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Abstract. Let S be a nonsingular projective surface. Each vector bundle V on S of rank s induces
a tautological vector bundle over the Hilbert scheme of n points of S . When s D 1, the top Segre
classes of the tautological bundles are given by a recently proven formula conjectured in 1999 by
M. Lehn. We calculate here the Segre classes of the tautological bundles for all ranks s over all
K-trivial surfaces. Furthermore, in rank s D 2, the Segre integrals are determined for all surfaces,
thus establishing a full analogue of Lehn’s formula. We also give conjectural formulas for certain
series of Verlinde Euler characteristics over the Hilbert schemes of points.
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1. Introduction

1.1. The Hilbert scheme of points

Let S be a nonsingular projective surface, and let S Œn� denote the Hilbert scheme of n
points on S . Each line bundle L! S gives rise to a tautological rank n vector bundle
LŒn� ! S Œn� via the assignment

� 7! H 0.L˝O� /:

Tautological integrals over the Hilbert scheme of points or over their geometric subsets
emerge often in enumerative geometry. We mention three situations studied previously:
(i) the count of n-nodal curves in fixed linear system Pn � jLj, where L! S is suf-

ficiently positive. These counts were recast by Göttsche [4] in terms of Hilbert
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schemes. Specifically, for a suitable geometric subscheme

Wn ,! S Œ3n�

birational to S Œn�, the Severi degrees are encoded by the series

G.z/ D
1X
nD0

zn
Z
Wn

c.LŒn�/:

(ii) the Verlinde series of holomorphic Euler characteristics [2]:

V.z/ D
1X
nD0

zn � �.S Œn�; L.n/ ˝E
r /:

Here the line bundle . � /.n/ is pulled back from the symmetric product, and E
denotes �1

2
of the exceptional divisor on the Hilbert scheme.

(iii) integrals of Segre classes of tautological bundles considered by Lehn [11]:

S.z/ D
1X
nD0

zn
Z
S Œn�

s.LŒn�/:

There are strong reasons to study all three series above. The count of curves in (i) is
a central enumerative question. The Verlinde series (ii) captures all holomorphic Euler
characteristics of line bundles over the Hilbert scheme of points. Calculating the series
has applications to the study of K-theoretic Donaldson invariants on moduli spaces of
sheaves of arbitrary rank, as pursued in [6–8]. Indeed over elliptic surfaces, higher-rank
invariants can in many cases be matched to Verlinde numbers on the Hilbert scheme
via Fourier-Mukai techniques. Furthermore, knowledge of the series (ii) is crucial to the
strange duality problem for sheaves on surfaces. Interesting variants of the Verlinde series,
involving symmetric and exterior powers of tautological bundles, were recently studied
in [1]; see also [19].

The main focus of this paper is the Segre series (iii) in its general form, when L
is replaced by an arbitrary higher rank vector bundle. The Segre integrals appeared first
in the study of rank 2 Donaldson invariants of rational surfaces [20, 21]. More recently,
the Segre series have turned up in the intersection theory of various parameter spaces
of sheaves with sections (higher rank Quot schemes, higher rank stable pairs), where
they naturally enter localization calculations via the obstruction bundles (cf [12]). This
is a setup which parallels the appearance of Hodge integrals in Gromov–Witten theory.
The importance of systematically studying the Segre series (iii) and its higher rank gen-
eralizations was highlighted in [16] in the case of curves.

In a significant development, a conjectural relationship between the Verlinde and
Segre series was proposed in [9], aligned with the vaster conjectural framework of strange
duality for moduli spaces of sheaves. This picture acquired further precision in [13] where
the series S and V were conjecturally matched through an explicit change of variables. As
a consequence, the Segre series holds the key to understanding the Verlinde numbers (ii).
This point will be addressed in Section 1.6.
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The common feature of the expressions G, V, S is that all three factor (cf. [2,4,10,22])
as products of four universal series

U1.z/
L2

� U2.z/
�.OS / � U3.z/

L�KS � U4.z/
K2

S ;

with
U1;U2;U3;U4 2 QŒŒz��:

The series U1 and U2 are uniquely determined by K-trivial geometries and are typically
more accessible. They are known in examples (i)–(iii), see [2,4,12]. For all types of tauto-
logical integrals considered over the past few decades, closed formulas for the remaining
series U3;U4 have proven very difficult to calculate or even conjecture. Remarkably, the
Segre geometry (iii) is the only nontrivial case known so far; the details are explained in
Section 1.3.

1.2. Higher rank

We undertake the study of the Segre series in higher rank. To set the stage, let V ! S be
a vector bundle of rank s, inducing a tautological rank sn vector bundle

V Œn� ! S Œn�

over the Hilbert scheme via the assignment

� 7! H 0.V ˝O� /:

The construction extends to K-theory. For each K-theory class ˛ 2 K.S/, there is an
associated K-theory class

˛Œn� ! S Œn�

defined via locally free resolutions. We are interested in the Chern numbers of ˛Œn�, but
it will be more convenient to work with Segre classes. Fixing ˛ 2 K.S/, we consider its
associated Segre series

S˛.z/ D
1X
nD0

zn
Z
S Œn�

s.˛Œn�/

D A0.z/
c2.˛/ � A1.z/

c1.˛/
2

� A2.z/
�.OS / � A3.z/

c1.˛/�KS � A4.z/
K2

S : (1.1)

The above factorization follows by [2]. The five series

A0; A1; A2; A3; A4 2 QŒŒz��

are independent of the surface S , and depend on ˛ only through the rank s.

1.3. Lehn’s conjecture

Let us assume first that rank˛ D 1 and ˛ is represented by a line bundle

L! S:
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Then the series A0 is absent from (1.1). Lehn [11] conjectured closed formulas for all
four series A1; A2; A3; A4. In the rephrasing of [12], after the change of variables

z D t .1C 2t/2;

the universal Segre series are given by

A1.z/ D .1C 2t/
1
2 ;

A2.z/ D .1C 2t/
3
2 � .1C 6t/�

1
2 ;

A3.z/ D
1

2
� .1C 2t/�1 �

�p
1C 2t C

p
1C 6t

�
;

A4.z/ D 4 � .1C 2t/
1
2 � .1C 6t/

1
2 �
�p
1C 2t C

p
1C 6t

��2
:

The seriesA1 andA2 were confirmed via the study of the virtual geometry of the Quot
scheme of K-trivial surfaces in [12]. Using Reider-type techniques, Voisin [23] proved
the vanishing of certain Segre integrals in the case of the blowup of a K3 surface in one
point, and showed these vanishings determined uniquely the series A3; A4. The series
were shown to have Lehn’s conjectured expressions via the residue calculations of [13].
As a result, the Segre series are calculated for all line bundles over nonsingular projective
surfaces S .

1.4. The series A0; A1; A2 in arbitrary rank

Our first result gives a simple closed form expression for the Segre series of all K-trivial
surfaces, in all ranks. We prove:

Theorem 1.1. Let S be a K-trivial surface, let ˛ be a K-theory class of rank s, and set
r D s C 1. We have

S˛.z/ D
1X
nD0

zn
Z
S Œn�

s.˛Œn�/ D A0.z/
c2.˛/ � A1.z/

c2
1
.˛/
� A2.z/

�.OS /; (1.2)

where the formulas for the series A1, A2, and A3 are

A0.z/ D .1C rt/
�r
� .1C .1C r/t/r�1;

A1.z/ D .1C rt/
r�1

2 � .1C .1C r/t/�
r
2C1;

A2.z/ D .1C rt/
r2�1

2 � .1C .1C r/t/�
r2

2 Cr � .1C r.1C r/t/�
1
2 ;

after the change of variables

z D t .1C rt/r : (1.3)

Remark 1.2. In [9], Johnson computed the series A0; A1; A2 up to order 6 and con-
jectured several connections between them. Building on these calculations, the above
formulas for A0; A1; A2 were proposed in [13].
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Remark 1.3. The simplicity of the expressions in Theorem 1.1 is deceiving. The individ-
ual Segre integrals are quite complicated. For instance, for aK3 surface S and n D 2, we
haveZ

S Œ2�

s4.V
Œ2�/ D

1

4

�
.2.c21/

2
C2c22 �4c

2
1c2�8c

2
1C6c2/C s.�9c

2
1C6c2C12/

C s2.�3c21 C 2c2 C 22/C 12s
3
C 2s4

�
;

(1.4)

where V is a vector bundle of rank s with Chern classes c1 and c2. For arbitrary surfaces,
the answers are more involved.

Remark 1.4. Even in rank 1, Theorem 1.1 gives additional information not covered by
Lehn’s conjecture. While the series A1; A2 were predicted by Lehn’s formula,

A0.z/ D .1C 2t/
�2
� .1C 3t/ for z D t .1C 2t/2

was absent from the line-bundle setup of the conjecture.

Remark 1.5. For nonsingular projective curves, the generating series of higher rank
Segre integrals was determined in [13]. A change of variables similar to (1.3) was needed
to express the answer in closed form.

Remark 1.6. The expressions A1; A2 determined by Theorem 1.1 were subsequently
connected by Mellit with certain generating series of Hurwitz numbers in genus zero [14].

1.5. The series A3; A4

For surfaces S which are not K-trivial, and an arbitrary class ˛ 2 K.S/, the universal
series A3; A4 appear in the Segre generating function S˛.z/ and are very difficult to
evaluate.

We calculate the two remaining universal series for rank˛ D 2, thus proving a full
rank-two analogue of Lehn’s formulas. Thus, we provide a second nontrivial situation for
which all series involved are determined. Using the change of variables

z D t .1C 3t/3;

Theorem 1.1 gives

A0.z/ D
.1C 4t/2

.1C 3t/3
;

A1.z/ D
.1C 3t/

.1C 4t/
1
2

;

A2.z/ D
.1C 3t/4

.1C 4t/
3
2 � .1C 12t/

1
2

:

To describe the remaining two series, let y.t/ be the unique real solution of the quartic
equation

y � .1C y/2

.1 � y/.1 � y3/
D

t

1C 3t
; y.0/ D 0:



A. Marian, D. Oprea, D. Pandharipande 2984

We have
y.t/ D t � 6t2 C 41t3 � 314t4 C 2630t5 C � � � :

Theorem 1.7. For rank˛ D 2 the remaining universal Segre series are

A3.z/ D .1C 3t/
�1
�

�
y.t/

t

�� 1
2

;

A4.z/ D .1C 3t/ �

�
y.t/

t

�3
�
.1C y/2

1 � y
�
1

y0
:

Based on these expressions, we also formulate:

Conjecture 1.8. For all ranks, the functions A3; A4 are algebraic.

Remark 1.9. Finding the series A3 and A4 for ˛ of arbitrary rank remains an open ques-
tion. In addition to Lehn’s formula for rank one, and the substantial rank two analysis
carried out here, a few cases are trivially known:
� The case rank˛ D �1 is immediate. Set ˛ D �L for some line bundle L! S . For

dimension reasons we haveZ
S Œn�

s.˛Œn�/ D

Z
S Œn�

c..�˛/Œn�/ D 0 for n � 1 H) A3.z/ D A4.z/ D 1:

� For rank˛ D �2, we can prove geometrically, see (2.12) for instance, thatZ
S Œn�

s.˛Œn�/ D

Z
S Œn�

c..�˛/Œn�/ D

 
c2.�˛/

n

!
:

We again obtain
A3.z/ D A4.z/ D 1:

� For rank˛ D 0, we have A4.z/ D 1 just by setting ˛ D 0. Regarding the remaining
series, we state the following:

Conjecture 1.10. In rank 0, we have

A3.z/ D .1C t /
�1
� .1C 2t/

1
2 for z D t .1C t /:

1.6. The Verlinde generating function

We now turn to the generating series of holomorphic Euler characteristics of tautological
line bundles over the Hilbert scheme. We set

V˛.w/ D
1X
nD0

�.S Œn�; .det˛/.n/ ˝Er / � wn;

where the line bundle . � /.n/ is pulled back from the symmetric product, and E denotes
�
1
2

of the exceptional divisor on the Hilbert scheme. Since V˛ only depends on det˛,
only four power series are needed in the factorization

V˛.w/ D B1.w/
�.c1.˛// � B2.w/

�.OS / � B3.w/
c1.˛/�KS�

1
2K

2
S � B4.w/

K2
S :
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The different form of the exponents used here relative to (1.1) is justified by the fact that
with the current choices, we have the following symmetries:

B3 7! B�13 as r ! �r;
B4 is invariant under the symmetry r ! �r:

(1.5)

This was noted in [2, Theorem 5.3] as a consequence of Serre duality. Also by [2], we
explicitly know B1 and B2. For

w D t .1C t /r
2�1;

we have

B1.w/ D 1C t; B2.w/ D
.1C t /

r2

2

.1C r2t /
1
2

:

The series B3; B4 remain mysterious in general. The cases r D 0 and r D ˙1 are
immediate exceptions, obtained in [2, Lemma 5.1]. Indeed for r D 0, we have

V˛.w/ D .1 � w/
��.c1.˛// H) B3.w/ D B4.w/ D 1;

and for r D ˙1,

V˛.w/ D .1C w/
�.c1.˛// H) B3.w/ D B4.w/ D 1:

For all surfaces, motivated by strange duality, Johnson [9] predicted a connection
between the Segre and Verlinde series

S�˛.z/$ V˛.w/;

under an undetermined change of variables z $ w, and the shift

r D rank˛ � 1: (1.6)

These predictions were made precise in [13] where the unknown change of variables was
proposed:

z D t .1 � rt/�r ; w D
t .1 � .r � 1/t/r

2�1

.1 � rt/r
2

:

Using Theorem 1.1, we show under suitable numerics an equality between Verlinde
numbers and tautological Chern integrals on Enriques surfaces, see Proposition 3.2. This
is consistent with strange duality.

Since the Segre series is now calculated for rank ˛ D 1 (Lehn’s formula) and rank
˛ D 2 (in Theorem 1.7), this precise conjectural Verlinde–Segre relationship gives further
predictions for the unknown Verlinde universal series B3 and B4.

For r D ˙2, the formulas for B3 and B4 are captured by [13, Conjecture 2]. Indeed,
for r D 2, setting1

w D t .1C t /3;

1To be in agreement with the formulas of [13], one has to change t 7! t
2C2t .
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we expect

B3.w/ D
1C
p
1C 4t

2.1C t /
;

B4.w/ D .1C t /
1
2 � .1C 4t/

1
2 �

�
1C
p
1C 4t

2

�� 5
2

:

Thanks to Theorem 1.7, we obtain the following predictions about the Verlinde series
for r D ˙3. Let Y be the unique real solution of the quartic equation:

y � .1C y/2

.1 � y/.1 � y3/
D t; y.0/ D 0:

We have

Y.t/ D y

�
t

1 � 3t

�
D t � 3t2 C 14t4 � 80t4 C 509t5 � 3459t6 C � � � :

Conjecture 1.11. For the Verlinde series V˛ with r D 3, setting

w D t .1C t /8;

we have

B3.w/ D .1C t /
� 3

2 �

�
Y.t/

t

�� 1
2

;

B4.w/ D .1C t /
3
4 �

�
Y.t/

t

� 13
4

�
.1C Y/2

1 � Y
�
1

Y0
:

The expressions for r D �3 are obtained via the symmetry (1.5).

Finding the general expression for the unknown series B3 and B4 for arbitrary r , thus
determining all rank 1 Verlinde numbers, is a central question in the enumerative theory
of Hilbert schemes of points on surfaces.

Remark 1.12. Due to the rank shift (1.6), the Serre duality symmetry

s ! �s

on the Verlinde side translates into a conjectural transformation rule for the remaining
unknown Segre universal series A3; A4, as

s ! �s � 2:

In particular, we can also state predictions for the Segre series A3; A4 in rank˛ D �3
and rank˛ D �4 from the series in rank˛ D 1 and rank˛ D 2. The exact expressions
are more cumbersome, but they support Conjecture 1.8.

1.7. Strategy of proofs

We first explain how Theorem 1.1 is derived. To find the three universal seriesA0; A1; A2,
we pick ˛ to be the class of a suitable vector bundle

V ! S
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over a K3 surface S . As witnessed by (1.4), the Segre integrals are generally very com-
plicated. It is a key observation that the answers take a simpler form for sheaves with
small deformation spaces. The most beautiful formulas are obtained for spherical vector
bundles V and for vector bundles with isotropic Mukai vectors. Let

v D chV �
p

td.S/ 2 H 2?.S;Z/

be the Mukai vector of V , and recall the Mukai pairing

hv; vi D

Z
S

v22 � 2v0v4; where v D .v0; v2; v4/ 2 H 2?.S/:

Set � D �.S; V /. We show:

Theorem 1.13. Let S be a K3 surface, and let V ! S be a rank s D r � 1 vector bundle.

(i) If hv; vi D �2, then Z
S Œn�

s2n.V
Œn�/ D rn

 
� � rn

n

!
:

(ii) If hv; vi D 0, thenZ
S Œn�

s2n.V
Œn�/ D rn

�
�r C

1

r
C
�

n

� 
� � rn � 1

n � 1

!
:

Theorem 1.13 is proven by a direct geometric argument using Reider techniques [18],
also employed in rank 1 in [23]. The crucial insight here is the identification of the optimal
geometric setup for which the complicated Segre integrals become manageable. We will
then show by a residue calculation that Theorems 1.1 and 1.13 are equivalent.

The analysis is quite intricate for Theorem 1.7, requiring in particular delicate excess
calculations for Segre classes. The key statements are captured by the following:

Theorem 1.14. Let � W S ! X be the blowup of a K3 surface X at a point, with excep-
tional divisor E. Let V0 ! X be a rank 2 bundle whose Mukai vector satisfies

hv0; v0i D �2:

Set
V D �?V0 ˝E

�k ;

and assume that
�.V / D 4n � 1:

(i) If k D n � 2, then Z
S Œn�

s2n.V
Œn�/ D .�1/n.2nC 1/:

(ii) If k D n � 1, we haveZ
S Œn�

s2n.V
Œn�/ D

´
1 for n � 0 mod 3;
0 for n 6� 0 mod 3:

We finally show by a residue calculation that Theorems 1.7 and 1.14 are equivalent.
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1.8. Moduli of surfaces

The Segre integrals can be viewed as part of a richer theory which is important to explore
further. For each flat family

� W S ! B

of nonsingular projective surfaces carrying line bundles L1; : : : ; L` ! S , we define the
�-classes

�Œa1; : : : ; a`; b� D �?
�
c1.L1/

a1 � � � c1.L`/
a` � c1.!�/

b
�
2 A?.B/:

When � is the universal family of the moduli of polarized surfaces

� W � !M;

the �-classes thus defined generate the tautological ring R?.M/ analogous to the well-
studied tautological ring R?.Mg/ of the moduli of curves. Finding relations between the
�-classes in R?.M/ is a very interesting problem.

In the case of the moduli ofK3 surfaces, a strategy for �-relations was laid out in [12]
via the study of the virtual class of the Quot scheme; a different approach via Gromov–
Witten theory was pursued in [17]. The discussion however makes sense for arbitrary
polarized surfaces as well. In this approach, the center stage is taken by the calculation of
the push-forwards

1X
nD0

qn�
Œn�
?

�
si1.L

Œn�
1 / � � � si`.L

Œn�

`
/
�
2 A?.M/

in terms of the classes �Œa1; : : : ; a`; b�. In the K-trivial case, or more ambitiously for
arbitrary surfaces, it becomes important to obtain explicit formulas, thus generalizing the
results of this paper.

2. K3 surfaces

2.1. Residue calculations

Our first goal is to prove Theorem 1.1. We begin by explaining how the special formulas
of Theorem 1.13 are predicted by the series in Theorem 1.1. Conversely, we will prove in
Section 2.4 that these predictions are equivalent to the statement of Theorem 1.1.

We keep the same notation as in the introduction. Let S be a K3 surface. For a vector
bundle V ! S with Mukai vector

v D ch.V /
p

td.S/;

let
� D �.S; V /; c1 D c1.V /; c2 D c2.V /;

as in Section 1.7. Recall that s D rk V and r D s C 1. Taking the K-theory class ˛ to
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be V , the statement of Theorem 1.1 becomes

S.z/ D .1C .1C r/t/Œ.r�1/c2C.�
r
2C1/c

2
1
�r2C2r�

� .1C t r/Œ�rc2C
r�1

2 c2
1
C.r2�1/�

�
1

1C r.1C r/t
:

For convenience, we define

d D .r � 1/c2 C

�
�
r

2
C 1

�
c21 � r

2
C 2r: (2.1)

We then need to prove

S.z/ D .1C .1C r/t/d � .1C t r/�dC�C1 �
1

1C r.1C r/t
: (2.2)

An important observation is that quantity (2.1) is half the dimension of the moduli space
Mv of stable sheaves of type v on the K3 surface S ,

dim Mv D hv; vi C 2 D 2d:

We can express the individual Segre integrals as the residuesZ
S Œn�

s2n.V
Œn�/ D

1

2�i

I
S.z/ �

dz

znC1
:

Substituting equation (2.2) in the above residue and using the change of variables (1.3)

z D t .1C rt/r ;

we are equivalently seeking to prove the following formula for the top Segre classes:Z
S Œn�

s2n.V
Œn�/ D

1

2�i

I
.1C .1C r/t/d � .1C rt/�dC��rn �

dt

tnC1

D Coefftn Œ.1C .1C r/t/d � .1C rt/�dC��rn�:

The formula yields a remarkably simple answer in the following two cases, leading to the
statement of Theorem 1.13.
(i) When d D 0, we expect Z

S Œn�

s2n.V
Œn�/ D rn

 
� � rn

n

!
:

In particular, when r D 2, we recover the known line bundle result of [12],Z
S Œn�

s2n.L
Œn�/ D 2n

 
� � 2n

n

!
:

(ii) When d D 1, we expectZ
S Œn�

s2n.V
Œn�/ D rn

�
�r C

1

r
C
�

n

� 
� � rn � 1

n � 1

!
:
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2.2. Vanishing results

We now prove the formulas above, thus establishing Theorem 1.13. The proof is guided
by the simple form of the expected answers.

Throughout this subsection, we let S be a K3 surface of Picard rank one,

Pic.S/ D ZH:

Let V ! S be an H -stable2 vector bundle of rank s > 1 with c1.V / D H , so that the
Mukai vector equals

v D .s;H; � � s/:

We assume that
hv; vi D �2 or hv; vi D 0:

In both of these cases, we know the moduli space of H -stable sheaves with Mukai vector
v is nonempty, see [27, Theorem 0.1] for a general result. The moduli space is either
a point, or a K3 surface, see [15, Theorems 1.4 and 3.6].

Since s > 1, the locus of locally free sheaves V in the moduli space with Mukai vector
v is nonempty. Nonemptiness is obtained by invoking Yoshioka’s classification of Mukai
vectors yielding moduli consisting entirely of nonlocally free sheaves in [27, Proposi-
tion 0.5]. His classification does not include vectors v as above.

Under these assumptions, we show the following vanishings.

Proposition 2.1. We have

(i) If hv; vi D �2, then s2n.V Œn�/ D 0 for rn � �.V / < .r C 1/n.

(ii) If hv; vi D 0, then s2n.V Œn�/ D 0 for rnC 1 � �.V / < .r C 1/n.

Proof. Recall that V is said .n � 1/-very ample if the evaluation map

H 0.S; V /! H 0.S; V ˝OZ/ (2.3)

is surjective for all Z 2 S Œn�. This is equivalent to the surjectivity of the natural vector
bundle map

H 0.S; V /˝OS Œn� ! V Œn� on S Œn�:

We will show that this is the case under our numerics in Proposition 2.2 below.
By the definition of Segre classes, whenever the evaluation map is surjective, we have

the vanishing
sj .V

Œn�/ D 0 for j > h0.S; V / � rankV Œn�:

In our situation
h0.S; V / D �.V /:

Indeed, by Serre duality and stability,

h2.S; V / D h0.S; V _/ D 0:

2H -stability is Gieseker stability with respect to the polarization H .
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Furthermore, for � > 0 we have
h1.S; V / D 0: (2.4)

The vanishing (2.4) is established in the proof of Proposition 2.2 below, where it is argued
that there do not exist nontrivial extensions

0! V _ ! E ! OS ! 0:

Therefore, .n � 1/-very ampleness of V implies the vanishing

sj .V
Œn�/ D 0 for j > �.V / � sn:

In particular, we obtain

s2n.V
Œn�/ D 0 for .r C 1/n > �.V /:

Proposition 2.2. We have:

(i) If hv; vi D �2 and �.V / � rn, then V is .n � 1/-very ample.

(ii) If hv; vi D 0 and �.V / � rnC 1, then V is .n � 1/-very ample.

Proof. The evaluation map in (2.3) is surjective if H 1.V ˝ IZ/ D 0 for all Z 2 S Œn�.
Assume, for contradiction, that

H 1.V ˝ IZ/ ¤ 0: (2.5)

The cohomology group (2.5) is Serre dual to Ext1.IZ ; V _/ which is the space of exten-
sions

0! V _ ! E ! IZ ! 0: (2.6)

By assumption, we have a nonsplit extension.
If V isH -stable with c1.V / D H , then [26, Lemma 2.1] shows that the middle termE

of any nonsplit extension
0! V _ ! E ! IZ ! 0

is H -stable.
For the benefit of the reader, let us recall the argument in [26] in our context. Since

c1.V / D H is primitive, note first that the H -stability of V implies that V is in fact
slope-stable, therefore V _ is slope-stable, hence V _ is H -stable as well.

Assuming now that E is not H -stable, let G ,! E be the maximal semistable desta-
bilizing subsheaf. We have

rkG < rkE and �G � �E > �V_ :

We see that G cannot be a subsheaf of the kernel V _ since this would contradict the
H -stability of the latter. Therefore, we have a nonzero morphism

� W G ! IZ :

The H -semistability of G now gives �G � 0. Writing c1.G/ D aH we deduce a � 0.
Since �G � �E , we obtain

aH 2

rkG
� �

H 2

rkE
H) a > �1:
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Therefore, we have
a D 0 and c1.G/ D 0:

Furthermore, if nonzero, the kernel K of � is a subsheaf of V _ of slope greater than or
equal to zero, contradicting the H -stability of V _. Thus, we have

� W G ! IZ is injective H) G D IW

for a zero-dimensional subscheme W � S . We consider the exact sequence

0! G ! IZ ! Q! 0

and the associated sequence of extension groups

Ext1.Q; V _/! Ext1.IZ ; V _/
f
! Ext1.G; V _/:

The first group is zero by Serre duality since Q is supported at finitely many points. We
conclude that f is injective. However, the image of the extension (2.6) in Ext1.G; V _/ is
trivial. The contradiction shows that E must be H -stable.

Now, we calculate

�.E;E/ D �.V _; V _/C 2�.V _; IZ/C �.IZ ; IZ/

D �hv; vi C 2.�.V / � sn/C 2 � 2n

D 2

�
�
hv; vi

2
C �.V / � rnC 1

�
:

In both cases of Proposition 2.2, we obtain

�.E;E/ � 4 H) ext0.E;E/C ext2.E;E/ � 4:

Therefore, by Serre duality,
ext0.E;E/ � 2:

Since E is H -stable and therefore simple, we have a contradiction. Thus, (2.5) does not
hold. The proofs of Proposition 2.2 and Proposition 2.1 are therefore complete.

2.3. Proof of Theorem 1.13

We consider case (i) of the theorem. Fix the rank s > 1 throughout.3 By [2, Theorem 4:1],
over K3 surfaces, the Segre integral Z

S Œn�

s2n.V
Œn�/

is given by a universal polynomial of degree n in c1.V /2 and c2.V /. When

hv; vi D �2;

3For s D 1, the functions A1; A2 are known by [12, 23]. All three functions A0; A1; A2 for
s D 1 follow from the case s > 1 via the polynomiality argument of Section 2.5.
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both c1.V /2 and c2.V / can be expressed in terms of � D �.V /, and thereforeZ
S Œn�

s2n.V
Œn�/ D Pn.�/

for a degree n universal polynomial Pn.
For each � > s, let .S;H/ be a K3 surface of Picard rank one Pic.S/ D ZH and of

genus
H 2
D 2g � 2; g D s.� � s/:

Let V be the unique H -stable vector bundle with Mukai vector v D .s;H; � � s/ whose
existence we noted in the beginning of Section 2.2. Since hv; vi D �2, Proposition 2.1 (i)
shows that the top Segre class of V Œn� vanishes when

rn � � < .r C 1/n:

These n values of � are the n roots of the polynomial Pn. Therefore,

Pn.�/ D c �

 
� � rn

n

!
H)

Z
S Œn�

s2n.V
Œn�/ D c �

 
� � rn

n

!
for some constant c. We will identify the constant c D rn by provingZ

S Œn�

s2n.V
Œn�/ D

rn

nŠ
�n C lower order terms (l.o.t.) in �:

The argument is most naturally expressed by rewriting (1.2) in exponential form,
1X
nD0

zn
Z
S Œn�

s2n.V
Œn�/ D exp

�
NA0.z/ � c1.V /

2
C NA1.z/ � c2.V /C NA2.z/

�
:

Restricting to the line hv; vi D �2 in the .c21 ; c2/-plane, we obtain
1X
nD0

zn
Z
S Œn�

s2n.V
Œn�/ D exp

�
U.z/ � �C T .z/

�
for power series U and T . Let

U.z/ D u1z C u2z
2
C � � � :

Extracting the coefficient of zn in the above expression yieldsZ
S Œn�

s2n.V
Œn�/ D

un1
nŠ
�n C l.o.t.

In particular, for n D 1, we obtainZ
S

s2.V / D u1�C l.o.t.

Direct calculation shows s2.V / D r� � r2 so that u1 D r . After substitution, we find the
leading term to be

un1
nŠ
D
rn

nŠ
:
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For part (ii) of the theorem, Proposition 2.1 (ii) gives only n � 1 roots of the poly-
nomial expressing the Segre integral. Combined with the leading term calculations, we
conclude that if hv; vi D 0 we haveZ

S Œn�

s2n.V
Œn�/ D

rn

n
.�C c/

 
� � rn � 1

n � 1

!
for some constant c. We will prove

c D n

�
�r C

1

r

�
by computing the next term in the Segre polynomial in �. Indeed, for the right-hand side,
the �n�1 coefficient is easily seen to be

rn

n

�
c

.n � 1/Š
�
n.r C 1

2
/

.n � 2/Š

�
: (2.7)

We compute the �n�1 coefficient on the left. As before, we have
1X
nD0

zn
Z
S Œn�

s2n.V
Œn�/ D exp

�
U.z/ � �C T .z/

�
;

where
U.z/ D u1z C u2z

2
C � � � ; T .z/ D t1z C t2z

2
C � � � :

We obtainZ
S Œn�

s2n.V
Œn�/ D

un1
nŠ
� �n C

�
un�11 t1

.n � 1/Š
C
un�21 u2

.n � 2/Š

�
� �n�1 C � � � :

When n D 1, we find

�r � r2 C 1 D

Z
S

s2.V / D u1�C v1 H) u1 D r; t1 D �r
2
C 1:

When n D 2, for isotropic vectors hv; vi D 0, equation (1.4) simplifies toZ
S Œ2�

s4.V
Œ2�/ D r2

�
�r C

1

r
C
�

2

�
� .� � 2r � 1/:

Using the above asymptotics, we haveZ
S Œ2�

s4.V
Œ2�/ D

u21
2
� �2 C .u1t1 C u2/ � �C � � � H) u2 D �r

3
�
r2

2
:

Thus, for arbitrary n, the �n�1-coefficient equals

rn�1.1 � r2/

.n � 1/Š
C
rn�2.�r3 � r2

2
/

.n � 2/Š
: (2.8)

Comparison of (2.7) and (2.8) yields the requisite value for the constant c, completing
the argument.
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2.4. Proof of Theorem 1.1

By [2], the generating series of Segre integrals takes the form

S.z/ D
1X
nD0

zn
Z
S Œn�

s2n.V
Œn�/ D a0.z/

c2.V / � a1.z/
c1.V /

2

� a2.z/
�.OS /

for three power series a0.z/; a1.z/; a2.z/ 2 QŒŒz��. We show that these power series are
as claimed by Theorem 1.1:

a0.z/ D A0.z/; a1.z/ D A1.z/; a2.z/ D A2.z/:

Fix an integer � > s, and let g D s.� � s/. Consider .X;H/ aK3 surface of genus g,
and let V be a vector bundle with Mukai vector

v D .s;H; � � s/ H) hv; vi D �2:

We calculate

c2.V / D �.s � 1/ � s
2
C 2s � 1; c1.V /

2
D 2.s� � 1 � s2/:

The residue calculations of Section 2.1 and the first part of Theorem 1.13 together imply�
As�10 A2s1

���
A�s

2C2s�1
0 A�2�2s

2

1 A22
�
D
�
as�10 a2s1

���
a�s

2C2s�1
0 a�2�2s

2

1 a22
�
:

Since � is arbitrary, we obtain

As�10 A2s1 D a
s�1
0 a2s1 ; (2.9)

A�s
2C2s�1

0 A�2�2s
2

1 A22 D a
�s2C2s�1
0 a�2�2s

2

1 a22: (2.10)

We now derive an additional equation using isotropic bundles corresponding to the
second part of Theorem 1.13. To this end, let g D s.� � s/C 1. Let V ! S be a vector
bundle with Mukai vector

v D .s;H; � � s/ H) hv; vi D 0:

We then calculate

c2.V / D �.s � 1/ � s
2
C 2s; c1.V /

2
D 2.s� � s2/:

Repeating the above argument for the new numerics, we replicate equation (2.9) and in
addition we obtain

A�s
2C2s

0 A�2s
2

1 A22 D a
�s2C2s
0 a�2s

2

1 a22: (2.11)

Constraints (2.9), (2.10), (2.11) show that Ai D ai for 1 � i � 3, as claimed.

2.5. Chern classes

Let ˛ ! S be aK-theory class of rank s on aK3 surface S , and let s D r C 1. As a corol-
lary of Theorem 1.1, we also obtain expressions for the Chern classes of tautological
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bundles, X
nD0

zn
Z
S Œn�

c2n.˛
Œn�/ D QA0.z/

c2.˛/ � QA1.z/
c2

1
.˛/
� QA2.z/

�.OS /:

After the change of variables z D t .1 � rt/�r , the series are given by

QA0.z/ D .1 � rt/
�r
� .1C .�r C 1/t/rC1;

QA1.z/ D .1 � rt/
r�1

2 � .1C .�r C 1/t/�
r
2 ;

QA2.z/ D .1 � rt C r
2t /�

1
2 � .1 � rt/

r2�1
2 � .1C t .�r C 1//�

r2

2 �r :

Remark 2.3. The rank s D 2 case (corresponding to r D 1) is easily calculated from
geometry by assuming the existence of a transverse section of V , see [9]. The derivation
using our formulas is also simple,

QA0 D
1

1 � t
; QA1 D 1; QA2 D 1; z D

t

1 � t
H) QA0 D 1C z:

We find X
nD0

zn
Z
S Œn�

c2n.V
Œn�/ D .1C z/c2.V /; (2.12)

which is the correct answer.

The evaluation of QA0, QA1, and QA2 for Chern classes follows by regarding the Segre
integrals of Theorem 1.1 as functions on the K-theory of the surface S which depend
polynomially on

rank˛ D s; c1.˛/
2; c2.˛/;

see [2]. Having established these polynomials for positive s > 0, we may then also allow
s to be negative, and replace ˛ by �˛.

As before, if V is a bundle with hv; vi D �2, we obtainZ
S Œn�

c2n.V
Œn�/ D .�r/n

 
��C rn

n

!
:

In particular, paralleling Proposition 2.1, when hv; vi D �2, we obtain the vanishing

c2n.V
Œn�/ D 0 for .s � 2/n < �.V / � .s � 1/n:

3. Abelian and Enriques surfaces

3.1. Abelian surfaces

Having established the K3 case, we can also determine the Segre integrals over abelian
or bielliptic surfaces S . Indeed, by the universality results of [2], we have

1X
nD0

zn
Z
S Œn�

s2n.V
Œn�/ D A0.z/

c2.V / � A1.z/
c2

1
.V /:
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Residue calculations give the coefficients of the right-hand sideZ
S Œn�

s2n.V
Œn�/ D Coefftn

�
.1C .1C r/t/d � .1C rt/�dC��rn�1 � .1C r.r C 1/t/

�
;

where hv; vi D 2d . In particular, we obtain the following generalization of the s D 1
result of [12].

Proposition 3.1. Let V ! S be a vector bundle of rank s D r � 1 on an abelian or
bielliptic surface S . If hv; vi D 0, thenZ

S Œn�

s2n.V
Œn�/ D rn �

�

n
�

 
� � rn � 1

n � 1

!
:

3.2. Enriques surfaces and strange duality

When S is an Enriques surface, the link between the Segre and Verlinde series yields indi-
vidual equalities of intersection numbers, as the numerical data can be suitably matched.
The proposition below parallels [9, Conjecture 2:2] formulated for del Pezzo surfaces.
The corresponding result does not hold for other K-trivial surfaces.

Proposition 3.2. Let V ! S be a vector bundle of rank s D r C 1, determinant L, and
�.V / D .r � 1/nC 1. We haveZ

S Œn�

c2n.V
Œn�/ D �.S Œn�; L.n/ ˝E

r /:

The left-hand side interprets enumeratively the Verlinde number on the right as an
integral over the Hilbert scheme – counting the expected (finite) number of quotients
V _ ! IZ with Z a subscheme of length n. Implications of Proposition 3.2 for strange
duality over K3 and Enriques surfaces will be taken up elsewhere.

Proof. Write � D �.L/ and note that the assumption of the proposition translates into

c2.V / D � � .r � 1/.n � 1/:

By Section 2.5, the Chern integral on the left-hand side is the coefficient of zn in the series

QA0.z/
c2.V / � QA1.z/

c2
1
.V /
� QA2.z/;

or equivalently, the residue of the differential form

QA0.z/
��.r�1/.n�1/

� QA1.z/
2��2

� QA2.z/ �
dz

znC1
:

Using the change of variables z D t .1 � rt/�r , the differential form becomes

.1� t r.1� r//
1
2 � .1� t r/��Cr

2.n� 1
2 /�

1
2 � .1C .1� r/t/��r

2.n� 1
2 /C.n�1/ �

dt

tnC1
: (3.1)

For the right-hand side, we use the calculations of [2, Lemma 5.2]:X
wn�.S Œn�; L.n/ ˝E

r / D F.w/
1
2 �G.w/�;
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where

F.w/ D
.1C u/r

2

1C r2u
; G.w/ D 1C u

for the change of variables
w D u.1C u/r

2�1:

Therefore, �.S Œn�; L.n/ ˝Er / is the residue of the differential form

F.w/
1
2 �G.w/� �

dw

wnC1
D .1C r2u/

1
2 � .1C u/��r

2.n� 1
2 /C.n�1/ �

du

unC1
: (3.2)

The change of variables

u D
t

1 � t r
matches the two differential forms (3.1) and (3.2) and completes the proof.

4. K3 blowups

In order to determine the functions A3; A4, we need to consider surfaces which are not
K-trivial. We will look at two different families of examples over the blowup of a K3
at a point. These examples are stated in Theorem 1.14. We will prove this theorem first.
As before, Reider-type arguments play a key role in the calculation. In addition, sev-
eral excess intersection calculations are needed. Afterwards we show Theorem 1.7: the
integrals calculated in Theorem 1.14 give the rank 2 series for all surfaces.

4.1. Stability in extensions

Let
� W S ! X

be the blowup of a K3 surface X at one point. We assume that PicX D ZH . Then

PicS D ZH C ZE;

where E is the exceptional divisor on S and H denotes the pullback to S of the ample
Picard generator on X . Note that H is a nef line bundle on S .

The notion of H -stability and H -semistability have the usual meaning:

Definition 4.1. We say that a torsion-free sheaf V on S is H -stable if for any nonzero
subsheaf G of strictly smaller rank, we have

c1.G/ �H

rkG
<
c1.V / �H

rkV
:

For the notion of H -semistability the inequality is not required to be strict.

We first prove several statements regarding vanishing of cohomology which will be
useful in the proof of Theorem 1.14. We consider a vector bundle V0 ! X with Mukai
vector v0 such that

rankV0 D 2; c1.V0/ D H; hv0; v0i D �2; V0 is Gieseker H -stable: (4.1)
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The existence of the bundle V0 was noted in the beginning of Section 2.2: V0 is the unique
point in the moduli space of GiesekerH -stable bundles with Mukai vector v0. Such vector
bundles are necessarily rigid, that is

Ext1.V0; V0/ D 0:

Let
V D �?V0 ˝E

�k on S; for k � 0:

In order to compute Segre classes of V Œn� ! S Œn�, we analyze the surjectivity of the
evaluation map

H 0.V /˝OS Œn� ! V Œn� on S Œn�: (4.2)

Thus, for a zero-dimensional subscheme Z of length n, we investigate the vanishing of

H 1.S; V ˝ IZ/ D Ext1.V _; IZ/ D Ext1.IZ ; V _ ˝E/_:

Assume that a nonzero element exists in the extension group. We prove:

Lemma 4.2. (i) Assume k � n � 1. For any nonsplit extension

0! V _ ˝E ! W ! IZ ! 0 (4.3)

with Z 2 S Œn�, the middle sheaf W is H -stable.

(ii) Assume k D n � 2. The same conclusion holds, unless the scheme Z is supported on
the exceptional divisor E.

Proof. Assume G ,! W is an H -semistable destabilizing subsheaf. We then have

�G � �W > �V_˝E :

Since V0 is H -slope stable on X , it follows that V _0 is also H -slope stable. The pull-
back �?V _0 is H -stable on S . Thus V _ ˝E is also H -stable. As a consequence, we
see that G cannot be a subsheaf of the kernel V _ ˝E since this would contradict the
H -stability of the latter.

Thus we have a nonzero morphism � W G ! IZ . TheH -semistability ofG now gives
�G � 0. If c1.G/ D aH C bE, we deduce

0 � �G � �W H) 0 �
aH 2

rkG
� �

H 2

rkW
;

from which we conclude that a D 0 and �G D 0. Furthermore, if nonzero, the kernel K
of � is a subsheaf of V _ ˝ IZ of slope greater than or equal to zero, contradicting the
H -semistability of V _ ˝E. Thus we have in fact that � W G ! IZ is injective, so

G D IU ˝E
�m

for a zero-dimensional subscheme U � S andm � 0. In particular,Z is supported on the
exceptional curve E and on U . We turn to the exact sequence

0! G ! IZ ! Q! 0
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and the associated sequence of extension groups

Ext1.Q; V _ ˝E/! Ext1.IZ ; V _ ˝E/
˛
! Ext1.G; V _ ˝E/:

The image of the extension (4.3)

0 ¤ e 2 Ext1.IZ ; V _ ˝E/

under ˛ is trivial since the resulting extension is seen to be split. Turning to the first
extension group, we have

Ext1.Q; V _ ˝E/_ D H 1.V ˝Q/:

Recall the notation V D �?V0 ˝E�k . We claim that

H 1.V ˝Q/ D 0 for k � n � 1:

This would imply ˛ is injective, and in turn that the original extension e splits – a contra-
diction.

Note thatQ is supported on the exceptional divisor and a finite number of points in S .
To prove the claimed vanishing, let us first assume that U is empty. The argument is best
illustrated by the case m D 1. In this case, the defining sequence

0! E�1 ! IZ ! Q! 0

shows that Q D IZ=E is the ideal sheaf of n points on the exceptional divisor. Since

V jE D C2
˝OE .k/;

we see that

H 1.V ˝Q/ D H 1.OE .k � n//˝C2
D 0 for k � n � 1:

We now consider the case of arbitrary m, continuing to assume that U D ;. We let
W` D `E be the scheme defined by the ideal sheaf E�`. Set Zm D Z and Qm D Q.
The defining exact sequence

0! E�m ! IZ ! Q! 0

shows that
0! Qm ! OWm

! OZm
! 0:

Inductively define the scheme-theoretic intersection

Z` D Z`C1 \W` ,! W`C1

for 1 � ` � m � 1, and let Q` be given by the exact sequence

0! Q` ! OW`
! OZ`

! 0:

Clearly,
length.Z`/ � length.Zm/ D n:
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We will show inductively that
H 1.V ˝Q`/ D 0

for all ` � m. The base case ` D 1 was verified above. For the inductive step, form the
diagram

0

��

0

��

0

��

0 // K` //

��

OE .` � 1/ //

��

M`
//

��

0

0 // Q` //

��

OW`
//

��

OZ`
//

��

0

0 // Q`�1 //

��

OW`�1
//

��

OZ`�1
//

��

0

0 0 0.

Note that the support of M` has length at most n. As we already noted

V jE D C2
˝OE .k/:

If ` � 1 and k C 1 � n, we have just enough positivity to ensure that the morphism

H 0.V ˝OE .` � 1// D C2
˝H 0.E;OE .k C .` � 1//! H 0.V ˝M`/ (4.4)

is surjective. Using the first row we conclude

H 1.V ˝K`/ D 0:

Using the first column and invoking the inductive hypothesis, we conclude

H 1.V ˝Q`/ D 0:

This completes the argument when U is empty. For the general case, let T denote the
scheme with idealE�m ˝ IU , and recallWm had idealE�m. The defining exact sequence
gives

0! IT ! IZ ! Q! 0 H) 0! Q! OT ! OZ ! 0:

By composing the first map with the canonical restriction OT ! OWm
we obtain an exact

sequence
0! Q! OWm

! A! 0: (4.5)

Furthermore,
OZ ! A! 0;
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so A D O QZ is supported on at most n points. Then the previous argument applied to the
exact sequence (4.5)

0! Q! OWm
! O QZ ! 0

gives the vanishing H 1.V ˝Q/ D 0. This finishes the proof when k D n � 1.
When k D n � 2, the same argument carries through, unless m D 1 and Z is con-

tained in E, as one can easily check going through the details, in particular by examining
the morphism (4.4).

Lemma 4.3. If W is H -stable, then for any k � 0, the dimension of Hom.W;W ˝Ek/
equals 1.

Proof. TheH -stability ofW implies that any nonzero homomorphism � WW !W ˝Ek

is injective. This can be seen as usual by examining the kernel and image of �. Let �
be an eigenvalue of � at a point p in S where W is locally free and p 62 E. Let I be
the canonical homomorphismW ! W ˝Ek obtained byW -twisting the unique section
O ! Ek . We claim

� D �I:

Indeed, assuming otherwise, set

 WD � � �I ¤ 0:

By the first line of the proof, the morphism  W W ! W ˝Ek must be injective. Con-
sider the induced morphism

det W detW ! detW ˝Ekr :

Writing as before I for the detW -twisting of the unique section of Ekr , we conclude

det D �I

for some constant�. By construction, det vanishes at p. However I only vanishes along
E and p 62 E. This shows that � D 0, so det D 0. This contradicts the fact that  is
injective.

Lemma 4.4. Let V D �?V0 ˝E�k with V0 a rank 2 bundle satisfying (4.1). Assume4

�.V / D 4n � 1.

(i) If k D n � 2, then
H 1.V ˝ IZ/ D 0

for all Z 2 S Œn� unless Z � E.

(ii) If k D n � 1, then any nontrivial extension W in (4.3) is a rigid sheaf.

(iii) In both cases, H 1.V / D H 2.V / D 0.

4This assumption uniquely specifies the genusH2 D 2g � 2 of theK3 surface X in terms of n
and k, as well as the Mukai vector v0 for each such K3 surface.
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Proof. We continue working with the exact sequence (4.3). If Z 6� E, then W must be
H -stable by Lemma 4.2. Using Lemma 4.3, we compute

�.W;W / � ext0.W;W /C ext2.W;W / D ext0.W;W /C ext0.W;W ˝E/ D 2:

On the other hand, from the defining exact sequence (4.3), we calculate

�.W;W / D �.V _; V _/C �.V _ ˝E; IZ/C �.V
_; IZ/C �.IZ ; IZ/

D �hv0; v0i C .�.V0/ � 2n � .k C 1/.k C 2//

C .�.V0/ � 2n � k.k C 1//C 2 � 2n

D 2

�
�
hv0; v0i

2
C �.V0/ � 3nC 1 � .k C 1/

2

�
D 2

�
�
hv0; v0i

2
C �.V / � 3n � k

�
D 2.n � k/:

Note now that if k D n � 2, then

�.W;W / D 2.n � k/ D 4

which is a contradiction. This establishes (i).
If k D n � 1, then �.W;W / D 2. Since Ext0.W;W / D Ext2.W;W / D C, we find

that Ext1.W;W / D 0 so W is rigid. This establishes (ii).
Note that the same argument for Z D ; shows that H 1.V / D 0, while H 2.V / D 0

follows by stability.

We will analyze the two situations (i) and (ii) in Propositions 4.5, 4.7, and 4.8 below.

4.2. Excess calculations for k D n � 2

The goal of this subsection is to prove the following result which corresponds to Theo-
rem 1.14 (i).

Proposition 4.5. Let S be the blowup of a K3 surface at one point. Let

V D �?V0 ˝E
�.n�2/

with V0 a rank 2 bundle satisfying (4.1). Assume furthermore that �.V / D 4n � 1. ThenZ
S Œn�

s.V Œn�/ D .�1/n.2nC 1/:

Proof. We compute s2n.V Œn�/ as an excess intersection over the nonsurjectivity locus of
the evaluation map (4.2). By Lemma 4.4, this nonsurjectivity locus consists of those Z
with Z � E, or in other words

Z 2 EŒn� ' Pn:

For the excess calculation, we need to interpret the Segre class s2n in connection with the
top Chern class of a vector bundle, where the excess formula is easier to understand. This
connection is as follows, cf. Fulton [3].
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LetG.2n; 4n � 1/ be the Grassmannian of 2n planesƒ ,! H 0.V /, with tautological
bundle E of rank 2n. Consider the product S Œn� �G.2n; 4n � 1/ with projection

� W S Œn� �G.2n; 4n � 1/! S Œn�:

By [3, Proposition 14.2.2],

s2n.V
Œn�/ D �?.ctop.E

_
˝ V Œn�//:

Here E and V Œn� are pulled back to the product fromG.2n; 4n � 1/ and S Œn� respectively.
The vector bundle E_ ˝ V Œn� has a natural section s. This is induced by the morphism

E ! V Œn� on S Œn� �G.2n; 4n � 1/

obtained by composing the inclusion

E ,! H 0.V /˝O

on G.2n; 4n � 1/ with the evaluation map (4.2)

H 0.V /˝O ! V Œn� on S Œn�:

The zero locus D of the section s is expected to be zero-dimensional, but let us suppose it
is in excess with dimension d , so that

D � S Œn� �G.2n; 4n � 1/ with normal bundle N:

The excess intersection formula of [3, Section 14.4] reads

s2n.V
Œn�/ D �?

�
cd .E

_
˝ V Œn�jD �N/

�
; (4.6)

where � W D ! S Œn�.
We now compute the right-hand side of equation (4.6). By definition,

D D ¹.Z;ƒ/ W the map ƒ ,! H 0.V /! H 0.V ˝OZ/ is zeroº:

We describe D in concrete terms. Observe that

V jE D C2
˝OP1.n � 2/;

and set
ƒ0 D kerH 0.V /! H 0.V jE /:

The argument of Lemma 4.4 shows that H 1.V ˝O.�E// D 0. Therefore

dimƒ0 D .4n � 1/ � .2n � 2/ D 2nC 1:

Observe next that

D D ¹.Z;ƒ/ W Z 2 EŒn� and ƒ � ƒ0º � S Œn� �G.2n; 4n � 1/:

Indeed, if Z 6� E, by Lemma 4.4,

H 0.V /! H 0.V jZ/

is surjective. The kernel is of dimension .4n � 1/ � 2n D 2n � 1, hence it cannot contain
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a subspace W of dimension 2n. Furthermore, for Z � E, the restriction

H 0.V /! H 0.V jZ/

factors through H 0.V jE /. Since V jE D OE .n � 2/˝C2, the restriction

H 0.V jE /! H 0.V jZ/

is injective. Therefore,

W ,! H 0.V /! H 0.V jE / is zero H) ƒ � ƒ0:

Consequently, we have

D D EŒn� �G.2n;ƒ0/ � S
Œn�
�G.2n; 4n � 1/;

so that
D ' Pn � P2n:

This identification holds scheme-theoretically. Indeed, it is easy to check that the above
pointwise arguments can also be carried out in families. The key observation is that
cohomology and base change commute for all relative constructions involved.

In K-theory, the normal bundle to D is

N D NE Œn�=S Œn� CNP2n=G.2n;4n�1/ D O.E/Œn� C E_ ˝C2n�2:

Here 2n � 2 is the dimension of the quotient H 0.V /=ƒ0 and the two summands are
restricted to D. We now calculate

s2n.V
Œn�/ D �?

�
c3n
�
E_ ˝ V Œn� �O.E/Œn� � E_ ˝C2n�2

jD

��
D �?

�
c3n
�
E_ ˝C2

˝O.n � 2/Œn� �O.�1/Œn� � E_ ˝C2n�2
��
:

Let � denote the hyperplane class on EŒn� ' Pn and h denote the hyperplane in the
Grassmannian G.2n;ƒ0/ ' P2n. We have

c.E_/ D
1

1 � h
;

c.O.n � 2/Œn�// D 1 � �;

c.O.�1/Œn�/ D .1 � �/n:

The last two formulas for the total Chern classes of tautological vector bundles over the
Hilbert scheme of points on P1 are explained for instance in [13, proof of Theorem 2].
Completing the calculation,

s2n.V
Œn�/ D Coeffh2n�n

�
.1 � �/3nC2 � .1 � h/2n�2 �

1

c.h_ ˝O.n � 2/Œn�/2

�
D Coeffh2n�n

.1 � �/3nC2

.1 � h � �/2

D .�1/n.2nC 1/:
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4.3. The case k D n � 1

Consider now the case k D n � 1, so that

V D V0 ˝E
�.n�1/

with V0 satisfying (4.1), and �.V / D 4n � 1. By Lemma 4.4 (ii), all nontrivial extensions

0! V _ ˝E ! W ! IZ ! 0 (4.7)

must have the middle term W a rigid H -stable sheaf of rank 3. Of course,

c1.W / D �H C 2nE: (4.8)

We record the following:

Lemma 4.6. There are no rigid H -stable sheaves of rank 3 satisfying equation (4.8)
when n 6� 0 mod 3. When n � 0 mod 3, the sheaf W must necessarily be of the form

W D �?W0 ˝E
2n
3 ;

where W0 ! X is a bundle over the K3 surface with

rankW0 D 3; c1.W0/ D �H; W0 rigid and Gieseker H -stable: (4.9)

Proof. As noted in [5, 25], stability with respect to the non-ample divisor H on the
blowup is equivalent to H � �E-stability for � sufficiently small. Thus the moduli space
of H -stable sheaves on the blowup admits a natural scheme structure. In general, the
moduli space MS

H .3;�H C 2nE; c2/ of H -stable sheaves on the blowup has expected
dimension 6d � 16 where d denotes the discriminant. For rigid moduli spaces, we have
d D 8

3
. The corresponding moduli of H -stable sheaves is zero-dimensional and consists

of isolated points. To count the stable rigid sheaves, we compute the Euler characteristic
of the moduli space.

To this end, we use the blowup formulas of [25, Proposition 3.4] or [5, Proposi-
tion 3.1 (2)]. The generating series of Euler characteristics on the blowup is computed
in terms of the same series on the underlying K3 surface X as

X
d

qd�
8
3 e.MS

H .3;�H C 2nE; d// D

1Y
mD1

1

.1 � qm/3
�

� X
.x;y/

qx
2CxyCy2

�

�

�X
d

qd�
8
3 e.MX

H .3;�H;d//

�
;

where x; y 2 ZC 2n
3

. To complete the proof, we compute the constant term in the above
expression. If n 6� 0 mod 3, there is no constant term due to the factorX

qx
2CxyCy2

:

Indeed, as n 6� 0 mod 3, we have .x; y/ ¤ .0; 0/ so x2 C xy C y2 > 0.
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For n � 0 mod 3, the constant term is 1. The moduli space consists of a single rigid
sheaf. Note that when �.V / D 4n � 1, a direct calculation shows that there exists a rigid
sheaf W0 on X such that W D �?W0 ˝E

2n
3 on S has the numerics determined by the

exact sequence (4.7). Specifically the numerical assumptions on V require

H 2
D 4n2 C 12n � 14

and we select W0 to be in the moduli space with Chern numbers

ch.W0/ D 3 �H C
�
2

3
n2 C 2n � 5

�
Œpt�:

This W is then the only sheaf in its moduli space.

By the lemma, if n 6� 0 mod 3, the extension W cannot exist. Consequently, we have

H 1.V ˝ IZ/ D 0

for all Z. This shows that the evaluation map (4.2) over the Hilbert scheme is surjective,
and we have obtained the following result corresponding to Theorem 1.14 (ii):

Proposition 4.7. If V D �?V0 ˝E�.n�1/ with �.V / D 4n � 1 and V0 a rank 2 bundle
as in (4.1), then Z

S Œn�

s2n.V
Œn�/ D 0 for n 6� 0 mod 3:

We now focus on the remaining statement of Theorem 1.14. We show:

Proposition 4.8. If V D �?V0 ˝E�.n�1/ with �.V / D 4n � 1 and V0 a rank 2 bundle
as in (4.1), then Z

S Œn�

s2n.V
Œn�/ D 1 for n � 0 mod 3:

Proof. As usual, the top Segre class is supported on the locus D where the evaluation map
(4.2) is not surjective. We now identify D as a subvariety of the Hilbert scheme S Œn�. The
nonsurjectivity locus consists of subschemes Z such that

H 1.V ˝ IZ/ ¤ 0;

in other words corresponding to the existence of nontrivial extensions

0! V _ ˝E ! W ! IZ ! 0: (4.10)

When n D 3` for ` 2 Z, as seen in Lemma 4.6, all such extensions have the same middle
term, the unique stable rigid rank 3 vector bundle W on S with numerics specified by the
lemma. A direct calculation establishes further that

�.V _ ˝E;W / D 1: (4.11)

We now show that

D ' PHom.V _ ˝E;W / D PH 0.V ˝W ˝E�1/:
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To start, note the useful vanishing

H 1.V ˝W / D 0

which will be established in Lemma 4.9 using Reider arguments. By Serre duality and
stability

H 2.V ˝W / D 0; H 2.V ˝ V _ ˝E/ D C:

From the exact sequence (4.10), upon tensoring with V , these vanishings imply

H 1.V ˝ IZ/ D C: (4.12)

By (4.12), for any given Z in the degeneracy locus, the basic extension (4.10) is unique.
Conversely, any nonzero morphism

V _ ˝E ! W

must be injective by stability, and the cokernel sheaf Q must have rank 1 and trivial
determinant. We claim that Q D IZ for some scheme Z which necessarily has length n.
This is clear if Q is torsion-free. However, if Q had torsion T , then there would be
a torsion-free quotient Qtf of rank 1,

0! T ! Q! Qtf
! 0; and Qtf

D IU .�D/ for a subscheme U:

Comparing determinants, we find D D detT effective so that D �H � 0. This however
contradicts stability of W ! Qtf unless D �H D 0, in which case D D qE for some
q � 0. We argue that q D 0. Indeed, consider the kernel K of the surjection

W ! Q! Qtf
D IU .�qE/:

Using K ,! W and W is H -stable, it follows that K is H -stable as well. Write

m D length.U /:

A direct calculation shows that

�.K;K/ D �.W � IU .�qE/;W � IU .�qE//

D 2C 4mC 4n.q � 1/C 3q2 > 2;

which contradicts stability. The only exception is

q D 0; m � n H) Qtf
D IU :

The torsion part T must have trivial determinant hence it must be supported on points.
Computing Euler characteristics,

�.IU /C �.T / D �.Q/ D �.V
_
˝E/ � �.W / D 1 � n H) �.T / D m � n � 0:

This is only possible if T D 0 so that Q is torsion free, in fact Q D IU for some zero-
dimensional scheme U of length n.
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Thus we have identified the degeneracy locus D as

D D PH 0.V ˝W ˝E_/:

It is straightforward to carry out the above argument in families. The crux of the matter
is that (4.12) has constant rank, hence cohomology and base change commute over the
degeneracy locus D. We set

d D dim D:

Since H 2.V ˝W ˝E_/ D 0 by Serre duality and stability, it follows from (4.11) that

h1.V ˝W ˝E_/ D d:

On D � S we have a universal exact sequence

0! V _ ˝E ˝O.�1/! W ! IZ ! 0 (4.13)

which restricts to (4.10) for each point of D. Here V;W;E are pulled back to the product
from S , O.1/ is the hyperplane bundle on D, and IZ is the restriction to D � S of
the universal ideal sheaf on S Œn� � S .

The Segre integral Z
S Œn�

s2n.V
Œn�/

is calculated as an excess intersection on the degeneracy locus D as follows. Consider the
Grassmannian G.2n; 4n � 1/ of subspaces

ƒ ,! H 0.V / D C4n�1:

Write E for the tautological bundle, and let F denote the tautological quotient. The vector
bundle

E_ ˝ V Œn� ! G.2n; 4n � 1/ � S Œn�

has a natural section s obtained as the composition

ƒ! H 0.V /! H 0.V ˝OZ/:

Let
D0 � G.2n; 4n � 1/ � S

Œn�

be the zero locus of this section. It consists of those pairs .Z;ƒ/, where

ƒ � H 0.V ˝ IZ/:

In particular, h0.V ˝ IZ/ � dimƒ D 2n. Note now that

�.V ˝ IZ/ D �.V / � 2n D 2n � 1;

while H 2.V ˝ IZ/ D 0 by Serre duality and stability. For .Z;ƒ/ in the degeneracy
locus D0, we have then

h1.V ˝ IZ/ � 1:
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This shows that Z must be in the degeneracy locus D, and in this case h1.V ˝ IZ/ D 1
by (4.12). We are thus forced to have ƒ D H 0.V ˝ IZ/ so that

D0 D ¹.Z;ƒ D H
0.V ˝ IZ// W Z 2 Dº � S Œn� �G.2n; 4n � 1/:

Note that the projection onto S Œn� induces an isomorphism

D0 ' D:

By [3, Section 14.4], we haveZ
S Œn�

s2n.V
Œn�/ D

Z
D0

cd .E/;

where the excess virtual bundle E is

E D E_ ˝ V Œn� �N;

with N the normal bundle of D0 � S Œn� �G.2n; 4n � 1/. We have in K-theory,

N D E_ ˝ F C TS Œn� � TD0:

Putting all together,

E D E_ ˝ .V Œn� � F /C TD0 � TS
Œn�: (4.14)

It remains to identify E explicitly in terms of the universal sequence (4.13). For simplicity
we write identities in K-theory on fibers. To start, note that on D0 we have

EjZ D H
0.V ˝ IZ/;

F jZ D H
0.V / �H 0.V ˝ IZ/;

TS Œn�jZ D Ext1.IZ ; IZ/;

and from the Euler sequence

TD0 D H
0.V ˝W ˝E_/˝O.1/ �C: (4.15)

The evaluation sequence

0! H 0.V ˝ IZ/! H 0.V /! H 0.V ˝OZ/! H 1.V ˝ IZ/! 0

gives
V Œn� � F D R1�?.V ˝ IZ/;

a line bundle on D0. Here � W D � S ! D is the projection. From the sequence (4.13),
after tensoring with V and pushing forward to D via � we obtain

0! O.�1/! H 0.V ˝W /! R0�?.V ˝ IZ/! 0;

0! R1�?.V ˝ IZ/! O.�1/! 0:
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Therefore in K-theory

R0�?.V ˝ IZ/ D H
0.V ˝W / �O.�1/;

R1�?.V ˝ IZ/ D O.�1/:

We obtain
E_ ˝ .V Œn� � F / D H 0.V ˝W /_ ˝O.�1/ �C: (4.16)

Noting from (4.13) that

IZ D W � V
_
˝E ˝O.�1/;

it follows that

I_Z ˝ IZ D V ˝ V
_
CW ˝W _ � V ˝W ˝E_ ˝O.1/� V _ ˝W _ ˝E ˝O.�1/:

Here all tensor products are derived. We therefore finally calculate

TS Œn� D Ext1�.IZ; IZ/

D �Ext��.IZ; IZ/CC CC

D H �.V ˝W ˝E_/˝O.1/CH 0.V ˝W /_ ˝O.�1/ �C �C: (4.17)

This last equality uses the fact that V;W are stable and rigid, and that V ˝W has no
higher cohomology.

Collecting the expressions (4.15)–(4.17) in the excess bundle E given by (4.14), we
find

E D H 1.V ˝W ˝E_/˝O.1/ D Cd
˝O.1/:

We conclude Z
X Œn�

s2n.V
Œn�/ D

Z
D0

cd .E/ D

Z
D0

hd D 1:

This completes the proof.

Lemma 4.9. Let n D 3`. Assume

V D �?V0 ˝E
�3`C1; W D �?W0 ˝E

2`

where �.V / D 4n � 1 and V0; W0 are two rigid bundles satisfying conditions (4.1) and
(4.9). We have

H 1.V ˝W / D 0:

Proof. The argument is an application of Reider’s method. Assume that

H 1.V ˝W / D Ext1.W; V _ ˝E/_ ¤ 0:

We construct a nontrivial extension

0! V _ ˝E ! F ! W ! 0:

The middle sheaf F isH -stable by an argument similar to that of Proposition 2.2. Indeed,
if F is notH -stable, let G ,! F be the maximal semistable destabilizing subsheaf. Then

rkG < rkF and �H .G/ � �H .F / > �H .V
_
˝E/:
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We see that G cannot be a subsheaf of the kernel V _ ˝E since this would contradict the
H -stability of the latter. Therefore, we have a nonzero morphism

� W G ! W H) �H .G/ < �H .W /:

Writing c1.G/ D aH C bE, we see that

�H .F / � �H .G/ < �H .W / H) �
2

5
�

a

rkG
< �

1

3

which is impossible.
Finally, a direct calculation shows

�.F; F / D �.W;W /C �.V _ ˝E; V _ ˝E/C �.V _ ˝E;W /C �.W; V _ ˝E/

D 2C 2C 1C .2nC 1/ > 2

contradicting the stability of F .

4.4. Proof of Theorem 1.7

We now prove Theorem 1.7. The statement will follow combinatorially using the geomet-
ric input provided by Theorem 1.14.

Define first the following combination of the basic power series Ai :

f .z/ D A0.z/
5
� A1.z/

20
� A3.z/

2;

g.z/ D A0.z/
�4
� A1.z/

�22
� A2.z/

2
� A3.z/

�4
� A4.z/

�1;

h.z/ D A0.z/
�3
� A1.z/

�18
� A2.z/

2
� A3.z/

�2
� A4.z/

�1:

(4.18)

We will derive identities between the functions f; g; h using the two calculations provided
by Theorem 1.14.

First, over the K3 blowup, let V D V0 ˝E�.n�2/ with V0 rigid H -stable of rank 2
so that �.V / D 4n � 1.5 One checks that

c1.V /
2
D 20n � 22; c2.V / D 5n � 4; c1.V / �KS D 2.n � 2/; K2S D �1:

Using (1.1) for the vector bundle V , we obtain thatZ
S Œn�

s.V Œn�/ D Œzn�A0.z/
5n�4

� A1.z/
20n�22

� A2.z/
2
� A3.z/

2n�4
� A4.z/

�1

D f .z/n � g.z/:

With the aid of Proposition 4.5 this rewrites as

Œzn�f .z/n � g.z/ D .�1/n.2nC 1/;

where the brackets denote the suitable coefficient in the given power series. Therefore
1X
nD0

Œzn�f .z/n � g.z/ D

1X
nD0

zn.�1/n.2nC 1/ D
1 � z

.1C z/2
:

5As noted in Lemma 4.4, this numerical setup only exists overK3s of certain genus determined
by n. The argument here strongly uses the universality of the Segre series.
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Write
z D

w

f .w/
: (4.19)

The Lagrange–Bürmann inversion formula [24] is the general identity

1X
nD0

.Œzn�f .z/n � g.z// � zn D
g.w/

f .w/
�
dw

dz
:

In our situation, it gives
1 � z

.1C z/2
D
g.w/

f .w/
�
dw

dz
: (4.20)

In similar fashion, for V D V0 ˝E�.n�1/, by making use of Propositions 4.7 and 4.8,
we obtain

1

1 � z3
D
h.w/

f .w/
�
dw

dz
: (4.21)

The expression
1

1 � z3
D

1X
kD0

z3k

encodes the fact that the Segre integrals are 0 for n 6� 0 mod 3 and 1 for n � 0 mod 3.
We now explain how equations (4.20) and (4.21) give the remaining functions A3

and A4. Dividing the two equations, we obtain

h.w/

g.w/
D

.1C z/2

.1 � z/.1 � z3/
:

This gives via (4.19)
w

f .w/
�
h.w/

g.w/
D z �

.1C z/2

.1 � z/.1 � z3/
:

Let us write
w D t .1C 3t/3:

We compute
w

f .w/
�
h.w/

g.w/
D w � A0.w/

�4
� A1.w/

�16
D

t

1C 3t
;

where the first equality follows by (4.18), and the second equality uses the expressions
for A0; A1 given by Theorem 1.1. Therefore

z.1C z/2

.1 � z/.1 � z3/
D

t

1C 3t
H) z D y.t/

for the function y.t/ of the introduction. With this understood, we find via (4.19)

f .w/ D
w

z
D
t .1C 3t/3

y
:
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Using (4.18), we obtain

A3.w/ D f .w/
1
2 � A0.w/

� 5
2 � A1.w/

�10
D

1

1C 3t
�

�
t

y

� 1
2

;

where in the last equality we used the expressions for A0; A1 in Theorem 1.1.
Similarly, from equation (4.20) we compute

g.w/ D f .w/ �
1 � z

.1C z/2
�

dz
dt

dw
dt

D
t .1C 3t/3

y
�
1 � y

.1C y/2
�

y0

.1C 3t/2.1C 12t/
:

Combined with (4.18) we obtain the expression for A4 claimed in Theorem 1.7.
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