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Abstract. We classify all functions which, when applied term by term, leave invariant the
sequences of moments of positive measures on the real line. Rather unexpectedly, these functions
are built of absolutely monotonic components, or reflections of them, with possible discontinuities
at the endpoints. Even more surprising is the fact that functions preserving moments of three point
masses must preserve moments of all measures. Our proofs exploit the semidefiniteness of the asso-
ciated Hankel matrices and the complete monotonicity of the Laplace transforms of the underlying
measures. As a byproduct, we characterize the entrywise transforms which preserve totally non-
negative Hankel matrices, and those which preserve all totally non-negative matrices. The latter
class is surprisingly rigid: such maps must be constant or linear. We also examine transforms in the
multivariable setting, which reveals a new class of piecewise absolutely monotonic functions.
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1. Introduction

The ubiquitous encoding of functions or measures into discrete entities, such as sampling
data, Fourier coefficients, Taylor coefficients, moments, and Schur parameters, leads nat-
urally to operating directly on the latter ‘spectra’ rather than the original. The present
article focuses on operations which leave invariant power moments of positive multivari-
able measures. To put our essay in historical perspective, we recall a few similar and
inspiring instances.

The characterization of positivity preserving analytic operations on the spectrum of
a self-adjoint matrix is due to Loewner in his groundbreaking article [33]. Motivated
by the then-novel theory of the Gelfand transform and the Wiener–Levy theorem, in the
1950s Helson, Kahane, Katznelson, and Rudin identified all real functions which preserve
Fourier transforms of integrable functions or measures on abelian groups [23, 28, 38].
Roughly speaking, these Fourier-transform preservers have to be analytic, or even abso-
lutely monotonic. The absolute-monotonicity conclusion was not new, and resonated with
earlier work of Bochner [9] and Schoenberg [42] on positive definite functions on homo-
geneous spaces. Later on, this line of thought was continued by Horn in his doctoral
dissertation [26]. These works all address the question of characterizing real functions F
which have the property that the matrix .F.aij // is positive semidefinite whenever .aij /
is, possibly with some structure imposed on these matrices. Schoenberg’s and Horn’s the-
orems deal with all matrices, infinite and finite, respectively, while Rudin et al. deal with
Toeplitz-type matrices via results of Herglotz and Carathéodory.

In this article, we focus on functions which preserve moment sequences of positive
measures on Euclidean space, or, equivalently, in the one-variable case, functions which
leave invariant positive semidefinite Hankel kernels. As we show, these moment pre-
servers are quite rigid, with analyticity and absolute monotonicity again being present
in a variety of combinations, especially when dealing with multivariable moments. We
state in detail in Section 2 our results for one-variable functions and domains and for
moment sequences of measures on them, but first we present in Section 1.1 tabulated lists
of our results in one and several variables.

The first significant contribution below is the relaxation to a minimal set of condi-
tions, which are very accessible numerically, that characterize the positive definite Hankel
kernel transformers in one variable. Specifically, Schoenberg proved that a continuous
map F W .�1; 1/! R preserves positive semidefiniteness when applied to matrices of all
dimensions, if and only if F is analytic and has positive Taylor coefficients [42]. Later
on, Rudin was able to remove the continuity assumption [38]. In our first major result, we
prove that a map F W .�1; 1/! R preserves positive semidefiniteness of all matrices if
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and only if it preserves this on Hankel matrices. Even more surprisingly, a refined analysis
reveals that preserving positivity on Hankel matrices of rank at most 3 already implies the
same conclusion.

Our result can equivalently be stated in terms of preservers of moment sequences of
positive measures. Thus we also characterize such preservers under various constraints on
the support of the measures. Furthermore, we examine the analogous problem in higher
dimensions. In this situation, extra work is required to compensate for the failure of Ham-
burger’s theorem in higher-dimensional Euclidean spaces.

Our techniques extend naturally to totally non-negative matrices, in parallel to their
natural connection to the Stieltjes moment problem. We prove that the entrywise transfor-
mations which preserve total non-negativity for all rectangular matrices, or all symmetric
matrices, are either constant or linear. Furthermore, we show that the entrywise preservers
of totally non-negative Hankel matrices must be absolutely monotonic on the positive
semi-axis. The class of totally non-negative matrices was isolated by M. Krein almost
a century ago; he and his collaborators proved its significance for the study of oscilla-
tory properties of small harmonic vibrations in linear elastic media [18, 19]. Meanwhile
this chapter of matrix analysis has reached maturity and it continues to be explored and
enriched on intrinsic, purely algebraic grounds [13, 14].

We conclude by classifying transformers of tuples of moment sequences, from which
a new concept emerges, that of a piecewise absolutely monotonic function of several
variables. In particular, our results extend original theorems by Schoenberg and Rudin.
For more on the wider framework within which this article sits, we refer the reader to the
survey [4].

Besides the classical works cited above delineating this area of research, we rely in
the sequel on Bernstein’s theory of absolutely monotone functions [7, 54], a related pio-
neering article by Lorch and Newman [32] and Carlson’s interpolation theorem for entire
functions [11].

The study of positive definite functionals defined on �-semigroups, with or without
unit, led Stochel to a series of groundbreaking discoveries, complementing the celebrated
Naimark and Sz. Nagy dilation theorems and, in particular, putting multivariate moment
problems in a wider, more flexible framework [47–49]. A byproduct of his studies is a
classification of positive definite functionals on the multiplicative semigroup .�1; 1/ [48],
culminating with a similar conclusion to our main one-dimensional result: these positive
functionals are absolutely monotonic on .0; 1/ with possibly discontinuous derivatives, of
any order, at the origin.

As a final remark, we note that entrywise transforms of moment sequences were
previously studied in a particular setting motivated by infinite divisibility in probabil-
ity theory [25,50]. The study of entrywise operations which leave invariant the cone of all
positive matrices has also recently received renewed attention in the statistics literature,
in connection to the analysis of big data. In that setting, functions are applied entrywise
to correlation matrices to improve properties such as their conditioning, or to induce a
Markov random-field structure. The interested reader is referred to [3, 21, 22] and the
references therein for more details.
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A companion to the present article [5] was recently completed, which extends the
work here with definitive classifications of preservers of totally positive and totally non-
negative kernels, and together with kernels having additional structure, such as those of
Hankel [53] or Toeplitz [43] type, or generating series, such as Pólya frequency functions
and sequences.

1.1. Summary of main results

Tables 1.1 and 1.2 below summarize the results proved in this article. The notation used
below is explained in the main body of the article; see also the List of Symbols following
this subsection.

In the one-variable setting, we have identified the positivity preservers acting on (i) all
matrices, and (ii) all Hankel matrices, in the course of classifying such functions acting on
(iii) moment sequences, i.e., all Hankel matrices arising from moment sequences of mea-
sures supported on Œ�1; 1�. Characterizations for all three classes of matrices are obtained
with the additional constraint that the entries of the matrices lie in .0; �/, .��; �/, and
Œ0; �/, where � 2 .0;1�.

F Œ�� preserves positivity on:
Domain I ,

S
N�1PN .I / HC.I / � 2M.Œ0; 1�/ or M.Œ�1; 1�/,

� 2 .0;1� s0.�/ 2 I \ Œ0;1/

.0; �/ Theorems 2.12, 4.4 Theorems 4.2, 4.4 Theorems 4.2, 4.4
Œ0; �/ Proposition 8.1 Proposition 8.1 Theorem 4.1
.��; �/ Theorem 2.10 Theorem 6.1 Theorem 6.1

Tab. 1.1. The one-variable case.

We then extend each of the results in Table 1.1 to apply to functions acting on tuples
of positive matrices or moment sequences: see Table 1.2.

F Œ�� preserves positivity on m-tuples of elements in:
Domain I ,

S
N�1PN .I / HC.I / � 2M.Œ0; 1�/ or M.Œ�1; 1�/,

� 2 .0;1� s0.�/ 2 I \ Œ0;1/

.0; �/ Theorem 9.6 Theorem 9.6 Theorem 9.6
Œ0; �/ Proposition 9.8 Proposition 9.8 Theorem 9.5
.��; �/ Theorem 9.11 Theorem 9.11 Theorem 9.11

(see [16] for � D1)

Tab. 1.2. The multivariable case.

In the one-variable setting, we do more than is recorded in Table 1.1, since our results
cover various classes of totally non-negative matrices (Section 5), as well as the closed-
interval settings of Œ0; �� and Œ��; �� for � <1 (Section 8). The multivariable case may
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contain products of open and closed intervals, but it would be rather cumbersome, and
somewhat artificial, to consider them all. We do not pursue this direction in the present
work.

In all of the above contexts, with the exception of functions on Œ0; �/m (i.e., the
.2; 3/ entry in both tables), the characterizations are uniform: all such positivity pre-
servers are necessarily analytic on the domain and absolutely monotonic on the closed
positive orthant. The converse result holds trivially by the Schur product theorem. The
one exceptional case reveals a richer family of ‘facewise absolutely monotonic maps’;
see Section 9.2.

We have also improved on all of the above results, by significantly relaxing the
hypotheses required to obtain absolute monotonicity.

Finally, and for completeness, we remark that Theorem 4.8 from our previous
work [3], which is widely used herein, admits a generalization to all, possibly non-
consecutive, integer powers, and again the bounds have closed form. This result is
obtained through a careful analysis and novel results about Schur polynomials; we refer
the reader to the recent paper by Khare and Tao [30] for more details.

1.2. List of symbols

For the convenience of the reader, we list some of the symbols used in this paper.

� Given a subset I � R, P k
N .I / is the set of positive semidefinite N �N matrices with

entries in I and of rank at most k. We let PN .I / WD PN
N .I / and PN WD PN .R/.

� HC.I / denotes the set of positive semidefinite Hankel matrices of arbitrary dimension
with entries in I .
� HCCn denotes the set of n� n totally non-negative Hankel matrices, and HCC denotes

the set of all totally non-negative Hankel matrices.
� H .1/ denotes the truncation of a possibly semi-infinite matrix H obtained by excising

the first column.
� F ŒH� is the result of applying F to each entry of the matrix H .
� ForK � R, we denote by MeasC.K/ the set of admissible measures, i.e., non-negative

measures � supported on K and admitting moments of all orders.
� The kth moment of a measure � is denoted by sk.�/; the corresponding moment

sequence is s.�/ WD .sk.�//k�0. The associated Hankel moment matrix H� has .i; j /
entry siCj .�/. In particular, the moment sequence of � is the leading row and column
of H�.
� Given K � R, M.K/ denotes the set of moment sequences associated to elements of

MeasC.K/. For any k � 0, Mk.K/ denotes the corresponding set of truncated moment
sequences: Mk.K/ WD ¹.s0.�/; : : : ; sk.�// W � 2 MeasC.K/º.
� Given K � R and a scalar � with 0 < � � 1, M�.K/ denotes the subset of M.K/

with moments sj 2 .��; �/ for all j � 0, and, for any k � 0, we let M
�

k
.K/ denote the

subset of Mk.K/ with sj 2 .��; �/ for j D 0; : : : ; k.
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� Given � with 0 < � � 1, an integer k � 0, and x 2 Œ�1; 1/, we let M�;C.¹1; xº/ and
M
�;C

k
.¹1; xº/ denote the subsets of M.¹1; xº/ and Mk.¹1; xº/, respectively, with total

mass s0 < � and such that 1 and x both have positive mass.
� Given an integer m � 1, a function F W Rm ! R acts on tuples of moment sequences

of admissible measures in M.K1/ � � � � �M.Km/ as follows:

F Œs.�1/; : : : ; s.�m/� WD .F.sk.�1/; : : : ; sk.�m///k�0: (1.1)

� Given h > 0 and an integer n � 0, �n
h
F denotes the nth forward difference of the

function F with step size h.
� 1m�n denotes the m � n matrix with all entries equal to 1.
� CC WD ¹z 2 C W <z > 0º denotes the right open half-plane.

1.3. Organization

The plan of the article is as follows. Section 2 recalls notation and reviews previous work,
while Section 3 lists our main results for classical positive Hankel matrices transform-
ers, which, in particular, go beyond previous classical results. Sections 4, 6, 7, and 8 are
devoted to proofs, arranged by the domains of the entries of the relevant Hankel matrices.
For these proofs, we work with measures with restricted total mass, which is reflected in
the domains of the test sets of matrices, and helps unify previously known results. Thus,
we end up showing stronger results than in Section 2; these results were tabulated in a
concise form in Section 1.1 above. An additional strengthening involves severely reduc-
ing the supports of the test measures, which translates to rank constraints on the test sets
of Hankel matrices and hence stronger results. This technical point is not mentioned in
the above tables, but is detailed in the aforementioned Sections 4, 6, 7, and 8 devoted to
proofs.

Section 5 contains the classifications of preservers of total non-negativity for several
different sets of matrices, in the dimension-free setting. Section 9 deals with multivariable
transformers of Hankel kernels. Section 10 makes the natural link with Laplace transforms
and interpolation of entire functions. The appendix is devoted to algebraic properties of
adjugate matrices.

2. Preliminaries

In this section we collect the basic concepts and notation necessary for accessing the rest
of the article. Bibliographical indications will rely on classical texts. We are fortunate to
be able to refer to a few very recent outstanding monographs, including [40, 46].

2.1. Matrices of moments

Our raw material consists of structured matrices of moments and functions acting on them.
In this subsection, we concentrate on the first. Henceforth N is a positive integer.
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Definition 2.1. Given a subset I � R, denote by PN .I / the set of positive semidefinite
N �N matrices with entries in I , and let PN WD PN .R/.

The set PN is a convex cone, closed in the Euclidean topology of RN�N . Schur’s
product theorem assertsA ıB 2PN wheneverA;B 2PN ; hereA ıB D .aij bij / denotes
the entrywise product of two equidimensional matrices A D .aij / and B D .bij /. For a
proof it is sufficient to decompose B into a sum of rank-one positive matrices and follow
the definition of matrix positivity.

Recall that a matrix is said to be totally non-negative if all its minors are non-
negative. Totally non-negative matrices occur in a variety of areas; see [13] and the
references therein. For instance, a well-known observation due to Schoenberg asserts
that given vectors x1; : : : ; xN in an inner-product space, the corresponding matrix
.exp.�kxj � xkk2/Nj;kD1 is totally non-negative.

Definition 2.2. For an integer n� 1, let HCCn denote the set of n� n totally non-negative
Hankel matrices, and let HCC WD

S
n�1HCCn denote the set of totally non-negative Han-

kel matrices of arbitrary size.

The moment problem, in the widely accepted meaning of the term, is arguably the
quintessential inverse problem. It has a long history and continues to lead to unexpected
impacts in pure and applied mathematics; see, for instance, [1,31,40,45]. Moments of pos-
itive measures are in general observables, with a physical or probabilistic interpretation.
These observed real numbers are not free, but are subject to an array of semi-algebraic
constraints, which are generally hard to deal with directly. A convenient and numerically
friendly approach is to organize the moments into matrices with redundant entries, the
simplest case being associated to measures supported on subsets of the real line. We will
start with this generic situation.

Let � be a non-negative measure on R, rapidly decreasing at infinity, that admits
moments of all orders; let its moment data and associated Hankel matrix be denoted as
follows:

sk.�/D sk WD

Z
R
xk d�; s.�/ WD .sk.�//k�0; H� WD

0BBB@
s0 s1 s2 � � �

s1 s2 s3 � � �

s2 s3 s4 � � �

:::
:::

:::
: : :

1CCCA : (2.1)

All measures appearing in this paper are taken to be non-negative and are assumed to
possess moments of all orders. We will henceforth call such measures admissible.

Throughout this paper, we allow matrices to be semi-infinite in both coordinates. We
also identify without further comment the space of real sequences .s0; s1; : : : / and the
corresponding Hankel matrices, as done in (2.1).

To verify the positivity of the matrix H�, it is sufficient to observe that

0 �

Z ˇ̌̌ NX
jD0

cjx
j
ˇ̌̌2

d� D
NX

j;kD0

H�.j; k/cj ck :
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Definition 2.3. Given subsets I;K � R, let MeasC.K/ denote the admissible measures
supported onK, and let HC.I / denote the set of complex Hermitian positive semidefinite
Hankel matrices with entries in I . We will henceforth use the adjective ‘positive’ to mean
‘complex Hermitian positive semidefinite’ when applied to matrices.

The following theorem combines classical results of Hamburger, Stieltjes, and Haus-
dorff.

Theorem 2.4. A sequence s D .sk/1kD0 is a moment sequence for an admissible measure
on R if and only if the Hankel matrix with first column s is positive. In other words, the
map ‰ W � 7! .sk.�//

1
kD0

is a surjection from MeasC.R/ onto HC.R/. Moreover,

(1) restricted to MeasC.Œ0;1//, the map‰ is a surjection onto the positive Hankel matri-
ces with non-negative entries, such that removing the first column still yields a positive
matrix;

(2) restricted to MeasC.Œ�1; 1�/, the map‰ is a bijection onto the positive Hankel matri-
ces with uniformly bounded entries;

(3) restricted to MeasC.Œ0;1�/, the map‰ is a bijection onto the positive Hankel matrices
with uniformly bounded entries, such that removing the first column still yields a
positive matrix.

Proof. The first assertion is classical; for example, see Akhiezer’s book [1, Theorems
2.1.1, 2.6.4, and 2.6.5]. For the last two statements, we simply remark that for an admis-
sible measure �,

s2n.�/ D

Z
Œ�1;1�

x2n d�C
Z

RnŒ�1;1�
x2n d�:

The first integral remains uniformly bounded as a function of n, while the second tends to
infinity with n whenever the measure � has positive mass on R n Œ�1; 1�:

Definition 2.5. In view of the above correspondence, we denote by M.K/ the set of
moment sequences associated to measures in MeasC.K/. Equivalently, M.K/ is the col-
lection of first columns of Hankel matrices associated to admissible measures supported
on K. We write H .1/ to denote the truncation of a matrix H in which the first column is
excised.

For technical reasons which will become apparent from the proofs below, we intro-
duce an additional parameter via the following definition.

Definition 2.6. Given 0 < � � 1 and I � R, let M�.I / denote the set of moment
sequences .sk.�//1kD0 of admissible measures � supported on I , with all moments in
.��;�/. Also, for any n� 0, let M

�
n.I / denote the corresponding set of truncated moment

sequences .sk.�//nkD0.

Note that M�.I / DM.I / and M
�
n.I / DMn.I / when � D1. Moreover, for a non-

negative measure � supported on Œ�1; 1�, the mass s0.�/ dominates jsk.�/j for all k � 0.
Studying moment sequences of admissible measures having mass s0 < � is therefore
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equivalent to working with Hankel matrices with entries in a bounded interval .��; �/.
This will be our approach in the remainder of the paper.

A simple characterization of rank-one Hankel matrices is stated below.

Lemma 2.7. A rank-one N � N matrix uuT , with entries in any field, is Hankel if and
only if either the successive entries of u are in a geometric progression, or all entries but
the last are 0. More precisely, the matrix uuT is Hankel if and only if

uj D

´
u1.u2=u1/

j�1 if u1 ¤ 0;
0 if u1 D 0 and 1 � j < N:

(2.2)

Proof. This is immediate for N � 2. For N > 2, each principal 3 � 3 block submatrix
of uuT with successive rows and columns is of the form0@ u2j�1 uj�1uj uj�1ujC1

ujuj�1 u2j ujujC1
ujC1uj�1 ujC1uj u2jC1

1A ;
whence uj�1ujC1 D u2j for all j � 2. Identity (2.2) follows immediately.

We invite the reader to find all positive measures on the real line which produce a rank-
one Hankel matrix. In general, one can read off from a positive Hankel matrix whether
the representing measure is unique, and estimate the shape of the support of the repre-
senting measure(s) (of utmost importance in polynomial optimization), and enter into the
Lebesgue decomposition of the representing measure(s). We refer to [1,31,40] for aspects
of such refined analysis pertaining to the moment problem and its current applications.

In Section 9, we will treat multivariable moment problems. In that context, Hankel
matrices are replaced by kernels with a Hankel-type property. The semigroup approach
proves to be superior in the multivariablee setting; see [6] for more details.

To conclude, we note that the study of Hankel matrices forms an important chapter
of modern analysis, with ramifications for approximation theory, probability theory and
control theory [34].

2.2. Absolutely monotonic functions

We turn now to operators on moments by identifying two relevant classes of functions.
Central to our study is the class of absolutely monotonic entire functions. These are

entire functions with non-negative Taylor coefficients at every point of .0;1/. Equiva-
lently, it is sufficient for such a function to have non-negative Taylor coefficients at zero.
Their structure was unveiled in a fundamental memoir by Bernstein [7]; see also Widder’s
book [54] or the recent treatise [39].

One can restrict the absolute monotonicity definition to a finite interval, with the fol-
lowing outcome.

Theorem 2.8 ([54, Chapter IV, Theorem 3a]). If f is absolutely monotonic on Œa; b/,
then it can be extended analytically to the complex disc centered at a and of radius b � a.
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Recall that a function is said to be completely monotonic on an interval .a; b/ if the
map x 7! f .�x/ is absolutely monotonic on .�b;�a/, i.e., if .�1/kf .k/.x/ � 0 for all
x 2 .a; b/. Similarly, a function is completely monotonic on an interval I � R if it is
continuous on I and is completely monotonic on the interior of I .

Complete monotonicity can also be defined using finite differences. Let �n
h
f denote

the nth forward difference of f with step size h:

�nhf .x/ WD

nX
kD0

.�1/n�k
�
n

k

�
f .x C kh/:

Then f is completely monotonic on .a; b/ if and only if .�1/n�n
h
f .x/ � 0 for all non-

negative integers n and for all x, h such that a < x < x C h < � � � < x C nh < b. See
[54, Chapter IV] for more details on completely monotonic functions. Such functions
were also characterized in a celebrated result of Bernstein.

Theorem 2.9 (Bernstein [54, Chapter IV, Theorem 12a]). A function f W Œ0;1/! R is
completely monotonic on 0 � x <1 if and only if

f .x/ D

Z 1
0

e�xt d�.t/

for some finite positive measure �.

Atomic measures are not excluded in Bernstein’s theorem, hence series of exponen-
tials and Dirichlet series are an integral part of the theory of absolutely or completely
monotonic functions. One of the major advantages of absolute monotonicity is the ana-
lytic extension of the respective function to a complex domain. We will exploit this quality
further on in the present work.

2.3. Matrix positivity transforms

The main theme of our work is permanence properties of moment matricesA under entry-
wise operations. From the very beginning we warn the reader that our framework is in
contrast to the classical functional calculus A 7! f .A/ which is the subject of Loewner’s
celebrated theorem: a real function f preserves matrix ordering .i.e., A � B implies
f .A/ � f .B// among self-adjoint matrices if and only if f extends analytically to the
upper half-plane and it has positive imaginary part there. For ample details and a dozen
different proofs, see [12, 46].

Entrywise operations on matrices and kernels also have a long and interesting history,
see [4]. We will provide the outlines of a few significant results.

Transformations which leave invariant Fourier transforms of various classes of mea-
sures on groups or homogeneous spaces were studied by many authors, including Schoen-
berg [42], Bochner [9], Helson, Kahane, Katznelson, and Rudin [23, 28]. From the latter
works, Rudin extracted [38] an analysis of maps which preserve moment sequences for
admissible measures on the torus; equivalently, these are functions which, when applied
entrywise, leave invariant the cone of positive semidefinite Toeplitz matrices. Rudin’s
result, originally proved by Schoenberg [42] under a continuity assumption, is as follows.
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Theorem 2.10 (Schoenberg, Rudin). Given a function F W .�1; 1/! R, the following
are equivalent.

(1) Applied entrywise, F preserves positivity on the space of positive matrices with
entries in .�1; 1/ of all dimensions.

(2) Applied entrywise, F preserves positivity on the space of positive Toeplitz matrices
with entries in .�1; 1/ of all dimensions.

(3) The function F is real analytic on .�1; 1/ and absolutely monotonic on .0; 1/.

The facts that (3))(1) and (3))(2) follow from the Schur product theorem [44].
However, the converse results are highly non-trivial.

In the present paper, we consider moments of measures on the line rather than Fourier
coefficients, so power moments rather than complex exponential moments. Hence we
study functions F mapping moment sequences entrywise into themselves, i.e., such that
for every admissible measure �, there exists an admissible measure � D �� satisfying

F.sk.�// D sk.�/ for all k � 0:

Equivalently, by Theorem 2.4, we study entrywise endomorphisms of the cone of positive
Hankel matrices with real entries. The following notion of entrywise calculus is central to
this paper.

Definition 2.11. Given a domain D � R and a function F W D ! R, the function F Œ��
acts on the set of matrices with entries in D, by applying F entrywise:

F ŒA� WD .F.aij // for the matrix A D .aij /:

The function F also acts entrywise on moment sequences with all moments in D, so that
F Œs.�/�k WD F.sk.�// for all k � 0, and similarly for truncated moment sequences.

An observation on positivity preservers made by Loewner and developed by Horn [26]
provides the following necessary condition for a function to preserve positivity on
PN ..0;1// when applied entrywise.

Theorem 2.12 (Horn). If a continuous function F W .0;1/! R is such that

F Œ�� W PN ..0;1//! PN .R/;

then F 2 CN�3..0;1// and F .k/.x/� 0 for all x > 0 and all 0� k �N � 3. Moreover,
if F 2 CN�1..0;1//, then F .k/.x/ � 0 for all x > 0 and all 0 � k � N � 1.

The main idea in the proof is to develop into Taylor series a perturbation determinant

detŒF .aC tujuk/�Nj;kD1

and isolate the first non-zero coefficient as a universal constant times the product
F.a/F 0.a/ � � � F .N�3/.a/. Our prior work in fixed dimension has amply exploited the
symmetry and combinatorial flavor of similar determinants [3].
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3. Main results in 1D

We state in this brief section our main results, restricted to the one-variable case. The
proofs will be given in subsequent sections with a gradual increase in technicality, which
also applies the statements of these results. A leading thread is the isolation of minimal
sets of matrices for the verification of preservers, without altering the conclusions. We
remind the reader that all functions in this article act entry by entry on moment sequences
and matrices.

The following theorem, the first in a series to be established below, gives an idea of
the type of positive Hankel-matrix preservers we seek.

Theorem 3.1. A function F WR!R maps M.Œ�1; 1�/ into itself when applied entrywise
if and only if F is the restriction to R of an absolutely monotonic entire function.

In particular, Theorem 3.1 strengthens the Schoenberg–Rudin Theorem 2.10, by relax-
ing the assumptions in [38,42] to require positivity preservation only for Hankel matrices.
Theorem 3.1 is proved in Section 6 with three further strengthenings: we use test sets
with at most three points (corresponding to Hankel test matrices of rank at most 3),
the measures are allowed to have a mass constraint, enabling us to classify functions
F W .��; �/! R, where 0 < � � 1, and we show that allowing functions to map entry-
wise into the co-domain M.R/ does not enlarge the class of preservers.

Our next result is a one-sided variant of the above characterizations, following
Horn [26, Theorem 1.2]. Akin to Theorem 3.1, it arrives at the same conclusion under
weaker assumptions than in [26].

Theorem 3.2. A function F W Œ0;1/ ! R maps M.Œ0; 1�/ into itself when applied
entrywise if and only if F is absolutely monotonic on .0;1/, so non-decreasing, and
0 � F.0/ � lim�!0C F.�/.

In Section 4, we use results of Bernstein and Lorch–Newman to prove Theorem 3.2,
and then provide a strengthening of it, Theorem 4.1, in the spirit described above after
Theorem 3.1. Here, we can replace M.Œ0; 1�/ by test measures supported on at most two
points.

Next, we provide a classification of the preservers of M.Œ0;1//, Theorem 3.3, which
gives a Schoenberg-type characterization of functions preserving total non-negativity. It
is akin to Theorem 3.2, and provides a connection between moment sequences, totally
non-negative Hankel matrices, and their preservers; see Section 5 for the proof.

Theorem 3.3. For a function F W Œ0;1/! R, the following are equivalent.

(1) Applied entrywise, the function F preserves positive semidefiniteness on the set HCC

of all totally non-negative Hankel matrices.

(2) Applied entrywise, the function F preserves the set HCC.

(3) Applied entrywise, the function F sends M.Œ0;1// to itself.

(4) The function F agrees on .0;1/ with an absolutely monotonic entire function and
0 � F.0/ � lim�!0C F.�/.
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Our techniques lead to the following observation: the only non-constant maps which
preserve the set of all totally non-negative matrices when applied entrywise are of the
form F.x/ D cx, where c > 0. See Theorem 5.7 for more details.

Returning to moment sequences, in the present paper we also study preservers of
M.Œ�1; 0�/, and show that these are classified as follows.

Theorem 3.4. The following are equivalent for a function F W R! R.

(1) Applied entrywise, F maps M.Œ�1; 0�/ into M..�1; 0�/.
(2) There exists an absolutely monotonic entire function zF such that

F.x/ D

8̂<̂
:
zF .x/ if x 2 .0;1/;
0 if x D 0;
� zF .�x/ if x 2 .�1; 0/:

It is striking to observe the possibility of a discontinuity at the origin, in both of the
previous theorems. For the proof of this result, we refer the reader to Section 7.

We also derive a similar description of the functions that transform M.Œ�1; 0�/ into
M.Œ0;1//; see Theorem 7.3. In this variant, we observe that F may also be discontinuous
at 0.

The arguments used to show Theorem 2.10 and its one-sided variant by Schoenberg,
Rudin, and Horn do not carry over to our setting involving positive Hankel matrices. This
is due to the fact that the hypotheses in Theorems 3.1 and 3.2 are significantly weaker.

We show below how to further relax quite substantially the assumptions in Theo-
rem 3.1 (Section 6), Theorem 3.2 (Section 4), and Theorem 3.4 (Section 7). In doing
so, our goal is to understand the minimal amount of information that is equivalent to the
requirement that a function preserves M.Œ0; 1�/ or M.Œ�1; 1�/ when applied entrywise.
We will demonstrate that requiring a function to preserve moments for measures sup-
ported on at most three points is equivalent to preserving moments for all measures. In
particular, this shows that preserving positivity for positive Hankel matrices of rank at
most 3 implies positivity preservation for all positive matrices.

This latter point prompts a comparison to the case of Toeplitz matrices considered
in [38]. Rudin proved that Theorem 2.10(3) holds if F preserves positivity on a two-
parameter family of Toeplitz matrices with rank at most 3, namely

¹.aC b cos..i � j /�//i;j�1 W a; b � 0; aC b < 1º; (3.1)

where � is a fixed real number such that �=� is irrational. Similarly, the present work
shows that for power moments, it suffices to work with families of positive Hankel matri-
ces of rank at most 3. Theorem 6.1(1) contains the precise details.

4. Moment transformers on Œ0; 1�

Over the course of the next four sections, we will formulate and prove strengthened ver-
sions of the announced results.
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Here, we provide two proofs of Theorem 3.2. The first is natural from the point of view
of moments and Hankel matrices. The proof proceeds by first deriving from positivity
considerations some inequalities satisfied by all moments transformers. We then obtain
the desired characterization by appealing to classical results on completely monotonic
functions. This is in the spirit of Lorch and Newman [32], who in turn are very much
indebted to the original Hausdorff approach to the moment problem via summation rules
and higher-order finite differences.

Using Theorem 2.9, we now provide our first proof of Theorem 3.2.

Proof 1 of Theorem 3.2. The ‘if’ part follows from two statements: (i) absolutely mono-
tonic entire functions preserve positivity on all matrices of all orders, by the Schur product
theorem; (ii) moment matrices from elements of M.Œ0; 1�/ have zero entries if and only if
� D aı0 for some a � 0.

Conversely, suppose the function F preserves M.Œ0; 1�/ when applied entrywise, i.e.,
given any � 2 MeasC.Œ0; 1�/, there exists � 2 MeasC.Œ0; 1�/ such that

F.sk.�// D sk.�/ for all k � 0:

Let p.t/ D a0t0 C � � � C ad td be a real polynomial such that p.t/ � 0 on Œ0; 1�. Then

0 �

Z 1

0

p.t/ d�.t/ D
dX
kD0

aksk.�/ D

dX
kD0

akF.sk.�//: (4.1)

Here and below, we employ (4.1) with a careful choice of measure� and polynomial p
to deduce additional information about the function F . In the present situation, fix finitely
many scalars cj , tj > 0 and an integer n � 0, and set

p.t/ D .1 � t /n and � D
X
j

e�tj˛cj ıe�tj h ; (4.2)

where ˛ > 0 and h > 0. Now let g.x/ WD
P
j cj e

�tj x , and apply (4.1) to see that the
forward finite differences of F ı g alternate in sign. That is,

nX
kD0

.�1/k
�
n

k

�
F
�X
j

cj e
�tj˛�tj kh

�
� 0;

so .�1/n�n
h
.F ı g/.˛/� 0. As this holds for all ˛, h > 0 and all n� 0, it follows that F ı

g W .0;1/! .0;1/ is completely monotonic for all � as in (4.2). Using the weak density
of such measures in MeasC..0;1//, together with Bernstein’s theorem (Theorem 2.9),
it follows that F ı g is completely monotonic on .0;1/ for all completely monotonic
functions g W .0;1/! .0;1/. Finally, a theorem of Lorch and Newman [32, Theorem 5]
now gives that F W .0;1/! .0;1/ is absolutely monotonic.

Our second proof of Theorem 3.2 involves a significant relaxation of its hypothe-
ses. Our first observation is that, if F preserves positivity for 2 � 2 matrices, and sends
M.¹1; u0º/ to M.R/ for a single u0 2 .0; 1/, then F is absolutely monotonic on .0;1/.
Further relaxation may be obtained by working with mass-constrained measures.
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Theorem 4.1. Fix scalars � and u0 with 0 < � � 1 and u0 2 .0; 1/. Given a function
F W Œ0; �/! R, the following are equivalent.

(1) The map F Œ�� sends M�.¹1; u0º/ [ M�.¹0; 1º/ into M.R/, and F.a/F.b/ �

F.
p
ab/2 for all a, b 2 Œ0; �/.

(2) The map F Œ�� sends M�.Œ0; 1�/ into M.Œ0; 1�/.
(3) The function F agrees on .0; �/ with an absolutely monotonic entire function and

0 � F.0/ � lim�!0C F.�/.

If F is continuous on .0; �/, then the second hypothesis in .1/ may be omitted.

Note that assertion (1) is a priori significantly weaker than the requirement that F
preserves M.Œ0; 1�/, at least when � D1, say. Moreover, hypothesis (3) here is the same
as hypothesis (4) in Theorem 3.3, and Theorem 4.1 is used to prove that result in Section 5.

We now turn to proving Theorem 4.1. This requires results on functions preserving
positivity for matrices of a fixed dimension, which we now develop.

As shown in [21, Theorem 4.1], the same result can be obtained by working only with
a particular family of rank-two matrices, without the continuity assumption, and on any
domain .0; �/ as above. In the next theorem, Horn’s hypotheses are relaxed even further
by making appeal only to Hankel matrices.

Theorem 4.2. Let F W I ! R, where I WD .0; �/ and 0 < � � 1. Fix u0 2 .0; 1/ and
an integer N � 3, and let u WD .1; u0; : : : ; uN�10 /T . Suppose F Œ�� preserves positivity
on P2.I /, and F ŒA� 2 PN .R/ for the family of Hankel matrices

¹A D a1N�N C buuT W a 2 Œ0; �/; b 2 Œ0; � � a/; 0 < aC b < �º: (4.3)

Then F 2 CN�3.I /, with

F .k/.x/ � 0 for all x 2 I .0 � k � N � 3/;

and F .N�3/ is a convex non-decreasing function on I . If, further, F 2 CN�1.I /, then
F .k/.x/ � 0 for all x 2 I and 0 � k � N � 1.

Finally, if F is continuous on I , then the assumption that F preserves positivity
on P2.I / is not necessary.

Remark 4.3. In fact, our proof of Theorem 4.2 reveals that these hypotheses may be
relaxed slightly, by replacing the test set P2..0; �// with the collection of rank-one matri-
ces P 1

2 ..0; �// and all matrices of the form�
a b

b b

�
with a > b > 0: (4.4)

The proof of Theorem 4.2 relies on Lemma 2.7.

Proof of Theorem 4.2. If F 2 C.I /, then the result follows by repeating the argument
in [26, Theorem 1.2], but with the vector ˛ replaced by a vector u 2RN as in Lemma 2.7.

Now suppose F is an arbitrary function which is not identically zero on .0; �/; we
claim that F must be continuous. We first show that F.x/ ¤ 0 for all x 2 .0; �/. Indeed,
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suppose F.c/D 0 for some c 2 .0;�/. Given d 2 .c; �/, define a sufficiently long geomet-
ric progression u00 D c; : : : ; u

0
n D d such that u0nC1 2 .d; �/. By considering the matrices

F ŒAj �; where Aj WD

�
u0j u0jC1
u0jC1 u0jC2

�
; 0 � j � n � 1;

we find that F.d/D 0 for all d 2 .c; �/. A similar argument applies to d 2 .0; c/, showing
that F � 0 on .0; �/.

Next, since F Œ�� preserves positivity on P 1
2 ..0; �// and is positive on .0; �/, it fol-

lows that g W x 7! logF.ex/ is midpoint convex on the interval .�1; log �/. Moreover,
applying F Œ�� to matrices of the form (4.4) shows that F is non-decreasing. Hence, by
[37, Theorem 71.C], the function g is necessarily continuous on .�1; log�/, and so F is
continuous on .0; �/. This proves the result in the general case.

Using the above result, we can now prove Theorem 4.2.

Proof of Theorem 4.2. If F 2 C.I /, then the result follows by repeating the argument
in [26, Theorem 1.2], but with the vector ˛ replaced by a vector u 2RN as in Lemma 2.7.

Now suppose F is an arbitrary function which is not identically zero on .0; �/; we
claim that F must be continuous. We first show that F.x/ ¤ 0 for all x 2 .0; �/. Indeed,
suppose F.c/D 0 for some c 2 .0;�/. Given d 2 .c; �/, define a sufficiently long geomet-
ric progression u00 D c; : : : ; u

0
n D d such that u0nC1 2 .d; �/. By considering the matrices

F ŒAj �; where Aj WD

�
u0j u0jC1
u0jC1 u0jC2

�
; 0 � j � n � 1;

we find that F.d/D 0 for all d 2 .c; �/. A similar argument applies to d 2 .0; c/, showing
that F � 0 on .0; �/.

Next, since F Œ�� preserves positivity on P 1
2 ..0; �// and is positive on .0; �/, it fol-

lows that g W x 7! logF.ex/ is midpoint convex on the interval .�1; log �/. Moreover,
applying F Œ�� to matrices of the form (4.4) shows that F is non-decreasing. Hence, by
[37, Theorem 71.C], the function g is necessarily continuous on .�1; log�/, and so F is
continuous on .0; �/. This proves the result in the general case.

Finally, we turn to the proof of Theorem 4.1, which provides a second proof of Theo-
rem 3.2 which is more informative. We first observe that Theorem 4.2 can be reformulated
in terms of moment sequences, using the fact that the matrices occurring in the statement
of the theorem can be realized as truncations of positive Hankel matrices; see Defini-
tion 2.5.

Theorem 4.4. Let F W I ! R, where I D .0; �/ and 0 < � �1, and fixN � 3. Suppose
F Œ�� maps the moment sequences in M

�
2N�2.¹1; u0º/ with positive entries to

¹.s0.�/; : : : ; s2N�3.�/; s2N�2.�/C t / W � 2 MeasC.R/; t � 0º
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for some u0 2 .0; 1/, and the moment sequences in M
�
2.¹0; 1º/ [M

�
2.¹uº/ with positive

entries to M2.R/ for all u 2 .0; 1/. Then F 2 CN�3.I /, with

F .k/.x/ � 0 for all x 2 I .0 � k � N � 3/;

and F .N�3/ is a convex non-decreasing function on I . If, further, F 2 CN�1.I /, then
F .k/.x/ � 0 for all x > 0 and 0 � k � N � 1.

If F is continuous on I , then the assumption that F Œ�� maps elements of M
�
2.¹uº/

into M2.R/ for all u 2 .0; 1/ may be omitted.

Proof. In view of Hamburger’s Theorem for truncated moment sequences, a Hankel
matrix with entries in the first and last columns given by

s0; : : : ; sN�1 and sN�1; : : : ; s2N�2

is positive if and only if .s0; : : : ; s2N�3/2M2N�3.R/, and s2N�2�
R
x2N�2 d�, where�

is any non-negative measure with the first 2N � 2moments equal to .s0; : : : ; s2N�3/. (For
details, see Akhiezer’s book [1, Theorem 2.6.3].)

Furthermore, in order to show continuity in Theorem 4.2 we only required 2 � 2 sub-
matrices, of the form (4.4) or of rank 1. Moreover, every matrix in P2.R/ is a truncated
moment matrix.

These observations show that Theorem 4.4 is equivalent to Theorem 4.2.

We now prove Theorem 4.1, with the help of Theorem 4.4.

Proof of Theorem 4.1. Clearly (2))(1). Next, assume (3) holds, and suppose that
� 2 MeasC.Œ0; 1�/ with s0.�/ < �. If � D aı0 for some a � 0 then .2/ is immediate;
henceforth we will assume H� has no zero entries, where H� is as defined in (2.1). Now,
F ŒH�� is positive, by the Schur product theorem and the fact that the only moment matri-
ces arising from elements of M�.Œ0; 1�/ with zero entries come from M�.¹0º/. Clearly
F Œs.�/� is uniformly bounded, hence comes from a unique measure � supported on
Œ�1; 1�, by Theorem 2.4. Recalling Definition 2.5, we have

F ŒH��
.1/
D

X
n�0

cnŒH
.1/
� �ın;

where F.x/ D
P
n�0 cnx

n by the hypotheses and Theorem 2.8. Note that F ŒH��.1/ is
positive, by the above computation and Theorem 2.4, since � is supported on Œ0; 1�. By
the same result, � 2 MeasC.Œ0; 1�/, which gives (2).

It remains to show (1))(3). It is immediate that mapping M
�
2.¹0; 1º/ into M2.R/ is

equivalent to mapping M�.¹0;1º/ into M.R/. Thus, by Theorem 4.4, we haveF .k/.x/�0
for all x > 0 and all k � 0. Theorem 2.8 now gives the result, apart from the assertion
about F.0/, but this is immediate.

We conclude this part by explaining why Theorem 4.1 provides a minimal set of rank-
constrained positive semidefinite matrices for which positivity preservation is equivalent
to absolute monotonicity.
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Definition 4.5. For 1� k�N , let P k
N .I / denote the matrices in PN .I / of rank at most k.

Remark 4.6. A smaller set of rank-constrained matrices than that employed for Theo-
rem 4.1 could not include a sequence of matrices in

S1
ND1 P 2

N .Œ0; �// of unbounded
dimension, hence would be contained in P 0N WD

SN
nD1P 2

n .Œ0; �//[
S1
nD1P 1

n .Œ0; �// for
some N � 1. However, as noted in the paragraphs preceding Proposition 4.11 below, the
map x 7! x˛ preserves positivity on P 0N for all ˛ � N � 2, and such a function may be
non-analytic.

Remark 4.7. The proof of Theorem 4.1 also strengthens a 1979 result of Vasudeva [52]
who showed for I D .0;1/ that if F W I ! R preserves positivity entrywise on PN .I /

for allN � 1 then F is absolutely monotonic and so is represented by a convergent power
series on I . The proof above shows that Vasudeva’s result also holds if I is replaced by
.0; �/ for any � > 0 and, for every N , the set PN .I / is replaced by the subset of Hankel
matrices within it of rank at most 2.

4.1. Hankel-matrix positivity preservers in fixed dimension

We conclude this section by addressing briefly the fixed-dimension case for powers and
analytic functions, as studied by FitzGerald and Horn, and also in previous work by the
authors [3, 15, 20]. Our first result shows that considerations of Hankel matrices may be
used to strengthen the main result in [3].

Theorem 4.8. Fix �>0 and integersN�1 andM�0, and letF.z/D
PN�1
jD0 cj z

jCc0zM

be a polynomial with real coefficients. The following are equivalent.

(1) F Œ�� preserves positivity on PN .D.0; �//, where D.0; �/ is the closed disc in the
complex plane with center 0 and radius �.

(2) The coefficients cj satisfy either c0; : : : ; cN�1, c0 � 0, or c0; : : : ; cN�1 > 0 and c0 �
�C.cI zM IN; �/�1, where

C.cI zM IN; �/ WD
N�1X
jD0

�
M

j

�2�
M � j � 1

N � j � 1

�2
�M�j

cj
:

(3) F Œ�� preserves positivity on Hankel matrices in P 1
N ..0; �//.

The strengthening here is the addition of the word ‘Hankel’ to hypothesis (3).

Remark 4.9. As the following proof of Theorem 4.8 shows, assumption (3) can be
relaxed further, by assuming F preserves positivity on a distinguished family of Hankel
matrices. More precisely, it can be replaced by
.30/ F Œ�� preserves positivity on two sequences of rank-one Hankel matrices,

¹bn�u.b/u.b/T ; �u.bn/u.bn/T W n � 1º for any fixed b 2 .0; 1/;

where

u.�/ WD .1 � �; .1 � �/2; : : : ; .1 � �/N /T for any � 2 .0; 1/: (4.5)

Note that u.�/u.�/T 2 P 1
N .R/ is Hankel, by Lemma 2.7.
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Thus, Remark 4.9 gives a notable reduction of the N -dimensional parameter space,
P 1
N ..0; �//, to the countable subset of Hankel matrices required in (30). If N > 1, this is

indeed minimal information required to derive Theorem 4.8(2), since the extreme critical
value C.cI zM IN; �/ cannot be attained on any finite set of matrices in P 1

N ..0; �//.
As a first step towards the proof of Theorem 4.8, we recall from [3, Lemma 2.4] that,

under suitable differentiability assumptions, the conclusions of Theorem 4.2 still hold if
one considers only rank-one matrices. We now formulate a slightly stronger version of
this result.

Proposition 4.10. Let F 2 C1..��; �//, where 0 < � � 1. Fix a vector u 2 .0;p�/N
with distinct coordinates, and suppose F ŒbnuuT � 2 PN .R/ for a positive real sequence
bn ! 0C. Then the first N non-zero derivatives of F at 0 are strictly positive.

The assumptions and conclusions of this result are similar to those of Theorem 4.2
above; a common generalization of both results can be found in [29].

Proof. For ease of exposition, we will assume F has at least N non-zero derivatives at
0, say of orders m1 < � � � < mN , where m1 � 0. By results on generalized Vandermonde
determinants [17, Chapter XIII, §8, Example 1], the vectors ¹uımj W 1 � j � N º are
linearly independent. Now, by Taylor’s theorem,

F ŒbnuuT � D
NX
jD1

F .mj /.0/

mj Š
b
mj
n uımj .uımj /T C o.bmN

n /: (4.6)

For each 1 � k � N , choose vk 2 RN such that vT
k

uımj D ıj;kmj Š. Then

b�mk
n vTk F ŒbnuuT �vk D mkŠF .mk/.0/C o.bmN�mk

n / � 0;

and letting n!1 concludes the proof.

We now use Proposition 4.10 to prove the theorem.

Proof of Theorem 4.8. In view of Remark 4.9 and [3, Theorem 1.1], it suffices to show
that .30/).2/.

Assume .30/ holds, and consider first the sequence bn�u.b/u.b/T . If 0 � M < N ,
then the result follows from Proposition 4.10, since the critical value is precisely
C.cI zM I N; �/ D c�1M . Now suppose M � N . Again using Proposition 4.10, either
c0; : : : ; cN�1 and c0 are all non-negative, or else c0; : : : ; cN�1 > 0 > cM .

In the latter case, to prove that cM � �C.cI zM I N; �/�1, we use the sequence
�u.bn/u.bn/T , where u.bn/ is defined as in (4.5). Let

un WD
p
� u.bn/ for n � 1.

Then [3, (3.11)] implies that 0 � det jcM j�1F ŒunuTn �, and so

jcM j
�1
�

N�1X
jD0

s�.M;N;j /.un/2

cj
;
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where �.M;N; j / is the hook partition .M �N C 1; 1; : : : ; 1; 0; : : : ; 0/, with N � j � 1
ones after the first entry and then j zeros, and s�.M;N;j / is the corresponding Schur poly-
nomial. As n!1, so un !

p
� .1; : : : ; 1/T . The Weyl Character Formula in type A

gives s�.M;N;j /.1; : : : ; 1/ D
�
M
j

��
M�j�1
N�j�1

�
, and it follows that

jcM j
�1
�

N�1X
jD0

�
M

j

�2�
M � j � 1

N � j � 1

�2
�M�j

cj
D C.cI zM IN; �/:

Thus (2) holds, and this concludes the proof.

Finally, we consider the question of which real powers preserve positivity on N �N
Hankel matrices. Recall that the Schur product theorem guarantees that integer powers
x 7! xk preserve positivity on PN ..0;1//. It is natural to ask if any other real powers do
so. In [15], FitzGerald and Horn solved this problem, and uncovered an intriguing transi-
tion. In their main result, they show that the power function x 7! x˛ preserves positivity
entrywise on PN ..0;1// if and only if ˛ is a non-negative integer or ˛ � N � 2. The
value N � 2 is known in the literature as the critical exponent for preserving positivity.

As shown in [20], the critical exponent remains unchanged upon restricting the prob-
lem to preserving positivity on P k

N ..0;1// for any k � 2. More precisely, for each
non-integral ˛ 2 .0; N � 2/, there exists a rank-two matrix A 2 P 2

N ..0;1// such that
Aı˛ 62 PN ; see [20] for more details.

As we now show, the result does not change when restricted to the set of positive
semidefinite Hankel matrices.

Proposition 4.11. Let 2 � k � N and let ˛ 2 R. The following are equivalent.

(1) The power function x 7! x˛ preserves positivity when applied entrywise to Hankel
matrices in P k

N ..0;1//.

(2) The power ˛ is a non-negative integer or ˛ � N � 2.

Moreover, there exists a Hankel matrix A 2 P 2
N ..0;1// such that Aı˛ 62 PN for all non-

integral ˛ 2 .0;N � 2/.

Proof. By the main result in [27], for pairwise distinct real numbers x1; : : : ; xN > 0,
the matrix ..1C xixj /˛/Ni;jD1 is positive semidefinite if and only if ˛ is a non-negative
integer or ˛ � N � 2. The result now follows immediately, by Lemma 2.7.

Note that replacing .0;1/ with .0; �/ for some � with 0 < � <1 leads to the same
classification of entrywise powers preserving positivity on the reduced test set.

5. Totally non-negative matrices

With a better understanding of the endomorphisms of moment sequences of positive mea-
sures, we turn next to the structure of preservers of total non-negativity, in both the
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fixed-dimension and dimension-free settings. Recall that a rectangular matrix is totally
non-negative if every minor is a non-negative real number.

We begin with the well-known fact that moment sequences of positive measures
on Œ0;1/ are in natural correspondence with totally non-negative Hankel matrices.

Lemma 5.1. A real sequence .sk/1kD0 is the moment sequence of a positive measure
on Œ0;1/ if and only if the corresponding semi-infinite Hankel matrix H WD .siCj /1i;jD0
is totally non-negative. The measure is supported on Œ0; 1� if and only if the entries of H
are uniformly bounded.

Proof. The first claim is a consequence of well-known results in the theory of moments
[18, 45], as outlined in the introduction to [14]. For measures on Œ0; 1�, the result now
follows via Theorem 2.4(3).

Lemma 5.1 also has a finite-dimensional version, which will be required in the proof
of Theorem 3.3.

Lemma 5.2 ([14, Corollary 3.5]). Let A be an N � N Hankel matrix. Then A is totally
non-negative if and only if A and its truncation A.1/ have non-negative principal minors.

With Lemmas 5.1 and 5.2 in hand, we can now establish our characterization of posi-
tivity preservers on HCC.

Proof of Theorem 3.3. Suppose .1/ holds, and letA2HCC. Then both F ŒA� and F ŒA�.1/

D F ŒA.1/� have non-negative principal minors, so F ŒA� 2 HCC, by Lemma 5.2. Thus
.1/).2/.

That .2/).3/ follows directly from Lemma 5.1. Next, suppose .3/ holds and let a > 0
and b � 0. Applying F Œ�� to the first few moments of the measure aıpb=a shows that
F.a/F.b/ � F.

p
ab/2. By Theorem 4.1, we conclude that .4/ holds.

Finally, suppose .4/ holds and let H 2 HCCN for some N � 1. If every entry of H is
non-zero, then F ŒH� is positive semidefinite, by the Schur product theorem. Otherwise,
suppose H has a zero entry. Denote the entries in the first row and last column of H by
s0; : : : ; sN�1 and sN�1; : : : ; s2N�2, respectively. By considering 2 � 2 minors, it is easy
to show that

s0 D 0 H) s1 D 0 ” s2 D 0 ” �� � ” s2N�3 D 0 (H s2N�2 D 0:

Consequently, if .4/ holds and an entry of H is zero, then F ŒH� 2 PN .

Remark 5.3. While Theorem 3.3 is more natural to state for functions with domain
Œ0;1/, the proof goes through verbatim for F W Œ0; �/! R, where 0 < � <1. In this
case, the test set HCC in the first two assertions of Theorem 3.3 (but not the target set)
must be replaced by its subset of matrices with entries in Œ0; �/.

Next we examine the class of polynomial maps that, when applied entrywise, pre-
serve total non-negativity for Hankel matrices of a fixed dimension. First, note that the
analogue of the Schur product theorem holds for totally non-negative Hankel matrices
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[14, Theorem 4.5]; this also follows from Lemma 5.2. Second, note that the Hankel matrix
H� WD u.�/u.�/T is totally non-negative for all � 2 .0;1/, where u.�/was defined in (4.5):

u.�/ WD .1 � �; : : : ; .1 � �/N /T :

This holds because the elements ofH� are all positive, and the k � k minors ofH� vanish
if k � 2. As a consequence, Proposition 4.10 implies that if F is a polynomial which
preserves positive semidefiniteness on HCCN , then the first N non-zero coefficients of F
must be positive.

The following result shows that the next coefficient can be negative, with the same
threshold as in Theorem 4.8.

Theorem 5.4. Let �, N , M and F.z/ D
PN�1
jD0 cj z

j C c0zM be as in Theorem 4.8. The
following are equivalent.

(1) F Œ�� preserves total non-negativity for elements of HCCN with entries in Œ0; �/.
(2) The coefficients cj satisfy either c0; : : : ; cN�1; c0 � 0, or c0; : : : ; cN�1 > 0 and

c0 � �C.cI zM IN; �/�1, where

C.cI zM IN; �/ WD
N�1X
jD0

�
M

j

�2�
M � j � 1

N � j � 1

�2
�M�j

cj
:

(3) F Œ�� preserves positivity for rank-one elements of HCCN with entries in .0; �/.

Proof. Clearly .1/).3/, and .3/).30/, where the assertion .30/ is as in Remark 4.9. That
.30/).2/ follows from the proof of Theorem 4.8.

To prove .2/).1/, first observe from Theorem 4.8 that F Œ�� preserves positivity on
PN .Œ0; ��/. Given any matrix A 2 HCCN with entries in Œ0; �/, let B denote the N � N
matrix obtained by deleting the first column and last row of A, and then adding a last row
and column of zeros. Both A and B are positive semidefinite, and therefore so are F ŒA�
and F ŒB�. Hence F ŒA� and F ŒA�.1/ D F ŒA.1/� have non-negative principal minors, since
the principal minors of the latter are included in those of F ŒB�. Lemma 5.2 now gives the
result.

It is trivial that the Hadamard (entrywise) power H ı˛ is totally non-negative for
all H 2 HCC1 [HCC2 if and only if ˛ � 0. For higher dimensions, the situation is as
follows.

Theorem 5.5 ([14, Theorem 5.11 and Example 5.5]). Let ˛ 2 R and N � 2. The power
function x˛ preserves HCCN if and only if ˛ is a non-negative integer or ˛ � N � 2.

Thus the set of powers preserving total non-negativity for Hankel matrices coincides
with the set of powers preserving positivity on PN .Œ0;1//, as identified by FitzGerald
and Horn [15].

Remark 5.6. We note that Theorem 5.5 follows from a result of Jain [27, Theorem 1.1],
since for x 2 .0; 1/, the semi-infinite Hankel matrix .1C xiCj /1i;jD0 arises as the moment
matrix of the measure ı1 C ıx , and is therefore totally non-negative, by Lemma 5.1.
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We conclude this section by examining entrywise preservers of total non-negativity in
the general setting, where the matrices are not assumed to have a Hankel structure, or to
be symmetric or even square. By Theorem 3.3, every such preserver must be absolutely
monotonic on .0;1/. However, it is not immediately clear how to proceed further with
non-symmetric matrices; the analogue of the Schur product theorem no longer holds in
this situation, as noted in [14, Example 4.3].

Our next result shows that, when working with rectangular or symmetric matrices, the
set of functions preserving total non-negativity is very rigid.

Theorem 5.7. Suppose F W Œ0;1/! R. The following are equivalent.

(1) Applied entrywise, the function F preserves total non-negativity on the set of all rect-
angular matrices of arbitrary size.

(2) Applied entrywise, the function F preserves total non-negativity on the set of all real
symmetric matrices of arbitrary size.

(3) The function F is constant or linear. In other words, there exists c � 0 such that either
F.x/ � c, or else F.x/ D cx for all x � 0.

Contrast this result, especially hypothesis (2), with Theorem 3.3.
We defer the proof of Theorem 5.7 until we have more closely examined the case of

entire maps. This will give what is needed to overcome the main technical difficulty in
proving Theorem 5.7.

Recall from [14, Section 5] that if A is a totally non-negative matrix which is 3 � 3,
or symmetric and 4 � 4, then the Hadamard power Aı˛ is totally non-negative for all
˛ � N � 2, where N is the number of rows of A.

For larger matrices, very few entire functions preserve total non-negativity.

Theorem 5.8. Let F.x/ D
P1
nD0 cnx

n be entire with real coefficients. The entrywise
map F Œ�� preserves total non-negativity for 4 � 4 matrices if and only if F.x/ � c0 with
c0 � 0, or F.x/ D c1x for all x � 0 with c1 � 0. The same conclusion holds if F Œ��
preserves total non-negativity for symmetric 5 � 5 matrices.

Proof. First we consider the 4 � 4 case. Note that one implication is immediate, so sup-
pose F Œ�� preserves total non-negativity and is not constant. Let Ay WD y Id3 ˚ 01�1,
where y � 0 and Idk denotes the k � k identity matrix for k � 1. Observing that F ŒAy � is
totally non-negative, it follows that F.y/ � F.0/ � 0 for all y � 0. If, moreover, y > 0 is
such that F.y/ > F.0/, then from the same observation we conclude that F.0/D c0 D 0.

Next, suppose for contradiction that

F.x/ D cmx
m
CO.xmC1/;

where m > 1 and cm ¤ 0. We make use of the matrix studied in [14, Example 5.9],

M WD

0BB@
3 6 14 36

6 14 36 98

14 36 98 276

36 98 284 842

1CCA ; (5.1)
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and let A.x/ WD 14�4 C xM . By the analysis in [14, Example 5.9], the matrix A.x/ is
totally non-negative for all x � 0, while for every real ˛ > 1 there exists ı˛ > 0 such that

detA.x/ı˛ < 0 for all x 2 .0; ı˛/:

Fix z 2 .0; ım/, let t > 0, and note that

F ŒtA.z/� D cmt
mA.z/ım C tmC1C.t; z/

for some 4 � 4 matrix C.t; z/. Since the matrix on the left-hand side is totally non-
negative, it follows that

0 � t�4m detF ŒtA.z/� D c4m detA.z/ım CO.t/:

Letting t ! 0C gives a contradiction. Hence c1 ¤ 0.
Finally, note that

F Œt A.x/� D

1X
nD1

cnt
n.14�4 C xM/ın D

1X
nD1

cnt
n

nX
jD0

�
n

j

�
xjM ıj D

1X
jD0

ǰ .t/x
jM ıj ;

where t � 0 and ǰ .t/ WD
P1
nDj cn

�
n
j

�
tn. Using a Laplace expansion, it is not hard to see

that

detF ŒtA.x/� D detM4.t/CO.x
5/; where M4.t/ WD

4X
jD0

ǰ .t/x
jM ıj :

If R is a commutative unital ring containing x and ˛1; : : : ; ˛4 then Appendix A gives

detM4 D �57168 ˛0 ˛
2
1 ˛2 x

4
CO.x5/; where M4 WD

4X
jD0

j̨x
jM ıj : (5.2)

Taking R D RŒt; x� and j̨ D ǰ .t/, we find that M4 equals M4.t/. Since F ŒtA.x/� is
totally non-negative for all x � 0, dividing through by x4 and letting x ! 0C, it follows
that ˇ0.t/ˇ1.t/2ˇ2.t/ vanishes on an interval. Since ǰ .t/ D F

.j /.t/=j Š, each ǰ is also
entire; thus at least one ǰ is identically zero, whence ˇ2.t/ � 0. It follows that cn D 0
for all n � 2, as claimed. That c1 � 0 now follows by considering F ŒId4�.

This concludes the proof for 4 � 4 totally non-negative matrices. The proof for sym-
metric 5 � 5 matrices now follows, as [14, Example 5.10] gives a 5 � 5 symmetric totally
non-negative matrix containing the matrix A.x/ as a 4 � 4 minor.

With this result in hand, we can now complete the outstanding proof in this section.

Proof of Theorem 5.7. Clearly .3/).1/).2/. Suppose .2/ holds. Then, by Theorem 3.3,
the function F is absolutely monotonic on .0;1/, and F.0/ � 0. If F is not constant,
then F.y/ > F.0/ for some y > 0. As F Œy Id3� is totally non-negative, looking at 2 � 2
minors now shows that F.0/ D 0.
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To see that F is continuous at 0, note first that

A WD

0@2 1 0

1 2 1

0 1 2

1A
is totally non-negative. If L WD limx!0C F.x/, then detF ŒtA�! �L3 � 0 as t ! 0C,
whence L D 0, as desired.

Thus F has the form required to apply Theorem 5.8, so F.x/D c1x for all x 2 Œ0;1/,
as required.

6. Moment transformers on Œ�1; 1�

Equipped with the one-sided result from Theorem 4.1, we now classify the functions
which map the set M.Œ�1;1�/ into M.R/when applied entrywise. The goal of this section
is to prove the following strengthening of Theorem 3.1, in the spirit of Theorem 4.1.

Theorem 6.1. Let F W .��; �/! R, where 0 < � � 1. The following are equivalent.

(1) F Œ�� maps the sequences
S
u2.0;1/ M�.¹�1; u; 1º/ into M.R/.

(2) F Œ�� maps the sequences
S
u2.0;1/ M�.¹�1; u; 1º/ into M.Œ�1; 1�/.

(3) F Œ�� maps M�.Œ�1; 1�/ into M.R/.
(4) F is the restriction to .��; �/ of an absolutely monotonic entire function.

Recall that Schoenberg and Rudin’s result, Theorem 2.10, characterizes positivity pre-
servers for matrices with entries in .�1; 1/. As a consequence of Theorem 6.1, we obtain
the following generalization of Theorem 2.10 with a much reduced test set.

Corollary 6.2. The hypotheses of Theorem 2.10 are equivalent to F Œ�� preserving posi-
tivity on Hankel matrices arising from moment sequences, with entries in .�1;1/ and rank
at most 3. Furthemore, this theorem holds with .�1; 1/ and .0; 1/ replaced by .��; �/ and
.0; �/, respectively, whenever � 2 .0;1�.

The proof of Theorem 6.1 requires new ideas, as previous techniques to prove analo-
gous results are not amenable to the more general Hankel setting; see Remark 6.7.

As a first step, we obtain the following lemma; together with Theorem 2.4, it explains
why assertion (1) in Theorem 6.1 can be relaxed to assertion (2).

Recall the notion of truncated moment sequence from Definition 2.6.

Lemma 6.3. If F W .��;�/!R maps entrywise the sequences M
�
2.¹�1;1º/ into M2.R/,

then F is locally bounded. If F is locally bounded on .0; �/, then the set M
�
2.¹�1; 1º/

may be replaced by M
�
2.¹�1º/.

Proof. Akin to the proof of Theorem 4.2, the assumption implies that F is non-
decreasing, whence locally bounded, on .0; �/. Now let � D aı�1 for any a 2 .0; �/.
By considering the leading principal 2 � 2 submatrix of F ŒH��, where H� is the Hankel
matrix (2.1) associated to the measure �, it follows that jF.�a/j � F.a/.
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The next step is to use assertion (2) in Theorem 6.1 to establish the continuity of F
on .��; �/.

Proposition 6.4. Fix v0 2 .0; 1/ and suppose the function F W .��; �/! R, where 0 <
� � 1, maps entrywise

M
�
2.¹�1; 1º/ [M

�
3.¹�1; v0º/ [

[
u2.0;1/

M
�
4.¹1; uº/

into M2.Œ�1; 1�/ [M3.Œ�1; 1�/ [M4.Œ�1; 1�/. Then F is continuous on .��; �/.

Proof. As F maps M
�
2.¹�1; 1º/ into M2.Œ�1; 1�/, considering

� D
aC b

2
ı1 C

a � b

2
ı�1 and � D bı1

shows that F.a/ � F.b/ � 0 whenever 0 � a � b < �. It follows immediately that F
maps M

�
2.¹0; 1º/ into M2.R/. Then, by Theorem 4.4 for N D 3 and our assumptions,

F is continuous, non-negative, and non-decreasing on .0; �/. In particular, F has a right-
hand limit at 0, and

0 � F.0/ � lim
�!0C

F.�/: (6.1)

We now fix v0 2 .0; 1/ and use the truncated moment sequences in M
�
3.¹�1; v0º/ to

prove two-sided continuity of F at all points in .��; 0�. Fix ˇ 2 Œ0; �/, and for b such that
0 < b < .� � ˇ/=.1C v0/, let

a WD ˇ C bv0 and � D aı�1 C bıv0
:

By assumption, F Œ�� WM�
3.¹�1; v0º/!M3.Œ�1; 1�/, so there exists � 2 MeasCŒ�1; 1�

such that
.F.s0.�//; : : : ; F .s3.�/// D .s0.�/; : : : ; s3.�//:

Set p˙.t/ WD .1˙ t /.1 � t2/. ThenZ 1

�1

p˙.t/ d� � 0;

since p˙.t/ are non-negative on Œ�1; 1�. Hence (4.1) gives

F.aC b/ � F.aC bv20/ � ˙
�
F.�aC bv0/ � F.�aC bv

3
0/
�
;

or, equivalently,

F.ˇ C b C bv0/ � F.ˇ C bv0 C bv
2
0/ � jF.�ˇ/ � F.�ˇ � b.v0 � v

3
0//j:

Letting b ! 0C and using the continuity of F on .0; �/, we conclude that F is left con-
tinuous at �ˇ. We proceed similarly to show right continuity of F at �ˇ; let

a WD ˇ C bv30 and � D aı�1 C bıv0
;

where b is such that 0 < b < .� � ˇ/=.1C v30/, and take b ! 0C as before.
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Remark 6.5. The integration trick (4.1) used in the proof of Proposition 6.4 shows that
certain linear combinations of moments are non-negative. The integral it employs may
also be expressed using the quadratic form given by the Hankel moment matrix for
the ambient measure. To see this, suppose � is a non-negative measure on Œ�1; 1� with
moments of all orders, and let H� WD .sjCk.�//j;k�0 be the associated Hankel moment
matrix. If f W Œ�1; 1�! RC is continuous then so its radical

p
f W Œ�1; 1�! RC, and the

latter can be uniformly approximated on Œ�1; 1� by a sequence of polynomials pn.t/ DPdn

jD0 cn;j t
j .

ThusZ 1

�1

f d� D lim
n!1

Z 1

�1

pn.t/
2 d� D lim

n!1

X
j;k�0

cn;j cn;k

Z 1

�1

tjCk d� D lim
n!1

vTnH�vn;

where
vn WD .cn;0; cn;1; : : : ; cn;dn

; 0; 0; : : : /T .n � 1/:

Now, since the matrix H� is positive, the limit on the right-hand side is non-negative and
so
R 1
�1
f d� � 0.

With continuity in hand, we can now complete the proof of Theorem 6.1.

Proof of Theorem 6.1. Clearly .4/).3/).1/ and .2/).1/; that .1/).2/ follows from
the remarks preceding Lemma 6.3. Now suppose .1/ holds. By Proposition 6.4, the func-
tion F is continuous on .��; �/, so Theorem 4.1 implies that F agrees on .0; �/ with a
power series zF having non-negative Maclaurin coefficients, which is convergent on the
disc D.0; �/.

Let � WD aı�1 C e
xıe�h , where a 2 .0; �/, x < log.� � a/, and h > 0, and let

p˙;n.t/ WD .1 ˙ t /.1 � t2/n. Then p˙;n.t/ is non-negative for all t 2 Œ�1; 1� and all
n � 0. Applying (4.1) givesˇ̌̌̌ nX

kD0

�
n

k

�
.�1/kF.aC ex�2kh/

ˇ̌̌̌
�

ˇ̌̌̌ nX
kD0

�
n

k

�
.�1/n�kF.�aC ex�.2kC1/h/

ˇ̌̌̌
: (6.2)

Let H˙;a.x/ WD F.˙aC ex/ and suppose F is smooth; dividing (6.2) by hn and taking
h! 0C, we see that

jH
.n/
C;a.x/j � jH

.n/
�;a.x/j:

Since HC;a is real analytic, we conclude that the Taylor series for H�;a has a positive
radius of convergence everywhere, so H�;a is real analytic on .�1; log.� � a//. The
change of variable x D log.y C a/ has a convergent power-series expansion for jyj < a.
It follows that y 7! F.y/ is real analytic on .��; �/, hence is the restriction of zF .

When F is not necessarily smooth, we may use a mollifier argument. Fix 0 < �0 < �
and let G WD F j.��0;�0/. For any ı 2 .0; � � �0/, choose gı 2 C1.R/ such that gı is
non-negative, supported on .0; ı/, and integrates to 1, and let

Fı.x/ WD

Z ı

0

G.x C t /gı.t/ dt for all x 2 .��0; �0/:
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As the function x 7! G.t C x/ satisfies hypothesis (1) of the theorem with � replaced
by �0, so does the smooth function Fı ; let zFı be an analytic function on the disc D.0; �0/
which is absolutely monotonic on .0; �0/ and agrees on .��0; �0/ with Fı . Since

jF.x/ � Fı.x/j D

ˇ̌̌̌Z ı

0

.G.x/ �G.x C t //gı.t/ dt
ˇ̌̌̌
� sup
0�t�ı

jG.x/ �G.x C t /j

for all x 2 .��0; �0/, it follows that Fı converges to F locally uniformly on .��0; �0/
as ı! 0C. The function zFı is absolutely monotonic, so j zFı.z/j � zFı.a/ whenever jzj �
a < �0, and zFı.a/ ! F.a/ as ı ! 0C. Hence ¹ zFı.z/ W ı > 0º is uniformly bounded
on D.0; a/, and therefore forms a normal family. Thus for some sequence ın ! 0C, the
functions zFın

converge locally uniformly to a function zF that is analytic on D.0; �0/,
and F agrees with zF on .��0; �0/. As this argument holds for all �0 2 .0; �/, the proof is
complete.

Remark 6.6. The proof of Theorem 6.1 requires measures whose support contains the
point 1, in order to be able to employ the mollifier argument to move from continuous to
smooth functions.

Remark 6.7. Recall that Rudin [38] showed that F must be analytic on .�1; 1/ and
absolutely monotonic on .0; 1/ if F Œ�� preserves positivity for the two-parameter fam-
ily of Toeplitz matrices defined in (3.1). A natural strategy to prove Theorem 6.1
would be to show that there exists � 2 R with �=� irrational such that the matrices
.cos..i � j /�//ni;jD1 can be embedded into positive Hankel matrices for all sufficiently
large n. However, this is not possible: given 0 < m1 < m2 such that cos.m1�/ < 0 and
cos.m2�/ < 0, if there were a measure � 2MeasC.Œ�1; 1�/ such that cos.mj �/D skj

.�/

for j D 1 and j D 2, then, by the Toeplitz property, k1, k2, and k1 C k2 must all be odd,
which is impossible.

7. Moment transformers on Œ�1; 0�

We now study the structure of endomorphisms of M.Œ�1; 0�/. The following result
strengthens Theorem 3.4 and reveals that such functions may be discontinuous at the
origin, in contrast to Theorem 6.1.

Theorem 7.1. Given u0 2 .0; 1/ and F W .��; �/! R, where 0 < � �1, the following
are equivalent.

(1) F Œ�� maps M�.¹�1;�u0º/ into M..�1; 0�/ and

M
�
4.¹�1; 0º/ [

[
u2.0;1/

M
�
4.¹�uº/

into M4..�1; 0�/.

(2) F Œ�� maps M�.Œ�1; 0�/ into M.Œ�1; 0�/.
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(3) There exists an absolutely monotonic entire function zF such that

F.x/ D

8̂<̂
:
zF .x/ if x 2 .0; �/;
0 if x D 0;
� zF .�x/ if x 2 .��; 0/:

In particular, the function F is odd, but may be discontinuous at 0.

Proof. To show that .3/).2/, note first that if � 2 MeasC.Œ�1; 0�/, so that � D aı0 for
some a, then F ŒH�� D HF.a/ı0

, so we may assume � is not of this form, whence the
Hankel matrix H� has no zero entries, and the moment sequence alternates in sign and is
uniformly bounded, by Theorem 2.4. In particular,

F.s2k.�// D zF .s2k.�// and F.s2kC1.�// D � zF .�s2kC1.�// .k � 0/:

Recalling the form of the Hankel matrix Hı�1
, it follows that

F ŒH�� D Hı�1
ı zF ŒHı�1

ıH�� (7.1)

where ı denotes the entrywise matrix product. This shows (2) because F Œ�� is the com-
posite of two operations: the map zF Œ��, which sends M�.Œ0; 1�/ into M.Œ0; 1�/, by The-
orem 4.1, and entrywise multiplication by the matrix Hı�1

, which maps H� for some
measure � to the Hankel matrix of the reflection of � about the origin.

That .2/).1/ is immediate. We now prove .1/).3/. Suppose (1) holds. Since

F ŒHaı0
� D .F.a/ � F.0//Hı0

C F.0/Hı1
D H.F .a/�F.0//ı0CF.0/ı1

;

the uniqueness in Theorem 2.4 gives F.0/ D 0.
By considering only even rows and columns of Hankel matrices corresponding to

moments in M
�
4.¹�uº/, M

�
4.¹�1; 0º/, and M�.¹�1;�u0º/, we have embeddings

M
�
2.¹u

2
º/ ,!M

�
4.¹�uº/;

M
�
2.¹0; 1º/ ,!M

�
4.¹�1; 0º/;

M�.¹1; u20º/ ,!M�.¹�1;�u0º/:

Thus F Œ�� maps M
�
2.¹u

2º/ into M2.R/, M
�
2.¹0; 1º/ into M2.R/, and M�.¹1; u20º/

into M.R/. Theorem 4.4 now implies that F agrees with an absolutely monotonic entire
function zF on .0; �/.

Next, considering M
�
2.¹�1º/ gives jF.�a/j � F.a/ for any a 2 .0; �/, whence F is

locally bounded. In particular, F maps M�.¹�1º/ into M.Œ�1; 0�/, by Theorem 2.4.
We conclude by showing that F is odd. Let � D aı�1 for some a 2 .0; �/ and note

that pn.t/ D .�t /n.1C t / is non-negative on Œ�1; 0� for any non-negative integer n. If
F Œs.�/� D s.�/, then, by applying (4.1),

0 �

Z 0

�1

pn.t/ d� D .�1/n.F.sn.aı�1//C F.snC1.aı�1//

D .�1/n.F..�1/na/C F..�1/nC1a//:

Taking n D 0 and 1 gives 0 � F.a/C F.�a/ � 0, and the final claim follows.
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Theorem 7.1 has the following consequence.

Corollary 7.2. Define a checkerboard matrix to be any real matrix A D .aij / such that
.�1/iCjaij > 0 for all i , j . Given a function F W R! R, the following are equivalent.

(1) Applied entrywise, F maps the set of positive Hankel checkerboard matrices of all
dimensions into itself.

(2) Applied entrywise, F maps the set of positive checkerboard matrices of all dimensions
into itself.

(3) F is odd and agrees on .0;1/ with an absolutely monotonic entire function.

We conclude this section with an even analogue of Theorem 7.1.

Theorem 7.3. Given u0 2 .0; 1/ and F W .��; �/! R, where 0 < � �1, the following
are equivalent.

(1) F Œ�� maps M�.¹�1;�u0º/ into M.Œ0;1// and

M
�
4.¹�1; 0º/ [

[
u2.0;1/

M
�
4.¹�uº/

into M4.Œ0;1//.

(2) F Œ�� sends M�.Œ�1; 0�/ to M.Œ0; 1�/.

(3) There exists an absolutely monotonic entire function zF such that

F.x/ D

´
zF .x/ if x 2 .0; �/;
zF .�x/ if x 2 .��; 0/:

Moreover, 0 � F.0/ � lim�!0 F.�/.

Proof. This is similar to the proof of Theorem 7.1; to show that .1/).3/, one may use
the polynomials pn.t/ D tn.1 � t /. We omit further details.

8. Transformers with compact domain

The goal of this section is to show how results in the previous sections can be refined
when the moments are contained in a compact domain. Indeed, when the domain of F
is a compact interval I , the situation is more complex; absolute monotonicity, or even
continuity of F , does not extend automatically from the interior of I to its end points.
This was already observed by Rudin via specific counterexamples; see Remark (a) at the
end of [38]. To the best of our knowledge, characterization results in this setting are not
known.

We now take a closer look at this phenomenon. We begin by characterizing the func-
tions preserving positivity of Hankel matrices in PN .I / for all N , where I D Œ0; �� and
0 < � <1.



Moment-sequence transforms 3139

Proposition 8.1. Suppose F W I ! R, where I D Œ0; �� and 0 < � <1. The following
are equivalent.

(1) F Œ�� preserves positivity on all positive Hankel matrices with entries in I .

(2) F is absolutely monotonic on Œ0; �/ and F.�/ � limx!�� F.x/.

(3) F Œ�� preserves positivity on all positive matrices with entries in I .

If, instead, I D Œ0; �/ where 0 < � � 1, then the same equivalences hold, with .2/
replaced by the requirement that F is absolutely monotonic on Œ0; �/.

Note the contrast with Theorem 4.1: if F Œ�� is required only to preserve positive
Hankel matrices arising from moment sequences, then F may be discontinuous at 0, but
this cannot occur here.

Proof of Proposition 8.1. Clearly .3/).1/. Next, suppose .1/ holds and note that F is
absolutely monotonic on .0; �/, by Theorem 4.1. Consider the positive Hankel matrices

Ha WD

0@a 0 a

0 a a

a a 2a

1A ; where a 2 Œ0; �=2/:

As F ŒHa� is positive, so 0 � F.0/ � FC.0/ WD lima!0C F.a/. Furthermore,

0 � lim
a!0C

detF ŒHa� D �FC.0/.F.0/ � FC.0//2;

whence F.0/ D FC.0/, and F is right continuous at the origin. Finally, considering the
first two leading principal minors of the Hankel matrix for the measure .� � a/ı1 C aı0,
where a! ��, gives F.�/ � lima!�� F.a/. Hence .1/).2/.

Finally, suppose .2/ holds. We first claim that if A 2 PN ..�1; ��/ then the entries of
A equalling � form a (possibly empty) block diagonal submatrix, upon suitably relabelling
the indices. Indeed,

0 � det

0@� � a

� � �

a � �

1A D ��.� � a/2; so a D �: (8.1)

Now let BA be the block-diagonal matrix with .i; j /th entry equal to 1 if aij D � and 0
otherwise. If g is the continuous extension of F jŒ0;�/ to �, then

F ŒA� D gŒA�C .F.�/ � g.�//BA � 0;

since both matrices are positive semidefinite. Hence .2/).3/.
Finally, when I D Œ0; �/, that .2/).3/).1/ is immediate, and .1/).2/ is shown as

above.

Remark 8.2. A similar argument to Proposition 8.1 reveals that F Œ�� preserves positivity
on the set ¹s.�/ 2 M.Œ0; 1�/ W s0.�/ 2 Œ0; ��º if and only if F is absolutely monotonic
on .0; �/ and such that 0 � F.0/ � lim�!0C F.�/ and limx!�� F.x/ � F.�/.
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We next examine the case where the domain of F is a symmetric compact interval
Œ��; ��. The functions preserving positivity of Hankel matrices when applied entrywise
are completely characterized as follows.

Proposition 8.3. Suppose F W I ! R, where I D Œ��; �� and 0 < � �1. The following
are equivalent.

(1) F Œ�� preserves positivity on all positive Hankel matrices with entries in I .
(2) F Œ�� preserves positivity on all positive Hankel matrices with entries in I that arise

from moment sequences.
(3) F is real analytic on .��; �/, absolutely monotonic on .0; �/, and such that

F.�/ � lim
x!��

F.x/ and jF.��/j � F.�/:

Proof. That .1/).2/ is immediate, while .2/).3/ follows from the extension of Theo-
rem 3.1 given by Theorem 6.1, and the proofs of Proposition 8.1 and Lemma 6.3. Finally,
if (3) holds, then (1) follows by Proposition 8.1, the Schur product theorem, and the fol-
lowing claim.

The only Hankel matrix in PNC1.Œ��;��/with an entry�� is the checkerboard matrix
with .i; j /th entry .�1/iCj�.

To prove the claim, let the rows and columns of the positive Hankel matrix A be
labelled by 0; : : : ;N , and suppose aij D ��. Then i C j is odd and al l D alC1;lC1 D �,
where 2l C 1D i C j . Repeatedly considering principal 2� 2minors shows that apq D �
if pC q is even. Now letm;n 2 Œ0;N � be odd withm < n, and denote by C the principal
3 � 3 minor of A corresponding to the labels 0, m, and n. Writing

C D

0@ � a0m �

a0m � a0n
� a0n �

1A ;
we see that 0 � detC D ��.a0m � a0n/2, whence a0m D a0n. Taking m or n to equal
i C j shows that these entries equal ��, which gives the claim.

We end this section by considering functions preserving positivity for all matrices inS
N�1PN .Œ��;��/. Theorem 6.1 implies that every such function F is real analytic when

restricted to .��; �/, and absolutely monotonic on .0; �/. The following result provides
a sufficient condition for F to preserve positivity, which is also necessary if the analytic
restriction is odd or even.

Proposition 8.4. Given � 2 .0;1/, let I D Œ��;�� and supposeF W I!R is real analytic
on .��; �/, absolutely monotonic on .0; �/, and such that the limits limx!�� F.˙x/ both
exist and are finite. Ifˇ̌̌

F.��/ � lim
x!��C

F.x/
ˇ̌̌
� F.�/ � lim

x!��
F.x/; (8.2)

then F Œ�� preserves positivity on the space of positive matrices with entries in I . The
converse holds if F j.��;�/ is either odd or even.
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The inequality (8.2) says that any jump in F at �� is bounded above by the jump at �,
which is non-negative.

Proof of Proposition 8.4. Let g denote the continuous function on Œ��; �� which agrees
withF on .��;�/, and let�˙ WDF.˙�/� g.˙�/. Then (8.2) is equivalent to j��j��C.

By the Schur product theorem and Proposition 8.1, F Œ�� preserves positivity on
PN ..��; ��/ for all N . Now suppose A 2 PN .Œ��; ��/ has some entry equal to ��,
where N � 1. Then the entries of A with modulus � form a block diagonal submatrix
upon suitable relabelling of indices. This follows from the argument given in the proof of
Proposition 8.1, applied to the �2-entries ofA ıA. Given this, and after further relabelling
of indices, each block submatrix is of the form�

�1nj�nj
��1nj�mj

��1mj�nj
�1mj�mj

�
;

by the main result in [24], where j D 1; : : : ; r . Then

F ŒA� D gŒA�C B 0; where B 0 D ˚kjD1

�
�C � 1nj�nj

�� � 1nj�mj

�� � 1mj�nj
�C � 1mj�mj

�
;

and this is positive semidefinite, by (8.2). Thus F Œ�� preserves
S
N�1 PN .Œ��; ��/.

For the converse, we show that (8.2) holds if F Œ�� preserves positivity on just the
set P3.Œ��; ��/ and F j.��;�/ is odd or even. Note first that �C � 0, working with 2 � 2
matrices as above. Next, consider the positive matrix

A WD

0@a2=� �a a

�a � ��

a �� �

1A ;
and note that

0 � lim
a!��

detF ŒA� D

ˇ̌̌̌
ˇ̌ g.�/ g.��/ g.�/

g.��/ F.�/ F.��/

g.�/ F.��/ F.�/

ˇ̌̌̌
ˇ̌

D �C.g.�/F.�/ � g.��/
2/ � g.�/�2�:

It follows that �2�g.�/ � �
2
Cg.�/ if g.�2/ D g.��/2, so if g D F j.��;�/ is odd or even.

This gives the result.

Remark 8.5. Propositions 8.3 and 8.4 indicate the existence of functions discontinuous
at ˙� which preserve positivity for Hankel matrices, but not all matrices, in contrast to
the one-sided setting of Proposition 8.1.

Indeed, if g is an odd or even function which is continuous on Œ��; �� and absolutely
monotonic on .0; �/, define F to be equal to g on .��; ��, and take F.��/ to be any
element of .�F.�/;F.�/�. ThenF preserves positivity on all Hankel matrices with entries
in Œ��; ��, but does not preserve positivity on

S
N�1 PN .Œ��; ��/.
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9. Multivariable generalizations

In this section we classify the preservers of moments arising from admissible measures
in higher-dimensional Euclidean space, both in their totality and by considering their
marginals.

9.1. Transformers of multivariable moment sequences

The initial generalization to higher dimensions of our characterization of moment-pre-
serving functions raises no complications. However, the failure of Hamburger’s theorem
in higher dimensions, that is, the lack of a characterization of moment sequences by posi-
tivity of an associated Hankel-type kernel, means some extra work is required. Below, we
isolate this additional challenge and provide a generalization of our main result.

Let � be a non-negative measure on Rd , where d � 1, which has moments of all
orders; as before, such measures will be termed admissible. The multi-index notation

x˛ D x˛1

1 : : : x
˛d

d
.x 2 Rd /

allows us to define the moment family

s˛.�/ D

Z
x˛ d�.x/ .˛ 2 ZdC/;

where ZC denotes the set ¹0; 1; 2; : : :º of non-negative integers. As before, we focus on
measures with uniformly bounded moments, so that

sup
˛2Zd

C

js˛.�/j <1;

or, equivalently, supp.�/ � Œ�1; 1�d . In line with the above, we let M.K/ denote the set
of all moment families of admissible measures supported on K � Rd .

Theorem 9.1. The map F Œ�� W R! R maps M.Œ�1; 1�d / into itself if and only if F is
absolutely monotonic and entire.

Proof. Any admissible measure � on Œ�1; 1� pushes forward to an admissible measure z�
on Œ�1; 1�d via the canonical embedding onto the first coordinate. If F maps M.Œ�1; 1�d /

to itself then there exists an admissible measure z� on Œ�1;1�d such that F.s˛.z�//D s˛.z�/
for all ˛ 2ZdC, and a short calculation shows that F Œsn.�/�D sn.�/ for all n 2ZC, where
� is the pushforward of z� under the projection onto the first coordinate. Theorem 6.1 now
implies that F is as claimed.

To prove the converse, we need to explore the structure of the set M.Œ�1;1�d /. Denote
the generators of the semigroup ZdC by setting

1j WD .0; : : : ; 0; 1; 0; : : : ; 0/;
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with 1 in the j th position. A multisequence .s˛/˛2Zd
C

of real numbers is the moment

sequence of an admissible measure supported on Œ�1; 1�d if and only if the weighted
Hankel-type kernels

.s˛Cˇ /; .s˛Cˇ � s˛CˇC21j
/; 1 � j � d;

indexed over ˛, ˇ 2 ZdC are positive semidefinite [36].
Now suppose F is absolutely monotonic and entire; given a multisequence s˛ subject

to these positivity constraints, we have to check that the multisequence F.s˛/ satisfies the
same conditions.

As F is absolutely monotonic, Schoenberg’s Theorem 2.10 shows that the kernels
.˛; ˇ/ 7! F.s˛Cˇ / and .˛; ˇ/ 7! F.s˛CˇC21j

/ are positive semidefinite. It remains to
prove that the kernel

.˛; ˇ/ 7! F.s˛Cˇ / � F.s˛CˇC21j
/

is positive semidefinite for 1 � j � d . However, as F has the Taylor expansion F.x/ DP1
nD0 cnx

n, with cn � 0 for all n 2 ZC, it is sufficient to check that the kernel

.˛; ˇ/ 7! .s˛Cˇ /
ın
� .s˛CˇC21j

/ın

is positive semidefinite for any n 2 ZC. This follows from a repeated application of the
Schur product theorem: if matrices A and B are such that A � B � 0, then

Aın � Aı.n�1/ ı B � Aı.n�2/ ı Bı2 � � � � � Bın:

This proof also shows that the transformers of M.Œ�1; 1�d / into M.Rd / are the same
absolutely monotonic entire functions. On the other hand, we will see in Section 10 that,
in general, a mapping F as in Theorem 9.1 does not preserve the semi-algebraic supports
of the underlying measures.

9.2. Transformers of moment-sequence tuples: the positive orthant case

Our next objective is to characterize functions F W Rm ! R which map tuples
.sk.�1/; : : : ; sk.�m// of moments arising from admissible measures on R to a moment
sequence sk.�/ for some admissible measure � on R. This is a multivariable general-
ization of Schoenberg’s theorem which we will demonstrate under significantly relaxed
hypotheses.

More precisely, we will study the preservers F W Im ! R, where m � 1 is a fixed
integer, and

I D .0; �/ or Œ0; �/ or .��; �/; where 0 < � � 1: (9.1)

Note that F W Im ! R acts entrywise on any m-tuple of N � N matrices with entries
in I , so that

F Œ�� W PN .I /
m
! RN�N ; F ŒA1; : : : ; Am�ij WD F.a1;ij ; : : : ; am;ij /: (9.2)
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By the Schur product theorem, every real analytic function F of the form

F.x/ D
X
˛2Zm

C

c˛x˛ .x 2 Im/ (9.3)

preserves positivity on PN .I /
m if c˛ � 0 for all ˛ 2 ZmC. The reverse implication was

shown by FitzGerald, Micchelli, and Pinkus [16] for � D 1, and can be thought of as a
multivariable version of Schoenberg’s theorem. We now explain how results on several
real and complex variables can be used to generalize the work in previous sections to this
multivariable setting, including over bounded domains in the original spirit of Schoenberg
and Rudin. Namely, we characterize functions mapping tuples of positive Hankel matrices
into themselves. Of course, this is equivalent to mapping tuples of moment sequences of
admissible measures into the same set.

First we need some notation and terminology. Given I as in (9.1), suppose the sets
K1; : : : ; Km � R are such that all sequences in M�.Kj / have entries in I , for j D
1; : : : ;m. A function F W Im ! R acts on m-tuples of moment sequences of measures in
M�.K1/ � � � � �M�.Km/ to produce real sequences, so that

F Œs.�1/; : : : ; s.�m/�k WD F.sk.�1/; : : : ; sk.�m// .k 2 ZC/: (9.4)

Given I 0 � Rm, a function F W I 0 ! R is absolutely monotonic if F is continuous
on I 0, and for any interior point x 2 I 0 and ˛ 2 ZmC, the mixed partial derivative D˛F.x/
exists and is non-negative. As usual, for a tuple ˛ D .˛1; : : : ; ˛m/ 2 ZmC, we set

D˛F.x/ WD
@j˛j

@x
˛1

1 � � � @x
˛m
m

F.x1; : : : ; xm/; where j˛j WD ˛1 C � � � C ˛m:

The analogue of Bernstein’s Theorem for the multivariable case is proved and put in its
proper context in Bochner’s book; see [10, Theorem 4.2.2].

Our first observation is the connection between functions acting on tuples of
moment sequences and on the corresponding Hankel matrices. Given admissible mea-
sures �1; : : : ; �m and � supported on the real line, it is clear that

F Œs.�1/; : : : ; s.�m/� D s.�/ ” F ŒH�1
; : : : ;H�m

� D H� :

In particular, equality holds at each finite truncation, that is, for the corresponding leading
principalN �N submatrices, for anyN � 1. We will henceforth switch between moment
sequences and positive Hankel matrices without further comment.

We begin by considering the case of matrices with positive entries, arising from tuples
of sequences in M�.Œ0; 1�/. To state and prove the main result in this subsection, we
require a preliminary technical result.

Lemma 9.2. Given an integer m � 1, let Ym denote the set of all y D .y1; : : : ; ym/T 2
.0; 1/m such that the scalars

y˛ WD
mY
lD1

y
˛l

l

are distinct for all ˛ 2ZmC. Then the complement of Ym in .0; 1/m has zerom-dimensional
Lebesgue measure.
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Proof. Let

X WD
®
x D log y 2 .�1; 0/m W x ? ˛ for all ˛ 2 Zm n ¹.0; : : : ; 0/º

¯
:

The complement of X in .�1; 0/m is a countable union of hyperplanes, and so has
measure zero. The result now follows since Ym is the image of X under a smooth map.

The new notion of a facewise absolutely monotonic function on Œ0;�/m plays an impor-
tant role in our next result. In order to define it, recall that the truncated orthant Œ0; �/m

is the truncation of a convex polyhedron, and as such, is the disjoint union of the relative
interiors of its faces. These faces are in bijection with subsets of Œm� WD ¹1; : : : ; mº via
the mapping

J 7! Œ0; �/J WD ¹.x1; : : : ; xm/ 2 Œ0; �/
m
W xl D 0 for all l 62 J º; (9.5)

and this face has relative interior .0; �/J � ¹0ºŒm�nJ .

Definition 9.3. A function F W Œ0; �/m ! R, where m � 1 and 0 < � � 1, is face-
wise absolutely monotonic if, for each set of indices J � Œm�, the function F agrees
on .0; �/J � ¹0ºŒm�nJ with an absolutely monotonic function gJ on .0; �/J . Here and
henceforth, we identify without further comment .0; �/J and .0; �/J � ¹0ºŒm�nJ .

In other words, a facewise absolutely monotonic function is piecewise absolutely
monotonic, with the pieces being the relative interiors of the faces of the truncated poly-
hedral cone Œ0; �/m. The following example illustrates this in the case m D 2.

Example 9.4. Let

F.x1; x2/ WD

8̂̂̂<̂
ˆ̂:
x21 C x

2
2 C 1 if x1; x2 > 0;

2x1 if x1 > 0; x2 D 0;
x22 C 1 if x1 D 0; x2 > 0;
0 if x1 D x2 D 0:

Then F is facewise absolutely monotonic, with

g; D 0; g¹1º.x1/ D 2x1; g¹2º.x2/ D x
2
2 C 1; g¹1;2º.x1; x2/ D x

2
1 C x

2
2 C 1:

In this example, and, in fact, for every facewise absolutely monotonic function, the func-
tion gJ extends to an absolutely monotonic function on the closure Œ0; �/J of its domain,
for all J � Œm�. We denote this extension by zgJ .

Furthermore, for Example 9.4, the functions zgJ satisfy a form of monotonicity that is
compatible with the partial order on their labels:

K � J � Œm� H) 0 � zgK � zgJ on Œ0; �/K : (9.6)

A word of caution: while zg¹1º.x1/ � zg¹1;2º.x1; 0/ for all x1 � 0, it is not true that the
difference of these functions is absolutely monotonic on Œ0; �/.
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With this definition and example in hand, together with Lemma 9.2, we can now
characterize the preservers of tuples of moment sequences in M�.Œ0; 1�/.

Theorem 9.5. Let F W Œ0; �/m ! R, where m � 1 and 0 < � � 1, and fix y D
.y1; : : : ; ym/

T 2 Ym, as in Lemma 9.2. The following are equivalent.

(1) F Œ�� maps M�.¹1; y1º/ � � � � �M�.¹1; ymº/ [M�.¹0; 1º/m into M.R/, and

F..a1; : : : ; am//F..b1; : : : ; bm// � F
�
.
p
a1b1; : : : ;

p
ambm/

�2
for all a1; : : : ; am, b1; : : : ; bm 2 Œ0; �/.

(2) F Œ�� maps M�.Œ0; 1�/m into M.Œ0; 1�/.

(3) F is facewise absolutely monotonic, and the functions ¹gJ W J � Œm�º satisfy the
monotonicity condition (9.6).

Reformulating this result, as in the one-dimensional case above, it suffices to work
only with Hankel matrices of rank at most 2. Moreover, Theorem 4.1 is precisely Theo-
rem 9.5 when m D 1. The proof builds on Theorem 4.1; however, the higher dimension-
ality introduces several additional challenges.

A large part of Theorem 9.5 can be deduced from the following reformulation on the
open cell in the positive orthant.

Theorem 9.6. Fix � 2 .0;1�, an integerm � 1 and a point yD .y1; : : : ; ym/T 2 Ym, as
in Lemma 9.2. For 1 � l � m and N � 1, let

ul;N WD .1; yl ; : : : ; yN�1l /T ;

HC
l
.N / WD ¹a1N�N C bul;NuTl;N W a 2 .0; �/; b 2 Œ0; � � a/º:

If the function F W .0; �/m ! R is such that F Œ�� preserves positivity on P2..0; �//
m

and on HC1 .N / � � � � � HCm.N / for all N � 1, then F is absolutely monotonic and is the
restriction of an analytic function on D.0; �/m.

Remark 9.7. As noted in Remark 4.3 for the one-variable case, the proof of Theorem 9.6
goes through under a weaker hypothesis, with the test sets replaced by the set of rank-one
m-tuples P 1

2 ..0; �//
m and the set²��

a1 b1
b1 b1

�
; : : : ;

�
am bm
bm bm

��
W 0 < bl < al < �; 1 � l � m

³
: (9.7)

The matrices in HC
l
.N / and (9.7) are precisely the truncated moment matrices of admis-

sible measures supported on ¹1; ylº and on ¹0; 1º, respectively.

Proof of Theorem 9.6. We begin by recording a few basic properties of F . First, either
F is identically zero, or it is everywhere positive on .0; �/m; this may be shown similarly
to the proof of Theorem 4.2. Moreover, using only tuples from P 1

2 ..0; �// and (9.7), as
well as the hypotheses, one can argue as in the proof of Theorem 4.2, and show that F is
continuous on .0; �/m.
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Next, given c D .c1; : : : ; cm/T 2 .0; �/m, the function g such that

g.x/ WD F.xC c/ for all x 2 .0; � � c1/ � � � � � .0; � � cm/

satisfies the same hypotheses as F , but with � replaced by � � cl in each HC
l
.N /, and

with P 1
2 ..0; �//

m replaced by P 1
2 ..0; � � c1// � � � � � P 1

2 ..0; � � cm//. Therefore, as in
the proof of [16, Theorem 2.1], a mollifier argument reduces the problem to consider-
ing only smooth F . We now follow the proof of [16, Proposition 2.5], but with suitable
modifications imposed by the weaker hypotheses.

Given r � 0, we take N �
�
rCm
m

�
, and let y0

l
WD .1; yl ; : : : ; y

N�1
l

/T for 1 � l � m.
Fix some c 2 .0; �/m, choose bl 2 .0; � � cl / for all l and let

Al WD cl1N�N C bly0ly
0
l
T
2 HC

l
.N /;

so that F ŒA1; : : : ; Am� 2 PN .R/. We now use Lemma 9.2: since y 2 Ym and N �
�
rCm
m

�
by assumption, for each ˇ 2 ZmC with jˇj � r we can choose vˇ 2 RN such that

vˇ ? .1; y˛; y2˛; : : : ; y.N�1/˛/T for all ˛ 2 ZmC n ¹ˇº with j˛j � r;

and .1; yˇ ; : : : ; y.N�1/ˇ /vˇ D 1. An application of Taylor’s theorem (similar to its use in
Proposition 4.10 or [16, Proposition 2.5]) now shows that DˇF.c/ � 0. Thus F is abso-
lutely monotonic on .0; �/m, and Schoenberg’s observation [41, Theorem 5.2] implies
that F is the restriction to .0; �/m of an analytic function on D.0; �/m.

With this result in hand, we can now proceed.

Proof of Theorem 9.5. Clearly, .2/).1/.
We will show .1/).3/ by induction onm. As noted above, the casemD 1 is precisely

Theorem 4.1. For the induction step, we first restrict F to the relative interior of any
face of the truncated polyhedron Œ0; �/m, say .0; �/J for some J � Œm�. The induction
hypothesis and Theorem 9.6 imply that F is facewise absolutely monotonic, so F � gJ
on .0; �/J with gJ absolutely monotonic. To see that (9.6) holds, we claim that, for any
pair of subsets L � K ¨ J � Œm�,

zgK.x/ � zgJ .x/ whenever x 2 .0; �/L � Œ0; �/m:

For ease of exposition, we show this for an illustrative example; the general case fol-
lows with minimal modification. Suppose J D ¹1; 2; 3º; K D ¹1; 2º, and L D ¹1º. For
any .x1; 0; 0/ 2 .0; �/L, we set

.a1; a2; a3/ WD .x1; x2; x3/ and .b1; b2; b3/ WD .x1; x2; 0/;

where x2 > 0 and x3 > 0. By hypothesis (1), it follows that

zgJ .x1; x2; x3/zgK.x1; x2; 0/ � zgK.x1; x2; 0/
2;

and taking limits as x2 D xKnL ! 0C and x3 D xJnK ! 0C, we find that

zgJ .x1; 0; 0/zgK.x1; 0; 0/ � zgK.x1; 0; 0/
2;

and so (9.6) holds as required.
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Finally, to show that .3/).2/, given positive Hankel matrices A1; : : : ; Am arising
from moment sequences in M�.Œ0; 1�/, let

J WD ¹l 2 Œm� W al;11 > 0º and K WD ¹l 2 Œm� W al;22 > 0º:

Note that K � J � Œm�. Recalling that the only Hankel matrices arising from M�.Œ0; 1�/

and having zero entries are of the form Haı0
for some a 2 Œ0; �/, we may write

F ŒA1; : : : ;Am�D .gJ .al;11 W l 2 J /� gK.al;11 W l 2K//Hı0
C gK ŒAl W l 2K�: (9.8)

For example, given a, b, c, d > 0, we have

F

��
a b

b c

�
;

�
d 0

0 0

�
;

�
0 0

0 0

��
D

�
g¹1;2º.a; d/ g¹1º.b/

g¹1º.b/ g¹1º.c/

�
D .g¹1;2º.a; d/�g¹1º.a//

�
1 0

0 0

�
Cg¹1º

��
a b

b c

��
:

The proof concludes by observing that both terms in the right-hand side of (9.8) are posi-
tive semidefinite, by the Schur product theorem and hypothesis (3):

gJ .al;11 W l 2 J / � lim
al;11!0

C 8l2JnK
gJ .al;11 W l 2 J / D zgJ .al;11 W l 2 K/

� gK.al;11 W l 2 K/:

As Theorem 9.5 shows, the notion of facewise absolutely monotone maps on Œ0;�/m is
a refinement of absolute monotonicity, emerging from the study of positivity preservers of
tuples of moment sequences, or rather of the Hankel matrices arising from them. If instead
one studies maps preserving positivity on tuples of all positive semidefinite matrices, or
even all Hankel matrices, then this richer class of maps does not arise.

Proposition 9.8. Suppose � 2 .0;1� and F W Im ! R, where I D Œ0; �/. The following
are equivalent.

(1) F Œ�� preserves positivity on the space of m-tuples of positive Hankel matrices with
entries in I .

(2) F is absolutely monotonic on Im.
(3) F Œ�� preserves positivity on the space ofm-tuples of all positive matrices with entries

in I .

Proof. Clearly .2/).3/).1/. Now suppose (1) holds. By Theorem 9.6, F is abso-
lutely monotonic on the domain .0; �/m, and agrees there with an analytic function g W
D.0; �/m ! C. We now claim F � g on Im. The proof is by induction on m, with the
m D 1 case shown in Proposition 8.1.

Suppose m > 1, and let c D .c1; : : : ; cm/ 2 Im n .0; �/m. Note that at least one coor-
dinate of c is zero. We choose un D .u1;n; : : : ; um;n/ 2 .0; �/m such that un! c, and we
wish to show that F.un/ D g.un/! F.c/. Let

H WD

0@1 0 1

0 1 1

1 1 2

1A and Al;n WD

´
ul;n13�3 if cl > 0;
ul;nH if cl D 0:
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Using (1) and the induction hypothesis for the .1; 2/ and .2; 1/ entries, it follows that

lim
n!1

F ŒA1;n; : : : ; Am;n� D

0@g.c/ F.c/ g.c/
F.c/ g.c/ g.c/
g.c/ g.c/ g.c/

1A 2 P3:

Computing the determinants of the leading principal minors gives

g.c/ � 0; g.c/ � jF.c/j; �g.c/.g.c/ � F.c//2 � 0:

Hence F.c/ D g.c/, and the proof is complete.

9.3. Transformers of moment-sequence tuples: the general case

Having resolved the characterization problem for functions defined on the positive
orthant, we now work over the whole of Rm. This requires us to consider admissible
measures which may have support outside Œ�1; 1�. For such measures, the mass no longer
dominates all moments, and so we include in our test sets truncations of the corresponding
moment sequences, whereas for measures supported in Œ�1; 1�, the full moment sequence
lies in the test set. More precisely, we have the following definition.

Definition 9.9. Given K � R and � 2 .0;1�, let zM�.K/ be the collection of possibly
truncated moment sequences for all measures � 2 MeasC.K/, where each sequence is
truncated prior to the first moment of � that lies outside .��; �/, or is not truncated if no
such moment exists.

Clearly, if � D 1, then zM�.K/ D M�.K/, while if � is finite and K � Œ�1; 1�,
then zM�.K/ DM�.K/. Next is a more complex example, which occurs in the following
theorem; see particularly Step 5 of its proof.

Example 9.10. If K D ¹�1; v; 1º for v > 1, and � < 1, then zM�.K/ consists of
M�.¹�1; 1º/ together with truncated moment sequences of measures with positive mass
at v. If � D aı�1 C bı1 C cıv with a, b � 0 and c > 0, then the moments of � are
unbounded, and zM�.K/ contains the truncated moment sequence .s0.�/; : : : ; sn�1.�//,
where n is the smallest positive integer such that ja.�1/n C b C cvnj � �.

We can now state our final main result in this section.

Theorem 9.11. Suppose F W Im ! R, where m � 1 and I D .��; �/ with 0 < � � 1.
The following are equivalent.

(1) For some ı > 0, the function F , when applied entrywise, maps zM�.Œ�1; 1 C ı�/m

into the set of possibly truncated moment sequences of measures on R.
(2) For every ı > 0, the function F , when applied entrywise, maps zM�.Œ�1; 1 C ı�/m

into the set of possibly truncated moment sequences of measures on R.
(3) Applied entrywise, the function F maps PN .I /

m into PN .R/ for any N � 1.
(4) The function F is absolutely monotonic on Œ0; �/m and agrees on Im with an analytic

function.
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In particular, analogously to the one-variable case, Theorem 9.11 strengthens the mul-
tivariable analogue of Schoenberg’s theorem in [16] by using only Hankel matrices arising
from tuples of moment sequences. Moreover, akin to the m D 1 case, the proof reveals
that one only requires Hankel matrices of rank at most 3.

Given any v > 0, we let M
�
v WD

zM�.¹�1; v; 1º/ and

M
�

Œv�
WD

[
s12¹�1;0;1º; s22¹�v;0;vº

M�.¹s1; s2º/:

Corollary 9.12. The hypotheses in Theorem 9.11 are also equivalent to the following.

(5) There exist � > 0 and u0 2 .0; 1/ such that F Œ�� maps

.M
�

Œu0�
/m [

[
v1;:::;vm2.0;1C�/

M�
v1
� � � � �M�

vm

into the set of possibly truncated moment sequences of measures on R.

As the reader will observe, hypothesis (5) is stronger, even in the one-dimensional
case, than the corresponding hypothesis in Theorem 6.1. As the proof shows, these extra
assumptions are required to obtain continuity on every orthant and on ‘walls’ between
orthants, as well as real analyticity on one-parameter curves.

Remark 9.13. Theorem 9.11 is the only instance when we deviate from Table 1.2 in the
Introduction, but it should not come as a surprise that stronger conditions are required to
guarantee real analyticity in several variables.

Proof of Theorem 9.11 and Corollary 9.12. Clearly .4/).3/).2/).1/).5/ by the
Schur product theorem. Thus, we will assume (5) and obtain (4). By Theorem 9.6, the
function F is absolutely monotonic on the open positive orthant .0; �/m, and equals the
restriction to .0; �/m of an analytic function g WD.0; �/m!C. We now show that F � g
on all of .��; �/m. The proof follows the m D 1 case in Section 6; for ease of exposition,
we break it up into steps.

Step 1. We first prove F is locally bounded. This follows by using M
�
2.¹�1; 1º/

m, as in
the proof of Lemma 6.3. As above, this gives

F Œ�� W .M
�

Œu0�
/m[M�

v1
�� � ��M�

vm
!M.Œ�1;1�/ for all v1; : : : ; vm 2 .�1;1/: (9.9)

Step 2. Next, we show that F is continuous on .��; �/m. The first objective is to show
continuity of F inside each open orthant of .��; �/m. Given non-zero scalars c1; : : : ; cm
with jc1j; : : : ; jcmj < �, and any sequence ¹.v1;n; : : : ; vm;n/ W n � 1º � Rm converging to
the origin, let

al;n WD jcl jC
sgn.cl /u0
u0�u

3
0

vl;n and �l;n WD al;nısgn.cl /C
jvl;nj

u0�u
3
0

ı� sgn.vl;n/u0
(9.10)

for l D 1; : : : ; m. Note that, for all sufficiently large n, the sequence s.�l;n/ is in M
�

Œu0�
.
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We now follow the proof of Proposition 6.4. Suppose F ŒH�1;n
; : : : ; H�m;n

� D H�n

for some admissible measure �n 2 MeasC.Œ�1; 1�/, for every n � 1. The polynomials
p˙.t/ WD .1˙ t /.1 � t

2/ are non-negative on Œ�1; 1�, so, by (4.1),Z 1

�1

p˙.t/ d�n � 0;

so F.s0.�l;n/
m
lD1/ � F.s2.�l;n/

m
lD1/ � jF.s1.�l;n/

m
lD1/ � F.s3.�l;n/

m
lD1/j: (9.11)

Computing the moments of �l;n gives

s0.�l;n/ D jcl j C
sgn.cl /u0 C sgn.vl;n/

u0 � u
3
0

vl;n; s1.�l;n/ D cl ;

s2.�l;n/ D jcl j C
sgn.cl /u0 C sgn.vl;n/u20

u0 � u
3
0

vl;n; s3.�l;n/ D cl C vl;n:

(9.12)

As n ! 1, by the continuity of F in .0; �/m, the left-hand side of (9.11)
goes to zero, whence so does the right-hand side, which is jF.c1; : : : ; cm/ �
F.c1 C v1;n; : : : ; cm C vm;n/j. This proves the continuity of F at .c1; : : : ; cm/, so in
every open orthant of .��; �/m.

To conclude this step, we show F is continuous on the boundary of the orthants, that
is, on the union of the coordinate hyperplanes:

Z WD ¹.x1; : : : ; xm/ 2 .��; �/
m
W x1 � � � xm D 0º:

The proof is by induction onm, with the casemD 1 shown in Proposition 6.4. For general
m � 2, by the induction hypothesis F is continuous when restricted to Z. It remains to
prove F is continuous at a point cD .c1; : : : ; cm/ 2Z when approached along a sequence
¹.c1C v1;n; : : : ; cmC vm;n/ W n� 1ºwhich lies in the interior of some orthant in .��;�/m.
Repeating the computations for (9.12), with the same sequences al;n and �l;n, and the
polynomials p˙.t/, we note that if cl ¤ 0 then s0.�l;n/ > 0 and s2.�l;n/ > 0 for all
sufficiently large n, while if cl D 0 then s0.�l;n/ > 0 and s2.�l;n/ > 0 for all n, since
cl C vl;n¤ 0 by assumption. Therefore, in all cases, the left-hand side of (9.11) eventually
equals F.un/ � F.u0n/, with un and u0n in the positive open orthant .0; �/m, and both
converging to jcj WD .jc1j; : : : ; jcmj/. Since F � g on .0; �/m for some analytic function g
on D.0; �/m, (9.11) gives

lim
n!1

jF.c/�F.c1C v1;n; : : : ; cmC vm;n/j � lim
n!1

F.un/�F.u0n/D g.jcj/� g.jcj/D 0:

It follows that F is continuous at all c 2 Z, and hence on all of .��; �/m, as claimed.

Step 3. The next step in the proof is to show that it suffices to consider F to be smooth.
This is achieved using a mollifier argument, exactly as in the one-variable situation.

Step 4. Henceforth we assume F is smooth on .��; �/m; akin to the one-variable case,
we will show that F is in fact real analytic. The proof extends across multiple steps below.
The first step is encoded into the following technical lemma, for convenience.
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Lemma 9.14. Fix � 2 .0;1� and a non-zero vector v 2 Rm. For any c 2 .��; �/m, let

�v;c WD

´
e�kvk1 if � D1;
e�kvk1.� � kck1/ if � <1:

(9.13)

Then, for any w 2 .��; �/m, there exists c 2 .��; �/m such that w D cC �v;c1, where
1 WD .1; : : : ; 1/.

Proof. The assertion is immediate if � D 1, so we suppose henceforth that � is finite.
Let

g.t/ WD kw � t1k1 � .� � tekvk1/ .t � 0/:

Clearly g.0/ < 0 < g.�/, so g has a root t0 2 .0; �/. Now the vector c WD w � t01 is as
required (and t0 D �v;c).

Step 5. We now claim that for every c 2 .��; �/m and every unit direction vector v D
.v1; : : : ; vm/ 2 S

m�1, the function F is real analytic in the one-parameter space

¹cC �v;ce
�xv
W x 2 .�1; 1/º � .��; �/m;

at the point x D 0, i.e., at w D cC �v;c1. Here �v;c and 1 are as in Lemma 9.14, and we
also use the notation

e�xv
WD .e�xv1 ; : : : ; e�xvm/:

Notice moreover that the l th coordinate of cC �v;ce
�xv is strictly bounded above in abso-

lute value by kck1 C �v;ce
kvk1 , which is no more than �.

To show the claim, we use the notation jcj WD .jc1j; : : : ; jcmj/ and also fix a scalar
x 2 .�1; 1/. We let p˙;n.t/ WD .1˙ t /.1 � t2/n for n � 0 and

�l;s WD jcl jısgn.cl / C �v;ce
�xvl ıe�svl whenever 0 < s < .1 � x/=.2nC 1/;

where 1 � l � m.
As p˙;n.t/ � 0 for all t 2 Œ�1; 1� and all n � 0, applying (4.1) givesˇ̌̌̌ nX
kD0

�
n

k

�
.�1/kF.jcj C �v;jcje

�.xC2ks/v/

ˇ̌̌̌
�

ˇ̌̌̌ nX
kD0

�
n

k

�
.�1/n�kF.cC �v;ce

�.xC.2kC1/s/v/

ˇ̌̌̌
;

where we note that �v;c D �v;jcj, and that all arguments of F lie in .��; �/m by the
restriction on s. Note that we use the fact that our test set contains zM�.¹�1; v; 1º/ for
v 2 .1; 1C �/ here, and only here, in this proof.

Now settingHv;c.x/ WD F.cC �v;ce
�xv/, dividing both sides of this inequality by sn,

and then taking s ! 0C, it follows thatˇ̌̌̌
dn

dxn
H
.n/

v;jcj.x/

ˇ̌̌̌
�

ˇ̌̌̌
dn

dxn
H .n/

v;c .x/

ˇ̌̌̌
whenever x 2 .�1; 1/:
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These estimates prove that the function F is real analytic at the point in the one-parameter
space as claimed.

Step 6. We now complete the proof. The real analytic local diffeomorphism

T W .u1; : : : ; um/ 7! .eu1 � 1; : : : ; eum � 1/

maps the origin to itself and, by the previous step, the function

u 7! F.cC �v;c1C �v;cT .�u//

is smooth and real analytic in the unit ball along every straight line passing through the
origin. Standard criteria for real analyticity (see [2, Theorem 5.5.33], for example) now
imply that F is real analytic at the point cC �v;c1, hence at every point w 2 .��; �/m, by
Lemma 9.14.

Finally, recall that F agrees on .0; �/m with an analytic function g W D.0; �/m ! C.
As F W .��; �/m ! R is real analytic, so F D gj.��;�/m and the proof is complete.

Remark 9.15. As Step 2 in the proof above shows, we may replace .M�

Œu0�
/m in hypoth-

esis (5) of Corollary 9.12 by M
�

Œu1�
� � � � �M

�

Œum�
for any u1; : : : ; um 2 .0; 1/.

Remark 9.16. Akin to the one-dimensional case, one may now show that Theorems 9.5
and 9.11 hold more generally for tuples of measures with bounded mass. More pre-
cisely, one should fix �1; : : : ; �m 2 .0;1/ and work with tuples of admissible measures
.�1; : : : ; �m/ supported in Œ�1; 1� and such that s0.�l / < �l for l D 1; : : : ; m, whence
sk.�l / < �l for every k � 0 and all such l . As discussed in the Introduction, this explains
how our results unify and strengthen the Schoenberg–Rudin theorem and the FitzGerald–
Micchelli–Pinkus result for positivity preservers.

To prove Theorem 9.5 for F W I1 � � � � � Im! R, where Il D Œ0; �l /, one should first
define facewise absolutely monotonic maps on I1 � � � � � Im using the relative interiors
of the faces cut out by the same functionals as for Œ0; �/m. The existing proof for the case
�1 D � � � D �m goes through with minimal modifications, including to Theorem 9.6. The
same is true for proving Theorem 9.11 with the domain .��1; �1/ � � � � � .��m; �m/ in
place of .��; �/m.

Remark 9.17. There is a simple and potentially very useful conditioning operation which
can assist with numerical or computational entrywise manipulation of Hankel matrices or
Hankel kernels arising from moments. Namely, the moments

s˛ D

Z
K

x˛ d�.x/ .˛ 2 ZmC/

of a positive measure with compact support K can be rescaled,

s˛ 7! u˛ D t
j˛js˛;

by a factor t > 0, so that u˛ are the moments of a positive measure supported by the unit
cube, or even by its interior. Of course, a priori information on the size of the supportK is
essential for this step, but in this way some of the complications outlined in Theorem 9.11
and its proof can be avoided.
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10. Laplace-transform interpretations

When speaking about completely monotonic or absolutely monotonic functions one can-
not leave aside Laplace transforms. We briefly touch the subject below, in connection with
our theme.

Let F be an absolutely monotonic function on .0;1/, and let � and � be admissible
measures supported on Œ0; 1� such that

F.sk.�// D sk.�/ for all k � 0: (10.1)

By the change of variable x D e�t , we can push forward the restriction of the measure �
to .0; 1� to a measure �1 on Œ0;1/, and similarly for � . Thus, with the possible loss of
zeroth-order moments, we obtain

sk.�/ D

Z 1
0

e�kt d�1.t/ and sk.�/ D

Z 1
0

e�kt d�1.t/:

If L denotes the Laplace transform, so that

L�.z/ D

Z 1
0

e�tz d�.t/;

then L� is a complex analytic function in the open half-plane CC WD ¹z 2 C W <z > 0º.
Our assumption (10.1) becomes

F.L�1.k// D L�1.k/ for all k � 1;

and a classical observation due to Carlson [11] implies that

F.L�1.z// D L�1.z/ for all z 2 CC:

More precisely, Carlson’s Theorem asserts that a bounded analytic function in the right
half-plane is identically zero if it vanishes at all positive integers. The proof relies on the
Phragmén–Lindelöf principle [35]; see also [8] or [51, §5.8] for more details.

In this section, we will show some results from the interplay between the Laplace
transform and functions which transform positive Hankel matrices.

For point masses, the situation is rather straightforward. If � D ıe�a for some
point a 2 Œ0;1/, and F.x/ D

P1
nD0 cnx

n, then

F.L�.z// D F.e�az/ D

1X
nD0

cne
�anz

D L�1.z/;

where

�1 D

1X
nD0

cnıan and � D

1X
nD0

cnıe�an :

More generally, if � has countable support, then the transform F Œ�� will also yield a
measure with countable support. A strong converse to this is the following result.
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Proposition 10.1. Let a 2 .0; 1/ and suppose the function F W x 7!
P1
nD0 cnx

n is abso-
lutely monotonic on .0;1/. The following are equivalent.

(1) There exists an admissible measure � on Œ0; 1� such that

F.sk.�// D a
k for all k � 0:

(2) F.x/ D xN for some N � 1, and � D ıa1=N .

Proof. That .2/).1/ is clear. Now suppose .1/ holds. Setting  .t/ WD � log t , we get

sk.�/ D

Z 1

0

xk d�.t/ D
Z 1
0

e�kt d�.t/ D L�.k/ for all k � 0;

where � WD  �� is the pushforward of � under  . If a D e�� for some � > 0, then, by
assumption,

F.L�.k// D e��k for all k � 1:

and, by Carlson’s Theorem,

F.L�.z// D e��z for all z 2 CC: (10.2)

In view of Bernstein’s theorem, Theorem 2.9, the function L� is completely monotonic on
Œ0;1/. Now, since the composition of an absolutely monotonic function and a completely
monotonic function is completely monotonic, so

z 7! .L�.z//k D

�Z 1
0

e�zt d�.t/
�k

is completely monotonic on Œ0;1/ for all k 2 ZC. Thus, by another application of Bern-
stein’s theorem, there exists an admissible measure �k on Œ0;1/ such that

.L�.z//k D

Z 1
0

e�zt d�k.t/ for all z 2 CC:

Using the above expression, we can rewrite (10.2) as

F.L�.z// D

1X
nD0

cn.L�n/.z/ D L
� 1X
nD0

cn�n

�
.z/ D e��z D .Lı�/.z/;

and, by the uniqueness principle for Laplace transforms, we conclude that

1X
nD0

cn�n D ı�:

Now, let A be any measurable subset of Œ0;1/ that does not contain �. Then� 1X
nD0

cn�n

�
.A/ D ı�.A/ D 0:



A. Belton, D. Guillot, A. Khare, M. Putinar 3156

Since cn � 0, it follows that cn�n.A/ D 0 for all measurable sets A not containing �, and
all n 2 ZC. Hence, either cn D 0, or �n D ı�. Moreover,

P1
nD0 cn D 1.

Now, suppose cn ¤ 0 for some n. By the above argument, we must have �n D ı�.
Thus,

L�n.z/ D

�Z 1
0

e�zt d�.t/
�n
D e��z for all z 2 CC:

Equivalently, Z 1
0

e�zt d�.t/ D e��z=n;

and applying the uniqueness principle for the Laplace transform one more time gives
� D ı�=n. Hence cn ¤ 0 for at most one n, say for n D N , so F.x/ D xN and � D ı�=N .
Finally, since � D  ��, we conclude that � D ıa1=N , as claimed.

Appendix A. Two lemmas on adjugate matrices

In this appendix we prove two lemmas. These allow us to establish equation (5.2), which
is key to our proof of Theorem 5.8, and they may be of independent interest.

Let F denote an arbitrary field. Given a matrix M 2 FN�N , where N � 1, and a
function f W F ! F , we let adj.M/ denote the adjugate matrix ofM and f ŒM� 2 FN�N

the matrix obtained by applying f to each entry of M .

Lemma A.1. Given a polynomial f .x/ D ˛0 C ˛1x C � � � C ˛nxn C � � � 2 F Œx� and a
matrix M 2 FN�N , the polynomial

detf ŒxM� D ˛0˛
N�1
1 11�N adj.M/1N�1xN�1 CO.xN /:

Proof. Let M have columns m1; : : : ;mN ; we write M D .m1j � � � jmN / to denote this.
Using the multi-linearity of the determinant, we see that

detf ŒxM� D

1X
i1;:::;iND0

˛i1 � � �˛iN x
i1C���CiN det.mıi11 j � � � j m

ıiN
N /: (A.1)

Observe that the only way to obtain a term where x has degree less than N � 1 is for at
least two of the indices il to be 0. The corresponding determinants are all 0 since they
contain two columns equal to 1N�1.

For terms containing xN�1, the only ones where the determinant does not contain two
columns equal to 1N�1 sum to give

˛0˛
N�1
1 xN�1

NX
lD1

det.m1 j � � � j ml�1 j 1N�1 j mlC1 j � � � j mN /:

By Cramer’s Rule, this sum is precisely 1TN�1 adj.M/1N�1.
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We also require the following result, which we believe to be folklore. We include a
proof for completeness.

Lemma A.2. Suppose M 2 FN�N has rank N � 1. If u spans the null space of M T ,
and v spans the null space of M , then A D adjM is a non-zero scalar multiple of vuT .

Proof. That A ¤ 0 follows by considering the rank of M . Since detM D 0, we see that
AM D 0 and MA D 0. After taking the transpose, the first identity implies that the rows
of A are multiples of uT ; the second identity implies immediately that the columns of A
are multiples of v. This gives the result.

We may now show that detM4 D �57168˛0˛
2
1˛2x

4 CO.x5/, where

M4 WD

4X
kD0

˛kx
kM ık and M WD

0BB@
3 6 14 36

6 14 36 98

14 36 98 276

36 98 284 842

1CCA :
Note that these matrices are totally non-negative, and would be Hankel but for one entry.

By Lemma A.1, detM4 has no constant, linear, or quadratic term. Moreover, since the
matrix M has rank 3 and the vectors

v D .6;�11; 6;�1/ and u D .46;�59; 18;�1/

span the null spaces of M and M T , respectively, Lemma A.2 shows that adj.M/ is equal
to cvuT for some non-zero c 2 R. The cubic term in detM4 equals c1T vuT 1˛0˛31x

3, by
Lemma A.1, and this vanishes because 1T v D 0.

Finally, we compute the coefficient of the quartic term; we need to examine all the
terms in (A.1) that arise from quadruples .i1; i2; i3; i4/which sum to 4. Terms with indices
of the form .4; 0; 0; 0/, .3; 1; 0; 0/, and .2; 2; 0; 0/, and their permutations, are zero since
the determinants contain two identical columns. We are therefore left with quadruples of
the form .2; 1; 1; 0/ and .1; 1; 1; 1/. The term corresponding to .1; 1; 1; 1/ is zero since
detM D 0, as one can see because M does not have full rank. Thus the only non-zero
quartic terms arise from one of the twelve permutations of the quadruple .2; 1; 1; 0/.
Therefore detM4 D k˛0˛

2
1˛2x

4 C O.x5/, and to find the constant k, we compute all
twelve determinants.

i1; i2; i3; i4 det.mıi11 jm
ıi2
2 jm

ıi3
3 jm

ıi4
4 / i1; i2; i3; i4 det.mıi11 jm

ıi2
2 jm

ıi3
3 jm

ıi4
4 /

0; 1; 1; 2 1398912 1; 1; 2; 0 �72224

0; 1; 2; 1 �138048 1; 2; 0; 1 �46224

0; 2; 1; 1 �96384 1; 2; 1; 0 21520

1; 0; 1; 2 �2431744 2; 0; 1; 1 14432

1; 0; 2; 1 598304 2; 1; 0; 1 �5208

1; 1; 0; 2 699552 2; 1; 1; 0 �56

The sum of these determinants is �57168, as claimed.
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