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Abstract. We prove a quantitative estimate, with a power saving error term, for the number of
simple closed geodesics of length at most L on a compact surface equipped with a Riemannian
metric of negative curvature. The proof relies on the exponential mixing rate for the Teichmiiller
geodesic flow.
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1. Introduction

Let g > 2, and let S be a compact Riemann surface of genus g. Let 7(S) be the Teich-
miiller space of complete hyperbolic metrics on S, and let

M(S) = T(S)/ Modg

be the corresponding moduli space, where Mod, is the mapping class group of S

Let M € M(S). Problems related to the asymptotic growth rate of the number of
closed geodesics on M have been long studied. In particular, thanks to works of Delsart,
Huber, and Selberg we have the following: There exists some § = (M) > 0 such that the
number of closed geodesics of length at most L on M equals

Li(el) + On(e7%), (1)

where Li(x) = f; 1:)% (see [10] and references there).
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More generally, the growth rate of the number of closed geodesics on a negatively
curved compact manifold was studied by Margulis [26]. His proof, which is different from
the above mentioned works, is based on the mixing property of the Margulis measure for
the geodesic flow. In the constant negative curvature case, Margulis’ method combined
with an exponential mixing rate for the geodesic flow, also provides an estimate like (1) —
albeit with a weaker power saving ¢ (see e.g. [27]).

1.1. Simple closed geodesics

The aforementioned fundamental results do not provide any estimates for the number of
simple closed geodesics on M. Indeed, very few closed geodesics on M are simple, [7],
and it is hard to discern them in 7y (M) [6]. More explicitly, it was shown in [38] that
the number of simple closed geodesics of length at most L on M is bounded above and
below by Oy (L6876).

In her PhD thesis [30] and [32], Mirzakhani proved an asymptotic growth rate for the
number of simple closed geodesics of a given topological type on a hyperbolic surface M
— recall that two simple closed geodesics y and Y’ on M are of the same topological type
if there exists some g € Mod, such that y’ = gy.

Let X be a compact surface equipped with a Riemannian metric of negative curvature.
We emphasize that the curvature is not assumed to be constant; indeed, elements in M (S)
will be denoted by M to minimize the confusion. By a multi-geodesic y on X we mean
y = Z?’:l a;y; where y;’s are disjoint, essential, simple closed geodesics, and a; > 0 for
all 1 <i < d.In this case, we define £x (y) := Y a;Lx(y), where £x denotes the length
function on X. The multi-geodesic y will be called integral (resp. rational) if a; € Z
(resp. a; € Q).

Given a rational multi-geodesic yo on X, define

sx (vo. L) :=#{y € Modg .yo : £x(y) < L}.
Mirzakhani [32, Thm. 1.1] proved the following estimate when M is a hyperbolic surface:
sm (Yo, L) ~ ny, (ML, 2)

where ny, : M(S) — R* (the Mirzakhani function) is a continuous proper function;
geometric information carried by 7, is also studied in [32].

In this paper we obtain a quatitative version of (2); moreover, our approach allows us
to prove such a result in the more general setting of variable negative curvature.

Theorem 1.1. There exists some k = k(g) > 0 such that the following holds. Let X be
a compact surface of genus g equipped with a Riemannian metric of negative curvature.
Let yo be a rational multi-geodesic on X. Then

SX(yOv L) = nyO(X)LGg_6 —+ O}/Q,X(L6g_6_x)

where n,(X) is a positive constant which depends on yy and X.



Effective counting of simple closed geodesics 3061

The proof of Theorem 1.1 is based on the study of a related counting problem in the
space of geodesic measured laminations on S, a la Mirzakhani. The space of measured
laminations on S, which we denote by ML(S), is a piecewise linear integral manifold
homeomorphic to R%~; but it does not have a natural differentiable structure [41]. Train
tracks were introduced by Thurston as a powerful technical device for understanding
measured laminations. Roughly speaking, train tracks are induced by squeezing almost
parallel strands of a very long simple closed geodesic to simple arcs on a surface; they
provide linear charts for MEL(S).

The mapping class group Modg of S acts naturally on M(S). Moreover, there is
a natural Modg-invariant locally finite measure on M (S), the Thurston measure (i,
given by the piecewise linear integral structure on ML(S) [41]. For any open subset
U C ME(S) and any ¢ > 0, we have

prn(tU) = 186 (V).

On the other hand, any metric of negative curvature X on S induces the length function
A Lx (L) on ML(S), which satisfies £x (tA) = tLx (A) for all ¢ > 0. It is proved in [30,
App. A] that £)y is a convex function on ML (S) when M is a hyperbolic surface. This
fact remains valid in the more general setting of variable negative curvature (see §5.5).

The source of the polynomially effective error term in Theorem 1.1 is the exponen-
tial mixing property of the Teichmiiller geodesic flow proved by Avila, Gouézel, and
Yoccoz [3-5]. We combine this estimate with ideas developed by Margulis in his PhD
thesis [26] to prove the following theorem which is of independent interest — see Theo-
rem 7.1 for a more general statement.

Let 7 be a train track and let U(7) be the corresponding train track chart. For every
A € U(z) we let |A||; denote the sum of the weights of A in U(7) (see §5).

Theorem 1.2. There exists some k1 = k1(g) > 0 so the following holds. Let T be a max-
imal train track. Let L > 1 and let yy be a simple closed curve on M. There exists a
constant ¢y, > 0 so that

#{y € U(t) NModg .0 : |[¥lle <L} = ¢y, voly L8876 + Oy, (L8671
where vol; = pum{A € U(z) : ||All: < 1}.

It is worth noting that in view of Theorem 1.2, the asymptotic behavior of the number
of points in one Mod, -orbit in the cone {A : |A||; < L} and that of the number of integral
points in this cone agree up to multiplicative constant.

Theorem 1.2, in the more general form Theorem 7.1, plays a crucial role in our anal-
ysis. Indeed, using the aforementioned convexity of the length function, we will prove
Theorem 1.1 using Theorem 7.1 in §8.

It is an intriguing problem to investigate the asymptotic behavior of functions sim-
ilar to and different from sx (yo, L) or the complexity considered in Theorem 1.2. For
instance, for a suitable formulation of a combinatorial length — using intersection num-
bers — the count is exactly a polynomial (see [40]). We also refer the reader to [11] where
a related problem is studied for thrice punctured sphere.
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1.2. Outline of the paper

In §2 we collect some preliminary results. In §3 we prove an equidistribution result with
an error term, Proposition 3.2, which may be of independent interest (see e.g. [22,24]).
The proof of this proposition is based on the exponential mixing rate for the Teichmiiller
geodesic flow [4] and the so called thickening technique [14,26]. In §4 we prove Propo-
sition 4.1; this proposition is one of the main ingredients in the proof, and could be
compared to arguments in [26, Chap. 6]. We will recall some basic facts about ML(S),
and study the relation between the linear structures on M £(S) and the space of quadratic
differentials in §5 and §6. The orbital counting in sectors of ML(S) is studied in §7; the
main result here is Theorem 7.1. We prove Theorem 1.1 in §8.

2. Preliminaries and notation

Let @(S) denote the moduli space of quadratic differentials on S, and let @;(S) be the
moduli space of quadratic differentials with area 1 on S. For any o = (1, ..., ok, ¢) with
> a; =4g —4and ¢ € {1}, define @; (@) to be (a connected component) of the stratum
of quadratic differentials consisting of pairs (M, q) where M € M(S) and ¢ is a unit area
quadratic differential on M whose zeros have multiplicities ¢y, ..., 0, and ¢ = 1if g is
the square of an abelian differential and —1 otherwise. Then

Q(S) = |ai@.

Put
Qo) :={tq:t R, g €@ ()}

Let = C S be aset of k distinct marked points. Let @7 («) denote the space of quadratic
differentials (M, q) equipped with an equivalence class of homeomorphisms f : § — M
that send the marked points to the zeros of g. The equivalence relation is isotopy rel
marked points. Let 7 : @' 7 (&) = @1 (@) be the forgetful map which forgets the marking
f; this is an infinite degree branched covering.

Similarly, let 2(S) denote the moduli space of abelian differentials on S, and let
Q1(S) be the moduli space of area 1 abelian differentials. For any o = (1, ..., o),
we let # («) denote the corresponding stratum, and let #; () denote the area 1 abelian
differentials.

Note that passing to a branched double cover M of M, we may realize @1 (o) as an
affine invariant submanifold in J¢;(&) corresponding to odd cohomology classes on M
(see §2.1). However, even if g belongs to a compact subset of @1(S), the complex struc-
ture on M may have very short closed curves in the hyperbolic metric, e.g. a short saddle
connection between two distinct zeros on (M, ¢) could lift to a short loop in M. Note
however that if (M, w) is the aforementioned double cover of (M, g), then the length
of the shortest saddle connection in w is bounded by the length of the shortest saddle
connection in ¢, i.e., compact subsets of @ («) lift to compact subsets of ' (&).
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2.1. Period coordinates

Letx = (M,w) € #(a), and let ¥ C M be the set of zeros of w. Passing to a finite cover,
which we continue to denote by # («), we assume there are no orbifold points in J ().
Define the period map

®: H() > H' (M, =,C).

Let us recall that @ can be defined as follows. Let #% = k. Fix a triangulation 7 of the
surface by saddle connections of x, that is, 2¢g + k — 1 directed edges 01, ...,820+k—1
which form a basis for H;(M, X, Z). Define

2g+k—1
d(x) = (/S a)) .
i i=1

Note that this map depends on the triangulation 7. If T” is any other triangulation, and
@’ is the corresponding period map, then ® o ®~! is linear. For any x € J (c), there
is a neighborhood B(x) of x such that the restriction of ® to B(x) is a homeomorphism
onto ®(B(x)) (see §2.9). We always choose B(x) small enough that, using the Gauss—
Manin connection, the triangulation at y € B(x) can be identified with the triangulation
at x.

We define the period coordinates at x = (M, g) € @Q(«) as follows. If ¢ = 1, then ¢
is the square of an abelian differential, and we may define period coordinates as above.
If ¢ = —1, we use the orienting double cover J (&) to define the period coordinates: in
this case there is a canonical injection from @(«) into J(&). Any Riemann surface in
the image of this map is equipped with an involution. This way we get the period map
from Q(a) to HY (M, X, C) — the anti-invariant subspace of the cohomology for the
involution.

Puth:=2g+k—2if¢c =1and h:=2g + k — 3 if ¢ = —1; the number # is the
topological entropy of the Teichmiiller geodesic flow on @ («).

2.2. SL(2,R)-action on J1 ()

Let x € #1(a), we write ®(x) as a 2 x n matrix. The action of g = (¢ Z) € SL(2,R) in
these coordinates is linear. We choose a fundamental domain for the action of the mapping
class group and think of the dynamics on the fundamental domain. Then the SL(2, R)-
action becomes

X1 ... Xp a b\ [(x1 ... xy
(y1 yn) w (c d) (y1 yn) A(g. %),
where A(g, x) € Sp(2g.Z) x Z¥~ is the Kontsevich-Zorich cocycle. That is, A(g, x) is
the change of basis one needs to perform to return the point gx to the fundamental domain.
It can be interpreted as the monodromy of the Gauss—Manin connection restricted to the
orbit of SL(2, R).
In what follows, we let

el 0 1 ¢ _ 1 0
“=\o et) " =\o 1)0 “=\¢t 1)
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We have the following.

Theorem 2.1 (Veech-Masur). The space F1(a) carries a natural measure [L in the
Lebesgue measure class such that

(1) H#1(w) has finite measure,
(2) w is SL(2, R)-invariant and ergodic.

More generally, for any affine invariant manifold M C #;(«), we let i denote the
SL(2,R)-invariant affine measure on M. In particular, all the strata in @ (S) are equipped
with such invariant measures.

2.3. Mapping class group action

We denote elements in Modg using bold letters, e.g., g denotes an element in Mod, . The
action of Mod, on @!'T (&) commutes with the action of SL(2, R); however, we will
denote both these actions as left action and write e.g. g - X or simply gx.

2.4. The constants

We will use ko and N,, ® = 1,2, ..., to denote various constants. Unless explicitly
mentioned otherwise, these constants are allowed only to depend on the genus. The con-
stants k, are meant to indicate small positive numbers while N, are used for constants
which are expected to be > 1.

We will use the notation A < B to mean that there exists a constant ¢ > 0 such that
A < ¢ B; the implicit constant ¢ is permitted to depend on the genus, but (unless otherwise
noted) not on anything else. We write A < B if A < B < A. If a constant (implicit or
explicit) depends on another parameter other than the genus, we will make this clear by
writing, e.g., <, C(x), etc.

We also adopt the following -notation. We write B = A** if B = A*¢ where ¢ > 0
depends only on the genus. Similarly, one defines B < A*, B > A*. Finally, we also
write A < B* if A* « B < A* (possibly with different exponents).

2.5. Modified Hodge norm

Let M be a Riemann surface. By definition, M has a complex structure. Let {3y denote
the set of holomorphic 1-forms on M. One can define the Hodge inner product on Hpy

by
i _
) == AT
(w,n) Z/Mwn

We have a natural map r : H'(M, R) — #j which sends a cohomology class ¢ €
H'(M,R) to the holomorphic 1-form r(c) € # such that the real part of  (c) (which is a
harmonic 1-form) represents c. We can thus define the Hodge inner product on H!(M,R)

by {(c1,¢2) = (r(c1),7(c2)). Then

(c1,c2) = / Cc1 A *Co,
M
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where * denotes the Hodge star operator and we choose harmonic representatives of ¢
and *c; to evaluate the integral. We denote the associated norm by || - ||as. This is the
Hodge norm (see [18]).

If x = (M,w) € #1(x), we will often write || - ||z, to denote the Hodge norm || - || ar

on H'(M,R). Since || - ||u,x depends only on M, we have |c|lgrx = [lc|lmx for all
c € H'(M,R) and all k € SO(2).
Let

E(x) = span {[Re(w)], [Im(w)]}:
the space E(x) is often referred to as the standard space. We let
p:H'(M,,R) - H'(M,R) 3)

denote the natural projection; p defines an isomorphism between E(x) and p(E(x)) C
H'(M,R).

For our applications (and in order to account for the loss of hyperbolicity in the thin
part of the moduli space) we need to consider a modification of the Hodge norm.

The classes cq and *cg,

Let « be a homology class in H;(M,R). We let xc, € H'(M,R) be the cohomology

class such that
/ w = / W A *Cqy
o M

/ *xcq A xcg = i(a, B),
M

forall o € H'(M,R). Then

where i (-, -) denotes the algebraic intersection number. Let * denote the Hodge star oper-

ator, and let
Ca = ¥ L(xcCq).

Then for any w € H'(M,R) we have

(a),ca):/ a)/\*ca=/a),
M o

where (-, -} is the Hodge inner product. We note that *c is a purely topological construc-
tion which depends only on «, but ¢, also depends on the complex structure of M.

Fix €, > 0 (the Margulis constant) so that any two geodesics of hyperbolic length less
than e, must be disjoint.

Let o denote the hyperbolic metric in the conformal class of M. For any closed
curve & on M, let 37 () denote the length of the geodesic representative of « in the
metric 0.

We recall the following.
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Theorem 2.2 ([2, Thm. 3.1]). For any constant L > 1 there exists a constant ¢ > 1 such
that for any simple closed curve o with £y () < L, we have

1
EeM(a)l/Z < lleallsr < cla(e)'/>. 4)
Furthermore, if Lyr(a) < €x and B is the shortest simple closed curve crossing o, then

1 _ _
Sln(@) Y2 <legllar < clar(@)™2.

Short bases

Suppose (M, w) € H1(a). Fix €1 < €4 and let g, ..., ax be the curves with hyperbolic
length less than €; on M. Forevery 1 <i <k, let B; be the shortest curve in the flat metric
defined by w with i («;, 8;) = 1. We can pick simple closed curves y,, 1 <r <2g — 2k,
on M so that the hyperbolic length of each y, is bounded by a constant L depending only
on the genus, and so that the «;, 8; and y; form a symplectic basis § for H;(M,R). We
will call such a basis short. A short basis is not unique, and in the following we fix some
measurable choice of a short basis at each point of #; ().

We recall the definition of a modified Hodge norm from [16]; it is similar to (but not
the same as) the one defined in [2]. The modified norm is defined on the tangent space to
the space of pairs (M, w) where M is a Riemann surface and w is a holomorphic 1-form
on M. Unlike the Hodge norm, the modified Hodge norm will depend not only on the
complex structure on M but also on the choice of a holomorphic 1-form w on M. Let

SIS

We can write any § € H'(M,R) as

2g—2k

k k
0= Zai(*cai) + Zbiﬂai ()2 (xcp,) + Z ui(*cy, ). &)

i=1 i=1 r=1
We then define

2g—2k

k k
1015 = 100x + (D lail + D 1bil + D furl). ©6)
i=1 r=1

i=1

Note that || - ||"” depends on the choice of a short basis; however, switching to a different
short basis can change || - ||” by at most a fixed multiplicative constant depending only on
the genus.

From (6) we find that for 1 <i <k,

Ixca; [y =< 1 (7
(see §2.4 for the notation <). Similarly,

1

Oyt (i)' ®

e, 117 = Ilcg; lInx =<
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In addition, in view of Theorem 2.2, if y is any other moderate length curve on M, then
Ixcy |y < lI*cyllmx = O(1). Thus, if B is a short basis at x = (M, w), then for any
y € 8B,

Exty (1) < [[xey lnx < [y |” ©)

By Ext, (x) we mean the extremal length of y in M, where x = (M, ).

Remark. From the construction, we see that the modified Hodge norm is greater than
the Hodge norm. Also, if the flat length of the shortest curve in the flat metric defined by
o is greater than €7, then for any cohomology class ¢, for some N depending on €; and
the genus,

lell” < Nllellu: (10)

i.e., the modified Hodge norm is within a multiplicative constant of the Hodge norm.

Note however that for a fixed absolute cohomology class ¢, ||c||s is not a continu-
ous function of x, as x varies in a Teichmiiller disk; this is due to the dependence on
the choice of a short basis. To remedy this, we pick a positive, continuous, SO(2)-bi-
invariant function ¢ on SL(2, R) which is supported on a neighborhood of the identity
with [ o g) #(¢) dg = 1, and define

nﬂ;=whﬁ+[ lell, ¢ (g) dg.
SL(2,R)

It follows from [16, Lemma 7.4] that for a fixed ¢, log ||c|’; is uniformly continuous as x
varies in a Teichmiiller disk. In fact, there is a constant m¢ such that for all x € #; (@),
allc € H'(M,R) and all t > 0,

e "M lell < llellg,x < e™ el (11

Remark 2.3. Even though || - ||, is uniformly continuous as long as x varies in a Teich-
miiller disk, it may be only measurable in general (because of the choice of short basis).

2.6. Relative cohomology

Forc € H'(M,2,R) and x = (M, w) € ¥#,(x), let px(c) denote the harmonic repre-
sentative of p(c), where p : H'(M, X, R) — H'(M,R) is the natural map. We view
px(c) as an element of H'(M,Z,R). Then (similarly to [16, §7], see also [2] and [17])
we define the modified Hodge norm || ||' on H!(M, £, R) as follows:

A (c = pe(0))

z.z/

lelly = llp@l + Y

(z,z/)eTxX

)

where Y, ,+ is any path connecting the zeroes z and z’ of w. Since ¢ — px(c) represents
the zero class in absolute cohomology, the integral does not depend on the choice of y; ;.
Note that the || - ||" norm on H!(M, X, R) is invariant under the action of SO(2).
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As above, we pick a positive continuous SO(2)-bi-invariant function ¢ on SL(2, R)
supported on a neighborhood of the identity such that fSL(Z R) ¢(g)dg = 1, and define

lellx = / el $(s) de. (12)
SL(2,R)

Then, the || - ||y norm on H'(M, £, R) is also invariant under the action of SO(2).
By [16, Lemma 7.5] there exists some N; such that

e Mlellx < l@)scllarx < eV el 13)

2.7. The AGY-norm

Let || - ||agy,x denote the norm defined in [4, §2.2.2]. We recall the definition: Let x =
(M, w) € #;(a). Forany c € H' (M, 2, C), define

lellagyx = sup oL
’ v 1P (»)]
where the supremum is taken over all saddle connections of w. This defines a norm and
the corresponding Finsler metric is complete [4].

We note that || ||x and || ||acy,» are commensurable to each other on compact subsets
of 1 ().

For every x = (M, q) € @(«), we define the norms | ||x and || ||acy.x using the
branched double cover M.

Lemma24. Letc € H'(M,%,C),t > 0and s € [0, 1]. Then

(14)

e 2 |lellacyax = I@rts)scllacyanmx < €7 [lcllacy.x- (15)

Proof. This is proved in [3, Lemma 5.2] (see also [4, (2.13)]); we recall the argument.
Write ¢ = a’ + ib" and ®(x) = a + ib. Then the definition (14) implies that for all > 0
and |s| < 1 we have

up e’ (d'(y) + sb'(y)) +ie”'D'(y)|
y lef(a(y) + sb(y)) +ie™"b(y)|
2 gup 1) 5V 0) £ )
Ty laly) +sb(y) +ib(y)]

By the triangle inequality, for every |s| < 1 and every z = z; + iz, € C we have

[[(@rus)«cllacy,aiusx =

(16)

lusz| = |z1 + 522 + iz2| < |21 +iz2| + |22] = 2|25
since z = u_suzz, we also get |usz| > |z|/2.

This observation and (16) imply that

"(y) +ib'(y)|
AiUg)xC < 4¢* gu |a()/)—.
I@rts)ecllacy.anm < 42 sup Sl

The lower bound follows similarly. ]
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2.8. Nondivergence results

Recall that @ () is realized as an affine invariant submanifold in #¢; (&), moreover, com-
pact subsets of @ () lift to compact subsets of F1(&). Let u : H1(&) — [2, o] be the
function constructed in [13] and [1].

Theorem 2.5. There exists a compact subset K], C Q(a) and some N, > 0 with the
Sollowing property. For every ty and every x € Q1(), there exist

s €1[0,1/2] and to <t < max{2ty, N>logu(x)}
such that X' = a;usx € K.

Proof. The stratum @ («) is an affine invariant submanifold in #¢;(&). The claim thus
follows from [1, Thm. 2.2] and [3, Lemma 6.3] applied with § = 1/2. [ ]

2.9. Period box
LetX = (M, q) € @Q'T (). For every r > 0 define
Rr(%) 1= {O(F) + d' + b d. b € H(M,2.R), | +ib | acy.s < 7).
Let now r > 0 be such that ®~! is a homeomorphism on R, (¥) N ®(Q' T ()). Put
B, () = (R (X))

The open subset B, (X) will be called a period box of radius r centered at X. Thanks
to [3, Prop. 5.3], B, (X) is well defined forall 0 < » < 1/2 and all ¥ € @'T (). We also
have the following.

Lemma 2.6. There exists some N3 such that for all x € @y () and every 0 < r <u(x)~3
the following hold. Let ¥ € @Q'T () be a lift of x.

(1) The restriction of the covering map 7 to B, (X) is injective.

(2) Forall X1, X5 € By (X), the Teichmiiller distance between X1 and X, is at most 1.

Proof. The argument is similar to the one used in [16, proof of Lemma 8.2].

For part (2) we will need the following two facts: d7 ((a;us) 'z, (a;us)*1z") < 16e%
forallt > 0 and s € [—1, 1] where dg denotes the Teichmiiller distance. Moreover, there
exists a constant C > 1 such that

C ldagy(z,2) <dy(z,2') < Cdpgy(z,2') forallz,z’ K,

where K], C @; () is the compact set introduced in Theorem 2.5.

We now turn to the proof of the lemma. For every x € K,, there exists 0 < r(x) <1/2
such that B, (y)(x) is embedded in the sense that the projection from the Teichmiiller
space Q' (@) to the moduli space @(c) restricted to B,(y)(X) is injective. Let ro =
infyc g7, 7(x). By compactness of K, 7o > 0. Decreasing ry if necessary, we assume that
forall x € K}, and all X1, %, € By, (X), the Teichmiiller distance between X; and X is at
most 1.
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Let N > 1 be such that
C2HN2mNFI6  pi < 1/2. (17)

where N, is as in Theorem 2.5.

We will show that N3 = N satisfies the claims in the lemma. First note that in view
of [3, Prop. 5.3], B(X) := B(y)-~ (X) is well defined for all x € @;(«) and all the
lifts ¥ € @'T (). Suppose now that there exist x € @; () and X1, X, € B(X) such that
X, = gx; for some g in the mapping class group. Write

X=X 4v, where |viflacy,e <u(x)7V.
By Theorem 2.5, there exist s € [0,1/2] and T < N, logu(x) such that x’ = a,usx € K.
Let x; = acusx;, X; = a;usX; and X’ = a;usx. Then, in view of (15),

;< eZ-‘rZru(x)—N < 8u(x)2N2_N+2 < 22N2—N+5 < ro (18)

i

i |l AGY,x

where for the last estimate we have used (17) and the fact that u(x) > 2. However,
X, = gX}, so both x| and x} belong to the projection of B,,(¥'); this contradicts the
fact that By, (x’) is embedded.

This contradiction shows that B, (,)~~ (x) is embedded, establishing part (1).

We now turn to part (2). We use the above notation. Let X1, X, € Bu)-~ (x), and
define x; = a,usx; € Kj, and X] = ausX; as above. Then (18) implies that

dacy (&}, ¥5) < 16u(x)*V2"N+2,
Hence, dy (¥}, X3) < 16Cu(x)*"2"N+2_Since %; = (acus)~' %], we conclude that
dy (%1, %) < Cu(x)*V2=N+16
where we have used (17) and u(x) > 2 in the last inequality. The proof is complete. =
For every x € @;(«) we put
r(x) = u(x)™"; (19)

for every compact subset K C @;(«), let r(K) = inf{r(x) : x € K}.
For every 0 < r < r(x), we let B,(x) denote 7(B,(¥)) where ¥ € @Q'T () is an
arbitrary lift of x. We refer to B, (x) as the ball of radius r centered at x.

2.10. Horospherical foliation
Given a point x = (M, q) € @1 (), the tangent space T, @; (o) decomposes as
TxQi(a) = Rv(x) @ E*(x) ® E*(x)

where v(x) with ||v(x)|agy,x = | determines the direction of the Teichmiiller geodesic

flow, and
E"(x) = TxQ () NDO (H'(1,%.R)),

E*(x) = Tx@; () N DO GH' (1,1, R)).
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where (1,§) = (M, X) if ¢ = 1 and (1,%) = (M, X) if ¢ = —1 — recall that M is the
orienting double cover of M and we use ® to locally identify R@, («) with H!(M, X, C)
if ¢ = 1 and with the HL (M, $,C) if ¢ = —1.

If ®(x) = a + ib for some x € @, (), then

E'(x)={d e HY(M,X.R) :i(d’,b) = 0}, (20)

and ES(x) = {ib’ € iH'(M, 2, R) :i(a,b’) = 0} when ¢ = 1. Similarly, one can define
E™* in the case ¢ = —1.

The subspaces E"*(x) depend smoothly on x, and are integrable. We denote the cor-
responding leaves by W"(x) and W*(x), respectively. Also put

Whx) :={a;W"(x):t €e R} and WS(x):={a;W3(x):t € R}.

Let p% and p, denote the leafwise measures of the natural measure p along W*"(x)
and W*(x), respectively. Then y + uy" is constant along W*"5(x), respectively, and we

have
—ht ,u

(@)eps = e Ml o and  (a)eps =" Q1)
see also [3, §4] where these measures are defined using volume forms.
If B,(x) is a period box centered at x, then u|g,(x) has a product structure as
dLeb x du® x du (see e.g. [3, Prop. 4.1]).
Given x € @;(«) and a period box B, (x) with 0 < r < r(x), we let

B}*(x) = the connected component of x in B, (x) N W*™**(x).

Define B; (x) for @ = cu, cs similarly.

We also denote functions which are supported on the leaves W", W, etc. using the
same superscript, e.g., ¢" denotes a function which is supported on a leaf W"(x).

We use the norm | - [|agy,x to induce a metric dpu.s(x) on By (x) for 0 < r < r(x).
Hence notions such as diam etc. refer to this metric.

Let W* (%) denote the foliation & in @' 7 (), and define B* (%) accordingly.

Let w"* € E**(x). Then

[(@s)sw"acy.a,x = [w"llacy,x and [[(ar)«w*||acy,ax < W' llacy.x (22)
(see [3, Lemma 5.2]). Moreover, we have the following uniform hyperbolicity estimate.

Proposition 2.7. Let K C @1 () be a compact subset. There exist k2(K) and ty = to(K)
with the following property. Let t > to; suppose that x,a;x € K, and

H{r €[0,t] : arx € K}| > /3.
Then

—/<2(K)t| —/<2(K)t|

l(as)swllacy,a,x <e lwlagy,x and |(ar)swlla,x <e |w|x

forall w € ES(x) and all t > ty.
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Proof. Let || ||aem,x denote the modified Hodge norm defined in [2, §3]. Let C be a
constant such that

C'[vllapem,y < lvllacy,y < Cllv]apem,y (23)

forall y € K.
In view of [2, Thm. 3.15], there exists «3(K) such that under our assumptions in this
proposition we have

[(@)«wllaBem.a,x < e [wllaBem.x- (24)
We now compute

l(ar)swllacy,a,x < Cll(@)sw|aBEMa,x since a;x € K
< Ce ™ '||w|| aBEM.x by (24)

< C%e ™ w|acy.x since x € K.
. . _ _ 4logC
The claim thus holds with k, = k3/2 and 1y = - [ ]

Lemma 2.8. Ler K|, be as in Theorem 2.5. There is a positive constant N4 and for every
0 < 0 < 1 there exists k4(0), and a compact subset Ko(0) D K], with the following
properties. Let x € Qq(x), 0 < r < r(x) and let B, (x) be a period box centered at x. Put

Hi(x,0) := {y eB!(x): {t €[0,t] : a;y € Ko (0)}| = Gt}.
Then for every t > N4logu(x), we have
15 (BY (x) — Hi(x, 0)) < e @71k (BY(x)).
Proof. See [3, Prop. 6.1]. [
We apply the above with = 0.5, and put
Ky = Ko(0.5), k4 :=k4(0.5), Hj(x) :=H}(x,0.5) (25)

for the rest of the paper.
We have the following corollary:

Corollary 2.9. Letx € @ (a) andt > Nylogu(x). Forall y € H(x) and all w € E*(x)
we have

[(@a—s)swlacy.ary < e~0-5k2(Ka)t lwllacy,y-

Proof. Let tp < 11 be the first and the last time that a, y € K. Then in view of Lemma 2.8,
71 — 79 > 0.5t > (11 — 70)/3. Therefore, by (22) and Proposition 2.7,

[(a—)xwllacy.a_y = ”(a—r])*w”AGY,a_rly = e_O‘SKZ(K“)t||(a—ro)*w||AGY,a—roy

< e 05K 1y sy

as claimed. [
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2.11. Smooth structure on affine manifolds

As in [3, §5.2], we use the affine structure to define a smooth structure on @' 7 (&) and
@1 (). Let us recall the definition of a C k _norm from [3] (see also [4]).
Let W C @1 (@) be an affine submanifold. For a function ¢ on W define

ck(9) = sup [IDF o(x, v, ..., vp)],

where the supremum is taken over x in the domain of ¢ and vy, ..., vy € T, W with

AGY-norm at most 1. Define the C*-norm of ¢ as |¢| cx = Zf:o cj(@).

By a C¥ function we mean a function whose C¥-norm is finite. The space of com-
pactly supported C¥ functions on W will be denoted by Cck (W); and C2°(W) is defined
similarly.

In the following we will only need the C'-norm of functions. To avoid confusion
between this norm and other relevant norms which will be used, and also since we often
use the letter C to denote various constants, define

€l(e) = lgler

for any C! function ¢.
We will need to replace the characteristic functions of certain sets with their smooth
approximations. The following lemmas provide such approximations.

Lemma 2.10 (cf. [3, Prop. 5.8]). There exists N5 such that the following holds. Let
x € Qq(x). Let D C W"(x) be a compact set, and let € < 0.1r(D) (see (19)). There
exists a finite collection {¢;} of C*° functions on W"(x) with the following properties:
(1) 0<¢; <I1foralli.

(2) €'(¢;) < Nse 5.

(3) For every i, @; is supported on BZ(y;) for some y; € D.

(4) The covering {BL(yi)} of D has multiplicity at most N-s.

(3) X" @i <1, and equality holds on a neighborhood of D.

Proof. This is proved in [3, Prop. 5.8]. It is worth mentioning that [3, Prop. 5.8] is stated
for balls of size < 1; to get our claim here, one needs to apply the argument there not to
the AGY norm, but to the AGY norm scaled by 1/¢. ]

Let W be one of the following: @1 (a), W"5(x), or W (x), for some x € @1 ().
Let £ C W be a compact subset. For any 0 < € < 0.1r(E) define

EK/,G ={ye W :r(y)>eand B.(y) N E # 0};

note that EK’,G is an open subset of W which contains E.

Letr > 0and L > 1. Let Sy (E, r, L) denote the class of Borel functions 0 < f <1
supported and defined everywhere in E with the following properties: for all e <r/(10L)
there exist ¢4 ¢, p_ ¢ € CC"O(EKE) such that
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($-1) Y—e = f = Qe
(5-2) €Y (pse) <e L and

(8-3) llg+,e —9—cla < €2[| f1l2.

If W is clear from the context, we denote Sw (E, r, L) and EK; simply by S(E,r, L)
and E4 .

Lemma 2.11. There exists some L depending only on « such that for all 0 < r < r(x),
1Bl,l-'s(x) € SW“’S(x) (B;l’s(x), r, L)
Similarly, 1g,(x) € S(Br(x),r, L) forall 0 < r < r(x).

Proof. We will show the claims hold if we choose L > 2Ns (see Lemma 2.10) large
enough. Apply Lemma 2.10 with € and D = B!_,_, and denote by {¢; _} the functions
obtained from that lemma. For a second time, apply Lemma 2.10 with € and D = B}(x),

and denote by {¢; 4} the functions thus obtained. Put

P =) ¢ and ey = @iy

These functions satisfy ($-1) thanks to Lemma 2.10(1, 5). Moreover, they satisfy ($-2)
thanks to Lemma 2.10(1-4) and the fact that L. > 2N5.

To see (3-3), first note that ' (B;‘ (x) — 83_26) <« € where the implied constant
depends only on «. The claim in ($-3) thus holds true in view of Lemma 2.10(5) if we
choose L large enough, depending on «.

The second claim follows from the first, using the product structure of B, (x) and of

the measure u. ]

We fix once and for all some L such that Lemma 2.11 holds true and drop L from the
notation. In particular, $ (E, r, L) will be denoted by S (E, r).

Abusing notation we will write S(x, r) for S(E, r) if the compact subset E is not
relevant except that it is a compact subset containing x.

3. Translates of horospheres
In this section we will use a fundamental result of Avila, Gouézel, and Yoccoz [3, 4]

together with Margulis’ thickening technique [14,22,26] to study translations of pieces
of the horospherical foliations along the geodesic flow.

Theorem 3.1 (Exponential mixing, [3-5]). Let (M, ) be an affine invariant manifold.
There exists a positive constant k = k (M, ) such that if ¥y, W, € C°(M), then

V Wi (arx) W (x) diu(x) — p(U)pu(Wa)| < €1 (W) (W)™

where the implied constant depends on (M, [1).
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We remark that combining [3-5] and [36], the €! norm in Theorem 3.1 may be
replaced by the p-Hoélder norm for any p > 0. However, if we use the p-Holder norm,
the constant ¥ will, in general, depend on p; in particular, « tends to 0 as p tends to 0
(see [36, Thm. 1] and [4, Thm. 2.14]).

It is also worth mentioning that the €' norm in Theorem 3.1 may be taken to include
derivatives only in the direction of SO(2) C SL(2, R) (see [12] and [36, Thm. 1] and
references there). Our choice, €1, is more restrictive; this is tailored to our applications
later, e.g., we will use the estimate [|¢[|occ < €1(¢) for any ¢ € C2°(M).

Proposition 3.2. There exists some ks, depending on «, with the following property.
Let x € @1(a), 0 < r < r(x), and let B,(x) be a period box centered at x. Let y" €
CX(BY(x)). Then for any ¢ € C°(Q1(t)) we have

el gyl (ye ",

/ B (ary) V" () Al () — /
Wu(x) Q

dan [ yrau
1(@) Wu(x)

We need some notation; we discuss the case ¢ = 1, the case ¢ = —1 being similar.
Let ®(x) = a + ib; recall from (20) that
E'(x) ={d € H'(M,Z,R) :i(da’,b) = 0}.

Similarly E5(x) = {ib’ € iH'(M,Z,R) :i(a,b’) = 0}.
These spaces can alternatively be described as follows. Recall that £ (x) = span{a,b},
so E(x)c is SL(2, R)-equivariant. Let

HE(x)h :i={c € H'(M.2.C) : p(c) A p(E(x)c) = 0},

and define HH{{ (x)* similarly.

The unstable leaf W"(x) is locally identified with ®(x) + sb + w for s € R and
w € Hy (x)*. Similarly the center stable leaf W (x) is locally identified with ®(x) +
tv(x) + 5'ia + iw’ where 7,5 € R and w’ € H} (x)*.

Let0 <r <0.1r(x) and let y € B,(x). Write ®(y) = a, + ib,. We define the stable
projection y* € Bj,(x) as the unique point such that ®(y) = ®(y") + tv(y) + say, + w
where 7,5 € R with |z, |s| <2rand w € Hﬂé(y)J- with ||w|acy,x < 2r. Put

FB,(x) = {y € B;(x) : y" € By (x)}.

Then BY(x) C FB,(x).
For every 0 < § < 0.1r and every y € B, (x), let

Dy () ={acz :|1] =6,z € W(y), ®(2) = @(y) + w. [[w]acy.x <6}

Forevery y € By (x), let p : W (y) N B, (x) — W(x) be the projection along unstable
leaves. Then 0.5 < Jac( p;s) < 2, and moreover

WE(x) NBo.1s(x) C py’ (D5 (y)) € WS (x) N Bygs(x).
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Proof of Proposition 3.2. The idea is to relate the integral fWu(x) d(a: )y (y)dus(y)
to correlations of the function a_,¢ with a thickening of ¥" in the direction of W< (x).
Then we may use Theorem 3.1 to conclude the proof.

To that end, let 0 < € < 0.017(x) be a parameter which will be fixed later. In particular,
it will be taken to be of the form e ™’. Let ¥ be a smooth function supported in DE*(x)
such that stc(x) ¥ = 1. We can choose such a function so that it moreover satisfies

€1(y*) « e N6 where Ng and the implied constant depend on «.
Define ¥ on FB, (x) by
Y(y) = Ay (pu(3) - ¥ (") (26)

where k;ul = chs(yu) ¥ (pyu(w)) duSu(w). Extend W to a smooth function on @ (e)
by defining W(y) = O for all y & FB,(x); note that ;u(¥) = u% (V") (see the computation
in (30)).

We need the following lemma.

Lemma. There exists kg depending only on a such that

[ pemrmaso - [ swveae| <e@ewe @

Q1 ()

where the implied constant depends only on a.

Let us assume the lemma and finish the proof of the proposition. Optimizing the
choice of ¢ to be of size e ! for some small 0 < « < 1, the proposition follows from (27)
and Theorem 3.1 applied with W; = ¢ and W, = W —recall again that u(¥) = pi(yY).

(]

Proof of the Lemma. Since W is supported in FB, (x), we need to estimate

P 0) - / $(ar2)(2) du(2). 28)

By (x FBy(x)

Let z € FB,(x). Recall that ®(z) = P(z") + w where w € Rv(z") + E5(z"), indeed
z € W(z"). In view of (22) we have
[(@s)swllacy.ax < llwllacy,x-
Thus using the definition of €1 (¢), we have

p(ar2) — larz")| < €€ (9)
where k¢ and the implied constant depend only on «.
In consequence, we may replace ¢(a;z) by ¢(a,;z") in (28), and use the bound
[ lo < €'(-), to conclude that

'/B“( )¢(aty)wu(y) dps () —/ d(a;2)¥(2) du(z)| K EL(P)El(W)e o

FBr(x)

+

SV () dud () — / $(a (@) du(z)|  (29)
) Z€FB;(x)

B} (x

where the implied constant depends on «.
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Recall the definition of W from (26), in particular recall the normalizing factor A ..
This and the product structure of p yield

/ $(a:z")W(z) du(z) =/ Azu(arz)Y S (p2(2)) Y™ (2") du(z)
Z€FB; (x) Z€E€FB,(x)

- / B (arz")y" (") / Ay (P (w)) duh (w) ()
BY () Wes (zv)

(30)

= [ #envoram o)

We now combine the estimates in (29) and (30) to get

‘/Wu( )¢(atJ’)1/fu(y)d/vL;(Y) —/ P(a;2)¥(z)dpu(z)| < €L (P)E (V)eke

Q1 ()

where the implied constant is absolute. ]

Remark 3.3. It is worth mentioning that Proposition 3.2 and its proof hold for any
affine invariant manifold (M, ©). In what follows, however, we will only need this result
for @1 («); and even more specifically, in our application to counting problems, we will
need this result for the principal stratum @ (1, ..., 1). The main result in [4] was gener-
alized to @1 () in [5].

Corollary 3.4. There exist k7, kg, and N7 such that the following holds. Let x,z € @1 ()
and suppose 0 < r,r’" < 0.01 min{r(x), r(z)}. Let B C B,/(z) be such that 1g € $(z,r")
and let " € C°(BY(x)). Then for every € <r'/L (see Lemma 2.11) we have

6—N7€1 (wU)e—Kﬂ + '61 (l//u)€K8 .

‘M(B) B(azy)w“(y)dui(y)—/w“ dul| <

Proof. This follows from Proposition 3.2 by approximating 1g with ¢4 . and using prop-
erties ($-1)—(S5-3). [ ]

4. A counting function

Let x,z € @1(a). Let " be a function which is supported and defined everywhere in
Bo. 1) (x) = Bo.1r(x)(x) N W¥(x), and let ¢*° be a function which is supported and
defined everywhere in BC‘.lr(z) (z) = Bo.1r(z)(2) N W(2). For all ¢ > 0, define

Naclt, Y, ¢%) := DY ()¢ (ary) 31)

where the sum is taken over all y € By | r(x)(x) such that a;y € BY® )(z) — note that the
sum is indeed over all y € supp(y") such that a;y € supp(¢).
Alternatively, the sum is taken over connected components of a,supp(¥*) N supp(¢*)

(indeed the subscript nc stands for the number of connected components); this point will

0.1r(z
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be made more explicit later in this section (see e.g. Lemma 4.2 below), and recall that W
and W are complementary foliations.

The function . may be thought of as a bisector counting function where one studies
the asymptotic behavior of the number of translates of a piece of W" by Mod, which
intersect a cone in the Teichmiiller space.

The following proposition is the main result of this section and provides an asymptotic
behavior for N,.. This proposition plays a prime role in the proof of Theorem 1.2 in §7.

Proposition 4.1. There exist kg and Ng with the following property. Let x,z € @1 (),
and lett > Ngmax {logu(x),logu(z)}. Let " € C° (B (x)) with0 < y" <1, and
let ¢ € Ccoo(Bo.lr(z)(Z))' Then

0.1r(x)

| Mac(, Y, ¢) — e s (Y g (¢°)] < €1 (Y)e! (g™)e ")
where h = %(dimR Q(a) — 2).

The proof of this proposition is based on Lemma 4.5, which in turn relies on Propo-
sition 3.2. In particular, the main term is given by Proposition 3.2. However, we need to
control the contribution of two types of exceptional points as we now describe.

Similar to Lemma 2.8, given a compact subset K O K, define

Hi(x, K) := {y eBr(x):|{r€[0,t] :a;y € K}| = t/2}. (32)

The first (and more difficult to control) type of exceptional points are y € BY(x) such that
a:y € B (z) but y ¢ Hy(x, K). The contribution coming from those points is controlled
using [17, Thm. 1.7] (see Theorem 4.4 below).

We also need to control the contribution of points y € BY(x) which are exponentially
close to the boundary of B} (x). This set has a controlled geometry, and we use a covering
argument and Proposition 3.2 to control this contribution. The argument here is standard
and will be presented after we establish an essential estimate in (42).

Let us begin with some preliminary statements which are essentially consequences of
the fact that W*" and W are complementary foliations in the spaces of marked surfaces
QT ().

Recall that for any ¥ € @' 7 (), B (X) denotes a ball in W* (%) for e = u, s, cs, cu.

Lemma 4.2. Let X,%' € Q'T («) and let 0 < r < 1/2. Assume there are 1, , € W"(X)
andt € R such that a; 31 and a, y, belong to BS(X'). Then 31 = J».

Proof. We present the argument when ¢ = —1; the other case is similar. By assumption,
we have a, j; € W(X'), which implies that

e W) fori =1,2.

Recall now that j;, j, € W"(%), and hence by (20) the corresponding abelian differentials
at y; and y, differ by some ¢ € Hodd(M s, RR). However, since ¥, j, € W (&), they

differ by some ¢ € Hodd(M, $,iR) @ Rv(%'). Therefore, j; = 7. [
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Corollary 4.3. Let g1.g> € Mod, be such that g - W*(5) = W'(X) = g - W'(§). Let
X1, X € WU(X). Assume that for some r,b > 0,

B (X) Ngi-aBy(Xi) #0 fori =1,2and somet € R.
Then B*(X') N g1 - a,Bj (%1) = B (X') N g2 - a,B}, (X2). In particular,
g1 - By (X1) Ngy - By(X2) # 0.

Proof. Let ; € BS(¥) Ng; - a,Bp(F;) fori = 1,2. Then j, J, € BS(F') Na, WU(%).
Hence, by Lemma 4.2 we have y; = y,, which implies the claim. L]

As discussed above, there are two types of exceptional points. The first type will be
controlled using the following theorem.

Theorem 4.4 (cf. [17, Thm. 1.7]). There exist N9 and a compact subset Ko O Ky such
that

#HY € BY 1,0 (X) —H{(x, Ky) 1asy € Bo1r(z)(2)} < u(x)Nou(z)No e (=05
where the implied constant is absolute.
Proof. Letr = 0.1r(x) and r’ = 0.1r(z). For a compact subset K O K, put
E:(x, K) :={y € By, (x) —H/(x,K) : a;y € Bj)(2)}.

In QT () fix lifts B}, (X) and B,/ (Z) of BS,(x) and B (z), respectively. For every
y € By, (x) fix a lift € B5,(X). Then for every y € E;(x, K) there exist g, € Mod,
and Z, € BY(Z) such thata,j = g, Z,.

Recall from Lemma 2.6 that the diameter of B, (,)(g) in the Teichmiiller metric is at
most 1 for all g. Hence, for every y € E;(x, K) we have

(1) y is within Teichmiiller distance 1 from X and a;y = g,Z, is within Teichmiiller
distance 1 of g, Z, and

2) {r €[0,¢] : w(a.y) € K)}| <t/2.

Itis shown in [17, Thm. 1.7] (see also [15]) that there exists K¢ such that if K D K, then

the number of {gZ} for which such a y exists is

L u(x)*u(z)*eh=-051

where the implied constant is absolute — indeed, apply [17, Thm. 1.7] with § = 0.1 and
6 = 0.9 and observe that the function G in [17, Thm. 1.7] is dominated by our function u
here.

We now claim that there exists C which depends on o and K such that the map
¥y = g,Z from E;(x, K) to {gZ : g € Mod, } is at most C-to-one.

First note that the above discussion together with the claim implies that

#E,(x, K) <¢ u(x)*u(z)*e(h_o's)t, (33)

as we wanted to show.
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To prove the claim, let y, y2 € E;(x, K). Then there exist g, g> € Modg such that
g -a;yi €BJ(Z).
Therefore, by Corollary 4.3, applied with X; = X and b = 2r, we have either

o g, - WY(X) # g - W¥(X), which in particular implies that g; # g5, or

e g - B3, (X) Ngs- By, (X) # @, which implies g7 ' g, belongs to a fixed finite subset of
Mod, .

The claim thus follows and the proof is complete. ]
The following lemma will play a crucial role in the proof of Proposition 4.1.

Lemma 4.5. There exist k19 and Nig with the following property. Let x,z € @ (a) and
t > Nyomax {logu(x),logu(z)}. Let

o Yl e Cfo(Bg_lr(x)(x)) with0 < ¢y" < 1, and

o @' € Cf"(B‘(’).lr(Z)(Z)) and ¢ € Cf"(Bff’lr(Z)(z)).

Put ¢(y) := ¢=(p5u(»))@" (y") (see §3). Define
NL (L0 ) =Dy (s, () (34)

where the sum is taken over all y € By (x) witha;y € B};(z). Then

[Nt 9", ) — M b ()] = €' (p)E! (g)e 10"
where h = %(dimR Q(x) — 2).
Proof. We will compute
Y $(ary)y"(y)dpy (y)

¢
in terms of V.. The claim will then follow from Proposition 3.2.
Write r = 0.1r(x) and r’ = 0.1r(z). First note that
¥ < diam(W"(z") N B,/ (2)) < 1’ (35)

where the diameter is measured with respect to || ||/, acy for all z’ € B/ (z) (see [3,
Prop. 5.3]).

Let K, be given by Theorem 4.4 and put HY(x) := Hj(x, Kq) (see (32) for the nota-
tion). Since Ky C Ky, it follows from Lemma 2.8 that

1y (Br(x) — H;(x)) < e uy (Br(x)) (36)

for every ¢t > ty where #y depends only on K,,.
It is more convenient for the proof to treat points in H}(x) which are foo close to the
boundary of B} (x) separately. Define

H i = {y € H}(x) 1 BY ;11 (¥) C Bi(x)}



Effective counting of simple closed geodesics 3081

where k11 1= Kz(Ka) /2 (see Proposition 2.7 for the definition of k). The precise radius

which is used in the definition of H} ;  is motivated by estimates for uniform hyperbolicity

of the Teichmiiller geodesic flow in Claim 4.6 below.
Using (36) and the definition of H} .  we have

t,int
py (B (x) —Hf ) < e ' ul(Br(x)) (37)

for some k1, depending on K. The estimate in (37) implies that
/W ( )¢(aty)W“(y)dM§(Y) = 0@y Br(x)E (Y E (@)
u(x

4 / B a0 () il (). (38)
HU

t.int
We now compute the term '/H}‘ ~ ¢(ary)¥t(y)du(y) appearing in (38).
For every y € HY. = with a; y,e B, (z), there is an open neighborhood C,, of y such

t,int
that a;C,, is a connected component of a;B!(x) N B,s(z) containing a;y. We note that

€ = {C,} is a disjoint collection of open subsets in B}(x). Further, in view of (21) we
have

1, (9) = " psa—yd) = e ul(a_ig): (39)
recall that a_,p(y") = p(asy’).

Claim 4.6. If y € HY(x), then Cy, C B‘I‘Oe_Kllt(y). If we further assume that 'y € Hy .,
then Gy, C B‘I‘Oe,mt(y) C BY(x).

Proof of the claim. Let y’ € Cy,. It follows from the definition of C, thata,y’ € W"(a;y)
N B, (z). Write a,y' = ®~1(®(a,y) + w). Then, by (35),
lwllacy.a,y < 7'

This, in view of Corollary 2.9, implies that

lwllacy,y < e [wlacy.ay < e 'r

where the implied constant depends only on «. The claim follows from this estimate if we
assume 7 is large enough so that the above estimate implies

lwllacy,y <e 1%

recall that k11 = x> /2. The final claim follows from the definition of H‘;’im. [
Claim 4.6 in particular implies that
[ (y) — v () K e el (yt)  forall y € Gy (40)

where the implied constant depends only on «.
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Returning to (38), we deduce from (39) and (40) that

/H Pyt () dus () = 0T HE E @) + e D YU )ul, (@)
t.int Cyéf
41)
Combining (38), (41), and Proposition 3.2 we get

> vl @) — M @) < € e @t @)
€

for some «13 depending on «. Thus, in order to get the conclusion, we need to control the
difference between N, (¢, ", ¢) and the summation appearing on the left side of (42),
u

that is, the contribution of points y ¢ H}, .

Contribution from points in H}(x) which are not in H; .. Let y € Hy(x) — Hj,  with
a;y € B,(z). We note that Cy, is not necessarily contained in B! (x); however, in view of
Claim 4.6, C,, is contained in By« (¥).

From the definition we have

U Bllloe—’(llt(y) - B:+O(e—'<11f)(x) - B:—O(e—Kllf)(x) =: G(x)

YEHF () —HY iy

where the implicit multiplicative constant depends only on .
Let 0 < £ < k11 be a small constant which will be optimized later, and take
t > ZN%‘%”(’C) We can cover G(x) with period balls {B(y;) : 1 <i < I} centered at y;
and of radius e %’ with multiplicity bounded by < e’Vo¥! (see [20, Lemma 1.4.9] and
also §2.11). We have R
1 < eNKt (43)

for some N depending only on «. )
For every i, let B(y;) denote the period ball with center y; and radius 0.04¢**. Note
that since £ < k11 = ko /2 we have

20Kt S oK 4 102!

Therefore, | J; B(y;) covers a set G'(x) D G(x) with % (G'(x)) < e™*".
Let 0 <+ <1 be a smooth function supported in B(y;) which equals 1 on B¢ (yi)
and

e < e and D PP < e, (44)

where Ng > N5 is chosen to account for the multiplicative constant in Lemma 2.10.
Let J; be the contribution coming from B(y;) to N, (¢, ¥", ¢). Then arguing as above
and using Proposition 3.2, the choice of ¥" implies that

Ji < et /Wu( [ P@V0) () < M) / Ui dus + €1 e (9)e T
(45)
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Summing (45) over all 1 <i < I and using (44), (43), and f x}“ duly < ekt e get
ZJi & eht/Ll;(G/(X)) + eNEZ€1(¢)e(h—K5+N(,I?)t
i
— e(h—l%)l‘ + €l(¢)e(h—K5+(N+N(,)I%)I.

Therefore, we can choose £ so that the above upper bound yields

D A <EH@E! (Yt (46)

for some k14 depending only on «.

Contribution from points in By (x) — Hj(x). Let ¢ denote the contribution to N, (¢, ¥", ¢)
from points y € By (x) — H;(x). Then there is a unique zy € By, ,(x) — H;(x, Ko) such
that a;z, € B‘;? (2). In consequence, by Theorem 4.4,

F <u@) U@ [pllooll ¥ looe " < ux)Mu(x) el (@)€ (y)e =
Assuming ¢ > max {log u(x),logu(z)}, the above implies
g =€l @ye! et oo, (47)
The proposition now follows from (42) in view of (46) and (47). [

Proof of Proposition 4.1. Let o0 = e ! and let € = ", for two constants x, N > 0 which

will be optimized later. Put ¢ = lgy (;)¢*. Then

(@) = o" u(9). (48)

In view of Lemma 2.11, properties (S-1)—(5-3) hold with € and f = 132_26 (2)- Let
¢} = ¢4 for these choices. Put ¢; = ¢j¢; there exists some k15 such that

(@) = 1) < €T pT (@), (49)
By Lemma 4.5, we have
Moot 9" $1) = M UL (U (gr) + O(E! (Y)E (gr)e 1)
=M (U (@) + O 1M s () +ET (Y e (e e
M M Uy (U S (@) + O M () +E (p)E (e e PN, (50)

Letnow ¢y = ¢4  for € and f = 1gy(z). Put o = ¢5¢. Then similar to the above
estimate, using Lemma 4.5 we get

No (1.9, 2)
= M UL (IS (@) + O e Py () + W (@M h TN, (1)
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Since ¢; < ¢ < ¢,, we have
Mot Y, P1) < Mo (.Y, @) < Mot Y. $2). (52)
Moreover, using the definitions of M, and N, we have
Ni (6P 9) = DY (s, (@) = Y U ()™ @y s (By(2))
=0" Y V(19" (@ry) = 0" Nac(t. Y. 6%).
This and (52) imply that

Q_h‘/vnc(tv .(!/ll, ¢1) S ‘/an(tv "//u» ¢CS) E Q_h‘/vnc(l» l//uv ¢1)
Hence, using (50) and (51), we get

Noc (2, ", 9%)

_ ehtui(t/f“)u‘;s(qb“) i O(Q_hGKlsehtM;(lr//u) + €1(lﬂu)fl((f)cs)e_*e(h_'(m)t).
We choose N so large that k15N —h > «15N/2 and then « so small that e *e# <10 =
eh=10/2)t The proof is complete. "

We end this section with the following corollary.

Corollary 4.7. There exist k16, k17, and Ni1 with the following property. Let x,z €

Q1 (x). Let y" € Cc"o(Bgllr(x)(x)) with 0 < ¥ < 1 and let ¢ € Swes(r)(z, 0.17(2)).

Then for all § < r(z)/(10L) and all t > Ng max {logu(x),logu(z)} we have
[ Moo, Y. ) = " U (Y S (™) K € (Y8110 - garet (yt)elt

where h = %(dimR Q(x) —2).
In particular, there exists k13, depending only on «, such that if t > 2|logr(z)| =
2N3logu(z) (see (19)), then

| Nac(t, Y1, ) — M Pl (W s (9%)] < € (yrt)ehris), (53)

Proof. This follows from Proposition 4.1 by approximating ¢ with smooth functions.
Let§ <0.1r(z)/L and let ¢ 5 be smooth functions satisfying ($-1)—~(S-3) with § and ¢*.
Hence,

P05 <9® < ¢S and  Cl(prs) K5 (54)
furthermore, ($-3) implies that
1595 5) — 17 (B2 5)| K ™. (55)
With this notation and in view of the first estimate in (54), we have
Mac(C Y B 5) < Nac (LY ) < Moot ¥ 95 ). (56)

In addition we may apply Proposition 4.1 with ¢* and ¢IS to get

Nae (.Y, 95 5) = M PG (WIS @F) + 0T (Y)E! (S 5)e "7
This together with (56), (55), and the second estimate in (54) implies the first claim.
The second claim follows from the first by optimizing the choice § = e™**.
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5. The space of measured laminations

In this section we recall some basic facts about the space of geodesic measured lamina-
tions and train track charts. The basic references for these results are [41] and [35].

The space of geodesic measured laminations on S is denoted by ML(S); it is a piece-
wise linear manifold homeomorphic to R® ¢, but it does not have a natural differentiable
structure [41]. Train tracks were introduced by Thurston as a powerful technical device
for understanding measured laminations. Roughly speaking, train tracks are induced by
squeezing almost parallel strands of a very long simple closed geodesic to simple arcs on
a hyperbolic surface. A train track T on a surface S is a finite closed 1-complex v C §
with vertices (switches) with the following properties:

T is embedded in S,

e away from its switches, it is C L

it has tangent vectors at every point, and

e for each component R of S — 7, the double of R along the interiors of the edges of
d(R) has negative Euler characteristic.

The vertices (or switches), V', of a train track are the points where three or more smooth
arcs come together. Each edge of 7 is a smooth path with a well defined tangent vector,
that is, all edges at a given vertex are tangent. The inward pointing tangent of an edge
divides the branches that are incident to a vertex into incoming and outgoing branches.

A train track 7 is called maximal (or generic) if at each vertex there are two incoming
edges and one outgoing edge.

5.1. Train track charts

A lamination A on S is carried by a train track t if there is a differentiable map f : S — S
such that

e [ is homotopic to the identity,
o the restriction of d f to a tangent line of A is nonsingular, and
e f maps A onto 7.

Every geodesic lamination is carried by some train track. Let A be a measured lamination
with invariant measure p. If A is carried by the train track t, then the carrying map defines
a counting measure (b) for each branch line b: w(b) is just the transverse measure of
the leaves of A collapsed to a point on b. At a switch, the sum of the entering numbers
equals the sum of the exiting numbers.

The piecewise linear integral structure on ML (S) is induced by train tracks as fol-
lows. Let V(7) be the set of measures on a train track t; more precisely, u € V(r) is an
assignment of positive real numbers to the edges of the train track satisfying the switch

condition
Do oule) =Y ule).

incoming e; outgoing e ;
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Also, let 'W(7) be the vector space of all real weight systems on edges of t satisfying
the switch condition, i.e., u(e;) need not be positive for u € W(t). Then V(7) is a cone
on a finite-sided polyhedron where the faces are of the form V(o) C V() where o is a
sub-train track of t.
If t is bi-recurrent, then the natural map ¢, : V(t) = ML(S) is continuous and injec-
tive (see [35, §1.7]). Let
U(t) = t:(V(r)) T MEL(S). (57)

Moreover, we have the following.

Lemma 5.1. Let Uy C V(11) and U C V(12) be such that 1z, (U1) = tr,(Uz). Then
the map ‘r_zl oty : U1 = Uy is a piecewise linear map and hence it is bilipschitz.

For the proof see [35, §2 and Thm. 3.1.4].

5.2. Thurston symplectic form on ML(S)

We can identify W(7) with the tangent space of ML(S) at a point u € V() (see [35]).

For any train track t, the integral points in V(7) are in one-to-one correspondence
with the set of integral multi-curves in U(t) C ME(S). The natural volume form on V(7)
defines a mapping class group invariant volume form py, in the Lebesgue measure class
on ML(S).

In fact, the volume form on ME(S) is induced by a mapping class group invariant
2-form w as follows. Suppose 7 is maximal. For u;,u; € ‘W(r) the symplectic pairing is
defined by

olur,12) = 5 (Y enuaes) —un(eurten)). (58)

where the sum is over all vertices v of the train track where e; and e, are the two incoming
branches at v such that e; is on the right side of the common tangent vector.
This is an antisymmetric bilinear form on 'W(t).

Lemma 5.2. Let t be maximal. The Thurston form o, defined in (58), is nondegenerate.
Therefore it gives rise to a symplectic form on the piecewise linear manifold ML (S).

See [35, §3] for a proof and also the relationship between the intersection pairing of
H'(S,R) and the Thurston intersection pairing.

5.3. Combinatorial type of measured laminations and train tracks

Each component of S — A is a region bounded by closed geodesics and infinite geodesics;
further, any such region can be doubled along its boundary to give a complete hyperbolic
surface which has finite area.

We say a filling measured lamination A is of type a = (ay, ..., ax) if $ — A consists of
ideal polygons with aq, . .., ay sides. By extending the measured lamination A to a folia-
tion with isolated singularities on the complement, we see that Zle a; =4g — 4+ 2k
(see [41] and [23]).
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Similarly, each component of the complement of a filling train track t is a nonpunc-
tured or once-punctured cusped polygon of negative Euler index. We say a train track ©
is of type a = (ay,...,ay) if S — t consists of k polygons with ay, ..., a sides. Every
measured lamination of type a = (ay, ..., ax) can be carried by a train track of type a.

Lemma 5.3. For any filling train track T of type a = (ay, .. ., ar) we have

2¢g +k —1 iftisorientable,

dim(V (7)) =
im(V(7)) { 2g + k —2 ift is not orientable.

More generally, a measured lamination A is said to be of type a if there exists a
quadratic differential ¢ € @(a; — 2,...,a; — 2) such that A = Ji(q). It is easy to check
that if A is filling, the above can happen only if S — A consists of ideal polygons with
ai,...,ay sides.

In general (see [35, §3]), we have:

Proposition 5.4. Given a measured lamination A of type a, there exists a birecurrent train
track of type a such that A is an interior point of U(7).

For every a = (ay, ..., ax) with Zf;l a; = 4g — 4 4+ 2k, we can fix a collection
Ta,1s- - - Ta,, Of train tracks with the following property. Every A which can be carried by
a train track of type a can be carried by at least one t,; for some i.

5.4. The Hubbard—Masur map

Let MF (S) denote the space of measured foliations on S. Define
P QT (S) - MF(S) x MF(S) — A
by £(g) = (R(¢'/?). 3(¢"/?)) where
A = {(n, A) : there exists ¢ so thati (o, A) + i(o, n) = 0}.

Theorem 5.5 (Hubbard—Masur, Gardiner). The map Pisa Mody -equivariant homeo-
morphism.

This gives rise to an equivariant homeomorphism from Q7 (S) onto ML(S) x

ME(S) — A which we continue to denote by & (see [41] and [23]).
_ Recall that PML(S) denotes the space of projective measured laminations. The map
& also gives rise to an equivariant homeomorphism

Pr Q1T (S) = PML(S) x ME(S) — A

where £1(g) = ([9(¢"/?)]. 3(¢'/?) and A = {([n]. }) : o, i(0.n) +i(0.}) = 0}.
Recalling that 7t is the natural projection from @17 (S) to @;(S), we have the map

o Pl i PME(S) X ME(S) — A — Q@ (S). (59)
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5.5. Convexity of the hyperbolic length function
Let A1,A; € U(t) = t:(V(7)) (see §5.1 for the definition of ;). The sum

A @ Ao = (T A+ (A2))

could depend on 7. However, it is proved in [30, App. A] that given a closed curve
v, i(y,.) : U(t) — R4 defines a convex function from which convexity of the hyper-
bolic length function is drawn in [30, Thm. A.1]. The following is an extension of [30,
Thm. A.1] to the case of variable negative curvature. We are grateful to K. Rafi for pro-
viding the proof of this theorem.

Theorem 5.1. Let X be a compact surface equipped with a Riemannian metric of nega-
tive curvature, and let T be a train track. Let £x : U(t) — R™ denote the length function.
For every pair Ay, A, € MEL(S) of measured laminations carried by T, if L = A1 B¢ Ay,
then

Lx(n) <Lx (A1) +Lx(12).

In particular, Lx is convex.
The following lemma is well known.

Lemma 5.6. Let t a train track, and let A1 and A, be multi-curves carried by t. Then
there exists a multi-curve p carried by t such that @ = Ay + A, in coordinates given
by t. Furthermore, |u can be obtained from A1 and A, by a sequence of surgeries.

Proof of Theorem 5.1. Let € be the space of geodesic currents on X, that is, the space of
71 (X )-invariant Radon measures on the space of geodesics in X . Recall that the space of
measured laminations can be topologically embedded into the space of geodesic currents,
so we can think of any A € ML(S) as a geodesic current, that is, an element of €. Also
recall from [8] that there is a continuous intersection pairing

i €x€—R.
Furthermore, there is a geodesic current Lx € € such that
i(Lx,A) =4L4x(A) forallA € ML(S)

(see [33]). The set of simple closed curves with rational weights is dense in ML(S).
Therefore, in view of the continuity of the intersection pairing i, it is sufficient to check
the statement of the theorem for rationally weighted simple closed curves only. Since
length is homogeneous, we can in fact assume the weights are integers or A1, A, and u
are multi-curves with the possibility of some curve appearing more than once.

Claim 5.7. Assume Ay and A, are simple closed curves with i(A1, A) > 0. Let B be
a curve obtained from Ay and A, by a surgery at an intersection point. Then {x(f) <

Lx (A1) + €x (A2).



Effective counting of simple closed geodesics 3089

Proof of the claim. Note that 1; and A, have unique geodesic representatives in M. Let p
be an intersection point of A1 and A, where the surgery takes place. Then the free homo-
topy class of B can be represented by traversing first A; (starting from p) and then A,.
This means S has a representative whose length is £x(41) + £x(A2). This proves the
claim. |

Further, we note that &t = A; @ A, can be obtained from A; and A, by a sequence of
surgery maps (see Lemma 5.6). This proves the theorem. ]

Let C C R” be a cone and f : C — R be a convex function. Let K be a closed
bounded set contained in the relative interior of the domain of f. Then f is Lipschitz
continuous on K, that is, there exists a constant L. = L(K) such that for all x, y € K,

|f(x) = f()] < Lix =yl
Therefore, we have the following.

Corollary 5.2. Let X be a compact surface equipped with a Riemannian metric of nega-
tive curvature. Then
Ly : ME(S) — RT

is locally Lipschitz. In other words, and in view of the fact that £x(t -) = t{x (-) for all
t > 0, we can cover ML(S) with finitely many cones such that Ly is Lipschitz in each
cone.

The Lipschitz constant depends on X . See also [25].

6. Linear structure of ML(S) and QT (S)

Our arguments are based on relating the counting problems in ML(S) to dynami-
cal results in @;(1,...,1). To that end, we need to compare the linear structure on
@,(1,...,1), arising from period coordinates, with the piecewise linear structure on
MEL(S), which arises from train track charts. This section establishes some results in
this direction.

Until the end of the paper, we will be concerned with the principal stratum, i.e.,
@:(1,...,1). Alsoa = (3,...,3) for the rest of the discussion.

Fix once and for all a collection 7y, ..., 7, of train tracks such that every A can be
carried by at least one t; for some i (see §5.3).

Given a point x = (M, q) € @1(1,..., 1) we sometimes use g to denote x. We fix a
fundamental domain for @(1, ..., 1), and unless explicitly stated otherwise, by a [ift g
of g € @;(1,...,1) we mean a representative in this fundamental domain.

Letx = (M,q) € @,(1,...,1). We denote by R(g'/?) (resp. 3 (¢'/?)) the real (resp.
imaginary) foliation induced by ¢; abusing notation we will often simply denote these foli-
ations by J(¢) and I (¢). Note that W**(x), which we sometimes also denote by W"*(g),
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may alternatively be defined as follows:

Wiq) =1{q' € @(1,...,1): 3(¢") = 3(q)},
Wi(q) :=1{q" € @1 (1,...,1) : R(g") = R(g)}.

Similarly, we will write B, (¢) and B} (g) for B, (x) and B} (x), respectively.

Let t be a maximal train track, i.e., a train track of type (3,...,3), and let U(7) be
a train track chart, i.e., the set of weights on 7 satisfying the switch conditions. Recall
from §5.1 that U(r) has a linear structure; indeed, U(7) is a cone on a finite-sided poly-
hedron. We use the L'-norm on ‘W(r) to define a norm on U(z): for every measured
lamination A € U(t), we define ||A||; to be the sum of the weights of A. Let

P(r):={A U@ : Al =1} (60)

For every A € U(t), define
T 1
A1l

if 7 is fixed and clear from the context, we sometimes drop the subscript and the super-
script T and simply write ||A|| and A for |A||; and A7, respectively.

By a polyhedron U C U(t), we mean a polyhedron of dimension dim U(t) — 1
where the angles are bounded below and the number of facets is bounded, both by con-
stants depending only on the genus. We will mainly be concerned with (dim U(z) — 1)-
dimensional cubes.

A€ P(r);

Lemma 6.1 (cf. [24, Thm. 6.4]). Let n € ML(S) be maximal. There is a compact subset
K C Qi(1,...,1), depending on t and n, such that = o P ([n], P(r)) C K (see (59)
for the definition of w o P{ ).

Proof. Recall that we fixed a collection 14, . . ., 7. of train tracks so that every lamination

A is carried by some 7;. In view of Lemma 5.1, there exists some L = L(t) such that

P(r)c | JAeU(m) : 1/L < |Al; < L}

i=1

where || [li = || [l
Forevery 1 <i <c¢,putU; := {1 € U(t;) : 1/L < ||A[|; < L}. Since 7 is a maximal
measured lamination, for any A € U(t;) we have w o 71([7], 1) € @;(1,..., 1). Define
K= Jmo 27 () x Un). 61)
i
Then K C @4(1,...,1) is a compact subset with the desired property. |

Lemma 6.2. There is some N1, > N3 such that the following holds (see (19) for the
definition of N3). Let g € Q1 (1,...,1). There exists a 1-complex T C S with the following
properties:
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(1) Every edge of T is a saddle connection of q.

(2) 13(e)| = 0.144(e) foranye € T.

(3) S — T is a union of triangles.

(4) For every edge e € T, we have u(q)~V12 < Ly(e) < u(g)=N,

(5) u(q)~12 <r(q), and the parallel translate of T to q’ € Bu(g)—V12 (q) satisfies (1)~(3)
above.

A similar statement holds if we replace 3 (e) in (3) above by 3 (e).

Proof. We will find such a T with |3 (e)| > 0.1¢,(e); the proof that such a T exists with

|R(e)| > 0.1¢,(e) is similar, by replacing a;us with a_;u; in the following argument.
Let K be the compact set given by Theorem 2.5; let rg = inf{r(x) : x € K} (see (19)).

For every ¢’ € K, there is a graph 7’ C S of saddle connections of ¢’ such that

e the ¢’ length of each of these saddle connections is bounded by Lo = Lo(K), and

e S — T’ is a union of triangles.

We will always assume that Ly > 2. Increasing L if necessary, we will also assume
that Lo bounds the lengths of saddle connections obtained by parallel transporting 7’ to
q" € Byy(q) forallq’ € K.
Set
R, = {saddle connections y of ¢ with |3 (y)| < 0.1£4(y)}.

Note that forall y € Ry and all 0 < s < 1, we have |[R(usy)| > €4(y)/2. Define
f(q) := max {I.max {1/€,4(y) : ¥ € Ry}}.
Apply Theorem 2.5 with 19 = Lo log f(g). There exists some
to <t < max {2t9, N> logu(q)} (62)

and some s € [0, 1] so that ¢’ = a,usq € K.

Let now T’ be a graph of saddle connections for ¢’ defined as above. We claim that
for every e € T', we have e & a,usR,. To see this, first note that for every y € R; we
have

Ly (agusy) > etER(us]/)
> e'l,(y)/2 since R (usy)| = £4(y)/2
> elof(g)t,(y))2 > Loy sincet > Lolog f(q) & f(q)ly(y) > 1.

Hence a;uyy is not contained in 7. In consequence, T = u_sa_;T"' satisfies (1)—(4).
Note that for every e € T, we have u(q) ™ < {4(e) < u(g)* where the implied constants
depend only on the genus.

We now turn to the proof of part (5). First note that there is N’ with u(q)N" > f(¢q)*Lo;
put N := max {2N’,2N,, N3}. Let N1 > N be such that

e 2NNz <y /2. (63)
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Write r = u(q)lez. Then 0 < r < r(q) (recall that N1, > N3). For every z € B,(q),
we have z = @~ 1(d(q) + v) where |[v|acy,g < u(g)~ V1.

Lett <max{2Lo f(q), Nologu(gq)} and 0 < s < 1 be such that ¢’ = a,usq € K (see
the preceding discussion). Note that in view of the choice of # and N, we have

e <u@N. (64)
Now for all v such that ®~1(®(¢’) + v) € B,(g) we have
lvllacy.aiusg < € [v]lacy.q by (15)
<e? u(@Nvlacy.g by (64)
<e?.u(g)N-No Ivllacy,q < u(g)~"'2 by the choice of r

€2 2NNz < ro/2 since u(g) > 2 and using (63).

IA

Hence a,usB, (q) C By,(¢’), which gives the claim in view of the definitions of 7 and 7".
Increasing N if necessary, we find that part (4) also holds for this exponent. ]

Lemma 6.3 (cf. [31, Lemma 4.3]). Let g € @:(1,...,1), and let G be a lift of q in our
fixed fundamental domain. Let r = 0.01u(q)~2"12. There is a maximal train track o with
the following properties:

(1) B(g) projects homeomorphically onto B, (q) C @¢(1,...,1).

(2) The restriction of P to By (q) is a homeomorphism.

(3) {3(p) : p € B;(q)} is contained in one train track chart U(o).

(4) The linear structure on Us(q) := {3(p) : p € B,(q), R(p) = R(G)} as a subset of
U(0) agrees with the linear structure on Us (§) which is induced by the restriction of

Pri0{p € B, () : R(p) = R(@G)} C W(@).
Moreover, the radius r of B;(q) can be taken to be uniform on compact subsets of
@i(1,....1).

Proof. Let T be a triangulation of ¢ given by Lemma 6.2. In particular,
(i) every edge of T is a saddle connection,

(ii) [3(e)] = 0.144(e) forany e € T,

(iii) S — T is a union of triangles, and

(iv) Ay <{4(e) < A;l for every edge e € T where 4, = u(g)~V12.

Our construction of the train track ¢ will depend on 7.

Recall that r = 0.0lA;. Then the balls B,(¢) and B,(g) satisfy (1) and (2) in the
lemma by Lemma 6.2(5).

Let o’ be the null-gon dual graph to 7', in particular, there is one triangle of ¢’ in
each component of S — T'. Let o be the train track obtained from ¢’ as follows. If A is
a triangle in T with edges elA, ezA, e3A, then there is a permutation {iy, i», i3} of {1, 2, 3}
with

3D = I3l + 13 (e)l: (65)

put o := ¢’ — | J{the edge corresponding to eiA1 ino’}.
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We claim the lemma holds with o. To see this, first note that o is a maximal train
track. Assign the weight |3 (ep)| to each branch b € o where ¢, € T is the edge which
intersects b. In view of (65) and the fact that |3(y)| = i(y, R(G)) for every saddle con-
nection y, we see that A = J(g) is carried by o.

By Lemma 6.2, for any p € B, (q) we identify 7" with its image (under parallel trans-
port) on p. Let p € B(§) and write p = ¢ + w for some w with ||w|acy,q < 0.0IAZ.
Then

|3 (hol 5(ep))| = [3 (holg(ep)) + I (w(ep))|.

Further, |w(ep)| < 0.01 A;Zq (ep) <0.014, <0.1|3 (holz(ep))|; we have used (ii) and (iv)

in the last inequality. Hence, |3 (hol5(ep))| > 0 and 3 (p) is carried by the train track o.
Taking w € iH1(M, £, R), the above discussion also implies that ¢ satisfies (3)

and (4). [

7. Counting integral points in A L(S)

Let the notation be as in §6. In particular, t is a maximal train track. Also recall that P(t)
denotes the finite-sided polyhedron in U(t) corresponding to laminations with ||A||; = 1.
The smallest ¢ such that a lamination A € U(7) lies in
[0.e1P(r) = {A" € U(x) : I < e’}

can be thought of as a measure of complexity (or length) for A. In this section we obtain an
effective counting result with respect to this complexity. In §8 we will use the convexity
of the hyperbolic length function in U(7) to relate the counting problem in Theorem 1.1
to this counting problem.

Let U C P(t) be acube. For every t > 0, define

O:(y0, €', U) := Modg .yo N [0, €] U. (66)
The following strengthening of Theorem 1.2 is the main result of this section.

Theorem 7.1. There exist k19 and kg such that the following holds. Let t > 1, and let
U C P(t) be a cube of size > e *19%. Then

#0:(vo. €', W) = v(yo) ([0, U™ + Ocy (e 720)
where v(yp) is defined as in (69) below and h = 6g — 6.

The basic tool in the proof of Theorem 7.1 is Proposition 4.1. We relate the counting
problem in Theorem 7.1 to a counting problem for translations of W"(gp) in Lemma 7.2.
Proposition 4.1 studies a more local version of the latter counting problem, that is, one
works with translations of a small region in W"(go). Using Corollary 4.3, we will reduce
to this local analysis. The main step in the proof of Theorem 7.1 is Lemma 7.6 below.

Let us begin with some preparation. Recall that M£(S) does not have a natural dif-
ferentiable structure, in particular, $#; is only a homeomorphism. The situation however
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drastically improves when we restrict to one train track chart and fix a transversal lami-
nation. Therefore, we fix a maximal lamination n which is carried by t for the rest of the
discussion.

Let 8~> 0, and let U C P(7) be a cube of size > § centered at A. Let € < 8. We always
assume P! is a homeomorphism on {[n]} x {e” U : |r| < §}. Put W = P ({[n]} x W)
and ~

Wite = P Ay x {e" U - —e < r < 0}). (67)

Let Yo € U(t) be a rational multi-curve. For all # > 0 and 0 < € < 1, define

O:(yo.1,U.€) :=={y € U(x) N Modg .yg : €' < |ly|: e’ andy" € U}. (68)

Put go := {/51_ (. Yo)- Without loss of generality we assume yo and 7 are such that
do belongs to our fixed fundamental domain.

Lemma 7.2. Let § > 0, and let U C P(t) be a cube of size > §. Let A denote the center
of U. For all € < § and all large enought > 0 we have

Y0 € Oc(yo.1. U.€) ifandonlyif Wy Ng-aW"@Go) # 0.

Proof. Since 7 is fixed throughout, we drop it from the subscript and superscript for the
norm and the normalization.

Suppose y = gyo € O (yo.t, U, €) for some g € Mod, ; such a g is not unique, but for
any other g’ € Mod, with gyo = g'yo we have g- W"(Go) = & - W"(qo). Put § = g - Go.
Then gy = 3(g), and moreover

g-a, W' (Go) = a.W" ().

Recall that y € U and put p’ := e75‘1_1([71],7). Then p’ € WE; moreover, it follows from
the definition that $(p’) = 7. Hence, j’ € a,, W"(§) where t; = log ||y|.

Puts =t; —t;since y € O (yo,t, U, €) we have —e < s < 0. We find from the above
and the definition of W‘&“’ thatasp’ € a; W (§) N W{[ .- In particular,

Wi e Na W' (@) = Wy Ng-arW'(Go) # 0.

Conversely, suppose that for some g € Mod, we have W{Z cNg-a W' (Go) # 0. Put
y = gyo; we claim that y € O;(yp, 1, U, €).

Set§ = g- do. Then 3(§) = y, and as above we have g - a; W"(jo) = a; W"(§). Let
now A € U and —e < s < 0 be such that

P (. e ) € W N a,WH(@).
Write Jsfl([n],esk) = a;§’ where §' € W*(§). Then
e'y =3(a;§') = e* A e e’ U.

This gives = A, hence 7 € U and ||y || = e’ ™*; we get y € O (yo.t, U, €) as claimed. m
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7.1. Jenkins—Strebel differentials

Problems related to the existence and uniqueness of Jenkins—Strebel differentials have
been extensively studied.

Theorem 7.3 (cf. [39, Thm. 20.3]). Lety = Ufl:l yi be a rational multi-geodesic on M,
and let 11, ...,rg be positive real numbers. Then there exists a unique holomorphic
quadratic differential ¢ on M (Jenkins—Strebel differential) with the following proper-
ties.

(1) If T is the critical graph' of q, then M —T' = U;izl Q;, where Q; is either empty or
a cylinder whose core curve is ;.

(2) If Q; is not empty, it is swept out by trajectories whose q-length is r;.
The following lemma will be used.

Lemma7.4. Lety € U(t) be rational, and let ¢ = 551_1 ([nl.y) € @Q'T () be a quadratic

differential such that 3(q) = y; put q := 7 (q).

(1) W4(q) Cc @:(1,...,1) is a properly immersed, affine submanifold which carries a
natural finite Borel measure v.

(2) There exists some €y = (7,1, ||y ||z) > 0 such that the following holds. Let 0 < € < €g
and let
K(€) = {q : all saddle connections on q are > €}.

Put
D(é) = Daup(é) 1= W"(q) N K (&),

There are constants k1 and Ny3, and a smooth function 0 < Wé’ < 1 supported on

W'(q) such that

@ e'(yy) < e,

®) Y20 < €2,

(©) Viloe =1 and ||1pey — Y220 K €21

In particular, v(D(€)) < €21 for all small enough €.
Proof. We first show that W"(gq) is a properly immersed submanifold of @1(1,...,1).
This is equivalent to showing the following two statements.
(i) g1-W"(§) Nga- W'(G) # @ if and only if g1 - W"(§) = g2- W"(G).
(i) Ugemoa, & W"(@) C @'T () is closed.
Recall that W*(p) = {p’: 3(p') =3 (p)} and g- W"(p) = W'(g- p) forall p € Q' T ().
These imply (i). To see (ii), note further that the set

U g W@

g€Modg

IRecall that the critical graph of a quadratic differential is the union of the compact leaves of
the measured foliation induced by ¢ which contain a singularity of q.
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is the set of quadratic differentials p € @7 (1,..., 1) such that 3(p) € Mod, .y. Since
y is rational, Mody .y is a discrete Mod, -invariant set; (ii) follows.

Let y be as in the statement. Write y = ), a;; where each y; is a simple closed
curve and a; € Q. By Theorem 7.3, the locus W"(g) N @(1, ..., 1) is identified with
a linear subspace W = {(x;;) : ) ; Xij = ri, xij > 0} in the period coordinates, where
r1,...,rq are positive real numbers. Moreover, the measure v is the pull-back of the
Lebesgue measure from ‘W to W"(g). This finishes the proof of (1).

To see part (2), let €y be such that 7 o !/31_1 ([n], v) € K(ep); recall from Lemma 6.1
that €9 depends only on 7, 1, and || y||;. For any 0 < € < ¢¢ put

W(E) = {(xij) € W:0 < x;; <é forsome (i, j)}.

Using Theorem 7.3, we have W"(g) N K(é)c C ®1('W(é)). The claims in part (2) now
follow from Lemma 2.10. Indeed, apply Lemma 2.10 with D = D(2€) — D(€/2), and let
{@i } be the collection of functions obtained in that lemma. Define

pipy = [0 e W0 -0,
if p € D(€/2).

This function satisfies the claims. [

Let yo and §o € @'T(1,...,1) be as in Lemma 7.2 and put go := (o). Then by
Lemma 7.4, W"(qo) is an affine submanifold of @ (1,...,1). We put

v(vo) = v(W*(q0)) (69)

where v is the finite measure in Lemma 7.4.
Let b > 0; this choice will be optimized later. Apply Lemma 7.4(2) with € = 10b and
let Deysp (10D) be as in that lemma. Put

Dp := WU(Q) - Dcusp(lob)'

Lemma 7.5. For every b there exists N(b) < b~N4 such that there exists a collection of
functions {{}' : 0 < i < N(b)} with the following properties:
(1) Yg = ¥y, where Ui, is given by Lemma 7.4(2).
2 0=<vy;/ <1foralli > 0.
(3) Foralli > 1, Y} is supported in By (y;) where y; € Dy; furthermore, the multiplicity
of {Bj, (i)} is at most Ns.
b b
@ SNV < 1and TP v = Ton UL By (00).
Moreover,
ety < Nigb™ 15 forall0 <i < N(b) (70)

where N5 is an absolute constant and N1¢ is allowed to depend on q.

Proof. This follows from Lemma 2.10 applied with D = Dj and Lemma 7.4. ]
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Let us also fix a fundamental domain D C W"(go) which projects to W"(qo). For each
i > 1, welet y; € D be alift of y; (see Lemma 7.5). Let N’(b) be such that

4(3:) C D forall N'(b) <i < N(b). (71)

For simplicity of notation, let By (yo) C D denote the lift of Deusp(100). Increasing N'(b)
if necessary, we assume that By (;) N B} (Jo) = @ for alli > N'(b).

7.2. Counting in linear sectors in ML(S)

Recall from the beginning of this section that U C P(r) is a box of size > §. Let A
be the center of U, and let € < §. Let n € ML(S) be fixed as at the beginning of this
section. We always assume 0 < § < 1/2 and 7 are such that ;! is a homeomorphism on

{[n]} x {e" U : |r| < &}. Recall also our notation W{f = 351—1({[,]]} x U) and
Wi e = PrHA < {e" U : —e < r < 0)).

Abusing notation, we denote by w1, (U) the measure induced from wry, on P (7). The
following lemma is a crucial step in the proof of Theorem 7.1.

Lemma 7.6. There exist k> and ka3 such that the following holds. Let t > 0 and in the
above notation, define

N (o1, U.€) :={g- W"(§o) : g € Mod, and Wi Ng-a,W" (o) # 0}.
Suppose € > e~*22! Then
#N (o, 1. U €) = V) (U) 7572 + Oc (1 — e7h)e B2,

We will prove Lemma 7.6 using Proposition 4.1, more precisely Corollary 4.7. In
order to use those results we need to control the geometry of Wq7 .

Lemma 7.7. The characteristic function of
Wit e =PIl x {e" U —e <r < 0))
belongs to chg(qj)(ﬁ, €) where p = 551—1([,7], A).
Proof. Apply Lemma 6.1 with 7 and let K = K(7) be defined as in (61). Then
7o P ([n), P(x)) C K.

Let {B;,(p) : p € K} be the covering of K by period boxes given by Lemma 6.3.
Let B.(q1), ..., B.(gw) be a finite subcover of this covering. Consider all lifts of B(g;) to
period boxes based at lifts g; of g; in our fixed (weak) fundamental domain. Denote these
lifts by B, (G1), - - -, By, (o) — note that we have only fixed a weak fundamental domain,
hence there might be more than one lift, but there is a universal bound on the number of
lifts.
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Forevery 1 < j <b,leto; be atrain track obtained by applying Lemma 6.3 to B, (g;).
Assume e is smaller than the radius of B, (g;) for all j. Write U = |J U; where

W = UNU(oy).

By Lemma 5.1 each U; is a piecewise linear subset of U;. The claim now follows from
Lemma 6.3(4) if we ignore those U;’s which have size less than eV for some N > 1
depending only on the dimension. ]

Proof of Lemma 7.6. Recall that A is the center of U; put p = Jf’l_l([n],)t) and p = 7(p).
Let ¢ be the characteristic function of Wy . C W (p). Define

. Fcs -1
¢CS = ¢Cb o (]T |n(supp($cs)))’

the push-forward of g5°s to W(p). Recall from Lemma 7.7 that ¢ € Swesp) (. €).
Recall from §2 that u denotes the SL(2, R)-invariant probability measure on
@;(1,...,1) which is in the Lebesgue measure class. The measures p and pu$ are the

conditional measures of y along W"(x) and W*(x); u$ and u$' are defined accordingly.
—he

Recall also that um({e*U : —e < s <0}) = l_eh wrn(U). Therefore,

_e—he
1y (@) = =5 (W) (72)
For simplicity of notation, write W = W‘ff, . and put
N = N(Go,t, U,€).

Let g € Mod, be such that WS Ng-a,W*(jo) # 9. Recall that {B/(3:):0<i < N(D)}
cover D C W'(§o) (see Lemma 7.5 and the paragraph following that lemma); there exists
some g’ € Modg such that g' - W"(Go) = W"(go) and some 0 < i < N(b) such that

Weneg -aBj (i) # 9. (73)
Let N’(b) be defined in (71). We claim that
#{g- W"(Jo) : (73) holds for some 0 <i < N'(b) }
L €T V(y0)e T £ br*v(yg)e™ (74

where the implied constants depend on the genus.
Let us assume (74) and finish the proof. Let

N = {g- W"(Jo) € N : (73) does not hold for any 0 < i < N'(b)},

i.e., the contribution to N coming from N’(b) < i < N(b). We claim that

1

A= 30D )] <€ € BT V0P 4 b (e (75)
y



Effective counting of simple closed geodesics 3099

where the outer summation is over all N’(b) < i < N(b) and the inner summation is over
all y € By (y;) witha,y € T (We). i
To prove the claim, first note that by the definition of N, if g- W"(go) € N, then (73)
holds with some N'(b) <i < N(b).Let now g1,8> € Modg and N'(b) < i;,i, < N(b)
be such that ~
W N gg; - a:By(Ji;) # 0.

Then g; WU (qo) = W"(qo) for j = 1,2 (see the discussion preceding (73)); hence by
Corollary 4.3 we have

W N ggr - a,By(5i,) = W™ N ggr - aBy (5,
In particular, g1Bjy (¥i;) N g2B}(Ji,) # @. Since B (yi;) C D for j = 1,2 (recall that
N'(b) <iy,ip < N(b)) we get g1 = g». Therefore,
W N ggr - a:Bj (i)

. . . . . ~ ~ . N’ (b ~
corresponds to points lying in the intersection By (y;,) N By (Vi,) but notin Ul.=(() ) B}, (Vi)

Recall from Lemma 7.5 that >, " = 1 on vaz(ll’) By (yi), hence
N'(b)
> wyr=1 onbDy— J Bi(w).
N’(b)<i<N(b) i=1

In particular, since ;' > 0, we get
#N' <D D YY)
iy

where the outer summation is over all N'(b) < i < N(b) and the inner summation is over
all y € By (y;) witha,y € w(W*). Moreover, in view of the fact that By (y;) N By (o) = ¢
for all i > N'(b) and using Lemma 7.5(2, 4), we have

DO Wy — #N < #g W' (Go) = (73) holds for some 1 <i < N'(b)}
iy
where the implied constant depends on «. The claim in (75) thus follows in view of the

estimate in (74).
Let us now investigate ) _, Zy Y1 (y). Using the definition of N, in (34), we have

Noct, Y1, 0%) = Y Y ()¢ (ary)
=Y Yy since ¢™(asy) =0,1

where the summations are over all y € B, (y;) with a;y € 7 (W) = supp(¢°). Now
apply Corollary 4.7 (see in particular (53)) with ;' and ¢ to get

Do) — e, g %) | = €y, (76)
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In view of (72) and the estimate €' W < Nigb=15 (see (70)), we deduce the following
from (76):

_e—he X7 —% —
|00 = g, U (W) 15| < Niget e ()
y

Summing (77) over all N’'(b) <i < N(b) and using the fact that N(b) K b™*, we get

DDV = Y e, (W G| < Nige Tt b Bm(78)
iy i

We now compare ) _; Mg, (V') and v(yo). Indeed, using Lemma 7.4 (see also (69)),
and the relationship between v and p, we get

N()

(1=b2)v(ye) < V() —v(Dy) < Y b (W) < v(vo) (79)
i=N'(b)

where D) = Deysp(105) U UN,(b) By (yi). The estimate in (79) implies that

i=1

D0 w0 = v (W) =5 M
iy he
< b v(yo) ey (W) =5 e

D) = Y s, (W = 80y
i y i

We now use these estimates to get an estimate for #A’. First note that
< ‘#N’ —~ ZZW@)(
iy

T vr0) — viro (=g
iy

HN' = v(yo) e (U) 1= Mt

(75)
L €T V(po)e T 1 b v(yg)e!
_,—he
22D O) — v (U e
i y

where the implied constant depends only on the genus. This estimate and (80) imply that

BN — V(o) pm(U) L= o

< 6—*b—*V(yO)e(h—K5)t + bkv(yo)eht
K —e—he u u u —e—he
+ D v(yo) pn (U) 25— + \Z Do) =D e W pm(U) =" |
iy i
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Putting this estimate and (78) together we get

#N — V()/o),uTh(‘l,l)#ehZ L e b V(1) e 4 brv(yg)e
+ b*v(yo)MTh(U)Fﬁlieh’ + Nige *b*er—r1)t (81)

We now choose € and b of size e ~*! so that e " *b~*e¥5) in (74) is < e~ and so
that Nge*b™*e 18" on the right side of (81) is < (1 — e~"€)e™*!. The lemma follows
from this in view of (74).

Let us now turn to the proof of (74). The argument is similar to the one in the proof
of (45).For 1 <i < N'(b), let 1@1“ be such that supp(lﬁf) C Bap(3i), lﬁﬂBb(yi) =1, and
€ (Yr) < b™* (see Lemma 2.10). Let 8 = /3.

Let o > 0 be so small that the 10p-neighborhood of supp(¢°*) embeds in @(1,...,1),
and let k > 0 be a constant which will be chosen later. In view of Lemma 2.11, we have

lgy(p) € $(By(p), 0/10).

Therefore, properties ($-1)-($-3) hold with € = 0.1ge " and f = lgy (p). Define
@] = @4 0.19e—+ for these choices.
Similarly, using Lemma 2.11 (this time applied to ¢ with € = 0.1pe ") we let

¢§S = @+,0.10e— !
Put ¢y := ¢{¢7°. Note that 1gy (,) 9™ < ¢1 < IBEQ(P)‘l’CS’ Therefore,

Kp (B (P (%) = (1) < py (Boo () (). (82)

Moreover, puy,(¢1) > 1y (By(p)).
Since ¥}'[g, (y;) = 1 and p,(¢1) = p, (B, (p)), we have

#{g- W"(Go) : (73) holds with 0 < i < N'(b)}
E : ; Al}l At )
QU (B“(p)) / ¢1(a y)¢ (J’) I'Lq(,(y)

Moreover, by Proposition 3.2 we have
/W ( )¢1(aty)1/>;’(y) dug, () = @1y, (W) + O (YHE (¢r)e )
“(qo
forall0 <i < N'(b).
Combining these two estimates and using the fact that in view of the estimates in (82)

we have u(¢1)/u,(Bo(p)) < 1 we conclude that

#{g- W"(Go) : (73) holds with 0 < i < N'(b)}
<MY s ) + 0 WHE @D IIN (). (83)
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In view of (70) we have €1 (') < b™*v(yo); moreover, €!(¢) < e * and N'(b) K

N(b) « b™*. Recall also from (79) that vaz/(()b) Pgo (W) K b 21v(yo).
If we now choose « small enough, (74) follows from (83) and the proof is complete.
[ ]

Corollary 7.8. There exist some k24 and k35 such that the following holds. Let t > 0 and
€ > e ¥24! Then

#0:(vo, 1, U, €) = V(o) (W) =57 + 0y (1 —ee)eB290) (34
where as in (68) we have
Or(yo, 1, U, €) = Mody .yo N ([0, €' ]U — [0, €] U).

Proof. We will show this holds with k24 = k2,/2. By Lemma 7.2 we know that
v € O¢(yo, €', U, ¢) if and only if

g-aW"(Go) N Wy, # 0.
Therefore, it suffices to show that
~ _e—he _ —x
HN (Go, 1, U, €) = v(yo)wm(U) =€ + Oy (1 — 7)),
This last statement is proved in Lemma 7.6. ]

Proof of Theorem 7.1. Let € > e *24! and for every n > 0 define t,, := t — ne. Then (84)
applied with ¢ = ¢, implies that

_p—he _ e
#O. (Yo, tn, U, €) = V()’O)MTh(u)leTeht" +0,,((1—e hs)e(h bi)zn)
_e(—n—Dhe p;

—nhe — —i~2)t—(h—kK~
= V(o) (W) =G + Oy (1 — e7H) eI mimamna),

Summing these over all # > 0 such that 7, > hh;lt we get

- h—1,
#(Modyg .yo N ([0.'1U — [0."T W) = V(yo)um(U) =G M + 0y (=),

This implies the proposition — note that by basic lattice point count in Euclidean spaces,’
the number of integral points y € U(z) such that ||y| < e is < e, n

8. Proof of Theorem 1.1
We are now in a position to prove Theorem 1.1. The proof relies on Theorem 7.1. We

cover ML(S) with finitely many train track charts U(ty), ..., U(z;). Using the convexity
of the hyperbolic length function, we can reduce the counting problem in Theorem 1.1 to

2 As we remarked in the introduction, the point here is that we are counting the number of points
in one Modg -orbit.
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an orbital counting in sectors on U(z;), with respect to linear structure, where the length
function £y is well approximated by the || ||;;. Theorem 7.1 is then brought to bear in the
study of the latter counting problem.

Let X be a compact surface equipped with a Riemannian metric of negative curvature.
Recall that £y : ML(S) - ML(S) denotes the length function. It satisfies £x (fA) =
t{x (M) forany ¢t > 0.

Let 7 be a maximal train track. By Corollary 5.2, £ is Lipschitz in U(z). Let L, be
the Lipschitz constant, hence

[ex(A) = Lx )| < Le[A = Vs (85)
Recall that U(7) is a cone on the polyhedron P (7).

Lemma 8.1. There exists a constant L+, depending on L., with the following property.
Forany A, )\’ € P(t) we have }ﬁ — m < L.6.

Proof. Note that there exists £y ; > 1 suchthat 1/{x ; <{x (1) <{x.forall A € P(7).
The claim thus follows from (85). ]

For any T > 0, let Cx(z,T) = {A € U(7) : £x(A) < T}. To simplify notation, we
will write Cx (7) for Cx (7, 1). Let Sx(r) = {A € U(z) : £x (1) = 1}. Then

Cx(r.T) = TCx(zr) = [0.T]Sx (v).

Proof of Theorem 1.1. Let X be as above. Let 11, ..., 7, be finitely many maximal train
tracks with the following properties:

e ML(S)=J;_; U(zi), and

e {x :U(tr;) —> Ris L;-Lipschitz forall 1 <i <c.

Let L = max L;; increasing L if necessary we will also assume that the conclusion of
Lemma 8.1 holds with L.

Fix some 1 <i < c and write T = t;; when there is no confusion we drop t from the
notation for the norm and normalization in U(t). We will first consider the contribution
from U(t) and then we will combine the contributions of different 7; for 1 <i <c.

We will use the fact that the number of lattice points in a Euclidean region is < the
volume of the 1-neighborhood of the region.

Let yo be a rational (multi-) geodesic. For every T > 0 define

Ne(vo, T) = #{gyo € U(r) : £x(gyo) < T}. (86)

Fix some § > 0; this will be optimized later and will be chosen to be of size T*.
Define
Pos(t) :={(bi) € P(x) : by =25 foralli}. &7

Cover P(r) with cubes of size § with disjoint interiors. Let {U; : j € Js} be the
subcollection of those cubes with U; N Pxs(t) # 9.

For every j, let A; € U; be the center of U;. The number of U;’s required to cover
P(r) is < §~M7 for some N7 depending on .
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There is some k»¢, depending only on the dimension, with the following property. If
d > T7"26, then the number of integral points y € U(r) with ||y|| < £x,.T and

v =v/lyll € P(x) — P>5(7) (88)

is < 8§TH.

For each j, let U; _ denote the cube which has the same center A j as Uj, but has size
§ — 8N1s where Nig = Ny7 + 1.

Then, if §V18 > T7<26 the number of integral points y € U(z) with ||y| < £x..T and

yel Ui -U;- (89)
J
is < §~N7gNisTh <« §T.
Altogether, if §Nis > T—F26 then
#{y € Modg .yo N U(7) : Lx(y) < T, y satisfies (88) or (89)} < §T".  (90)
We now find an estimate for
#{y e Modg .yo N Cx(z,T): ¥y € JU; -}

— A . _ A . :
Put Uj,_,+ = {m A€ Uj,_} and Uj,_’_ = {m A€ Uj,_}. Then it
follows from (85) that

[0,1]Uj— - C{AeCx(1l,7): A€ U} C[0,1]Uj—+

Therefore, applying Theorem 7.1, with U = U; _ 4, we get

v(yo)un(Uj,—)
h(tx(A;) + LS)"

Th + O1 (Th—Kzo)

v(yo)ut(Uj—)

I TR O (Th 20,
Wlx ) — Lo+ O T

<#{yeModg .yo:y€Cx(r,T), y€U;_} <

this estimate implies that

#y e Modg .yo:y € Cx(r,T), y € Uj—}
_ V(ro)um(U;-)
h(€x (A))"

Put Sx(r,j) ={A € Sx(1): A € U;,—}. Then by Lemma 8.1 we have

o 1 _ pum(Uj-)
uth([0,1]Sx (7, j)) = /U», hex()t)h dpr = h(ﬁx(/\j))h

Js

T" 4+ O¢ o Spmn(Uj—)T" + TH=20) (91

+ 0@ (Uj,-).



Effective counting of simple closed geodesics 3105

This observation together with (91) gives

#{y e Modg .yo:y € Cx(t,T), y € Uj—}
= v(yo)um (0. 11Sx (1. )NT" + Oz Gumn(Uj ) T" + T"720). (92)

Recall also that E}—;l is bounded on P(t); we have Y um([0, 1]Sx(z, j)) =
wrn([0, 1]Sx (7)) + O(8*). Hence, summing (92) over all j’s we get

#y eModg .yo 1y € Cx(r,T),y € JU; -}
= v(yo) urn([0, 11Sx (D) T" + Op o (8*T" + 57N Th=420) (93)

Now choose § = T* so that §*T" + §~N17Th=*20 = Th=k27_ Then from (93) and (90)
we get

#{y € Modg .yo : v € Cx(r, T)} = v(yo)um([0, ]Sx ()T + O(T" 7). (94)

This concludes the contribution arising from a single train track chart U(z).

Recall now that the regions in U(t;) which are carried by other U(t;/) are finite-
sided polyhedra (see Lemma 5.1). We may thus find disjoint finite-sided polyhedra U; C
P(z;) with JR™T.U; = ML(S). Repeating the above argument for each U;, the theorem
follows from the estimate in (94). [

We conclude with the following which are of independent interest. Let I' C Mod, be
a finite index subgroup and let t be a maximal train track. Define

Mr(vo.T) :={y e TyoNU®@) : Iyl = T}.

Theorem 8.2. There exists some ka3 = ko5(I") such that for every rational multi-curve
vo € U(t), there exists some constant cT,(yo) such that

#Nre(vo. T) = cre(yo) TS 76 + Oy o, r (TO876728),

Proof. The argument is similar to our argument in the proof of Theorem 1.2. Recall that
we normalized the Masur—Veech measure to be a probability measure on @4(1, ..., 1).
Let ur denote the lift of the Masur—Veech measure to Q'Ta, ..., /. Then
ur(@'7(1,...,1)/T) = [Mod, : T'].

Similar to (69), define vr(yp) to be the measure of the lift of W"(qg) to
Q'7(1,...,1)/T where 3(q0) = yo.

Now, by virtue of Theorem 7.1, we have

#Hy e Ty NU®@) : Iylle < T} = V(o) ([0, NU)T" + Oy o0 (TH25)

where vI-(yo) = vr(yo)/[Modg : '] and vr(yp) is as above.
The exponent «»g depends on the exponential mixing rate for the Teichmiiller geodesic
flow on (Q'T(1,...,1)/T, ur). |
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Let I' C Mod, be a finite index subgroup. Given a rational multi-geodesic yo on X
define

sx,r(vo. T) :=#{y € I'yo : {x(y) = T}.
We also have the following generalization of Theorem 1.1.

Theorem 8.3. There exists some ka9 = k29(I") > 0, with dependence on T related to the
exponential mixing rate for the Teichmiiller geodesic flow on Q' T (1,...,1)/ T, and some
¢ = c¢(yo, X, ') such that

sxr (0. T) = ¢ T®¥7C 4 Oy x,r (T 75729,

Proof. Similar to the discussion in the proof of Theorem 8.2, the proof of Theorem 1.1
applies mutatis mutandis to sy (yo, 7). |

Acknowledgments. This project originated in fall of 2015 when the authors were members of the
Institute for Advanced Study (IAS); we thank the IAS for its hospitality. We thank C. McMullen,
K. Rafi, and A. Zorich for helpful discussions. We also thank F. Arana-Herrera, H. Oh, and
A. Wright for their comments on an earlier version of this paper. We are in debt to G. Margulis
and F. Arana-Herrera for drawing our attention to the case of variable negative curvature, and to
K. Rafi for providing the proof of Theorem 5.1. Last, but not least, we thank the anonymous referee
for their careful reading and several helpful comments.

Funding. A.E. acknowledges support by the NSF and the Simons Foundation.
A.M. acknowledges support by the NSF and Alfred P. Sloan Research Fellowship.

References

[1] Athreya, J. S.: Quantitative recurrence and large deviations for Teichmuller geodesic flow.
Geom. Dedicata 119, 121-140 (2006) Zbl 1108.32007 MR 2247652

[2] Athreya, J., Bufetov, A., Eskin, A., Mirzakhani, M.: Lattice point asymptotics and volume
growth on Teichmiiller space. Duke Math. J. 161, 1055-1111 (2012) Zbl 1246.37009
MR 2913101

[3] Avila, A., Gouézel, S.: Small eigenvalues of the Laplacian for algebraic measures in moduli
space, and mixing properties of the Teichmiiller flow. Ann. of Math. (2) 178, 385-442 (2013)
Zbl 1287.58016 MR 3071503

[4] Avila, A., Gouézel, S., Yoccoz, J.-C.: Exponential mixing for the Teichmiiller flow. Publ.
Math. Inst. Hautes Etudes Sci. 143-211 (2006) Zbl 1263.37051 MR 2264836
[5] Avila, A., Resende, M. J.: Exponential mixing for the Teichmiiller flow in the space of

quadratic differentials. Comment. Math. Helv. 87, 589-638 (2012) Zbl 1267.37033
MR 2980521

[6] Birman, J. S., Series, C.: An algorithm for simple curves on surfaces. J. London Math. Soc.
(2) 29, 331-342 (1984) Zbl 0507.57006 MR 744104

[7] Birman,J. S., Series, C.: Geodesics with bounded intersection number on surfaces are sparsely
distributed. Topology 24, 217-225 (1985) Zbl 0568.57006 MR 793185

[8] Bonahon, F.: The geometry of Teichmiiller space via geodesic currents. Invent. Math. 92,
139-162 (1988) Zbl 0653.32022 MR 931208


https://zbmath.org/?q=an:1108.32007&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2247652
https://zbmath.org/?q=an:1246.37009&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2913101
https://zbmath.org/?q=an:1287.58016&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3071503
https://zbmath.org/?q=an:1263.37051&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2264836
https://zbmath.org/?q=an:1267.37033&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2980521
https://zbmath.org/?q=an:0507.57006&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=744104
https://zbmath.org/?q=an:0568.57006&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=793185
https://zbmath.org/?q=an:0653.32022&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=931208

Effective counting of simple closed geodesics 3107

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

Bonahon, F.: Shearing hyperbolic surfaces, bending pleated surfaces and Thurston’s symplec-
tic form. Ann. Fac. Sci. Toulouse Math. (6) 5, 233-297 (1996) Zbl 0880.57005
MR 1413855

Buser, P.: Geometry and Spectra of Compact Riemann Surfaces. Progr. Math. 106, Birkhduser
Boston, Boston, MA (1992) Zbl 0770.53001 MR 1183224

Chas, M., McMullen, C. T., Phillips, A.: Almost simple geodesics on the triply-punctured
sphere. Math. Z. 291, 1175-1196 (2019) Zbl 1426.30030 MR 3936103

Cowling, M., Haagerup, U., Howe, R.: Almost L2 matrix coefficients. J. Reine Angew. Math.
387, 97-110 (1988) Zbl 0638.22004 MR 946351

Eskin, A., Masur, H.: Asymptotic formulas on flat surfaces. Ergodic Theory Dynam. Systems
21, 443-478 (2001) Zbl 1096.37501 MR 1827113

Eskin, A., McMullen, C.: Mixing, counting, and equidistribution in Lie groups. Duke Math.
J.71, 181-209 (1993) Zbl 0798.11025 MR 1230290

Eskin, A., Mirzakhani, M.: Counting closed geodesics in moduli space. J. Modern Dynam. 5,
71-105 (2011) Zbl 1219.37006 MR 2787598

Eskin, A., Mirzakhani, M., Mohammadi, A.: Isolation, equidistribution, and orbit closures for
the SL(2, R) action on moduli space. Ann. of Math. (2) 182, 673-721 (2015)
7Zbl 1357.37040 MR 3418528

Eskin, A., Mirzakhani, M., Rafi, K.: Counting closed geodesics in strata. Invent. Math. 215,
535-607 (2019) Zbl 1411.37033 MR 3910070

Farkas, H. M., Kra, I.: Riemann Surfaces. Grad. Texts in Math. 71, Springer, New York (1980)
Zbl 0475.30001 MR 583745

Haas, A., Susskind, P.: The connectivity of multicurves determined by integral weight train
tracks. Trans. Amer. Math. Soc. 329, 637-652 (1992) Zbl 0793.57010 MR 1028309

Hormander, L.: The Analysis of Linear Partial Differential Operators. I. Classics in Math.,
Springer, Berlin (2003) Zbl 1028.35001 MR 1996773

Hubbard, J., Masur, H.: Quadratic differentials and foliations. Acta Math. 142, 221-274
(1979) Zbl 0415.30038 MR 523212

Kleinbock, D. Y., Margulis, G. A.: Bounded orbits of nonquasiunipotent flows on homoge-
neous spaces. In: Sinai’s Moscow Seminar on Dynamical Systems, Amer. Math. Soc. Transl.
(2) 171, Amer. Math. Soc., Providence, RI, 141-172 (1996) Zbl 0843.22027 MR 1359098

Levitt, G.: Foliations and laminations on hyperbolic surfaces. Topology 22, 119-135 (1983)
Zbl 0522.57027 MR 683752

Lindenstrauss, E., Mirzakhani, M.: Ergodic theory of the space of measured laminations. Int.
Math. Res. Notices 2008, art. nm126, 49 pp. Zbl 1160.37006 MR 2424174

Luo, F., Stong, R.: Lengths of simple loops on surfaces with hyperbolic metrics. Geom. Topol.
6, 495-521 (2002) Zbl 1029.30028 MR 1943757

Margulis, G.: On Some Aspects of the Theory of Anosov Flows. Ph.D. thesis (1970); Springer
(2003) Zbl 1140.37010 MR 2035655

Margulis, G., Mohammadi, A., Oh, H.: Closed geodesics and holonomies for Kleinian mani-
folds. Geom. Funct. Anal. 24, 1608-1636 (2014) Zbl 1366.53040 MR 3261636

Matthews, C. A., Wright, D. J.: Cycle decompositions and train tracks. Proc. Amer. Math.
Soc. 132, 3411-3415 (2004) Zbl 1052.57025 MR 2073318

Minsky, Y., Weiss, B.: Nondivergence of horocyclic flows on moduli space. J. Reine Angew.
Math. 552, 131-177 (2002) Zbl 1079.32011 MR 1940435


https://zbmath.org/?q=an:0880.57005&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1413855
https://zbmath.org/?q=an:0770.53001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1183224
https://zbmath.org/?q=an:1426.30030&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3936103
https://zbmath.org/?q=an:0638.22004&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=946351
https://zbmath.org/?q=an:1096.37501&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1827113
https://zbmath.org/?q=an:0798.11025&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1230290
https://zbmath.org/?q=an:1219.37006&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2787598
https://zbmath.org/?q=an:1357.37040&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3418528
https://zbmath.org/?q=an:1411.37033&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3910070
https://zbmath.org/?q=an:0475.30001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=583745
https://zbmath.org/?q=an:0793.57010&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1028309
https://zbmath.org/?q=an:1028.35001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1996773
https://zbmath.org/?q=an:0415.30038&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=523212
https://zbmath.org/?q=an:0843.22027&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1359098
https://zbmath.org/?q=an:0522.57027&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=683752
https://zbmath.org/?q=an:1160.37006&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2424174
https://zbmath.org/?q=an:1029.30028&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1943757
https://zbmath.org/?q=an:1140.37010&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2035655
https://zbmath.org/?q=an:1366.53040&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3261636
https://zbmath.org/?q=an:1052.57025&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2073318
https://zbmath.org/?q=an:1079.32011&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1940435

A. Eskin, M. Mirzakhani, A. Mohammadi 3108

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]
[41]

[42]
[43]

[44]

Mirzakhani, M.: Simple geodesics on hyperbolic surfaces and the volume of the moduli space
of curves. Ph.D. thesis, Harvard Univ. (2004) MR 2705986

Mirzakhani, M.: Ergodic theory of the earthquake flow. Int. Math. Res. Notices 2008, art.
rnm116, 39 pp. Zbl 1189.30087 MR 2416997

Mirzakhani, M.: Growth of the number of simple closed geodesics on hyperbolic surfaces.
Ann. of Math. (2) 168, 97-125 (2008) Zbl 1177.37036 MR 2415399

Otal, J.-P.: Le spectre marqué des longueurs des surfaces a courbure négative. Ann. of Math.
(2) 131, 151-162 (1990) Zbl 0699.58018 MR 1038361

Penner, R. C.: Probing mapping class groups using arcs. In: Problems on Mapping Class
Groups and Related Topics, Proc. Sympos. Pure Math. 74, Amer. Math. Soc., Providence, RI,
97-114 (2006) Zbl 1216.57009 MR 2264535

Penner, R. C., Harer, J. L.: Combinatorics of Train Tracks. Ann. of Math. Stud. 125, Princeton
Univ. Press, Princeton, NJ (1992) Zbl 0765.57001 MR 1144770

Ratner, M.: The rate of mixing for geodesic and horocycle flows. Ergodic Theory Dynam.
Systems 7, 267-288 (1987) Zbl 0623.22008 MR 896798

Rees, M.: An alternative approach to the ergodic theory of measured foliations on surfaces.
Ergodic Theory Dynam. Systems 1, 461-488 (1981) Zbl 0539.58018 MR 662738

Rivin, L.: Simple curves on surfaces. Geom. Dedicata 87, 345-360 (2001) Zbl 1002.53027
MR 1866856

Strebel, K.: Quadratic Differentials. Ergeb. Math. Grenzgeb. (3) 5, Springer, Berlin (1984)
Zbl 0547.30001 MR 743423

Travaux de Thurston sur les surfaces. Astérisque 66 (1979) Zbl 0406.00016 MR 568308

Thurston, W.: Geometry and Topology of Three-Manifolds. Lecture Notes, Princeton Univ.
(1979)

Thurston, W.: Minimal stretch maps between hyperbolic surfaces. Preprint (1986)

Zorich, A.: Square tiled surfaces and Teichmiiller volumes of the moduli spaces of abelian
differentials. In: Rigidity in Dynamics and Geometry (Cambridge, 2000), Springer, Berlin,
459-471 (2002) Zbl 1038.37015 MR 1919417

Zorich, A.: Flat surfaces. In: Frontiers in Number Theory, Physics, and Geometry. I, Springer,
Berlin, 437-583 (2006) MR 2261104


https://mathscinet.ams.org/mathscinet-getitem?mr=2705986
https://zbmath.org/?q=an:1189.30087&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2416997
https://zbmath.org/?q=an:1177.37036&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2415399
https://zbmath.org/?q=an:0699.58018&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1038361
https://zbmath.org/?q=an:1216.57009&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2264535
https://zbmath.org/?q=an:0765.57001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1144770
https://zbmath.org/?q=an:0623.22008&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=896798
https://zbmath.org/?q=an:0539.58018&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=662738
https://zbmath.org/?q=an:1002.53027&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1866856
https://zbmath.org/?q=an:0547.30001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=743423
https://zbmath.org/?q=an:0406.00016&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=568308
https://zbmath.org/?q=an:1038.37015&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1919417
https://mathscinet.ams.org/mathscinet-getitem?mr=2261104

	1. Introduction
	1.1. Simple closed geodesics
	1.2. Outline of the paper

	2. Preliminaries and notation
	2.1. Period coordinates
	2.2. SL(2,R)-action on H_1(α)
	2.3. Mapping class group action
	2.4. The constants
	2.5. Modified Hodge norm
	The classes c_α and ∗c_α
	Short bases
	2.6. Relative cohomology
	2.7. The AGY-norm
	2.8. Nondivergence results
	2.9. Period box
	2.10. Horospherical foliation
	2.11. Smooth structure on affine manifolds

	3. Translates of horospheres
	4. A counting function
	5. The space of measured laminations
	5.1. Train track charts
	5.2. Thurston symplectic form on ML(S)
	5.3. Combinatorial type of measured laminations and train tracks
	5.4. The Hubbard–Masur map
	5.5. Convexity of the hyperbolic length function

	6. Linear structure of ML(S) and QT(S)
	7. Counting integral points in ML(S)
	7.1. Jenkins–Strebel differentials
	7.2. Counting in linear sectors in ML(S)

	8. Proof of Theorem 1.1
	References

