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Abstract. We prove a quantitative estimate, with a power saving error term, for the number of
simple closed geodesics of length at most L on a compact surface equipped with a Riemannian
metric of negative curvature. The proof relies on the exponential mixing rate for the Teichmüller
geodesic flow.
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1. Introduction

Let g � 2, and let S be a compact Riemann surface of genus g. Let T .S/ be the Teich-
müller space of complete hyperbolic metrics on S , and let

M.S/ D T .S/=Modg

be the corresponding moduli space, where Modg is the mapping class group of S .
Let M 2 M.S/. Problems related to the asymptotic growth rate of the number of

closed geodesics on M have been long studied. In particular, thanks to works of Delsart,
Huber, and Selberg we have the following: There exists some ı D ı.M/ > 0 such that the
number of closed geodesics of length at most L on M equals

Li.eL/COM .eL�ı/; (1)

where Li.x/ D
R x
2

dt
log t (see [10] and references there).
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More generally, the growth rate of the number of closed geodesics on a negatively
curved compact manifold was studied by Margulis [26]. His proof, which is different from
the above mentioned works, is based on the mixing property of the Margulis measure for
the geodesic flow. In the constant negative curvature case, Margulis’ method combined
with an exponential mixing rate for the geodesic flow, also provides an estimate like (1) –
albeit with a weaker power saving ı (see e.g. [27]).

1.1. Simple closed geodesics

The aforementioned fundamental results do not provide any estimates for the number of
simple closed geodesics on M . Indeed, very few closed geodesics on M are simple, [7],
and it is hard to discern them in �1.M/ [6]. More explicitly, it was shown in [38] that
the number of simple closed geodesics of length at most L on M is bounded above and
below by OM .L6g�6/.

In her PhD thesis [30] and [32], Mirzakhani proved an asymptotic growth rate for the
number of simple closed geodesics of a given topological type on a hyperbolic surfaceM
– recall that two simple closed geodesics  and  0 on M are of the same topological type
if there exists some g 2 Modg such that  0 D g .

LetX be a compact surface equipped with a Riemannian metric of negative curvature.
We emphasize that the curvature is not assumed to be constant; indeed, elements in M.S/

will be denoted by M to minimize the confusion. By a multi-geodesic  on X we mean
 D

Pd
iD1 aii where i ’s are disjoint, essential, simple closed geodesics, and ai > 0 for

all 1 � i � d . In this case, we define `X ./ WD
P
ai`X ./, where `X denotes the length

function on X . The multi-geodesic  will be called integral (resp. rational) if ai 2 Z
(resp. ai 2 Q).

Given a rational multi-geodesic 0 on X , define

sX .0; L/ WD #¹ 2 Modg :0 W `X ./ � Lº:

Mirzakhani [32, Thm. 1.1] proved the following estimate whenM is a hyperbolic surface:

sM .0; L/ � n0.M/L6g�6; (2)

where n0 W M.S/ ! RC (the Mirzakhani function) is a continuous proper function;
geometric information carried by n0 is also studied in [32].

In this paper we obtain a quatitative version of (2); moreover, our approach allows us
to prove such a result in the more general setting of variable negative curvature.

Theorem 1.1. There exists some � D �.g/ > 0 such that the following holds. Let X be
a compact surface of genus g equipped with a Riemannian metric of negative curvature.
Let 0 be a rational multi-geodesic on X . Then

sX .0; L/ D n0.X/L
6g�6

CO0;X .L
6g�6��/

where n0.X/ is a positive constant which depends on 0 and X .
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The proof of Theorem 1.1 is based on the study of a related counting problem in the
space of geodesic measured laminations on S , à la Mirzakhani. The space of measured
laminations on S , which we denote by ML.S/, is a piecewise linear integral manifold
homeomorphic to R6g�6; but it does not have a natural differentiable structure [41]. Train
tracks were introduced by Thurston as a powerful technical device for understanding
measured laminations. Roughly speaking, train tracks are induced by squeezing almost
parallel strands of a very long simple closed geodesic to simple arcs on a surface; they
provide linear charts for ML.S/.

The mapping class group Modg of S acts naturally on ML.S/. Moreover, there is
a natural Modg -invariant locally finite measure on ML.S/, the Thurston measure �Th,
given by the piecewise linear integral structure on ML.S/ [41]. For any open subset
U �ML.S/ and any t > 0, we have

�Th.tU / D t
6g�6�Th.U /:

On the other hand, any metric of negative curvature X on S induces the length function
� 7! `X .�/ on ML.S/, which satisfies `X .t�/D t`X .�/ for all t > 0. It is proved in [30,
App. A] that `M is a convex function on ML.S/ when M is a hyperbolic surface. This
fact remains valid in the more general setting of variable negative curvature (see §5.5).

The source of the polynomially effective error term in Theorem 1.1 is the exponen-
tial mixing property of the Teichmüller geodesic flow proved by Avila, Gouëzel, and
Yoccoz [3–5]. We combine this estimate with ideas developed by Margulis in his PhD
thesis [26] to prove the following theorem which is of independent interest – see Theo-
rem 7.1 for a more general statement.

Let � be a train track and let U.�/ be the corresponding train track chart. For every
� 2 U.�/ we let k�k� denote the sum of the weights of � in U.�/ (see §5).

Theorem 1.2. There exists some �1 D �1.g/ > 0 so the following holds. Let � be a max-
imal train track. Let L � 1 and let 0 be a simple closed curve on M . There exists a
constant c0 > 0 so that

#¹ 2 U.�/ \Modg :0 W kk� � Lº D c0 vol� L6g�6 CO�;0.L
6g�6��1/

where vol� D �Th¹� 2 U.�/ W k�k� � 1º.

It is worth noting that in view of Theorem 1.2, the asymptotic behavior of the number
of points in one Modg -orbit in the cone ¹� W k�k� � Lº and that of the number of integral
points in this cone agree up to multiplicative constant.

Theorem 1.2, in the more general form Theorem 7.1, plays a crucial role in our anal-
ysis. Indeed, using the aforementioned convexity of the length function, we will prove
Theorem 1.1 using Theorem 7.1 in §8.

It is an intriguing problem to investigate the asymptotic behavior of functions sim-
ilar to and different from sX .0; L/ or the complexity considered in Theorem 1.2. For
instance, for a suitable formulation of a combinatorial length – using intersection num-
bers – the count is exactly a polynomial (see [40]). We also refer the reader to [11] where
a related problem is studied for thrice punctured sphere.
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1.2. Outline of the paper

In §2 we collect some preliminary results. In §3 we prove an equidistribution result with
an error term, Proposition 3.2, which may be of independent interest (see e.g. [22, 24]).
The proof of this proposition is based on the exponential mixing rate for the Teichmüller
geodesic flow [4] and the so called thickening technique [14, 26]. In §4 we prove Propo-
sition 4.1; this proposition is one of the main ingredients in the proof, and could be
compared to arguments in [26, Chap. 6]. We will recall some basic facts about ML.S/,
and study the relation between the linear structures on ML.S/ and the space of quadratic
differentials in §5 and §6. The orbital counting in sectors of ML.S/ is studied in §7; the
main result here is Theorem 7.1. We prove Theorem 1.1 in §8.

2. Preliminaries and notation

Let Q.S/ denote the moduli space of quadratic differentials on S , and let Q1.S/ be the
moduli space of quadratic differentials with area 1 on S . For any ˛ D .˛1; : : : ; ˛k ; &/withP
˛i D 4g � 4 and & 2 ¹˙1º, define Q1.˛/ to be (a connected component) of the stratum

of quadratic differentials consisting of pairs .M; q/ whereM 2M.S/ and q is a unit area
quadratic differential on M whose zeros have multiplicities ˛1; : : : ; ˛k and & D 1 if q is
the square of an abelian differential and �1 otherwise. Then

Q1.S/ D
G
˛

Q1.˛/:

Put
Q.˛/ WD ¹tq W t 2 R; q 2 Q1.˛/º:

Let†� S be a set of k distinct marked points. Let Q1T .˛/ denote the space of quadratic
differentials .M; q/ equipped with an equivalence class of homeomorphisms f W S !M

that send the marked points to the zeros of q. The equivalence relation is isotopy rel
marked points. Let � WQ1T .˛/!Q1.˛/ be the forgetful map which forgets the marking
f ; this is an infinite degree branched covering.

Similarly, let �.S/ denote the moduli space of abelian differentials on S , and let
�1.S/ be the moduli space of area 1 abelian differentials. For any ˛ D .˛1; : : : ; ˛k/,
we let H .˛/ denote the corresponding stratum, and let H1.˛/ denote the area 1 abelian
differentials.

Note that passing to a branched double cover OM of M , we may realize Q1.˛/ as an
affine invariant submanifold in H1. Ǫ / corresponding to odd cohomology classes on OM
(see §2.1). However, even if q belongs to a compact subset of Q1.S/, the complex struc-
ture on OM may have very short closed curves in the hyperbolic metric, e.g. a short saddle
connection between two distinct zeros on .M; q/ could lift to a short loop in OM . Note
however that if . OM; !/ is the aforementioned double cover of .M; q/, then the length
of the shortest saddle connection in ! is bounded by the length of the shortest saddle
connection in q, i.e., compact subsets of Q1.˛/ lift to compact subsets of H1. Ǫ /.
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2.1. Period coordinates

Let x D .M;!/ 2H .˛/, and let†�M be the set of zeros of !. Passing to a finite cover,
which we continue to denote by H .˛/, we assume there are no orbifold points in H .˛/.
Define the period map

ˆ W H .˛/! H 1.M;†;C/:

Let us recall that ˆ can be defined as follows. Let #† D k. Fix a triangulation T of the
surface by saddle connections of x, that is, 2g C k � 1 directed edges ı1; : : : ; ı2gCk�1
which form a basis for H1.M;†;Z/. Define

ˆ.x/ D

�Z
ıi

!

�2gCk�1
iD1

:

Note that this map depends on the triangulation T . If T 0 is any other triangulation, and
ˆ0 is the corresponding period map, then ˆ0 ı ˆ�1 is linear. For any x 2 H .˛/, there
is a neighborhood B.x/ of x such that the restriction of ˆ to B.x/ is a homeomorphism
onto ˆ.B.x// (see §2.9). We always choose B.x/ small enough that, using the Gauss–
Manin connection, the triangulation at y 2 B.x/ can be identified with the triangulation
at x.

We define the period coordinates at x D .M; q/ 2 Q.˛/ as follows. If & D 1, then q
is the square of an abelian differential, and we may define period coordinates as above.
If & D �1, we use the orienting double cover H . Ǫ / to define the period coordinates: in
this case there is a canonical injection from Q.˛/ into H . Ǫ /. Any Riemann surface in
the image of this map is equipped with an involution. This way we get the period map
from Q.˛/ to H 1

odd.M; †;C/ – the anti-invariant subspace of the cohomology for the
involution.

Put h WD 2g C k � 2 if & D 1 and h WD 2g C k � 3 if & D �1; the number h is the
topological entropy of the Teichmüller geodesic flow on Q1.˛/.

2.2. SL.2;R/-action on H1.˛/

Let x 2 H1.˛/, we write ˆ.x/ as a 2 � n matrix. The action of g D . a b
c d
/ 2 SL.2;R/ in

these coordinates is linear. We choose a fundamental domain for the action of the mapping
class group and think of the dynamics on the fundamental domain. Then the SL.2;R/-
action becomes �

x1 : : : xn
y1 : : : yn

�
7!

�
a b

c d

��
x1 : : : xn
y1 : : : yn

�
A.g; x/;

where A.g; x/ 2 Sp.2g;Z/ Ë Zk�1 is the Kontsevich–Zorich cocycle. That is, A.g; x/ is
the change of basis one needs to perform to return the point gx to the fundamental domain.
It can be interpreted as the monodromy of the Gauss–Manin connection restricted to the
orbit of SL.2;R/.

In what follows, we let

at D

�
et 0

0 e�t

�
; ut D

�
1 t

0 1

�
; Nut D

�
1 0

t 1

�
:
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We have the following.

Theorem 2.1 (Veech–Masur). The space H1.˛/ carries a natural measure � in the
Lebesgue measure class such that

(1) H1.˛/ has finite measure,
(2) � is SL.2;R/-invariant and ergodic.

More generally, for any affine invariant manifold M � H1.˛/, we let � denote the
SL.2;R/-invariant affine measure on M. In particular, all the strata in Q1.S/ are equipped
with such invariant measures.

2.3. Mapping class group action

We denote elements in Modg using bold letters, e.g., g denotes an element in Modg . The
action of Modg on Q1T .˛/ commutes with the action of SL.2;R/; however, we will
denote both these actions as left action and write e.g. g � Qx or simply g Qx.

2.4. The constants

We will use �� and N�, � D 1; 2; : : : ; to denote various constants. Unless explicitly
mentioned otherwise, these constants are allowed only to depend on the genus. The con-
stants �� are meant to indicate small positive numbers while N� are used for constants
which are expected to be > 1.

We will use the notation A� B to mean that there exists a constant c > 0 such that
A� cB; the implicit constant c is permitted to depend on the genus, but (unless otherwise
noted) not on anything else. We write A � B if A� B � A. If a constant (implicit or
explicit) depends on another parameter other than the genus, we will make this clear by
writing, e.g.,�� , C.x/, etc.

We also adopt the following ?-notation. We write B D A˙? if B D A˙c where c > 0
depends only on the genus. Similarly, one defines B � A?, B � A?. Finally, we also
write A � B? if A? � B � A? (possibly with different exponents).

2.5. Modified Hodge norm

Let M be a Riemann surface. By definition, M has a complex structure. Let HM denote
the set of holomorphic 1-forms on M . One can define the Hodge inner product on HM

by

h!; �i D
i
2

Z
M

! ^ N�:

We have a natural map r W H 1.M; R/ ! HM which sends a cohomology class c 2
H 1.M;R/ to the holomorphic 1-form r.c/2HM such that the real part of r.c/ (which is a
harmonic 1-form) represents c. We can thus define the Hodge inner product onH 1.M;R/
by hc1; c2i D hr.c1/; r.c2/i. Then

hc1; c2i D

Z
M

c1 ^ �c2;
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where � denotes the Hodge star operator and we choose harmonic representatives of c1
and �c2 to evaluate the integral. We denote the associated norm by k � kM . This is the
Hodge norm (see [18]).

If x D .M;!/ 2H1.˛/, we will often write k � kH;x to denote the Hodge norm k � kM
on H 1.M;R/. Since k � kH;x depends only on M , we have kckH;kx D kckH;x for all
c 2 H 1.M;R/ and all k 2 SO.2/.

Let
E.x/ D span ¹ŒRe.!/�; ŒIm.!/�ºI

the space E.x/ is often referred to as the standard space. We let

p W H 1.M;†;R/! H 1.M;R/ (3)

denote the natural projection; p defines an isomorphism between E.x/ and p.E.x// �
H 1.M;R/.

For our applications (and in order to account for the loss of hyperbolicity in the thin
part of the moduli space) we need to consider a modification of the Hodge norm.

The classes c˛ and �c˛

Let ˛ be a homology class in H1.M;R/. We let �c˛ 2 H 1.M;R/ be the cohomology
class such that Z

˛

! D

Z
M

! ^ �c˛

for all ! 2 H 1.M;R/. Then Z
M

�c˛ ^ �cˇ D i.˛; ˇ/;

where i.�; �/ denotes the algebraic intersection number. Let � denote the Hodge star oper-
ator, and let

c˛ D �
�1.�c˛/:

Then for any ! 2 H 1.M;R/ we have

h!; c˛i D

Z
M

! ^ �c˛ D

Z
˛

!;

where h�; �i is the Hodge inner product. We note that �c˛ is a purely topological construc-
tion which depends only on ˛, but c˛ also depends on the complex structure of M .

Fix �� > 0 (the Margulis constant) so that any two geodesics of hyperbolic length less
than �� must be disjoint.

Let � denote the hyperbolic metric in the conformal class of M . For any closed
curve ˛ on M , let `M .˛/ denote the length of the geodesic representative of ˛ in the
metric � .

We recall the following.
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Theorem 2.2 ([2, Thm. 3.1]). For any constant L > 1 there exists a constant c > 1 such
that for any simple closed curve ˛ with `M .˛/ < L, we have

1

c
`M .˛/

1=2
� kc˛kM < c`M .˛/

1=2: (4)

Furthermore, if `M .˛/ < �� and ˇ is the shortest simple closed curve crossing ˛, then

1

c
`M .˛/

�1=2
� kcˇkM < c`M .˛/

�1=2:

Short bases

Suppose .M; !/ 2 H1.˛/. Fix �1 < �� and let ˛1; : : : ; ˛k be the curves with hyperbolic
length less than �1 onM . For every 1� i � k, let ˇi be the shortest curve in the flat metric
defined by ! with i.˛i ; ˇi / D 1. We can pick simple closed curves r , 1 � r � 2g � 2k,
onM so that the hyperbolic length of each r is bounded by a constant L depending only
on the genus, and so that the j̨ , ǰ and j form a symplectic basis � for H1.M;R/. We
will call such a basis short. A short basis is not unique, and in the following we fix some
measurable choice of a short basis at each point of H1.˛/.

We recall the definition of a modified Hodge norm from [16]; it is similar to (but not
the same as) the one defined in [2]. The modified norm is defined on the tangent space to
the space of pairs .M; !/ where M is a Riemann surface and ! is a holomorphic 1-form
on M . Unlike the Hodge norm, the modified Hodge norm will depend not only on the
complex structure on M but also on the choice of a holomorphic 1-form ! on M . Let
¹˛i ; ˇi ; rº1�i�k;1�r�2g�2k be a short basis for x D .M;!/.

We can write any � 2 H 1.M;R/ as

� D

kX
iD1

ai .�c˛i /C

kX
iD1

bi`˛i .�/
1=2.�cˇi /C

2g�2kX
rD1

ui .�cr /: (5)

We then define

k�k00x D k�kH;x C

� kX
iD1

jai j C

kX
iD1

jbi j C

2g�2kX
rD1

jur j
�
: (6)

Note that k � k00 depends on the choice of a short basis; however, switching to a different
short basis can change k � k00 by at most a fixed multiplicative constant depending only on
the genus.

From (6) we find that for 1 � i � k,

k�c˛i k
00
x � 1 (7)

(see §2.4 for the notation�). Similarly,

k�cˇi k
00
x � k�cˇi kH;x �

1

`M .˛i /1=2
: (8)
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In addition, in view of Theorem 2.2, if  is any other moderate length curve on M , then
k�ck

00
x � k�ckH;x D O.1/. Thus, if B is a short basis at x D .M; !/, then for any

 2 B,
Ext .x/1=2 � k�ckH;x � k�ck

00 (9)

By Ext .x/ we mean the extremal length of  in M , where x D .M;!/.

Remark. From the construction, we see that the modified Hodge norm is greater than
the Hodge norm. Also, if the flat length of the shortest curve in the flat metric defined by
! is greater than �1, then for any cohomology class c, for some N depending on �1 and
the genus,

kck00 � N kckH;x I (10)

i.e., the modified Hodge norm is within a multiplicative constant of the Hodge norm.
Note however that for a fixed absolute cohomology class c, kck00x is not a continu-

ous function of x, as x varies in a Teichmüller disk; this is due to the dependence on
the choice of a short basis. To remedy this, we pick a positive, continuous, SO.2/-bi-
invariant function � on SL.2;R/ which is supported on a neighborhood of the identity
with

R
SL.2;R/ �.g/ dg D 1, and define

kck0x D kckH;x C

Z
SL.2;R/

kck00gx �.g/ dg:

It follows from [16, Lemma 7.4] that for a fixed c, log kck0x is uniformly continuous as x
varies in a Teichmüller disk. In fact, there is a constant m0 such that for all x 2 H1.˛/,
all c 2 H 1.M;R/ and all t > 0,

e�m0tkck0x � kck
0
atx
� em0tkck0x : (11)

Remark 2.3. Even though k � k0x is uniformly continuous as long as x varies in a Teich-
müller disk, it may be only measurable in general (because of the choice of short basis).

2.6. Relative cohomology

For c 2 H 1.M; †;R/ and x D .M; !/ 2 H1.˛/, let px.c/ denote the harmonic repre-
sentative of p.c/, where p W H 1.M; †;R/! H 1.M;R/ is the natural map. We view
px.c/ as an element of H 1.M;†;R/. Then (similarly to [16, §7], see also [2] and [17])
we define the modified Hodge norm k k0 on H 1.M;†;R/ as follows:

kck0x D kp.c/k
0
x C

X
.z;z0/2†�†

ˇ̌̌̌Z
z;z0

.c � px.c//

ˇ̌̌̌
;

where z;z0 is any path connecting the zeroes z and z0 of !. Since c � px.c/ represents
the zero class in absolute cohomology, the integral does not depend on the choice of z;z0 .
Note that the k � k0 norm on H 1.M;†;R/ is invariant under the action of SO.2/.
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As above, we pick a positive continuous SO.2/-bi-invariant function � on SL.2;R/
supported on a neighborhood of the identity such that

R
SL.2;R/ �.g/ dg D 1, and define

kckx D

Z
SL.2;R/

kck0gx �.g/ dg: (12)

Then, the k � kx norm on H 1.M;†;R/ is also invariant under the action of SO.2/.
By [16, Lemma 7.5] there exists some N1 such that

e�N1tkckx � k.at /�ckatx � e
N1tkckx : (13)

2.7. The AGY-norm

Let k � kAGY;x denote the norm defined in [4, §2.2.2]. We recall the definition: Let x D
.M;!/ 2 H1.˛/. For any c 2 H 1.M;†;C/, define

kckAGY;x D sup


jc./j

jˆ.x/./j
(14)

where the supremum is taken over all saddle connections of !. This defines a norm and
the corresponding Finsler metric is complete [4].

We note that k kx and k kAGY;x are commensurable to each other on compact subsets
of H1.˛/.

For every x D .M; q/ 2 Q1.˛/, we define the norms k kx and k kAGY;x using the
branched double cover OM .

Lemma 2.4. Let c 2 H 1.M;†;C/, t � 0 and s 2 Œ0; 1�. Then

e�2�2tkckAGY;x � k.atus/�ckAGY;atusx � e
2C2t
kckAGY;x : (15)

Proof. This is proved in [3, Lemma 5.2] (see also [4, (2.13)]); we recall the argument.
Write c D a0 C ib0 and ˆ.x/ D aC ib. Then the definition (14) implies that for all t � 0
and jsj � 1 we have

k.atus/�ckAGY;atusx D sup


jet .a0./C sb0.//C ie�tb0./j
jet .a./C sb.//C ie�tb./j

� e2t sup


ja0./C sb0./C ib0./j
ja./C sb./C ib./j

: (16)

By the triangle inequality, for every jsj � 1 and every z D z1 C iz2 2 C we have

juszj D jz1 C sz2 C iz2j � jz1 C iz2j C jz2j � 2jzjI

since z D u�susz, we also get juszj � jzj=2.
This observation and (16) imply that

k.atus/�ckAGY;atusx � 4e
2t sup



ja0./C ib0./j
ja./C ib./j

:

The lower bound follows similarly.
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2.8. Nondivergence results

Recall that Q1.˛/ is realized as an affine invariant submanifold in H1. Ǫ /, moreover, com-
pact subsets of Q1.˛/ lift to compact subsets of H1. Ǫ /. Let u W H1. Ǫ /! Œ2;1� be the
function constructed in [13] and [1].

Theorem 2.5. There exists a compact subset K 0˛ � Q1.˛/ and some N2 > 0 with the
following property. For every t0 and every x 2 Q1.˛/, there exist

s 2 Œ0; 1=2� and t0 � t � max ¹2t0; N2 logu.x/º

such that x0 D atusx 2 K 0˛ .

Proof. The stratum Q1.˛/ is an affine invariant submanifold in H1. Ǫ /. The claim thus
follows from [1, Thm. 2.2] and [3, Lemma 6.3] applied with ı D 1=2.

2.9. Period box

Let Qx D .M; q/ 2 Q1T .˛/. For every r > 0 define

Rr . Qx/ WD ¹ˆ. Qx/C a
0
C ib0 W a0; b0 2 H 1.M;†;R/; ka0 C ib0kAGY; Qx � rº:

Let now r > 0 be such that ˆ�1 is a homeomorphism on Rr . Qx/ \ˆ.Q1T .˛//. Put

Br . Qx/ D ˆ
�1.Rr . Qx//:

The open subset Br . Qx/ will be called a period box of radius r centered at Qx. Thanks
to [3, Prop. 5.3], Br . Qx/ is well defined for all 0 < r � 1=2 and all Qx 2 Q1T .˛/. We also
have the following.

Lemma 2.6. There exists someN3 such that for all x 2Q1.˛/ and every 0< r �u.x/�N3
the following hold. Let Qx 2 Q1T .˛/ be a lift of x.

(1) The restriction of the covering map � to Br . Qx/ is injective.
(2) For all Qx1; Qx2 2 Br . Qx/, the Teichmüller distance between Qx1 and Qx2 is at most 1.

Proof. The argument is similar to the one used in [16, proof of Lemma 8.2].
For part (2) we will need the following two facts: dT ..atus/

˙1z; .atus/
˙1z0/� 16e2t

for all t � 0 and s 2 Œ�1; 1� where dT denotes the Teichmüller distance. Moreover, there
exists a constant C � 1 such that

C�1dAGY.z; z
0/ � dT .z; z

0/ � CdAGY.z; z
0/ for all z; z0 2 K 0˛ ,

where K 0˛ � Q1.˛/ is the compact set introduced in Theorem 2.5.
We now turn to the proof of the lemma. For every x 2K 0˛ , there exists 0 < r.x/� 1=2

such that Br.x/.x/ is embedded in the sense that the projection from the Teichmüller
space Q1T .˛/ to the moduli space Q1.˛/ restricted to Br.x/. Qx/ is injective. Let r0 D
infx2K0˛ r.x/. By compactness ofK 0˛ , r0 > 0. Decreasing r0 if necessary, we assume that
for all x 2 K 0˛ and all Qx1; Qx2 2 Br0. Qx/, the Teichmüller distance between Qx1 and Qx2 is at
most 1.
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Let N � 1 be such that

C24N2�NC16 < r0 � 1=2: (17)

where N2 is as in Theorem 2.5.
We will show that N3 D N satisfies the claims in the lemma. First note that in view

of [3, Prop. 5.3], B. Qx/ WD Bu.x/�N . Qx/ is well defined for all x 2 Q1.˛/ and all the
lifts Qx 2 Q1T .˛/. Suppose now that there exist x 2 Q1.˛/ and Qx1; Qx2 2 B. Qx/ such that
Qx2 D g Qx1 for some g in the mapping class group. Write

Qxi D Qx C vi ; where kvikAGY;x � u.x/
�N .

By Theorem 2.5, there exist s 2 Œ0; 1=2� and � � N2 logu.x/ such that x0 � a�usx 2K 0˛ .
Let x0i D a�usxi , Qx

0
i D a�us Qxi and Qx0 D a�us Qx. Then, in view of (15),

kvikAGY;x0
i
� e2C2�u.x/�N � 8u.x/2N2�NC2 � 22N2�NC5 � r0 (18)

where for the last estimate we have used (17) and the fact that u.x/ � 2. However,
Qx02 D g Qx01, so both x01 and x02 belong to the projection of Br0. Qx

0/; this contradicts the
fact that Br0.x

0/ is embedded.
This contradiction shows that Bu.x/�N .x/ is embedded, establishing part (1).
We now turn to part (2). We use the above notation. Let Qx1; Qx2 2 Bu.x/�N .x/, and

define x0i D a�usxi 2 K
0
˛ and Qx0i D a�us Qxi as above. Then (18) implies that

dAGY. Qx
0
1; Qx
0
2/ � 16u.x/

2N2�NC2:

Hence, dT . Qx
0
1; Qx
0
2/ � 16Cu.x/

2N2�NC2. Since Qxi D .a�us/�1 Qx0i , we conclude that

dT . Qx1; Qx2/ � Cu.x/
4N2�NC16 < 1

where we have used (17) and u.x/ � 2 in the last inequality. The proof is complete.

For every x 2 Q1.˛/ we put

r.x/ D u.x/�N3 I (19)

for every compact subset K � Q1.˛/, let r.K/ D inf ¹r.x/ W x 2 Kº.
For every 0 < r � r.x/, we let Br .x/ denote �.Br . Qx// where Qx 2 Q1T .˛/ is an

arbitrary lift of x. We refer to Br .x/ as the ball of radius r centered at x.

2.10. Horospherical foliation

Given a point x D .M; q/ 2 Q1.˛/, the tangent space TxQ1.˛/ decomposes as

TxQ1.˛/ D Rv.x/˚Eu.x/˚Es.x/

where v.x/ with kv.x/kAGY;x D 1 determines the direction of the Teichmüller geodesic
flow, and

Eu.x/ D TxQ1.˛/ \ Dˆ�1x .H
1.�; �;R//;

Es.x/ D TxQ1.˛/ \ Dˆ�1x .iH
1.�; �;R//;
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where .�; �/ D .M; †/ if & D 1 and .�; �/ D . OM; O†/ if & D �1 – recall that OM is the
orienting double cover ofM and we useˆ to locally identify RQ1.˛/withH 1.M;†;C/
if & D 1 and with the H 1

odd.
OM; O†;C/ if & D �1.

If ˆ.x/ D aC ib for some x 2 Q1.˛/, then

Eu.x/ D ¹a0 2 H 1.M;†;R/ W i.a0; b/ D 0º; (20)

and Es.x/ D ¹ib0 2 iH 1.M;†;R/ W i.a; b0/ D 0º when & D 1. Similarly, one can define
Eu;s in the case & D �1.

The subspaces Eu;s.x/ depend smoothly on x, and are integrable. We denote the cor-
responding leaves by W u.x/ and W s.x/, respectively. Also put

W cu.x/ WD ¹atW
u.x/ W t 2 Rº and W cs.x/ WD ¹atW

s.x/ W t 2 Rº:

Let �u
x and �s

x denote the leafwise measures of the natural measure � along W u.x/

and W s.x/, respectively. Then y 7! �
u;s
y is constant along W u;s.x/, respectively, and we

have
.at /��

u
x D e

�ht�u
atx

and .at /��
s
x D e

ht�s
atx
I (21)

see also [3, §4] where these measures are defined using volume forms.
If Br .x/ is a period box centered at x, then �jBr .x/ has a product structure as

dLeb� d�s � d�u (see e.g. [3, Prop. 4.1]).
Given x 2 Q1.˛/ and a period box Br .x/ with 0 � r � r.x/, we let

Bu;s
r .x/ D the connected component of x in Br .x/ \W

u;s.x/:

Define B�r .x/ for � D cu; cs similarly.
We also denote functions which are supported on the leaves W u, W cu, etc. using the

same superscript, e.g., �u denotes a function which is supported on a leaf W u.x/.
We use the norm k � kAGY;x to induce a metric dW u;s.x/ on Bu;s

r .x/ for 0 < r < r.x/.
Hence notions such as diam etc. refer to this metric.

Let QW �. Qx/ denote the foliation � in Q1T .˛/, and define B�. Qx/ accordingly.
Let wu;s 2 Eu;s.x/. Then

k.at /�w
u
kAGY;atx � kw

u
kAGY;x and k.at /�w

s
kAGY;atx � kw

s
kAGY;x (22)

(see [3, Lemma 5.2]). Moreover, we have the following uniform hyperbolicity estimate.

Proposition 2.7. LetK �Q1.˛/ be a compact subset. There exist �2.K/ and t0 D t0.K/
with the following property. Let t � t0; suppose that x; atx 2 K, and

j¹� 2 Œ0; t � W a�x 2 Kºj � t=3:

Then

k.at /�wkAGY;atx � e
��2.K/tkwkAGY;x and k.at /�wkatx � e

��2.K/tkwkx

for all w 2 Es.x/ and all t � t0.
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Proof. Let k kABEM;x denote the modified Hodge norm defined in [2, §3]. Let C be a
constant such that

C�1kvkABEM;y � kvkAGY;y � CkvkABEM;y (23)

for all y 2 K.
In view of [2, Thm. 3.15], there exists �3.K/ such that under our assumptions in this

proposition we have

k.at /�wkABEM;atx � e
��3tkwkABEM;x : (24)

We now compute

k.at /�wkAGY;atx � Ck.at /�wkABEM;atx since atx 2 K
� Ce��3tkwkABEM;x by (24)

� C 2e��3tkwkAGY;x since x 2 K:

The claim thus holds with �2 D �3=2 and t0 D
4 logC
�3

.

Lemma 2.8. Let K 0˛ be as in Theorem 2:5. There is a positive constant N4 and for every
0 < � < 1 there exists �4.�/, and a compact subset K˛.�/ � K 0˛ with the following
properties. Let x 2 Q1.˛/, 0 < r � r.x/ and let Br .x/ be a period box centered at x. Put

Hu
t .x; �/ WD

®
y 2 Bu

r .x/ W j¹� 2 Œ0; t � W a�y 2 K˛.�/ºj � � t
¯
:

Then for every t � N4 logu.x/, we have

�u
x.B

u
r .x/ � Hu

t .x; �// � e
��4.�/t�u

x.B
u
r .x//:

Proof. See [3, Prop. 6.1].

We apply the above with � D 0:5, and put

K˛ D K˛.0:5/, �4 WD �4.0:5/; Hu
t .x/ WD Hu

t .x; 0:5/ (25)

for the rest of the paper.
We have the following corollary:

Corollary 2.9. Let x 2Q1.˛/ and t � N4 logu.x/. For all y 2 Hu
t .x/ and all w 2 Eu.x/

we have
k.a�t /�wkAGY;a�ty � e

�0:5�2.K˛/tkwkAGY;y :

Proof. Let �0<�1 be the first and the last time that a�y 2K˛ . Then in view of Lemma 2.8,
�1 � �0 � 0:5t � .�1 � �0/=3. Therefore, by (22) and Proposition 2.7,

k.a�t /�wkAGY;a�ty � k.a��1/�wkAGY;a��1y
� e�0:5�2.K˛/tk.a��0/�wkAGY;a��0y

� e�0:5�2.K˛/tkwkAGY;y

as claimed.
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2.11. Smooth structure on affine manifolds

As in [3, §5.2], we use the affine structure to define a smooth structure on Q1T .˛/ and
Q1.˛/. Let us recall the definition of a C k-norm from [3] (see also [4]).

Let W � Q1.˛/ be an affine submanifold. For a function ' on W define

ck.'/ D sup jDk '.x; v1; : : : ; vk/j;

where the supremum is taken over x in the domain of ' and v1; : : : ; vk 2 TxW with
AGY-norm at most 1. Define the C k-norm of ' as k'kCk D

Pk
jD0 cj .'/:

By a C k function we mean a function whose C k-norm is finite. The space of com-
pactly supported C k functions on W will be denoted by C kc .W /; and C1c .W / is defined
similarly.

In the following we will only need the C 1-norm of functions. To avoid confusion
between this norm and other relevant norms which will be used, and also since we often
use the letter C to denote various constants, define

C1.'/ WD k'kC1

for any C 1 function '.
We will need to replace the characteristic functions of certain sets with their smooth

approximations. The following lemmas provide such approximations.

Lemma 2.10 (cf. [3, Prop. 5.8]). There exists N5 such that the following holds. Let
x 2 Q1.˛/. Let D � W u.x/ be a compact set, and let � � 0:1r.D/ .see (19)/. There
exists a finite collection ¹'iº of C1 functions on W u.x/ with the following properties:

(1) 0 � 'i � 1 for all i .

(2) C1.'i / � N5�
�N5 .

(3) For every i , 'i is supported on Bu
�.yi / for some yi 2 D.

(4) The covering ¹Bu
�.yi /º of D has multiplicity at most N5.

(5)
P
'i � 1, and equality holds on a neighborhood of D.

Proof. This is proved in [3, Prop. 5.8]. It is worth mentioning that [3, Prop. 5.8] is stated
for balls of size � 1; to get our claim here, one needs to apply the argument there not to
the AGY norm, but to the AGY norm scaled by 1=�.

Let W be one of the following: Q1.˛/, W u;s.x/, or W cu;cs.x/, for some x 2 Q1.˛/.
Let E � W be a compact subset. For any 0 < � < 0:1r.E/ define

EWC;� D ¹y 2 W W r.y/ � � and B�.y/ \E ¤ ;ºI

note that EWC;� is an open subset of W which contains E.
Let r > 0 and L > 1. Let �W .E; r; L/ denote the class of Borel functions 0 � f � 1

supported and defined everywhere inE with the following properties: for all � � r=.10L/
there exist 'C;�; '�;� 2 C1c .E

W
C;�/ such that
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(�-1) '�;� � f � 'C;� ,
(�-2) C1.'˙;�/ � �

�L, and
(�-3) k'C;� � '�;�k2 � �1=2kf k2.

If W is clear from the context, we denote �W .E; r; L/ and EWC;� simply by �.E; r; L/

and EC;� .

Lemma 2.11. There exists some L depending only on ˛ such that for all 0 < r � r.x/,

1Bu;s
r .x/

2 �W u;s.x/.B
u;s
r .x/; r; L/:

Similarly, 1Br .x/ 2 �.Br .x/; r; L/ for all 0 < r � r.x/.

Proof. We will show the claims hold if we choose L > 2N5 (see Lemma 2.10) large
enough. Apply Lemma 2.10 with � and D D Bu

r�2� , and denote by ¹'i;�º the functions
obtained from that lemma. For a second time, apply Lemma 2.10 with � and D D Bu

r .x/,
and denote by ¹'i;Cº the functions thus obtained. Put

'�;� D
X

'i;� and '�;C D
X

'i;C:

These functions satisfy (�-1) thanks to Lemma 2.10(1, 5). Moreover, they satisfy (�-2)
thanks to Lemma 2.10(1–4) and the fact that L > 2N5.

To see (�-3), first note that �u
x

�
Bu
r .x/ � Bu

r�2�

�
� � where the implied constant

depends only on ˛. The claim in (�-3) thus holds true in view of Lemma 2.10(5) if we
choose L large enough, depending on ˛.

The second claim follows from the first, using the product structure of Br .x/ and of
the measure �.

We fix once and for all some L such that Lemma 2.11 holds true and drop L from the
notation. In particular, �.E; r; L/ will be denoted by �.E; r/.

Abusing notation we will write �.x; r/ for �.E; r/ if the compact subset E is not
relevant except that it is a compact subset containing x.

3. Translates of horospheres

In this section we will use a fundamental result of Avila, Gouëzel, and Yoccoz [3, 4]
together with Margulis’ thickening technique [14, 22, 26] to study translations of pieces
of the horospherical foliations along the geodesic flow.

Theorem 3.1 (Exponential mixing, [3–5]). Let .M; �/ be an affine invariant manifold.
There exists a positive constant � D �.M; �/ such that if ‰1; ‰2 2 C1c .M/, thenˇ̌̌̌Z

‰1.atx/‰2.x/ d�.x/ � �.‰1/�.‰2/
ˇ̌̌̌
� C1.‰1/C

1.‰2/e
��t

where the implied constant depends on .M; �/.
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We remark that combining [3–5] and [36], the C1 norm in Theorem 3.1 may be
replaced by the p-Hölder norm for any p > 0. However, if we use the p-Hölder norm,
the constant � will, in general, depend on p; in particular, � tends to 0 as p tends to 0
(see [36, Thm. 1] and [4, Thm. 2.14]).

It is also worth mentioning that the C1 norm in Theorem 3.1 may be taken to include
derivatives only in the direction of SO.2/ � SL.2;R/ (see [12] and [36, Thm. 1] and
references there). Our choice, C1, is more restrictive; this is tailored to our applications
later, e.g., we will use the estimate k�k1 � C1.�/ for any � 2 C1c .M/.

Proposition 3.2. There exists some �5, depending on ˛, with the following property.
Let x 2 Q1.˛/, 0 < r � r.x/, and let Br .x/ be a period box centered at x. Let  u 2

C1c .B
u
r .x//. Then for any � 2 C1c .Q1.˛// we haveˇ̌̌̌Z

W u.x/

�.aty/ 
u.y/ d�u

x.y/ �

Z
Q1.˛/

� d�
Z
W u.x/

 u d�u
x

ˇ̌̌̌
� C1.�/C1. u/e��5t :

We need some notation; we discuss the case & D 1, the case & D �1 being similar.
Let ˆ.x/ D aC ib; recall from (20) that

Eu.x/ D ¹a0 2 H 1.M;†;R/ W i.a0; b/ D 0º:

Similarly Es.x/ D ¹ib0 2 iH 1.M;†;R/ W i.a; b0/ D 0º.
These spaces can alternatively be described as follows. Recall thatE.x/D span¹a;bº,

so E.x/C is SL.2;R/-equivariant. Let

H 1
C.x/

?
WD ¹c 2 H 1.M;†;C/ W p.c/ ^ p.E.x/C/ D 0º;

and define H 1
R.x/

? similarly.
The unstable leaf W u.x/ is locally identified with ˆ.x/ C sb C w for s 2 R and

w 2 H 1
R.x/

?. Similarly the center stable leaf W cs.x/ is locally identified with ˆ.x/C
�v.x/C s0iaC iw0 where �; s0 2 R and w0 2 H 1

R.x/
?.

Let 0 < r � 0:1r.x/ and let y 2 Br .x/. Write ˆ.y/ D ay C iby . We define the stable
projection yu 2 Bu

2r .x/ as the unique point such that ˆ.y/D ˆ.yu/C �v.y/C say Cw
where �; s 2 R with j� j; jsj � 2r and w 2 H 1

R.y/
? with kwkAGY;x � 2r . Put

FBr .x/ D ¹y 2 Br .x/ W y
u
2 Bu

r .x/º:

Then Bu
r .x/ � FBr .x/.

For every 0 < ı < 0:1r and every y 2 Br .x/, let

Dcs
ı .y/ D ¹a�z W j� j � ı; z 2 W

s.y/; ˆ.z/ D ˆ.y/C w; kwkAGY;x � ıº:

For every y 2 Bu
r .x/, let pcs

y WW
cs.y/\ Br .x/!W cs.x/ be the projection along unstable

leaves. Then 0:5 � Jac.pcs
y / � 2, and moreover

W cs.x/ \ B0:1ı.x/ � p
cs
y .D

cs
ı .y// � W

cs.x/ \ B10ı.x/:
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Proof of Proposition 3.2. The idea is to relate the integral
R
W u.x/

�.aty/ 
u.y/ d�u

x.y/

to correlations of the function a�t� with a thickening of  u in the direction of W cs.x/.
Then we may use Theorem 3.1 to conclude the proof.

To that end, let 0 < � < 0:01r.x/ be a parameter which will be fixed later. In particular,
it will be taken to be of the form e��t . Let  cs be a smooth function supported in Dcs

� .x/

such that
R
W sc.x/

 cs D 1. We can choose such a function so that it moreover satisfies
C1. s/� ��N6 where N6 and the implied constant depend on ˛.

Define ‰ on FBr .x/ by

‰.y/ D �yu cs.pcs
yu.y// �  

u.yu/ (26)

where ��1yu D
R
W cs.yu/

 cs.pcs
yu.w// d�cs

yu.w/. Extend ‰ to a smooth function on Q1.˛/

by defining‰.y/D 0 for all y 62 FBr .x/; note that �.‰/D �u
x. 

u/ (see the computation
in (30)).

We need the following lemma.

Lemma. There exists �6 depending only on ˛ such thatˇ̌̌̌Z
W u.x/

�.aty/ 
u.y/ d�u

x.y/ �

Z
Q1.˛/

�.atz/‰.z/ d�.z/
ˇ̌̌̌
� C1.�/C1.‰/��6 (27)

where the implied constant depends only on ˛.

Let us assume the lemma and finish the proof of the proposition. Optimizing the
choice of � to be of size e��t for some small 0 < � < 1, the proposition follows from (27)
and Theorem 3.1 applied with ‰1 D � and ‰2 D ‰ – recall again that �.‰/ D �u

x. 
u/.

Proof of the Lemma. Since ‰ is supported in FBr .x/, we need to estimateZ
Bu
r .x/

�.aty/ 
u.y/ d�u

x.y/ �

Z
FBr .x/

�.atz/‰.z/ d�.z/: (28)

Let z 2 FBr .x/. Recall that ˆ.z/ D ˆ.zu/Cw where w 2 Rv.zu/CEs.zu/, indeed
z 2 W cs.zu/. In view of (22) we have

k.at /�wkAGY;atx � kwkAGY;x :

Thus using the definition of C1.�/, we have

j�.atz/ � �.atz
u/j � ��6C1.�/

where �6 and the implied constant depend only on ˛.
In consequence, we may replace �.atz/ by �.atz

u/ in (28), and use the bound
k � k1 � C1.�/, to conclude thatˇ̌̌̌Z

Bu
r .x/

�.aty/ 
u.y/ d�u

x.y/ �

Z
FBr .x/

�.atz/‰.z/ d�.z/
ˇ̌̌̌
� C1.�/C1.‰/��6

C

ˇ̌̌̌Z
Bu
r .x/

�.aty/ 
u.y/ d�u

x.y/ �

Z
z2FBr .x/

�.atz
u/‰.z/ d�.z/

ˇ̌̌̌
(29)

where the implied constant depends on ˛.
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Recall the definition of ‰ from (26), in particular recall the normalizing factor �yu .
This and the product structure of � yieldZ
z2FBr .x/

�.atz
u/‰.z/ d�.z/ D

Z
z2FBr .x/

�zu�.atz
u/ cs.pcs

zu.z// 
u.zu/ d�.z/

D

Z
Bu
r .x/

�.atz
u/ u.zu/

Z
W cs.zu/

�zu cs.pcs
zu.w// d�cs

zu.w/ d�u
x.z

u/

D

Z
Bu
r .x/

�.aty/ 
u.y/ d�u

x.y/:

(30)

We now combine the estimates in (29) and (30) to getˇ̌̌̌Z
W u.x/

�.aty/ 
u.y/ d�u

x.y/ �

Z
Q1.˛/

�.atz/‰.z/ d�.z/
ˇ̌̌̌
� C1.�/C1.‰/��6

where the implied constant is absolute.

Remark 3.3. It is worth mentioning that Proposition 3.2 and its proof hold for any
affine invariant manifold .M; �/. In what follows, however, we will only need this result
for Q1.˛/; and even more specifically, in our application to counting problems, we will
need this result for the principal stratum Q1.1; : : : ; 1/. The main result in [4] was gener-
alized to Q1.˛/ in [5].

Corollary 3.4. There exist �7, �8, andN7 such that the following holds. Let x; z 2Q1.˛/

and suppose 0 < r; r 0 � 0:01min ¹r.x/; r.z/º. Let B � Br 0.z/ be such that 1B 2 �.z; r 0/

and let  u 2 C1c .B
u
r .x//. Then for every � < r 0=L .see Lemma 2.11/ we haveˇ̌̌̌

1

�.B/

Z
W u.x/

1B.aty/ 
u.y/ d�u

x.y/ �

Z
 u d�u

x

ˇ̌̌̌
� ��N7C1. u/e��7t C C1. u/��8 :

Proof. This follows from Proposition 3.2 by approximating 1B with '˙;� and using prop-
erties (�-1)–(�-3).

4. A counting function

Let x; z 2 Q1.˛/. Let  u be a function which is supported and defined everywhere in
Bu
0:1r.x/

.x/ D B0:1r.x/.x/ \ W u.x/, and let �cs be a function which is supported and
defined everywhere in Bcs

0:1r.z/
.z/ D B0:1r.z/.z/ \W cs.z/. For all t > 0, define

Nnc.t;  
u; �cs/ WD

X
 u.y/�cs.aty/ (31)

where the sum is taken over all y 2 Bu
0:1r.x/

.x/ such that aty 2 Bcs
0:1r.z/

.z/ – note that the
sum is indeed over all y 2 supp. u/ such that aty 2 supp.�cs/.

Alternatively, the sum is taken over connected components of at supp. u/\ supp.�cs/

(indeed the subscript nc stands for the number of connected components); this point will
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be made more explicit later in this section (see e.g. Lemma 4.2 below), and recall thatW u

and W cs are complementary foliations.
The function Nnc may be thought of as a bisector counting function where one studies

the asymptotic behavior of the number of translates of a piece of W u by Modg which
intersect a cone in the Teichmüller space.

The following proposition is the main result of this section and provides an asymptotic
behavior for Nnc. This proposition plays a prime role in the proof of Theorem 1.2 in §7.

Proposition 4.1. There exist �9 and N8 with the following property. Let x; z 2 Q1.˛/,
and let t � N8max ¹logu.x/; logu.z/º. Let  u 2 C1c .B

u
0:1r.x/

.x// with 0 �  u � 1, and
let �cs 2 C1c .B

cs
0:1r.z/

.z//. Then

jNnc.t;  
u; �cs/ � eht�u

x. 
u/�cs

z .�
cs/j � C1. u/C1.�cs/e.h��9/t

where h D 1
2
.dimR Q.˛/ � 2/.

The proof of this proposition is based on Lemma 4.5, which in turn relies on Propo-
sition 3.2. In particular, the main term is given by Proposition 3.2. However, we need to
control the contribution of two types of exceptional points as we now describe.

Similar to Lemma 2.8, given a compact subset K � K˛ , define

Hu
t .x;K/ WD

®
y 2 Bu

r .x/ W j¹� 2 Œ0; t � W a�y 2 Kºj � t=2
¯
: (32)

The first (and more difficult to control) type of exceptional points are y 2 Bu
r .x/ such that

aty 2 Br 0.z/ but y 62 Hu
t .x;K/. The contribution coming from those points is controlled

using [17, Thm. 1.7] (see Theorem 4.4 below).
We also need to control the contribution of points y 2 Bu

r .x/ which are exponentially
close to the boundary of Bu

r .x/. This set has a controlled geometry, and we use a covering
argument and Proposition 3.2 to control this contribution. The argument here is standard
and will be presented after we establish an essential estimate in (42).

Let us begin with some preliminary statements which are essentially consequences of
the fact that QW u and QW cs are complementary foliations in the spaces of marked surfaces
Q1T .˛/.

Recall that for any Qx 2 Q1T .˛/, B�r . Qx/ denotes a ball in QW �. Qx/ for � D u; s; cs; cu.

Lemma 4.2. Let Qx; Qx0 2 Q1T .˛/ and let 0 < r � 1=2. Assume there are Qy1; Qy2 2 QW u. Qx/

and t 2 R such that at Qy1 and at Qy2 belong to Bcs
r . Qx
0/. Then Qy1 D Qy2.

Proof. We present the argument when & D �1; the other case is similar. By assumption,
we have at Qyi 2 QW cs. Qx0/, which implies that

Qyi 2 QW
cs. Qx0/ for i D 1; 2.

Recall now that Qy1; Qy2 2 QW u. Qx/, and hence by (20) the corresponding abelian differentials
at Qy1 and Qy2 differ by some c 2 H 1

odd.
OM; O†;R/. However, since Qy1; Qy2 2 QW cs. Qx0/, they

differ by some c 2 H 1
odd.
OM; O†; iR/˚Rv. Qx0/. Therefore, Qy1 D Qy2.
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Corollary 4.3. Let g1; g2 2 Modg be such that g1 � QW u. Qy/ D QW u. Qx/ D g2 � QW u. Qy/. Let
Qx1; Qx2 2 QW

u. Qx/. Assume that for some r; b > 0,

Bcs
r . Qx
0/ \ gi � atBu

b. Qxi / ¤ ; for i D 1; 2 and some t 2 R.

Then Bcs
r . Qx
0/ \ g1 � atBu

b
. Qx1/ D Bcs

r . Qx
0/ \ g2 � atBu

b
. Qx2/. In particular,

g1 � Bu
b. Qx1/ \ g2 � Bu

b. Qx2/ ¤ ;:

Proof. Let Qyi 2 Bcs
r . Qx
0/ \ gi � atBb. Qxi / for i D 1; 2. Then Qy1; Qy2 2 Bcs

r . Qx
0/ \ at QW

u. Qx/.
Hence, by Lemma 4.2 we have Qy1 D Qy2, which implies the claim.

As discussed above, there are two types of exceptional points. The first type will be
controlled using the following theorem.

Theorem 4.4 (cf. [17, Thm. 1.7]). There exist N9 and a compact subset NK˛ � K˛ such
that

#¹y 2 Bu
0:1r.x/.x/ � Hu

t .x;
NK˛/ W aty 2 Bcs

0:1r.z/.z/º � u.x/N9u.z/N9e.h�0:5/t

where the implied constant is absolute.

Proof. Let r D 0:1r.x/ and r 0 D 0:1r.z/. For a compact subset K � K˛ , put

Et .x;K/ WD ¹y 2 Bu
2r .x/ � Hu

t .x;K/ W aty 2 Bcs
r 0.z/º:

In Q1T .˛/ fix lifts Bu
2r . Qx/ and Br 0. Qz/ of Bu

2r .x/ and Bcs
r 0.z/, respectively. For every

y 2 Bu
2r .x/ fix a lift Qy 2 Bu

2r . Qx/. Then for every y 2 Et .x; K/ there exist gy 2 Modg
and Qzy 2 Bcs

r 0. Qz/ such that at Qy D gy Qzy .
Recall from Lemma 2.6 that the diameter of Br.q/. Qq/ in the Teichmüller metric is at

most 1 for all Qq. Hence, for every y 2 Et .x;K/ we have
(1) Qy is within Teichmüller distance 1 from Qx and at Qy D gy Qzy is within Teichmüller

distance 1 of gy Qz, and
(2) j¹� 2 Œ0; t � W �.a� Qy/ 2 K/ºj < t=2.
It is shown in [17, Thm. 1.7] (see also [15]) that there existsK0 such that ifK �K0, then
the number of ¹g Qzº for which such a Qy exists is

� u.x/?u.z/?e.h�0:5/t

where the implied constant is absolute – indeed, apply [17, Thm. 1.7] with ı D 0:1 and
� D 0:9 and observe that the function G in [17, Thm. 1.7] is dominated by our function u
here.

We now claim that there exists C which depends on ˛ and K such that the map
y 7! gy Qz from Et .x;K/ to ¹g Qz W g 2 Modgº is at most C -to-one.

First note that the above discussion together with the claim implies that

#Et .x;K/�C u.x/
?u.z/?e.h�0:5/t ; (33)

as we wanted to show.
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To prove the claim, let y1; y2 2 Et .x;K/. Then there exist g1; g2 2 Modg such that

gi � at Qyi 2 Bcs
r 0. Qz/:

Therefore, by Corollary 4.3, applied with Qxi D Qx and b D 2r , we have either
� g1 �W u. Qx/ ¤ g2 �W u. Qx/, which in particular implies that g1 ¤ g2, or
� g1 � Bu

2r . Qx/ \ g2 � Bu
2r . Qx/ ¤ ;, which implies g�11 g2 belongs to a fixed finite subset of

Modg .
The claim thus follows and the proof is complete.

The following lemma will play a crucial role in the proof of Proposition 4.1.

Lemma 4.5. There exist �10 and N10 with the following property. Let x; z 2 Q1.˛/ and
t � N10 max ¹logu.x/; logu.z/º. Let

�  u 2 C1c .B
u
0:1r.x/

.x// with 0 �  u � 1, and

� �u 2 C1c .B
u
0:1r.z/

.z// and �cs 2 C1c .B
cs
0:1r.z/

.z//.

Put �.y/ WD �cs.pcs
yu.y//�u.yu/ .see §3). Define

N 0nc.t;  
u; �/ WD

X
 u.y/�u

aty
.�/ (34)

where the sum is taken over all y 2 Bu
r .x/ with aty 2 Bcs

r 0.z/. Then

jN 0nc.t;  
u; �/ � eht�u

x. 
u/�.�/j � C1. u/C1.�/e.h��10/t

where h D 1
2
.dimR Q.˛/ � 2/.

Proof. We will compute Z
W u.x/

�.aty/ 
u.y/ d�u

x.y/

in terms of N 0nc. The claim will then follow from Proposition 3.2.
Write r D 0:1r.x/ and r 0 D 0:1r.z/. First note that

r 0 � diam.W u.z0/ \ Br 0.z//� r 0 (35)

where the diameter is measured with respect to k kz0;AGY for all z0 2 Br 0.z/ (see [3,
Prop. 5.3]).

Let NK˛ be given by Theorem 4.4 and put Hu
t .x/ WD Hu

t .x;
NK˛/ (see (32) for the nota-

tion). Since K˛ � NK˛ , it follows from Lemma 2.8 that

�u
x.B

u
r .x/ � Hu

t .x// � e
��4t�u

x.B
u
r .x// (36)

for every t � t0 where t0 depends only on K˛ .
It is more convenient for the proof to treat points in Hu

t .x/ which are too close to the
boundary of Bu

r .x/ separately. Define

Hu
t;int WD ¹y 2 Hu

t .x/ W B
u
10e��11t

.y/ � Bu
r .x/º
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where �11 WD �2. NK˛/=2 (see Proposition 2.7 for the definition of �2). The precise radius
which is used in the definition of Hu

t;int is motivated by estimates for uniform hyperbolicity
of the Teichmüller geodesic flow in Claim 4.6 below.

Using (36) and the definition of Hu
t;int we have

�u
x.B

u
r .x/ � Hu

t;int/ � e
��12t�u

x.B
u
r .x// (37)

for some �12 depending on NK˛ . The estimate in (37) implies thatZ
W u.x/

�.aty/ 
u.y/ d�u

x.y/ D O.e
��12t /�u

x.B
u
r .x//C

1. u/C1.�/

C

Z
Hu
t;int

�.aty/ 
u.y/ d�u

x.y/: (38)

We now compute the term
R

Hu
t;int
�.aty/ 

u.y/ d�u
x.y/ appearing in (38).

For every y 2 Hu
t;int with aty 2 Br .z/, there is an open neighborhood Cy of y such

that atCy is a connected component of atBu
r .x/ \ Br 0.z/ containing aty. We note that

C D ¹Cyº is a disjoint collection of open subsets in Bu
r .x/. Further, in view of (21) we

have
�u
aty
.�/ D eht�u

y.a�t�/ D e
ht�u

x.a�t�/I (39)

recall that a�t�.y0/ D �.aty0/.

Claim 4.6. If y 2 Hu
t .x/, then Cy � Bu

10e��11t
.y/. If we further assume that y 2 Hu

t;int,
then Cy � Bu

10e��11t
.y/ � Bu

r .x/.

Proof of the claim. Let y0 2 Cy . It follows from the definition of Cy that aty0 2W u.aty/

\ Br 0.z/. Write aty0 D ˆ�1.ˆ.aty/C w/. Then, by (35),

kwkAGY;aty � r 0:

This, in view of Corollary 2.9, implies that

kwkAGY;y � e
��2tkwkAGY;aty � e��2tr 0

where the implied constant depends only on ˛. The claim follows from this estimate if we
assume t is large enough so that the above estimate implies

kwkAGY;y < e
��11t I

recall that �11 D �2=2. The final claim follows from the definition of Hu
t;int.

Claim 4.6 in particular implies that

j u.y/ �  u.y0/j � e��11tC1. u/ for all y0 2 Cy (40)

where the implied constant depends only on ˛.
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Returning to (38), we deduce from (39) and (40) thatZ
Hu
t;int

�.aty/ 
u.y/ d�u

x.y/ D O.e
��11t /C1. u/C1.�/C e�ht

X
Cy2C

 u.y/�u
aty
.�/:

(41)
Combining (38), (41), and Proposition 3.2 we getˇ̌̌X

C

 u.y/�u
aty
.�/ � eht�u

x. 
u/�.�/

ˇ̌̌
� C1. u/C1.�/e.h��13/t (42)

for some �13 depending on ˛. Thus, in order to get the conclusion, we need to control the
difference between N 0nc.t;  

u; �/ and the summation appearing on the left side of (42),
that is, the contribution of points y … Hu

t;int.

Contribution from points in Hu
t .x/ which are not in Hu

t;int. Let y 2 Hu
t .x/ � Hu

t;int with
aty 2 Br .z/. We note that Cy is not necessarily contained in Bu

r .x/; however, in view of
Claim 4.6, Cy is contained in B10e��11t .y/.

From the definition we have[
y2Hu

t .x/�Hu
t;int

Bu
10e��11t

.y/ � Bu
rCO.e��11t /

.x/ � Bu
r�O.e��11t /

.x/ DW G.x/

where the implicit multiplicative constant depends only on ˛.
Let 0 < O� < �11 be a small constant which will be optimized later, and take

t �
2N3 logu.x/

O�
. We can cover G.x/ with period balls ¹B.yi / W 1 � i � I º centered at yi

and of radius e�O�t with multiplicity bounded by � eN6 O�t (see [20, Lemma 1.4.9] and
also §2.11). We have

I � eN O�t (43)

for some N depending only on ˛.
For every i , let OB.yi / denote the period ball with center yi and radius 0:04e�O�t . Note

that since O� < �11 D �2=2 we have

2e�O�t > e�O�t C 10e��2t :

Therefore,
S
i
OB.yi / covers a set G0.x/ � G.x/ with �u

x.G
0.x//� e�O�t .

Let 0� O u
i �1 be a smooth function supported in OBu.yi /which equals 1 on Bu

2e�O�t
.yi /

and
C1. O u

i / � e
N6 O�t and

X
O u
i � 1G0.x/; (44)

where N6 � N5 is chosen to account for the multiplicative constant in Lemma 2.10.
Let Ii be the contribution coming from B.yi / to Nnc.t; 

u; �/. Then arguing as above
and using Proposition 3.2, the choice of O u implies that

Ii � e
ht

Z
W u.x/

�.aty/ O 
u
i .y/ d�u

x.y/ � e
ht�.�/

Z
O u
i d�u

x C C1. O u
i /C

1.�/e.h��5/t :

(45)
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Summing (45) over all 1 � i � I and using (44), (43), and
R
O u d�u

x � e�h O�t we getX
i

Ii � eht�u
x.G
0.x//C eN O�tC1.�/e.h��5CN6 O�/t

D e.h�O�/t C C1.�/e.h��5C.NCN6/ O�/t :

Therefore, we can choose O� so that the above upper bound yieldsX
i

Ii � C1.�/C1. u/e.h��14/t (46)

for some �14 depending only on ˛.

Contribution from points in Bu
r .x/�Hu

t .x/. Let J denote the contribution to N 0nc.t; 
u;�/

from points y 2 Bu
r .x/ � Hu

t .x/. Then there is a unique zy 2 Bu
rCr 0.x/ � Hu

t .x;
NK˛/ such

that atzy 2 Bcs
r 0.z/. In consequence, by Theorem 4.4,

J � u.x/N9u.z/N9k�k1k 
u
k1e

.h�0:5/t
� u.x/N9u.z/N9C1.�/C1. u/e.h�0:5/t :

Assuming t � max ¹logu.x/; logu.z/º, the above implies

J � C1.�/C1. u/e.h�0:6/t : (47)

The proposition now follows from (42) in view of (46) and (47).

Proof of Proposition 4.1. Let %D e��t and let � D %N , for two constants �;N > 0 which
will be optimized later. Put � D 1Bu

%.z/�
cs. Then

�.�/ D %h�cs
z .�

cs/: (48)

In view of Lemma 2.11, properties (�-1)–(�-3) hold with � and f D 1Bu
%�2�

.z/. Let
�u
1 D 'C;� for these choices. Put �1 D �u

1�
cs; there exists some �15 such that

�.�1/ � �.�/ � �
�15�cs

z .�
cs/: (49)

By Lemma 4.5, we have

N 0nc.t;  
u; �1/ D e

ht�u
x. 

u/�.�1/CO.C
1. u/C1.�1/e

.h��10/t /

(49)
D eht�u

x. 
u/�.�/CO.��15eht�u

x. 
u/CC1. u/C1.�cs/��?e.h��10/t /

(48)
D eht%h�u

x. 
u/�cs

z .�
cs/CO.��15eht�u

x. 
u/CC1. u/C1.�cs/��?e.h��10/t /: (50)

Let now �u
2 D 'C;� for � and f D 1Bu

%.z/. Put �2 D �u
2�

cs. Then similar to the above
estimate, using Lemma 4.5 we get

N 0nc.t;  
u; �2/

D eht%h�u
x. 

u/�cs
z .�

cs/CO.��15eht�u
x. 

u/C C1. u/C1.�cs/��?e.h��10/t /: (51)
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Since �1 � � � �2, we have

Nnc.t;  
u; �1/ � N 0nc.t;  

u; �/ � Nnc.t;  
u; �2/: (52)

Moreover, using the definitions of Nnc and N 0nc we have

N 0nc.t;  
u; �/ D

X
 u.y/�u

aty
.�/ D

X
 u.y/�cs.aty/�

u
z.B

u
%.z//

D %h
X

 u.y/�cs.aty/ D %
hNnc.t;  

u; �cs/:

This and (52) imply that

%�hNnc.t;  
u; �1/ � Nnc.t;  

u; �cs/ � %�hNnc.t;  
u; �1/:

Hence, using (50) and (51), we get

Nnc.t;  
u; �cs/

D eht�u
x. 

u/�cs
z .�

cs/CO.%�h��15eht�u
x. 

u/C C1. u/C1.�cs/��?e.h��10/t /:

We choose N so large that �15N � h > �15N=2 and then � so small that ��?e.h��10/t D
e.h��10=2/t . The proof is complete.

We end this section with the following corollary.

Corollary 4.7. There exist �16, �17, and N11 with the following property. Let x; z 2
Q1.˛/. Let  u 2 C1c .B

u
0:1r.x/

.x// with 0 �  u � 1 and let �cs 2 �W cs.z/.z; 0:1r.z//.
Then for all ı < r.z/=.10L/ and all t � N8 max ¹logu.x/; logu.z/º we have

jNnc.t;  
u; �cs/ � eht�u

x. 
u/�cs

z .�
cs/j � C1. u/ı�N11e.h��16/t C ı�17C1. u/eht

where h D 1
2
.dimR Q.˛/ � 2/.

In particular, there exists �18, depending only on ˛, such that if t � 2jlog r.z/j D
2N3 logu.z/ .see (19)/, then

jNnc.t;  
u; �cs/ � eht�u

x. 
u/�cs

z .�
cs/j � C1. u/e.h��18/t : (53)

Proof. This follows from Proposition 4.1 by approximating �cs with smooth functions.
Let ı < 0:1r.z/=L and let �cs

˙;ı
be smooth functions satisfying (�-1)–(�-3) with ı and �cs.

Hence,
�cs
�;ı � �

cs
� �cs

C;ı and C1.�˙;ı/� ı�?; (54)
furthermore, (�-3) implies that

j�cs
z .�

cs
C;ı/ � �

cs
z .�

cs
�;ı/j � ı?: (55)

With this notation and in view of the first estimate in (54), we have

Nnc.t;  
u; �cs
�;ı/ � Nnc.t;  

u; �cs/ � Nnc.t;  
u; �cs
C;ı/: (56)

In addition we may apply Proposition 4.1 with  u and �C
˙ı

to get

Nnc.t;  
u; �cs
˙;ı/ D e

ht�u
x. 

u/�cs
z .�

cs
˙/CO.C

1. u/C1.�cs
˙;ı/e

.h��9/t :

This together with (56), (55), and the second estimate in (54) implies the first claim.
The second claim follows from the first by optimizing the choice ı D e�?t .
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5. The space of measured laminations

In this section we recall some basic facts about the space of geodesic measured lamina-
tions and train track charts. The basic references for these results are [41] and [35].

The space of geodesic measured laminations on S is denoted by ML.S/; it is a piece-
wise linear manifold homeomorphic to R6g�6, but it does not have a natural differentiable
structure [41]. Train tracks were introduced by Thurston as a powerful technical device
for understanding measured laminations. Roughly speaking, train tracks are induced by
squeezing almost parallel strands of a very long simple closed geodesic to simple arcs on
a hyperbolic surface. A train track � on a surface S is a finite closed 1-complex � � S
with vertices (switches) with the following properties:
� � is embedded in S ,
� away from its switches, it is C 1,
� it has tangent vectors at every point, and
� for each component R of S � � , the double of R along the interiors of the edges of
@.R/ has negative Euler characteristic.

The vertices (or switches), V , of a train track are the points where three or more smooth
arcs come together. Each edge of � is a smooth path with a well defined tangent vector,
that is, all edges at a given vertex are tangent. The inward pointing tangent of an edge
divides the branches that are incident to a vertex into incoming and outgoing branches.

A train track � is called maximal (or generic) if at each vertex there are two incoming
edges and one outgoing edge.

5.1. Train track charts

A lamination � on S is carried by a train track � if there is a differentiable map f W S! S

such that
� f is homotopic to the identity,
� the restriction of df to a tangent line of � is nonsingular, and
� f maps � onto � .
Every geodesic lamination is carried by some train track. Let � be a measured lamination
with invariant measure �. If � is carried by the train track � , then the carrying map defines
a counting measure �.b/ for each branch line b: �.b/ is just the transverse measure of
the leaves of � collapsed to a point on b. At a switch, the sum of the entering numbers
equals the sum of the exiting numbers.

The piecewise linear integral structure on ML.S/ is induced by train tracks as fol-
lows. Let V.�/ be the set of measures on a train track � ; more precisely, u 2 V.�/ is an
assignment of positive real numbers to the edges of the train track satisfying the switch
condition X

incoming ei

u.ei / D
X

outgoing ej

u.ej /:
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Also, let W.�/ be the vector space of all real weight systems on edges of � satisfying
the switch condition, i.e., u.ei / need not be positive for u 2 W.�/. Then V.�/ is a cone
on a finite-sided polyhedron where the faces are of the form V.�/ � V.�/ where � is a
sub-train track of � .

If � is bi-recurrent, then the natural map �� W V.�/!ML.S/ is continuous and injec-
tive (see [35, §1.7]). Let

U.�/ D �� .V.�// �ML.S/: (57)

Moreover, we have the following.

Lemma 5.1. Let U1 � V.�1/ and U2 � V.�2/ be such that ��1.U1/ D ��2.U2/. Then
the map ��1�2 ı ��1 W U1 ! U2 is a piecewise linear map and hence it is bilipschitz.

For the proof see [35, §2 and Thm. 3.1.4].

5.2. Thurston symplectic form on ML.S/

We can identify W.�/ with the tangent space of ML.S/ at a point u 2 V.�/ (see [35]).
For any train track � , the integral points in V.�/ are in one-to-one correspondence

with the set of integral multi-curves inU.�/�ML.S/. The natural volume form on V.�/

defines a mapping class group invariant volume form �Th in the Lebesgue measure class
on ML.S/.

In fact, the volume form on ML.S/ is induced by a mapping class group invariant
2-form ! as follows. Suppose � is maximal. For u1; u2 2 W.�/ the symplectic pairing is
defined by

!.u1; u2/ D
1

2

�X
u1.e1/u2.e2/ � u1.e2/u2.e1/

�
; (58)

where the sum is over all vertices v of the train track where e1 and e2 are the two incoming
branches at v such that e1 is on the right side of the common tangent vector.

This is an antisymmetric bilinear form on W.�/.

Lemma 5.2. Let � be maximal. The Thurston form !, defined in (58), is nondegenerate.
Therefore it gives rise to a symplectic form on the piecewise linear manifold ML.S/.

See [35, §3] for a proof and also the relationship between the intersection pairing of
H 1.S;R/ and the Thurston intersection pairing.

5.3. Combinatorial type of measured laminations and train tracks

Each component of S � � is a region bounded by closed geodesics and infinite geodesics;
further, any such region can be doubled along its boundary to give a complete hyperbolic
surface which has finite area.

We say a filling measured lamination � is of type aD .a1; : : : ; ak/ if S � � consists of
ideal polygons with a1; : : : ; ak sides. By extending the measured lamination � to a folia-
tion with isolated singularities on the complement, we see that

Pk
iD1 ai D 4g � 4C 2k

(see [41] and [23]).
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Similarly, each component of the complement of a filling train track � is a nonpunc-
tured or once-punctured cusped polygon of negative Euler index. We say a train track �
is of type a D .a1; : : : ; ak/ if S � � consists of k polygons with a1; : : : ; ak sides. Every
measured lamination of type a D .a1; : : : ; ak/ can be carried by a train track of type a.

Lemma 5.3. For any filling train track � of type a D .a1; : : : ; ak/ we have

dim.V .�// D

´
2g C k � 1 if � is orientable,
2g C k � 2 if � is not orientable.

More generally, a measured lamination � is said to be of type a if there exists a
quadratic differential q 2 Q.a1 � 2; : : : ; ak � 2/ such that � D R.q/. It is easy to check
that if � is filling, the above can happen only if S � � consists of ideal polygons with
a1; : : : ; ak sides.

In general (see [35, §3]), we have:

Proposition 5.4. Given a measured lamination � of type a, there exists a birecurrent train
track of type a such that � is an interior point of U.�/.

For every a D .a1; : : : ; ak/ with
Pk
iD1 ai D 4g � 4 C 2k, we can fix a collection

�a;1; : : : ; �a;ca of train tracks with the following property. Every � which can be carried by
a train track of type a can be carried by at least one �a;i for some i .

5.4. The Hubbard–Masur map

Let MF .S/ denote the space of measured foliations on S . Define

QP W QT .S/!MF .S/ �MF .S/ ��

by QP .q/ D .R.q1=2/;I .q1=2// where

� D ¹.�; �/ W there exists � so that i.�; �/C i.�; �/ D 0º:

Theorem 5.5 (Hubbard–Masur, Gardiner). The map QP is a Modg -equivariant homeo-
morphism.

This gives rise to an equivariant homeomorphism from QT .S/ onto ML.S/ �

ML.S/ �� which we continue to denote by QP (see [41] and [23]).
Recall that PML.S/ denotes the space of projective measured laminations. The map

QP also gives rise to an equivariant homeomorphism

QP1 W Q1T .S/! PML.S/ �ML.S/ ��

where QP1.q/ D .ŒR.q1=2/�;I .q1=2// and � D ¹.Œ��; �/ W 9� , i.�; �/C i.�; �/ D 0º.
Recalling that � is the natural projection from Q1T .S/ to Q1.S/, we have the map

� ı QP�11 W PML.S/ �ML.S/ ��! Q1.S/: (59)
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5.5. Convexity of the hyperbolic length function

Let �1; �2 2 U.�/ D �� .V.�// (see §5.1 for the definition of �� ). The sum

�1 ˚� �2 D �� .�
�1
� .�1/C�

�1
� .�2//

could depend on � . However, it is proved in [30, App. A] that given a closed curve
 , i.; :/ W U.�/ ! RC defines a convex function from which convexity of the hyper-
bolic length function is drawn in [30, Thm. A.1]. The following is an extension of [30,
Thm. A.1] to the case of variable negative curvature. We are grateful to K. Rafi for pro-
viding the proof of this theorem.

Theorem 5.1. Let X be a compact surface equipped with a Riemannian metric of nega-
tive curvature, and let � be a train track. Let `X W U.�/! RC denote the length function.
For every pair �1; �2 2ML.S/ of measured laminations carried by � , if � D �1 ˚� �2,
then

`X .�/ � `X .�1/C `X .�2/:

In particular, `X is convex.

The following lemma is well known.

Lemma 5.6. Let � a train track, and let �1 and �2 be multi-curves carried by � . Then
there exists a multi-curve � carried by � such that � D �1 C �2 in coordinates given
by � . Furthermore, � can be obtained from �1 and �2 by a sequence of surgeries.

Proof of Theorem 5.1. Let C be the space of geodesic currents on X , that is, the space of
�1.X/-invariant Radon measures on the space of geodesics in X . Recall that the space of
measured laminations can be topologically embedded into the space of geodesic currents,
so we can think of any � 2ML.S/ as a geodesic current, that is, an element of C . Also
recall from [8] that there is a continuous intersection pairing

i W C � C ! R:

Furthermore, there is a geodesic current LX 2 C such that

i.LX ; �/ D `X .�/ for all � 2ML.S/

(see [33]). The set of simple closed curves with rational weights is dense in ML.S/.
Therefore, in view of the continuity of the intersection pairing i , it is sufficient to check
the statement of the theorem for rationally weighted simple closed curves only. Since
length is homogeneous, we can in fact assume the weights are integers or �1, �2, and �
are multi-curves with the possibility of some curve appearing more than once.

Claim 5.7. Assume �1 and �2 are simple closed curves with i.�1; �2/ > 0. Let ˇ be
a curve obtained from �1 and �2 by a surgery at an intersection point. Then `X .ˇ/ �
`X .�1/C `X .�2/.
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Proof of the claim. Note that �1 and �2 have unique geodesic representatives inM . Let p
be an intersection point of �1 and �2 where the surgery takes place. Then the free homo-
topy class of ˇ can be represented by traversing first �1 (starting from p) and then �2.
This means ˇ has a representative whose length is `X .�1/ C `X .�2/. This proves the
claim.

Further, we note that �D �1 ˚� �2 can be obtained from �1 and �2 by a sequence of
surgery maps (see Lemma 5.6). This proves the theorem.

Let C � Rn be a cone and f W C ! R be a convex function. Let K be a closed
bounded set contained in the relative interior of the domain of f . Then f is Lipschitz
continuous on K, that is, there exists a constant L D L.K/ such that for all x; y 2 K,

jf .x/ � f .y/j � Ljx � yj:

Therefore, we have the following.

Corollary 5.2. Let X be a compact surface equipped with a Riemannian metric of nega-
tive curvature. Then

`X WML.S/! RC

is locally Lipschitz. In other words, and in view of the fact that `X .t �/ D t`X .�/ for all
t > 0, we can cover ML.S/ with finitely many cones such that `X is Lipschitz in each
cone.

The Lipschitz constant depends on X . See also [25].

6. Linear structure of ML.S / and QT .S /

Our arguments are based on relating the counting problems in ML.S/ to dynami-
cal results in Q1.1; : : : ; 1/. To that end, we need to compare the linear structure on
Q1.1; : : : ; 1/, arising from period coordinates, with the piecewise linear structure on
ML.S/, which arises from train track charts. This section establishes some results in
this direction.

Until the end of the paper, we will be concerned with the principal stratum, i.e.,
Q1.1; : : : ; 1/. Also a D .3; : : : ; 3/ for the rest of the discussion.

Fix once and for all a collection �1; : : : ; �c of train tracks such that every � can be
carried by at least one �i for some i (see §5.3).

Given a point x D .M; q/ 2 Q1.1; : : : ; 1/ we sometimes use q to denote x. We fix a
fundamental domain for Q1.1; : : : ; 1/, and unless explicitly stated otherwise, by a lift Qq
of q 2 Q1.1; : : : ; 1/ we mean a representative in this fundamental domain.

Let x D .M; q/ 2 Q1.1; : : : ; 1/. We denote by R.q1=2/ (resp. I .q1=2/) the real (resp.
imaginary) foliation induced by q; abusing notation we will often simply denote these foli-
ations by R.q/ and I .q/. Note thatW u;s.x/, which we sometimes also denote byW u;s.q/,
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may alternatively be defined as follows:

W u.q/ WD ¹q0 2 Q1.1; : : : ; 1/ W I .q
0/ D I .q/º;

W s.q/ WD ¹q0 2 Q1.1; : : : ; 1/ W R.q
0/ D R.q/º:

Similarly, we will write Br .q/ and B�r .q/ for Br .x/ and B�r .x/, respectively.
Let � be a maximal train track, i.e., a train track of type .3; : : : ; 3/, and let U.�/ be

a train track chart, i.e., the set of weights on � satisfying the switch conditions. Recall
from §5.1 that U.�/ has a linear structure; indeed, U.�/ is a cone on a finite-sided poly-
hedron. We use the L1-norm on W.�/ to define a norm on U.�/: for every measured
lamination � 2 U.�/, we define k�k� to be the sum of the weights of �. Let

P.�/ WD ¹� 2 U.�/ W k�k� D 1º: (60)

For every � 2 U.�/, define
N�� WD

1

k�k�
� 2 P.�/I

if � is fixed and clear from the context, we sometimes drop the subscript and the super-
script � and simply write k�k and N� for k�k� and N�� ; respectively.

By a polyhedron U � U.�/, we mean a polyhedron of dimension dim U.�/ � 1

where the angles are bounded below and the number of facets is bounded, both by con-
stants depending only on the genus. We will mainly be concerned with .dimU.�/ � 1/-
dimensional cubes.

Lemma 6.1 (cf. [24, Thm. 6.4]). Let � 2ML.S/ be maximal. There is a compact subset
K � Q1.1; : : : ; 1/, depending on � and �, such that � ı QP�11 .Œ��; P.�// � K .see (59)
for the definition of � ı QP�11 /.

Proof. Recall that we fixed a collection �1; : : : ; �c of train tracks so that every lamination
� is carried by some �i . In view of Lemma 5.1, there exists some L D L.�/ such that

P.�/ �

c[
iD1

¹� 2 U.�i / W 1=L � k�ki � Lº

where k ki D k k�i .
For every 1 � i � c, put Ui WD ¹� 2 U.�i / W 1=L � k�ki � Lº: Since � is a maximal

measured lamination, for any � 2 U.�i / we have � ı QP�11 .Œ��; �/ 2 Q1.1; : : : ; 1/. Define

K WD
[
i

� ı QP�11 .¹Œ��º � Ui /: (61)

Then K � Q1.1; : : : ; 1/ is a compact subset with the desired property.

Lemma 6.2. There is some N12 � N3 such that the following holds .see (19) for the
definition ofN3/. Let q 2Q1.1; : : : ; 1/. There exists a 1-complex T � S with the following
properties:
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(1) Every edge of T is a saddle connection of q.

(2) jI .e/j � 0:1`q.e/ for any e 2 T .

(3) S � T is a union of triangles.

(4) For every edge e 2 T , we have u.q/�N12 � `q.e/ � u.q/�N12 .

(5) u.q/�N12 � r.q/, and the parallel translate of T to q0 2Bu.q/�N12 .q/ satisfies (1)–(3)
above.

A similar statement holds if we replace I .e/ in .3/ above by R.e/.

Proof. We will find such a T with jI .e/j � 0:1`q.e/; the proof that such a T exists with
jR.e/j > 0:1`q.e/ is similar, by replacing atus with a�t Nus in the following argument.

LetK be the compact set given by Theorem 2.5; let r0 D inf ¹r.x/ W x 2Kº (see (19)).
For every q0 2 K, there is a graph T 0 � S of saddle connections of q0 such that
� the q0 length of each of these saddle connections is bounded by L0 D L0.K/, and
� S � T 0 is a union of triangles.
We will always assume that L0 > 2. Increasing L0 if necessary, we will also assume
that L0 bounds the lengths of saddle connections obtained by parallel transporting T 0 to
q00 2 Br0.q

0/ for all q0 2 K.
Set

Rq WD ¹saddle connections  of q with jI ./j < 0:1`q./º:

Note that for all  2 Rq and all 0 � s � 1, we have jR.us/j � `q./=2. Define

f .q/ WD max
®
1;max ¹1=`q./ W  2 Rqº

¯
:

Apply Theorem 2.5 with t0 D L0 logf .q/: There exists some

t0 < t � max ¹2t0; N2 logu.q/º (62)

and some s 2 Œ0; 1� so that q0 D atusq 2 K.
Let now T 0 be a graph of saddle connections for q0 defined as above. We claim that

for every e 2 T 0, we have e 62 atusRq . To see this, first note that for every  2 Rq we
have

`q0.atus/ � e
tR.us/

� et`q./=2 since jR.us/j � `q./=2

� eL0f .q/`q./=2 > L0 since t > L0 logf .q/ & f .q/`q./ � 1:

Hence atus is not contained in T 0. In consequence, T D u�sa�tT
0 satisfies (1)–(4).

Note that for every e 2 T , we have u.q/�?� `q.e/� u.q/? where the implied constants
depend only on the genus.

We now turn to the proof of part (5). First note that there isN 0 with u.q/N
0

� f .q/2L0 ;
put N WD max ¹2N 0; 2N2; N3º. Let N12 > N be such that

e2 � 2N�N12 � r0=2: (63)
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Write r D u.q/�N12 . Then 0 < r � r.q/ (recall that N12 � N3). For every z 2 Br .q/,
we have z D ˆ�1.ˆ.q0/C v/ where kvkAGY;q � u.q/

�N12 .
Let t � max ¹2L0f .q/;N2 logu.q/º and 0 � s � 1 be such that q0 D atusq 2K (see

the preceding discussion). Note that in view of the choice of t and N , we have

e2t � u.q/N : (64)

Now for all v such that ˆ�1.ˆ.q0/C v/ 2 Br .q/ we have

kvkAGY;atusq � e
2C2t
kvkAGY;q by (15)

� e2 � u.q/N kvkAGY;q by (64)

� e2 � u.q/N�N12 kvkAGY;q � u.q/
�N12 by the choice of r

� e2 � 2N�N12 � r0=2 since u.q/ � 2 and using (63):

Hence atusBr .q/� Br0.q
0/, which gives the claim in view of the definitions of T and T 0.

Increasing N12 if necessary, we find that part (4) also holds for this exponent.

Lemma 6.3 (cf. [31, Lemma 4.3]). Let q 2 Q1.1; : : : ; 1/, and let Qq be a lift of q in our
fixed fundamental domain. Let r D 0:01u.q/�2N12 . There is a maximal train track � with
the following properties:

(1) Br . Qq/ projects homeomorphically onto Br .q/ � Q1.1; : : : ; 1/.
(2) The restriction of QP1 to Br . Qq/ is a homeomorphism.
(3) ¹I . Qp/ W Qp 2 Br . Qq/º is contained in one train track chart U.�/.
(4) The linear structure on UI . Qq/ WD ¹I . Qp/ W Qp 2 Br . Qq/;R. Qp/ D R. Qq/º as a subset of

U.�/ agrees with the linear structure on UI . Qq/ which is induced by the restriction of
QP1 to ¹ Qp 2 Br . Qq/ W R. Qp/ D R. Qq/º � W s. Qq/.

Moreover, the radius r of Br . Qq/ can be taken to be uniform on compact subsets of
Q1.1; : : : ; 1/.

Proof. Let T be a triangulation of q given by Lemma 6.2. In particular,
(i) every edge of T is a saddle connection,

(ii) jI .e/j � 0:1`q.e/ for any e 2 T ,
(iii) S � T is a union of triangles, and
(iv) Aq � `q.e/ � A�1q for every edge e 2 T where Aq D u.q/�N12 .
Our construction of the train track � will depend on T .

Recall that r D 0:01A2q . Then the balls Br . Qq/ and Br .q/ satisfy (1) and (2) in the
lemma by Lemma 6.2(5).

Let � 0 be the null-gon dual graph to T , in particular, there is one triangle of � 0 in
each component of S � T . Let � be the train track obtained from � 0 as follows. If � is
a triangle in T with edges e�1 ; e

�
2 ; e

�
3 , then there is a permutation ¹i1; i2; i3º of ¹1; 2; 3º

with
jI .e�i1/j D jI .e

�
i2
/j C jI .e�i3/jI (65)

put � WD � 0 �
S
¹the edge corresponding to e�i1 in � 0º.
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We claim the lemma holds with � . To see this, first note that � is a maximal train
track. Assign the weight jI .eb/j to each branch b 2 � where eb 2 T is the edge which
intersects b. In view of (65) and the fact that jI ./j D i.;R. Qq// for every saddle con-
nection  , we see that � D I . Qq/ is carried by � .

By Lemma 6.2, for any Qp 2 Br . Qq/ we identify T with its image (under parallel trans-
port) on Qp. Let Qp 2 B. Qq/ and write Qp D Qq C w for some w with kwkAGY;q � 0:01A

2
q .

Then
jI .hol Qp.eb//j D jI .hol Qq.eb//C I .w.eb//j:

Further, jw.eb/j � 0:01A2q`q.eb/ < 0:01Aq � 0:1jI .hol Qq.eb//j; we have used (ii) and (iv)
in the last inequality. Hence, jI .hol Qp.eb//j > 0 and I . Qp/ is carried by the train track � .

Taking w 2 iH1.M; †; R/, the above discussion also implies that � satisfies (3)
and (4).

7. Counting integral points in ML.S /

Let the notation be as in §6. In particular, � is a maximal train track. Also recall that P.�/
denotes the finite-sided polyhedron in U.�/ corresponding to laminations with k�k� D 1.

The smallest t such that a lamination � 2 U.�/ lies in

Œ0; et �P.�/ D ¹�0 2 U.�/ W k�0k� � e
t
º

can be thought of as a measure of complexity (or length) for �. In this section we obtain an
effective counting result with respect to this complexity. In §8 we will use the convexity
of the hyperbolic length function in U.�/ to relate the counting problem in Theorem 1.1
to this counting problem.

Let U � P.�/ be a cube. For every t � 0, define

O� .0; e
t ;U/ WD Modg :0 \ Œ0; et �U: (66)

The following strengthening of Theorem 1.2 is the main result of this section.

Theorem 7.1. There exist �19 and �20 such that the following holds. Let t � 1, and let
U � P.�/ be a cube of size � e��19t . Then

#O� .0; e
t ;U/ D v.0/�Th.Œ0; 1�U/e

ht
CO�;0.e

.h��20/t /

where v.0/ is defined as in (69) below and h D 6g � 6.

The basic tool in the proof of Theorem 7.1 is Proposition 4.1. We relate the counting
problem in Theorem 7.1 to a counting problem for translations of W u.q0/ in Lemma 7.2.
Proposition 4.1 studies a more local version of the latter counting problem, that is, one
works with translations of a small region in W u.q0/. Using Corollary 4.3, we will reduce
to this local analysis. The main step in the proof of Theorem 7.1 is Lemma 7.6 below.

Let us begin with some preparation. Recall that ML.S/ does not have a natural dif-
ferentiable structure, in particular, QP1 is only a homeomorphism. The situation however



A. Eskin, M. Mirzakhani, A. Mohammadi 3094

drastically improves when we restrict to one train track chart and fix a transversal lami-
nation. Therefore, we fix a maximal lamination � which is carried by � for the rest of the
discussion.

Let ı > 0, and let U� P.�/ be a cube of size� ı centered at �. Let � � ı. We always
assume QP�11 is a homeomorphism on ¹Œ��º � ¹erU W jr j � ıº. Put QW cs

U
D QP�11 .¹Œ��º �U/

and
QW cs

U;� D
QP�11 .¹Œ��º � ¹erU W �� � r � 0º/: (67)

Let 0 2 U.�/ be a rational multi-curve. For all t � 0 and 0 < � < 1, define

O� .0; t;U; �/ WD
®
 2 U.�/ \Modg :0 W et�� � kk� � et and  � 2 U

¯
: (68)

Put Qq0 WD QP�11 .Œ��;  �0/. Without loss of generality we assume 0 and � are such that
Qq0 belongs to our fixed fundamental domain.

Lemma 7.2. Let ı > 0, and let U � P.�/ be a cube of size � ı. Let � denote the center
of U. For all � � ı and all large enough t � 0 we have

g0 2 O� .0; t;U; �/ if and only if QW cs
U;� \ g � at QW u. Qq0/ ¤ ;.

Proof. Since � is fixed throughout, we drop it from the subscript and superscript for the
norm and the normalization.

Suppose  D g0 2 O� .0; t;U; �/ for some g 2Modg ; such a g is not unique, but for
any other g0 2Modg with g0 D g00 we have g � QW u. Qq0/ D g0 � QW u. Qq0/. Put Qq D g � Qq0.
Then g D I . Qq/, and moreover

g � at QW u. Qq0/ D at QW
u. Qq/:

Recall that  2 U and put Qp0 WD QP�11 .Œ��; /. Then Qp0 2 QW cs
U

; moreover, it follows from
the definition that I . Qp0/ D  . Hence, Qp0 2 at1 QW

u. Qq/ where t1 D log kk.
Put s D t1 � t I since  2 O� .0; t;U; �/ we have �� � s � 0. We find from the above

and the definition of QW cs
U;�

that as Qp0 2 at QW u. Qq/ \ QW cs
U;�
: In particular,

QW cs
U;� \ at

QW u. Qq/ D QW cs
U;� \ g � at QW u. Qq0/ ¤ ;:

Conversely, suppose that for some g 2Modg we have QW cs
U;�
\ g � at QW u. Qq0/ ¤ ;. Put

 D g0; we claim that  2 O� .0; t;U; �/.
Set Qq D g � Qq0. Then I . Qq/ D  , and as above we have g � at QW u. Qq0/ D at QW

u. Qq/. Let
now � 2 U and �� � s � 0 be such that

QP�11 .Œ��; es�/ 2 QW cs
U;� \ at

QW u. Qq/:

Write QP�11 .Œ��; es�/ D at Qq
0 where Qq0 2 QW u. Qq/. Then

e�t D I .at Qq
0/ D es� 2 esU:

This gives N D �, hence N 2U and kkD etCs; we get  2O� .0; t;U; �/ as claimed.
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7.1. Jenkins–Strebel differentials

Problems related to the existence and uniqueness of Jenkins–Strebel differentials have
been extensively studied.

Theorem 7.3 (cf. [39, Thm. 20.3]). Let  D
Fd
iD1 i be a rational multi-geodesic onM ,

and let r1; : : : ; rd be positive real numbers. Then there exists a unique holomorphic
quadratic differential q on M .Jenkins–Strebel differential/ with the following proper-
ties.

(1) If � is the critical graph1 of q, thenM � � D
Sd
iD1�i , where�i is either empty or

a cylinder whose core curve is i .
(2) If �i is not empty, it is swept out by trajectories whose q-length is ri .

The following lemma will be used.

Lemma 7.4. Let  2U.�/ be rational, and let QqD QP�11 .Œ��; / 2Q1T .˛/ be a quadratic
differential such that I . Qq/ D  I put q WD �. Qq/.

(1) W u.q/ � Q1.1; : : : ; 1/ is a properly immersed, affine submanifold which carries a
natural finite Borel measure �.

(2) There exists some �0D �0.�;�;kk� / > 0 such that the following holds. Let 0< O� < �0
and let

K.O�/ D ¹q W all saddle connections on q are � O�º.

Put
D.O�/ D Dcusp.O�/ WD W

u.q/ \K.O�/{:

There are constants �21 and N13, and a smooth function 0 �  u
O�
� 1 supported on

W u.q/ such that

(a) C1. u
O�
/� O��N13 ,

(b) k u
O�
k2;� � O�

�21 ,
(c)  u

O�
jD.O�/ D 1, and k1D.O�/ �  

u
O�
k2;� � O�

�21 .

In particular, �.D.O�// � O��21 for all small enough O�.

Proof. We first show that W u.q/ is a properly immersed submanifold of Q1.1; : : : ; 1/.
This is equivalent to showing the following two statements.
(i) g1 � QW u. Qq/ \ g2 � QW u. Qq/ ¤ ; if and only if g1 � QW u. Qq/ D g2 � QW u. Qq/.

(ii)
S

g2Modg g � QW u. Qq/ � Q1T .˛/ is closed.

Recall that QW u. Qp/D¹ Qp0 W I . Qp0/D I . Qp/º and g � QW u. Qp/D QW u.g � Qp/ for all Qp 2Q1T .˛/.
These imply (i). To see (ii), note further that the set[

g2Modg

g � QW u. Qq/

1Recall that the critical graph of a quadratic differential is the union of the compact leaves of
the measured foliation induced by q which contain a singularity of q.
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is the set of quadratic differentials Qp 2 Q1T .1; : : : ; 1/ such that I . Qp/ 2 Modg : . Since
 is rational, Modg : is a discrete Modg -invariant set; (ii) follows.

Let  be as in the statement. Write  D
P
i aii where each i is a simple closed

curve and ai 2 Q. By Theorem 7.3, the locus W u.q/ \ Q1.1; : : : ; 1/ is identified with
a linear subspace W D ¹.xij / W

P
j xij D ri ; xij > 0º in the period coordinates, where

r1; : : : ; rd are positive real numbers. Moreover, the measure � is the pull-back of the
Lebesgue measure from W to W u.q/. This finishes the proof of (1).

To see part (2), let �0 be such that � ı QP�11 .Œ��; / 2 K.�0/; recall from Lemma 6.1
that �0 depends only on � , �, and kk� . For any 0 < O� < �0 put

W.O�/ D ¹.xij / 2 W W 0 < xij < O� for some .i; j /º:

Using Theorem 7.3, we have W u.q/ \K.O�/{ � ˆ�1.W.O�//. The claims in part (2) now
follow from Lemma 2.10. Indeed, apply Lemma 2.10 with D D D.2O�/ � D.O�=2/, and let
¹'iº be the collection of functions obtained in that lemma. Define

 u
O�
.p/ D

´P
'i .p/ if p 2 W u.q/ � D.O�=2/;

1 if p 2 D.O�=2/:

This function satisfies the claims.

Let 0 and Qq0 2 Q1T .1; : : : ; 1/ be as in Lemma 7.2 and put q0 WD �. Qq0/. Then by
Lemma 7.4, W u.q0/ is an affine submanifold of Q1.1; : : : ; 1/. We put

v.0/ D �.W u.q0// (69)

where � is the finite measure in Lemma 7.4.
Let b > 0; this choice will be optimized later. Apply Lemma 7.4(2) with O� D 10b and

let Dcusp.10b/ be as in that lemma. Put

Db WD W
u.q/ � Dcusp.10b/:

Lemma 7.5. For every b there existsN.b/� b�N14 such that there exists a collection of
functions ¹ u

i W 0 � i � N.b/º with the following properties:

(1)  u
0 D  

u
10b

where  u
10b

is given by Lemma 7.4(2).
(2) 0 �  u

i � 1 for all i � 0.

(3) For all i � 1,  u
i is supported in Bu

b
.yi / where yi 2 Db; furthermore, the multiplicity

of ¹Bu
b
.yi /º is at most N5.

(4)
PN.b/
iD1  

u
i � 1, and

PN.b/
iD1  

u
i D 1 on

SN.b/
iD1 Bb.yi /.

Moreover,
C1. u

i / � N16b
�N15 for all 0 � i � N.b/ (70)

where N15 is an absolute constant and N16 is allowed to depend on q0.

Proof. This follows from Lemma 2.10 applied with D D Db and Lemma 7.4.
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Let us also fix a fundamental domain QD� QW u. Qq0/which projects toW u.q0/. For each
i � 1, we let Qyi 2 QD be a lift of yi (see Lemma 7.5). Let N 0.b/ be such that

Bu
b. Qyi / �

QD for all N 0.b/ < i � N.b/. (71)

For simplicity of notation, let Bu
b
. Qy0/ � QD denote the lift of Dcusp.10b/. Increasing N 0.b/

if necessary, we assume that Bu
b
. Qyi / \ Bu

b
. Qy0/ D ; for all i � N 0.b/.

7.2. Counting in linear sectors in ML.S/

Recall from the beginning of this section that U � P.�/ is a box of size � ı. Let �
be the center of U, and let � � ı. Let � 2 ML.S/ be fixed as at the beginning of this
section. We always assume 0 < ı < 1=2 and � are such that QP�11 is a homeomorphism on
¹Œ��º � ¹erU W jr j < ıº. Recall also our notation QW cs

U
D QP�11 .¹Œ��º �U/ and

QW cs
U;� D

QP�11 .¹Œ��º � ¹erU W �� < r � 0º/:

Abusing notation, we denote by �Th.U/ the measure induced from �Th on P.�/. The
following lemma is a crucial step in the proof of Theorem 7.1.

Lemma 7.6. There exist �22 and �23 such that the following holds. Let t � 0 and in the
above notation, define

N . Qq0; t;U; �/ WD ¹g � QW u. Qq0/ W g 2 Modg and QW cs
U;� \ g � atW u. Qq0/ ¤ ;º:

Suppose � � e��22t . Then

#N . Qq0; t;U; �/ D v.0/�Th.U/
1�e�h�

h
eht CO�;0..1 � e

�h�/e.h��23/t /:

We will prove Lemma 7.6 using Proposition 4.1, more precisely Corollary 4.7. In
order to use those results we need to control the geometry of QW cs

U;�
.

Lemma 7.7. The characteristic function of

QW cs
U;� D

QP�11 .¹Œ��º � ¹erU W �� < r � 0º/

belongs to � QW cs. Qqj /
. Qp; �/ where Qp D QP�11 .Œ��; �/.

Proof. Apply Lemma 6.1 with � and let K D K.�/ be defined as in (61). Then

� ı QP�11 .Œ��; P.�// � K:

Let ¹Brp .p/ W p 2 Kº be the covering of K by period boxes given by Lemma 6.3.
Let B�.q1/; : : : ;B�.qb0/ be a finite subcover of this covering. Consider all lifts of B.qj / to
period boxes based at lifts Qqj of qj in our fixed (weak) fundamental domain. Denote these
lifts by Br1. Qq1/; : : : ;Brb. Qqb/ – note that we have only fixed a weak fundamental domain,
hence there might be more than one lift, but there is a universal bound on the number of
lifts.
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For every 1� j � b, let �j be a train track obtained by applying Lemma 6.3 to Brj . Qqj /.
Assume � is smaller than the radius of Brj . Qqj / for all j . Write U D

S
OUi where

OUi D U \ U.�j /:

By Lemma 5.1 each OUi is a piecewise linear subset of Ui . The claim now follows from
Lemma 6.3(4) if we ignore those OUi ’s which have size less than �N for some N > 1

depending only on the dimension.

Proof of Lemma 7.6. Recall that � is the center of U; put QpD QP�11 .Œ��;�/ and pD �. Qp/.
Let Q�cs be the characteristic function of QW cs

U;�
� QW cs. Qp/. Define

�cs
WD Q�cs

ı .��1j�.supp. Q�cs///;

the push-forward of Q�cs to W cs.p/. Recall from Lemma 7.7 that �cs 2 �W cs.p/.p; �/.
Recall from §2 that � denotes the SL.2; R/-invariant probability measure on

Q1.1; : : : ; 1/ which is in the Lebesgue measure class. The measures �u
x and �s

x are the
conditional measures of � along W u.x/ and W s.x/; �cs

x and �cu
x are defined accordingly.

Recall also that �Th.¹e
sU W �� < s � 0º/ D 1�e�h�

h
�Th.U/: Therefore,

�cs
p .�

cs/ D 1�e�h�

h
�Th.U/: (72)

For simplicity of notation, write QW cs D QW cs
U;�

and put

N D N . Qq0; t;U; �/:

Let g 2Modg be such that QW cs \ g � at QW u. Qq0/¤ ;: Recall that ¹Bu
i . Qyi / W 0 � i � N.b/º

cover QD � QW u. Qq0/ (see Lemma 7.5 and the paragraph following that lemma); there exists
some g0 2 Modg such that g0 � QW u. Qq0/ D QW

u. Qq0/ and some 0 � i � N.b/ such that

QW cs
\ gg0 � atBu

b. Qyi / ¤ ;: (73)

Let N 0.b/ be defined in (71). We claim that

#¹g � QW u. Qq0/ W (73) holds for some 0 � i � N 0.b/ º

� ��?b�?v.0/e.h��5/t C b?v.0/eht (74)

where the implied constants depend on the genus.
Let us assume (74) and finish the proof. Let

N 0 WD ¹g � QW u. Qq0/ 2 N W (73) does not hold for any 0 � i � N 0.b/º;

i.e., the contribution to N coming from N 0.b/ < i � N.b/. We claim thatˇ̌̌
#N 0 �

X
i

X
y

 u
i .y/

ˇ̌̌
� ��?b�?v.0/e.h��5/t C b?v.0/eht (75)
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where the outer summation is over allN 0.b/ < i � N.b/ and the inner summation is over
all y 2 Bu

b
.yi / with aty 2 �. QW cs/.

To prove the claim, first note that by the definition of N 0, if g � QW u. Qq0/ 2N 0, then (73)
holds with some N 0.b/ < i � N.b/. Let now g1; g2 2 Modg and N 0.b/ � i1; i2 � N.b/
be such that

QW cs
\ ggj � atBu

b. Qyij / ¤ ;:

Then gj QW u.q0/ D QW
u.q0/ for j D 1; 2 (see the discussion preceding (73)); hence by

Corollary 4.3 we have

QW cs
\ gg1 � atBu

b. Qyi1/ D
QW cs
\ gg2 � atBu

b. Qyi2/:

In particular, g1Bu
b
. Qyi1/ \ g2Bu

b
. Qyi2/ ¤ ;. Since Bu

b
. Qyij / � QD for j D 1; 2 (recall that

N 0.b/ � i1; i2 � N.b/) we get g1 D g2. Therefore,

QW cs
\ gg1 � atBu

b. Qyi1/

corresponds to points lying in the intersection Bu
b
. Qyi1/\ Bu

b
. Qyi2/ but not in

SN 0.b/
iD0 Bu

b
. Qyi /.

Recall from Lemma 7.5 that
P
i  

u D 1 on
SN.b/
iD1 Bb.yi /, hence

X
N 0.b/<i�N.b/

 u
i D 1 on Db �

N 0.b/[
iD1

Bu
b.yi /:

In particular, since  u
i � 0, we get

#N 0 �
X
i

X
y

 u
i .y/

where the outer summation is over allN 0.b/ < i � N.b/ and the inner summation is over
all y 2 Bu

b
.yi /with aty 2 �. QW cs/. Moreover, in view of the fact that Bu

b
. Qyi /\ Bu

b
. Qy0/D;

for all i � N 0.b/ and using Lemma 7.5(2, 4), we haveX
i

X
y

 u
i .y/ � #N 0 � #¹g � QW u. Qq0/ W (73) holds for some 1 � i � N 0.b/º

where the implied constant depends on ˛. The claim in (75) thus follows in view of the
estimate in (74).

Let us now investigate
P
i

P
y  

u
i .y/. Using the definition of Nnc in (34), we have

Nnc.t;  
u
i ; �

cs/ D
X

 u
i .y/�

cs.aty/

D

X
 u
i .y/ since �cs.aty/ D 0; 1

where the summations are over all y 2 Bu
b
.yi / with aty 2 �. QW cs/ D supp.�cs/. Now

apply Corollary 4.7 (see in particular (53)) with  u
i and �cs to getˇ̌̌X

 u
i .y/ � �

u
q0
. u
i /�

cs
p .�

cs/eht
ˇ̌̌
� C1. u

i /e
.h��18/t : (76)
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In view of (72) and the estimate C1. u
i /�N16b

�N15 (see (70)), we deduce the following
from (76): ˇ̌̌X

y

 u
i .y/ � �

u
q0
. u
i /�Th.U/

1�e�h�

h
eht
ˇ̌̌
� N16�

�?b�?e.h��18/t : (77)

Summing (77) over all N 0.b/ � i � N.b/ and using the fact that N.b/� b�?, we getˇ̌̌X
i

X
y

 u
i .y/ �

X
i

�u
q0
. u
i /�Th.U/

1�e�h�

h
eht
ˇ̌̌
� N16�

�?b�?e.h��18/t : (78)

We now compare
P
i �

u
q0
. u
i / and v.0/. Indeed, using Lemma 7.4 (see also (69)),

and the relationship between � and �u
q0

we get

.1 � b�21/v.0/ � v.0/ � �.D0b/ �
N.b/X

iDN 0.b/

�u
q0
. u
i / � v.0/ (79)

where D0
b
D Dcusp.10b/ [

SN 0.b/
iD1 Bb.yi /. The estimate in (79) implies thatˇ̌̌X

i

X
y

 u
i .y/ � v.0/�Th.U/

1�e�h�

h
eht
ˇ̌̌

� b�21v.0/�Th.U/
1�e�h�

h
eht

C

ˇ̌̌X
i

X
y

 u
i .y/ �

X
i

�u
q0
. u
i /�Th.U/

1�e�h�

h
eht
ˇ̌̌
: (80)

We now use these estimates to get an estimate for #N 0. First note thatˇ̌̌
#N 0 � v.0/�Th.U/

1�e�h�

h
eht
ˇ̌̌
�

ˇ̌̌
#N 0 �

X
i

X
y

 u
i .y/

ˇ̌̌
C

ˇ̌̌X
i

X
y

 u
i .y/ � v.0/�Th.U/

1�e�h�

h
eht
ˇ̌̌

(75)
� ��?b�?v.0/e.h��5/t C b?v.0/eht

C

ˇ̌̌X
i

X
y

 u
i .y/ � v.0/�Th.U/

1�e�h�

h
eht
ˇ̌̌

where the implied constant depends only on the genus. This estimate and (80) imply thatˇ̌̌
#N 0 � v.0/�Th.U/

1�e�h�

h
eht
ˇ̌̌

� ��?b�?v.0/e.h��5/t C b?v.0/eht

C b�21v.0/�Th.U/
1�e�h�

h
eht C

ˇ̌̌X
i

X
y

 u
i .y/ �

X
i

�u
q0
. u
i /�Th.U/

1�e�h�

h
eht
ˇ̌̌
:
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Putting this estimate and (78) together we getˇ̌̌
#N 0 � v.0/�Th.U/

1�e�h�

h
eht
ˇ̌̌
� ��?b�?v.0/e.h��5/t C b?v.0/eht

C b?v.0/�Th.U/
1�e�h�

h
eht CN16�

�?b�?e.h��18/t : (81)

We now choose � and b of size e�?t so that ��?b�?e.h��5/t in (74) is< e.h�?/t and so
that N16��?b�?e��18t on the right side of (81) is < .1 � e�h�/e�?t . The lemma follows
from this in view of (74).

Let us now turn to the proof of (74). The argument is similar to the one in the proof
of (45). For 1 � i � N 0.b/, let O u

i be such that supp. O u
i / � B2b.yi /, O u

i jBb.yi / D 1, and
C1. O u

i /� b�? (see Lemma 2.10). Let O u
0 D  

u
0 .

Let % > 0 be so small that the 10%-neighborhood of supp.�cs/ embeds in Q.1; : : : ; 1/,
and let � > 0 be a constant which will be chosen later. In view of Lemma 2.11, we have

1Bu
%.p/ 2 �.Bu

%.p/; %=10/:

Therefore, properties (�-1)–(�-3) hold with � D 0:1%e��t and f D 1Bu
%.p/. Define

�u
1 D 'C;0:1%e��t for these choices.

Similarly, using Lemma 2.11 (this time applied to �cs with � D 0:1%e��t ) we let
�cs
1 D 'C;0:1%e��t .

Put �1 WD �u
1�

cs
1 . Note that 1Bu

%.p/�
cs � �1 � 1Bu

2%
.p/�

cs. Therefore,

�u
p.B

u
%.p//�

cs
p .�

cs/ � �.�1/ � �
u
p.B

u
2%.p//�

cs
p .�

cs/: (82)

Moreover, �u
p.�1/ � �

u
p.B

u
%.p//.

Since O u
i jBb.yi / D 1 and �u

p.�1/ � �
u
p.B

u
%.p//, we have

#¹g �W u. Qq0/ W (73) holds with 0 � i � N 0.b/º

�
eht

�u
p.B

u
%.p//

X
i

Z
W u.q0/

�1.aty/ O 
u
i .y/ d�u

q0
.y/:

Moreover, by Proposition 3.2 we haveZ
W u.q0/

�1.aty/ O 
u
i .y/ d�u

q0
.y/ D �.�1/�

u
q0
. u
i /CO.C

1. u
i /C

1.�1/e
.h��5/t /

for all 0 � i � N 0.b/.
Combining these two estimates and using the fact that in view of the estimates in (82)

we have �.�1/=�u
p.B%.p//� 1 we conclude that

#¹g �W u. Qq0/ W (73) holds with 0 � i � N 0.b/º

� eht
X

�u
q0
. u
i /CO.C

1. u
i /C

1.�1/e
.h��5/t /N 0.b/: (83)
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In view of (70) we have C1. u
i /� b�?v.0/; moreover, C1.�/� ��? andN 0.b/�

N.b/� b�?. Recall also from (79) that
PN 0.b/
iD0 �u

q0
. u
i /� b�21v.0/.

If we now choose � small enough, (74) follows from (83) and the proof is complete.

Corollary 7.8. There exist some �24 and �25 such that the following holds. Let t � 0 and
� � e��24t . Then

#O� .0; t;U; �/ D v.0/�Th.U/
1�e�h�

h
eht CO0..1 � e

�h�/e.h��25/t / (84)

where as in (68) we have

O� .0; t;U; �/ D Modg :0 \ .Œ0; et �U � Œ0; et���U/:

Proof. We will show this holds with �24 D �22=2. By Lemma 7.2 we know that
 2 O� .0; e

t ;U; �/ if and only if

g � at QW u. Qq0/ \ QW
cs

U;� ¤ ;:

Therefore, it suffices to show that

#N . Qq0; t;U; �/ D v.0/�Th.U/
1�e�h�

h
eht CO0..1 � e

�h�/e.h�?/t /:

This last statement is proved in Lemma 7.6.

Proof of Theorem 7.1. Let � � e��24t , and for every n� 0 define tn WD t � n�. Then (84)
applied with t D tn implies that

#O� .0; tn;U; �/ D v.0/�Th.U/
1�e�h�

h
ehtn CO0..1 � e

�h�/e.h��25/tn/

D v.0/�Th.U/
e�nh��e.�n�1/h�

h
eht CO0..1 � e

�h�/e.h��25/t�.h��25n�//:

Summing these over all n � 0 such that tn � h�1
h
t we get

#
�
Modg :0 \ .Œ0; et �U � Œ0; e

h�1
h
t �U/

�
D v.0/�Th.U/

1�e
h�1
h
t

h
eht CO0.e

.h�?/t /:

This implies the proposition – note that by basic lattice point count in Euclidean spaces,2

the number of integral points  2 U.�/ such that kk � e
h�1
h
t is� e.h�1/t .

8. Proof of Theorem 1.1

We are now in a position to prove Theorem 1.1. The proof relies on Theorem 7.1. We
cover ML.S/ with finitely many train track charts U.�1/; : : : ;U.�c/. Using the convexity
of the hyperbolic length function, we can reduce the counting problem in Theorem 1.1 to

2As we remarked in the introduction, the point here is that we are counting the number of points
in one Modg -orbit.
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an orbital counting in sectors on U.�i /, with respect to linear structure, where the length
function `X is well approximated by the k k�i . Theorem 7.1 is then brought to bear in the
study of the latter counting problem.

LetX be a compact surface equipped with a Riemannian metric of negative curvature.
Recall that `X W ML.S/! ML.S/ denotes the length function. It satisfies `X .t�/ D
t`X .�/ for any t > 0.

Let � be a maximal train track. By Corollary 5.2, `X is Lipschitz in U.�/. Let L� be
the Lipschitz constant, hence

j`X .�/ � `X .�
0/j � L�k� � �

0
k� : (85)

Recall that U.�/ is a cone on the polyhedron P.�/.

Lemma 8.1. There exists a constant OL� , depending on L� , with the following property.
For any �; �0 2 P.�/ we have

ˇ̌
1

`X .�/
�

1
`X .�0/

ˇ̌
� OL�ı:

Proof. Note that there exists `X;� > 1 such that 1=`X;� � `X .�/ � `X;� for all � 2 P.�/.
The claim thus follows from (85).

For any T > 0, let CX .�; T / D ¹� 2 U.�/ W `X .�/ � T º. To simplify notation, we
will write CX .�/ for CX .�; 1/. Let SX .�/ D ¹� 2 U.�/ W `X .�/ D 1º. Then

CX .�; T / D TCX .�/ D Œ0; T �SX .�/:

Proof of Theorem 1.1. Let X be as above. Let �1; : : : ; �c be finitely many maximal train
tracks with the following properties:
� ML.S/ D

Sc
iD1 U.�i /, and

� `X W U.�i /! R is Li -Lipschitz for all 1 � i � c.
Let L D max Li ; increasing L if necessary we will also assume that the conclusion of
Lemma 8.1 holds with L.

Fix some 1 � i � c and write � D �i ; when there is no confusion we drop � from the
notation for the norm and normalization in U.�/. We will first consider the contribution
from U.�/ and then we will combine the contributions of different �i for 1 � i � c.

We will use the fact that the number of lattice points in a Euclidean region is� the
volume of the 1-neighborhood of the region.

Let 0 be a rational (multi-) geodesic. For every T > 0 define

N� .0; T / D #¹g0 2 U.�/ W `X .g0/ � T º: (86)

Fix some ı > 0; this will be optimized later and will be chosen to be of size T �?.
Define

P�ı.�/ WD ¹.bi / 2 P.�/ W bi � 2ı for all iº: (87)

Cover P.�/ with cubes of size ı with disjoint interiors. Let ¹Uj W j 2 Jıº be the
subcollection of those cubes with Uj \ P�ı.�/ ¤ ;.

For every j , let �j 2 Uj be the center of Uj . The number of Uj ’s required to cover
P.�/ is� ı�N17 for some N17 depending on � .
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There is some �26, depending only on the dimension, with the following property. If
ı � T ��26 , then the number of integral points  2 U.�/ with kk � `X;�T and

N D =kk 2 P.�/ � P�ı.�/ (88)

is� ıT h.
For each j , let Uj;� denote the cube which has the same center �j as Uj , but has size

ı � ıN18 where N18 D N17 C 1.
Then, if ıN18 � T ��26 , the number of integral points  2 U.�/ with kk � `X;�T and

N 2
[
j

Uj � Uj;� (89)

is� ı�N17ıN18T h � ıT h.
Altogether, if ıN18 � T ��26 , then

#¹ 2 Modg :0 \ U.�/ W `X ./ � T; N satisfies (88) or (89)º � ıT h: (90)

We now find an estimate for

#¹ 2 Modg :0 \ CX .�; T / W N 2
S
Uj;�º:

Put Uj;�;C D
®

�
`X .�j /�Lı

W � 2 Uj;�
¯

and Uj;�;� D
®

�
`X .�j /CLı

W � 2 Uj;�
¯
. Then it

follows from (85) that

Œ0; 1�Uj;�;� � ¹� 2 CX .1; �/ W N� 2 Uj;�º � Œ0; 1�Uj;�;C

Therefore, applying Theorem 7.1, with U D Uj;�;˙, we get

v.0/�Th.Uj;�/

h.`X .�j /C Lı/h
T h CO�;0.T

h��20/

� #¹ 2Modg :0 W  2 CX .�; T /; N 2 Uj;�º �
v.0/�Th.Uj;�/

h.`X .�j / � Lı/h
T hCO�;0.T

h��20/I

this estimate implies that

#¹ 2 Modg :0 W  2 CX .�; T /; N 2 Uj;�º

D
v.0/�Th.Uj;�/

h.`X .�j //h
T h CO�;0.ı�Th.Uj;�/T

h
C T h��20/: (91)

Put SX .�; j / D ¹� 2 SX .�/ W N� 2 Uj;�º. Then by Lemma 8.1 we have

�Th.Œ0; 1�SX .�; j // D

Z
Uj;�

1

h`X .�/h
d�Th D

�Th.Uj;�/

h.`X .�j //h
CO.ı/�Th.Uj;�/:
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This observation together with (91) gives

#¹ 2 Modg :0 W  2 CX .�; T /; N 2 Uj;�º

D v.0/�Th.Œ0; 1�SX .�; j //T
h
CO�;0.ı�Th.Uj;�/T

h
C T h��20/: (92)

Recall also that `˙1X is bounded on P.�/; we have
P
�Th.Œ0; 1�SX .�; j // D

�Th.Œ0; 1�SX .�//CO.ı
?/. Hence, summing (92) over all j ’s we get

#¹ 2 Modg :0 W  2 CX .�; T /; N 2
S
Uj;�º

D v.0/�Th.Œ0; 1�SX .�//T
h
CO�;0.ı

?T h C ı�N17T h��20/: (93)

Now choose ı D T ? so that ı?T h C ı�N17T h��20 D T h��27 . Then from (93) and (90)
we get

#¹ 2 Modg :0 W  2 CX .�; T /º D v.0/�Th.Œ0; 1�SX .�//T
h
CO.T h��27/: (94)

This concludes the contribution arising from a single train track chart U.�/.
Recall now that the regions in U.�i / which are carried by other U.�i 0/ are finite-

sided polyhedra (see Lemma 5.1). We may thus find disjoint finite-sided polyhedra Ui �

P.�i /with
S

RC:Ui DML.S/. Repeating the above argument for each Ui , the theorem
follows from the estimate in (94).

We conclude with the following which are of independent interest. Let � � Modg be
a finite index subgroup and let � be a maximal train track. Define

N�;� .0; T / WD ¹ 2 �:0 \ U.�/ W kk� � T º :

Theorem 8.2. There exists some �28 D �28.�/ such that for every rational multi-curve
0 2 U.�/, there exists some constant c�;� .0/ such that

#N�;� .0; T / D c�;� .0/T
6g�6

CO0;�;�.T
6g�6��28/:

Proof. The argument is similar to our argument in the proof of Theorem 1.2. Recall that
we normalized the Masur–Veech measure to be a probability measure on Q1.1; : : : ; 1/.
Let �� denote the lift of the Masur–Veech measure to Q1T .1; : : : ; 1/=� . Then
��.Q

1T .1; : : : ; 1/=�/ D ŒModg W ��.
Similar to (69), define v�.0/ to be the measure of the lift of W u.q0/ to

Q1T .1; : : : ; 1/=� where I .q0/ D 0.
Now, by virtue of Theorem 7.1, we have

#¹ 2 �:0 \ U.�/ W kk� � T º D v0�.0/�Th.Œ0; 1�U.�//T
h
CO0;�;�.T

h��28/

where v0�.0/ D v�.0/=ŒModg W �� and v�.0/ is as above.
The exponent �28 depends on the exponential mixing rate for the Teichmüller geodesic

flow on .Q1T .1; : : : ; 1/=�; ��/.
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Let � � Modg be a finite index subgroup. Given a rational multi-geodesic 0 on X
define

sX;�.0; T / WD #¹ 2 �:0 W `X ./ � T º:

We also have the following generalization of Theorem 1.1.

Theorem 8.3. There exists some �29 D �29.�/ > 0, with dependence on � related to the
exponential mixing rate for the Teichmüller geodesic flow on Q1T .1; : : : ; 1/=� , and some
c D c.0; X; �/ such that

sX;�.0; T / D c T
6g�6

CO0;X;�.T
6g�6��29/:

Proof. Similar to the discussion in the proof of Theorem 8.2, the proof of Theorem 1.1
applies mutatis mutandis to sX;�.0; T /.
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