor under a vector
bundle, and since torsors under vector bundles on affine schemes are trivial, they become
vector bundles after choice of a section. Thus, the pullback of � along either il or ir is
isomorphic to a vector bundle of rank 2nC 1 on Q2n and by suitably choosing sections
we may obtain the required lifts.

Lemma 2.2.4. If

p WEQ2n _Q2n ! .Q2n �Q2n/ n .Zn �Zn/

is the projection morphism in Construction 2.2.2, then for any smooth affine k-scheme U
the induced map

�0.SingA1 EQ2n _Q2n.U //! �0.SingA1.Q2n �Q2n/ n .Zn �Zn/.U //

is a bijection. In particular, any morphism of k-schemes

h W U ! .Q2n �Q2n/ n .Zn �Zn/

lifts uniquely up to naive A1-homotopy to a morphism of k-schemes

Qh W U !EQ2n _Q2n:
Proof. The map p is an affine vector bundle torsor by construction, and therefore the
result is a special case of [7, Lemma 4.2.4].

A scheme-theoretic model for the fold mapQ2n_Q2n!Q2n. We now describe a model
of the fold map that admits a nice interpretation in ideal-theoretic terms; the explicit for-
mulas we write down will be useful later. Since EQ2n _Q2n is a smooth affine k-scheme,
the class of the fold map in r 2 ŒQ2n _Q2n;Q2n�A1 is, by means of Theorem 1.1.1,
represented by a unique up to A1-homotopy morphism of smooth k-schemes

r WEQ2n _Q2n ! Q2n:

Construction 2.2.5. We will use the smooth affine scheme EQ2n _Q2n from Construc-
tion 2.2.2. We now describe a morphism whose A1-homotopy class coincides with that
of the fold map. Our construction is based on the idea made precise in Lemma 2.1.4 that
the naive A1-homotopy class of a morphism ' W SpecR! Q2n defined by .a; b; s/ is
essentially determined by the ideal ha; si.

Consider the ideals I WD hx; zi and I 0 D hx0; z0i. Set J WD II 0, i.e., J is the ideal
generated by xix0j , xiz0, x0iz and zz0 as i and j range from 1 through n.

The equation uxt C unC1z C u0.x0/t C u0nC1z
0 D 1 implies that the ideals I and I 0

are comaximal and therefore II 0 D I \ I 0. The Chinese remainder theorem guarantees
the existence of an isomorphism

J=J 2 ' J=IJ � J=I 0J:

We claim that the inclusions J � I and J � I 0 induce isomorphisms J=IJ �
�! I=I 2 and

J=I 0J
�
�! I 0=I 02. We treat the case J=IJ ! I=I 2; define a homomorphism I ! J=IJ
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by sending a 2 I to the image of a.u0.x0/t C u0nC1z
0/ in J=IJ . One checks that this

homomorphism factors through a homomorphism I=I 2 ! J=IJ inverse to the homo-
morphism J=IJ ! I=I 2 induced by J � I .

Now, set
ci WD x

0
i .ux

t
C unC1z/

2
C xi .u

0.x0/t C u0nC1z
0/2:

We claim that J=J 2 D .c1; : : : ; cn/. By means of the identification

J=J 2 Š J=IJ � J=I 0J Š I=I 2 � I 0=.I 0/2;

it suffices to show that the images of ci under the isomorphism of the previous paragraph
generate I=I 2 � I 0=.I 0/2. To this end, observe that

Nci D xi .u0.x0/t C u
0
nC1z

0/2 mod IJ:

Since xi .u0.x0/t C u0nC1z
0/ 2 I 2, we see that the image of Nci in I=I 2 coincides with Nxi .

Similarly, the image of Nci in I 0=.I 0/2 is Nx0i . Likewise, one sees that .uxt C unC1z/ci is
sent to Nx0i in I 0=.I 0/2, while its class in IJ is trivial and a similar statement holds for
.u0.x0/t C u0nC1z

0/ci .
We saw above that c � x mod I 2 and c � x0 mod .I 0/2. Therefore, I � hci C I 2

and I 0 � hci C I 02. By appeal to Lemma 2.1.1 we conclude that:
(i) there exist elements w 2 I and w0 2 I 0 such that I D hc; wi and I 0 D hc; w0i, and
(ii) there exist n-tuples of regular functions d; d 0 on the explicit Jouanolou device such

that w.1 � w/ D cd t and w0.1 � w0/ D cd 0t .
Then one can check J D hc; ww0i and the equationww0.1 � ww0/ D cıt is satisfied with
ı D .c.d 0/t /d C .w0/2d C w2d 0. The sequence .c; ı; ww0/ corresponds to a morphism
r from the Jouanolou device to Q2n.

The next result follows immediately from Construction 2.2.5 by observing that the
restriction of the morphism DQ2n_Q2n ! Q2n defined by .c; ı; ww0/ along either closed
immersion Qil or Qir is the identity map Q2n ! Q2n.

Lemma 2.2.6. The map
r WEQ2n _Q2n ! Q2n

described in Construction 2.2.5 is a model for the fold map.

A geometric lift. Suppose that U is a smooth affine k-scheme of dimension d � 2n � 2
and f; g W U ! Q2n. We consider the map

.f � g/ ı� W U ! Q2n �Q2n:

While .f � g/ ı� does not necessarily factor through .Q2n �Q2n/ n .Zn �Zn/, we
now show that, up to replacing f and g by naively A1-homotopic maps, such a lift does
exist. In fact, we will establish slightly more: we will show that we can choose f 0 and g0

such that .f 0/�1.Zn/ and .g0/�1.Zn/ are disjoint, i.e., the corresponding ideals in U are
comaximal.
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Lemma 2.2.7. Suppose U is a smooth affine k-scheme of dimension d � 2n � 2 and
f; g W U ! Q2n.

(1) There exist two maps f 0; g0 W U ! Q2n such that f is naively A1-homotopic to f 0,
g is naively A1-homotopic to g0 and the morphism .f 0 � g0/ ı� factors through
.Q2n �Q2n/ n .Zn �Zn/.

(2) If f 00 and g00 are another pair as in point (1), then the A1-homotopy classes of
the morphisms Œ.f 00 � g00/ ı�� and Œ.f 0 � g0/ ı�� coincide in ŒU;Q2n _Q2n�A1
(under the A1-weak equivalence of Lemma 2.2.1).

Proof. Suppose U D SpecR for some k-algebra R. Morphisms f; g W U ! Q2n cor-
respond to sequences .a; b; s/, where a D .a1; : : : ; an/, b D .b1; : : : ; bn/, and .c; d; t/,
where c D .c1; : : : ; cn/, d D .d1; : : : ; dn/, of elements of R.

Appealing to Lemma 2.1.5 with all Ji taken equal to the unit ideal, we may replace
g by a naively A1-homotopic map g0, such that the associated ideal I 02 has height � n.
Next, we want to show that by replacing f by a naively A1-homotopic map if necessary,
we may assume that f �1.Zn/ and g�1.Zn/ are disjoint subschemes, i.e., that f � g
misses Zn �Zn in Q2n �Q2n. To this end, set J1 D I2 (and take Ji to be the unit ideal
otherwise). Since the height of J1 is assumed � n, we see that

dimR=J1 � 2n � 2 � n D n � 2:

The existence of the required homotopy is then guaranteed by Lemma 2.1.5.
Since f is naively A1-homotopic to f 0 and g is naively A1-homotopic to g0, we

conclude that .f � g/ ı� is naively A1-homotopic to .f 0 � g0/ ı�. Therefore, if f 00

and g00 are another such pair, the fact that Œ.f 0 � g0/ ı�� and Œ.f 00 � g00/ ı�� coincide
in ŒU;Q2n _Q2n�A1 follows immediately by appeal to Proposition 1.2.3.

Consider the following diagram:

EQ2n _Q2n r //

p

��

Q2n

.Q2n �Q2n/ n .Zn �Zn/

��

U
� // U � U

f �g
// Q2n �Q2n,

where the morphisms p and r in this diagram are described in Lemmas 2.2.4 and 2.2.6.
Lemma 2.2.7 shows that, possibly after replacing f and g by naively A1-homotopic
maps f 0 and g0, the composite .f � g/ ı� factors through .Q2n �Q2n/ n .Zn �Zn/.
Lemma 2.2.4 then shows that such a morphism lifts uniquely up to naive A1-homotopy
through a morphism

F.f 0 � g0/ ı� W U !EQ2n _Q2n:
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The compositer ıF.f 0 � g0/ ı� thus defines a morphismU ! Q2n. By tracing through
construction Construction 2.2.5, we will now give an algebraic description of the naive
homotopy class of r ıF.f 0 � g0/ ı�.

Construction 2.2.8. Suppose U D SpecR is a smooth affine k-scheme of dimension
d � 2n � 2 and f; g W U ! Q2n. Assume the maps f and g correspond with sequences
v D .a; b; s/ and v0 D .a0; b0; s0/ 2 Q2n.R/ such that I.v/ D ha; si and I.v0/ D ha0; s0i
are comaximal. Since I.v/ and I.v0/ are comaximal, we conclude that

I.v/I.v0/ D I.v/ \ I.v0/

and we set
J WD I.v/I.v0/ D I.v/ \ I.v0/:

As J=J 2 Š I.v/=I.v/2 � I.v0/=I.v0/2, we see that there exist elements c1; : : : ; cn 2 J
such that c D .c1; : : : ; cn/ satisfies

c � a .mod I.v//; c � a0 .mod I.v0//; J D hci .modJ 2/:

In particular, the following hold:

I.v/ D hci C I.v/2;

I.v0/ D hci C I.v0/2:

By appeal to Lemma 2.1.1, we conclude the following:
(i) there exist elements u 2 I.v/ and u0 2 I.v0/ such that

I.v/ D hc; ui and I.v0/ D hc; u0i;

(ii) there exist elements d; d 0 2 Rn such that the equations

u.1 � u/ D cd t and u0.1 � u0/ D c.d 0/t

are satisfied.
Using these relations, we can write J D hc; uu0i and the equation uu0.1 � uu0/ D cxt ,
with x D .c.d 0/t /d C .u0/2d C u2d 0 is satisfied. The .2nC 1/-uple .c; x; uu0/ yields
a morphism h W U ! Q2n.

Lemma 2.2.9. Suppose k is a field having characteristic different from 2 and n � 2 is an
integer. Suppose U D SpecR is a smooth affine k-scheme of dimension d � 2n � 2 and
we are given two morphisms f; g W U ! Q2n. There is a function

� W �0.SingA1 Q2n.R// � �0.SingA1 Q2n.R//! �0.SingA1 Q2n.R//;

.Œf �; Œg�/ 7! Œh�

defined as follows: choose f 0, g0 naively A1-homotopic to f , g and with .f 0/�1.Zn/,
.g0/�1.Zn/ disjoint and send .f 0; g0/ to the output h of Construction 2.2.8.

Proof. By appeal to Lemma 2.2.7, we may always suppose that .f 0/�1.Zn/, .g0/�1.Zn/
are disjoint. We now trace through Construction 2.2.8 to see how the output depends on
the chosen representatives.
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Following the notation of Construction 2.2.8, the element h depends on the choices of
elements c; x 2 Rn and u; u0 2 Rn. Pick c0 2 Rn such that

c0 � a .mod I.v//; c0 � a0 .mod I.v0//; J D hc0i .modJ 2/:

In that case, I.v/ D hc0i C I.v/2 and I.v0/ D hc0i C I.v0/2. From this we conclude that
ci � c

0
i 2 I.v/

2 and also that ci � c0i 2 I.v
0/2.

As in Construction 2.2.8, we build elements � 2 I.v/ and �0 2 I.v0/ such that

I.v/ D hc0; �i and I.v0/ D hc0; �0i

and elements ı; ı0 2 Rn such that

�.1 � �/ D c0ıt and �0.1 � �0/ D c0.ı0/t :

Then J D hc0; ��0i and by setting x0 D c0.ı0/tı C .�0/2ı C �2ı0, the equation

��0.1 � ��0/ D c0.x0/t

is satisfied. By appeal to Lemma 2.1.4, one concludes that .c; x; uu0/ and .c0; x0; ��0/
yield the same class in �0.SingA1 Q2n.R//, irrespective of the choice of �, �0 and x0.

Finally, we compare the output of Lemma 2.2.9 with the composition operation in
�0.SingA1 Q2n.R// defined in Proposition 1.2.1.

Theorem 2.2.10. Assume k is a field having characteristic not equal to 2 andU D SpecR
is a smooth affine k-scheme of dimension d � 2n � 2. The composition

Œf �; Œg� 7! �.Œf �; Œg�/

on �0.SingA1 Q2n.R// given in Lemma 2.2.9 coincides with the operation from Proposi-
tion 1.2.1.

Proof. By Proposition 1.2.5, it suffices to prove that the composition � is the same as that
described in Definition 1.2.4.

Suppose that f and g are such that f �1.Zn/ and g�1.Zn/ are disjoint, which we
can assume by Lemma 2.2.7. In that case, we know that .f � g/ ı� lifts, up to naive
A1-homotopy, to a morphism

h W U ! .Q2n �Q2n/ n .Zn �Zn/:

By appeal to Lemma 2.2.4, the morphism h lifts, uniquely up to naive A1-homotopy to
a morphism

Qh W U !EQ2n _Q2n:
We can write down an “explicit” formula for the map Qh, at least up to naive A1-homo-

topy. Let
' W kŒx; y; z�=.xyt D z.1 � z//! kŒU �

and
 W kŒx; y; z�=.xyt D z.1 � z//! kŒU �

be the maps corresponding to f and g. We write down a ring map from the coordi-
nate ring displayed in Construction 2.2.2. The images of the variables .x; y; z; x0; y0; z0/
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are determined by ' and  . By assumption, we know that the ideals I WD h'.x/; '.z/i
and I 0 WD h .x0/;  .z0/i are comaximal. Therefore we can find nC 1-tuples .a; anC1/
(where, as above a D .a1; : : : ; an/) and .b; bnC1/ such that

a'.x/t C anC1'.z/C b .x
0/t C bnC1 .z

0/ D 1:

Then, sending u 7! a and v 7! b, we obtain the required morphism.
Thus, to establish the result, it suffices to show that Œh� as in Lemma 2.2.9 is a model

for the composite of this lift and the geometric r. Given the constructions above, the
result follows by comparison with the explicit formula for r given in Construction 2.2.5
combined with Lemma 2.2.6.

Remark 2.2.11. The formula in Theorem 2.2.10 is motivated by van der Kallen’s group
structure on orbit sets of unimodular rows [51]. In fact, it is possible to use the formula
in Construction 2.2.8 to establish directly that the composition so-defined is unital, asso-
ciative and commutative. Following this course likely produces a composition in greater
generality than we have established here (e.g., presumably one could make a statement,
suitably modified, that holds for U the spectrum of an arbitrary commutative Noetherian
ring). Nevertheless, we have not pursued this approach because, from a theoretical point
of view, we felt the homotopy theoretic techniques in Section 1 give a nice “explanation”
for the formulas regarding composition and yield strong functoriality properties without
significant additional work.

Remark 2.2.12. Assume k is a field. The variety Q2n�1 is A1-weakly equivalent to
An n 0 and therefore A1-.n�2/-connected. As a consequence, ifX D SpecR is a smooth
k-scheme of dimension d � 2n � 4, we conclude that ŒX;Q2n�1�A1 inherits a group
structure via Proposition 1.2.1. By Theorem 1.1.1, we know that

�0.SingA1 Q2n�1/.R/! ŒX;Q2n�1�A1

is a bijection for any smooth affine k-scheme X . On the other hand, by [29, Theorem 2.1]
we know that

�0.SingA1 Q2n�1/.R/ Š Umn.R/=En.R/

and therefore the latter is equipped with an abelian group structure. Now, van der Kallen
showed Umn.R/=En.R/ admits an abelian group structure [52, Theorem 5.3]. In fact, the
two group structures actually coincide, and we will return to this in future work.

3. Segre classes and Euler class groups

In this section, we connect the results of the previous two sections with classical results
involving Euler class groups. Section 3.1 is devoted to construction of the homomorphism
from Euler class groups to motivic cohomotopy; the main result is Theorem 3.1.13. In
Section 3.2 we establish some applications of this comparison result: we compare Euler
class groups, weak Euler class groups, Chow–Witt groups and Chow groups in certain
situations.
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3.1. Euler class groups and the Segre class homomorphism

We begin by recalling some key results of [30] related to Segre classes. Then we record
the definition of Euler class groups à la Bhatwadekar–Sridharan, slightly adapted for our
purposes in Definition 3.1.5. After recording a helpful moving lemma, we construct the
Segre class homomorphism and then establish its main properties. The main result of this
section is Theorem 3.1.13, which establishes a portion of Theorem 1 in the introduction.

Universal Segre classes. Once more suppose R is a commutative ring and

f W SpecR! Q2n

is a morphism given by a sequence of elements .x; y; z/ 2 Rn �Rn �R. If I is the
ideal hx1; : : : ; xn; zi, then the quotient I=I 2 is generated by ¹x1; : : : ; xnº and there is
a surjective homomorphism !I W .R=I /

n ! I=I 2.

Definition 3.1.1. If R is a commutative ring and n 2 N, then set
(1) Obn.R/ WD the set consisting of pairs .I; !I /, where I a finitely generated ideal in R

and !I W .R=I /n ! I=I 2 a surjective homomorphism;
(2) Ob0n.R/ WD the subset of Obn.R/ consisting of pairs .I; !I / with ht.I / D n.

We now review a key result from [30]; we include the proof for the convenience of
the reader.

Theorem 3.1.2. Suppose .I; !I / 2 Obn.R/.
(1) There exist elements a1; : : : ; an; s 2 I and b1; : : : ; bn 2 R such that I D ha; si and

.a; b; s/ 2 Q2n.R/.

(2) If .a0; b0; s0/ 2 Rn �Rn �R is any another .2nC 1/-tuple of elements such that
a01; : : : ; a

0
n; s
0 2 I , I D ha0; s0i and .a0; b0; s0/ 2 Q2n.R/, then

Œ.a; b; s/� D Œ.a0; b0; s0/�

in �0.SingA1 Q2n.R//, i.e., the class Œ.a; b; s/� is independent of the relevant choices.

Proof. The first statement is immediate from Lemma 2.1.1. The second statement follows
from Lemma 2.1.4 by analyzing the proof of Lemma 2.1.1.

Definition 3.1.3. Given .I; !I / 2 Obn.R/, set

s.I; !I / D Œ.a; b; s/� 2 �0.SingA1 Q2n.R//;

where a1; : : : ; an; s 2 I , b1; : : : ; bn 2 R, I D ha; si and .a; b; s/ 2 Q2n.R/ (guaranteed
to exist by Theorem 3.1.2. The class s.I; !I / will be called the universal Segre class
of .I; !I /.

Remark 3.1.4. The terminology Segre class is inspired by the work of Murthy (see
[44, Section 5]).

Euler class groups. Let R be a commutative Noetherian ring with dim.R/ D d . Euler
class groups of R were defined for height d ideals in [14, p. 197] and more generally



A. Asok, J. Fasel 2806

in [15, p. 146]. We slightly recast the definition here and to do so, we recall some notation.
Given a pair .I; !I / 2 Obn.R/, if I is generated by a1; : : : ; an, we say that !I is induced
by a1; : : : ; an if !I is the morphism sending the standard basis vector ei of the free
R=I -module R=I n to the element ai . For any commutative ring A, let En.A/ � GLn.A/
be the subgroup consisting of elementary (shearing) matrices. Note that there is a left
action ofEn.R=I / on Obn.R/ or Ob0n.R/ given as follows: for an element � 2 En.R=I /,

� � .I; !I / D .I; !I ı �
�1/:

Definition 3.1.5. The Euler class group En.R/ is the quotient of the free abelian group
ZŒOb0n.R/� by the ideal generated by the following relations:
(1) (Complete intersection) If I D ha1; : : : ; ani and !I W .R=I /n ! I=I 2 is induced by

a1; : : : ; an then .I; !I / D 0.
(2) (Elementary action) If � 2 En.R=I /, then � � .I; !I / D .I; !I /.
(3) (Disconnected sum) If I D JK, where J;K are height n ideals with K C J D R,

then a surjection !I W .R=I /n ! I=I 2 induces surjections !K W .R=K/n ! K=K2

and !J W .R=J /n ! J=J 2 and the relation is

.I; !I / D .K; !K/C .J; !J /:

Remark 3.1.6. Definition 3.1.5 is equivalent to that given in [15, p. 147] even though it
looks (slightly) formally different. More precisely, Bhatwadekar and Sridharan consider
the free abelian group on equivalence class of pairs .I; !I / with SpecR=I connected;
conditions (2) and (3) are imposed precisely to compare with that situation.

Note also that Definition 3.1.5 always makes sense, but it is mainly of interest when
d � 2n � 3 because in that context it is closely related with the problem of when the ideal
I can be generated by n elements ([15, Theorem 4.2] or [38, Theorem 2.4]).

A “moving” lemma and some consequences. We now establish some preliminary “mov-
ing” results, which will be useful in getting “good” representatives of elements of Euler
class groups. The following lemma is a special case of [38, Lemma 2.2] (taking J D I 2

in the notation there); note that the proof is quite similar to that of Lemma 2.1.5.

Lemma 3.1.7. Let R be a Noetherian ring of dimension d , I � R an ideal of height n
and !I W Rn ! I=I 2 a surjective homomorphism. For I1; : : : ; Ir arbitrary ideals of R,
there exists an idealK � R and a homomorphism f W Rn ! I \K having the following
properties:

(1) the ideals I 2 and K are comaximal,

(2) the composite Rn
f
! I \K � I ! I=I 2 is equal to !I ,

(3) the ideal K has height � n,

(4) for any integer 1 � i � r , the inequality

ht..Ii CK/=Ii / � n

holds.
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The following result can be deduced from Lemma 3.1.7. It also follows by combining
[15, Corollary 2.4 and Proposition 3.1]; see [54, p. 66] and note that [15, Corollary 2.4]
only requires d � 2n � 1.

Corollary 3.1.8. LetR be a Noetherian ring of dimension d � 2n�1 and let ˛ 2 En.R/.
There exist an ideal I of height n and a surjective homomorphism !I W .R=I /

n ! I=I 2

such that ˛ D .I; !I / 2 En.R/.

The Segre class homomorphism. Assume k is a field having characteristic not equal to 2,
and suppose X D SpecR is a smooth affine k-scheme of dimension d � 2n � 2. By
the definition of the Segre class (Definition 3.1.3), a pair .I; !I / 2 Ob0n.R/ determines
an element s.I; !I / of �0.SingA1 Q2n/.R/ so by Theorem 1.1.1 yields an element of
ŒX;Q2n�A1 . If we equip the target with the group structure of Proposition 1.2.1, then
there is a unique extension to a group homomorphism:

Qs W ZŒOb0n.R/�! ŒX;Q2n�A1 :

We now show that Qs factors through the Euler class group of Definition 3.1.5.

Proposition 3.1.9. Suppose n; d are integers, n � 2 and d � 2n � 2. Assume k is a field
having characteristic not equal to 2 and supposeX D SpecR is a smooth affine k-scheme
having A1-cohomological dimension d � 2n � 2. The homomorphism Qs factors through
a homomorphism:

s W En.R/! ŒX;Q2n�A1 ;

that we will refer to as the Segre class homomorphism.

Proof. We prove that the relations in Definition 3.1.5 are satisfied in ŒX;Q2n�A1 .

Step 1. Relation (1) holds, i.e., if I D ha1; : : : ; ani is an ideal of height n and the map
!I W .R=I /

n ! I=I 2 is given by ei 7! ai , then s.I; !I / D 0. Indeed, the Segre class
of .I; !I / is given, for instance, by v WD .a1; : : : ; an; 0; : : : ; 0/ 2 Q2n.R/. Now, the ele-
ment .a1T; : : : ; anT; 0; : : : ; 0/ 2 Q2n.RŒT �/ provides an explicit homotopy between v
and v0 D .0; : : : ; 0/.

Step 2. Relation (2) holds, i.e., if .I; !I / is a generator of the Euler class group and
� 2 En.R=I /, then s.I; !I / D s.� � .I; !I //. By definition, any element � 2 En.R=I /
can be factored as a product of elementary matrices. Therefore, it suffices to establish the
result for � D 1C eij .�/, i ¤ j , with � 2 R an arbitrary element.

Choose any representative .a; b; s/ of .I; !I /; such a representative exists by Lem-
ma 2.1.1. In that case, set � D 1C eij� and observe that we can choose the representative
.a � �; b � .��1/t ; s/ for � � .I; !I /. Thus, �.T / WD 1C eij .�T / determines an explicit
homotopy between .a; b; s/ and .a � �; b � .��1/t ; s/.

Step 3. Relation (3) holds, i.e., suppose I; J;K are ideals of height n such that J and K
are comaximal, I D JK, !I W .R=I /n ! I=I 2 is a surjection, and !J and !K are the
surjections induced by !I ; we will show that s.I; !I / D s.J; !J /C s.K; !K/. To this
end, recall Construction 2.2.8: if J and K correspond to elements v; v0 2 Q2n.R/, we
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observed there how to construct an element of Q2n.R/ corresponding with I . With that
in mind, relation 3 follows immediately from Theorem 2.2.10.

Our goal is to show that the Segre class homomorphism is an isomorphism; the next
result shows that it is surjective and establishes the third point of Theorem 1.

Proposition 3.1.10. Assume k is a field having characteristic not equal to 2, and suppose
n; d are integers, n � 2 and d � 2n � 2. IfX D SpecR is a smooth affine k-scheme hav-
ing A1-cohomological dimension d , then the Segre class homomorphism s is surjective.

Proof. Fix v D .a; b; s/ 2 Q2n.R/. By Lemma 2.1.5 we can find v0 D .a0; b0; s0/ such
that
(i) I WD ha0; s0i has height � n and
(ii) the class of v0 in �0.SingA1 Q2n.R// coincides with that of v.
Since a0.b0/t D s0.1 � s0/, we conclude that the localization I1�s0 D ha0i. If I1�s0 is
a proper ideal of R1�s0 , it follows from Krull’s Hauptidealsatz that ht.I1�s0/ � n and
therefore that ht.I / � n as well. Thus, in that case, we conclude that ht.I / D n. Defin-
ing !I W .R=I /n ! I=I 2 by ei 7! ai

0, it follows that s.I; !I / D .a0; b0; s0/. On the other
hand, if I1�s0 D R1�s0 , then I D R. Thus, .a0; b0; s0/ corresponds to the constant map to
the base-point in �0.SingA1 Q2n.R// (i.e., the identity for the group structure). Since the
images of .a; b; s/ and .a0; b0; s0/ in �0.SingA1 Q2n.R// coincide, the result follows in
this case as well.

An inverse to the Segre class homomorphism. To prove injectivity of the Segre class
homomorphism, we will construct an explicit inverse. As above, let n � 2 be an integer,
and supposeX D SpecR be a smooth affine k-scheme having A1-cohomological dimen-
sion d � 2n � 2. Given a sequence v D .a; b; s/ 2 Q2n.R/, Lemma 2.1.5 guarantees
that we may find � 2 Rn such that, setting

w D .aC �.1 � s/2; b.1 � �bt /; s C �bt .1 � s//;

the following statements are true: w 2 Q2n.R/, w and v lie in the same naive A1-homo-
topy class and the ideal N� WD haC �.1 � s/2; s C �bt .1 � s/i has height � n. Map-
ping the standard basis of Rn to the classes of ai C �i .1 � s/2 in the quotient N�=N 2

�

defines a surjective homomorphism !N� W R
n ! N�=N

2
�. Granted these facts, define

a map
Q n W Q2n.R/! En.R/

by means of the formula
Q n.v/ D .N�; !N�/:

We now check that this formula is well-defined, i.e., independent of the choice of �.

Lemma 3.1.11. Assume k is an infinite field andR is a smooth affine k-algebra of dimen-
sion d � 2. If n � 2 is an integer, then the map Q n W Q2n.R/! En.R/ described above
is well-defined.
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Proof. Given vD .a; b; s/, assume we may find�0 and�1 as guaranteed by Lemma 2.1.5
such that, setting

w0 WD .aC �0.1 � s/
2; b.1 � �0b

t /; s C �0b
t .1 � s//;

w1 WD .aC �1.1 � s/
2; b.1 � �1b

t /; s C �1b
t .1 � s//;

both w0 and w1 satisfy the conditions listed above.
We now construct a homotopy between the elements w0 and w1. To this end, set

ˇ D �0.1 � T /C �1T . One checks immediately that

W WD .aC ˇ.1 � s/2; b.1 � ˇbt /; s C ˇbt .1 � s//

defines an element of Q2n.RŒT �/ with W.0/ D w0 and W.1/ D w1. A priori, the ideal

Nˇ WD haC ˇ.1 � s/
2; s C ˇbt .1 � s/i

may not give rise to an element of En.RŒT �/, so we now show that it may be modified to
do so.

Begin by observing that the sequence .aCˇ.1� s/2;T .1�T /.1� s/2/ defines a uni-
modular row over RŒT �nC1

T.1�T /.1�s/
. Arguing as in Lemma 2.1.5, we conclude that there

exists ˛ 2 RŒT �n such that the ideal

J WD haC ˇ.1 � s/2; ˛T .1 � T /.1 � s/2i

has height � n in RŒT �T.1�T /.1�s/. Setting 
 D ˇ C ˛T .1 � T /, we see that

W 0 D .aC 
.1 � s/2; b.1 � 
bt /; s C 
bt .1 � s// 2 Q2n.RŒT �/

still satisfies W 0.0/ D w0 and W 0.1/ D w1. We claim, furthermore, that the ideal

I WD haC 
.1 � s/2; s C 
bt .1 � s/i

has height � n in RŒT �. Indeed, suppose that I � p for some prime ideal p � RŒT �. If
T .1 � T /.1 � s/ 62 p, then by definition ht.p/ � n. If T 2 p, we find hI; T i � p. Now
we have hI; T i D hN�; T i and it follows that ht.p/ � nC 1. The same argument applies
if .1 � T / 2 p and we similarly conclude that ht.p/ � nC 1. Finally, hI; 1 � si D RŒT �
and the claim is proved.

Assume henceforth that k is an infinite field and R is a smooth affine k-algebra of
dimension d � 2. The pair .I; !I / gives rise to an element of En.RŒT �/. The image of
this element under the maps En.RŒT �/! En.R/ corresponding to restriction to t D 0
and t D 1 correspond to the elements of the Euler class group defined by w0 and w1.
However, under the hypothesis on d , the restriction maps are isomorphisms by appeal to
Theorem A.1.4.

Now that we have established that Q n defines a function Q2n.R/! En.R/, we want
to check that it factors through the naive A1-homotopy relation.

Proposition 3.1.12. Assume k is an infinite field and R is a smooth affine k-algebra of
dimension d � 2. If n � 2 is an integer, then the function Q n W Q2n.R/! En.R/ factors
through the naive A1-homotopy relation to define a function  n W ŒX;Q2n�A1 ! En.R/.
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Proof. Let v D .A;B; S/ 2 Q2n.RŒT �/. By Lemma 2.1.5, there exists � 2 RŒT �n such
that

w D .AC �.T /.1 � s.T //2; B.1 � �.T /B t /; S C �B t .1 � S// 2 Q2n.RŒT �/

satisfies ht.N / � n, where

N WD hAC �.1 � S/2; S C �B t .1 � S/i:

Further, we may assume (arguing as in the proof of Lemma 3.1.7) that ht.N.0// � n and
ht.N.1// � n. It follows from the previous lemma that Q n.v.0// D .N.0/; !N.0// and
Q n.v.1// D .N.1/; !N.1//. As in the proof of Lemma 3.1.11, we conclude by appeal to

Theorem A.1.4.

We now put everything together to show that the Segre class homomorphism is an
isomorphism; this establishes the fourth point of Theorem 1.

Theorem 3.1.13. If k is an infinite field having characteristic not equal to 2, n; d are
integers� 2, andR is a smooth affine k-algebra of dimension d � 2n � 2, then the Segre
class homomorphism

s W En.R/! ŒX;Q2n�A1

is an isomorphism.

Proof. Surjectivity of the Segre class homomorphism was already established in Propo-
sition 3.1.10, so it remains to demonstrate injectivity. To this end, we use the map  n of
Proposition 3.1.12. Indeed, it follows from Lemma 3.1.11 that . n ı s/.I; !I / D .I; !I /
for any generator .I; !I / of En.R/ and injectivity thus follows from Corollary 3.1.8.

Remark 3.1.14. Tracing through the arguments, in Theorem 3.1.13, the assumption that
k has characteristic not equal to 2 appears only by way of appeal to Theorem 1.1.1. In par-
ticular, work currently in preparation will remove this hypothesis. On the other hand, the
assumption that k is infinite appears by way of appeal to Theorem A.1.4, i.e., homotopy
invariance for Euler class groups. It is unclear to the authors at the time of this writing
whether this hypothesis can be removed.

Remark 3.1.15. Theorem 3.1.13 immediately implies that Euler class groups satisfy
a number of functorial properties. For example, if f W X ! Y is any arbitrary morphism
of smooth affine k-varieties as in the statement, then the map f � W ŒY;Q2n�A1! ŒX;Q2n�

induced by composition yields a pullback morphism for Euler class groups. By appeal to
Theorem 1.3.2 one obtains Mayer–Vietoris sequences. More precisely, if X is a smooth
affine scheme of dimension d � 2n � 2 and we have j W U ! X an open immersion of
an affine k-schemeU and ' W V ! X an étale morphism from an affine k-scheme V such
that the induced map .V n U �X V /red ! .X n U/red is an isomorphism, then there is an
exact sequence of the form

ŒX;Q2n�A1 ! ŒU;Q2n�A1 � ŒV;Q2n�A1 ! ŒU �X V;Q2n�A1 :

Furthermore, if d � 2n � 4, there is a map from ŒU �X V;Q2n�1� to ŒX;Q2n� which
extends the exact sequence further to the left. Finally, Remark 1.3.3 equips Euler class



Euler class groups and motivic stable cohomotopy 2811

groups with a product operation as well. It would be interesting to compare the excision
and product operations studied in [38] and [37] with this product operation.

Remark 3.1.16. As a further consequence of Theorem 3.1.13, given a ring R satisfying
the hypotheses, it is possible to attach to a pair .I; !I / consisting of an ideal I � R and
a surjection !I W .R=I /n ! I=I 2 an element in the Euler class group that detects if !I
lifts to a surjection Rn ! I . In particular, one can extend (and partially generalize) the
work of M. Das and R. Sridharan [22].

3.2. Euler class, Chow–Witt and Chow groups

Finally, we put everything together: if X is a smooth k-scheme of dimension d , we com-
pare Euler class groups and Chow–Witt groups in top codimension. The explicit form of
the Hurewicz homomorphism from Theorem 1.3.4 plays a role in the comparison with
previous constructions. In Theorem 3.2.1 we show that Euler class groups can be iden-
tified with Chow–Witt groups in certain cases. Finally, Theorem 3.2.6 establishes the
connection between weak Euler class groups and Chow groups by appeal to an exact
sequence studied in [20].

Euler class groups vs. Chow–Witt groups. In view of Theorems 1.3.4 and 3.1.13, there is
a homomorphism

En.R/! eCHn.X/

which we make more explicit when n D d WD dim.X/. In that case, the Euler class group
is generated by pairs .m; !m/ where m � R is a maximal ideal and

!m W .R=m/
d
! m=m2

is a surjection (and indeed an isomorphism). Note that this definition of the Euler class dif-
fers from that in Definition 3.1.5, but if we restrict attention to smooth affine algebras over
an infinite perfect field, it follows from [12, Remark 4.6] that the definition is equivalent.

Let m1; : : : ; mn be elements of m such that

!m.ei / D mi :

In that case, the description of the Hurewicz homomorphism from Theorem 1.3.4 shows
that the Hurewicz image of .s.m; !m// is given (up to the unit � 2 KMW

0 .k/) by the class
of the cycle h1i ˝m1 ^ � � � ^md . In other words, the composite homomorphism

Ed .R/
s
�! ŒX;Q2d �! eCHd .X/ (3.1)

coincides (up to the unit � 2 KMW
0 .k/) with the homomorphism defined in [28, Propo-

sition 17.2.8]. Using these observations, we establish the following result, which proves
another part of Theorem 1 from the introduction.

Theorem 3.2.1. If k is an infinite field that has characteristic not equal to 2, d � 2 is an
integer and X D SpecR is a smooth affine k-scheme of dimension d , then the composite
homomorphism Ed .R/! eCHd .X/ in (3.1) is an isomorphism.
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Proof. It suffices to show that the composite

Ed .R/
s
�! ŒX;Q2d �A1 ! eCHd .X/

is an isomorphism. In view of Theorem 1.3.4, this follows from Theorem 3.1.13.

Weak Euler class groups and Chow groups: Recollections. Let R be a smooth affine
algebra of dimension d over a field k. Recall the notion of weak Euler class groups
Ed0 .R/ (cf. [13, Definition 2.2] or [45, Definition 5.1]; these groups were mentioned in
the introduction).

Definition 3.2.2. If X D SpecR is a smooth affine k-scheme of dimension d , the weak
Euler class group Ed0 .X/ is the quotient of the free abelian group on the set of maximal
ideals m � R subject to the relation

P
i mi D 0 if I D

T
i mi is a reduced complete

intersection ideal.

The assignment .m; !m/ 7! m passes to a surjective group homomorphism

Ed .X/! Ed0 .X/:

Associating with a maximal ideal m its class in the Chow group CHd .X/ yields a well-
defined surjective homomorphism

s0 W Ed0 .R/! CHd .X/

(see [13, Lemma 2.5]). The relationship between these homomorphisms together with the
canonical homomorphism

eCHd .X/! CHd .X/

is established in [28, Proposition 17.2.10] where it is shown that there is a commutative
diagram of the form

Ed .X/ //

s

��

Ed0 .X/

s0

��

eCHd .X/ // CHd .X/,

and the horizontal maps are surjective (the surjectivity of the bottom horizontal map fol-
lows because X has dimension d ). We now proceed to analyze the kernels of the two
horizontal maps appearing here.

On the surjection Ed .X/! Ed0 .X/. The kernel of the surjection Ed .X/! Ed0 .X/ can
also be described in terms of unimodular rows. Recall that UmdC1.R/ is the set of
unimodular rows of length d C 1 inR, i.e., rows .a1; : : : ; adC1/ that admit a right inverse.

In Section A.2, following [20] one defines a function

� W UmdC1.R/=EdC1.R/! Ed .R/

that is a homomorphism by appeal to Theorem A.2.2.
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Proposition 3.2.3 (Das–Zinna). Assume k is an infinite field, and suppose X D SpecR
is a smooth affine k-algebra of dimension d � 2. The homomorphism

� W UmdC1.X/=EdC1.X/! Ed .X/

described above fits into an exact sequence of the form

UmdC1.X/=EdC1.X/
�
�! Ed .X/ �! Ed0 .X/ �! 0:

Proof. Appealing to Proposition A.2.2 instead of the construction and results of [20, Sec-
tion 3]; the claimed exactness follows by repeated the proof of [20, Theorem 3.8].

On the surjection eCHd .X/! CHd .X/. The kernel of the surjection

eCHd .X/! CHd .X/

can be analyzed homotopically. The following result generalizes [29, Theorem 4.9].

Proposition 3.2.4. Assume k is a field, d � 2 is an integer and X is a smooth affine
k-scheme of dimension d . There is a “Hurewicz” isomorphism of the form

UmdC1.X/=EdC1.X/
�
�! Hd .X;KMW

dC1/:

Explicitly, this isomorphism sends a unimodular row .a1; : : : ; adC1/ to the cycle

ŒadC1�˝ a1 ^ � � � ^ ad

in KMW
1 .k.s//˝ZŒk.s/�� ZŒƒ�s �, where s is the complete intersection given by the equa-

tions a1 D � � � D ad D 0.

Proof. By appeal to [7, Corollary 4.2.6] and [29, Theorem 2.1], one knows that

ŒX;AdC1 n 0�A1 Š UmdC1.X/=EdC1.X/:

Since AdC1 n 0 is A1-.d � 1/-connected, and �A1

d
.AdC1 n 0/ Š KMW

dC1
, by appeal to

Proposition 1.2.6, we conclude that for any integer d � 2 the Hurewicz homomorphism
defines an isomorphism ŒX;AdC1 n 0�A1

�
�! Hd .X;KMW

dC1
/.

The final statement follows from the explicit description of the fundamental class in
Hd .AdC1 n 0;KMW

dC1
/ from [2, Lemma 4.5].

Taking cohomology of the exact sequence of sheaves 0! IdC1!KMW
d
!KM

d
! 0

yields an exact sequence of the form

Hd .X; IdC1/! eCHd .X/! CHd .X/! 0:

The epimorphism KMW
dC1
! IdC1 yields an surjective homomorphism

Hd .X;KMW
dC1/! Hd .X; IdC1/

and we thus obtain a homomorphism Hd .X;KMW
dC1

/! eCHd .X/; note that this homo-
morphism may also be described as the map in sheaf cohomology associated with the
morphism of sheaves KMW

dC1
! KMW

d
.
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Define �0 to be the composite

UmdC1.X/=EdC1.X/
�
�! Hd .X;KMW

dC1/!
eCHd .X/;

where the first map is the isomorphism from Proposition 3.2.4 and the second map

Hd .X;KMW
dC1/!

eCHd .X/

is the one just defined. Putting everything together, one has the following result.

Proposition 3.2.5. Assume k is a field, and X is a smooth affine k-scheme of dimension
d � 2. There is an exact sequence of the form

UmdC1.X/=EdC1.X/
�0

�! eCHd .X/ �! CHd .X/ �! 0:

Comparing weak Euler class groups and Chow groups. We now establish Theorem 3
from the introduction.

Theorem 3.2.6. If k is an infinite field that has characteristic not equal to 2, and if
X D SpecR is a smooth affine k-scheme of dimension d � 2, then the homomorphism
s0 W Ed0 .R/! CHd .X/ is an isomorphism.

Proof. We claim that s� D �0. Assuming this, by combining Propositions 3.2.3, 3.2.5
and [28, Proposition 17.2.10] one obtains a commutative diagram with exact rows of the
form

UmdC1.R/=EdC1.R/
�
// Ed .R/ //

s

��

Ed0 .R/

s0

��

// 0

UmdC1.R/=EdC1.R/
�0
// eCHd .X/ // CHd .X/ // 0.

The conclusion then follows by appeal to Theorem 3.2.1.
To establish that s� D �0, it suffices to unwind the construction of �0. Indeed, �0 is

the composite of the Hurewicz isomorphism, which is made explicit in Proposition 3.2.4
and the map in sheaf cohomology induced by KMW

dC1
! KMW

d
. The latter map is induced

by an explicit morphism of complexes, which we now describe.
Suppose F is a field. The homomorphism KMW

1 .F /! KMW
0 .F / is given at the level

of symbols by multiplication by the class �. In more detail, if u is a unit in F , then

Œu� 7! �Œu� D 1C �Œu� � 1 D hui � h1i:

Now, we use the notation of Proposition 3.2.4. In that notation, the composite of the
Hurewicz homomorphism and the map on sheaf cohomology sends the unimodular row
.a1; : : : ; adC1/ to .hadC1i � h1i/˝ Na1 ^ � � � ^ Nad . By means of the explicit formula for
� and the discussion of s before Theorem 3.2.1 (specifically the fact that it coincides with
the Hurewicz homomorphism for Q2d ), the result follows.
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Mrinal Kanti Das
Appendix A. Some results on Euler class groups

This appendix attempts to streamline (e.g., clarify necessary hypotheses) the presentation
of some results on Euler class groups used in the main body of this paper. Results estab-
lished in this appendix are often not presented in their most general form; our purpose is
solely to tailor them for use in the main body of the paper. Moreover, the proofs given
herein are not original: most ideas are present either explicitly or implicitly in the litera-
ture. The results presented here incorporate a portion of the document [19] and provide
further weakenings of the hypotheses for results listed there.

A.1. Homotopy invariance of Euler class groups

LetR be a Noetherian commutative ring of dimension d � 2. Let I � RŒT � be an ideal of
height n such that I=I 2 is generated by n elements and both I.0/ and I.1/ are ideals of
height n in R. If ! W .RŒT �=I /n � I=I 2 is a surjection, there are induced surjections
!.0/ W .R=I.0//n � I.0/=I.0/2 and !.1/ W .R=I.1//n � I.1/=I.1/2. One says that
homotopy invariance holds for the Euler class group of R if .I.0/; !.0// D .I.1/; !.1//
in En.R/ (see Section 3.1).

An example due to Bhatwadekar [21, Example 5.21] shows that homotopy invari-
ance fails for Euler class in general. Nevertheless, under suitable smoothness hypotheses,
homotopy invariance is known to hold (see, e.g., [38, Corollary 4.4 (3)] and [17, Proposi-
tion 5.7]). In this subsection, we establish Theorem A.1.4 which improves those results.
To this end, we begin by recalling the following improvement of [12, Theorem 3.8]
from [18].

Theorem A.1.1 ([18, Theorem 4.12]). Let R be a regular ring of dimension d which has
essentially finite type over a field k and infinite residue fields. Let n be an integer such that
2n � d C 3. If I � RŒT � is an ideal of height n such that I D .F1; : : : ; Fn/C .I 2T /,
then there exist G1; : : : ; Gn 2 I such that I D .G1; : : : ; Gn/, where Gi � Fi 2 .I 2T /
for 1 � i � n.

Remark A.1.2. The result of Theorem A.1.1 fails in the case where d D n D 2, as shown
in [12, Example 3.15]. However, in that situation, the following weaker assertion holds
(see also [12, Theorem 3.16].

Theorem A.1.3 ([18, Corollary 3.5]). LetR be a regular ring of dimension 2. If I � RŒT �
is an ideal of height 2 such that ht I.0/ � 2 and I D .F1; F2/C .I 2T /, then there exist
H1;H2 2 I and � 2 SL2.RŒT �=I / such that the following statements hold:

(1) I D .H1;H2/,
(2) .F1; F2/� D .H1;H2/, where bar denotes modulo I 2, and

(3) Hi .0/ D Fi .0/ for i D 1; 2.

We now prove the following result; the idea of this proof is similar to that of
[12, Lemma 4.3, Remark 4.6].
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Theorem A.1.4. Let R be a ring of dimension d � 2 and suppose n � 2 is a positive
integer. Assume further that:

(1) if d D n D 2, then R is regular, or

(2) if 2n � 3 � d � 3, then R is a smooth k-algebra with k an infinite field.

Let I � RŒT � be an ideal of height n such that I=I 2 is generated by n elements and both
I.0/ and I.1/ are ideals of height n in R. If ! W .RŒT �=I /n � I=I 2 is a surjection, then
.I.0/; !.0// D .I.1/; !.1// in En.R/.

Proof. Let ! be induced by I D .f1; : : : ; fn/C I 2. Then !.0/ is given by

I.0/ D .f1.0/; : : : ; fn.0//C I.0/
2:

Similarly, !.1/ is given by

I.1/ D .f1.1/; : : : ; fn.1//C I.1/
2:

We first assume that .I.0/; !.0// ¤ 0 in En.R/. Let I \R D J . Applying [15, Cor-
ollary 2.4] we can find an ideal K of height n such that

K C J D RandI.0/ \K D .a1; : : : ; an/;

where ai �fi .0/ 2 I.0/2. ThenK D .a1; : : : ; an/CK2. Write !K W .R=K/n � K=K2

for the surjection thus induced. We then have

.I.0/; !.0//C .K; !K/ D 0 in En.R/:

Let L D I \KŒT �. Then f1; : : : ; fn and a1; : : : ; an will induce a set of generators of
L=L2, say, L D .g1; : : : ; gn/C L2. This means that gi � fi 2 I 2 and gi � ai 2 K2ŒT �.
Consequently, gi .0/ � fi .0/ 2 I.0/2 and gi .0/ � ai 2 K2. Since ai � fi .0/ 2 I.0/2, it
follows that gi .0/ � ai 2 .I.0/ \K/2 D L.0/2. Applying [12, Remark 3.9], we can find
h1; : : : ; hn 2 L such that L D .h1; : : : ; hn/C .L2T / with hi � gi 2 L2.

Case 1. Assume that 2n � 3 � d � 3, then by A.1.1 we have L D .l1; : : : ; ln/ such that
li � hi 2 .L

2T /. Then L.1/ D I.1/ \K D .l1.1/; : : : ; ln.1//. As li � fi 2 I 2, we have
li .1/ � fi .1/ 2 I.1/

2. Also, li � ai 2 K2ŒT �, implying that li .1/ � ai 2 K2. Summing
up, we simply have

.I.1/; !.1//C .K; !K/ D 0 in En.R/:

Therefore, .I.0/; !.0// D .I.1/; !.1// in En.R/ in this case.

Case 2. Assume that d D n D 2. By Theorem A.1.3, there exist elements l1; l2 2 L and
� 2 SL2.RŒT �=L/ such that
(1) L D .l1; l2/,
(2) .h1; h2/� D .l1; l2/,
where we use the bar to indicate that we are working modulo L2.

We have L.1/ D I.1/ \K D .l1.1/; l2.1//. Note that �.1/ 2 SL2.R=I.1/ \K/ and
as dim.R=I.1/ \K/ D 0, we have

�.1/ 2 E2.R=I.1/ \K/ D E2.R=I.1// �E2.R=K/:
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As I.1/CK D R and I.1/ \K D .l1.1/; l2.1//, we have

I.1/ D .l1.1/; l2.1//C I.1/
2 and K D .l1.1/; l2.1//CK

2:

Writing the corresponding surjections as !0
.I.1//

and !0K , we have

.I.1/; !0.I.1///C .K; !
0
K/ D 0:

It is then easy to see that !.1/ and !0.I.1// differ by a matrix in E2.R=I.1//, whereas
!K and !0K differ by a matrix in E2.R=K/. Consequently, .I.1/; !.1// D .I.1/; !0

.I.1//
/

and .K; !0K/ D .K; !K/ and we have

.I.1/; !.1//C .K; !K/ D 0:

Therefore, .I.0/; !.0// D .I.1/; !.1// in E2.R/.

A.2. A group homomorphism

Assume R is a commutative ring of dimension d � 2. Our goal is to construct a group
homomorphism UmdC1.R/=EdC1.R/ to Ed .R/, following [20], with some subtle mod-
ifications. Another construction of this homomorphism is given (under rather general
hypotheses) in [54], but we choose this approach because it may be plugged directly into
the proof of Proposition 3.2.3. We refer the reader to [20] and [54] for further references
and some history of the relevant homomorphism.

Our construction proceeds by defining a function on a restricted class of unimodu-
lar rows, checking invariance under the action of the elementary matrix group, and then
showing that the map is a group homomorphism. To this end, let

.a1; : : : ; ad ; adC1/ 2 UmdC1.R/:

By adding suitable multiples of adC1 to a1; : : : ; ad if necessary, we can assume that
ht.a1; : : : ; ad / D d . Let J0 be the ideal ha1; : : : ; ad i and let !0 W Rd � J0 be the surjec-
tion induced by .a1; : : : ; ad /. As adC1 is a unit modulo J0, the pair .J0; adC1!0/ defines
an element of Ob0d .R/ (where "bar” means reduction modulo J0) and has an associated
class in Ed .R/. We associate with .a1; : : : ; ad ; adC1/ the element .J0; adC1!0/ 2 Ed .R/.
The next proposition follows [20, Section 4]; for the sake of completeness, we spell out
the details.

Proposition A.2.1. Assume R is a commutative ring of dimension d � 2. Assume fur-
thermore that:

(1) d D 2 and R is regular, or

(2) d � 3 and R is a smooth k-algebra with k an infinite field.

The association described above is invariant under the action of the elementary subgroup
EdC1.R/ and therefore yields a well-defined function

� W UmdC1.R/=EdC1.R/! Ed .R/:

Proof. Let .a1; : : : ; ad ; adC1/; .b1; : : : ; bd ; bdC1/ 2 UmdC1.R/ be such that

ht.a1; : : : ; ad / D d D ht.b1; : : : ; bd /
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and there exists � 2 EdC1.R/ such that

.a1; : : : ; ad ; adC1/� D .b1; : : : ; bd ; bdC1/:

Let J1 D hb1; : : : ; bd i and !1 W Rd � J1 be the surjection induced by .b1; : : : ; bd /.
It suffices to prove that .J0; adC1!0/ D .J1; bdC1!1/ in Ed .R/ (where bdC1 is the
reduction of bdC1 modulo J1).

As � is elementary, it is naively homotopic to the identity, i.e., we may find an element
� 2 EdC1.RŒT �/ such that �.0/ D id and �.1/ D � . Let

.a1; : : : ; ad ; adC1/� D .f1.T /; : : : ; fd .T /; fdC1.T //:

Then .f1.T /; : : : ; fd .T /; fdC1.T // 2 UmdC1.RŒT �/. As J0 and J1 are both of height d ,
one checks that the ideal .f1.T /; : : : ; fd .T /; T .1 � T // � RŒT � has height d C 1. Since
.f1.T /; : : : ; fd .T /; fdC1.T // is a unimodular row, we conclude that

ht.f1.T /; : : : ; fd .T /; .T .1 � T /fdC1.T // D d C 1:

Adding suitable multiples of .T .1 � T //fdC1.T / to f1.T /; : : : ; fd .T / if necessary, we
can assume that ht.f1.T /; : : : ; fd .T // D d . Write I D hf1.T /; : : : ; fd .T /i. Then we
have I.0/ D J0 and I.1/ D J1. Let !0 W RŒT �d � I denote the surjection induced by
f1.T /; : : : ; fd .T / and write ! D fdC1.T /!0 (where fdC1 is the reduction of fd mod-
ulo I ). Then .I.0/; !.0// D .J0; adC1!0/ and .I.1/; !.1// D .J1;AbdC1!1/ in Ed .R/.
Appealing to Theorem A.1.4, we conclude that

.J0; adC1!0/ D .J1;AbdC1!1/
in Ed .R/ as required.

Proposition A.2.2. The function � W UmdC1.R/=EdC1.R/!Ed .R/ constructed above
is a group homomorphism.

Proof. By [53, Theorem 3.3], it suffices to prove that if .x; a1; : : : ; ad / and .y; a1; : : : ; ad /
are unimodular with x C y D 1, then

�.x; a1; : : : ; ad /C �.y; a1; : : : ; ad / D �.xy; a1; : : : ; ad /:

If any of x; y or xy is zero, then .a1; : : : ; ad / is unimodular and the above equality holds
trivially; thus, we may assume that these elements are non-zero.

Let bar denote reduction modulo hxyi. Then, by adding suitable multiples of ad to
a1; : : : ; ad�1, we may assume that ht.a1; : : : ; ad�1/ � d � 1. It follows that

ht.xy; a1; : : : ; ad�1/ � d:

Therefore, ht.x; a1; : : : ; ad�1/ � d and ht.y; a1; : : : ; ad�1/ � d:
Set J1 D .x; a1; : : : ; ad�1/ and J2 D .y; a1; : : : ; ad�1/ and let !J1 W R

d � J1 and
!J2 W R

d � J2 be the corresponding surjections. Then

J1 C J2 D R and J1 \ J2 D .xy; a1; : : : ; ad�1/I

let !J1\J2 be the corresponding surjection.
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Unwinding the definition of �, the following statements hold:
(1) �Œx; a1; : : : ; ad � D .J1; ad!J1/,
(2) �Œy; a1; : : : ; ad � D .J2; ad!J2/,
(3) �Œxy; a1; : : : ; ad � D .J1 \ J2; ad!J1\J2/
(note that ad refers to reduction modulo J1 in the first line, reduction modulo J2 in the
second line and reduction modulo J1 \ J2 in the third line). As x � 1 modulo J2, and
y � 1 modulo J1, we see that

.J1 \ J2; ad!J1\J2/ D .J1; ad!J1/C .J2; ad!J2/;

and the result follows.
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