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Abstract. This paper proves universality of the distribution of the smallest and largest gaps between
eigenvalues of generalized Wigner matrices, under some smoothness assumption for the density
of the entries. The proof relies on the Erdős–Schlein–Yau dynamic approach. We exhibit a new
observable that satisfies a stochastic advection equation and reduces local relaxation of the Dyson
Brownian motion to a maximum principle. This observable also provides a simple and unified proof
of gap universality in the bulk and the edge, which is quantitative. To illustrate this, we give the first
explicit rate of convergence to the Tracy–Widom distribution for generalized Wigner matrices.
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1. Introduction

1.1. Extreme statistics in random matrix theory

The study of extreme spacings in random spectra was initially limited to integrable mod-
els. Vinson [51] showed that the smallest gap between eigenvalues of theN �N Circular
Unitary Ensemble, multiplied by N 4=3, has limiting density 3x2e�x

3
, as the size N

increases. In his thesis, similar results for the smallest gap between eigenvalues of a gen-
eralization of the Gaussian Unitary Ensemble were obtained. With a different method
Soshnikov [48] computed the distribution of the smallest gap for general translation invar-
iant determinantal point processes in large boxes: properly rescaled the smallest gap
converges, with the same limiting distribution function e�x

3
. Vinson also gave heuris-

tics suggesting that the largest gap between eigenvalues in the bulk should be of order
p

logN=N , with Poissonian fluctuations around this limit, a problem popularized by
Diaconis [16]. Ben Arous and the author addressed this problem concerning the first order
asymptotics for the maximum gap, and described the limiting process of small gaps, for
CUE and GUE [4]. These results were extended by Figalli and Guionnet to some invariant
multimatrix Hermitian ensembles [30]. The convergence in distribution of the largest gap
was recently solved by Feng and Wei, also for CUE and GUE [27]. Feng and Wei also
investigated the smallest gaps beyond the determinantal case, characterizing their asymp-
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totics for the circular ˇ ensembles [28]. For the Gaussian orthogonal ensemble, together
with Tian they proved that the smallest gap rescaled by N 3=2 converges with limiting
density function 2xe�x

2
(see [29]).

The intuition for all results above are (i) the Poissonian ansatz, namely the eigenval-
ues’ gaps are asymptotically independent, (ii) weak convergence of the spacings holds
with good convergence rate, so that the finite N gap density asymptotics at 0C and1 are
close to the limiting Gaudin density asymptotics.

This paper shows that the above limit theorems and heuristic picture hold beyond
invariant ensembles. In particular, the gap universality for Wigner matrices by Erdős
and Yau [21] extends to submicroscopic scales. We informally state this optimal sepa-
ration of eigenvalues as follows (see Theorem 1.2 for details, in particular the smoothness
assumption).

Theorem. Let �1 < � � � < �N be the eigenvalues of a symmetric Wigner matrix with
entries satisfying some weak smoothness assumption. Then for any small � > 0 there
exists c > 0 such that for any x > 0,

lim
N!1

P
�
cN

3
2 min
�N6i6.1��/N

.�iC1 � �i / > x
�
D e�x

2

:

The same result holds for the Hermitian class, with rescaling N 4=3 and limit e�x
3
.

Our work also applies to universality of the largest gaps (see Theorem 1.4), under similar
assumptions.

For the proof, we develop a new approach to the analysis of the Dyson Brownian
motion (see Section 1.4). Relaxation of eigenvalues simply follows from a the new observ-
able (1.9) which satisfies a stochastic advection equation.

Does the above theorem require our slight smoothness hypothesis (1.2) on the matrix
entries? For the largest gaps, which are essentially on the microscopic scale 1=N , this
assumption is unnecessary as shown by Landon, Lopatto and Marcinek in the simul-
taneous work [36]. The scale of the smallest gaps is harder to access: the current best
lower bound on separation of eigenvalues for Wigner matrices with atomic distribution is
N�2Co.1/, by Nguyen, Tao and Vu [41] (see also [40] for the case of sparse matrices).

Motivations for the extreme eigenvalues’ gaps statistics include relaxation time for
diagonalization algorithms [4,15], conjectures in analytic number theory (e.g. the extreme
gaps between zeros of the Riemann zeta function [4,13]), conjectures in algorithmic num-
ber theory (the Poisson ansatz for large gaps suggests the complexity of an algorithm to
detect square free numbers [7]), and quantum chaos in the complementary Poissonian
regime [6].

Another motivation for extreme value statistics in random matrix theory emerged after
the work of Fyodorov, Hiary and Keating [31]: the maximum of the characteristic poly-
nomial of random matrices predicts the scale and fluctuations of the maximum of the
Riemann zeta function on typical intervals of the critical line. Recent progress about their
conjecture verified the size of the maximum of the characteristic polynomial, for inte-
grable random matrices [3, 14, 35, 44]. We expect that the observable (1.9) will also help
understanding universality for such extreme statistics. Indeed, it was an important tool in
the recent proof of fluctuations of determinants of Wigner matrices [10].
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1.2. Results on extreme gaps

We will use the notation aN � bN if there exists C > 0 such that C�1bN 6 aN 6 CbN
for all N . In this work, we consider the following class of random matrices.

Definition 1.1. A generalized Wigner matrix H D H.N/ is a Hermitian or symmetric
N �N matrix whose upper-triangular elements Hij D Hj i , i 6 j , are independent ran-
dom variables with mean zero and variances �2ij D E.jHij j2/ that satisfy the following
two conditions:
(i) Normalization: for any j 2 ŒŒ1; N ��,

PN
iD1 �

2
ij D 1.

(ii) Non-degeneracy: �2ij � N
�1 for all i; j 2 ŒŒ1; N ��.

In the Hermitian case, we assume that Var Re.Hij / � Var Im.Hij / and independence of
Re.Hij / and Im.Hij /.1

We also suppose for convenience (this could be replaced by a finite large moment
assumption) that the matrix entries satisfy a tail estimate: there exists c > 0 such that for
any i; j; N and x > 0 we have

P
�ˇ̌p

NHij
ˇ̌
> x

�
6 c�1e�x

c

: (1.1)

We denote the limiting spectral density of Wigner matrices

�.x/ D
1

2�

p
.4 � x2/C:

In some of the following results, we additionally assume non-atomicity for the matrix
entries. A sequence .HN /N of random matrices is said to be smooth on scale � D �.N /
if
p
NHij has density e�V , where V D VN;i;j satisfies the following condition uniformly

in N; i; j . For any k > 0 there exists C > 0 such that

jV .k/.x/j 6 C��k.1C jxj/C ; x 2 R: (1.2)

Finally, we always order the eigenvalues �1 6 � � � 6 �N and define the process of small
gaps and their position

�.N/ D

NX
iD1

ı�
N
ˇC2
ˇC1 .�iC1��i /;�i

�1j�i j<2�� ;
where ˇ D 1 for the generalized Wigner symmetric ensemble and ˇ D 2 for the Hermi-
tian one. The following theorem generalizes (and relies on comparison with) the GUE and
GOE cases [4, 29].2

1Other assumptions would work, such as the law of Hij being isotropic. We consider the
independent case for simplicity.

2Our normalization choice from Definition 1.1 yields a limiting eigenvalue distribution sup-
ported on Œ�2; 2�, while [29] gives a support Œ�

p
2N ;
p
2N �. The ˇ D 1 cases in Theorem 1.2

and Corollary 1.3 agree with the results from [29] up to this rescaling.
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Theorem 1.2 (Small gaps process). Let .HN / be generalized Wigner matrices satisfying
estimate (1.1). Let � > 0.

(i) Symmetric class. Assume .HN / is smooth on scale � D N�1=4C" for some fixed
" > 0, in the sense of estimate (1.2). The point process �.N/ converges as N !1 to
a Poisson point process � with intensity given, for any measurable sets A � RC and
I � .�2C �; 2 � �/, by

E�.A � I / D
1

48�

�Z
A

u du
��Z

I

.4 � x2/
3
2 dx

�
:

(ii) Hermitian class. Assume .HN / is smooth on scale � D N�1=3C" for some fixed
" > 0. The point process �.N/ converges to a Poisson point process � with intensity

E�.A � I / D
1

48�2

�Z
A

u2 du
��Z

I

.4 � x2/2 dx
�
:

As a corollary, the distribution of the smallest gaps in the bulk of the spectrum is
explicit. For the statement, let t1 D min¹�iC1 � �i W �i 2 I º be the smallest gap in some
interval I , t2 D min¹�iC1 � �i W �i 2 I; �iC1 � �i > t1º the second smallest gap, and
analogously for any tk . To quantify the speed of convergence below, we consider the
Wasserstein distance on R (� is the set of all couplings of X and Y ),

dW.X; Y / D

Z
jP .X 6 x/ � P .Y 6 x/j dx

D sup
khkLip61

jE.h.X/ � h.Y //j

D inf
2�

Z
jx � yj d.x; y/:

(1.3)

Corollary 1.3 (Smallest gaps). Assume .HN /N is as in Theorem 1.2, k is fixed, � > 0
and consider a non-empty interval I � .�2C �; 2 � �/.

(i) Symmetric class. Let

�k D

�
1

96�

Z
I

.4 � x2/
3
2 dx

� 1
2

N
3
2 tk :

Then for any interval J � RC, we have

lim
N!1

P .�k 2 J / D

Z
J

2

.k � 1/Š
x2k�1e�x

2

dx:

The rate of convergence satisfies

dW.�k.H/; �k.GOE// 6
N c

N
1
2 �2

for any c > 0.
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(ii) Hermitian class. Let

�k D

�
1

144�2

Z
I

.4 � x2/2 dx
� 1
3

N
4
3 tk :

Then for any interval J � RC, we have

lim
N!1

P .�k 2 J / D

Z
J

3

.k � 1/Š
x3k�1e�x

3

dx:

The rate of convergence satisfies

dW.�k.H/; �k.GUE// 6
N c

N
2
3 �2

for any c > 0.

There are at least two ways to understand the above scaling of the smallest spacings,
denoted ` D N�3=2 for ˇ D 1, ` D N�4=3 for ˇ D 2. First, in the Gaussian integrable
case, the eigenvalues interaction

Q
i<j j�i � �j j

ˇ suggests

P .N.�iC1 � �i / < x/ � x
ˇC1

uniformly in small x and i , so that decorrelation of spacings would give N.N`/ˇC1 � 1.
Second, the resolvent method gives Wegner estimates for Wigner matrices with smooth
entries [19]. For example, [9, Corollary B.2] shows P .N.�iC1 � �i / < x/ 6 CN "x2 for
GOE. A union bound on these level repulsion estimates provides a lower estimate on the
smallest gaps, which matches our order.

For the largest gaps, Gumbel fluctuations are expected, with heuristics also relying on
decoupling, and the asymptotics e�cx

2
for the upper tail distribution of N.�iC1 � �i /.

However, for the integrable Gaussian ensembles these facts have been established only
for ˇ D 2, thanks to the determinantal structure. We therefore only state the following
theorem for the Hermitian class. It proceeds by comparison with the GUE case from [27].
May the analogue for GOE be known, the universality would follow.

As in [27], for any interval I we denote S.I / D infI
p
4 � x2. Let

t�1 D max¹�iC1 � �i W �i 2 I º

be the largest gap,

t�2 D max¹�iC1 � �i W �i 2 I; �iC1 � �i < t�1 º

the second smallest gap, and analogously for any t�
k

. We rescale the kth largest gaps as

��k D
1

4
.2 logN/

1
2

�
NS.I /t�k � .32 logN/

1
2

�
C
5

8
log.2 logN/:

Theorem 1.4 (Largest gaps in the bulk, Hermitian case). Let .HN / be generalized Wigner
matrices from the Hermitian class, satisfying (1.1) and smooth on scale � > N�

1
2C" for

some fixed " > 0, in the sense of (1.2). Let I D Œa; b� � .�2; 2/. Assume jaj 6 jbjwithout
loss of generality, and define

c D
1

12
log 2C 3�0.�1/C

3

2
log.4 � b2/ � log.4jbj/C .log 2/1aD�b :



P. Bourgade 2828

For any fixed k and interval J , we have

lim
N!1

P .��k 2 J / D

Z
J

ek.c�x/

.k � 1/Š
e�e

c�x

dx:

Moreover, the rate of convergence is bounded by

dW.�
�
k .H/; �

�
k .GUE// 6

N c

N�2

for any c > 0.

1.3. Results on quantitative universality and eigenvalues’ fluctuations

The previous theorems rely on a quantitative relaxation of the Dyson Brownian motion,
explained in Section 1.4. As a different application, universality holds with explicit rate
of convergence, answering a recurring question, see e.g. [42].

We illustrate this at the edge only to keep technicalities minimal, although the method
would also give some explicit rate for gaps in the bulk. A non-quantitative convergence
to the Tracy–Widom distribution was first proved in [25, 47, 49] for Wigner and in [8] for
generalized Wigner matrices. We consider the Kolmogorov distance

dK.X; Y / D sup
x
jP .X 6 x/ � P .Y 6 x/j:

Theorem 1.5. Let .HN / be generalized Wigner matrices from the symmetric (ˇ D 1)
or Hermitian (ˇ D 2) class satisfying (1.1). Denoting TWˇ the corresponding limiting
Tracy–Widom distribution, for any c > 0, for large enough N we have

dK.N
2
3 .�N � 2/;TWˇ / 6 N�

2
9Cc :

As another illustration of the method described in Section 1.4, we derive new typical
eigenvalue fluctuations, close to the edge of the spectrum. In the result below and along the
paper, we define the typical location k of the k-th ordered eigenvalue implicitly throughZ k

�1

d� D
k

N
:

Theorem 1.6 (Eigenvalues fluctuations close to the edge). Let .HN / be generalized
Wigner matrices satisfying (1.1). Consider

Xi D c
�i � i

.log i/
1
2N�

2
3 i�

1
3

;

where c D .3
2
/
1
3�ˇ

1
2 , with ˇ D 1 for the symmetric class, 2 for the Hermitian one. Fix

ı 2 .0; 1/. Then for any deterministic sequence i D iN !1, with i 6 N ı , we have
Xi ! N .0; 1/ in distribution.

Let m > 1 and k1 < � � � < km satisfy k1 � N ı , kiC1 � ki � N #i , 0 < #i 6 ı. Then
.Xk1 ; : : : ; Xkm/ converges to a Gaussian vector with covariance matrix

ƒij D 1 � ı
�1 max¹#k ; i 6 k < j º if i < j , ƒi i D 1.
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These anomalous small Gaussian fluctuations were first shown in [32] for GUE and
[43] for GOE. Our proof proceeds by comparison with these results. Fluctuations of eigen-
values around their typical locations are known in the bulk of the spectrum for Wigner
matrices [10, 37]. Theorem 1.6 extends to any ı 2 .0; 1/ a previous result from [8] which
was limited to ı < 1

4
, and therefore completes the proof of eigenvalues’ fluctuations any-

where in the spectrum.3

More generally, the proof sketch below explains edge statistics for general observ-
ables of eigenvalues with indices in ŒŒ1; N 1�"��, i.e. almost up to the bulk. As another
example, for any fixed " > 0 and diverging i < N 1�", N 2=3i�1=3.�iC1 � �i / converges
to the Gaudin distribution, a result proved in [8] for i < N 1=4.

1.4. Sketch of the proof

In this paper we denote c, C generic small and large constants which do not depend onN
but may vary from line to line. Let �.z/ D min.jz � 2j; jz C 2j/ and

' D eC0.log logN/2 ;

a subpolynomial error parameter, for some fixed C0 > 0. This constant C0 is chosen large
enough so that the eigenvalues’ rigidity from Lemma 2.3 holds.

Finally, we restrict the following outline and the full proof to the symmetric class, the
Hermitian one requiring only changes in notations.

As already mentioned, our work proceeds by interpolation with the integrable mod-
els, following the general method from [20]. This dynamic approach requires (i) a priori
bounds on the eigenvalues’ locations, (ii) local relaxation for the eigenvalues’ dynamics
after a short time, (iii) a density argument based on the matrix structure, to show that
eigenvalues statistics have not changed after short-time dynamics.

In this paper, (i) is the rigidity estimate from [25]. Concerning the density argu-
ment (iii), for theorems 1.5 and 1.6 we follow the Lindeberg exchange method [50] for
Green’s functions [24]. For Theorems 1.2 and 1.4, (iii) is obtained through the inverse
heat flow from [20] (this is where smoothness is required).

Our contribution is about (ii). Previous approaches for local convergence to equili-
brium included the local relaxation flow based on relative entropy [20]. It identifies eigen-
values statistics after a spatial averaging and therefore does not apply to extrema. Other
methods based either on Hölder regularity a la Di Giorgi, Nash and Moser [21] or L2-esti-
mates and a discrete Sobolev inequality [38] apply to individual eigenvalues but give
non-explicit error terms. In this paper, we give another approach based on the maximum
principle. Our main results are Theorem 2.8 for relaxation at the edge, and Theorem 3.1
for relaxation in the bulk. They give the first explicit (and optimal) error estimates for
local relaxation of eigenvalues dynamics.

3The results of [10,37] are stated for eigenvalues in Œ�2C �; 2 � ��, but the proofs immediately
extend to Œ�2CN�c ; 2 �N�c � for some fixed, small enough c > 0.
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The Dyson Brownian motion dynamics are defined as follows. Let B be an N �N
matrix such that Bij .i < j / and Bi i=

p
2 are independent standard Brownian motions,

and Bij D Bj i . Consider the matrix Ornstein–Uhlenbeck process

dHt D
1
p
N

dBt �
1

2
Ht dt:

If �1.0/ < � � � < �N .0/, the eigenvalues �.t/ of Ht are given by the strong solution of
the system of stochastic differential equations [17] (the ˇk are some Brownian motions
distributed as the Bkk)

d�k D
dˇk
p
N
C

�
1

N

X
`¤k

1

�k � �`
�
1

2
�k

�
dt:

The coupling method introduced in [9] proceeds as follows. Consider �.t/ the solution
of the same SDE as above with another initial condition �.0/ D ¹�1.0/ < � � � < �N .0/º,
the spectrum of a GOE matrix. Then the differences

Nık.t/ D e
t
2 .�k.t/ � �k.t//

satisfy the long-range parabolic differential equation

@tık.t/ D
X
j¤k

ıj .t/ � ık.t/

N.�k.t/ � �j .t//.�k.t/ � �j .t//
:

Smoothing of this equation for indices in the bulk means that for t � 1
N

,

ıkC1.t/ D ık.t/C o.N�1/:

Such estimates were proved in [21, 38], with a weak error term N�1�" with some non-
explicit " > 0. We obtain the essentially optimal estimate (see Corollary 3.3), up to sub-
polynomial orders,

ıkC1.t/ D ık.t/C O
�
'C

N 2t

�
: (1.4)

With this quantitative relaxation, .�kC1 � �k/� .�kC1 ��k/ is below the expected scale
of smallest gaps provided t � N�1=2 for ˇ D 1, t � N�2=3 for ˇ D 2. This gives the
relaxation step (ii) for the smallest gaps. The proof for the large gaps proceeds identically
and only requires t � 1=N .

Our proof of (1.4) reduces Hölder regularity to an elementary maximum principle,
and it also applies to edge universality. In details, for any � 2 Œ0; 1�, let

x
.�/

k
.0/ D ��k.0/C .1 � �/�k.0/ (1.5)

be interpolating between the Wigner and GOE initial conditions, as in [38]. Define

dx.�/
k
.t/ D

dˇk.t/
p
N
C

�
1

N

X
`¤k

1

x
.�/

k
.t/ � x

.�/

`
.t/
�
1

2
x
.�/

k
.t/

�
dt: (1.6)
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Then u
.�/

k
.t/ D et=2 d

d�x
.�/

k
.t/ satisfies the non-local parabolic differential equation

d
dt

u
.�/

k
.t/ D .Bu.�//.k/; (1.7)

where

.Bf /.k/ D .B.t/ft /.k/

D

X
`¤k

c`k.t/.ft .`/ � ft .k//; c`k.t/ D
1

N.x
.�/

k
.t/ � x

.�/

`
.t//2

:
(1.8)

From now we set � 2 .0; 1/ and generally omit it from the notations. Let

ft .z/ D e
� t2

NX
kD1

uk.t/

xk.t/ � z
: (1.9)

The above function is the main idea in our work. Note that for k in the bulk uk.0/ is of
order N�1 so that, for Im z in the bulk of the spectrum, f0 is a function of order 1. From
(1.12) below, ft is of the same order.

A key observation is that the quadratic singularities from the denominator in (1.8)
disappear when combined with the Dyson Brownian motion evolution itself, so that
the time evolution of f has no shocks. This is reminiscent of a similar argument in
[11, Lemma 6.2], for a different observable. More precisely, f follows dynamics close to
the advection equation

@th D

p
z2 � 4

2
@zh; (1.10)

as shown in Lemma 2.1. The characteristics for the above equation are explicit,

zt D
e
t
2 .z C

p
z2 � 4/C e�

t
2 .z �

p
z2 � 4/

2
(1.11)

and suggest the approximation
ft .z/ � f0.zt /: (1.12)

This estimate holds with a small error term (see e.g. Proposition 2.11) because there are
no possible shocks between eigenvalues in the equation guiding f , contrary to (1.7). The
approximation (1.12) has two applications.

First application: relaxation at the edge. Let vk D v
.�/

k
solve the same equation as (1.7)

( d
dt vk.t/ D .Bv/.k/) but with initial condition vk.0/D juk.0/j D j�k.0/��k.0/j. Sim-

ilarly to (1.9), define

ef t .z/ D e� t2 NX
kD1

vk.t/

xk.t/ � z
: (1.13)

Edge universality follows from the shape of the characteristics (1.11), which take points
around the edge further away from the bulk, as shown in Figure 1. More precisely, we
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Fig. 1. The characteristics for equation (1.10), i.e. trajectories .zt /t>0, with z0 on the lower curve S
from (2.5).

choose z D z0 D E C i� with E 2 Œ�2; 0� and � > 0. By a straightforward calculation
based on the explicit formula (1.11) and eigenvalues’ rigidity, we have

Imef 0.zt / < 'C �.z0/ 12
t

:

Together with the estimate (1.12) for ef , we obtain

Imef t .z0/ < 'C �.z0/ 12
t

:

For z0 D �2C i'CN�2=3, as v remains nonnegative, this implies

v
.�/
1 .t/ < 'CN�

2
3 Imef t .z0/ < 'C

Nt
:

In particular, integrating the above equation in 0 6 � 6 1 after using juk.t/j 6 vk.t/ (the
linear equation (1.7) preserves order of the initial conditions because c`k > 0), we obtain

�1.t/ � �1.t/ D O
�
'C

Nt

�
:

Local edge relaxation is therefore proved for any t > 'CN�1=3, with an optimal error
term. Such quantitative bounds can be similarly extended to any �k.t/ � �k.t/ provided
k 6 N 1�" and t > 'Ck1=3N�1=3. Theorems 1.5 and 1.6 follow from these relaxation
estimates and a Green function comparison, following [24].

Second application: relaxation in the bulk. We now directly work with f instead of ef .
Fix some times u < t such that ju � t j � t , a length scale r � t and a bulk index k.
We are interested in evaluating ui .t/ for ji � kj 6 Nr . Assume that for any s 2 Œu; t �
the maximum value of u.s/ occurs at some index j D j.s/ with jj � kj 6 Nr (this is
generally wrong but the conclusion will remain thanks to a finite speed of propagation
estimate from [11]). We follow the maximum principle as in the analysis of the eigen-
vector moment flow from [11]: for any � > 0 to be chosen, denoting z D xj .s/C i�,
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from (1.7)) and the fact that uj .s/ > u`.s/ for all `, we have

@suj .s/ 6
1

N

X
`¤j

u`.s/ � uj .s/

.x`.s/ � xj .s//2 C �2

6
c

�

�
1

N
Imfs.z/ � Im

�
1

N

X
`

1

z � x`.s/

�
uj .s/

�
:

In the bulk of the spectrum, the estimate in (1.12) holds with the good error term 'C =.N�/

(see Proposition 2.11), so that the previous equation behaves similarly to (note that
Im. 1

N

P
`

1
z�x`.s/

/ � Immsc.z/ by eigenvalues’ rigidity, where msc is defined in (2.1))

@suj .s/ 6
c

�

�
1

N
Imf0.zs/ � Immsc.z/uj .s/

�
C O

�
'C

N 2�2

�
:

We can successively justify and quantify the approximations

zs D .xj .s/C i�/s � .j C i�/s � .k C i�/s � .k C i�/t

by rigidity of the eigenvalues, r � s and s � t . We therefore can substitute

Imf0.zs/ � Imf0..k C i�/t /;

so that denoting

mt D
Imf0..k C i�/t /
N Immsc.k C i0C/

;

the above equation implies

@s.uj .s/ �mt / 6 �
c

�
.uj .s/ �mt /C O

�
'C

N 2�2

�
:

For any �� jt � uj we obtain

max
ji�kj6Nr

.ui .t/ �mt / D O
�
'C

N 2�

�
:

The same estimate naturally holds for the minimum. If the time evolution jt � uj is
comparable to t , we obtain

max
ji�kj6Nr

jui .t/ �mt j D O
�
'C

N 2t

�
;

and in particular

u
.�/

kC1
.t/ D u

.�/

k
.t/C O

�
'C

N 2t

�
: (1.14)

The above argument is rigorous up to some technicalities due to localizing the maximum
in the window ji � kj 6 Nr . The actual proof proceeds by induction in different space-
time windows. The key to make this maximum principle work is that fs.z/ (possibly
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highly oscillatory in the space variable Re z), actually fluctuates on a large scale thanks
to (1.12), and can be considered constant in windows of size r � t .

Integrating (1.14) over � 2 .0; 1/, we obtain (1.4), which is the main estimate for
Theorems 1.2 and 1.4.

To summarize this proof sketch, the observable (1.9) and the stochastic advection
equation (1.10) it satisfies are new ingredients to quantify relaxation of the Dyson Brow-
nian motion and obtain universality beyond microscopic scales.

It has been known since [45] that a deterministic advection equation allows to derive
the semicircle distribution. More recent works (e.g. [2,26,52]) have written the stochastic
advection equation for the resolvent of a matrix following the Dyson Brownian motion
dynamics.

These resolvent dynamics can be used for regularization and universality purpose, as
proved first in [39], for eigenvalues statistics at the edge of deformed Wigner matrices.
For the same model, [5, 53] used stochastic advection equations and characteristics to
understand the shape of individual bulk eigenvectors. Moreover, the stochastic advection
equation for the Stieltjes transform extends to general ˇ-ensembles and allows to prove
rigidity of the particles [1, 33], also through regularization along the characteristics. The
Stieltjes transform is a specialization of our observable ft when uk.t/ �

1
N

.

2. Stochastic advection equation

2.1. The observable

The Stieltjes transform of the empirical spectral measure and the semicircle law

�.x/ D
1

2�

p
.4 � x2/C

are denoted

st .z/ D
1

N

NX
kD1

1

xk.t/ � z
;

m.z/ D msc.z/ D

Z
R

d�.x/
x � z

D
�z C

p
z2 � 4

2
;

(2.1)

where our branch choice will always be Im
p
z2 � 4 > 0 for Im.z/ > 0, above and in

equation (1.11).
More generally than (1.6), consider x.t/ the strong solution of

dxk.t/ D

p
2 dBk.t/p
ˇN

C

�
1

N

X
`¤k

1

xk.t/ � x`.t/
�
1

2
xk.t/

�
dt; (2.2)

where theBk are standard Brownian motions, x.0/ is still given by (1.5), and ˇ D 1 (resp.
ˇ D 2) corresponds to the spectral dynamics with equilibrium measure GOE (resp. GUE).
For any ˇ > 1 and distinct initial points, the stochastic differential equation (2.2) admits
a unique strong solution.
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We still define
u
.�/

k
.t/ D e

t
2

d
d�
x
.�/

k
.t/:

Then the function (1.9) satisfies the following dynamics.

Lemma 2.1. For any Im z ¤ 0, we have

dft D
�
st .z/C

z

2

�
.@zft / dt C

1

N

�
2

ˇ
� 1

�
.@zzft / dt

�
e�

t
2

p
N

s
2

ˇ

NX
kD1

uk.t/

.z � xk.t//2
dBk.t/:

(2.3)

Proof. It is a simple application of Itô’s formula. We omit the time index. First,

df D �
f

2
C e�

t
2

NX
kD1

duk

xk � z
C e�

t
2

NX
kD1

uk d
1

xk � z
: (2.4)

Applying again the Itô formula

d.xk � z/�1 D �.xk � z/�2 dxk C
2

ˇN
.xk � z/

�3 dt ;

with (2.2) we naturally decompose the second sum above as (I)+[(II)+(III)+(IV)] dt ;
where

.I/ D �
e�

t
2

p
N

s
2

ˇ

NX
kD1

uk

.z � xk/2
dBk ;

.II/ D
e�

t
2

N

X
`¤k

uk

x` � xk

1

.xk � z/2
;

.III/ D
e�

t
2

2

NX
kD1

ukxk

.xk � z/2
D
f

2
C
z

2
@zf;

.IV/ D
2e�

t
2

ˇN

NX
kD1

uk

.xk � z/3
D

1

N

�
2

ˇ
� 1

�
@zzf C

e�
t
2

N

NX
kD1

uk

.xk � z/3
:

Concerning the first sum in (2.4), by (1.7) we have

NX
kD1

@tuk

xk � z
D

X
`¤k

u` � uk

N.x` � xk/2.xk � z/
D
1

2

X
`¤k

u` � uk

N.x` � xk/2

�
1

xk � z
�

1

x` � z

�

D
1

2N

X
`¤k

u` � uk

x` � xk

1

.xk � z/.x` � z/

D �
1

N

X
`¤k

uk

x` � xk

1

.xk � z/.x` � z/
:
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Combining with (II), we obtain

.II/C e�
t
2

NX
kD1

@tuk

xk � z
D
e�

t
2

N

X
`¤k

uk

x` � xk

1

xk � z

�
1

xk � z
�

1

x` � z

�

D
e�

t
2

N

X
`¤k

uk

.xk � z/2
1

x` � z
:

All singularities have disappeared. We obtained

.II/C .IV/C e�
t
2

NX
kD1

@tuk

xk � z
D s.z/@zf C

1

N

�
2

ˇ
� 1

�
@zzf:

Summation of the remaining terms (I) and (III) concludes the proof.

Remember that �.z/ D min¹jz � 2j; jz C 2jº, and define

a.z/ D dist.z; Œ�2; 2�/; b.z/ D dist.z; Œ�2; 2�c/:

To estimate ft or ef t (see (1.13)), we first need some bounds on the characteristics .zt /t>0
from (1.11), and the initial values f0, ef 0. For this, we define the curve

S D

²
z D E C iy W �2C '2N�

2
3 < E < 2 � '2N�

2
3 ; y D

'2

N�.E/
1
2

³
(2.5)

and the domain
R D

[
06t61

¹zt W z 2 Sº:

See Figure 1 for a representation of these domains.
In the following lemma, we denote a � b if there exists a constant C > 0 such that

C�1b < a < Cb for all specified parameters z; t . For complex-valued functions, a � b
means Re a � Re b and Im a � Im b.

Lemma 2.2. Uniformly in 0 < t < 1 and z D z0 satisfying � D Im z > 0, jz � 2j < 1
10

,
we have

Re.zt � z0/ � t
a.z/

�.z/
1
2

C t2; Im.zt � z0/ �
b.z/

�.z/
1
2

t:

In particular, if in addition we have z 2 S, then

zt � z0 �

�
t

'2

N�.E/
C t2

�
C i�.E/

1
2 t:

Moreover, for any � > 0 we have

Im.zt � z0/ � t

uniformly in 0 < t < 1 and z D E C i� 2 Œ�2C �; 2 � �� � Œ0; ��1�.
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Proof. Let w D z � 2. We have .z2 � 4/
1
2 � w

1
2 so that

Re.z2 � 4/
1
2 � Re.w

1
2 / � jwj

1
2 Re

��
w

jwj

� 1
2
�
�

a.z/

�.z/
1
2

;

Im.z2 � 4/
1
2 � Im.w

1
2 / � jwj

1
2 Im

��
w

jwj

� 1
2
�
�

b.z/

�.z/
1
2

: (2.6)

On S, we always have b.z/ � �.z/ and a.z/ � � so the second estimate follows imme-
diately. The last estimate follows from Im

p
z2 � 4 � 1 uniformly in the defined bulk

domain.

We now define the typical eigenvalues’ location and the set of good trajectories such
that rigidity holds:

A D
®
jx
.�/

k
.t/� kj < '

1
2N�

2
3 . Ok/�

1
3 for all 0 6 t 6 1; k 2 ŒŒ1;N ��; 0 6 � 6 1

¯
; (2.7)

where Ok D min.k;N C 1 � k/. The following important a priori estimates were proved
in [25], for fixed t and � D 0 or 1. The extension in these parameter is straightforward,
by time discretization in t and � first, then by Weyl’s inequality to bound increments
in small time intervals, and the fact that ju.�/

k
.t/j < ku.�/.0/k1 to bound increments in

some small �-intervals.

Lemma 2.3. There exists a fixed C0 > 0 (remember ' D '.C0/) large enough such that
the following holds. For any D > 0, there exists N0.D/ such that for any N > N0 we
have

P .A/ > 1 �N�D :

Moreover, we have the following estimates on the initial condition f0;ef 0.

Lemma 2.4. In the set A, for any z D E C i� 2 R, we have

Imef 0.z/ 6

´
C'

1
2 if � > max.E � 2;�E � 2/,

C'
1
2

�
�.z/

otherwise:

The same upper bound naturally holds for j Imf0j.

Proof. The rigidity estimate on A easily implies that

Imef 0.z/ 6 C�

NX
kD1

'
1
2N�

2
3 . Ok/�

1
3

.E � k/2 C �2

6 C'
1
2 �

Z 2

�2

�.x/�
1
2

.E � x/2 C �2
d�.x/

6 C'
1
2 �

Z 2

�2

1

.E � x/2 C �2
dx;

and the claimed estimates follow. Note that we used z 2 R to justify approximation of
eigenvalues by typical location: in R the imaginary part of z is always greater than the
eigenvalues’ fluctuation scale.
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Finally, the following is an elementary calculation. We write zt D r.z; t/, for r given
by the right-hand side of (1.11).

Lemma 2.5. We have @tr D
p
z2�4
2

@zr .

2.2. Relaxation at the edge

For the following important estimate towards edge universality, remember the notation
in (1.13).

Proposition 2.6. Consider the dynamics (2.3) for ˇ D 1; 2. For any (large) D > 0 there
exists N0.D/ such that for any N > N0 we have

P

�
Imef t .z/ 6 '

�.E/
1
2

max.�.E/
1
2 ; t /

for all 0 < t < 1 and z D E C iy 2 S

�
> 1 �N�D :

Proof. For any 1 6 `;m 6 N 12, we define

t` D `N
�12 and z.m/ D Em C i�m D Em C i

'2

N�.Em/
1
2

;

where Z Em

�1

d� D
�
m �

1

2

�
N�12:

We also define the stopping times (with respect to Ft D �.Bk.s/; 06 s 6 t; 16 k 6N/)

�`;m D inf
²
0 6 s 6 t` W Imef s.z.m/t`�s

/ >
'

2

�.Em/
1
2

max.�.Em/
1
2 ; t`/

³
;

�0 D inf
®
0 6 t 6 1 W 9k 2 ŒŒ1; N �� such that jxk.t/ � kj > '

1
2N�

2
3 . Ok/�

1
3

¯
; (2.8)

� D min¹�0; �`;m W 0 6 `;m 6 N 12; �.Em/ > '
2N�

2
3 º;

with the convention inf ¿ D 1. We will prove that for anyD > 0 there exists eN 0.D/ such
that for any N > eN 0.D/, we have

P .� D 1/ > 1 �N�D : (2.9)

We first explain why the above equation implies the expected result by a grid argument
in t and z.

On the one hand, we have the sets inclusion

¹� D 1º
\

16`;m6N12; 16k6N

A`;m;k �
\

z2S; 0<t<1

²
Imef t .z/ 6 '

�.E/
1
2

max.�.E/
1
2 ; t /

³
; (2.10)

where

A`;m;k D

²
sup

t`6u6t`C1

ˇ̌̌̌Z u

t`

e�
s
2 vk.s/ dBk.s/

.z.m/ � xk.s//2

ˇ̌̌̌
< N�4

³
:
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Indeed, for any given z and t , chose t`; z.m/ such that t` 6 t < t`C1 and jz � zmj < N�5.
Then

jef t .z/ � ef t .z.m//j < N�2;
say, as follows directly from the definition of ef t and the crude estimate jvk.t/j < 1
(obtained by maximum principle). Moreover, we can bound the time increments using
equation (2.3): Thanks to the trivial estimates

jst .E C i�/j 6 ��1;

j@zft .E C i�/j 6 N kv.0/k1�
�2 6 N��2;

j@zzft .E C i�/j 6 N��3;

under the event \kA`;m;k (to bound the martingale term) we have

jef t .z.m// � ef t`.z.m//j < N�2:
On the other hand, from [46, Appendix B.6, equation (18)] with c D 0 allowed for

continuous martingales, for any continuous martingale M and any �;� > 0, we have

P
�

sup
06u6t

jMuj > �; hM it 6 �
�

6 2e�
�2

2� : (2.11)

For

Mu D

Z u

t`

e�
s
2 vk.s/ dBk.s/

.z.m/ � xk.s//2
;

we have the deterministic estimate

hM it`C1 6 N�12
�
'2

N

��4
kv.0/k21 6 '�8N�8;

so that (2.11) with � D '�8N�8 gives

P .A`;m;k/ > 1 � e�c'
1=5

and therefore, for any D > 0, for large enough N we have

P
� \
16`;m6N10; 16k6N

A`;m;k

�
> 1 �N�D : (2.12)

Equations (2.9), (2.10), (2.12) conclude the proof of the proposition.
We now prove (2.9). We abbreviate

t D t`; z D E C i� D z.m/

for some 1 6 `;m 6 N 10. Let gu.z/ D ef u.zt�u/. From Lemmas 2.2 and 2.4,

Img0.z/ 6
'

10

�.Em/
1
2

max.�.Em/
1
2 ; t /

;
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so that we only need to bound the increment of g. Using Lemmas 2.1 and 2.5, Itô’s
formula gives4

dgu^� .z/ D "u.zt�u/ d.u ^ �/ �
e�

u
2

p
N

s
2

ˇ

NX
kD1

vk.u/

.zt�u � xk.u//2
dBk.u ^ �/; (2.13)

where

"u.z/ D .su.z/ �m.z//@zef u C 1

N

�
2

ˇ
� 1

�
.@zzef u/:

We bound sup06s6t j
R s
0
"u.zt�u/ d.u ^ �/j by two terms, the first one beingZ t

0

ˇ̌
.su.zt�u/ �m.zt�u/@zef u.zt�u/ˇ̌ d.u ^ �/

6
Z t

0

'

N Im.zt�u/

NX
kD1

vk.u/

jzt�u � xk.u/j2
d.u ^ �/

6
Z t

0

' Imef u.zt�u/
N.Im.zt�u//2

d.u ^ �/

6
Z t

0

'2 du

N
�
�C .t � u/ b.z/

�.z/
1
2

�2 �.E/
1
2

max.�.E/
1
2 ; t /

D
�.E/

1
2

max.�.E/
1
2 ; t /

:

(2.14)

To bound su �m above, we have used the strong local semicircle law from [25, equa-
tion (2.19)] simultaneously for all 0 6 u 6 t (equivalent to Lemma 2.3). We have then
used Lemma 2.2 to evaluate Im.zt�u/, u < �`;m to bound Imef u.zt�u/, and

�.E/ D �.z/ D b.z/

on S to calculate the last integral.
We also have

sup
06s6t

ˇ̌̌̌ Z s

0

1

N
@zzef u.zt�u/ d.u ^ �/

ˇ̌̌̌
6
Z t

0

Imef u.zt�u/
N.Im.zt�u//2

d.u ^ �/

6
�.E/

1
2

'max.�.E/
1
2 ; t /

:

(2.15)

Finally, we want to bound sup06s6t jMsj, where

Ms WD

Z s

0

e�
u
2

p
N

NX
kD1

vk.u/

.zt�u � xk.u//2
dBk.u ^ �/:

4In this paper, we abbreviate u ^ t D min.u; t/ when u and t are time variables.
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Note that there is an absolute constant c > 0 such that for all k and u 6 �0 we have

jzt�u � xk.u/j > cjzt�u � k.u/j;

because for such u we have jxk.u/ � k.u/j � jzt�u � k.u/j. With (2.11) we expect

sup
06s6t

jMsj
2 6 '

1
10

Z t

0

1

N

X
k

vk.u/
2

jzt�u � kj4
d.u ^ �/ (2.16)

with overwhelming probability. More precisely, we will bound the above bracket on the
right-hand side by a deterministic bound below, and then (2.11) implies the same bound
on the right-hand side.

Let kj D bj'2c and Ij D ŒŒkj ; kjC1�� \ ŒŒ1; N ��, 0 6 j 6 N
'2

. Then

1

N

X
k

vk.u/
2

jzt�u � kj4

6
1

N

X
06j6 N

'2

�
max
k2Ij

vk.u/
��

max
k2Ij

1

jzt�u � kj4

�� X
k2Ij

vk.u/

�
:

(2.17)

For each 0 6 j 6 N
'2

, pick an n D nj such that jz.n/ � kj j < N
�9. First, as vk.u/ > 0

for any k and u, we have X
k2Ij

vk.u/ 6 �n Imef u.z.n//:
To estimate Imef u.z.n//, introduce ` such that t` 6 u < t`C1. On the event

T
k A`;m;k

and u 6 � , we have
jef u.z.n// � ef t`.z.n//j < N�2

as seen easily from (2.3). We therefore provedX
k2Ij

vk.u/ 6 �n Imef t`.z.n//CN�2 6
'3

N max.�.En/
1
2 ; u/

;

and in particular the same estimate holds for maxk2Ij vk.u/. We used t` 6 u 6 � for the
second inequality.

Lemma A.1 allows us to bound maxk2Ij
1

jz�k j
4 in (2.17) by '�2

P
Ij

1
jz�k j

4 .
All together, we obtained

sup
06s6t

jMsj
2 6

'4C
1
5

N 2

Z t

0

du
Z 2

�2

d�.x/
jzt�u � xj4 max.�.x/; u2/

6 C'
1
5

�.E/

max.�.E/; t2/
;

where for the last inequality, we evaluate this deterministic integral in Lemma A.2.
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In conclusion, by a union bound we have proved that for any D > 0 there exists N0
such that

P

�
sup

06`;m6N10;

�.Em/>'
2N�2=3;

06s6t`

Imef s^� .z.m/t`�s^�
/ >

'

2

�.Em/
1=2

max.�.Em/1=2; t`/

�
< N�D :

Together with Lemma 2.3, this implies (2.9) and the result.

Corollary 2.7. For any D > 0 there exists N0 and such that for any N > N0, we have

P

�
v
.�/

k
.t/ <

'10

N

1

max.. Ok
N
/1=3; t /

for all k 2 ŒŒ1; N �� and t 2 Œ0; 1�
�
> 1 �N�D :

Proof. Assume first that Ok WD min.k;N C 1 � k/ > '5. Then define

z D z0 D k C i
'2

N
p
�.k/

2 S:

On A, we have (we use nonnegativity of the vk)

v
.�/

k
.t/ 6 v

.�/

k
.t/

.Im z/2

jz � xkj2
6 Im z Imef t .z/ 6

'2

N
p
�.k/

Imef t .z/:
Note that �.k/1=2 � . Ok=N/1=3. Therefore, by Lemma 2.3 and Proposition 2.6,

P

�
v
.�/

k
.t/ <

'4

N

1

max.. k
N
/1=3; t /

for all k 2 ŒŒ'5; N � '5��; t 2 Œ0; 1�
�
> 1 �N�D :

If Ok < '5, without loss of generality we assume k < '5. The same reasoning with

z D z0 D k0 C i
'2

N
p
�.k0/

2 S

(where k0 D '5) yields to the same estimate up to the deteriorated '10 exponent, say.

We now state the quantitative relaxation of the dynamics at the edge. Remember that
� and � satisfy the same equation (1.6), with respective initial conditions a generalized
Wigner and GOE spectrum.

Theorem 2.8. Consider the dynamics (1.6) (or its Hermitian ensemble counterpart). For
any D > 0 and " > 0 there exists N0 and such that for any N > N0,

P

�
j�k.t/ � �k.t/j <

N "

Nt
for all k 2 ŒŒ1; N �� and t 2 Œ0; 1�

�
> 1 �N�D :

Remark 2.9. The above result is stated for ˇ D 1; 2. The same result holds for any choice
ˇ > 1 in equation (2.2), provided � and � satisfy optimal initial rigidity estimates. The
proof only requires notational changes.
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Proof. Remember that v � u and vC u are nonnegative for t D 0 and satisfies equation
(1.7), so they remain nonnegative and we have �vk.t/ 6 uk.t/ 6 vk.t/ for any t > 0.
Corollary 2.7 therefore gives

P

�
ju
.�/

k
.t/j<

'10

N

1

max.. Ok
N
/1=3; t /

for all k 2 ŒŒ1;N �� and t 2 Œ0;1�
�
>1�N�D (2.18)

for all N > N0.D/. Note in particular that N0 does not depend on � 2 Œ0; 1�. The above
equation easily implies that for any fixed eD and p, for large enough N we have

E.ju.�/
k
.t/j2p/ <

�
C'10

Nt

�2p
CN�

�D;
so that by Hölder’s inequality we have

E.j�k.t/ � �k.t/j
2p/ D E

�ˇ̌̌̌Z 1

0

u
.�/

k
.t/ d�

ˇ̌̌̌2p�
6
Z 1

0

E.ju.�/
k
j
2p/ 6

�
'10

Nt

�2p
CN�

�D :
By choosing p D b10="c and eD D D C 100p, Markov’s inequality concludes the proof
for fixed k and t .

By a simple union bound the same estimate holds for the event simultaneously over
all k for N > N0.D C 1/. For simultaneity over t , a standard argument based on dis-
cretization in time and Weyl’s inequality to bound increments in small intervals concludes
the proof.

2.3. Proof of Theorem 1.6

Let F be a given smooth and bounded test function. We rely on [32, 43] so that we only
need to prove

EHF.Xk/ D EGOEF.Xk/C o.1/ (2.19)
for any diverging k 2 ŒŒ1; N 1�"��. From Theorem 2.8, for t > .k=N/1=3N "=10, we have

EF

�
c

�k.t/ � k

.log k/
1
2N�

2
3 k�

1
3

�
D EF

�
c

�k.t/ � k

.log k/
1
2N�

2
3 k�

1
3

�
C o.1/;

so that (2.19) holds for any Gaussian divisible ensemble of typeeH t D e
� t2 eH 0 C .1 � e

�t /
1
2U ;

where eH 0 is any initial generalized Wigner matrix and U is an independent standard
GOE matrix. We now construct a generalized Wigner matrix eH 0 such that the first three
moments of eH t match exactly those of the target matrix H and the differences between
the fourth moments of the two ensembles are less than N�c for some positive c. This
existence of such a initial random variable is given for example by [23, Lemma 3.4]. By
the following Proposition 2.10, we have

E �HtF.Xk/ D EHF.Xk/C o.1/:
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The previous two equations conclude our proof of (2.19), and therefore Theorem 1.6 (the
proof in the multidimensional case is analogue).

The following proposition is a slight extension of the Green’s function comparison
theorem from [24], (see for example [11, theorem 5.2] for an analogue statement for
eigenvectors). Compared to [24], we include the following minor modifications:
(1) We state it for energies in the entire spectrum.
(2) We allow the test function to be N -dependent.

Proposition 2.10 can be proved exactly as in [24], so we do not repeat it. Note that at
the edge, the 4 moment matching can be replaced by 2 moments [25]. For our applications,
this improvement is not necessary.

Proposition 2.10. Let H v and Hw be generalized Wigner ensembles satisfying (1.1).
Assume that the first three moments of the entries (hij D

p
NHij ) are the same, i.e.

Ev.hkij / D Ew.hkij /

for all 1 6 i 6 j 6 N and 1 6 k 6 3. Assume also that there exists � > 0 such that

jEv.h4ij / � Ew.h4ij /j 6 N�� for i 6 j:

Then there is " > 0 depending on � such that for any integer k, any choice of indices
1 6 j1; : : : ; jk 6 N and smooth bounded ‚ W Rk ! R,

.Ev
� Ew/‚

�
N

2
3 . Oji /

1
3�j1 ; : : : ; N

2
3 . Ojk/

1
3�jk

�
D O

�
N�" max

06m65
k‚.m/k101

�
:

2.4. Average estimate in the bulk

Proposition 2.6 gave bounds on ef t .z/, useful for universality at the edge of the spectrum.
The following estimate has a similar proof and justifies (1.12) in the bulk of the spectrum.
Although not used in this paper, it is an important ingredient to study fluctuations of
random determinants in [10].

Proposition 2.11. Let � > 0 be a fixed (small) constant. Then for any D > 0 there exists
N0.D; �/ such that for any N > N0 we have

P

�
jft .z/�f0.zt /j 6

'30

N�
for all 0 < t < 1 and z D EC i�;

'2

N
< �< 1; jEj < 2��

�
> 1 �N�D :

Proof. We strictly follow the proof of Proposition 2.6. Actually, the only differences are
(i) the observable, now f instead of ef (but the equations are the same), (ii) simplifica-
tions, as we now know the a priori bound (2.18), and some estimates become simpler in
the bulk of the spectrum.

More precisely, for any 1 6 `;m; p 6 N 10, we define

t` D `N
�10 and z.m;p/ D Em C i�p;
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where Z Em

�1

d� D
�
m �

1

2

�
N�10 and �p D

'2

N
C pN�10:

We also define

�`;m;p D inf
²
0 6 s 6 t` W jfs.z

.m;p/
t`�s

/ � f0.z
.m;p/
t`

/j >
'25

N�p

³
;

�1 D inf
²
06 t 6 1 W 9k 2 ŒŒ1; N �� such that ju.�/

k
.t/j>

'10

N

1

max.. Ok
N
/1=3; t /

³
; (2.20)

� D min¹�0; �1; �`;m;p W 0 6 `;m; p 6 N 10; jEmj < 2 � �º;

where we remind the definition �0 from (2.8). By following the argument between (2.9)
and (2.12), we just need to prove that for any D > 0 there exists eN 0.�;D/ such that
for any N > eN 0, we have

P .� D 1/ > 1 �N�D; (2.21)

with the convention inf ¿ D 1. Let t D t` and z D z.m;p/, where 0 6 `;m; p 6 N 10,
jEmj < 2 � �, and gu.z/ D fu.zt�u/. As in (2.13), we have

dgu^� .z/ D "u.zt�u/ d.u ^ �/ �
e�

u
2

p
N

s
2

ˇ

NX
kD1

uk.u/

.zt�u � xk.u//2
dBk.u ^ �/;

where

"u.z/ D .su.z/ �m.z//@zfu C
1

N

�
2

ˇ
� 1

�
.@zzfu/:

The first error term can be bounded as in (2.14) and (2.15), with the simplification that
now �.z/ � b.z/ � 1, so that the exact same calculation gives

sup
06s6t

ˇ̌̌̌Z s

0

"u.zt�u/ d.u ^ �/
ˇ̌̌̌

6
'

N Im z
:

For the second error term, as in (2.16), we need to bound the quadratic variation. This
step is simpler than in the proof of Proposition 2.6, because we now have some a priori
bound on uk.s/ before time �1. Moreover, as z0 is close to the bulk, we do not need
Lemma A.2 and directly obtainZ t

0

1

N

X
k

uk.u/
2

jzt�u � kj4
d.u ^ �/ 6

'21

N 2�2
:

By the previous estimates and a union bound, for any D > 0 there exists N0 such that
for N > N0

P

�
sup

06`;m;p6N10; jEmj<2��; 06s6t`

jfs^� .z
.m/
t`�s^�

/ � f0.z
.m/
t`
/j >

'25

N�p

�
< N�D :

Together with Lemma 2.3 and (2.18), this implies (2.21) and the result.
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3. Relaxation from a maximum principle

3.1. Result

The main result of this section is the following. Again, remember that � and � sat-
isfy the same equation (1.6), with respective initial conditions a generalized Wigner and
GOE spectrum. Remember the notation in (1.11); let  t

k
D .k/t (with the convention

 t D . C i0C/t when z D  2 R) and

Nuk.t/ D
1

N Imm. t
k
/

NX
jD1

Im
�

1

j � 
t
k

�
.�j .0/ � �j .0//: (3.1)

The following theorem improves homogenization estimates which appeared first in [9],
both in terms of the scale and the probability bounds.

Theorem 3.1. Consider the dynamics (1.6) (or its Hermitian ensemble counterpart). Let
˛; " > 0 be fixed, arbitrarily small. For any (large)D > 0, there exist C;N0 such that for
any N > N0, 'C =N < t < 1, and k 2 ŒŒ˛N; .1 � ˛/N �� we have

P

�
j.�k.t/ � �k.t/ � Nuk.t/j >

N "

N 2t

�
6 N�D :

Remark 3.2. The same comment as Remark 2.9 holds: The above theorem is true for any
ˇ > 1 in (2.2), provided � and � satisfy optimal initial rigidity estimates.

Corollary 3.3. Let ˛; " > 0 be fixed, arbitrarily small. Then for any (large)D > 0, there
exist C;N0 such that for any N > N0, 'C =N < t < 1 and k 2 ŒŒ˛N; .1 � ˛/N �� we have

P

�
j.�kC1.t/ � �k.t// � .�kC1.t/ � �k.t//j >

N "

N 2t

�
6 N�D :

Proof. Note that

j.�kC1.t/ � �k.t// � .�kC1.t/ � �k.t//j

6 j.�k.t/ � �k.t/ � Nuk.t/j C j.�kC1.t/ � �kC1.t/ � NukC1.t/j
C j NukC1.t/ � Nuk.t/j:

From Theorem 3.1, the first two terms do not exceed 'C=.N 2t /with probability 1�N�D .
The third term is bounded by the following Lemma 3.4, an elementary consequence of
rigidity and dynamics of the trajectories  . This concludes the proof.

Lemma 3.4. For any ˛ > 0, there exists a constant C > 0 such that for any .k; `/ 2
ŒŒ˛N; .1 � ˛/N ��2, jEj < 2 � ˛ and s; t; � 2 Œ'2=N; 1�, in the set A from (2.7) we have
(here z D E C i�)

j Nuk.t/ � Nu`.s/j 6 C'

�
jk � `j

N 2 min.s; t/
C

jt � sj

N min.s; t/

�
; (3.2)ˇ̌̌̌

Imf0.zt /

N Im s0.zt /
� Nu`.s/

ˇ̌̌̌
6 C'

�
jE � `j

N min.s; �C t /
C

j�C t � sj

N min.s; �C t /

�
: (3.3)
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Proof. As preliminary elementary estimates, there exists a constant C > 0 such that in
the required range of k; `; s; t we have

Imm. tk/; Imm. s` / > C
�1;

jImm. tk/ � Imm. s` /j C j
t
k � 

s
` j < C

�
jk � `j

N
C js � t j

�
:

(3.4)

We detail the proof of the first inequality above. From (1.11) there exists a compact set
C D C.˛/which does not depend onN and does not intersect .�1; 2� [ Œ2;1/ such that
for any k 2 ŒŒ˛N; .1 � ˛/N �� and 0 < t < 1,  t

k
2 C. The required inequality then follows

from infz2C Imm.z/ > 0. The second inequality of (3.4) follows from the same argument
together with the observation that m is Lipschitz on C.

Moreover, in A the rigidity estimates gives

j�j .0/ � �j .0/j 6 C'
1
2N�

2
3 . Oj /�

1
3 ;

so that the same proof as Lemma 2.4 givesˇ̌̌̌
1

N
Im
X
j

�j .0/ � �j .0/

j � 
t
k

ˇ̌̌̌
6 C

'1=2

N
: (3.5)

We decompose

j Nuk.t/ � Nu`.s/j 6
1

N

ˇ̌̌̌�
1

Imm. t
k
/
�

1

Imm. s
`
/

� NX
jD1

Im
�
�j .0/ � �j .0/

j � 
t
k

�ˇ̌̌̌

C
1

N Imm. s
`
/

NX
jD1

ˇ̌̌̌
Im
�

1

j � 
t
k

�
� Im

�
1

j � 
s
`

�ˇ̌̌̌
� j�j .0/ � �j .0//j:

From (3.4) and (3.5), the first line is at most '1=2. jk�`j
N2
C
js�t j
N
/, while the second is

bounded in A by

C'
1
2

N

X
j

N�
2
3 . Oj /�

1
3

ˇ̌̌̌
 t
k
�  s

`

.j � 
t
k
/.j � 

s
`
/

ˇ̌̌̌

6 C'
1
2

�
jk � `j

N 2
C
js � t j

N

��X
j

N�
2
3 . Oj /�

1
3

jj � 
t
k
j2
C

X
j

N�
2
3 . Oj /�

1
3

jj � 
s
`
j2

�
:

As Im  t
k
� t; Im  s

`
� s, each sum above is O.min.s; t/�1/. This concludes the proof

of (3.2). The proof of (3.3) is the same.

3.2. Proof of Theorem 3.1 by induction

We implement an iterative scheme to reach the optimal error term. Some inspiration from
this scheme comes from [12, Section 3], although the induction there quantifies eigen-
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vectors delocalization instead of eigenvalues, and many aspects of the proof are different.
Consider the following property, for a parameter 0 < a 6 1.

Property .Pa/. For any fixed (small) ˛ > 0 and (large) D > 0, there exist C and N0
such that for any � 2 Œ0; 1�, the following holds with probability at least 1 �N�D . For
any 'C =N < t < 1, k 2 ŒŒ˛N; .1 � ˛/N �� and N > N0,

ju
.�/

k
.t/ � Nuk.t/j < '

C .N t/
a

N 2t
: (3.6)

Theorem 3.1 is a consequence of the following two propositions.

Proposition 3.5. Property .P1/ holds.

Proof. From (2.18), we know that uk.t/ D O.'CN�1/ with overwhelming probability,
uniformly in the required range of parameters. We also have Nuk.t/ D O.'CN�1/ thanks
to the definition (3.1) and the rigidity estimate

juj .0/j < '
1
2N�

2
3 Oj�

1
3

(see Lemma 2.3). This concludes the proof.

Proposition 3.6. If Property .Pa/ holds, so does .P3a=4/.

Proof of Theorem 3.1. Let " > 0. By initialization with Proposition 3.5 and a finite num-
ber of iterations of Proposition 3.6, for any fixed (small) ˛ > 0 and (large) D > 0, there
exist C and N0 such that for any � 2 Œ0; 1�, N > N0,

P

�
ju
.�/

k
.t/� Nuk.t/j <

N "

N 2t
for all k 2 ŒŒ˛N; .1� ˛/N �� and t 2

�
'C

N
;1

��
> 1�N�D :

The same estimate holds after integration over � 2 Œ0; 1�, with rigorous justification given
by large moments and Markov’s inequality, similarly to the argument after (2.18).

The remaining part of this section proves Proposition 3.6. It relies on the following
three lemmas.

The first lemma is an approximation of our dynamics (1.7) with short range dynam-
ics. Such approximations for the analysis of the Dyson Brownian motion appeared first
in [21]. Our version assumes property .Pa/ and gives a better bound. Remember we
defined

cjk D cjk.s/ D
1

N.xj .s/ � xk.s//2

and write B D SC L,

.Sf /.k/ D
X
jj�kj6`

cjk.s/.f .j / � f .k//; (3.7)

.Lf /.k/ D
X
jj�kj>`

cjk.s/.f .j / � f .k//;
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for some parameter ` D `.N; a/ chosen later. Denote by US.s; t/ the semigroup associ-
ated with S from time s to time t , i.e. @tUS.s; t/ D S.t/US.s; t/ and US.s; s/ D Id. The
notation UB.s; t/ is analogous.

Lemma 3.7 (Short range approximation). Assume .Pa/. For any fixed (small) ˛ > 0 and
(large) D > 0, there exist C;N0 (depending on ˛; a;D) such that the following holds
with probability at least 1 �N�D . For any N > N0, 'C =N < t < 1, u < v in Œt=2; t �,
` > ' and k 2 ŒŒ˛N; .1 � ˛/N ��,

j..UB.u; v/ � US.u; v//u.u//.k/j 6 'C ju � vj

�
N

`

.Nt/a

N 2t
C

1

Nt

�
: (3.8)

The second lemma is a finite speed of propagation for the dynamics defined by (3.7).
Such estimates appeared first in [21], here we state the version from [11, Lemma 6.2],
optimal in terms of distance and probability bound. The version below is simpler than
[11, Lemma 6.2] as it corresponds to the one-particle case, and we change the condition
ji � j j > N "` into ji � j j > '` for convenience, the proof being unchanged.

Lemma 3.8 (Finite speed of propagation). For any fixed (small) ˛ > 0 and (large)D > 0,
there exists N0 (depending on ˛;D) such that the following holds with probability at
least 1 �N�D . For any N > N0, 0 < u < v < 1, ` > N ju � vj, k 2 ŒŒ˛N; .1 � ˛/N ��
and j 2 ŒŒ1; N �� such that jk � j j > '`, we have

.US.u; v/ık/.j / < N
�D : (3.9)

For the third lemma, we consider (3.7) with a well-chosen initial condition, similarly
to [11, Section 7.2]. We fix some initial and final times u < t , the short range dynamics
parameter `, the space window scale r and always assume

'30ju � t j < '20
`

N
< '10r < t: (3.10)

We also consider a fixed index k. Given this, we define

.Flatbh/.j / D

´
h.j / if jj � kj 6 b;

Nuk.t/ if jj � kj > b;

.Av h/.j / D
1

jŒŒNr; 2Nr��j

X
Nr6b62Nr

.Flatbh/.j /:

This averaging operator can also be written as a linear combination in terms of a Lipschitz
function a:

.Avh/.j / D ajh.j /C .1 � aj / Nuk.t/; where jai � aj j 6
ji � j j

Nr
: (3.11)

The function Av, introduced in [11], allows to flatten the initial condition outside a large
box, and keep the actual observable in a smaller box. For the purpose of further estimates,
this interpolation with a constant at1 needs to be regular enough; a linear interpolation
in the window ŒŒNr; 2Nr�� is sufficient for our purpose.
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Finally, let w be the solution of

d
ds

wj .s/ D .S.s/w/.j /; u < s < t;

w.u/ D Av u.u/:

The following lemma provides good estimates on averages of the wj . The stochastic
advection equation satisfied by ft will be essential for its proof (see Lemma 3.10).

Lemma 3.9 (Average of the modified dynamics). Assume .Pa/. For any fixed (small)
˛ > 0 and (large)D > 0, there existN0; C (depending on ˛; a;D) such that the following
holds with probability at least 1 �N�D . For any N > N0, 'C =N < �; t < 1, u < s in
Œt=2; t �, ` > ', j; k 2 ŒŒ˛N; .1 � ˛/N �� such as jj � kj < 10r , z D j C i�, we have
(remember w depends on k and u)

1

N
Im

X
ji�j j<`

wi .s/

xi .s/ � z
�

�
1

N
Im

X
ji�j j<`

1

xi .s/ � z

�
Nuk.s/

D O.'C /
�
r

Nt
C

�

Nt
C
.N t/a

N 2t

�
`

Nr
C
N�

`
C
N ju � t j

`
C

1

N�

��
:

(3.12)

Based on the previous lemmas, we can now complete the proof of Proposition 3.6.
Until the end of this proof, we fix ˛;D > 0 and find N0 such that the conclusion of the
three lemmas above hold with probability at least 1 �N�D for N > N0, together with
the rigidity estimate from Lemma 2.3. We work on this good event, i.e. we assume that
we are in A from (2.7), and that (3.8), (3.9) and (3.12) hold.

We fix some index k 2 ŒŒ2˛N; .1 � 2˛/N ��. We have

juk.t/ �wk.t/j 6 j..UB.u; t/ � US.u; t//u.u//.k/j C j.US.u; t/.u.u/ �w.u///.k/j:

We can bound the first term on right-hand side with estimate (3.8). Moreover, note that
u.u/ �w.u/ is supported on ¹j W jj � kj > Nrº because of w.u/ D Av u.u/ and the
averaging operator does not change functions in ¹j W jj � kj 6 Nrº. Hence by (3.9)
and the choice of parameters (3.10) the second term above is O.N�100/. We therefore
obtained

juk.t/ �wk.t/j 6 'C ju � t j

�
N

`

.Nt/a

N 2t
C

1

Nt

�
CN�100: (3.13)

We now evaluate wk.t/, by considering two cases.
Assume first that there exist an index j and a time s 2 Œu; t � such that

wj .s/ � Nuk.t/ DM.s/ WD max
16i6N

.wi .s/ � Nuk.t// and jj � kj > 3Nr:

As i 7! wi .u/ � Nuk.t/ is compactly supported on ¹i W ji � kj < 2Nrº, by the finite speed
of propagation estimate Lemma 3.8 we have wj .s/ � Nuk.t/ 6 N�100. By the parabolic
maximum principle, M decreases, which implies

M.t/ < N�100: (3.14)
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Secondly, assume that for any s, for all j such that wj .s/ � uk.t/ DM.s/ we have
jj � kj < 3Nr . For any such j and � > 0, we have

d
ds
.wj .s/ � Nuk.t/// D

X
ji�j j6`

wi .s/ �wj .s/

N.xj .s/ � xi .s//2

6
1

N

X
ji�j j6`

wi .s/ �wj .s/

.xj .s/ � xi .s//2 C �2

D
1

N�

�
Im

X
ji�j j6`

wi .s/

xi .s/ � zj

�

�
1

N�

�
Im

X
ji�j j6`

1

xi .s/ � zj

�
wj .s/;

where zj D xj .s/C i�. By Lemma 3.9 and the observation

j Nuk.s/ � Nuk.t/j < C'
ju � t j

Nt

from Lemma 3.4, the first parenthesis above can be evaluated so that, if we denote f 0.xC/
the right derivative5 of a function f at x, we have

d
ds
M.sC/6 �

c

�
M.s/C

'C

�

�
r

Nt
C

�

Nt
C
.N t/a

N 2t

�
`

Nr
C
N�

`
C
N ju � t j

`
C

1

N�

��
:

Note that the error term due to

j Nuk.s/ � Nuk.t/j < C'
ju � t j

Nt

has been absorbed above in r
Nt

because ju � t j � r . If we choose � D jt � uj=', the
above equation implies

M.t/ 6 'C
�
r

Nt
C
.N t/a

N 2t

�
`

Nr
C
N jt � uj

`
C

1

N jt � uj

��
:

With the optimal choice

r D
.N t/

3a
4

N
; ` D .N t/

a
2 ; ju � t j D

.N t/
a
4

N
; (3.15)

we obtain

M.t/ 6
'C .N t/

3a
4

N 2t
:

This inequality is also true in the case (3.14).

5Note thatM is the maximum of N smooth curves, so its right derivative exists and is bounded
by the max of all individual derivatives where the maximum occurs.
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By the same reasoning we obtain the same bound holds for

� min
16i6N

.wi .t/ � uk.t//;

so that in particular

jwk.t/ � Nuk.t/j 6 'C
.N t/

3a
4

N 2t
:

Together with estimate (3.13) with parameters (3.15), this shows that

juk.t/ � Nuk.t/j 6 'C
.N t/

3a
4

N 2t

for all index k 2 ŒŒ2˛N; .1 � 2˛/N ��. As ˛ is arbitrary, this concludes the proof of Propo-
sition 3.6.

3.3. Proof of Lemma 3.7

We fix ˛;D > 0 and find N0 such that the conclusion of Lemma 2.3, Lemma 3.8 and
Property (Pa) hold forN > N0, with probability at least 1 �N�D . We work on this good
event, i.e. we assume that we are in A from (2.7), and that (3.6) and (3.9) hold.

By Duhamel’s formula, we have

..UB.u; v/ � US.u; v//u.u//.k/ D

Z v

u

.US.s; v/L.s/u.s//.k/ ds:

By the finite speed of propagation (3.9), for any k 2 ŒŒ3˛N; .1 � 3˛/N �� we have

.US.s; v/L.s/u.s//.k/ D .US.s; v/.L.s/u.s//1ŒŒ2˛N;.1�2˛/N��/.k/C O.N�D/:

The above equations together with US being a contraction for L1, this implies that

j..UB.u; v/ � US.u; v//u.u//.k/j

6 ju � vj sup
j2ŒŒ2˛N;.1�2˛/N��; u<s<v

jL.s/u.s/.j /j C O.N�D/:

Finally, from (3.6) and Lemma 3.4, for any s in Œt=2; t �, for any i 2 ŒŒ˛N; .1 � ˛/N �� we
have

jui .s/ � uj .s/j 6 'C
�
.N t/a

N 2t
C
ji � j j

N 2t

�
;

and for i 62 ŒŒ˛N; .1�˛/N ��, estimate (2.18) implies jui .s/�uj .s/j 6 'CN�2=3.Oi/�1=3.
This implies

L.s/u.s/.j / D
X
ji�j j>`

ui .s/ � uj .s/

N.xi � xj /2

D O.N'C /
X
ji�j j>`

.Nt/a

N2t
C
ji�j j

N2t

.i � j /2
C O

�
'C

N

� X
16i6N

N�
2
3 .Oi/�

1
3

D O.'C /
�
N

`

.Nt/a

N 2t
C

1

Nt

�
;
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where we also used jxi .s/ � xj .s/j > cji � j j=N , by rigidity together with ` > '. We
therefore obtained (3.8) for k 2 ŒŒ3˛N; .1 � 3˛/N ��. As ˛ is arbitrary, this concludes
the proof.

3.4. Proof of Lemma 3.9

We start with the following key improvement on local averages. Remember the notations
(1.9) and (2.1).

Lemma 3.10 (Improved estimate on the local average). Assume Property .Pa/. For any
fixed (small) � > 0 and (large)D > 0, there exist C and N0 (depending on a; ˛;D) such
that the following holds with probability at least 1 �N�D . For any t and z D E C i�,
satisfying 0 < t < 1, 'CN�1 < � < 1, jEj < 2 � �, we haveˇ̌̌̌

Imft .z/ � e
� t2

Im st .z/

Im s0.zt /
Imf0.zt /

ˇ̌̌̌
6 'C

�
.N t/a

N 2t�
C

1

Nt

�
: (3.16)

Note that for the initial iteration of Proposition 3.6, we have a D 1 so the above esti-
mate was already proved: an upper bound 'C =.N�/ is known by Proposition 2.11. Hence,
the above lemma is not necessary to obtain .P3=4/ and therefore relaxation of the Dyson
Brownian motion. We only use it for optimal error bounds.

Proof. For fixed t , consider the function

hu.z/ D h
.t/
u .z/ D fu.zt�u/ �

Imf0.zt /

Im s0.zt /
e�

u
2 su.zt�u/; 0 6 u 6 t:

Note that both f and e�u=2su satisfies the stochastic advection equation (2.3), with uk.u/
replaced by 1=N in the simpler case of s. By linearity, this implies that h satisfies the
equation

dhu D .su.zt�u/ �m.zt�u//
�
@zfu.zt�u/ �

Imf0.zt /

Im s0.zt /
e�

u
2 @zsu.zt�u/

�
du

C
1

N

�
2

ˇ
� 1

��
@zzhu.zt�u/ �

Imf0.zt /

Im s0.zt /
e�

u
2 @zzsu.zt�u/

�
du

�
e�

u
2

p
N

s
2

ˇ

NX
qD1

rq.u/ dBq.u/
.zt�u � xq.u//2

;

(3.17)

where

rq.u/ D uq.u/ �
Imf0.zt /

N Im s0.zt /
:

We will use this equation to bound Im.ht � h0/ (i.e. the left-hand side of (3.16)) in a way
similar to the proof of Proposition 2.11, with the novelty that our estimate on rq.u/
depends on the hypothesis (Pa) and improves with small a.

As in the proof of Proposition 2.11, we define

t` D `N
�10 and z.m;p/ D Em C i�p;
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where Z Em

�1

d� D
�
m �

1

2

�
N�10 and �p D

'2

N
C pN�10:

We pick ˛ such that

b˛N c D argminq

ˇ̌̌̌
q �

�
�2C

�

10

�ˇ̌̌̌
:

Let

�`;m;p D inf
²
0 6 u 6 t` W jIm h.t`/u .z.m;p//j > 'C

�
.N t`/

a

N 2t`�p
C

1

Nt`

�³
;

�2 D inf
²
'C

N
6 u 6 1 W 9q 2 ŒŒ˛N; .1 � ˛/N ��W juq.u/ � Nuq.u/j > '

C .Nu/
a

N 2u

³
;

� D min¹�0; �1; �2; �`;m;p W 0 6 `;m; p 6 N 10; jEmj < 2 � �º;

where �0; �1 are defined in (2.8) and (2.20), and our convention is inf ¿ D 1. By the same
argument as in between (2.9) and (2.12), we just need to prove that for any D > 0 there
exists eN 0.�;D/ such that for any N > eN 0, we have

P .� D 1/ > 1 �N�D : (3.18)

Let t D t`, z D z.m;p/ D E C i�, where 0 6 `; p 6 N 10; jEmj < 2 � �. We now divide
the proof into two steps.

First step: A priori estimate on rq . We claim that for any ˛ > 0 there exists C > 0 such
that for any 'C =N 6 u 6 � and q 2 ŒŒ˛N; .1 � ˛/N �� we have (remember that rq.u/
depends on z and t )

jrq.u/j 6 'C
�
jq �Ej C ju � t j

Nu
C
.Nu/a

N 2u
C

�

Nt

�
DW 'C

�
jq �Ej

Nu
C g.a;N; �; u; t/

�
:

(3.19)

For the proof, we choose j such that jj �Ej 6 '=N and write

jrq.u/j 6 juq.u/ � Nuq.u/j C j Nuq.u/ � Nuj .t/j C
ˇ̌̌̌
Nuj .t/ �

Imf0.zt /

N Im s0.zt /

ˇ̌̌̌
:

We use u 6 �2 to bound the first term, (3.2) for the second and (3.3) for the third. This
gives (3.19).

Note that we also have the more elementary estimate (useful for small u or q close to
the edge)

jrq.u/j 6 C'10N�
2
3 . Oq/�

1
3 : (3.20)

This is obtained by combining two estimates. First, we have u 6 �1 so that

juq.u/j 6 '10N�
2
3 . Oq/�

1
3 :

Second, uniformly in E is in the bulk of the spectrum and t < 1 we have

Im s0.zt / > c > 0;
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which together with Lemma 2.4 gives

Imf0.zt /

N Im s0.zt /
6 C'

1
2 =N 6 C'10N�

2
3 . Oq/�

1
3 :

Second step: Bound on the increments. The error term for sup06s6t j Im.hs � h0/j corre-
sponding to the first line of (3.17) above can be bounded similarly to (2.14), givingZ t^�

0

jsu.zt�u/ �m.zt�u/j

ˇ̌̌̌
@zfu.zt�u/ �

Imf0.zt /

Im s0.zt /
@zsu.zt�u/

ˇ̌̌̌
du

6
Z t^�

0

'

N Im.zt�u/

NX
qD1

jrq.u/j

jzt�u � qj2
du:

(3.21)

In the above right-hand side, the terms Oq 6 ˛N are bounded with (3.20) and give a con-
tribution

C

Z t^�

0

'

N Im.zt�u/

NX
qD1

'10N�
2
3 . Oq/�

1
3 du 6

Z t^�

0

'

N Im.zt�u/
du 6

' logN
N

:

For the contribution from the bulk indices in the right-hand side of (3.21), for u 6 � we
have (we abbreviate g for g.a;N; �; u; t/)

NX
qD1

jrq.u/j

jzt�u � qj2
6 'Cg

NX
qD1

1

jzt�u � qj2
C
'C

Nu

NX
qD1

jq �Ej

jzt�u � qj2

6
'CgN

�C .t � u/
C
'C

u
;

so that Z t^�

'C =N

'

N Im.zt�u/

NX
Oq>˛N

jrq.u/j

jzt�u � qj2
du

6
Z t

'C =N

'C du
�C t � u

��
.Nu/a

N 2u
C

�

Nt
C
t � u

Nu

�
1

�C .t � u/
C

1

Nu

�
6 'C

�
.N t/a

N 2t�
C

1

Nt

�
:

Finally, with (3.20), Z 'C =N

0

'

N Im.zt�u/

X
Oq>˛N

jrq.u/j

jzt�u � qj2
du

6
Z 'C =N

0

'C

N 2 Im.zt�u/

NX
qD1

1

jzt�u � qj2
du

6
Z 'C =N

0

'C

N.Im.zt�u//2
du 6

'C

N 2.�C t /2
:
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The previous estimates together proveZ t^�

0

jsu.zt�u/ �m.zt�u/j

ˇ̌̌̌
@zfu.zt�u/ �

Imf0.zt /

Im s0.zt /
@zsu.zt�u/

ˇ̌̌̌
du

6 'C
�
.N t/a

N 2t�
C

1

Nt

�
:

(3.22)

Similarly we obtainZ t^�

0

1

N

ˇ̌̌̌
@zzfu.zt�u/ �

Imf0.zt /

Im s0.zt /
@zzsu.zt�u/

ˇ̌̌̌
du 6 'C

�
.N t/a

N 2t�
C

1

Nt

�
: (3.23)

We now bound the bracket of the stochastic integral in (3.17):* Z �
0

e�
u
2

p
N

NX
qD1

rq.u/

.zt�u � xq.u//2
dBq.u/

+
t^�

D

Z t^�

0

1

N

X
Oq6˛N

jrq.u/j
2

jzt�u � qj4
duC

Z t^�

0

1

N

X
Oq>˛N

jrq.u/j
2

jzt�u � qj4
du:

For the contribution of the edge indices, we haveZ t^�

0

1

N

X
Oq6˛N

jrq.u/j
2

jzt�u � qj4
du 6 'C

Z t^�

0

1

N

NX
qD1

.N�
2
3 . Oq/�

1
3 /2 du 6 'C

t

N 2
:

For the bulk indices, we use (3.19) for small u and both (3.19) and (3.20) for large u:Z t^�

0

1

N

X
Oq>˛N

jrq.u/j
2

jzt�u � qj4
du

6 'C
Z t^�

0

1

N

X
q

N�2

jzt�u � qj4
du

C 'C
Z t^�

t^�

1

N

X
q

1

jzt�u � qj4
min

�
jq �Ej

2

N 2u2
C g2;

1

N 2

�
du:

(3.24)

The first integrand on the right-hand side above is O.N�2=.�C t � u/3/, so that the
corresponding integral is O.1=.Nt/2/. For the second integral, we can assume � < t
and use min.aC b; c/ 6 min.a; c/Cmin.b; c/ for positive a; b; c. We first bound the
contribution from g:Z t

�

du
N

�X
q

1

jzt�u � qj4

�
min

�
g2;

1

N 2

�

6
Z t

�

du
.�C t � u/3

�
min

�
ju � t j2

N 2u2
;
1

N 2

�
C
.Nu/2a

N 4u2
C

�2

N 2t2

�
:

(3.25)
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We bound the term involving min. ju�t j
2

N2u2
; 1
N2
/ withZ t

�

du
.�C t � u/3

ju � t j2

N 2u2
1ju�t j<u 6

1

N 2t2

Z t

�

.u � t /2

.�C t � u/3
du 6

logN
N 2t2

;Z t

�

du
.�C t � u/3

1

N 2
1ju�t j>u 6

1

N 2t2
:

For the remaining terms from (3.25), we calculateZ t

�

du
.�C t � u/3

.Nu/2a

N 4u2
6
.N t/2a

N 4t2�2
;

Z t

�

du
.�C t � u/3

�2

N 2t2
6

1

N 2t2
:

Finally, the contribution from min. jq�E j
2

N2u2
; 1
N2
/ in (3.24) is bounded byZ t

�

du
N

X
q

jq�E j<u

1

jzt�u � qj4
jq �Ej

2

N 2u2

6
Z t

�

du
N 2u2

Z
jxj<u

x2

x4 C .�C t � u/4

6
Z t

�

du
N 2u2

�
u3

t4
1u<t=10 C

1

�C t � u
1u>t=10

�
6

1

N 2t2
;

6
Z t

�

du
N 3

�
N

t3
1u<t=10 C

N

u3
1u>t=10

�
6

1

N 2t2
:

The above estimates together prove* Z �
0

e�
u
2

p
N

NX
qD1

rq.u/

.zt�u � xq.u//2
dBq.u/

+
t^�

6 'C
�
.N t/2a

N 4t2�2
C

1

N 2t2

�
for some C independent of our choice of `;m; p. By (2.11) and a union bound we
conclude that for any D > 0 there exists C > 0 such that

P

�
sup
`;m;p;

06s6t^�;

jEmj<2��

ˇ̌̌̌Z s

0

e�u=2
p
N

NX
qD1

rq.u/

.zt�u � xq.u//2
dBq.u/

ˇ̌̌̌
6 'C

�
.N t/a

N 2t�
C

1

Nt

��

> 1 �N�D :

Together with (3.22) and (3.23), this concludes the proof that

P

�
sup
`;m;p;

06s6t^�;

jEmj<2��

jhs.z/j 6 'C
�
.N t/a

N 2t�
C

1

Nt

��
> 1 �N�D :
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Remember that
P .min.�0; �1; �2/ D 1/ > 1 �N�D

by Lemma 2.3, (2.18) and assumption (Pa). Together with the above equation, this implies
(3.18) and concludes the proof.

We now can complete the proof of Lemma 3.9. As previously, we fix ˛;D > 0 and
findN0 such that the conclusion of lemmas 3.7, 3.8 and 3.10 hold with probability at least
1 �N�D for N > N0, together with the rigidity estimate from Lemma 2.3. We work on
this good event, i.e. we assume that we are in A from (2.7), and that (3.8), (3.9) and (3.16)
hold. We prove Lemma 3.9 for j; k 2 ŒŒ2˛N; .1 � 2˛/N ��, without loss of generality up to
changing our initial choice of ˛ into ˛=2.

We rewrite the left-hand side of (3.12) as (i) C (ii) C (iii) and bound independently
these terms defined as

.i/ D
1

N
Im

X
ji�j j6`

.US.u; s/Avu.u/ � AvUS.u; s/u.u//.i/

xi � z
;

.ii/ D
1

N
Im

X
ji�j j6`

.AvUS.u; s/u.u/ � AvUB.u; s/u.u//.i/

xi � z
;

.iii/ D
1

N
Im

X
ji�j j6`

.AvUB.u; s/u.u//.i/ � Nuk.s/

xi � z
:

We first estimate the numerator in (i),

.US.u; s/Avu.u/ � AvUS.u; s/u.u//.i/

D
1

jŒŒNr; 2Nr��j

X
Nr6b62Nr

.US.u; s/Flatbu.u/ � FlatbUS.u; s/u.u//.i/:

If ji � kj < b � '`, then

.FlatbUS.u; s/u.u//.i/ D .US.u; s/u.u//.i/

and by (3.9) we have

.US.u; s/Flatbu.u//.i/ D .US.u; s/u.u//.i/C O.N�D/;

so that in this case

.US.u; s/Flatbu.u/ � FlatbUS.u; s/u.u//.i/ D O.N�D/: (3.26)

If ji � kj > b C '`, then

.FlatbUS.u; s/u.u//.i/ D Nuk.t/

and, again with (3.9),

.US.u; s/Flatbu.u//.i/ D Nuk.t/C O.N�D/;
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so that (3.26) also holds in this case. Assume now ji � kj 2 Œb � '`; b C '`�. By using
(3.9) first and then (Pa) and Lemma 3.4, we have

j.US.u; s/Flatbu.u/ � FlatbUS.u; s/u.u//.i/j

6 max
m

jjm�kj�bj62'`

jum.s/ � Nuk.t/j C O.N�D/

6 max
m

jjm�kj�bj62'`

jum.s/ � Num.s/j C max
m

jjm�kj�bj62'`

j Num.s/ � Nuk.t/j C O.N�D/

6 'C
�
.N t/a

N 2t
C
r C jt � uj

Nt

�
:

We conclude that

.i/ D O.'C /
`

Nr

�
.N t/a

N 2t
C
r C jt � uj

Nt

�
: (3.27)

We now estimate (ii). As ji � j j 6 `, we have i 2 ŒŒ˛N; .1 � ˛/N �� and (3.8) applies:
we obtain

j.AvUS.u; s/u.u/ � AvUB.u; s/u.u//.i/j 6 j.US.u; s/u.u/ � UB.u; s/u.u//.i/j

6 'C ju � t j

�
N

`

.Nt/a

N 2t
C

1

Nt

�
;

where the first inequality follow from (3.11). The same bound for an average over i gives

.ii/ D O.'C /ju � t j
�
N

`

.Nt/a

N 2t
C

1

Nt

�
: (3.28)

Finally, to estimate (iii), we use (3.11) to first decompose

.iii/ D aj
NX
iD1

1

N
Im

ui .s/ � Nuk.s/

xi � z
�
aj

N
Im

X
ji�j j>`

ui .s/ � Nuk.s/

xi � z

C
1

N
Im

X
ji�j j6`

.ai � aj /.ui .s/ � Nuk.s//

xi � z

C
1

N
Im

X
ji�j j6`

.1 � ai /. Nuk.t/ � Nuk.s//

xi � z
:

(3.29)

The first sum is also (we use (3.3) for the first equality and the main estimate (3.16) for
the second equality below)

e
s
2

N
Imfs.z/ � Im ss.z/ Nuk.s/ D

e
s
2

N
Imfs.z/ � Im ss.z/

Imf0.zs/

N Im s0.zs/

C O.'/
�C r

Nt

D O.'C /
�
.N t/a

N 3t�
C
�C r

Nt

�
:

(3.30)
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To bound the second sum in (3.29), for i in the bulk we write

jui .s/ � Nuk.s/j 6 jui .s/ � Nui .s/j C j Nui .s/ � Nuk.s/j 6
.N t/a

N 2t
C
ji � kj

N 2t
(3.31)

(for i at the edge we can use (2.18) which gives a negligible contribution), and obtain the
estimate

1

N

X
ji�j j>`

�

�2 C .i � j /2
.N t/a

N 2t
C
1

N

X
ji�j j>`

�

�2 C .i � j /2
ji � j j

N 2t

C
1

N

X
ji�j j>`

�

�2 C .i � j /2
Nr

N 2t

6
.N t/a

N 2t

N�

`
C

r

Nt
C

�

Nt
:

(3.32)

The third sum in (3.29), we use (3.11) and (3.31) to obtain

1

N
Im

X
ji�j j6`

.ai � aj /.ui .s/ � Nuk.s//

xi � z
D O

�
`

Nr

��
.N t/a

N 2t
C

r

Nt

�
: (3.33)

The fourth sum in (3.29) is bounded by (3.2), which added to the error estimates (3.27),
(3.28), (3.30), (3.32), (3.33) concludes the proof.

4. Extreme gaps

4.1. Reverse heat flow

We first state a quantitative analogue of [20, Proposition 4.1]. This reverse heat flow argu-
ment first appeared in [18]. Its proof is essentially the same as in [20]. In the following d
denotes the standard Gaussian measure which is reversible for the Ornstein–Uhlenbeck
dynamics with generator A D 1

2
@xx �

x
2
@x .

Lemma 4.1. Let 0 < 2a < b < 1. Assume e�V is a centered probability density, with
V smooth on scale � D N�a in the sense of (1.2) and

R
Œ�x;x�c

e�V.y/ dy 6 ��1e�x
�

for some � > 0. Denote u D de�V = d . Let t D N�b . Then for any D > 0 there exists
C > 0 and a probability density gt with respect to  such that

(i)
R
jetAgt � uj d 6 CN�D;

(ii) gt d is centered, has same variance as u d , and satisfies
R
Œ�x;x�c

gt d 6 ��1e�x
�

for some � > 0.

Proof. Let ˛ D ˛.N / > 0 to be chosen, �0 is a smooth cutoff function equal to 1 on
Œ�1; 1� and 0 on Œ�2; 2�c , and �.x/ D �0.˛x/. We define

ht D uC ��t with �t D
�
�tAC

1

2
t2A2 C � � � C .�1/k�1

tk�1

.k � 1/Š
Ak�1

�
u:
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Using (1.2), for any k > 0 there exists C > 0 such that

j��t j 6 Ck

k�1X
`D1

t`��2`˛�Cku: (4.1)

The function ht is therefore positive if ˛ D N�" with 0 < " < .b � 2a/=Ck .
Moreover, from [20, equation (4.4)], we haveZ

jetAht � uj d 6 Ck

Z t

0

�
tk
Z
jAkuj d C

Z
jA.� � 1/�sj d

C

Z
j.� � 1/@s�sj d

�
ds:

Still using (1.2), we easily have

tk
Z
jAkuj d 6 Ckt

k��2k

and Z t

0

jA.� � 1/�sj d ds C
Z t

0

j.� � 1/@s�sj d ds

6 Ct��2k
Z
Œ�˛�1;˛�1�c

.1C jxj/Cku d 6 Ct��2ke�˛
��c

for someec > 0, where we used the tail assumptionZ
Œ�x;x�c

e�V 6 ce�x
c

:

All together, for k large enough (depending on D) and 0 < " < .b � 2a/=Ck , we
obtain Z

jetAht � uj d 6 CN�D :

Moreover, from (4.1) and our choice of parameters we have

ct WD

Z
ht d D 1C O.N�D/;

so that gt WD ht=ct (now a probability density) also satisfies
R
jetAgt � uj d 6 CN�D .

Similarly, by a dilation with factor 1C O.N�D/, gt can be dilated into a probability with
variance 1.

Finally, (ii) easily follows from (4.1) and the hypothesis
R
Œ�x;x�c

e�V 6 ��1e�x
�

.

4.2. Proof of Theorems 1.2 and 1.4

We illustrate this classical reasoning with Theorem 1.4, Theorem 1.2 being proved simi-
larly based on Corollary 3.3 and Lemma 4.1.
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We assume H is smooth on scale � . From Lemma 4.1, there exists a generalized
Wigner matrix eH such that if eH t denotes its evolution under the Dyson Brownian Motion
dynamics with initial condition eH , the total variation distance between eH t and H is of
order N�D for any D, provided t 6 N�"�2. In particular, the total variation distance
between their spectra is also at most N�D , and dTV.�

�
k
.eH t /; �

�
k
.H// 6 N�D; so that for

large enough N we have

dW.�
�
k .
eH t /; �

�
k .H// 6

Z N5

�N5
dxjP .��k .eH t / 6 x/ � P .��k .H/ 6 x/j

C E.��k .eH t /1j��
k
.eH t /j>N5

/C E.��k .H/1j��k .H/j>N5/

6 CN�DC5:

On the other hand, for such t , from Corollary 3.3 the gaps between bulk eigenvalues
of eH t can all be coupled with some GUE gaps with some errorN "=.N 2t /. With the third
characterization of the Wasserstein distance in (1.3), we obtain

dW.�
�
k .
eH t /; �

�
k .GUE// 6

N "

Nt
:

The two equations above conclude the proof.

Remark 4.2. From the above proof, it is clear that if uniform (in N ) boundedness of
the density of �k.GOE/ or ��

k
.GOE/ was known, then the rates of convergence in Corol-

lary 1.3 and Theorem 1.4 would also hold for the Kolmogorov–Smirnov distance. It is not
obvious that the methods in [4, 27, 28] give this boundedness, as they rely on moments
calculations.

5. Rate of convergence to Tracy–Widom

5.1. Proof of Theorem 1.5

This rate of convergence relies on a main result of this paper, Theorem 2.8, and the fol-
lowing Proposition 5.1, a quantitative version of the Green’s function comparison theorem
from [24]. It is proved exactly in the same way, after carefully keeping track of all error
terms. For completeness, we give the proof in the next subsection.

For the statement, we consider a scale � D �.N / 2 ŒN�1; N�
2
3 �, and a function

f D f .N / W R! R

satisfying
kf .k/k1 6 Ck�

�k ; 0 6 k 6 2:

Assume also that f is non-decreasing, f .x/ � 0 for x < E, f .x/ � 1 for x > E C �,
with jE � 2j < 'N�2=3. Moreover, let F be a fixed smooth non-increasing function such
that F.x/ D 1 for x 6 0, F.x/ D 0 for x > 1.

Proposition 5.1. There exists C > 0 such that the following holds. Let H v and Hw be
generalized Wigner ensembles satisfying (1.1). Assume that the first three moments of the
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entries (hij D
p
NHij ) are the same, i.e. Ev.hkij / D Ew.hkij / for all 1 6 i 6 j 6 N and

1 6 k 6 3. Assume also that for some parameter t D t .N / we have

jEv.h4ij / � Ew.h4ij /j 6 t for i 6 j:

With the above notations for the test functions f; F , we have

j.Ev
� Ew/F.Trf .H//j 6 'C

�
t

N�
C

1

.N�/2
C
1

N

�
:

We now can complete the proof of Theorem 1.5. Let x 2 R. If jxj > ', then for any
D > 0 we have

PH .N
2
3 .�N � 2/ 6 x/ D P .TW1 6 x/C O.N�D/

for large enough N . So we now assume jxj < '.
Define a non-decreasing f1 such that f1.x/ D 1 for x > 2C xN�2=3, f1.x/ D 0 for

x < 2C xN�2=3 � �. We also denote f2.x/ D f1.x � �/. We then have

EHF

 
NX
iD1

f1.�i /

!
6 PH

�
�N < 2C xN�

2
3

�
6 EHF

 
NX
iD1

f2.�i /

!
: (5.1)

To understand the above right-hand side, if �N < 2C xN�2=3, then
PN
iD1 f2.�i / D 0

so that F.
PN
iD1 f2.�i // D 1; the inequality on the left follows by a similar argument.

Moreover, as is classical and mentioned in the proof of Theorem 1.6, we can find
a generalized Wigner matrix eH 0 such that the Gaussian divisible ensembleeH t WD e

� t2 eH 0 C .1 � e
�t /

1
2U ;

(U is an independent standard GOE matrix) has its first three moments which match
exactly those of the matrix H and the differences between the fourth moments of the two
ensembles is O.t/ (see for example by [23, Lemma 3.4]). By applying Proposition 5.1,
the bound (5.1) becomes

E �HtF
 

NX
iD1

f1.�i /

!
� 'C

�
t

N�
C

1

.N�/2
C
1

N

�
6 PH

�
�N < 2C xN�

2
3

�
6 E �HtF

 
NX
iD1

f2.�i /

!
C 'C

�
t

N�
C

1

.N�/2
C
1

N

�
:

Using again (5.1) but now for the ensemble eH t and for f1; f2 shifted by˙�, the previous
equation gives

P �Ht ��N < 2C xN�
2
3 � �

�
� 'C

�
t

N�
C

1

.N�/2
C
1

N

�
6 PH

�
�N < 2C xN�

2
3

�
6 P �Ht ��N < 2C xN�

2
3 C �

�
C 'C

�
t

N�
C

1

.N�/2
C
1

N

�
:
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When combined with the edge relaxation Theorem 2.8, this estimate gives

PGOE

�
N

2
3 .�N � 2/ < x �N

2
3 � �

N "

N
1
3 t

�
� 'C

�
t

N�
C

1

.N�/2
C
1

N

�
6 PH

�
N

2
3 .�N � 2/ < x

�
6 PGOE

�
N

2
3 .�N � 2/ < x CN

2
3 �C

N "

N
1
3 t

�
C 'C

�
t

N�
C

1

.N�/2
C
1

N

�
:

(5.2)

Moreover, from [34] uniformly in jxj < ' we have

PGOE
�
N

2
3 .�N � 2/ < x

�
D P .TW1 < x/C O.N�

1
2 /

(more precisely the main result of [34] gives the better error of order N�2=3, but only for
x > �C , and a straightforward adaptation of the proof shows the above bound). By using
this GOE result and boundedness of the density of TW1 in (5.2), we obtain

PH
�
N

2
3 .�N � 2/ < x

�
� P .TW1 < x/

D O.N "/

�
N

2
3 �C

1

N
1
3 t
C

t

N�
C

1

.N�/2
C

1
p
N

�
:

The optimal bound N�2=9C" is obtained for t D N�1=9 and � D N�8=9. This concludes
the proof.

5.2. Proof of Proposition 5.1

We closely follow the notations and reasoning from [22, Theorem 17.4]. We first fix
a bijective ordering map of the index set of the independent matrix entries,

� W ¹.i; j / W 1 6 i 6 j 6 N º ! ŒŒ1; .N /��;

with .N / D N.N C 1/=2. Then let H be the generalized Wigner matrix whose matrix
elements hij follow the v-distribution for �.i; j / 6  , and the w-distribution otherwise,
so thatH v D H0 andHw D H.N/. By summation, it is sufficient to prove that uniformly
in  2 ŒŒ1; .N /�� we have

jEF.Trf .H // � EF.Trf .H�1//j 6 'CN�2
�
t

N�
C

1

.N�/2
C
1

N

�
: (5.3)

Let � be a smooth, symmetric function such that �.y/ D 1 if jyj < N�2=3, �.y/ D 0
if jyj > 2N�2=3, k�0k1 < N 2=3. With the Helffer–Sjőstrand formula, if the �i are the
eigenvalues of a matrix H , we haveX

f .�i / D

Z
C
g.z/Tr

1

H � z
d2z

with
g.z/ WD

1

�
.iyf 00.x/�.y/C i.f .x/C iyf 0.x//�0.y//; z D x C iy;
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where d2z is the Lebesgue measure on C. We define

„H D

Z
jyj>N�1

g.z/Tr.H � z/�1 d2z;

and first boundˇ̌̌X
f .�i / �„

H
ˇ̌̌

6
“
jyj< 1

N ;E<x<EC�

jf 00.x/j
X
i

y2

j�i � .x C iy/j2
dx dy

6
Z
E<x<EC�

1

�2N 3

X
i

dx
j�i � .x C

i
N
/j2
;

where for the last inequality we used y2j� � .x C iy/j�2 6 N�2j� � .x C i=N/j�2.
If i > N � 'C , we simply boundZ

R

ˇ̌̌̌
�i �

�
x C

i
N

�ˇ̌̌̌�2
dx 6 CN :

If i 6 N � 'C , with overwhelming probability we haveZ
E<x<EC�

ˇ̌̌̌
�i �

�
x C

i
N

�ˇ̌̌̌�2
dx 6 �jE � i j

�2:

We therefore haveˇ̌̌X
f .�i / �„

H
ˇ̌̌

6
'C

.N�/2
C

'C

�2N 3

X
i6N�'C

'C�

jE � i j2

6
'C

.N�/2

�
1C

�

N

X
k>1

1

. k
N
/4=3

�

D O
�

'C

.N�/2

�
(5.4)

with overwhelming probability.
As (5.4) holds, (5.3) will be true provided that uniformly in  2 ŒŒ1; .N /��, we have

jEF.„H / � EF.„H�1/j 6 'CN�2
�
t

N�
C

1

.N�/2
C
1

N

�
: (5.5)

For this fixed  corresponding to .i; j / (�.i; j / D  ), we can write

H�1 D QC
1
p
N
V; H D QC

1
p
N
W;

whereQ coincides withH�1 andH except on the entries .i; j / and .j; i/, where it is 0.
We abbreviate

R D
1

Q � z
; S D

1

H � z
; OR D

1

N
TrR
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and
OR.m/v D

.�1/m

N
Tr.RV /mR; �v D �

1

N
Tr.RV /5S:

Then the resolvent expansion at fifth order gives

1

N
TrS D ORC �v with �v D

4X
mD1

N�
m
2 OR.m/v CN�

5
2�v:

By Taylor expansion, we have

EF.„H / � EF.„H�1/

D

3X
`D1

E
F .`/.„Q/

`Š

�
.„H �„Q/` � .„H�1 �„Q/`

�
C O.kF .4/k1/

�
E
�
.„H �„Q/4 C .„H�1 �„Q/4

��
:

(5.6)

We first bound the above fourth-order error term. For a matrix M we denote

kMk1 D max
i;j
jMij j; kMk

off
1 D max

i¤j
jMij j; kMk

diag
1 D max

i
jMi i j:

By the first-order resolvent expansion, we have (all integration domains are jyj>N�1

and jxj < 3, i.e. we omit the contribution from x > 3, clearly negligible)

j„H �„Qj 6 N�
1
2

Z
jg.z/jjTrS.z/VR.z/j d2z

6 'CN
1
2

Z
jg.z/jkS.z/koff

1kR.z/k1 d2z

C 'CN�
1
2

Z
jg.z/jkS.z/kdiag

1 kR.z/k1 d2z;

with overwhelming probability, where we used the fact that V has only two non-zero
entries, of order 1. The local law for Wigner matrices from [25] states that uniformly in
any z in a compact set, for any D > 0,

P
�
kS.z/ �m.z/Idk1 > 'C‰.z/

�
6 N�D; ‰.z/ D

1

Ny
C

s
Imm.z/

Ny
; (5.7)

and the same estimate holds for R.z/. From (2.6) we note that ‰.y/ < 'C =.Ny/ when
0 < y < N�2=3; jE � 2j < 'CN�2=3. We conclude that for anyD > 0we have (the con-
tribution of diagonal resolvent entries is negligible, and we can also a priori omit the
domain jx � 2j > 'CN�2=3 by rigidity)

„H �„Q D O.'C /N
1
2

Z
N�1<jyj<N�2=3; jx�2j<'CN�2=3

jg.z/j

.Ny/2
d2z

D O
�
'C

N
3
2 �

�
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with probability at least 1 �N�D for N > N0.D/. As a consequence,

E
�
.„H �„Q/4

�
D O

�
'C

N 6�4

�
and the same result holds for E..„H�1 �„Q/4/. The fourth-order term in (5.6) can
therefore be bounded with

'CN�2.N�/�4 6 'CN�2.N�/�2

for � > N�1.
Consider now the linear ` D 1 term in (5.6). We have

EF 0.„Q/.„H �„H�1/

D EF 0.„Q/

Z
g.z/

 
4X

mD1

N�
m
2 C1. OR.m/v � OR.m/w /CN�

3
2 .�v ��w/

!
d2z:

(5.8)

The first three moments associated to v and w match, so the casesm D 1; 2; 3 in the above
formula gives null contribution.

For m D 4, as the fourth moments for v and w differ by t , we have (E below just
refers to the expectation on V , W )

EN. OR.4/v �
OR.4/w / D E Tr..RV /4R � .RW /4R/

D O.N t/
�

max
i¤j
jRij j

�2�
max
i
jRi i j

�3
;

(5.9)

where we have used that in the expansion

Tr.RV /4R D
X
k

X
¹ap ;bpºD¹i;j º

Rka1va1b1Rb1a2va2b2Rb2a3va3b3Rb3a4va4b4Rb4k ;

typically we have a1 ¤ k, b4 ¤ k, but we may have b1 D a2, b2 D a3, b3 D a4. More
precisely, the contribution of indices k which are either i or j is combinatorially negligi-
ble: we omit this case here and in the following.

As mentioned after (5.7), in the domain N�1 < y < 2N�2=3; jx � 2j < 'CN�2=3

we have

max
i¤j
jRij j <

'C

Ny
and max

i
jRi i j < '

C ;

so that

EF 0.„Q/

Z
g.z/N�

4
2C1. OR.m/v � OR.m/w / d2z D O

�
'C

t

N 2

�Z
jg.z/j

Ny2
d2z

D O
�
'C

N 2

t

N�

�
;

where all integration domains are N�1 < jyj < N�2=3; jx � 2j < 'CN�2=3.
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For the term �v ��w in (5.8), we do not use any cancellation between v and w. As
for (5.9), an expansion and the local law give �v D O.'C .Ny/�2/, so that

EF 0.„Q/

Z
gN�

3
2�v d2z D O.'CN�

3
2 /

Z
jg.z/j

.Ny/2
d2z

D O
�
'C

N 2

1

N 3=2�

�
D O

�
'C

N 2

��
1

.N�/2
C
1

N

�
;

where we integrate on N�1 < jyj < N�2=3; jx � 2j < 'CN�2=3 again.
In sum, with the above two equations we proved that the ` D 1 term in (5.6) is

bounded by the right-hand side of (5.5). Similar perturbative expansions show that the
` D 2; 3 contributions are of smaller order, similarly to the proof of [22, Theorem 17.4].
The detail are left to the reader. This concludes the proof of (5.5) and of Proposition 5.1.

Appendix A.

Lemma A.1. There is a universal constant c such that for any z D zt�s as in (2.17),
any j and k1; k2 2 Ij , we have

cjz � k2 j 6 jz � k1 j 6 c�1jz � k2 j:

Proof. For any k 6 3
4
N we have

kCb'2c � k 6 C
'2

N�.E/1=2
6 Cdist.k ; S/

(indeed kCb'2c�k 6 C.N�1'2/2=3 if k 6 '2 and kCb'2c�k 6 C.N�2=3'2/k�1=3

if '2 6 k 6 3N=4). This implies in particular that jk1 � k2 j 6 Cdist.k1 ; S/, which
concludes the proof.

Lemma A.2. For any z 2 S, we have

'4

N 2

Z t

0

ds
Z 2

�2

d�.x/
jzt�s � xj4 max.�.x/; s2/

6 C
�.E/

max.�.E/; t2/
:

Proof. We denote z D E C iy and abbreviate �.w/ D Im.w/.
Assume first that t > 2�.E/1=2. We decompose the above integral intoZ �.E/1=2

0

ds
Z 2

�2

d�.x/
jzt�s � xj4�.x/

C

Z t��.E/1=2

�.E/1=2
ds
Z 2

�2

d�.x/
jzt�s � xj4s2

C

Z t

t��.E/1=2
ds
Z 2

�2

d�.x/
jzt�s � xj4s2

:

(A.1)
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To evaluate the above terms, we can restrict our attention to w such that Rew; Imw > 0

and note that (remember a.w/ D d.w; Œ�2; 2�/)Z
d�.x/
jw � xj4

6
1

a.w/2�.w/
Immsc.w/

�
1

a.w/2�.w/

�
�.w/

1
2 1Rew<2 C

�.w/

�.w/
1
2

1Rew>2

�
;Z 2

�2

d�.x/
jw � xj4�.x/

�
1

a.w/2�.w/
Im
Z 2

�2

dx

.w � x/�.x/
1
2

6
C

a.w/2�.w/�.w/
1
2

;

where in the last line we usedZ 1
0

dx
.w � x/

p
x
D

�w

.�w/
3
2

:

The first term in (A.1) is of order at most (we use Lemma 2.2 to estimate a.zt /, �.zt /
and �.zt /)

�.E/
1
2

Z 2

�2

d�.x/
jzt � xj4�.x/

6 �.E/
1
2

1

a.zt /2�.zt /�.zt /
1
2

6
�.E/

yt6
:

The is negligible if
'4�

yN 2t6
<
C�

t2
;

which is true for t > 2�1=2 and � > '2N�2=3.
The second term in (A.1) is bounded byZ t��.E/1=2

�.E/1=2

ds

�.zt�s/
5
2 s2

6
Z t��.E/1=2

�.E/1=2

ds
.t � s/5s2

6
C

t2�2
;

negligible provided
'

Nt�
6
C�

1
2

t
;

true as � > '2N�2=3.
Finally, the last term is at mostZ t

t��.E/1=2

�.zt�s/
1
2

�.zt�s/3s2
ds 6

Z t

t��.E/
1
2

�.E/
1
2

.y C �.E/
1
2 .t � s//3s2

6
1

t2

Z �.E/1=2

0

�.E/
1
2 ds

.y C �.E/
1
2 s/3

6
1

t2y2
;
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which clearly is negligible provided

'

Nyt
6
C�

1
2

t
;

which holds as y D '2=.N�1=2/. This concludes the case t > 2�.E/1=2.
If t < 2�.E/1=2, our integral is bounded byZ t

0

ds
Z 2

�2

d�.x/
jzt�s � xj4�.x/

6
Z t

0

C

�.zt�s/3�.zt�s/
1
2

ds

6
Z t

0

C

.y C s�.E/
1
2 /3�.E/

1
2

ds 6
C

y2�.E/
:

This term is negligible because y D '2=.N�.E/1=2/.
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[23] Erdős, L., Yau, H.-T., Yin, J.: Universality for generalized Wigner matrices with Bernoulli
distribution. J. Comb. 2, 15–81 (2011) Zbl 1235.15029 MR 2847916
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