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Abstract. We realise Stroppel’s extended arc algebra [13, 51] in the Fukaya–Seidel category of a
natural Lefschetz fibration on the generic fibre of the adjoint quotient map on a typeA nilpotent slice
with two Jordan blocks, and hence obtain a symplectic interpretation of certain parabolic two-block
versions of Bernstein–Gel’fand–Gel’fand category O. As an application, we give a new geometric
construction of the spectral sequence from annular to ordinary Khovanov homology. The heart of
the paper is the development of a cylindrical model to compute Fukaya categories of (affine open
subsets of) Hilbert schemes of quasi-projective surfaces, which may be of independent interest.

Keywords. Symplectic Khovanov homology, arc algebra, nilpotent slice, BGG category O,
Fukaya category, Lefschetz fibration, Hilbert scheme

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. The cylindrical Fukaya–Seidel category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3. Properties of the cylindrical Fukaya–Seidel category . . . . . . . . . . . . . . . . . . . . . . . . . 34
4. Comparing Fukaya–Seidel categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5. Type A geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6. The extended symplectic arc algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7. More algebra isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8. An nc-vector field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9. Formality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
10. Dictionary between Lagrangians and modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
11. Symplectic annular Khovanov homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
12. From annular to ordinary Khovanov homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A. Non-formality of standard modules/thimbles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Cheuk Yu Mak: Centre for Mathematical Sciences, University of Cambridge, Cambridge,
CB3 0WB, UK; mathmakmak@gmail.com
Ivan Smith: Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WB,
UK; is200@dpmms.cam.ac.uk

Mathematics Subject Classification (2020): 53D40, 57M25

mailto:mathmakmak@gmail.com
mailto:is200@dpmms.cam.ac.uk 


C. Y. Mak, I. Smith 2

1. Introduction

1.1. Summary

This paper has three parts:
� We give a ‘cylindrical’ formulation of the Fukaya category of (an affine open subset of)

the Hilbert scheme of an affine algebraic surface (Sections 2–4).
� We compute the Fukaya–Seidel category of a natural Lefschetz fibration on the gen-

eric fibre of the adjoint quotient map on the nilpotent / Slodowy slice of Jordan type
.n; m � n/ arising from its inclusion in the n-th Hilbert scheme of the Milnor fibre
of the Am�1-surface singularity, establishing a Morita equivalence to the principal
block On;m of BGG parabolic category O associated to the partitionm D nC .m� n/
(Sections 5–9).
� We exploit this equivalence to describe a new semi-orthogonal decomposition of

the dg-category of perfect modules perf-On;2n, from which we derive a geometric
construction of the spectral sequence from annular to ordinary Khovanov homology
(Sections 10–12).

1.2. Context

Fix a semisimple complex Lie algebra g. The Bernstein–Gel’fand–Gel’fand category O

is an abelian (Noetherian and Artinian) category of finitely generated g-modules, which
plays a central role in many parts of representation theory. It contains all the highest-
weight modules, is closed under the operations of taking submodules, quotient modules
and under tensoring with finite-dimensional modules, and is “minimal" with respect to
those properties. Concretely for slm, fixing the Cartan subalgebra h � slm of diagonal
matrices with respect to a choice of basis, it comprises the finitely generated U.slm/-
modules which are h-semisimple and which are locally finite for the nilpotent subal-
gebra n � slm given by the upper triangular matrices. Given a parabolic subalgebra
p � g containing the Borel n ˚ h, there is a parabolic subcategory Op of O consist-
ing of those modules on which p acts locally finitely. Again for slm, a partition m D
m1 C � � � Cmk determines a parabolic p; the extreme cases m D 1C � � � C 1 and m D m
respectively define Op DO and Op DOfd, the semisimple category of finite-dimensional
slm-modules, so the parabolic subcategories can be viewed as intepolating between these.
The central characters decompose Op into blocks and the block containing the trivial
modules is called the principal block O

p
0 .

It is known that for any p� g, the category O
p
0 is equivalent to the category of modules

over a finite-dimensional associative algebra; there are algorithmic descriptions of these
algebras via quivers with relations [53], but nonetheless working with them concretely
is often rather non-trivial. For parabolics p � slm associated to two-block partitions
m D n C .m � n/, the corresponding category O

p
0 D On;m has several other descrip-

tions: it is Morita equivalent to the category of perverse sheaves on the Grassmannian
Gr.n; m/ constructible with respect to the Schubert stratification [10], and the underly-
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ing associative algebra1 K
alg
n;m has a diagrammatic description due to Stroppel [51] and

Brundan–Stroppel [12, 13], in which context it is known as the ‘extended arc algebra’.
This paper gives a new interpretation of these algebras in terms of Fukaya–Seidel categor-
ies associated to natural Lefschetz fibrations on the generic fibre of the adjoint quotient
map of the nilpotent (Jacobson–Morozov type) slices associated to nilpotent matrices
with two Jordan blocks, and hence a symplectic-geometric construction of these par-
ticular principal blocks of parabolic category O. This fits into the general dictionary
between symplectic geometry and aspects of representation theory related to categor-
ification [11, 26], and simultaneously extends the symplectic viewpoint on Khovanov
homology [1, 2, 47] to a corresponding viewpoint on annular Khovanov homology, com-
plementing recent work of [8, 21].

1.3. Main result

Let � W Am�1 ! C be the standard Lefschetz fibration on the Milnor fibre of the Am�1
surface singularity, so � is an affine conic fibration with m Lefschetz critical points;
the symplectic topology of this fibration has been extensively studied; see for instance
[26, 33]. The Hilbert scheme Hilbn.Am�1/ of zero-dimensional length n subschemes has
a distinguished divisor Dr of subschemes whose projection under � has length < n, the
complement of which is an affine variety Yn;m. (When 2n � m, this space is isomorphic
to the generic fibre of the restriction of the adjoint quotient map slm ! h=W to a trans-
verse slice meeting the nilpotent cone at a matrix with Jordan blocks of size ¹n;m � nº,
as studied in classical Springer theory [50].) The map � induces a map �n;m W Yn;m! C
which is a Lefschetz fibration in the weak sense that its only critical points are of Lef-
schetz type (it may, however, have critical points at infinity when n > 1). Nonetheless,
there is a well-defined Fukaya–Seidel A1 category F �.�n;m/, governing the Floer the-
ory of the Lefschetz thimbles associated to any collection of vanishing paths. We write
D�.C/ for the derived category of C (split-closure of twisted complexes), working over
a field K.

Theorem 1.1. If n �m and K has characteristic zero,D�F �.�n;m/ is quasi-equivalent
to the dg-category of perfect modules perf-Kalg

n;m over Kalg
n;m, hence Morita equivalent to

parabolic category On;m.

Remark 1.2. For the extreme case n D m, we have D�F �.�n;m/ D Db.K/ (see
Remark 5.18) and Kalg

n;m WD K. When n > m, the map �n;m has no critical point and
F �.�n;m/ is an empty category; while Kalg

n;m is not well-defined. When n D 0, our con-
vention is F �.�n;m/ WD K and Kalg

n;m WD K. Under this convention, Theorem 1.1 is true
for all non-negative integers n;m.

1Our Kalg
n;m is Km�nn in [13]. The superscript ‘alg’ (for algebraic) distinguishes it from a sym-

plectic sibling which is introduced later in the paper.
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Remark 1.3. The hypothesis on the ground field arises in two places. The first one is a
formality theorem for the A1 structure on the symplectic side, which we prove, follow-
ing [1], via methods of non-commutative algebra which rely on inverting all primes. The
second one comes from the construction of an auxiliary A1 category F � cyl, which is a
cylindrical model of the Fukaya–Seidel category, for which the definition of the A1 oper-
ations involves dividing out by symmetry groups arising from re-ordering marked points
on domains. We work over a characteristic zero field unless stated otherwise. All Lag-
rangians in the paper are assumed to be orientable and to admit (and be equipped with)
spin structures.

Remark 1.4. It is reasonable to expect that symplectic models for the categories Op,
for parabolics p corresponding to partitions with more parts (or indeed in other simple
g), can also be obtained from the symplectic geometry of nilpotent slices. In general,
however, such slices are not known to be re-interpretable in terms of Hilbert schemes of
surfaces, so different techniques would be needed to analyse them. Note that the map
�n;m W Yn;m ! C is itself obtained from the embedding of Yn;m into a Hilbert scheme; it
would be interesting to characterise �n;m intrinsically Lie-theoretically.

There is a well-known ‘tautological correspondence’ between a holomorphic disc in
the symmetric product of a complex manifold X and a map of a branched cover of the
disc to X itself [5, 16, 17, 29]. Following [29] such correspondences are referred to as
‘cylindrical models’ for computing Floer cohomology. Theorem 1.1 uses the embedding
Yn;m ,! Hilbn.Am�1/ [31], and the development of a cylindrical model for computing
Fukaya–Seidel categories of Hilbert schemes. Whilst the tautological correspondence has
been widely exploited before, the proof nonetheless requires numerous technical innov-
ations: we require a model for the whole Fukaya category, our Lagrangian submanifolds
are not compact and not cylindrical at infinity, and the Hilbert scheme is related to the
symmetric product by a non-trivial crepant resolution. A brief summary of the relevant
issues is given in Section 2.1 (our treatment requires only classical transversality theory,
but an appeal to virtual perturbation theory would not bypass many of the difficulties).

1.4. Consequences

As commented previously, Kalg
n;m is Morita equivalent to a category of perverse sheaves

on the Grassmannian Gr.m;n/. From the (Schubert-compatible) isomorphism Gr.n;m/D
Gr.m � n;m/, one obtains a geometrically non-trivial:

Corollary 1.5. D�F �.�n;m/ is quasi-equivalent to D�F �.�m�n;m/.

Note that the categories appearing in Corollary 1.5 are associated to Hilbert schemes
of n respectively m � n points, so take place in symplectic manifolds of different dimen-
sion. For another non-trivial symmetry, the identity Kalg

n;m Š .K
alg
n;m/

op of the arc algebra
with its opposite – which has an easy diagrammatic proof – is non-trivial on the geometric
side, because of the non-trivial boundary conditions and ‘wrapping’ involved in setting up
a Fukaya–Seidel category (cf. Section 9.2).



Fukaya–Seidel categories of Hilbert schemes and parabolic category O 5

The Fukaya–Seidel category of any Lefschetz fibration has a full exceptional col-
lection. Additivity of Hochschild homology under semi-orthogonal decomposition [28]
immediately yields

Corollary 1.6. The Hochschild homology of the extended arc algebra, HH�.K
alg
n;m/, van-

ishes in degree � ¤ 0, and in degree zero is free of rank
�
m
n

�
.

The corollary was previously established by Beliakova et al. [8] by an ingenious and
involved algebraic argument involving a ‘quantum deformation’ of the Hochschild com-
plex.

Underlying and extending Theorem 1.1, and the previous corollaries, there is a rich
dictionary between objects in representation theory and in symplectic geometry, which
is useful in both directions. The blocks of parabolic category O are renowned instances
of highest-weight categories, i.e. ones with a full exceptional collection where the excep-
tional objects generate rather than just split-generate. A key point in the proof of The-
orem 1.1 is that the endomorphism algebra of the collection of Lagrangian submanifolds
associated to projective modules is formal. Crucially, the ‘projective’ Lagrangians are pre-
dicted by the diagrammatic combinatorics on the algebra side; away from Milnor fibres
of surface singularities, they have no obvious counterpart for Hilbert schemes of general
Lefschetz fibrations on quasi-projective surfaces.

Remark 1.7. In contrast to a number of recent formality results which hold (for instance)
for degree reasons, the formality of the symplectic extended arc algebra holds for non-
trivial geometric reasons, and is established, following [1], by building a non-commutative
vector field b 2 HH1.F �.�n;m// counting certain holomorphic curves with prescribed
behaviour at infinity. The endomorphism algebra of the Lefschetz thimbles is in general
not formal (cf. Appendix A), and it seems hard to prove Theorem 1.1 by directly compar-
ing the A1-algebras associated to distinguished bases of exceptional objects.

In the other direction, the geometry gives rise rather directly to the following:

Theorem 1.8 (see Theorem 11.9). There is a semi-orthogonal decomposition perf-Kalg
n;m

D hAn; : : : ; A0i where Aj is quasi-equivalent to perf-.Kalg
j;n ˝ K

alg
n�j;m�n/ for all j D

0; : : : ; n.

The equivalence of Theorem 1.8 does not send tensor products of projectives to pro-
jectives, which may make it less transparent from the viewpoint of the extended arc
algebras themselves.

1.5. Invariants of braids

The braid group Brm acts by symplectomorphisms on Yn;m; a braid ˇ defines a symplec-
tomorphism �

.n/

ˇ
and a corresponding bimodule P .n/

ˇ
over the Fukaya–Seidel category

D�F �.�n;m/. The Hochschild homology HH�.P
.n/

ˇ
/ is an algebraic analogue of the
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natural symplectic invariant HF�.�.n/
ˇ
/ given by taking fixed-point Floer cohomology.2

We define the symplectic annular Khovanov homology of ˇ 2 Brm by

AKhsymp.ˇ/ WD

mM
jD0

HH�.P
.j /

ˇ
/:

This is by definition an invariant of the braid. Recall from [47] that there is a distinguished
closed exact Lagrangian submanifold L} � Yn;2n with the property that

Khsymp.�.ˇ// WD HF�.L} ; �
.n/

ˇ
.L}//

is an invariant of the link closure �.ˇ/ of ˇ 2 Brn, known as ‘symplectic Khovanov
cohomology’. This was introduced in [47] as a singly graded sibling to combinator-
ial Khovanov homology; working over a characteristic zero field K, the isomorphism
Kh.�.ˇ// Š Khsymp.�.ˇ// of Z-graded3 vector spaces was established in [1, 2].

Theorem 1.9. There is a spectral sequence AKhsymp.ˇ/) Khsymp.�.ˇ// from the sym-
plectic annular Khovanov homology of ˇ to the symplectic Khovanov cohomology of the
link closure �.ˇ/ of ˇ.

Annular Khovanov homology was introduced by Asaeda, Przytycki and Sikora in [4],
via a diagrammatic calculus for links in a solid torus. Roberts [39] showed there is a
spectral sequence AKh.ˇ/) Kh.�.ˇ//, but the fact that AKh.ˇ/ splits into summands
which can be identified with Hochschild homology groups is non-trivial; this was conjec-
tured by Auroux, Grigsby and Wehrli [6] and proven very recently by Beliakova, Putyra
and Wehrli [8]. By contrast, if one had defined the annular Khovanov invariant as such a
direct sum of Hochschild homologies, the existence of the spectral sequence would seem
rather mysterious: the bimodules P .j /

ˇ
over the categories F �.�j;m/ do not in themselves

have enough information to determine the differentials in the spectral sequence (which do
not preserve the decomposition by j ). Theorem 1.9 gives a geometric explanation for the
existence of a spectral sequence from a direct sum of Hochschild homologies to (sym-
plectic) Khovanov cohomology; the crucial input is the semi-orthogonal decomposition
from Theorem 1.8. We remark that there is an analogous spectral sequence from knot
Floer homology, viewed as Hochschild homology of a suitable bimodule via [30], to Hee-
gaard Floer homology; it would be interesting to see if that can be derived following the
methods of this paper.

2There are numerous results relating fixed-point Floer cohomology and Hochschild homology
(see e.g. [43]), which for instance show that the two invariants coincide when n D 1. When n > 1,
since �n;m has critical points at infinity, the established results do not apply in our case; for simpli-
city we take our basic invariant of a braid to be the bimodule.

3In this paper we will not discuss the grading; the methods of [1] give rise to a second grading by
elements of K, which is conjecturally integral, Markov-invariant and lifts the Z-graded equivalence
to a bigraded equivalence.
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1.6. Outline of the paper

Let �E W E ! C be a Lefschetz fibration on a quasi-projective surface. The map �E
defines a map � Œn�E W Hilbn.E/! C, by taking the map induced from the sum of cop-
ies of �E on the product En. The map � Œn�E is a Lefschetz fibration when restricted
to the affine open subvariety of the Hilbert scheme Hilbn.E/ comprising subschemes
whose projection to C has length n. Section 2 develops a cylindrical model F � cyl for
the Fukaya(–Seidel) category of this associated Lefschetz fibration; Section 3 establishes
some basic properties of F � cyl analogous to the usual Fukaya(–Seidel) category; Sec-
tion 4 relates the cylindrical model to the usual model F � , yielding in general an embed-
ding F � ,! F � cyl; and Section 5 applies this framework to type A Milnor fibres. Sec-
tions 6–7 construct a symplectic version of the extended arc algebra, which is a priori an
A1 algebra, and prove that its cohomology agrees with its combinatorial sibling; Sec-
tions 8–9 then prove the A1 structure is actually formal in characteristic zero. Section
10 illustrates the dictionary between natural objects in the representation theory of the
extended arc algebras and their geometric counterparts. Sections 11 and 12 introduce
symplectic annular Khovanov homology, and relate this to ordinary Khovanov homology
via a particular semi-orthogonal decomposition of the Fukaya–Seidel category associated
to the .n; 2n/-nilpotent slice (associated to a nilpotent with Jordan blocks of size .n; n/).
The Appendix shows that the A1 endomorphism algebra of the thimbles in the Fukaya–
Seidel category is in general not formal; this underscores the important contribution of
the relationship to representation theory, which picks out a different set of generators for
the category (as studied in Sections 5–9) which do have formal endomorphism algebra.

2. The cylindrical Fukaya–Seidel category

2.1. Overview

The aim of this section is to define, given a Lefschetz fibration �E on a complex surface
E equipped with an exact symplectic structure (that satisfies some mild additional hypo-
thesis, see Section 2.2.4) and a positive integer n, anA1 category F � cyl;n.�E /, which we
call the n-fold cylindrical Fukaya–Seidel category. Objects in this category are, roughly
speaking, unordered n-tuples L D ¹L1; : : : ; Lnº of pairwise disjoint exact Lagrangians
with Li � E. The product of the Li defines a Lagrangian (which descends to one) in
Symn.E/, which can be lifted to a Lagrangian Sym.L/ in Hilbn.E/.

Let � Œn�E W Hilbn.E/! C be the map induced from the sum of n copies of �E . There
is a divisor Dr of Hilbn.E/ such that YE WD Hilbn.E/ nDr admits an exact symplectic
structure, and such that

�YE WD �
Œn�
E jYE W YE ! C (2.1)
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is a Lefschetz fibration in the weak sense that all the critical points of �YE are of Lef-
schetz type.4 Every Lefschetz thimble of �YE is given by Sym.L/ for some L. If E is the
Am�1 Milnor fibre and �E is the conic fibration with m critical points, then YE and �YE

coincide with Yn;m and �n;m, respectively.
The A1 structure of F � cyl;n.�E / is carefully defined so that it has the property that

the category of Lefschetz thimbles of �YE embeds into F � cyl;n.�E / as a full subcategory,
where on the object level, it is given by Sym.L/ 7! L. This reduces calculations in the
Fukaya–Seidel category of �YE to more accessible calculations in F � cyl;n.�E /, which
involve holomorphic curve counts in E itself.

Ideally, we would like to have a choice of perturbation scheme such that there is a
bijective correspondence between (perturbed-)holomorphic polygons u W S ! YE con-
tributing to the A1 structure of F �.�YE / and pairs .�†; v/ such that �† W †! S is
an n-fold branched covering and v W †! E is a solution to a (perturbed-)holomorphic
equation. In this case, if we define the A1 structure of F � cyl;n.�E / as a signed rigid
count of the pairs .�†; v/, then it would be tautological that the A1 categories F �.�YE /

and F � cyl;n.�E / would be equivalent. Problems arise when one implements this idea in
practice:

� The domain-dependent almost complex structure on E has to be complex (and hence
induce an almost complex structure on Hilbn.E/) to have any hope of a bijective cor-
respondence between u and .�†; v/, which puts some restrictions on the perturbation
scheme;
� Hamiltonian perturbations in Hilbn.E/ that are simultaneously induced from Hamilto-

nian perturbations in E and which preserve Dr are not general enough to achieve
transversality; strictly speaking, there is no perturbation scheme that can allow us to
define the A1 structure of F � cyl;n.�E / by merely counting .�†; v/;
� We need to include some L for which Sym.L/ is not cylindrical in YE (e.g. to obtain

formal A1 Floer cochain algebras in the setting of Theorem 1.1), so compactness of
the moduli involved has to be carefully addressed.

Our main contribution to the construction of F � cyl;n.�E / is to overcome the above
difficulties, roughly as follows:

� Instead of using moduli of polygons RdC1, we use moduli of polygons with ordered
interior marked points RdC1;h to define the A1 structure. The interior marked points
keep track of the branch points of �† W † ! S , and the domain-dependent almost
complex structure is only required to be integrable near the interior marked points.
This gives us more flexibility for the perturbation scheme and at the same time partially
recovers the bijective correspondence between u and .�†; v/.

4There may be critical points at infinity, so this is not a symplectic Lefschetz fibration in the
usual sense.



Fukaya–Seidel categories of Hilbert schemes and parabolic category O 9

� Whilst the A1 structure of F � cyl;n.�E / is defined by counting certain solutions u
mapping to Hilbn.E/ nDr , rather than pairs .�†; v/, our set-up is sufficiently flexible
that the Floer differential and product can be computed by counting solutions .�†; v/.
� To achieve compactness, we need to avoid that solutions in Hilbn.E/ nDr escape to the

vertical boundary, horizontal boundary or Dr . No escape along the vertical boundary
is achieved by modifying Seidel’s ingenious set-up in [46]; one takes the base of the
Lefschetz fibration to be the upper half-plane, and uses hyperbolic isometries to gauge
back perturbed holomorphic curves to actual holomorphic curves. No escape along the
horizontal boundary and into Dr are each achieved by positivity of intersection, which
relies on a delicate choice of Hamiltonian perturbation scheme and some particular
geometric features of Dr . Familiarity with [46] may be helpful.

2.2. Definitions and the set-up

2.2.1. Domain moduli. Let RdC1;h be the moduli space of discs with d C 1 punctures
on the boundary and h ordered and pairwise distinct interior marked points. Let �dC1;h

be the universal family of RdC1;h. We fix a distinguished puncture �0 for the elements
in RdC1;h consistently, and order the remaining punctures �1; : : : ; �d counterclockwise
along the boundary. For S 2 RdC1;h, we denote the ordered interior marked points by
�1C; : : : ; �

h
C and we use @jS to denote the boundary component of S between �j and �jC1

for j D 0; : : : ; d (�dC1 is understood as �0). We use mk.S/ to denote the set of interior
marked points of S .

The moduli space RdC1;h can be compactified to the moduli space of stable discs,

R
dC1;h

. The latter moduli space is used to define bulk deformation in [20], [49], to which
readers are referred for the details of its construction. We denote the universal family over

R
dC1;h

by �
dC1;h

.

2.2.2. Strip-like ends and marked-points neighbourhoods. For each RdC1;h, we make a
choice of strip-like ends �D ¹�0; : : : ; �d º for elements in RdC1;h such that �0 is an output
and �j is an input for j D 1; : : : ; d . Thus, for each S 2 RdC1;h, we have holomorphic
embeddings varying smoothly with respect to S ,8̂̂<̂

:̂
�0 W R�0 � Œ0; 1�! S;

�1; : : : ; �d W R�0 � Œ0; 1�! S;

lims!˙1 �
j .s; �/ D �j ;

.�j /�1.@S/ D ¹.s; t/ W t D 0; 1º:

We denote
S
S2RdC1;h Im.�j / in �dC1;h by N dC1;h

�j .
Furthermore, we choose a ‘marked-points neighbourhood’ �.mk.S// for each

S 2 RdC1;h, which is a (possibly disconnected) open subset of S containing mk.S/,
such that

N
dC1;h
mk WD

[
S2RdC1;h

�.mk.S// (2.2)
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is a smooth submanifold (with boundary) in �dC1;h. We require that N dC1;h
mk \ N

dC1;h
�j

D ; for all j .
We fix a choice of cylindrical ends for the interior marked points of S 2 RdC1;h,

and for the interior marked points for the elements in the moduli of spheres with ordered

marked points. Given that choice, one obtains a smooth structure on R
dC1;h

(see [49,
Section 4], [40, Section (9g)]).

A choice of strip-like ends for all elements of RdC1;h, for all d and h, is called
consistent if it extends to a choice of strip-like ends (smooth up to the boundary) for

all elements in R
dC1;h

. A choice of marked-points neighbourhoods for all elements of
RdC1;h, for all d and h, is called consistent if the closure of their union, denoted by

N
dC1;h

mk , is a smooth submanifold with boundary and corners in �
dC1;h

. We fix such a
consistent choice of strip-like ends and marked-points neighbourhoods.

Remark 2.1. Note that mk.S/ � �.mk.S// for all S 2 RdC1;h implies that if S in

R
dC1;h

has a stable sphere component Q, then Q � �.mk.S//.

2.2.3. An isometry group. Let Gaff be the group of orientation preserving affine trans-
formations of the real line and gaff be its Lie algebra. Let H be the closed upper half-plane,
whose interior Hı is equipped with the hyperbolic area form !Hı D

d re.w/^d im.w/
im.w/2

and
primitive �Hı D �d

c.log.im.w///. We write @1H WD H nHı.
The Gaff-action on the real line extends to H and we have a Lie algebra homomor-

phism

gaff ! C1.Hı; THı/ (2.3)

which sends  2 gaff to a Hamiltonian vector field X . We define

H WD �Hı.X /; (2.4)

which is a Hamiltonian on Hı generating X .

2.2.4. Target space. Our set-up is modified from [46]. Let .Ee; JEe/ be a complex sur-
face with boundary and let

�Ee W E
e
! H (2.5)

be a proper Lefschetz fibration such that @Ee D ��1
Ee
.@H/. Let !E be a symplectic form

on E WD Ee n @Ee which tames JE WD JEe jE and makes

�E WD �Ee jE ! Hı (2.6)

into a symplectic Lefschetz fibration.
Let DE be a smooth and reduced (but possibly disconnected) divisor of Ee. Let

E WD E n DE , JE WD JEe jE , !E WD !E jE and �E WD �E jE . We assume that there
is a primitive �E for !E on E (so, in particular, it implies that �Ee jDE is surjective).

We assume that there is a contractible compact subset CH � Hı such that
�E j��1

E
.HınCH/

is symplectically locally trivial. It means that for all x 2 ��1
E
.Hı n CH/,
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(1) x is a regular point of �E ,

(2) the horizontal distribution T hx E WD .T
v
x E/

?!
E is integrable in a neighbourhood of x,

and
(3) !E jT hx E D .�E /

�!Hı jT hx E
.

We also require that for x 2 DE \ ��1
E
.Hı n CH/, we have T hx E D TxDE .

If we pick a point � 2 Hı n CH and define

.F; !F ; �F / WD .�
�1
E .�/; !E j��1

E
.�/; �E j��1

E
.�//;

then the conditions above imply that for every z 2 Hı n CH, there is an open neigh-
bourhood U of z, and a symplectomorphism .��1E .U /; !E /! .U � F; !Hı jU C !F /

compatible with the projection to U . Therefore, there is a natural way to extend the sym-
plectic form !E to !Ee on Ee.

Let J.E/ be the space of !E -tamed almost complex structures J on E such that

J D JE outside a compact subset in E; (2.7)
�E is .J; jHı/-holomorphic: (2.8)

Condition (2.7) implies that every J 2 J.E/ can be smoothly extended to an !Ee -tamed
almost complex structure J e on Ee, and we assume that

every J e-holomorphic map CP1 ! Ee has
positive algebraic intersection number with DE . (2.9)

We also assume that c1.E/ D 0 and a trivialization of the canonical bundle is chosen.
For  2 gaff, let

H .H
ı/ WD ¹H 2 C1.Hı;R/ j H is a constant in a neighbourhood of CH;

and H D H outside a compact subset of Hıº; (2.10)
H .E/ WD ¹H 2 C

1.E;R/ j H D ��EH
0 for some H 0 2 H .H

ı/º: (2.11)

Then for H 2 H .Hı/, we have

XH jCH D 0 and XH D XH outside a compact set: (2.12)

Since �E is symplectically locally trivial outside ��1E .CH/, for H 2 H .E/, XH is
uniquely determined by the property that

.�E /�.XH jx/ D XH 0 j�E .x/ (2.13)

for all x 2 E. If we extend XH to a smooth vector field on E, we also have

XH jx 2 TxDE for all x 2 DE : (2.14)
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Next, we consider the class L of properly embedded, oriented and spin Lagrangian
submanifolds L � E such that

�E jL is proper and @L D ;; (2.15)
there is a compact subset CL � Hı such that �E .L/ n CL is either empty
or is a properly embedded arc L in Hı, and if �E .L/ n CL ¤ ; then we
denote the point L n L by �L 2 R, where L is the closure of L in H, (2.16)
L is exact with respect to �E : (2.17)

Note that if ´
A D atdt 2 �

1.Œ0; 1�;gaff/;

H D .Ht /t2Œ0;1� with Ht 2 Hat .E/;
(2.18)

and �H is the associated Hamiltonian diffeomorphism (which is well-defined everywhere
because �H j��1

E
.CH/

is the identity), then ��1H .L/ 2 L and ���1
H
.L/ D g�1A �L, where

gA 2 Gaff is the parallel transport from 0 to 1 with respect to A (see Figure 2.1).

x    x    x    x

λL

π

φ

E

-1
H

(L)
)(

(L)λ

πE
φ-1

H(L)

Fig. 2.1. An example of �E .L/ (black) and �E .��1H .L// (red); crosses are critical values.

Finally, we consider the set Lcyl;n of (unordered) n-tuples of Lagrangians L D
¹L1; : : : ; Lnº such that

Lk 2 L for k D 1; : : : ; n; (2.19)
there are pairwise disjoint contractible open sets ULk in H such that
�E .Lk/ � ULk and ULk \ @H is either empty or contractible: (2.20)

In particular, (2.20) implies that the Lk are pairwise disjoint. We define

Sym.L/ WD qSn.L1 � � � � � Ln/ � Confn.E/ � Symn.E/; (2.21)
Sym.UL/ WD qSn;Hı.UL1 � � � � � ULn/ � Symn.Hı/; (2.22)

�L WD
h
min
k
�Lk ;max

k
�Lk

i
� R; (2.23)

where qSn W E
n! Symn.E/ and qSn;Hı W .H

ı/n! Symn.Hı/ are the quotient maps by
the symmetric group, and Confn is the configuration space of n points. When �L D; (i.e.
when �E .Lk/ is compact for all k D 1; : : : ; n), we define �L WD ¹0º so �L is a non-empty
closed interval for all L 2 Lcyl;n.
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2.2.5. Hilbert scheme of points. Let Hilbn.E/ be the Hilbert scheme of zero-dimensional
length n subschemes on E, defined with respect to the complex structure JE on E. We
denote the Hilbert–Chow divisor by DHC and the relative Hilbert scheme with respect
to �E by Dr , i.e. this is the divisor of subschemes whose projection under �E has length
< n. (We will sometimes write YE for the complement Hilbn.E/nDr when the particular
value of n is implicit or plays no role.) Let �HC WHilbn.E/! Symn.E/ be the contraction
of DHC and Symn.�E / W Symn.E/! Symn.Hı/ be the natural map induced by �E . Let
�Hı � Symn.Hı/ be the big diagonal (i.e. all unordered tuples ¹q1; : : : ; qnº of points
in Hı such that qi D qj for some i ¤ j ).

Lemma 2.2. .Symn.�E / ı �HC/
�1.�Hı/ D DHC [Dr .

Proof. It is clear that Symn.�E / ı �HC.DHC [Dr / � �Hı . For the converse, if the sup-
port of z 2 Hilbn.E/ \ .Symn.�E / ı �HC/

�1.�Hı/ is a union of n distinct points, then
z 2 Dr . If the support consists of k < n points instead, then z 2 DHC.

Note that Hilbn.E/ nDHC D Confn.E/, and we have a trivialization of the canonical
bundle of Confn.E/ induced by that of E.

Lemma 2.3. The trivialization of the canonical bundle of Confn.E/ extends smoothly to
a trivialization of the canonical bundle of Hilbn.E/.

Proof. It follows from the fact that �HC is a crepant resolution of Symn.E/.

We equip Confn.E/ with the product symplectic form !Confn.E/ from .E; !E /. This
is smooth, but cannot be smoothly extended to a 2-form on Hilbn.E/.

Lemma 2.4. For every open neighbourhood U � Hilbn.E/ ofDHC, there is a symplectic
form on Hilbn.E/ which tames the complex structure, and coincides with !Confn.E/ out-
side U .

Proof. This follows essentially from [52]; see also [36, 37] in the Kähler case. Let DeHC
be the Hilbert–Chow divisor of Hilbn.Ee/. Let U; V � Hilbn.Ee/ be open neighbour-
hoods of DeHC such that U contains the closure of V . In [52], Voisin constructed two
smooth closed 2-forms � and ‰ on Hilbn.Ee/ such that for some �0 > 0 and for all
� 2 .0; �0/, �C �‰ is a symplectic form on Hilbn.Ee/ that tames the complex structure.
Moreover, �jHilbn.Ee/nV D !Confn.Ee/jConfn.Ee/nV and ‰jHilbn.Ee/nDeHC

D d‚ for some
‚ 2 �1.Hilbn.Ee/ nDeHC/.

Let � W Hilbn.Ee/! Œ0; 1� be a cut-off function such that �jV D 1 and � D 0 out-
side U . Then .�C �d.�‚//jHilbn.Ee/nU D !Confn.Ee/jConfn.Ee/nU and .�C �d.�‚//jV
D .�C �‰/jV .

Since � is non-degenerate and tames the complex structure outside V , and being non-
degenerate and taming are both open conditions, for sufficiently small � > 0, we know
that � C �d.�‚/ is a symplectic form which tames the complex structure outside V .
Moreover, this is also true inside V because �C �d.�‚/D �C �‰ inside V . Therefore,
we can restrict this symplectic form to Hilbn.E/ to get the result.



C. Y. Mak, I. Smith 14

Lemma 2.5. If C is the image of a non-constant rational curve in Hilbn.E/, then
ŒC � � ŒDr � > 0.

Proof. From Lemma 2.4, one sees that the symplectic form on Hilbn.E/ is Poincaré dual
to the relative cycle ��ŒDHC� for some � > 0 (recall that !E is exact). It is proved in
[1, Lemma 5.4] that ŒDr � is a positive multiple of �ŒDHC� so ŒC � � ŒDr � > 0 follows from
positivity of the symplectic area of C .

Let Dır D Dr \ Confn.E/. For J 2 J.E/, we define J Œn� to be the almost complex
structure on Confn.E/ descended from the product almost complex structure J n on En.
Note that J Œn� is !Confn.E/-tamed and when J D JE , J Œn� extends smoothly to Hilbn.E/.
We define the following space of almost complex structures on Confn.E/:

Jn.E/ WD ¹J j J D .J 0/Œn� for some J 0 2 J.E/º (2.24)

For H 2 C1.E;R/, we define H Œn� 2 C1.Confn.E/;R/ to be

H Œn�.z/ WD

nX
iD1

H.zi / (2.25)

for z D ¹z1; : : : ; znº 2 Confn.E/. For  2 gaff, let

Hn;pre
 .E/ WD ¹H 2 C1.Confn.E/;R/ j H D .H 0/Œn� for some H 0 2 H .E/º;

.2:26/
Hn
 .E/ WD ¹H 2 C

1.Confn.E/;R/ j H D H 0 outside a compact subset of
Confn.E/ nDır for some H 0 2 Hn;pre

 .E/º: .2:27/

Note that if´
A D atdt 2 �

1.Œ0; 1�;gaff/;

H D .Ht /t2Œ0;1� with Ht D .H
0
t /
Œn� 2 H

n;pre
at .E/ for H 0t 2 Hat .E/;

(2.28)

then �H is a well-defined Hamiltonian diffeomorphism of Confn.E/ and the Hamiltonian
vector field XHt satisfies

XHt jp 2 TpD
ı
r (2.29)

for all p 2 Dır and all t 2 Œ0; 1�. It implies that �H .Dır / D Dır . Moreover, we have
��1H .Sym.L// D Sym.��1H 0 .L// 2 Symn.L/ and

���1
H 0
.L/ D g

�1
A �L: (2.30)

As a result, if H D .Ht /t2Œ0;1� and Ht 2 Hn
at
.E/ for all t , the associated Hamiltonian

vector field satisfies (2.29) and �H is also a well-defined Hamiltonian diffeomorphism of
Confn.E/. Moreover, ��1H .Sym.L//D Sym.L0/ outside a compact set of Confn.E/ nDır
for some L0 2 Lcyl;n. Therefore, we can define ���1

H
.Sym.L// D �L0 .
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Remark 2.6. We introduce both H
n;pre
 .E/ and Hn

 .E/ because, on the one hand,
Hn
 .E/ gives us more freedom to achieve transversality, but on the other, working with

H
n;pre
 .E/ simplifies explicit computations for cases that transversality can be achieved

within that more restricted class.

2.2.6. Floer cochains. Let Gaff.Œ0; 1�/ WD C
1.Œ0; 1�; Gaff/, which is weakly contractible.

Let Iaff be the set of non-empty closed intervals in R. Let

Caff.Œ0; 1�/ WD ¹.�0; �1/ 2 I2aff j �0 > �1º (2.31)

where the strict inequality means min �0 > max �1. For each ˆ 2 Gaff.Œ0; 1�/ and
.�0; �1/ 2 I2aff, we define

ˆ�.�0; �1/ WD .ˆ�.0aff/; ˆ0.�0/; ˆ1.�1// 2 �
1.Œ0; 1�;gaff/ � I2aff (2.32)

where 0aff is the trivial connection, ˆ�.0aff/ is the gauge transformation by ˆ and
ˆi WD ˆ.i/ for i D 0; 1. We define

Paff.Œ0; 1�/ WD ¹ˆ�.�0; �1/ j .�0; �1/ 2 Caff.Œ0; 1�/º: (2.33)

Note that, if .A; �0; �1/ 2 Paff.Œ0; 1�/, then by (2.31) and (2.32), we have

g�1A �1 < �0: (2.34)

Lemma 2.7 (cf. [46, Section (2a)]). Paff.Œ0; 1�/ is non-empty and weakly contractible.
The projection

Paff.Œ0; 1�/! I2aff (2.35)

is a surjective weak fibration. Therefore, the fibres of (2.35) are also weakly contractible.

Proof. Since ˆ�.�0; �1/ D ˆ0�.�
0
0; �
0
1/ if and only if ˆ ı .ˆ0/�1 is a constant and �j D

ˆ ı .ˆ0/�1.�j / for j D 0;1, Paff.Œ0;1�/ can be identified with Gaff.Œ0;1�/�Gaff Caff.Œ0;1�/.
That implies that Paff.Œ0; 1�/ is non-empty and weakly contractible.

On the other hand, given �0; �1 2 Iaff, there exists g 2 Gaff such that g�1�1 < �0.
Moreover, there exists ˆ 2 Gaff.Œ0; 1�/ such that for A WD ˆ�.0aff/, we have gA D g. It
follows that (2.35) is surjective. We leave it to the readers to check that (2.35) is a weak
fibration (cf. [46, Section (2a)]).

We denote the fibre of (2.35) at .�0; �1/ by Aaff.Œ0; 1�; �0; �1/.

Definition 2.8. For L0 D ¹L0;kº
n
kD1

and L1 D ¹L1;kº
n
kD1

in Lcyl;n, a perturbation pair
is a pair .AL0;L1 ;HL0;L1/ such that´

AL0;L1 D aL0;L1;tdt 2 Aaff.Œ0; 1�; �L0 ; �L1/;

HL0;L1 D .HL0;L1;t /t2Œ0;1�; HL0;L1;t 2 Hn
aL0;L1;t

.E/
(2.36)

and

��1HL0;L1
.Sym.L1// t Sym.L0/: (2.37)
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Lemma 2.9. For any L0; L1 2 Lcyl;n, the set of perturbation pairs is non-empty.

Proof. For any choice of .AL0;L1 ; HL0;L1/ satisfying (2.36), by (2.30) and (2.34) we
have

���1
HL0;L1

.Sym.L1//
< �L0 ; (2.38)

so the transversality condition (2.37) is satisfied outside a compact subset. By definition
(2.27), we are free to perturb HL0;L1 inside a compact subset, so the result follows (cf.
Remark 2.6).

Let X.HL0;L1 ; L0; L1/ D �
�1
HL0;L1

.Sym.L1// t Sym.L0/, which is identified with
the set ofXHL0;L1 -chords from Sym.L0/ to Sym.L1/. By (2.29) and the fact that Sym.L/
� Confn.E/ nDır for every L 2 Lcyl;n, we know that

the XHL0;L1 -chords from Sym.L0/ to Sym.L1/ are disjoint from Dır . (2.39)

Example 2.10. If (2.37) can be achieved by HL0;L1;t D .H
0
L0;L1;t

/Œn� 2 H
n;pre
aL0;L1;t

.E/,
then the set X.HL0;L1 ; L0; L1/ can be identified with the set of unordered n-tuples x D
.x1; : : : ; xn/ such that xk 2 ��1H 0

L0;L1

.L1;bk / t L0;ak , where ¹ak j k D 1; : : : ; nº D ¹bk j

k D 1; : : : ; nº D ¹1; : : : ; nº (see Figure 2.2).

x    x    x    x

Fig. 2.2. Lagrangian tuples �E .L0/ (black) and �E .��1H 0
L0;L1

.L1// (red) for H 0
L0;L1

2 H .E/.

Given L0; L1 2 Lcyl;n, a perturbation pair .AL0;L1 ; HL0;L1/ and a smooth family
J D .Jt /t2Œ0;1�;Jt 2Jn.E/, we define the Floer cochains (as a vector space over a chosen
coefficient field of characteristic zero5) by

CF.L0; L1/ WD
M

x2X.HL0;L1 ;L0;L1/

ox (2.40)

where ox is the orientation line at x. In this case, we call .AL0;L1 ; HL0;L1 ; J / a Floer
cochain datum for L0; L1 2 Lcyl;n.

5Recall that to work in characteristic zero requires that we fix spin structures on the Lagrangians;
in the main examples studied later in this paper, the Lagrangians are products .S2/j � .R2/k for
j; k � 0 and admit unique spin structures.
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For a fixed choice of grading functions �0;k onL0;k and �1;k onL1;k , for kD 1; : : : ;n,
Lemma 2.3 implies that the product

Q
k �i;k descends to a grading function on Sym.Li /,

and we use that to grade X.HL0;L1 ; L0; L1/.

Example 2.11. In the situation of Example 2.10, the grading of x D .x1; : : : ; xn/ is

jxj D

nX
jD1

jxj j (2.41)

where jxj j is the Floer grading of xj in E.

2.2.7. Floer data. We define the following group of gauge transformations:

Gaff.�
dC1;h

/ WD ¹ˆ 2 C1.�
dC1;h

; Gaff/ j ˆj
N
dC1;h

mk
D idGaff and

ˆ.�j .s; t// is independent of both s and S 2 R
dC1;h

º; (2.42)

where N
dC1;h

mk is defined in Section 2.2.2.

Lemma 2.12. Gaff.�
dC1;h

/ is weakly contractible.

Proof. Recalling thatGaff is contractible andN
dC1;h

mk is a codimension 0 smooth subman-

ifold of �
dC1;h

with boundary and corner, the result follows from the weak fibration

Gaff.�
dC1;h

/! C1.�
dC1;h

; Gaff/! C1.N
dC1;h

mk ; Gaff/ �

dY
jD0

C1.�j .0; Œ0; 1�/; Gaff/:

Similarly to (2.31), we define

Caff.�
dC1;h

/ WD ¹.�0; : : : ; �d / 2 IdC1aff j �0 > �1 > � � � > �d º: (2.43)

Consider a trivial Gaff-bundle over �
dC1;h

with fibre R and equip it with the trivial

connection 0aff. For ˆ 2 Gaff.�
dC1;h

/ and � 2 C1.@�
dC1;h

; Iaff/, we define

ˆ�� WD .ˆ�0aff; ˆ ı �/ 2 �
1.�

dC1;h
;gaff/ � C

1.@�
dC1;h

; Iaff/;

Paff.�
dC1;h

/ WD ¹ˆ�� j � is locally constant and

.�j
@0�

dC1;h ; : : : ; �j
@d�

dC1;h/ 2 Caff.�
dC1;h

/º;

where @j�
dC1;h

WD
S
S2R

dC1;h @jS for all j . We have the identification

Paff.�
dC1;h

/ ' Gaff.�
dC1;h

/ �Gaff Caff.�
dC1;h

/ (2.44)



C. Y. Mak, I. Smith 18

so Paff.�
dC1;h

/ is weakly contractible. By (2.42), if .A; �/ 2 Paff.�
dC1;h

/, then Aj�j .s;t/

and �j�j .s;k/ (for kD 0;1) are independent of s and S 2R
dC1;h

. Therefore, over strip-like
ends, we have a well-defined projection

Paff.�
dC1;h

/!

dY
jD0

Paff.Œ0; 1�/; (2.45)

which is surjective and is a weak fibration (because Gaff is contractible so one can extend

ĵ 2 Gaff.Œ0; 1�/ over strip-like ends smoothly to a ˆ 2 Gaff.�
dC1;h

/ consistently). For a
choice of .Aj ; �j;0; �j;1/ 2 Paff.Œ0; 1�/ for each j D 0; : : : ; d , we denote the fibre by

Paff.�
dC1;h

; ¹.Aj ; �j;0; �j;1/ºj /; (2.46)

which is also weakly contractible. Note also that if .A; �/ 2 Paff.�
dC1;h

/, then by (2.42),

A is flat everywhere and vanishes in N
dC1;h

mk . (2.47)

Now, for S 2 RdC1;h, we define Paff.S; ¹.Aj ; �j;0; �j;1/ºj / to be

¹.AS ; �/ j .AS ; �/ D .A; �
0/jS for some .A; �0/ 2 Paff.�

dC1;h
; ¹.Aj ; �j;0; �j;1/ºj /º:

A cylindrical Lagrangian label is a choice of an elementLj 2Lcyl;n associated to @jS
for all j . We choose a cylindrical Lagrangian label and Floer cochain data .A0; H0; J0/
and .Aj ;Hj ; Jj / for .L0; Ld / and .Lj�1; Lj / for j D 1; : : : ; d , respectively.

Fix AS 2 Paff.S; ¹.Aj ; �Lj�1 ; �Lj /º
d
jD0/, where for j D 0, it should be understood

as .Aj ; �Lj�1 ; �Lj / WD .A0; �L0 ; �Ld /. Recall that we have chosen Jj D .Jj;t /t2Œ0;1�,
Jj;t 2J.E/ for j D 0; : : : ;d . We have also chosen strip-like ends �0.s; t/ W .�1;0�� Œ0;1�
! S and �j .s; t/ W Œ0;1/ � Œ0; 1�! S for j D 1; : : : ; d . We equip S with the following
additional data:

a smooth family J D .Jz/z2S , Jz 2 Jn.E/, such that Jz D J
Œn�
E in �.mk.S//

and J�j .s;t/ D Jj;t for all j ; (2.48)

K 2�1.S;C1.Confn.E/;R// such that for eachw 2 TS ,K.w/ 2Hn
AS .w/

.E/,
and for each j and r > 0, there is cj > 0 for which k.��j K �Hjdt/e

cj jsjkC r

converges to 0 as s goes to˙1; moreover, K vanishes in �.mk.S//. (2.49)

Let XK 2 �1.S; C1.Confn.E/; TE// be the associated 1-form with values in Hamilto-
nian vector fields.

Remark 2.13. We require ��j K to converge to Hjdt exponentially fast, instead of coin-
ciding with it, because it makes it easier to achieve regularity of the moduli whilst main-
taining compatibility with gluing (see [46, Remark 4.7]).
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Remark 2.14. Note that J can be extended smoothly to a family of tamed almost
complex structures in Confn.Ee/ and K can be extended smoothly to an element in
�1.S; C1.Confn.Ee/;R//.

We choose a smooth family of .AS ; J; K/ for S varying in RdC1;h. Given
x0 2 X.H0; L0; Ld / and xj 2 X.Hj ; Lj�1; Lj / for j D 1; : : : ; d , we define
RdC1;h.x0I xd ; : : : ; x1/pre to be the moduli space of all maps u W S ! Hilbn.E/ such
that 8̂̂̂<̂

ˆ̂:
u�1.DHC/ � �.mk.S//;
.Dujz �XK ju.z//

0;1 D 0 with respect to .Jz/u.z/ for z 2 S;
u.z/ 2 Sym.Lj / for z 2 @jS;
lims!˙1 u.�

j .s; �// D xj .�/ uniformly:

(2.50)

Note that the conditions that XK vanishes in �.mk.S//, J D J
Œn�
E in �.mk.S//, and

u�1.DHC/ � �.mk.S// guarantee that .Dujz � XK ju.z//0;1 D 0 is a well-defined equa-
tion for all z 2 S , by identifying Confn.E/ as a subset of Hilbn.E/.

Next, we define RdC1;h.x0Ixd ; : : : ;x1/ to be the subset of RdC1;h.x0Ixd ; : : : ;x1/pre
consisting of all u such that

u.� iC/ 2 DHC for all i D 1; : : : ; h: (2.51)

Lemma 2.15. For generic .J;K/ such that (2.48) and (2.49) are satisfied, every solution
u 2 RdC1;h.x0I xd ; : : : ; x1/pre is regular.

Proof. For the ease of exposition, we discuss the case when S 2RdC1;h is fixed. We refer
readers to [40, Section (9k)] for the discussion when S is allowed to vary in RdC1;h, and
to [45, Section 9] for the role of Remark 2.13 in achieving regularity compatibly with
gluing.

Let B be the space of smooth maps u W S ! Hilbn.E/ such that u�1.DHC/ �

�.mk.S//. Note that B is an open subset of C1.S;Hilbn.E//. Let V 1 � V 2 � � � � be
a sequence of neighbourhoods of DHC such that

T
k V

k D DHC. Let Bk D ¹u 2 B j

Im.ujSn�.mk.S/// \ V
k D ;º. Note that B D

S
k Bk . We want to run the Fredholm the-

ory for appropriate Sobolev completions of Bk for each k.
For each k, using Lemma 2.4, we pick a symplectic form !k on Hilbn.E/ which

agrees with !Confn.E/ outside V k and tames the complex structure on Hilbn.E/. This
induces a family of Riemannian metrics gk D .gk;z/z2S on Hilbn.E/ which agree with
the metric induced from !Confn.E/ and Jz outside V k . We use gk to form an appropriate
Sobolev completion of Bk (or the corresponding function space of the graphs of the
maps).

The boundary conditions ensure that every solution u of (2.50) has non-empty inter-
section with a compact subset of Confn.E/ nDır outside mk.S/. For u 2 Bk , Gromov’s
graph trick applies, because on the one hand, XK jSn�.mk.S// is the Hamiltonian field with
respect to !k , and on the other, XK j�.mk.S// D 0, so it is tautologically the Hamiltonian
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field with respect to !k . Hence regularity of u can be achieved by choosing K generic-
ally amongst functions satisfying (2.49), i.e. although we require that Kj�.mk.S// D 0, the
freedom of K outside �.mk.S// is sufficient to achieve regularity.

The outcome is a sequence of residual sets �k in the space of all K satisfying (2.49)
such that for every K 2 �k , every u 2 Bk satisfying (2.50) is regular. Therefore, we can
take � WD

T
k �k , which is still dense and every u 2 B satisfying (2.50) is regular for

every K 2 � .
More precisely, it means that for every K 2 � , and for every u 2 B satisfying

(2.50), there exists N > 0 such that for all k > N , the Fredholm operator Du at u,
with domain a Sobolev completion of Bk and codomain a Sobolev completion of
�0;1.S; u�T Hilbn.E// with respect to the metric gk , is surjective. This gives a mani-
fold structure on RdC1;h.x0I xd ; : : : ; x1/pre.

Lemma 2.16. For generic .J;K/ such that (2.48) and (2.49) are satisfied, every solution
u 2 RdC1;h.x0I xd ; : : : ; x1/ is regular.

Proof. It suffices to show that for generic .J;K/, the evaluation map

RdC1;h.x0I xd ; : : : ; x1/pre 3 u 7! .u.�1C/; : : : ; u.�
h
C// 2 .Hilbn.E//h (2.52)

is transverse to .DHC/
h (i.e. the algebraic intersection, which is well-defined as u is holo-

morphic near mk.S/, is 1 at all the intersection points; note this implies that each such
intersection point belongs to the smooth locus of DHC). This can be achieved by combin-
ing the argument in Lemma 2.15 with standard transversality results for evaluation maps
(see [34, Sections 6 & 7] and note that DHC is the image of a smooth pseudocycle).

There is a correspondence of maps as follows (see [35, Lemma 3.6] or [29, Sec-
tion 13]). An n-fold branched covering �† W †! S and a continuous map v W †! E

together uniquely determine a continuous map u W S ! Symn.E/, given by u.z/ D
v.��1† .z//, counted with multiplicity. Conversely, if u W S ! Symn.E/ is complex ana-
lytic near the big diagonal �E and Im.u/ is not contained in �E , then we can form the
fibre product

z† En

S Symn.E/

Qv

�z† qSn

u

and the map Qv is Sn-equivariant. Let �1 W En ! E be the projection to the first factor.
Consider the subgroup Sn�1 of Sn which fixes the first element. The map �1 ı Qv W z†! E

factors through † WD z†=Sn�1! E and we denote the latter map by v. The map �z† also
induces a map �† W †! S . One can check that �† is an n-fold branched covering such
that u.z/ D v.��1† .z//. Moreover,

z 2 S is a critical value of �† only if u.z/ 2 �E . (2.53)

We call this the ‘tautological correspondence’.
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Remark 2.17. If the algebraic intersection number between u and�E at z is 1, then u.z/
lies in the top stratum of �E and there is exactly one critical point p of �E such that z is
its critical value. Moreover, p is Morse.

Lemma 2.18 (Tautological correspondence). Every solution u of (2.50) determines
uniquely an n-fold branched covering .†; �†/ of S and a map v W † ! E such that
�HC ı u.z/ D v.�

�1
† .z// 2 Symn.E/ for all z 2 S .

Proof. Every solution u of (2.50) is complex analytic near DHC and Im.u/ is not con-
tained in DHC. Therefore, by the tautological correspondence, we get an n-fold branched
covering �† W†! S and a continuous map v W†!E with �HC ı u.z/D v.�

�1
† .z//.

Remark 2.19. Suppose that we are in the situation of Example 2.10 for all the pairs
.L0; Ld / and .Lj�1; Lj /. Suppose also that Jz D .J 0z/

Œn� 2 Jn.E/ and K.w/ D

.K 0.w//Œn� 2H
n;pre
AS .v/

.E/ in (2.48) and (2.49), respectively. Then (2.50) and (2.51) imply
that the maps v W †! E and �† W †! S satisfy

.Dvjz �X��
†
K0 jv.z//

0;1
D 0 with respect to .J 0�†.z//v.z/ for all z 2 † (2.54)

and the critical values of �† are contained in mk.S/.

2.2.8. Homotopy classes of maps. Let B.S/ be the real blow-up of S at the boundary
punctures. In other words, we replace the punctures of S by closed intervals, which can
be identified with ¹�j .˙1; t / j t 2 Œ0; 1�º. For u 2 RdC1;h.x0I xd ; : : : ; x1/, we define
G.u/ WD .Symn.�E / ı �HC ı u; idS / W S ! Symn.Hı/ � S , which can be continuously
extended to

G.u/ W B.S/! Symn.Hı/ � B.S/ (2.55)

by sending �j .˙1; t / to .Symn.�E / ı �HC ı xj .t/; �
j .˙1; t // for all j . Note that,

G.u/.@B.S// lies inside

@x0Ixd ;:::;x1 WD
�[
j

Sym.ULj / � @jS
�

[

�[
j

¹.Symn.�E / ı �HC ı xj .t/; �
j .˙1; t // j t 2 Œ0; 1�º

�
� Symn.Hı/ � B.S/:

In particular, G.u/ descends to a class in the space Map.x0I xd ; : : : ; x1/ of homotopy
class of continuous maps from .B.S/; @B.S// to .Symn.Hı/ � B.S/; @x0Ixd ;:::;x1/. In
other words,

G.u/ 2 Map.x0I xd ; : : : ; x1/

WD Œ.B.S/; @B.S//; .Symn.Hı/ � B.S/; @x0Ixd ;:::;x1//� (2.56)
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By (2.20), (2.39) and Lemma 2.2, .�Hı � B.S// \ @x0Ixd ;:::;x1 D ; so we have an
intersection pairing (with respect to the obvious orientations)

� Œ�Hı � B.S/� W Map.x0I xd ; : : : ; x1/! Z: (2.57)

Lemma 2.20. Given x0; : : : ; xd , there is Ix0Ixd ;:::;x1 2 Z such that for every u 2
RdC1;h.x0I xd ; : : : ; x1/, we have

ŒG.u/� � Œ�Hı � B.S/� D Ix0Ixd ;:::;x1 : (2.58)

Moreover, Ix0Ixd ;:::;x1 is independent of h.

Proof. Since Sym.ULj / is a contractible open set, we have Map.x0I xd ; : : : ; x1/ D
�2.CnC1; S1/ D �1.S

1/ D Z. In this case, the intersection pairing is a multiple of the
winding number along the boundary and the winding number of ŒG.u/� is 1, by defini-
tion.

Lemma 2.21 (Positivity of intersection). If u 2 RdC1;h.x0I xd ; : : : ; x1/, then

ŒG.u/� � Œ�Hı � B.S/� � h; (2.59)

and equality holds if and only if the image of u is disjoint from Dr , u�1.DHC/ D mk.S/
and the multiplicity of intersection between u and DHC is 1 for all z 2 mk.S/.

Proof. Let u WD Symn.�E / ı �HC ı u W S ! Symn.Hı/. There are two kinds of intersec-
tions between u and �Hı , namely, at or away from mk.S/. If z 2 mk.S/, then (2.48)–
(2.51) imply that u is .jSymn.Hı/; jS /-holomorphic near z. It implies that the contribution
of the algebraic intersection at z is at least 1 and z is the only intersection with �Hı in a
small neighbourhood of z. Summing over all z 2 mk.S/, we find that the contribution to
the algebraic intersection is at least h.

We need to show that the contribution from other intersections with �Hı is positive.
Let z0 2 S nmk.S/ be such that u.z0/2�Hı . LetB.z0/� S be a small disc centred at z0.
By Lemma 2.2, we must have u.z0/2DHC [Dr . To show that the contribution at u.z0/ is
positive, it suffices to show that the algebraic intersection number between u.B.z0// and
DHC [Dr at u.z0/ is positive. If u.z0/ 2DHC, this follows from u�1.DHC/� �.mk.S//
and uj�.mk.S// being complex analytic. If u.z0/2Dr , then it can be achieved by Gromov’s
graph trick, and the fact that our choice of XK is tangential to Dr at u.z0/.

We give a detailed explanation of the last sentence. By the definitions (2.24) and
(2.27), near Dr , we have Jz0 D .J 0/Œn� and K.w/ D .��EH

w/Œn� for some Hw 2

HAS .w/.H
ı/ for w 2 TB.z0/. It means that, by (2.8) and by shrinking B.z0/ if neces-

sary, we have
.XK.�//� 2 T�Dr (2.60)

for all � 2 TB.z0/ and � 2 Dr , where T�Dr is understood to be the tangent space of the
smallest stratum of Dr that contains � .
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We consider the graph trick. Let F D .u; id/ W B.z0/! Confn.E/ � B.z0/. Let JF
be the almost complex structure of Confn.E/ � B.z0/ characterized by8̂<̂

:
JF jConfn.E/�¹zº D Jz ;

d�B.z0/ ı JF D jS ı d�B.z0/;

JF .@s CXK.@s// D @t CXK.@t /;

(2.61)

where �B.z0/ W Confn.E/�B.z0/! B.z0/ is the projection. In holomorphic coordinates
.s; t/, we have

.DF CJF ıDF ıjS /.@s/ D Du.@s/C@sCJF .Du.@t /�XK.@t //CJF .@tCXK.@t //

D Du.@s/C@s�.Du.@s/�XK.@s//�.@sCXK.@s// D 0

where the last line uses .Du � XK/0;1 D 0. Similarly, .DF C JF ıDF ı jS /.@t / D 0
and hence .DF /0;1 D 0 and F is .JF ; jS /-holomorphic.

Notice that all strata of Dır �B.z0/ are JF -holomorphic due to (2.60), (2.61) and the
fact that�Hı is a Jz-holomorphic subvariety. As a result, the intersection F.z0/ between
F.B.z0// and Dır � B.z0/ is positive. This completes the proof.

Corollary 2.22. If u 2 RdC1;h.x0I xd ; : : : ; x1/ and Ix0Ixd ;:::;x1 D h, then Im.u/ \Dr
D ;, u�1.DHC/D mk.S/ and the multiplicity of intersection between u andDHC is 1 for
all z 2 mk.S/.

Corollary 2.23. If Ix D 0, then R0C1;h.x/ D ; for all h � 1.

Lemma 2.24. For every L 2 Lcyl;n, there is a perturbation pair .AL; HL/ for .L; L/
such that Ix D 0 for all x 2 X.HL; L;L/.

Proof. Let A D atdt 2 Aaff.Œ0; 1�; �L; �L/. Since g�1A �L < �L, we can find H 0 D
.H 0t /t2Œ0;1�, H

0
t 2 Hat .E/, and an ordering of the Lagrangians in L such that

Li \ �H 0.Lj / ¤ ; only if i � j . In this case, the (possibly non-transverse) X.H 0/Œn� -
chords x.t/ from Sym.L/ to Sym.L/ are given by unordered tuples of XH 0 -chords from
Li to Li for i D 1; : : : ; n (see Example 2.10). Moreover, by choosing H 0 appropriately,
we can assume that Symn.�E /.�HC.x.t/// 2 Sym.UL/ for all X.H 0/Œn� -chords x.t/.

We can pick H to be a compactly supported perturbation of .H 0/Œn� such that every
XH -chord x.t/ from Sym.L/ to Sym.L/ is transverse and Symn.�E /.�HC.x.t/// 2

Sym.UL/ for all t . By taking .AL; HL/ to be .A; H/, the result follows, because the
boundary conditions also project to Sym.UL/, which is contractible.

2.2.9. Energy. The product symplectic form on Confn.E/ cannot be smoothly extended
to Hilbn.E/, and neither can the induced metric. Therefore, we will define energy and
discuss compactness with the help of the corresponding maps v W †! E obtained from
Lemma 2.18.
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By (2.48) and (2.49), there exists a compact subset C of Confn.E/ nDır and

a smooth family J 0 D .J 0z/z2S ; J
0
z 2 J.E/, and

K 0 2 �1.S; C1.E// and K 0.w/ 2 HAS .w/.E/ for all w 2 TS

such that outside C , we have (cf. Remark 2.19)

.J 0z/
Œn�
D Jz for all z 2 S , and (2.62)

K 0.w/Œn� D K.w/ for all w 2 TS: (2.63)

Let u be a solution of (2.50) and (2.51) and v be the map obtained by Lemma 2.18.
Let U � Confn.E/ be a relatively compact open neighbourhood of C , and define

S in
WD u�1.U /; Sout

WD u�1.Hilbn.E/ n U/; (2.64)

where U is the closure of U . By adjusting U , we assume that u.S/ is transverse to @U
so that u�1.@U / � S is a smooth manifold with boundary. Note that, by definition,
mk.S/ � Sout and S in contains small neighbourhoods of the punctures. We also define
†in D ��1† .S in/ and †out D ��1† .Sout/.

Definition 2.25 (Energy). The energy of u is defined to be

E.u/ WD
1

2

Z
S in
kDu �XKk

2
g dvolC

1

2

Z
†out
kDv �X��

†
K0k

2
g0 dvol (2.65)

where g is the metric induced by J and !Confn.E/ and g0 is the metric induced by J 0

and !E .

The energy is defined this way, and not as 1
2

R
S
kDu � XKk

2
g dvol, because u�XK

is not defined at u�1.DHC/ � mk.S/, so it is not a priori clear that the latter expression
is related to the action of the asymptotes of u. However, we show the following (see
also (2.68) below).

Lemma 2.26. The energy E.u/ is independent of the choice of U .

Proof. It suffices to show that for every open subset G � S nmk.S/ such that u.G/\ C
D ;, we have Z

G

kDu �XKk
2
g dvol D

Z
��1
†
.G/

kDv �X��
†
K0k

2
g0 dvol: (2.66)

This is in turn clear because by (2.62) and (2.63), both J and XK split as products. Since
!Confn.E/ is also a product, the metric g is the product metric.

More precisely, let G � S n mk.S/ be a small open set such that u.G/ \ C D ;
and ��1† .G/ is a disjoint union of open sets G1; : : : ; Gn � †. For z 2 G and zj WD
Gj \ �

�1
† .z/ for j D 1; : : : ; n, we have canonical identifications

TzG ' TzjGj ; Tu.z/ Confn.E/ '
nM

jD1

Tv.zj /E: (2.67)
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By (2.62) and (2.63), both Jz and XK (and !Confn.E/) respect this decomposition and
every summand is given by J 0z and X�†�K0 , respectively. Therefore, (2.66) is true for G.
Now, the result follows by summing over these small open subsets G � S nmk.S/.

By taking a sequence of larger and larger U and applying Lemma 2.26, we have

E.u/ D
1

2

Z
Snmk.S/

kDu �XKk
2
g dvol: (2.68)

Our next task is to derive a uniform upper bound for E.u/ that depends only on
.AS ; J;K/ and the Lagrangian boundary condition.

Consider again the graph construction. Let Ov WD .v; id/ W †! E � † and define on
E �† the following 2-forms:

!
geom
��
†
K0
WD !E C !E .X��

†
K0.@s/; �/ ^ ds C !E .X��

†
K0.@t /; �/ ^ dt

� !E .X��
†
K0.@s/; X��

†
K0.@t //ds ^ dt; (2.69)

!
top
��
†
K0
WD !E � d.�

�
†K
0.@s/ds/ � d.�

�
†K
0.@t /dt/ D !

geom
��
†
K0
CR��

†
K0 ; (2.70)

where R��
†
K0 is the curvature defined by

R��
†
K0 WD .@t�

�
†K
0.@s/ � @s�

�
†K
0.@t /C ¹�

�
†K
0.@s/; �

�
†K
0.@t /º/ds ^ dt

2 �2.†; C1.E//: (2.71)

It is clear that (cf. Remark 2.19)

.Dvj†out �X��
†
K0 j†out/0;1 D 0 (2.72)

so, by tameness of J 0, we have

1

2

Z
†out
kDv �X��

†
K0k

2
g0 dvol D

Z
†out
Ov�!

geom
��
†
K0
: (2.73)

Lemma 2.27. There is a constant T > 0 such that for any choice of solution u of (2.50)
and (2.51) .and hence the corresponding v/ and U , we have j

R
†out Ov

�R��
†
K0 j < T .

Proof. By (2.11), there existsK 00 2�1.S;C1.Hı// such thatK 0D ��EK
00 andK 00.w/ 2

HAS .w/.H
ı/ for all w 2 TS . Recall also that K 00 D 0 near mk.S/. It implies that

R��
†
K00 D �

�
†RK00 and R��

†
K0 D �

�
ER��†K00

(2.74)

where the two terms R� on the LHS of these equalities are defined using (2.71) and its
K 00-analogue.

Note that by (2.36) and (2.49), K 00 converges exponentially fast in any C r topology
with respect to s over strip-like ends of S , so there is a constant T 0 > 0 such that for
every j and any section f W S ! Hı � S , we have j

R
Im.�j /

f �RK00 j < T 0. Moreover,
(2.10), (2.36) and the flatness of AS imply that RK00 takes values in functions on Hı that
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are supported in a compact subset of Hı. Therefore, by (2.74), R��
†
K0 takes values in

functions on E that are uniformly bounded (the bound only depends onK 00 but not on u),
and there is a constant T 00 > 0 such that for every j and any section f W †! E �†, we
have j

R
�
†�1

.Im.�j //
f �R��

†
K0 j < T

00.
Let†e � † be the closure of the complement of the strip-like ends. The discussion in

the previous paragraph implies that j
R
†out Ov

�R��
†
K0 j is bounded above by .d C 1/T 00 plus

the integral of a bounded function over †e , where the bound on that function depends
only on K 00. The result follows.

Similarly, let Ou WD .u; id/ W S ! Confn.E/ � S and define on Confn.E/ � S the
following 2-forms:

!
geom
K WD !Confn.E/ C !Confn.E/.XK.@s/; �/ ^ ds C !Confn.E/.XK.@t /; �/ ^ dt

� !Confn.E/.XK.@s/; XK.@t //ds ^ dt
in; (2.75)

!
top
K WD !Confn.E/ � d.K.@s/ds/ � d.K.@t /dt/ D !

geom
K CRK (2.76)

where RK 2 �2.S; C1.Confn.E/// is the curvature of K. We have

1

2

Z
S in
kDu �XKk

2
g dvol D

Z
S in
Ou�!

geom
K : (2.77)

We have the parallel lemma.

Lemma 2.28. There is a constant T > 0 such that for any choice of solution u of (2.50)
and (2.51), and any choice of U , we have j

R
S in Ou

�RK j < T .

Proof. As before, there exists T 0 > 0 such that for every section S ! Confn.E/� S and
every j , we have j

R
Im.�j /

f �RK j < T
0. Ouside U , RK takes values in bounded functions

on Hilbn.E/ n U with bound determined by K 0. Since U is relatively compact, there is
also a bound for the function-values of RK inside U that is independent of u. Overall, if
Se is the closure of the complement of strip-like ends in S , then j

R
S in Ou

�RK j is bounded
above by .d C 1/T 0 plus an integration of a bounded function over Se , so the result
follows.

The primitive 1-form �E for !E induces a primitive 1-form �Confn.E/ for !Confn.E/.
It is clear that

�
top
��
†
K0
WD �E � �

�
†K
0 and �

top
K WD �Confn.E/ �K (2.78)

are primitives of ! top
��
†
K0

and ! top
K , respectively.

Lemma 2.29. We haveZ
†out
Ov�!

top
��
†
K0
C

Z
S in
Ou�!

top
K D

Z
@S

Ou��
top
K (2.79)

so there is a constant T > 0 such that for all u satisfying (2.50) and (2.51), we have
E.u/ < T .
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Proof. Apply the Stokes theorem to the terms on the left hand side of (2.79). Note thatZ
��1
†
.u�1.@U //

Ov��
top
��
†
K0
C

Z
u�1.@U /

Ou��
top
K D 0 (2.80)

because the Floer data splits into a product outside U and the orientation of the curves in
the two summands are opposite to one another. Similarly,Z

��1
†
.@Soutnu�1.@U //

Ov��
top
��
†
K0
D

Z
@Soutnu�1.@U /

Ou��
top
K : (2.81)

Therefore, we get (2.79).
Moreover, there is a constant T 0 > 0 (independent of u) such that

R
@S
Ou��

top
K < T 0 (see

[46, Lemma 4:8]) so the result follows from Lemmas 2.27 and 2.28, and the equalities
(2.70), (2.73), (2.76), (2.77) and (2.79).

Finally, we address the L2-norm of v when the domain is not restricted to †out.

Lemma 2.30. For every relatively compact open subset C† � †, there is a constant
TC† > 0 such that for all v arising from applying Lemma 2.18 to u satisfying (2.50) and
(2.51), we have

1

2

Z
C†

kDv �X��
†
K0k

2
g0 dvol < TC† : (2.82)

Proof. Let G � S be a relatively compact open subset such that C† � ��1† .G/. Since
Jz D .J

0
z/
Œn� and XK D X.K0/Œn� outside a compact subset of Confn.E/ nDır , there is a

constant TG > 0 (independent of u) such thatZ
��1
†
.G/

kDv �X��
†
K0k

2
g0 dvol < TG

Z
G

kDu �XKkg dvol: (2.83)

The right hand side is in turn bounded above by a constant independent of u, by Lemma
2.29.

Remark 2.31. The term 1
2

R
†
kDv � X��

†
K0k

2
g0 dvol may be infinite, because XK ¤

X.K0/Œn� everywhere, so the symmetric product of the asymptotes of v corresponding to
a fixed puncture of S is not necessarily an XK-Hamiltonian chord. This implies that the
integral over the strip-like ends might diverge.

2.2.10. Compactness. Let x0; : : : ; xd be as before. We next discuss compactness of the
solution spaces RdC1;h.x0I xd ; : : : ; x1/.

Lemma 2.32. Fix S 2 RdC1;h. Let uk W Sk ! Hilbn.E/ be a sequence in
RdC1;h.x0I xd ; : : : ; x1/ such that Sk converges to S 2 RdC1;h. If there exists zk 2
Sk n �.mk.Sk// such that kDuk.zk/ � XK.zk/kg diverges to infinity, then for any com-
pact subset CS in the universal family over RdC1;h and N > 0, there exists k > N such
that zk … CS .
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Proof. For simplicity, we assume Sk D S for all k; the reasoning below adapts directly to
the general case. Suppose the lemma were false; then there is a subsequence of zk which
converges to z1 2 S .

First assume that z1 is an interior point of S . Let B � S be a small ball centred at z1
and conformally identify B with a 3�-ball in C centred at the origin. Under this identific-
ation, we can assume that for all k, zk lies in the �-ball centred at z1. By assumption and
the uniform bound of XK near z1, kDuk.zk/kg diverges to infinity.

We apply a rescaling trick to the �-ball Bk centred at zk in the following sense (see
[34, Section 4.2]). Let rk D supz2Bk kDuk.z/kg and rkBk be the �rk-ball centred at the
origin. Let �k W rkBk ! Bk be �k.z/ D zk C z=rk . The sequence of maps uk ı �k W
rkBk ! Confn.E/ satisfies suprkBk kD.uk ı �k/k < 2 for all k. Since ��1† .B/ is a
disjoint union of n discs in †, the uk ı �k induce corresponding maps Vk;j W rkBk ! E

for j D 1; : : : ; n as in Lemma 2.18. By the same reasoning as in Lemma 2.30, we know
that there exists T > 0 such that suprkBk kDVk;j kg0 < T for all k.

Since the metric on E extends to a metric on Ee and Vk;j 2 W 1;p (for p > 2)
with uniformly bounded W 1;p-norm, by applying compactness of W 1;p in C 0 to Vk;j
for each j in turn, we get a subsequence which converges uniformly on compact sub-
sets to continuous functions V1;j W C ! Ee for all j D 1; : : : ; n. Moreover, V1;j
satisfies the .jC; J

0
z1
/-holomorphic equation for all j , because of the stipulation that

Jz D .J
0
z/
Œn� for all z. Elliptic bootstrapping shows that V1;j is smooth. Moreover, since

kDuk.zk/ � XK.zk/kg diverges to infinity, at least one of V1;j is not a constant map.
By Lemma 2.30, DV1;j has finite L2-norm so we can apply removal of singularities to
conclude that every V1;j extends to a J 0z1 -holomorphic map CP1 ! Ee (and at least
one of them is not a constant).

By assumption (2.9), every non-constant J 0z1 -holomorphic map CP1 ! Ee has
strictly positive algebraic intersection with DE , which in turn implies that this is true
for vk for large k (because all other sphere bubbles, if any, also contribute positively to
the algebraic intersection). However, Im.vk/ is contained in E, giving a contradiction.

Now, if instead z1 2 @S , then we can apply the same rescaling trick and the out-
come is a J 0z1 -holomorphic disc with appropriate Lagrangian boundary for each j ,
and at least one of them is non-constant. By exactness of the Lagrangian boundary, the
J 0z1 -holomorphic disc has strictly positive algebraic intersection with DE , which in turn
implies that that is true for vk for large k, yielding the same contradiction.

Next, we assume supzk2Skn�.mk.Sk// kDuk.zk/ �XK.zk/kg is uniformly bounded.

Proposition 2.33. Fix S 2 RdC1;h. Let uk W Sk ! Hilbn.E/ be a sequence in
RdC1;h.x0I xd ; : : : ; x1/ such that Sk converges to S 2 RdC1;h. Assume that h D
Ix0Ixd ;:::;x1 . If there exists T > 0 such that

sup
zk2Skn�.mk.Sk//

kDuk.zk/ �XK.zk/kg < T (2.84)

for all k, then there exists u1 2 RdC1;h.x0I xd ; : : : ; x1/ such that a subsequence of uk
converges .uniformly on compact subsets/ to u1.
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Proof. Without loss of generality, assume Sk D S for all k. Let vk W †k ! E be the cor-
responding maps. By Corollary 2.22, (2.53) and Remark 2.17, �†k W†k! S is an n-fold
branched covering such that its critical values are precisely mk.S/ and all of its critical
points are Morse. Since there are only finitely many such n-fold branched coverings of S ,
by passing to a subsequence we can assume †k D † for all k.

First, Lemma 2.30 and (2.84) imply that there is no energy concentration outside
��1† .�.mk.S///. Since vkj��1

†
.�.mk.S/// is .J 0

�†.z/
/z2��1

†
.�.mk.S///-holomorphic, energy

concentration inside ��1† .�.mk.S/// would result in a non-constant map CP1 ! Ee,
which is impossible. Therefore, there exists T > 0 such that

sup
zk2†

kDvk.zk/ �X��
†
K.zk/kg0 < T (2.85)

for all k.
In particular, for every relatively compact open subset G of S , we have

vkj��1
†
.G/ 2 W

1;p for p > 2. Therefore, vkj��1
†
.G/ converges uniformly to a continuous

function v1 W ��1† .G/! Ee.
There exists a compact set CE of E such that outside CE , vkj��1

†
.G/ satisfies (2.72)

(cf. Remark 2.19). Therefore, so does v1, and elliptic bootstrapping implies that v1 is
smooth outside CE and satisfies (2.72). Let u01 W G ! Symn.Ee/ be the corresponding
continuous map induced from v1. We can apply elliptic bootstrapping away from �Ee
so u01 is actually smooth away from �Ee , so v1 is smooth everywhere.

We will prove that

Im.v1/ \DE D ;; (2.86)

Im.v1/ \ ��1E .@H/ D ;; (2.87)

.u01/
�1.�Ee/ D G \ �.mk.S//: (2.88)

Given these, u01 uniquely lifts to a map u1 W G ! Hilbn.E/ such that u�11 .DHC/ �

G \ �.mk.S//. Note that this will be true for every relatively compact open subset G
of S .

On the other hand, we will also prove that, by possibly passing to a subsequence,

there is a compact subset C of Confn.E/ such that uk.Im.�j // � C for all k and j ;
(2.89)

so we can apply compactness of uk over strip-like ends inside C . Combining
all this information, and by a diagonal subsequence argument, we obtain u1 in
RdC1;h.x0I xd ; : : : ; x1/ such that uk has a subsequence that is uniformly converging
to u1 over S n �.mk.S//. Note that we cannot guarantee the convergence is also uniform
over �.mk.S//, because u1 is lifted from u01.

However, we can argue as follows. If there is a subsequence of uk which converges
uniformly over �.mk.S//, then it converges pointwise to u1 over �.mk.S// n mk.S/.
By continuity, the limit must be u1 and we are done. If there is no such subsequence,
then for all T > 0 and N > 0, there exists k > N such that sup�.mk.S// kDukkg00 > T ,



C. Y. Mak, I. Smith 30

where g00 is the induced metric from a choice of a symplectic form on Hilbn.E/ that
tames J Œn�E . In this case, bubbling occurs and results in a J Œn�E -holomorphic sphere map-
ping to Hilbn.E/. However, every J Œn�E -holomorphic sphere intersects Dr strictly posit-
ively (see Lemma 2.5), so Im.uk/\Dr ¤ ; for large k. This contradicts our assumption
that h D Ix0Ixd ;:::;x1 , by Corollary 2.22.

Now, we need to justify the claims in the previous proof.

Lemma 2.34. (2.86) is true.

Proof. Suppose not; then there exists z0 2 ��1† .G/ such that v1.z0/ 2 DE .
First, if �Ee ı v1.z0/ 2 CH, then v1 is J 0-holomorphic near z0 so it has strictly

positive algebraic intersection with DE , a contradiction.
If �Ee ı v1.z0/ … CH, then (2.72) implies that v1 satisfies a perturbed pseudo-

holomorphic equation near z0 with perturbation term having values in Hamiltonian vector
fields tangent to DE (see (2.14)). It means that the intersection also contributes strictly
positively to the algebraic intersection by the graph trick (cf. the proof of Lemma 2.21),
a contradiction.

The following is a modification of the corresponding result of Seidel [46, Lemma 4.9].

Proposition 2.35. (2.87) is true.

Proof. We can make (2.72) more akin to the situation in [46], namely, if we define A† D
��†AS , K† D ��†K

0 and .J†/z D J 0
�†.z/

for z 2 †, then outside a compact set of E,
(2.72) becomes

.Dvk �XK†/
0;1
D 0 with respect to ..J†/z/u.z/: (2.90)

Note also that our choice of Floer data .AS ;K; J / (see (2.23) and (2.34)) and the induced
Floer data .A†; K†; J†/ guarantee that over each strip-like end, we have

g�1A†.�Lj;bi
/ D g�1Aj .�Lj;bi

/ < �Lj�1;ai
(2.91)

for all ai and bi and all j D 1; : : : ; d . For j D 0, we have

g�1A†.�Ld;bi
/ D g�1A0 .�Ld;bi

/ < �L0;ai
(2.92)

for all ai and bi ,
In [46, Lemma 4:9], Seidel shows that if Im.v1/ \ ��1E .@H/ ¤ ;, then v1 lies

entirely in ��1E .@H/ . In that case it will satisfy8̂̂̂<̂
ˆ̂:
@s.�E ı v1 ı �0/ D 0;

@t .�E ı v1 ı �0/ D XaL0;Ld ;t ;

�E ı v1 ı �0.s; 0/ 2 �L0 ;

�E ı v1 ı �0.s; 1/ 2 �Ld :

(2.93)

These conditions imply g�1A0 .�Ld / \ �L0 ¤ ;, violating (2.92). Therefore Im.v1/ \
��1E .@H/ D ;.
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Lemma 2.36. (2.88) is true.

Proof. Suppose not; then there is a point z0 2 G nmk.S/ such that u01.z0/ 2 �E (here,
we have applied Lemma 2.34 and Proposition 2.35 to replace �Ee by �E ).

Then, by the same reasoning as in Lemma 2.21, Symn.�E / ıu
0
1.G/ and�H intersect

positively at z0. That would violate the assumption that h D Ix0Ixd ;:::;x1 .

Lemma 2.37. (2.89) is true.

Proof. Suppose not; then there exists j 2 ¹0; : : : ; dº and a sequence zk D �j .sk ; tk/

such that uk.zk/ goes to the infinite end of Confn.E/. Moreover, we know that tk has a
subsequence converging to some t1 2 Œ0; 1� and sk goes to infinity. Pick a small neigh-
bourhoodD � C of i t1 and consider the maps Ouk WD! Confn.E/ given by Ouk.s; t/D
uk.�j .s C sk ; t //. Let Ovk;a W D ! E be the corresponding maps for a D 1; : : : ; n.

Since there is no energy concentration, there is a subsequence of k such that for each
a D 1; : : : ; n, Ovk;a converges uniformly to a continuous map Ov1;a W D ! Ee; these in
turn induce a continuous map Ou01 W D ! Symn.Ee/. By applying Lemma 2.34, 2.36
and Proposition 2.35, we get the corresponding results (2.86), (2.87) and (2.88) for Ov1;a
and Ou01. This contradicts the assumption that uk.zk/ goes to infinity in Confn.E/.

We now assume that .AS ; J;K/ is chosen to vary smoothly in R
dC1;h

. That implies

that J D J Œn�E andK D 0 on the sphere components of S 2R
dC1;h

(see Remark 2.1). We
call the (interior/boundary) special points of S which connect different irreducible com-
ponents of S (interior/boundary) nodes. For an interior node z on a disc component, we
define the multiplicity mult.z/ of z to be the total number of marked points (not including
nodes) on the tree of sphere components to which z is connected.

Lemma 2.32 can be directly generalized by replacing RdC1;h with R
dC1;h

. The gen-
eralization of Proposition 2.33 is as follows.

Proposition 2.38. Fix S 2 R
dC1;h

. Let uk W Sk ! Hilbn.E/ be a sequence in

RdC1;h.x0I xd ; : : : ; x1/ such that Sk converges to S 2 R
dC1;h

. Assume that h D
Ix0Ixd ;:::;x1 . If there exists T > 0 such that

sup
zk2Skn�.mk.Sk//

kDuk.zk/ �XK.zk/kg < T (2.94)

for all k, then there exists a subsequence of uk which converges (uniformly on compact
subsets) to a stable map u1 W S ! Hilbn.E/ such that ujQ is a constant map for every
sphere componentQ of S . Moreover, interior nodes on disc components of S are mapped
to DHC under u1 and the algebraic intersection number between u1 and DHC at an
interior node z is given by mult.z/.

Proof. For ease of exposition, we only consider the case S D S˛ [ Sˇ , where S˛ is a
disc component and Sˇ is a sphere component. Let z˛ˇ 2 S˛ and zˇ˛ 2 Sˇ be the nodes.
There exists an open subset S˛;k of Sk such that S˛;k converges to S˛ n z˛ˇ . The proof of
Proposition 2.33 can be applied to ukjS˛;k to conclude that there is a subsequence which
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converges (uniformly on compact subsets) to a map u˛1 W S˛ n z˛ˇ ! Hilbn.E/ which
satisfies the conditions (2.50). By removal of singularities, we can extend this to a map
u˛1 W S˛ ! Hilbn.E/.

On the other hand, there exists an open subset Sˇ;k of Sk such that Sˇ;k converges to
Sˇ n zˇ˛ . Gromov compactness can be applied to ukjSˇ;k , and after removal of singular-

ities we obtain a stable J Œn�E -holomorphic map uˇ1 from a tree of spheres to Hilbn.E/.
We know that every non-constant J Œn�E -holomorphic sphere intersects Dr strictly pos-

itively, by Lemma 2.5, so if uˇ1 is not a constant map, then Im.uk/\Dr ¤ ; for large k
(cf. the last paragraph in the proof of Proposition 2.33). This is a contradiction, so uˇ1 is
a constant map to a point in DHC. That implies u˛1.z˛ˇ / 2 DHC, and the algebraic inter-
section number with DHC at this point is precisely mult.z˛ˇ /.

Corollary 2.39. Suppose RdC1;h.x0I xd ; : : : ; x1/ has virtual dimension 1 and
h D Ix0Ixd ;:::;x1 . For generic .J; K/ satisfying (2.48) and (2.49), the moduli
RdC1;h.x0I xd ; : : : ; x1/ can be compactified by adding stable maps u W S ! Hilbn.E/

for S 2 R
dC1;h

for which S has no sphere components.

Proof. By Lemma 2.32 and Proposition 2.38, RdC1;h.x0I xd ; : : : ; x1/ can be compacti-
fied by stable maps u W S!Hilbn.E/ such that every sphere component of u is mapped to
a constant. If S has a sphere component, then some disc component would have algebraic
intersection number > 1 with DHC at an interior node. However, this is a phenomenon of
codimension at least 2, so it has virtual dimension at most �1 and hence can be avoided
for generic .J;K/.

More precisely, just as RdC1;h.x0I xd ; : : : ; x1/ is the fibre product between (a
smooth pseudocycle replacement for) the inclusion Dh

HC ! .Hilbn.E//h and the eval-
uation map RdC1;h.x0I xd ; : : : ; x1/pre ! .Hilbn.E//h, we can define a subset of
RdC1;h.x0Ixd ; : : : ; x1/pre consisting of those u for which the interior marked points have
prescribed algebraic intersection numbers with DHC. In this case, some factors of the tar-
get of the evaluation map should be taken to be the appropriate jet bundles of Hilbn.E/
(cf. [15, Section 6]). The regularity argument in Lemmas 2.15 and 2.16 applies to this case
to conclude that whenever there is an interior node on a disc component that is required to
be mapped toDHC with algebraic intersection number > 1, the restriction of u to the disc
component does not exist for generic .J;K/. Therefore, RdC1;h.x0I xd ; : : : ; x1/ can be
compactified by stable maps without sphere components.

2.2.11. The definition. An object of F � cyl;n.�E / is an element L 2 Lcyl;n. Given
two objects L0 D ¹L0;kº

n
kD1

and L1 D ¹L1;kº
n
kD1

, we choose a Floer chain datum
.AL0;L1 ; HL0;L1 ; JL0;L1/ under the additional assumption that if L0 D L1, the perturb-
ation pair chosen is given by Lemma 2.24. The corresponding morphism space is

hom.L0; L1/ WD CF.L0; L1/ D
M

x2X.HL0;L1 ;L0;L1/

ox : (2.95)
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Recall that we have chosen strip-like ends, cylindrical ends and marked-points neigh-

bourhoods in �
dC1;h

that are smooth up to the boundary and corners. Following [40,
Section (9i)] (see also [45, Section 9]), we call a choice of Floer data smooth and consist-
ent if for any Lagrangian labels L0; : : : ; Ld , the Floer data depends smoothly on R

dC1;h

up to the boundary and corner. Note that smoothness near the boundary and corner strata
is defined with respect to a collar neighbourhood obtained from gluing the lower-dimen-
sional strata. Therefore, a smooth and consistent choice of Floer data is obtained by an
inductive procedure from the lower-dimensional strata. In our case, we proceed as follows:
(1) We equip the unique element S 2 R1C1;0 with the (s-invariant) data

.AL0;L1 ; JL0;L1 ;HL0;L1/:

(2) For every element of RdC1;0 with Lagrangian labels being L0; : : : ; Ld , we equip it
with .AS ; J; K/ satisfying (2.47)–(2.49) such that .AS ; J; K/ varies smoothly and
consistently with respect to gluing (this is done inductively in d ).

(3) Equip any sphere with any number of interior marked points with .AS ; J; K/ D
.0; J

Œn�
E ; 0/.

(4) Equip the element of R0C1;1 with Lagrangian label being L0 or L1 with .AS ; J;K/
satisfying (2.47)–(2.49).

(5) For every element of RdC1;1 with Lagrangian labels being L0; : : : ; Ld , we equip it
with .AS ; J; K/ satisfying (2.47)–(2.49) such that .AS ; J; K/ varies smoothly and
consistently with respect to gluing.

(6) Repeat the procedure with increasing h.
For a generic consistent choice of Floer data, all elements in RdC1;h.x0Ixd ; : : : ; x1/ are
regular (here, the genericity is with respect to Floer’s C1� -topology [40, Remark 9.9]).

The A1 structure is now defined by

�d .xd ; : : : ; x1/

D

X
x02X.HL0;Ld ;L0;Ld /

1

Ix0Ixd ;:::;x1 Š
.#RdC1;Ix0Ixd ;:::;x1 .x0I xd ; : : : ; x1//x0

where, when h D 0 and d D 1, #RdC1;h.x0I xd ; : : : ; x1/ is understood as the signed
count after dividing out by R-symmetry (and where we suppress the discussion of signs).

Lemma 2.40. The collection of maps ¹�d º satisfies the A1 relation.

Proof. By Corollary 2.39, the relevant 1-dimensional moduli spaces can be compactified
by stable broken maps without sphere components. By Lemma 2.24 and exactness of
the individual Lagrangians, every component of such a stable broken map has at least
two boundary punctures. The rest follows from a well-established argument (see e.g. [49,
Section 4.1.8]) together with the additivity property of Ix0Ixd ;:::;x1 under gluing of maps.
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3. Properties of the cylindrical Fukaya–Seidel category

At this point, given a 4-dimensional exact Lefschetz fibration �E W E ! H, we have
constructed for each n � 1 an A1 category F � cyl;n.�E / which captures certain Floer-
theoretic computations in the Hilbert scheme of E, or rather its affine subset YE . Unsur-
prisingly, the resultingA1 category satisfies typical properties of Fukaya-type categories,
with proofs which are minor modifications of those which pertain to more familiar set-
tings. This short section briefly elaborates upon some of these; to keep the exposition of
manageable length, the proofs are only sketched.

3.1. Unitality and Hamiltonian invariance

Lemma 3.1 (Cohomological unit). F � cyl;n.�E / is cohomologically unital.

Sketch of proof. To give a cochain representative of the cohomological unit of HF.L;L/,
we need to consider S 2 R0C1;0. We put the Floer cochain datum .AL;L; HL;L; JL;L/

on the outgoing strip-like end and stabilize the disc S by picking .AS ; K; J / satisfying
(2.47)–(2.49). The Lagrangian boundary condition is a moving one from �HL;L.Sym.L//
to Sym.L/.

We then form the moduli space of maps u W S ! Hilbn.E/ n .Dr [DHC/ such that
u is asymptotic to x0 2 X.HL;L; L;L/ near the strip-like end. The signed rigid count of
this moduli gives a cochain level representative of the cohomological unit.

Note that we only need to consider R0C1;h for h D 0 because, by Lemma 2.24, the
corresponding moduli space for h > 0 is necessarily empty.

Lemma 3.2. For anyL2F � cyl;n.�E /, there is a choice of Floer cochain datum such that
CF �.L;L/ is non-negatively graded and CF 0.L;L/ is rank 1. As a result, the Hamilto-
nian chord generating CF 0.L;L/ gives a chain level representative of the cohomological
unit.

Proof. As in the proof of Lemma 2.24, we can choose A and H 0 such that the (possibly
non-transverse) X.H 0/Œn� -chord from Sym.L/ to itself is given by the unordered tuple of
XH 0 -chords x.t/ from Li to itself for i D 1; : : : ; n. Recall that H 0 is chosen such that
�E .x.t// 2 ULi for all x.t/. For each i , we pick H 0i to be a perturbation of H 0 that is
supported in a compact subset of ��1E .ULi / and such that the XH 0

i
-chords from Li to

itself satisfy: (i) they are transverse, (ii) they are non-negatively graded, and (iii) there
exists exactly one such chord of grading 0.

Recall the definition of qSn in (2.21). Note that there is a compact subset K of
qSn.�

�1
E .UL1/� � � � ��

�1
E .ULn//which contains all theX.H 0/Œn� -chords from Sym.L/ to

itself. Since qSn.�
�1
E .UL1/ � � � � � �

�1
E .ULn// is symplectomorphic to the product sym-

plectic manifold ��1E .UL1/� � � � ��
�1
E .ULn/, we can find a perturbationH D .Ht /t2Œ0;1�

of .H 0/Œn� such thatHt 2Hn
at
.E/ for all t andH is the product type HamiltonianH.z/D

H 01.z1/C � � � CH
0
n.zn/ locally near K, where z 2 qSn.�

�1
E .UL1/ � � � � � �

�1
E .ULn// is

identified with .z1; : : : ; zn/ 2 ��1E .UL1/ � � � � � �
�1
E .ULn/.
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In particular, it means that the XH -Hamiltonian chords from Sym.L/ to itself are
precisely given by unordered tuples of XH 0

i
-chords from Li to itself for i D 1; : : : ; n.

Therefore, the XH -chords are non-negatively graded and precisely one of them is in
grading 0.

Lemma 3.3 (Hamiltonian invariance). If L0; L1 2 Lcyl;n can be connected by a smooth
family .Lt /t2Œ0;1� of elements in Lcyl;n, thenL0 is quasi-isomorphic toL1 in F � cyl;n.�E /.

Sketch of proof. Without loss of generality, we can assume that L1 is C 1-close to L0. In
particular, we can assume that �E .L0;i / \ �E .L1;j / D ; if j ¤ i .

Pick a Floer cochain datum .AL0;L1 ; HL0;L1 ; JL0;L1/ for .L0; L1/. For each integer
h� 0 and S 2R0C1;h, we equip S with the moving Lagrangian boundary labelLt on @S .
Then, we pick .AS ; K; J / such that (2.47), (2.48) and (2.49) are satisfied and compatible
with gluing with elements in R1C1;k for all k. The rigid count of the corresponding
solutions of (2.50) and (2.51) give us an element ˛ in CF 0.L0; L1/.

We claim that ˛ is a cocycle. Indeed, by the same argument as in Lemma 2.24, when
the Floer cochain datum is carefully chosen, the rigid count of solutions for h > 0 van-
ishes. In this case, ˛ is a sum of continuation elements ˛i 2 CF 0.L0;i ; L1;i /.

Similarly, we can construct a cocycle ˇ in CF 0.L1; L0/. By gluing, one checks that
�2.˛;ˇ/ and �2.ˇ;˛/ are cohomological units (for suitable choices of Floer cochain data
as above, these cohomological units agree with the classical units).

3.2. Canonical embeddings

Let W be a contractible (hence connected) open subset of H such that

W \ @H equals .R;1/ or .�1; R/ for some R 2 R: (3.1)

Let W ı WD W \ Hı. We can define an A1 full subcategory F �
cyl;n
W .�E / of

F � cyl;n.�E / with objects given by L D ¹L1; : : : ; Lnº such that �E .Lj / � W ı for all j .
The conditions thatW is contractible and satisfies (3.1) imply thatW c WD Int.H nW /

is also contractible and satisfies (3.1), where Int.�/ stands for interior.
Let K be an object of F �

cyl;k
W c .�E /. Each object L of F �

cyl;n
W .�E / determines an

object L tK in F � cyl;nCk.�E / given by adding to L the Lagrangians in K.

Lemma 3.4. There is a cohomologically faithful A1 functor tK W F �
cyl;n
W .�E / !

F � cyl;nCk.�E /, which on objects is given by sending L to L tK.

Proof. By (3.1), W contains a neighbourhood of ŒR;1/ or .�1; R�. Therefore,
we can choose the Hamiltonian term in the Floer data such that each element in
X.L0 tK;L1 tK/ is a tuple given by adjoining an element in X.L0; L1/ with another
element in X.K;K/. It establishes a bijective correspondence between the generators in
CF.L0 tK;L1 tK/ and CF.L0; L1/˝ CF.K;K/. By Lemma 3.2, we can arrange the
Floer data so that CF 0.K;K/ is rank 1 and generated by a chain level representative e of
the cohomological unit.
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The A1 functor tK has first order term sending x 2 CF.L0; L1/ to the gener-
ator in CF.L0 t K; L1 t K/ corresponding to x ˝ e, and has no higher order terms
as an A1 functor. To check that tK is indeed an A1 functor, it suffices to show that
there is a bijective correspondence between the moduli governing the A1 structures in
F �

cyl;n
W .�E / and the moduli governing the A1 structures in F � cyl;nCk.�E / with all

inputs and outputs being of the form x ˝ e.
Let u W S ! Hilbn.E/ be a solution contributing to the A1 structure of F �

cyl;n
W .�E /.

Let v W †! E be the map which tautologically corresponds to u. By projecting to Hı

via �E and appealing to the open mapping theorem, we know that the image of v lies
inside W .

The proof of Lemma 3.2 shows that e is given by the unordered tuple of grading zero
XH 0

i
-Hamiltonian chords ei fromKi to itself, for i D 1; : : : ; k. Moreover, we can assume

that ei is a constant chord (i.e. XH 0
i
.ei .t// D 0 for all t ).

We now separate the discussion into two cases, namely, the stable case .d; h/¤ .1; 0/
and the semi-stable case .d; h/ D .1; 0/. We start with .d; h/ ¤ .1; 0/.

In this case, for each S 2 RdC1;h, the constant map vi from S to ei satisfies8̂<̂
:
.Dvi �XH 0

j
/0;1 D 0;

vi .@S/ � L
0
i ;

lims!˙1 vi .�j .s; �// D ei uniformly for all j D 0; : : : ; d:

(3.2)

The moduli space of solutions to (3.2) has virtual dimension 0 (because the conformal
structure of S is fixed). Moreover, vi is a regular solution to (3.2). Note also that �E ı vi …
W for all i .

Now we define z† D † t
Fk
iD1 S , and we define �z† W z† ! S to be �z† D �† tFk

iD1 IdS , where IdS W S ! S is the identity map. Let zv D v t
Fk
iD1 vi and zu W S !

HilbnCk.E/ be the map tautologically corresponding to zv. Notice that Im.v/ and Im.vi /
are pairwise disjoint. This means that the Fredholm operator associated to zu splits into the
direct sum of those associated to u and vi . Therefore, zu is a regular solution contributing
to the A1 structure of F � cyl;nCk.�E / with all inputs and output being of the form x˝ e.
Conversely, by the Lagrangian boundary conditions, every such solution is of the form zu
for some u contributing to the A1 structure of F �

cyl;n
W .�E /.

Next, we consider the case .d; h/ D .1; 0/. In this case, † D
Fn
iD1 S and �† DFn

iD1 IdS . Since u is rigid, it means that the moduli space containing u is 1-dimensional
before dividing out by R-translation-symmetry. We define z†, �z†, zv and zu as above. The
moduli space containing zu still has virtual dimension 1 before dividing by R-symmetry,
because the constant maps have virtual dimension 0. Moreover, zu is regular because one
can split the Fredholm operator of zu to those of u and the constant maps, which are all
regular. Conversely, rigid solutions contributing to the A1 structure of F � cyl;nCk.�E /

with .d; h/ D .1; 0/ and both input and output being of the form x ˝ e are necessarily of
the form zu for some u.

This finishes the proof.
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Corollary 3.5. If L0; L1; L2 form an exact triangle in F �
cyl;n
W .�E /, then L0 t K;

L1 tK;L2 tK form one in F � cyl;nCk.�E /.

Using Corollary 3.5, we can inductively construct a plethora of exact triangles.
For example, we will prove in Section 5.1 that our set-up applies to the standard
Lefschetz fibration �E on the Am�1 Milnor fibre E. In that case, there are well-
known exact triangles [40, Lemma 18.20] relating matching spheres and thimbles in
F � cyl;1.�E / D F �.�E /. We can obtain exact triangles in F � cyl;n.�E / by adjoining
matching spheres/thimbles to the exact triangles in F � cyl;1.�E / (see Figure 3.1).

x    x    x x    x    x x    x    x

 →  → 
x    x    x

 → [1]

x    x    x x    x    x x    x    x

 →  → 
x    x    x

 → [1]

Fig. 3.1. The top row represents an exact triangle in F �.�E / when E is the A2 Milnor fibre. The
bottom row is exact in F �cyl;2.�E / by Corollary 3.5.

3.3. Serre functor

An important observation due to Kontsevich and Seidel is that the global monodromy �
should induce the Serre functor on the Fukaya–Seidel category up to degree shift [22,
41, 42, 44]. In our context, the global monodromy of �E induces an auto-equivalence of
F � cyl;n.E/ for each n. By formally the same argument, we get

Claim 3.6. The global monodromy of �E induces the Serre functor on F � cyl;n.E/ up to
a degree shift by �2n.

Even for Lefschetz fibrations, a complete proof that the auto-equivalence induced by
global monodromy agrees with the Serre functor (up to shift) does not seem to appear in
the literature.6 Any argument is likely to apply to our case. For the reader’s convenience,
we outline the essential geometric input underlying the claim.

Sketch of proof of Claim 3.6. As a graded symplectomorphism, we require that � acts as
the identity on the trivialization of the bicanonical bundle in a compact region containing
the critical points. This means that for each compact exact graded Lagrangian L in E,
�.L/D L as graded objects. On the chain level, there is a canonical isomorphism (see the
left of Figure 3.2)

CFi .L0; L1/ ' .CF�i .L1; �.L0/Œ�2�//_ D .CF�i .��1.L1/Œ2�; L0//_ (3.3)

given by sending an intersection point ofLC0 \L1 to the corresponding intersection point

6Forthcoming work of Abouzaid and Ganatra lays the general foundations for the treatment of
Serre functors in the context of Fukaya categories for Landau–Ginzburg models, which generalize
Fukaya–Seidel categories.
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Fig. 3.2

of �.L0/ \ LC1 but viewing the latter as a generator in the dual group CF.L1; �.L0//.
Here, for two Lagrangians L;K, we use LC \ K (or K \ LC) to mean that we pick a
Hamiltonian diffeomorphism � such that �K < ��.L/, �.L/ t K and we use LC \K to
denote �.L/ t K.

In particular, when L0 is compact, a generator x of CFi .L0; L1/ is mapped to the
linear dual of the corresponding generator x_ 2 CF2�i .L1; L0/ D CF�i .L1; L0Œ�2�/ D
CF�i .L1; �.L0/Œ�2�/. The canonical isomorphism (3.3) lifts to the canonical isomor-
phism for Lagrangian tuples

CFi .L0; L1/ ' .CF�i .L1; �.L0/Œ�2n�//
_
D .CF�i .��1.L1/Œ2n�; L0//

_: (3.4)

A key claim is that, under the canonical isomorphism (3.4), one can arrange to have a
bijective correspondence between the moduli computing higher A1 operations:

CF.Ld�1; Ld / � CF.Ld�2; Ld�1/ � � � � � CF.L0; L1/! CF.L0; Ld /; (3.5)

CF.��1.Ld /Œ2n�; Ld�1/
_
� CF.Ld�2; Ld�1/ � � � � � CF.L0; L1/

! CF.��1.Ld /Œ2n�; L0/
_; (3.6)

where (3.6) is obtained by dualizing CF.��1.Ld /Œ2n�; Ld�1/ and CF.��1.Ld /Œ2n�; L0/
in the structural map

CF.Ld�2; Ld�1/ � � � � � CF.L0; L1/ � CF.��1.Ld /Œ2n�; L0/

! CF.��1.Ld /Œ2n�; Ld�1/:

The right side of Figure 3.2 gives a schematic indication of why such a bijection exists,
in a simple case in which the Lagrangians are pairwise distinct (and the A1-products
are governed by the same set of holomorphic curves projecting to the unique triangle in
the base). Together, these claims imply that CF.��1.L/Œ2n�;�/_ is isomorphic as a right
A1-module to CF.�; L/. In other words, on the object level, the global monodromy
�Œ�2n� sends L to �.L/Œ�2n�, whose Yoneda image is in turn isomorphic to CF.L;�/_.
This is the first piece of geometric information that enters into Seidel’s argument.

Remark 3.7. There is an embedding from an appropriate Fukaya–Seidel category to the
cylindrical version F � cyl;n (see Proposition 4.12). Claim 3.6 is only used to prove that
this embedding is essentially surjective for typeAMilnor fibre (see Proposition 5.16), and
to compare certain Lagrangian tuples with certain modules over the extended arc algebra
in Section 10. It is not needed to derive any of the results mentioned in Section 1.
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4. Comparing Fukaya–Seidel categories

In this section, we discuss the relation between F � cyl;n.�E / and the Fukaya–Seidel cat-
egory of the Lefschetz fibration on Hilbn.E/ nDr induced by �E (we recall that this is
a ‘weak’ Lefschetz fibration, in the sense that it may have critical points at infinity, but
it still has a Fukaya–Seidel category of Lagrangians proper over the base, as constructed
in [40]). This allows us to translate our subsequent study of F � cyl;n.�E / back to the usual
Fukaya–Seidel category.

4.1. A directed subcategory

Let c1; : : : ; cm be the set of critical values of �E . By applying a diffeomorphism of E
covering a compactly supported diffeomorphism of Hı and using push-forward JEe ,!Ee ,
etc., we assume that ck WD k C

p
�1 2 Hı for k D 1; : : : ; m. For simplicity, we assume

that there is exactly one critical point lying above a critical value. We also assume that
the symplectic parallel transport is well-defined everywhere. This holds for typeAMilnor
fibre (see [26] or the subsequent discussion in Section 5). In fact we only apply parallel
transport to Lagrangians that are proper over Hı and one can avoid this hypothesis at the
cost of having more notations.

A matching path  W Œ0; 1�! Hı of �E W E ! Hı is a smooth path from ca to cb ,
for some a; b 2 ¹1; : : : ; mº with a ¤ b, such that .t/ is not a critical value of �E for
all t ¤ 0; 1, and such that the vanishing cycles from the critical points lying above ca
to cb match up under symplectic parallel transport along  to give a Lagrangian matching
sphere L in E.

A thimble path  W Œ0; 1�! H of �E W E ! Hı is a smooth path from ca, for some
a 2 ¹1; : : : ; mº, to a point on the real line such that .t/ 2 Hı n ¹cb j b D 1; : : : ; mº

for t ¤ 0; 1, and the symplectic parallel transport of the vanishing cycle from ca gives a
Lagrangian disc (thimble) L in E.

Definition 4.1. For an n-tuple � D ¹1; : : : ; nº of pairwise disjoint embedded curves
in Hı such that each curve is either a matching path or a thimble path of �E W E ! Hı,
we can define the corresponding n-tuple of Lagrangians

L� WD ¹L1 ; : : : ; Lnº 2 Lcyl;n (4.1)

In this case, we call � an admissible tuple.

For r 2 R and k 2 ¹1; : : : ; mº, let lr;k be the straight line joining r and ck . Every lr;k
is a thimble path.

Let I be the set of cardinality n subsets of ¹1; : : : ; mº. We define a partial ordering
on I, called the Bruhat order, as follows: For I0; I1 2 I, I0 � I1 if and only if there is
a bijection f W I0 ! I1 such that x � f .x/ for all x 2 I0. Strict inequality I0 < I1 is
defined by I0 � I1 and I0 ¤ I1.
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x    x    x    x

Fig. 4.1. The case when s D 4 and n D 2.

Let f W I ! Iaff (see Section 2.2.6) be a function such that

f .I0/ \ f .I1/ D ; for all I0 ¤ I1 2 I; (4.2)
f .I0/ > f .I1/ if I0 < I1; (4.3)
length.f .I // D m; (4.4)

where length.Œa; b�/ WD b � a.
Given f and I D ¹i1 < � � � < inº 2 I, we define

I;k WD lmin.f .I//Cik ;ik (4.5)

so �I WD ¹I;k j k D 1; : : : ; nº is a collection of parallel lines in Hı. For generic f , no
three pairwise distinct lines in

S
I2I �

I intersect at the same point in ¹z 2Hı j im.z/ < 1º
(see Figure 4.1).

Let T I WD L�I 2 Lcyl;n. For a generic perturbation of !E inside a compact subset,
which changes the symplectic connection but keeps the symplectic Lefschetz fibration
structure, we have

LI;k t LI 0;k0 for all .I; k/ ¤ .I 0; k0/: (4.6)

Moreover, by applying a diffeomorphism of E covering a compactly supported diffeo-
morphism of Hı again (and using the push-forward JEe , !Ee , etc.), we can assume that
there exists 0 < � < 1 such that �E is symplectically locally trivial in ��1E .¹z 2 Hı j

im.z/ < 1 � �º/ and for any I;k ¤ I
0;k0 2 � , we have

I;k \ I
0;k0
� ¹z 2 Hı j im.z/ < 1 � � or im.z/ D 1º:

We are interested in the subcategory of F � cyl;n.�E / split-)generated by ¹T I j I 2 Iº.

Lemma 4.2. Let I0; I1 2 I. Then HF.T I0 ;T I1/¤ 0 only if I0 < I1. Moreover, if I0D I1,
then HF.T I0 ; T I1/ is generated by the identity element.

Proof. For the first statement, it suffices to note that if I0 – I1 then we can find an
isotopy of thimbles T I0t 2 Lcyl;n such that T I00 D T

I0 , �
T
I0
1

> �T I1 and Sym.T I01 / \

Sym.T I1/ D ; (see Figure 4.2). It implies that CF.T I01 ; T
I1/ D HF.T I01 ; T

I1/ D 0, but
by Lemma 3.3, T I01 is quasi-isomorphic to T I0 as objects in F � cyl;n.�E /, so the first
statement follows.
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x    x    x    x

Fig. 4.2. Sym.T I01 / \ Sym.T I1/ D ;.

For the second one, when I0D I1D I , we can find an isotopy of thimbles T It 2Lcyl;n

such that T I0 D T
I , �T I1 > �T I and Sym.T I1/\ Sym.T I / is a singleton. Lemma 3.3 now

implies that HF.T I ; T I / has rank 1, so is generated by the cohomological unit.

Lemma 4.3. Let I0 < I1 < � � � < Id . For the pairs .T I0 ; T Id /, and .T Ij�1 ; T Ij / for
j D 1; : : : ; d , we can choose Floer cochain data .A;H; J / such that A D 0 and H � 0.
Moreover, for x0 2 X.T I0 ; T Id / and xj 2 X.T Ij�1 ; T Ij / for j D 1; : : : ; d , we can
also choose the Floer data .AS ; K; J / such that AS D 0 and K � 0. In consequence,
when RdC1;h.x0I xd ; : : : ; x1/ has virtual dimension zero, its regularity can be achieved
by generic J .

Proof. First note that if i < j < k and x D ¹x1; : : : ; xnº 2 Sym.T Ii / \ Sym.T Ij / \
Sym.T Ik /, then since there is no triple intersection in ¹z 2Hı j im.z/ < 1º, it is necessary
that for all t D 1; : : : ; n, �E .xt / D clt for some lt 2 ¹1; : : : ; mº. This in turn implies
that i D j D k, a contradiction. Therefore, if i < j < k then Sym.T Ii / \ Sym.T Ij / \
Sym.T Ik / D ;.

We first discuss how to achieve regularity of elements in RdC1;h.x0I xd ; : : : ; x1/pre.
Let u W S ! Hilbn.E/ be an element in this space. Let v W †! E be the map associated
to u by the tautological correspondence. Let †1; : : : ; †m be the connected compon-
ents of † and vj D vj†j . By reordering †1; : : : ; †m if necessary, we can assume that
there is 0 � a � m such that �E ı vi is a constant for i � a, and is a non-constant map
otherwise.

By the boundary conditions, �†j†i must have degree 1 for i � a, so †i D S is a disc
with d C 1 boundary punctures. We want to discuss the Fredholm operator associated to
vi W S ! E for i � a. Let us assume a ¤ 0 and consider v1. We denote the Lagrangian
boundary label on @†1 by L0; : : : ; Ld so that Lj 2 T Ij for j D 0; : : : ; d . The map
�E ı v1 is either a constant map to a point in ¹z 2 Hı j im.z/ < 1 � �º or to a point ck
for some k.

We first suppose that �E ı v1 is a constant map to a point in ¹z 2Hı j im.z/ < 1� �º.
Then we must have d D 1 because no three pairwise distinct lines in � intersect at the
same point in ¹z 2 Hı j im.z/ < 1º. If we view �E ı v1 as a holomorphic map with
boundary on �E .Lj / and both asymptotic conditions are given by uniform convergence
to the intersection point, then �E ı v1 is a regular rigid solution because the input and out-
put are the same (so have the same gradings). The cokernel of the Fredholm operatorDv1
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of v1 sits inside a short exact sequence

coker.Dfibre/! coker.Dv1/! coker.D�Eıv1/! 0 (4.7)

where D�Eıv1 is the Fredholm operator for �E ı v1 and Dfibre is the Fredholm operator
of v1 viewed as a map to the fibre. By regularity of �E ı v1, we have coker.D�Eıv1/D 0.
On the other hand, depending on the virtual dimension of v1, either coker.Dfibre/ can also
be made 0 by a generic choice of J , or v1 does not exist for generic J . In the former case,
Dv1 is surjective.

Next, we consider the case that �E ı v1 is a constant map to a point ck for some k. In
this case, d is not necessarily 1 but, by (4.3), we have

�L0 > � � � > �Ld : (4.8)

We can assume that Li \Lj D p for all i; j , where p is the critical point lying above ck .
Let Bp be a Darboux ball centred at p. We can assume that J is integrable near p so
that Bp can be identified with a ball in C2. Moreover, by (4.8), we can assume that
TpLi \ TpBp are pairwise transversally intersecting Lagrangian planes in TpBp with
strictly decreasing Kähler angles. More explicitly, a local model is given by

�E jBp .z1; z2/D z1z2; z1; z2 2C; (4.9)

Li \ BpD¹.z1; z2/D .re
i�iCt ; rei�i�t /2Bp j r � 0; t 2 Œ0; 2��º for some �i 2 Œ0; 2�/;

(4.10)

and (4.8) translates to �0 > � � � > �d . As a result, there are choices of grading functions
on ¹LiºdiD0 such that for all i , the point p as a generator of CF.Li�1; Li / has grading 0
(when i D 0, CF.Li�1; Li / should be understood as CF.L0; Ld /). Therefore, for a fixed
S 2 RdC1, the moduli space of solutions to the equation8̂̂̂<̂

ˆ̂:
w W S ! E;

.Dw/0;1 D 0;

w.@jS/ � Lj for all j;
lims!˙1w.�j .s; �// D p uniformly for all j;

(4.11)

has virtual dimension 0. Moreover, the constant map from S to p is regular and rigid. On
the other hand, v1 must be the constant map from S to p, so v1 is regular.

We can now address the regularity of u. Recall that the key point is to show that if
� is an element in an appropriate Sobolev completion of �0;1.S; u�T Hilbn.E// which
annihilates the image of the Fredholm operator associated to u, then � vanishes identic-
ally. Since � lies inside the kernel of the adjoint operator, � has the unique continuation
property, so it suffices to show that � vanishes on an open subset G of S .

Let z 2 S n �.mk.S// be such that u.z/ 2 Confn.E/. Let G be an open neigh-
bourhood of z such that ��1† .G/ consists of n disjoint open sets G1; : : : ; Gn. There is
a neighbourhood U of u.z/ that is symplectomorphic to a product U1 � � � � � Un for
open sets Ui � E satisfying Ui \ Uj D ; if i ¤ j . Moreover, we can assume the image
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of vjGi lies inside Ui , so we have ujG.z/ D .vjG1.z/; : : : ; vjGn.z// under the identific-
ations between U and U1 � � � � � Un, and between G and Gi . Having this product type
local model for ujG , we can write �jG as .�1; : : : ; �n/, where �i 2 �0;1.Gi ; vj�GiT Ui /. If
� ¤ 0, then at least one �i is not 0; relabel it as �1.

If �E ı vjG1 is not a constant map, then there is an infinitesimal deformation Y of J
in the space of almost complex structures satisfying (2.48) (which only deforms in the
first factor of the product U1 � � � � � Un) such thatZ

G

h�; Y ı .du �XK/ ı jS i D

Z
G1

h�1; Y ı .dv1 �X��
†
K/ ı jS i ¤ 0 (4.12)

where jS is the complex structure on S . That contradicts the assumption that � annihilates
the image of the Fredholm operator associated to u.

If �E ı vjG1 is a constant, then we must have G1 � †i for some i � a. Without loss
of generality, we assume G1 � †1 and vjG1 D v1jG1 . From the discussion of the sur-
jectivity of the Fredholm operator associated to v1 above, we know that there exists an
infinitesimal deformation Y of J supported in G1, and an element � in an appropriate
Sobolev completion of C1.S; v�1TE/ supported in G1 such thatZ

G1

˝
�1;Dv1� C

1
2
Y ı .dv1 �X��

†
K/ ı jS

˛
¤ 0: (4.13)

Therefore, if we identify G1 with G and think of v1j�G1TE D v1j
�
G1
T U1 as a component

of uj�GT U , then we haveZ
G

˝
�;Du� C

1
2
Y ı .du �XK/ ı jS

˛
¤ 0: (4.14)

Therefore, � D 0 and hence the regularity of u can be achieved by generic J .
This proves the regularity of elements in RdC1;h.x0Ixd ; : : : ; x1/pre. The transversal-

ity between the evaluation map RdC1;h.x0Ixd ; : : : ; x1/pre! .Hilbn.E//h and a pseudo-
cycle representing the inclusion .DHC/

h ! .Hilbn.E//h can be addressed by the same
reasoning. This finishes the proof.

By Lemma 4.3, we can define the A1 operations

CF.T Id�1 ; T Id / � � � � � CF.T I0 ; T I1/! CF.T I0 ; T Id / (4.15)

without introducing a Hamiltonian term K, whenever I0 < I1 < � � � < Id . In a standard
way, we can extend the A1 operations by adding idempotents.

Corollary 4.4. Let R D
L
I2I KeI and e2I D eI . We have a strictly unital A1 algebra

R˚
M
I0<I1

CF.T I0 ; T I1/ (4.16)

with unit
P
I2I eI .



C. Y. Mak, I. Smith 44

Proof. See [42, Section 7] for how the A1 structure is defined after adjoining the strict
units eI of the idempotents.

Corollary 4.5. The A1 algebra (4.16) is quasi-isomorphic to EndF �cyl;n.
L
I2I T

I /.

Proof. This follows from Lemmas 4.2 and 4.3, Corollary 4.4 and homological perturba-
tion.

4.2. Fukaya–Seidel embeds into cylindrical Fukaya–Seidel

In this section, we show that

�YE WD �
Œn�
E jYE W YE WD Hilbn.E/ nDr ! C (4.17)

is a Lefschetz fibration, and identify the subcategory of the associated Fukaya–Seidel
category D�F �.�YE / generated by thimbles with the category of perfect modules over
the A1-algebra (4.16).

Lemma 4.6. If f W C2 ! C is a holomorphic map without critical points, then so is the
induced map f Œn� W Hilbn.C2/! C.

Proof. Without loss of generality, it suffices to show that f Œn� is regular at a 0-dimensional
length n subscheme z supported at 0. We can also assume that f .x; y/ D x.

Let zt be a family of 0-dimensional length n subschemes such that z0 D z and zt is a
length n subscheme supported at .t; 0/. Then f Œn�.zt / D nt so f Œn� is regular at 0.

Corollary 4.7. Every critical point of � Œn�E W Hilbn.E/!Hı has support lying inside the
union of critical points of �E .

Proof. If the support of z 2 Hilbn.E/ contains a point p that is not a critical point of �E ,
then we can apply Lemma 4.6 locally near p to show that z is not a critical point of � Œn�E .

If z is a critical point of � Œn�E , consider whether the support is a disjoint union of n
points or not. We consider the former case first. For I 2 I, we use zI 2 Confn.E/ �
Hilbn.E/ to denote the subscheme with support being the union of the critical points
lying above ¹ci j i 2 I º.

Lemma 4.8 ([5, Proposition 2:1 and Lemma 2:2]). For each I 2 I, the point zI is a
Lefschetz critical point of � Œn�E and Sym.T I / is a Lefschetz thimble.

Proof. Since zI consists of pairwise distinct points, near zI , � Œn�E is locally given by
.u1; v1; : : : ; un; vn/ 7! u21C v

2
1 C � � � C u

2
nC v

2
n. Therefore, it admits a Lefschetz critical

point at zI .
Since ¹�E .T I;k/ºnkD1 are parallel lines, � Œn�E .Sym.T I // is also a straight line so it is

a Lefschetz thimble.

For the other case, we have a local lemma.
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Lemma 4.9. Let � W C2 ! C be �.u; v/ D u2 C v2. For n � 2 and z 2 Hilbn.C2/

supported at the origin of C2, the length of the projection of z by � is strictly less than n.

Proof. Let C D Spec.CŒw�/ and f W CŒw� ! CŒu; v� be the algebra homomorphism
sending w to u2 C v2. Let I be a length n ideal of CŒu; v� supported at the origin,
which corresponds to the point z in the statement. We want to show that the ideal f �1.I /
in CŒw� has length strictly less than n.

Since dimC.CŒu; v�=I / D n, we know that uavb 2 I if a; b;� 0 and a C b � n. It
means that when n is even (resp. odd), we have .u2C v2/n=2 2 I (resp. .u2 C v2/.nC1/=2

2 I ). Therefore, zn=2 2 f �1.I / when n is even (resp. z.nC1/=2 2 f �1.I / when n is odd),
which in turn implies that f �1.I / has length no greater than .nC 1/=2.

Corollary 4.10. The critical points of (4.17) are precisely ¹zI ºI2I and they are Lefschetz.

Proof. By Lemma 4.9, if the support of z has multiplicity 2 at some critical point of �E ,
then z 2 Dr which is not in YE D Hilbn.E/ nDr . The result then follows from Corol-
lary 4.7 and Lemma 4.8.

Remark 4.11. Even though (4.17) has only Lefschetz critical points, it is in general
not symplectically locally trivial near the horizontal boundary, because there are critical
points of � Œn�E W Hilbn.E/! C lying in Dr (when n > 1 so Dr ¤ ;).

In light of Remark 4.11, we should clarify what we mean by F �.�Y/. Objects of the
Fukaya–Seidel category F �.�Y/ are restricted to be Lefschetz thimbles Sym.T I / for
I 2 I. As in Corollary 4.5 (see [42, Section 7]), the A1 endomorphism algebra of the
direct sum of the objects is defined to be

R˚
M
I0<I1

CF.Sym.T I0/;Sym.T I1// (4.18)

where the Floer cochains are taken in Hilbn.E/ nDr and no Hamiltonian perturbation is
put on the Floer equations defining the A1 structure. As in [42], this definition is quasi-
isomorphic to the directed subcategory of the vanishing cycles in the distinguished fibre.

Proposition 4.12. There is a quasi-isomorphism between (4.16) and (4.18). As a result,
there is a cohomologically full and faithful embedding D�F �.�Y/! D�F � cyl;n.�E /.

Proof. There is an obvious bijective correspondence of objects and generators between
(4.16) and (4.18). Note that all pseudo-holomorphic maps involved in defining the �d

operations in (4.16) are contained in Hilbn.E/ nDr .
For the definition of the �d operations in (4.18), we can use moduli of pseudo-

holomorphic maps with no Hamiltonian perturbation term as in (4.16) (see Lemma 4.3)
but we need to use the domain moduli RdC1 instead of RdC1;h. It means that we equipS
d R

dC1
with a consistent choice of domain-dependent almost complex structures that

are equal to J Œn�E outside a compact subset of Hilbn.E/ nDr and generic inside the com-
pact subset, and we count the corresponding moduli of maps to define the �d operations
in (4.18).
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Given the difference of domain moduli for (4.18) and in (4.16), we cannot directly
compare the �d operations. The standard method to circumvent this is to use the ‘total
Fukaya category’ trick from [40, Section 10a].

Briefly, one can show that �d operations in (4.16) yield a category quasi-isomorphic

to another one in which the operations Q�d are defined by the domain moduli
S
d;hR

dC1;h

but with the domain dependent J chosen independent of the interior marked points, equal
to J Œn�E outside a compact subset of Hilbn.E/ n .DHC [Dr / and generic inside a com-
pact subset. Moreover, for generic J , we can assume that the universal evaluation map to
.Hilbn.E//h is transverse to Dh

HC. With these data, Q�d is defined by counting the corres-
ponding moduli of maps u such that u.z/ 2 DHC for z 2 mk.S/. In this modification, the
interior marked points are merely decorative, and one can canonically identify the moduli
spaces with the ones defining the �d operations in (4.18).

It is natural to ask when the thimbles ¹T I ºI2I split-generate D�F � cyl;n.�E /. We
next show that this holds when �E is the standard Lefschetz fibration on the type A
Milnor fibre.

5. Type A geometry

In this section, we apply the results in Sections 2–4 to the case in which E D Am�1 is a
typeAMilnor fibre. When 2n�m, the corresponding YE DHilbn.E/ nDr is the generic
fibre of the adjoint quotient map restricted to a nilpotent (or Slodowy) slice associated to
a nilpotent with two Jordan blocks, as studied in [32, 47] in the context of symplectic
Khovanov cohomology. At the end of this section, we show that if Claim 3.6 holds, then
the embedding in Proposition 4.12 is essentially surjective in this case.

5.1. Am�1 Milnor fibres

We recall the symplectic geometry of type A Milnor fibres, with an emphasis on veri-
fying the assumptions made in the set-up of Section 2. The following model is a slight
modification of the one in [19, Section 7]. Let m > 1 be an integer. Let

X WD C �CP1 �
mY
iD1

CP1i (5.1)

with coordinates .x; ŒY0 W Y1�; Œa1; b1�; : : : ; Œam; bm�/. Let M be the subvariety given by
the equations

aiY0 D biY1.x � i/ for i D 1; : : : ; m: (5.2)

Let �M WM ! C be the projection to the x coordinate. For x ¤ 1; : : : ; m, the fibre at x
is given by

Px WD �
�1
E .x/ D ¹.x; ŒY0 W Y1�; ŒY1.x � 1/ W Y0�; : : : ; ŒY1.x �m/ W Y0�/º; (5.3)
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which is a smooth rational curve. For x D i 2 ¹1; : : : ; mº,

Pi WD �
�1
E .i/ D ¹.i; ŒY0 W Y1�; ŒY1.i � 1/ W Y0�; : : : ; ŒY1.i �m/ W Y0�/ j Y0 ¤ 0º

[ ¹.i; Œ0 W 1�; Œ1 W 0�; : : : ; Œai W bi �; : : : ; Œ1 W 0�/ j Œai W bi � 2 CP1i º

is a union of two irreducible smooth rational curves. One can check that �M is a Lefschetz
fibration. Consider the following sections

D1 WD ¹.x; Œ1 W 0�; Œ0 W 1�; : : : ; Œ0 W 1�/ j x 2 Cº; (5.4)
D0 WD ¹.x; Œ0 W 1�; Œ1 W 0�; : : : ; Œ1 W 0�/ j x 2 Cº; (5.5)

and define D WD D0 [D1.

Lemma 5.1 (cf. [19, Lemma 7.1]). M nD is biholomorphic to ¹a2 C b2 C .c � 1/ � � �
� .c �m/ D 0º.

Proof. For a dense subset, the identification is given by

.a; b; c/ 7! .c; ŒaC
p
�1b W 1�; Œc � 1 W aC

p
�1b�; : : : ; Œc �m W aC

p
�1b�/: (5.6)

We leave the rest to the reader.

We call a smooth affine variety of the form ¹a2 C b2 C .c � c1/ � � � .c � cm/ D 0º

with pairwise distinct c1; : : : ; cm 2 C an Am�1 Milnor fibre. In particular, M nD is an
Am�1 Milnor fibre by Lemma 5.1.

Remark 5.2. By projecting to the c coordinate, ¹a2 C b2 C .c � c1/ � � � .c � cm/ D 0º
� C3 is the total space of a Lefschetz fibration with general fibre C� and with m nodal
fibres (over the ci ). Since we are primarily interested in the symplectic geometry and not
complex geometry ofMnD, we will also refer to any such Lefschetz fibration as anAm�1
Milnor fibre; in particular, the restriction of this Lefschetz fibration of MnD to a disc in
the c-plane containing all the critical values is a Milnor fibre.

Lemma 5.3 (cf. [19, Lemma 7.2]). Let !X be a product symplectic form on X that tames
the complex structure. Then !M WD !X jM is a symplectic form and Px is !M -orthogonal
to D for all x.

Proof. Both assertions are clear. For the second one, observe that TD and TPx lie in the
first and second factor of TC ˚ .T .CP1/mC1/ D TX , respectively.

Let !X be the standard symplectic form on X and define !M WD !X jM . For R > 0,
let BR � C be the open disc of radius R and MR D ��1M .BR/. Let �MR W

1
R
�M jMR W

MR ! B1, which is still a holomorphic Lefschetz fibration, and a symplectic Lefschetz
fibration with respect to !MR WD !M jMR . We equip the base unit disc B1 with the hyper-
bolic area form !hyp.
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Lemma 5.4. LetR >m. There exists a symplectic form !R onMR and a compact subset
CB � B1 such that

!R tames the complex structure; (5.7)

!R is symplectically locally trivial in ��1MR.B1 n CB/; (5.8)

D \MR is !R-symplectic-orthogonal to ��1MR.x/ for all x 2 B1 n CB : (5.9)

Proof. For � > 0 small, we have a holomorphic embedding

ˆ W .B1 n B1��/ �CP1 !MR;

.x; ŒY0 W Y1�/ 7! .Rx; ŒY0 W Y1�; ŒY1.x � 1/ W Y0�; : : : ; ŒY1.x �m/ W Y0�/;

which is compatible with the projection to B1 n B1�� .
Let g W .1 � �; 1�! .1 � �; 1� be an increasing function such that there exists ı > 0

such that g.r/ D r for r near 1 � �, g is strictly increasing when r 2 .1 � �; 1 � ı/, and
g.r/ D 1 for r � 1 � ı. It induces a smooth map �g WMR !MR such that

�g.z/ WD z for z … Im.ˆ/; (5.10)

�g.ˆ.re
p
�1� ; y// WD ˆ.g.r/e

p
�1� ; y/, where .x; ŒY0 W Y1�/ D .re

p
�1� ; y/: (5.11)

Then ��g!MR is a closed 2-form, non-degenerate in ��1MR.B1��/ and fibrewise symplectic.
A direct calculation shows that there is A > 0 such that for all a > A, 1

a
��g!MR C

��MR!hyp is a symplectic form that satisfies (5.7)–(5.9) for CB WD B1�ı .

Now, we give a dictionary to the set-up in Section 2.2.4. Let f W B1!H be a hyper-
bolic isometry. Let

Ee WDMR; �Ee WD f ı
1

R
�M jMR

; DE WD D \MR;

E WDMR; �E WD f ı �MR ; !E WD !R; CH WD f .CB/:

(5.12)

It is straightforward to check that the assumptions made in Section 2.2.4 are satisfied.
Most notably, !E tames the complex structure, �E j��1

E
.HınCH/

is symplectically locally

trivial and every holomorphic map CP1!Ee has positive algebraic intersection number
with DE .

Remark 5.5. There is an additional feature in this setting that is not assumed in Sec-
tion 2.2.4, namely, for all x 2 �E j��1

E
.HınCH/

, the complex structure at x respects the

symplectic decomposition TxE D T vx E ˚ T
h
x E.

5.2. Nilpotent slices

Letm;n 2N be such that 2n�m. LetG DGLm.C/ and g be its Lie algebra. The adjoint
quotient map � W g! h=W D Symm.C/ take an element A 2 g to the coefficients of its
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characteristic polynomial, i.e. the symmetric functions of the eigenvalues (with multipli-
cities) of A. The set of regular values is given by Confm.C/ � Symm.C/ D Cm. Let
Sn;m � g be the affine subspace consisting of the matrices

A D

0BBBBBBBBBBBBBBBB@

a1 1 b1
a2 0 1 b2
: : : : : : : : :

an�1 1 bn�1
an 0 bn
0 d1 1

: : : d2 0 1

0 : : : : : :

c1 : : : : : :

: : : dm�n�1 1

cn dm�n 0

1CCCCCCCCCCCCCCCCA
such that ai ; bi ; ci ; di 2 C for all i . Note that, for the first column of A to be well-defined,
we used 2n � m. The affine subspace Sn;m is a nilpotent (Slodowy) slice of the nilpotent
element of Jordan type .n; m � n/. The restriction �jSn;m W Sn;m ! Symm.C/ admits
a simultaneous resolution by Grothendieck (see [50], [14]), and �j�1Sn;m.Confm.C// !
Confm.C/ is a differentiable fibre bundle. For � 2 Confm.C/, we define

Yn;� WD �j
�1
Sn;m

.�/: (5.13)

Example 5.6. When n D 1,

Y1;� D ¹.b; c; z/ 2 C3
j bc C P� .z/ D 0º (5.14)

where P� .t/ is the degree m monic polynomial with roots given by elements in � . Note
that if � D ¹1; : : : ;mº, then Y1;� is biholomorphic to ¹a2C b2C .c � 1/ : : : .c �m/D 0º
(cf. Lemma 5.1).

We denote the projection to the z coordinate by �1;� W Y1;� ! C.

Lemma 5.7 ([31]). When 2n � m, there is a holomorphic open embedding j W Yn;� !
Hilbn.Y1;� /. The complement of the image is the relative Hilbert scheme of the projec-
tion �1;� , i.e. the subschemes whose projection to Cz does not have length n.

Proof. Although Manolescu [31] only considers the case m even, the same proof goes
through in general. More precisely, for A 2 Sn;m, it is easy to check that

det.tI � A/ D A.t/D.t/ � B.t/C.t/ (5.15)

where

A.t/ D tn � a1t
n�1
C � � � C .�1/nan;

B.t/ D b1t
n�1
� b2t

n�2
C � � � C .�1/n�1bn;

C.t/ D c1t
n�1
� c2t

n�2
C � � � C .�1/n�1cn;

D.t/ D tm�n � d1t
m�n�1

C � � � C .�1/m�ndm�n:
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Points in Yn;� are identified with 4-tuples of polynomials .A.t/;B.t/;C.t/;D.t// in CŒt �
such thatA.t/D.t/�B.t/C.t/DP� .t/. Points in Hilbn.Y1;� / are identified with ideals I

in O WD CŒb; c; z�=.bc C P� .z// such that dim O=I D n. The holomorphic embedding
j W Yn;� ! Hilbn.Y1;� / is given by

j.A.t/; B.t/; C.t/;D.t// D ¹Q.b; c; z/ j A.t/ divides Q.B.t/; C.t/; t/º:

Let � D ¹1; : : : ; mº and identify Y1;� and �1;� with M and �M from Section 5.1,
respectively. For Ee D MR as in the dictionary (5.12), we know that, by Lemma 5.7,
Yn;m WDHilbn.E/ nDr is an open subset of Yn;� when 2n�m. Moreover, Yn;m exhausts
Yn;� as R goes to infinity.

Lemma 5.8. When 2n � m, the map � Œn�1;� jj.Yn;� / is given by sending a matrix A 2 Yn;�
to the top left entry a1.

Proof. By [31, Remark 2.8], the composition

Yn;� ,! Hilbn.Y1;� /
�HC
��! Symn.Y1;� /

Symn.�E /
������! Symn.C/ (5.16)

is given by the roots of A.t/ (in the notation of the proof of Lemma 5.7). Therefore the
map � Œn�1;� ı j W Yn;� ! C is the sum of the roots of A.t/, which is a1.

5.3. Sliding invariance

If L0 and L1 are not connected by a path Lt 2 Lcyl;n, then the quasi-isomorphism types
of L0 and L1 in F � cyl;n.�E / are in general different. However, we present three special
cases where the quasi-isomorphism type is unchanged by a move not arising from an
isotopy through admissible tuples (recall Definition 4.1).

The first case is the analogue of [47, Lemma 49].

Lemma 5.9. Let � WD ¹1; : : : ; nº be an admissible tuple. Suppose i and j are match-
ing paths and i ¤ j . Let  0 be the matching path obtained by sliding i across j . If � 0 is
the admissible tuple obtained by replacing i by  0, then L� is quasi-isomorphic to L�0 .

Proof. First consider the case that n D 2, i D 1, j D 2 and m � 2n. In this case, it is
proved in [47, Lemma 49] that Sym.L�/ and Sym.L�0/ are Hamiltonian isotopic in Yn;m
(they treat the casemD 2n but the proof works for allm � 2n). In particular, we can find
a 2 HF.Sym.L�/;Sym.L�0// and b 2 HF.Sym.L�0/;Sym.L�// such that

�2.b; a/ D 1HF.Sym.L� /;Sym.L� // and �2.a; b/ D 1HF.Sym.L�0 /;Sym.L�0 //: (5.17)

As in the proof of Proposition 4.12, when we turn off the Hamiltonian perturba-
tion, there is a bijective correspondence between the J -holomorphic curves in Yn;m and
the corresponding curves in E. In particular, we can find a0 2 HF.L� ; L�0/ and b0 2
HF.L�0 ; L�/ such that

�2.b0; a0/ D 1HF.L� ;L� / and �2.a0; b0/ D 1HF.L�0 ;L�0 /; (5.18)
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x     x     x     x     x     x

1

2

Fig. 5.1. Floer cochain CF.L�0 ; L� /, where L�0 is in red and L� is in black.

which implies that L� and L�0 are quasi-isomorphic objects in F � cyl;n.E/. Moreover,
by the open mapping theorem, the projection to Hı of the curves contributing to �2 in
(5.18) is contained in the disc bounded by 1 and  0 (see Figure 5.1).

Now, we consider the general n with 2n � m. Without loss of generality, we continue
to assume i D 1 and j D 2. If � has no thimble path, then we do not need to impose
Hamiltonian perturbations in the Floer equation when we compute the differential and
product. In this case, the Floer solutions contributing to �2 in (5.18) persist because they
lie above the disc bounded by 1 and  0, which is not altered when adding the other
Lagrangian components. Together with the constant triangles on the other Lagrangian
components representing �2.e; e/ D e, we conclude that there exist a0 2 HF.L� ; L�0/
and b0 2 HF.L�0 ; L�/ such that (5.18) holds, and hence L� is quasi-isomorphic to L�0
(see Figure 5.1).

If � contains some thimble paths, then Hamiltonian perturbation terms in the Floer
equation are necessary. However, the Hamiltonian terms can be taken to be zero over the
disc bound by 1 and  0 and hence the Floer solutions contributing to �2 in (5.18) persist.
Again, together with the Floer triangles on the other Lagrangian components representing
�2.e; e/ D e (all of which are constant for an appropriate choice of Hamiltonian perturb-
ation, cf. the proof of Lemma 3.2), we conclude that L� is quasi-isomorphic to L�0 .

Finally, we explain the remaining case where 2n > m. To deal with this case, we want
to compare Yn;m and Yn;2n. Let E be as above so that Yn;m D Hilbn.E/ nDr . We denote
the corresponding E for Yn;2n by EC (i.e. Yn;2n D Hilbn.EC/ n Dr ). Similarly, we
denote the Lefschetz fibrationEC!Hı by �EC . LetW �H be ¹re.z/ > 2n�mC 1=2º
soW contains exactlym of the 2n critical values of �EC . Pick a diffeomorphism fromW

to H which sends ¹2n � m C 1; : : : ; 2nº to ¹1; : : : ; mº. The pre-images of � and � 0

under this diffeomorphism define two admissible tuples, denoted by �C and � 0C, respect-
ively. From the discussion above, we know that L�C is quasi-isomorphic to L�0

C
in

F �
cyl;n
W .�EC/ because we can find a0; b0 such that the corresponding (5.18) holds forL�C

and L�0
C

. The pairs L� , L�0 in E and L�C , L�0
C

in ��1EC.W / are isotopic through a
family of Lagrangians associated to a family of admissible tuples in Lefschetz fibrations
over the disc with varying symplectic form and almost complex structure, and where
the isotopy does not create or cancel intersection points. There is no bifurcation in the
moduli spaces of constant holomorphic triangles in such a deformation, so one can find
the corresponding a0; b0 for L� and L�0 such that (5.18) holds. Therefore, the result
follows.
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Lemma 5.10. Let � WD ¹1; : : : ; nº be an admissible tuple. Suppose i is a thimble path
and j is a matching path. Let  0 be the thimble path obtained by sliding i across j . If
� 0 is the admissible tuple obtained by replacing i with  0, then L� is quasi-isomorphic
to L�0 .

Proof. We first consider the case nD 2. Let 1 be the thimble path and 2 be the matching
path. We can assume that the thimble path  0 only intersects 1 at the starting point,
which we denote by c. Along with  0, we consider two more auxiliary thimble paths
1;w and  0w , which are obtained by positively wrapping 1 and  0 along the real line,
respectively. Without loss of generality (by possibly switching the roles of 1 and  0), we
can assume that 1;w intersects  0 in two points c and c0, and any other pair of thimble
paths amongst 1;  0; 1;w ;  0w intersect only in c (see Figure 5.2).

x            x            x     

1

2

1,w

w
c

c'

Fig. 5.2

Let �w WD ¹1;w ; 2º and � 0w WD ¹
0
w ; 2º. It is clear that L� is quasi-isomorphic

to L�w and L�0 is quasi-isomorphic to L�0w . To show that L� is quasi-isomorphic to L�0 ,
it suffices to find a 2 HF.L�0 ; L�/, b 2 HF.L�w ; L�0/, and a0 2 HF.L�0w ; L�w / such
that

�2.a; b/ D 1HF.L�w ;L� /
and �2.b; a0/ D 1HF.L

�0w
;L�0 /

(5.19)

and such that a is identified with a0 under the continuation map (with respect to positive
wrapping along the real line). In the given positions of the Lagrangians, we do not need
to use Hamiltonian terms on the Floer multiplication maps

HF.L�0 ; L�/ � HF.L�w ; L�0/! HF.L�w ; L�/; (5.20)

HF.L�w ; L�0/ � HF.L�0w ; L�w /! HF.L�0w ; L�0/: (5.21)

To compute these maps and hence verify (5.19), we rely on (5.18) and a restriction argu-
ment as follows.

We add a critical value Oc and extend the thimble paths 1;  0; 1;w ;  0w to run into Oc.
The thimble paths become matching paths O1; O 0; O1;w ; O 0w and we define O� WD ¹ O1; 2º,
O� 0 WD ¹ O 0; 2º, O�1;w D ¹ O1;w ; 2º and O� 0w WD ¹ O

0
w ; 2º (see Figure 5.3). By Lemma 5.9,

L O� , L O�0 , L O�1;w and L O�0w are all quasi-isomorphic objects. Therefore, there are Oa 2

HF.L O�0 ; L O�/,
Ob 2 HF.L O�w ; L O�0/ and Oa0 2 HF.L O�0w ; L O�w / such that

�2. Oa; Ob/ D 1HF.L O�w ;L O� /
and �2. Ob; Oa0/ D 1HF.L O�0w

;L O�0 /:
(5.22)
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x            x            x     

1

2

1,w

w
c

c'

c

Fig. 5.3

The degree 0 generator for each of the Floer cochain groups above is given by an intersec-
tion point lying above either c or c0, tensored with the degree 0 generator of CF.L2 ;L2/.
For example, the cochain complex CF.L O1;w ; L O 0/ is generated by one degree 0 and
one degree 1 generator lying over c0 (arising from morsifying the clean S1-intersection
locus [38]), and transverse degree 2 intersection points lying over each of c and Oc. Since
each of the CF0 groups involved has rank one, Oa, Ob and Oa0 are the unique degree 0 gener-
ators (up to sign). The curves contributing to (5.22) cannot hit the generator lying above Oc,
so all the curves lie away from the fibre above Oc. By the open mapping theorem, the pro-
jections of these curves are contained in the disc bounded by  0 and 1;w , which shows
that (5.19) holds before adding the critical value Oc. This verifies the case in which n D 2.

Since the previous computation is local, the general case where n > 2 can be treated
as in the proof of Lemma 5.9.

The last case involves sliding a thimble path across another thimble path. The proof is
again an adaption of Lemma 5.9, extending the thimble paths in order to apply the same
kind of restriction argument as in the proof of Lemma 5.10, so we omit it.

Lemma 5.11. Let � WD ¹1; : : : ; nº be an admissible tuple. Suppose i and j are
thimble paths and i ¤ j . Let  0 be the thimble path obtained by sliding i across j . If
� 0 is the admissible tuple obtained by replacing i with  0, then L� is quasi-isomorphic
to L�0 .

5.4. Generation

We now show that when E is the Am�1 Milnor fibre, the embedding in Proposition
4.12 is essentially surjective. In other words, we want to show that the split-closure A

of the thimbles T I is the entire D�F � cyl;n.�E /. We first recall some general facts for
A1/triangulated categories.

Lemma 5.12. The full subcategory generated by an exceptional collection is admiss-
ible .i.e. admits right and left adjoints/. In particular, A is an admissible subcategory of
D�F � cyl;n.�E /.

Proof. Recall that a category admitting a full exceptional collection is already split-closed
[40, Remark 5.14]. The result then follows from e.g. [23, Lemma 1.58].
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For a subcategory A of a triangulated category C , the right orthogonal A? of A is
the full subcategory of objects ¹X 2 C jHomC .A;X/ D 0 8A 2 Aº. The left orthogonal
is defined similarly.

Lemma 5.13. Let � be the Serre functor of D�F � cyl;n.�E /. If �.X/; ��1.X/ 2 A for
all X 2 A, then D�F � cyl;n.�E / D A˚A?.

Proof. If Y 2 D�F � cyl;n.�E / satisfies Hom.Y; X/ D 0 for all X 2 A, then
Hom.X;�.Y //_D 0 for allX 2A. It means that Hom.��1.X/;Y /D 0 for allX 2A. By
assumption, this is equivalent to Hom.X;Y /D 0 for allX 2A. Similarly, Hom.X;Y /D 0
for all X 2 A implies that Hom.Y; X/ D 0 for all X 2 A. As a result, the left ortho-
gonal of A coincides with its right orthogonal, so D�F � cyl;n.�E / splits as a direct sum
A˚A?.

Lemma 5.14. Suppose T D ¹T1; : : : ; Tnº 2 Lcyl;n is a Lagrangian tuple such that each
Ti is a thimble of �E . Then T is generated by ¹T I ºI2I .

Proof. First note that the braid group acts transitively (up to isotopy) on all the T D
¹T1; : : : ; Tnº such that Ti is a thimble for each i . Therefore, it suffices to show that for
each simple braid � and the associated symplectomorphism �� , the images �� .T I / and
��1� .T I / are generated by ¹T I ºI2I .

Let � be the positive half-twist swapping cj and cjC1. There are four cases of T I

to consider, namely, whether j and/or j C 1 is contained in I or not (recall that I is a
cardinality n subset of ¹1; : : : ; mº and ci D i C

p
�1 for all i D 1; : : : ; m). For each

of these four cases, one can apply the exact triangles from Corollary 3.5 and the sliding
invariance property in Lemma 5.11 to show that for all I 2 I, �� .T I / and ��1� .T I / are
generated by ¹T I ºI2I .

More precisely, if j; j C 1 … I , then �� .T I / D ��1� .T I / D T I . If j C 1 2 I and
j … I , then ��1� .T I /D T I

0

, where I 0 D .I n ¹j C 1º/[ ¹j º. On the other hand, �� .T I /
can be obtained from applying iterated exact triangles to T I and T I

0

(see the first row
of Figure 5.4 where n D 4, j D 2 and �� .T I / corresponds to the third term in the exact
triangle). If j 2 I and j C 1 … I , it is similar to the previous case. The last case is
j; j C 1 2 I . In this cae, both �� .T I / and ��1� .T I / can be obtained from applying the
sliding invariance property to T I (see the second row of Fgure 5.4).

x    x    x    x x    x    x    x x    x    x    x

→ →

x    x    x    x
→ [1]

x    x    x    x x    x    x    x-~

Fig. 5.4. The top row is an exact triangle so the third term is generated by the first and second terms,
which are in turn generated by ¹T I ºI2I . The second row represents two quasi-isomorphic objects.
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Corollary 5.15. Assume that Claim 3.6 holds. Then the assumption in Lemma 5.13 holds,
i.e. �.X/; ��1.X/ 2 A for all X 2 A.

Proof. By Claim 3.6, the Serre functor of D�F � cyl;n.�E / is given by the global mono-
dromy � up to grading shift. Therefore, it suffices to prove that for each thimble T I , the
images �.T I / and ��1.T I / are split-generated by the collection of thimbles ¹T I ºI2I .
This is the content of Lemma 5.14.

Proposition 5.16. If Claim 3.6 holds, then A? D 0, so D�F � cyl;n.�E / D A.

Proof. It suffices to show that for each L 2 Lcyl;n, there is an object T in A such that
Hom.T ; L/ ¤ 0. By definition, we have L D ¹L1; : : : ; Lnº and �E .Li / � Ui for some
contractible Ui . We can assume that Ui \ @H is connected and non-empty so that Hı nUi
is also contractible.

For each i , there is a thimble Ti of �E such that �E .Ti / � Ui and HF.Ti ; Li / ¤ 0.
This follows from the fact that thimbles generate F �

cyl;1
Ui

.�E / D F �.�E j��1
E
.Ui /

/, the
usual Fukaya–Seidel category of the Milnor fibre [40] (note that when n D 1 there are
no critical points at infinity). Let T D ¹T1; : : : ; Tnº. It is clear that there is a cochain
isomorphism

CF.T ; L/ '
nO
iD1

CF.Ti ; Li /; (5.23)

which implies that HF.T ; L/ ¤ 0. By Lemma 5.14, we have T 2 A, concluding the
proof.

Corollary 5.17. Given Claim 3.6, when n D m we have A D K so D�F � cyl;n.�E /

D Db.K/.

Proof. When n D m, there is only one cardinality n subset in ¹1; : : : ; mº so there is
only one object in A up to quasi-isomorphism (recall that A is defined to be the full
subcategory of F � cyl;n.�E / with objects T I ). Moreover, this object is an exceptional
object. Therefore, the result follows from Proposition 5.16.

This special case is not very important at this point but we will come back to it in
Section 11 when we define the symplectic annular Khovanov homology and compare it
to the algebraically defined annular Khovanov homology.

Remark 5.18. Even though Corollary 5.17 depends on Claim 3.6, the fact that
D�F �.�Y/ D D

b.K/ when n D m follows from the definitions.

6. The extended symplectic arc algebra

In this section, we will introduce a particular collection of admissible tuples, and hence the
corresponding collection of objects in Lcyl;n; these objects are motivated by the diagram-
matics in [13, 51]. We will prove that the cohomological Floer endomorphism algebra of
these objects recovers the algebraic extended arc algebra as a graded vector space (cf.



C. Y. Mak, I. Smith 56

Lemma 6.5). The A1 endomorphism algebra of this collection of objects will be the
‘extended symplectic arc algebra’, and will contain the symplectic arc algebra from [1] as
a subalgebra. The corresponding Lagrangian products in Hilbn.Am�1/nDr would not be
cones over Legendrian submanifolds at infinity, which is why it is important to be able to
study these Lagrangians in the cylindrical model. The later parts of the section begin the
study of the algebra structure on, and formality of, the extended symplectic arc algebra;
these studies continue in Sections 7 and 8 respectively.

6.1. Weights and projective Lagrangians

To introduce the collection of admissible tuples, we start with some terminology. Without
loss of generality, we assume that the critical values are ck WD kC

p
�1 for k D 1; : : : ;m.

A weight of type .n;m/ is a function � W ¹1; : : : ;mº! ¹^;_º such that j��1._/j D n. Let
ƒn;m be the set of all weights of type .n;m/. For � 2 ƒn;m, let c�;1 < � � � < c�;n be the
integers such that �.c�;j / D _. For each c�;j , if there exists c0 2 ��1.^/ with c0 > c�;j
and such that

j¹c 2 ¹1; : : : ; mº j �.c/ D _; c�;j < c < c
0
ºj

D j¹c 2 ¹1; : : : ; mº j �.c/ D ^; c�;j < c < c
0
ºj (6.1)

then we call c�;j a good point of �; the minimum of all c0 satisfying (6.1) is denoted
by c^

�;j
. If c�;j is not a good point of �, then we call it a bad point (see Figure 6.1 for an

example).

∧    ∧    v    v    ∧    v ∧    ∧   v    v    ∧    v ∧    ∧    v    v    ∧    v
c    c    c    cλ,1 λ,2 λ,3λ,2

∧

Fig. 6.1. The left figure represents a weight � 2 ƒ3;6 with a good point c�;2 and two bad points
c�;1; c�;3. The middle figure is � and the right figure is �.

For � 2 ƒn;m, we choose n pairwise disjoint embedded curves 
�;1
; : : : ; 

�;n
in

¹z 2 Hı j im.z/ � 1; re.z/ < 2mº such that

if c�;j is a good point, then 
�;j

is a matching path joining

c�;j C
p
�1 and c^�;j C

p
�1; (6.2)

if c�;j is a bad point, then 
�;j

is a thimble path from c�;j C
p
�1 to c�;j . (6.3)

We define � WD ¹
�;1
; : : : ; 

�;n
º and

L� WD ¹L�;1
; : : : ; L

�;n
º 2 Lcyl;n: (6.4)

The quasi-isomorphism type of L� is independent of the choice of � (i.e. of the particular
choice of paths) by Lemma 3.3.
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Similarly, for�2ƒn;m, we choose n pairwise disjoint embedded curves �;1; : : : ;�;n
in ¹z 2 Hı j im.z/ � 1 or re.z/ > 2mº such that

if c�;j is a good point, then �;j is a matching path joining
c�;j C

p
�1 and c^�;j C

p
�1, (6.5)

if c�;j is a bad point, then �;j is a thimble path from c�;j C
p
�1 to 6m � c�;j . (6.6)

We define � WD ¹�;1; : : : ; �;nº and

L� WD ¹L�;1 ; : : : ; L�;nº 2 Lcyl;n: (6.7)

The quasi-isomorphism type of L� is again independent of the choices of paths made in
defining �, by Lemma 3.3.

L

L

0

1

20

L0

L1

L0

L1

L0

L1

L0

L1

1 1
10

Fig. 6.2. The integer near an intersection point labels its degree as an element of CF.L0; L1/.

We want to choose a grading function on each L;j and L;k to induce a grading on
L� and L�. These grading functions are chosen so that (see Figure 6.2)

x 2 CF.L;k ; L;j / has degree a 2 N if x is the right end point
of a matching spheres; (6.8)

in particular, deg.x/ 2 ¹0; 1; 2º for all x 2 CF.L;k ; L;j /.
By iteratively applying Lemmas 5.9, 5.10 and 5.11, we obtain the following (see Fig-

ures 6.3, 6.4, 6.5):

Proposition 6.1. L� is quasi-isomorphic to L� in F � cyl;n.

x  x  x  x   x  x  x  x  x  x   x  x 

Fig. 6.3. Quasi-isomorphic compact objects.

x  x  x  x   x  x  x  x  x  x   x  x x  x  x  x   x  x  

Fig. 6.4. Quasi-isomorphic ‘mixed’ objects.
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x  x  x  x   x  x  x  x  x  x   x  x x  x  x  x   x  x  x  x  x  x   x  x  

Fig. 6.5. Quasi-isomorphic thimble objects.

When only the quasi-isomorphism type is important, we denote either of L� and L�
by L�.

Definition 6.2. The extended symplectic arc algebra is the A1 algebra

Ksymp
n;m WD

M
�;�02ƒn;m

CF.L�; L�0/; (6.9)

which is well-defined up to quasi-isomorphism.

We want to choose a basis for the cohomology of K
symp
n;m as follows. Let � [ �0 be

the union of all the paths in � and �0. By definition, � [ �0 is a union of embedded
circles and arcs; some circles might be nested inside one another. It will be helpful to
consider alternative admissible tuples which avoid such nesting (but for which the quasi-
isomorphism type of the associated Lagrangian tuple is unchanged).

Lemma 6.3 (cf. [1, Lemma 5.15]). There is an admissible tuple Q�0 such that

� if  2 �0 is not contained in a circle of � [ �0 (for example, when  is a thimble path),
then  2 Q�0;

� if  2 �0 is contained in a circle C of �[ �0, then there is a matching path Q 2 Q�0 with
the same end points as  such that Q is enclosed in C ;

� � [ Q�0 is a union of embedded circles and arcs such that none are nested.

Proof. The proof is analogous to the proof of Lemma 5.15 of [1]. The only difference for
our case is that we could have some thimble paths in admissible tuples.

More precisely, if  is contained in a circle C , then each critical value enclosed in C
is an end point of a matching path of �0 (and also a matching path of �), directly from the
definitions (6.2), (6.3) (resp. (6.5), (6.6)). Thus, a suitable Q�0 can be obtained by iteratively
applying Lemma 5.9 to �0, ensuring that L�0 is quasi-isomorphic to LQ�0 (see Figure 6.6).
Note that thimble paths are never contained in a circle, so do not need to be changed.

x    x    x    x    x    x    x    x    x    x    x    x

Fig. 6.6. Here � is red, Q�0 is grey, and �0 is black.
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Note that the definition of Q�0 depends on the pair .�; �0/, and not just on �0.

Lemma 6.4. The cohomology of K
symp
n;m , denoted by Ksymp

n;m , is given by

Ksymp
n;m D

M
�;�02ƒn;m

HF.L�; L Q�0/ D
M

�;�02ƒn;m

CF.L�; L Q�0/ (6.10)

as a graded vector space.

Proof. With the grading conventions of Figure 6.2, the pure degree elements in
CF.L�; L Q�0/ are concentrated either all in odd degrees or all in even degrees, so the
Floer differential vanishes (compare to [1, Proposition 5.12]).

We call a basis Bsymp for Ksymp
n;m geometric if each basis element in Bsymp is concen-

trated at a single intersection point in L� \ L Q�0 under the isomorphism (6.10). Once a Q�0
has been chosen for each pair .�; �0/, two different geometric bases can differ only by
signs.

6.2. Extended arc algebra

We briefly recall the diagrammatic extended arc algebra Kalg
n;m. Details can be found

in [13, 51], to which we refer for many details. For each weight � 2 ƒn;m, there is an

associated cup diagram �alg and a cap diagram �
alg

as follows. The cup diagram �alg can
be obtained by adding a thimble path to � from aC

p
�1 to a, for each a 2 ¹1; : : : ; mº,

such that a C
p
�1 is not contained in any of the paths in � (see Figure 6.7). For the

cap diagram �
alg

, we need to replace the thimble paths from c C
p
�1 to 6m � c in �

by vertical rays from c C
p
�1 to c C

p
�11, and in addition, for each a 2 ¹1; : : : ; mº

such that a C
p
�1 is not contained in any of the paths in �, add a thimble path from

a C
p
�1 to a C

p
�11 (see Figure 6.7). In this paper, the only cup and cap diagrams

we will encounter are given by �alg or �
alg

for some � 2 ƒn;m.

∧    ∧    v    v    ∧    v ∧    ∧    v    v    ∧    v ∧    ∧    v    v    ∧    v
c    c    c    cλ,1 λ,2 λ,3λ,2

∧

Fig. 6.7. From left to right: a weight �, the cup diagram �alg and the cap diagram �
alg

.

If ˇ is a cup diagram and � is a weight, then we say that ˇ� is an oriented cup diagram
if

the �-values of the two ends of every matching path in ˇ are different, (6.11)

if a and b are thimble paths in ˇ containing aC
p
�1 and b C

p
�1,

respectively, such that a < b and �.a/ D _, then �.b/ D _. (6.12)
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A cap diagram is defined to be the reflection ˇr of a cup diagram ˇ along the line
¹im.z/ D 1º. If ˛ is a cap diagram and � is a weight, then we say that �˛ is an oriented
cap diagram if ˛r� is an oriented cup diagram.

The union of a cup diagram ˇ and a cap diagram ˛ is denoted by ˇ [ ˛ and called a
circle diagram. This is a union of embedded circles and arcs in the upper half-plane. An
orientation of a circle diagram ˇ [ ˛ is a weight � such that �˛ and ˇ� are an oriented
cap diagram and an oriented cup diagram, respectively. Given such a �, we denote the
resulting oriented circle diagram by ˇ�˛.

A clockwise cap (resp. cup) of an oriented cap (resp. cup) diagram �˛ (resp. ˛�) is a
matching path  2 ˛ such that the �-value of the left end point is ^, and hence the �-value
of the right end point is _. The degree (or grading) of an oriented cap/cup/circle diagram
is defined to be the number of clockwise cups and caps in it. As a result, we have

deg.ˇ�˛/ D deg.�˛/C deg.ˇ�/: (6.13)

As a graded vector space, Kalg
n;m is generated by oriented circle diagrams of the form

�
alg
b
��

alg
a , for �; �a; �b 2 ƒn;m, and the grading of an oriented circle diagram is given by

its degree.

Lemma 6.5. There is a graded vector space isomorphism ˆ W K
symp
n;m ! K

alg
n;m of the

cohomological symplectic extended arc algebra and its algebraic counterpart.

Proof. Let �0; �1 2 ƒn;m. On the symplectic side, we consider the Floer cochains
CF.L�0 ; LQ�1/. On the diagrammatic side, we consider the graded vector space S.�0; �1/

generated by the orientations of the circle diagram �
alg
1 [ �

alg
0 . By (6.10), Ksymp

n;m DL
�0;�12ƒn;m

CF.L�0 ; LQ�1/, so it suffices to find a graded vector space isomorphism
between CF.L�0 ; LQ�1/ and S.�0; �1/ for all �0; �1.

Each generator x D ¹x1; : : : ; xnº of CF.L�0 ; LQ�1/ projects to an n-tuple of pair-

wise distinct points �E .x/ in ¹1; : : : ; mº C
p
�1, such that each Lagrangian component

in �0 and Q�1 contains exactly one �E .xi /. Conversely, every n-tuple of pairwise distinct
points in ¹1; : : : ; mº C

p
�1 satisfying this property uniquely determines a generator of

CF.L�0 ;LQ�1/. Let �x be the weight given by �x.a/D_ if and only if aC
p
�12�E .x/.

We claim that the linear map ˆ�0;�1 W CF.L�0 ; LQ�1/! S.�0; �1/ given by

x D ¹x1; : : : ; xnº 7! �x (6.14)

is a graded vector space isomorphism.
To see that ˆ�0;�1 is well-defined, we observe that all the thimble paths contained

in �alg but not in � are on the left of the thimble paths (if any) in �, and the same is true
for �

alg
and �. Therefore, �x satisfies (6.12). On the other hand, since each Lagrangian

component contains exactly one of the xi , it means that �x also satisfies (6.11).
It is routine to check that ˆ�0;�1 is bijective and preserves the grading, using (6.8)

and (6.13).
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The algebra structure on Kalg
n;m is defined by applying an appropriate diagrammatic

TQFT. We briefly recall one possible definition of this algebra, and some crucial proper-
ties that we will use later, in Section 6.4 below, and refer the readers to [13, Sections 3 & 4]
for a detailed exposition.

6.3. Compact subalgebra

We call a weight � 2ƒn;m a compact weight if � (and hence �) consists only of matching
paths. Let ƒcn;m � ƒn;m be the subset of compact weights. We define

H symp
n;m WD

M
�;�02ƒcn;m

CF.L�; L�0/; (6.15)

which is well-defined up to quasi-isomorphism. As in (6.10), its cohomology is given by

H symp
n;m D

M
�;�02ƒcn;m

HF.L�; L�0/ D
M

�;�02ƒcn;m

CF.L�; LQ�0/: (6.16)

A basis of H symp
n;m is called geometric if it is given by the geometric intersection points

in CF.L�; LQ�0/ under the isomorphism (6.16) (again such bases are well-defined up to
sign).

On the diagrammatic side, we can define the corresponding subalgebraH alg
n;m ofKalg

n;m,
which is generated by oriented circle diagrams such that the underlying cap and cup dia-
grams are given by �

alg
and �0 alg for some �; �0 2 ƒcn;m. It is clear that the graded vector

space isomorphism in Lemma 6.5 induces a graded vector space isomorphism between
H

symp
n;m and H alg

n;m.
Previous study has focussed on the case m D 2n. In this case, H alg

n;2n is generated by
oriented circle diagrams whose underlying diagram only contains circles (and the cor-
responding Lagrangian submanifolds of Hilbn.A2n�1/ are compact, being products of
spheres rather than products of spheres and thimbles). The algebra H alg

n;2n is also known
as Khovanov’s arc algebra.

Theorem 6.6 ([1, 2]). The A1 algebra H symp
n;2n is formal. Moreover, there is an isomor-

phism betweenH alg
n;2n andH symp

n;2n , sending the oriented circle diagram basis ofH alg
n;2n to a

geometric basis of H symp
n;2n .

Sketch of proof. Formality of H symp
n;2n is the main result of [1], whilst a basis-preserving

algebra isomorphism between H alg
n;2n and H symp

n;2n is one of the main results of [2]. We now
recall the basis for H symp

n;2n chosen in [2], and explain why it is a geometric basis in our
sense. The essential point [2, Corollary 5.5] is the compatibility of the basis with various
Künneth-type functors and decompositions (of the cohomology of products of spheres
and thimbles with the cohomologies of the constituent factors).
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The natural action of the braid group Br2n on A2n�1 and on Yn;2n factors through an
action of the symmetric group Sym2n on cohomology. Furthermore, there are inclusions

A2n�1 D Y1;2n � Yn;2n � .P
1/2n

which induce Sym2n-equivariant cohomology isomorphisms

H 2.A2n�1/ D H
2.Y1;2n/ ' H

2.Yn;2n/ ' Zhe1; : : : ; e2ni=
DX

ei

E
 Zhe1; : : : ; e2ni

D H 2..P1/2n/: (6.17)

In particular, the image of ¹ei j 1� i � 2n� 1º inH 2.Yn;2n/ forms a basis. The restriction
mapH 2.Yn;2n/!H 2.Sym.L�// is surjective for each � 2ƒcn;2n, and by identifying the
range with the cohomology of suitable multi-diagonals in .P1/2n, it is proved in [2] that
the chosen basis has the property that it induces a well-defined basis for H 2.Sym.L�//,
i.e. there is a basis of the latter such that each ei maps to a basis element or to zero.

Now, we translate the basis of H 2.Yn;2n/ to a basis of H 2.A2n�1/. Denote by
s1; : : : ; s2n�1 the homology classes of the 2n � 1 standard matching spheres in A2n�1,
i.e. the ones that lie above ¹im.z/ D 1º; here they are labelled from left to right, and the
spheres are oriented as the complex curves in the resolution of the A2n�1 surface singu-
larity. We denote the image of ei under (6.17) by vi 2 H 2.A2n�1/ for 1 � i � 2n � 1.
They satisfy

v1 D s
�
1 and vj D .�1/

j .s�j�1 � s
�
j / for 1 < j � 2n � 1 (6.18)

where � stands for linear dual. The set ¹vj º2n�1jD1 is the corresponding basis for
H 2.A2n�1/. It induces a well-defined basis for HF2.L�; L�/ via restriction

H 2.A2n�1/! H 2.L�/ D HF2.L�; L�/ (6.19)

where the first map is defined by regarding L� as the disjoint union of the matching
spheres it contains, and hence as a submanifold ofA2n�1. This basis forH 2.L�/ naturally
corresponds to the basis of H 2.Sym.L�//. Monomial products of the resulting elements
give a basis for HF�.L�; L�/.

When HF.L�; L�0/ ¤ ¹0º, it has rank 1 in minimal degree. Let amin be a minimal
degree generator of HF.L�; L�0/ over the integers Z. Then HF.L�; L�0/ is generated by
amin as a module over each of HF.L�; L�/ and HF.L�0 ; L�0/. A basis in HF.L�; L�0/
can therefore be defined by taking products of amin with the bases for either HF.L�; L�/
or HF.L�0 ; L�0/; these act via the action of H�.Yn;2n/, which acts centrally, so there
is no ambiguity (aside from a choice of sign of amin). This finishes recalling the basis
for H symp

n;2n , which we call a convenient basis.
We claim this convenient basis is geometric. Let S�;1; : : : ; S�;n be the matching

spheres that L� contains. The first observation is that vj .S�;k/ 2 ¹0;˙1º for each j , and
furthermore, for each j there is exactly one k for which vj .S�;k/¤ 0. This means that the
convenient basis of H 2.Sym.L�// induced from H 2.Yn;2n/ coincides with the product
basis of the cohomology of Sym.L�/ as a product of matching spheres. The geometric
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basis in CF.L�; LQ�/ also coincides with the product basis, because Q� is a Hamiltonian
push-off of �, and �[ Q� consists of n embedded pairwise non-nested circles. That suffices
to show that the convenient basis on HF.L�; L�/ is geometric.

On the other hand, the minimal degree generator of HF.L�; L�0/ is forced to be
geometric, because the minimal degree subspace has rank 1. Since � [ Q�0 is a union of
embedded and non-nested circles, the product map

HF.L�; LQ�0/˝ HF.L�; L�/! HF.L�; LQ�0/ (6.20)

decomposes into pieces, one for each circle C in � [ Q�0. More precisely, we have iso-
morphisms

HF.L�; LQ�0/ D
O
C

H�.S2/; (6.21)

HF.L�; L�/ D
O
C

.H�.S2//˝mC ; (6.22)

where the tensor product is over all circles C in � [ Q�0, and mC is the number of paths
of � that lie in C . The product map (6.20) decomposes into the tensor product over all
circles C of maps

H�.S2/˝ .H�.S2//˝mC ! H�.S2/ (6.23)

for which a typical local model is given by Figure 6.8. The product of the degree 0 geo-
metric generator in H�.S2/ and a degree 2 geometric generator in .H�.S2//˝mC is,
up to sign, the degree 2 geometric generator in H�.S2/, because H 2.S2/ has rank 1, the
product is (by definition) a basis element of the convenient basis, and [2, Section 5] proves
that the convenient basis is a basis for the cohomology groups over Z. We conclude that
the convenient basis is geometric.

     x                x    x                x 

Fig. 6.8. A circle C in � [ Q�0 with mC D 2 (see Figure 6.6).

Corollary 6.7. After possibly changingˆ by sign on certain basis elements, the resulting
graded vector space isomorphism ˆjH symp

n;2n
is an algebra isomorphism between H symp

n;2n

and H alg
n;2n.

From now on, we assume ˆjH symp
n;2n

has been chosen to be an algebra isomorphism.

6.4. From the compact arc algebra to the extended arc algebra

In this section, we summarize the multiplication rule for Kalg
n;m and H alg

n;m from [13, Sec-
tions 3 & 4]. Our approach is dictated by two considerations. First, the easiest (though not
the original) description of the algebra structure on Kalg

n;m is to realise Kalg
n;m as a quotient
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algebra of H alg
m;2m. Second, in the next section, we precisely compute Ksymp

n;m by realising
it as a quotient of H symp

m;2m by an ideal which, under the isomorphism H
alg
m;2m D H

symp
m;2m

(Theorem 6.6), we identify with the corresponding ideal on the algebraic side. The main
purpose of this section is therefore to recall this quotient description of Kalg

n;m.
For completeness, we briefly recall the multiplication rule for H alg

m;2m from [13,
Section 3, multiplication]. Let d�c and b�a be two oriented circle diagrams with
a; b; c; d 2 ƒcn;m. If b ¤ c, then the product is defined to be zero. If b D c, then we
put the diagram b�a above the diagram d�c and apply the TQFT surgery procedure –
based on the Frobenius algebra underlying H�.S2IZ/, and described e.g. in [13, Sec-
tion 3, the surgery procedure] iteratively to convert it into a disjoint union of diagrams
each of which has no cups/caps in the ‘middle section’. After this, the middle sections are
unions of line segments; we shrink each such line segment to a point to obtain a disjoint
union of some new oriented circle diagrams. The product .d�c/.b�a/ is then defined to
be the sum of the corresponding basis vectors of H alg

m;2m.
One distinguished feature of this TQFT surgery procedure is that the output circle

(resp. disjoint union of two circles) is (resp. are) oriented according to the following rules,
where 1, counterclockwise orientation, and x, clockwise orientation:

1˝ 1 7! 1; 1˝ x 7! x; x ˝ 1 7! x; x ˝ x 7! 0; (6.24)
1 7! 1˝ x C x ˝ 1; x 7! x ˝ x: (6.25)

Each TQFT operation yields a disjoint union of zero, one or two new oriented diagrams
replacing the old diagram (the iterative application may yield larger linear combinations
of diagrams). This completes our résumé of H alg

m;2m as an algebra.
We now recall how to realiseKalg

n;m as a quotient algebra ofH alg
m;2m; for an independent

definition of Kalg
n;m, see [13]. For � 2 ƒn;m, we define its closure cl.�/ 2 ƒcm;2m by

cl.�/ D

8̂<̂
:
_ if a � m � n;
�.a � .m � n// if m � n < a � 2m � n;
^ if a > 2m � n:

(6.26)

Intuitively, cl.�/ can be regarded as puttingm� nmany_’s and nmany^’s to the left and
right of �, respectively, to make cl.�/ a compact weight. For any oriented circle diagram
b�a 2 K

alg
n;m, we define

cl.b�a/ WD cl.b/ cl.�/ cl.a/; (6.27)

which is an oriented circle diagram of H alg
m;2m.

Lemma 6.8 ([13, Lemma 4.2]). The map b�a 7! cl.b�a/ is a degree preserving bijection
between the set of oriented circle diagrams inKalg

n;m with underlying weight � 2ƒn;m and
the set of oriented circle diagrams in H alg

m;2m with underlying weight cl.�/.
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Let Iƒn;m be the subspace of H alg
m;2m spanned by the vectors

¹b�a 2 H
alg
m;2m j oriented circle diagram b�a with � 2 ƒm;2m n cl.ƒn;m/º; (6.28)

which is a two-sided ideal. The condition � 2 ƒm;2m n cl.ƒn;m/ is equivalent to

¹1; : : : ; m � nº ª ��1._/ or ¹2m � nC 1; : : : ; 2mº ª ��1.^/: (6.29)

In view of Lemma 6.8, the vectors

¹cl.b�a/C Iƒn;m j oriented circle diagrams b�a with � 2 ƒn;mº (6.30)

give a basis for the quotient algebra H alg
m;2m=Iƒn;m . We deduce that the map

cl W Kalg
n;m ! H

alg
m;2m=Iƒn;m ; b�a 7! cl.b�a/C Iƒn;m ; (6.31)

is an isomorphism of graded vector spaces. We use this to transport the algebra structure
on H alg

m;2m=Iƒn;m to Kalg
n;m.

We want to extract from (6.31) two algebra isomorphisms

H alg
n;m D H

alg
m�n;2.m�n/

=I for 2n � m; (6.32)

Kalg
n;m D H

alg
n;mCn=J for all n � m; (6.33)

where I and J are certain ideals to be specified. Note that (6.32) is an empty state-
ment when 2n > m because, in this case, H alg

n;m D 0, so one can simply take I to be
H

alg
m�n;2.m�n/

.

By definition, an oriented circle diagram b�a 2K
alg
n;m lies inH alg

n;m if and only if a and
b have the property that all the ca;j and cb;j are good points (see (6.1)). That is equivalent
to asking

c^cl.a/;k D c
^
cl.b/;k D 2mC 1 � k for all k D 1; : : : ; n: (6.34)

It means that for b�a 2 H alg
n;m, cl.b�a/ has n counterclockwise circles enclosing an ori-

ented circle diagram, which we call c.b�a/, and which defines an element inH alg
m�n;2.m�n/

.

Let f WH alg
m�n;2.m�n/

!H
alg
m;2m be the algebra embedding given by adding to an oriented

circle diagram in H alg
m�n;2.m�n/

precisely n counterclockwise circles enclosing it, so we
have f ı c D cl.

Lemma 6.9. We have a commutative diagram of algebra maps

H
alg
n;m H

alg
m;2m=Iƒn;m

H
alg
m�n;2.m�n/

=f �1.Iƒn;m/

c

cl

f
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Proof. The diagram is commutative by construction, and we know that f and cl are
algebra maps. It remains to check that c is also an algebra map, which follows from
the injectivity of f and the fact that f and cl are algebra maps.

By (6.28), (6.29) and the description of f , one checks that the ideal I WD f �1.Iƒn;m/
is the subspace of H alg

m�n;2.m�n/
spanned by®

b�a 2 H
alg
m�n;2.m�n/

ˇ̌
oriented circle diagrams b�a

such that ¹1; : : : ; m � 2nº ª ��1._/
¯
: (6.35)

From (6.35), it is obvious that c is an isomorphism (of vector spaces, and hence algebras)

c W H alg
n;m ' H

alg
m�n;2.m�n/

=I: (6.36)

We given an equivalent reformulation of (6.36). For 2n � m, define c W ƒn;m !

ƒm�n;2.m�n/ by

c.�/.a/ WD

´
_ if a � m � 2n;
�.a � .m � 2n// if a > m � 2n:

(6.37)

This has the property that c.ƒcn;m/ � ƒ
c
m�n;2.m�n/

. For b�a 2 H alg
n;m, we define

c.b�a/ D c.b/c.�/c.a/ 2 H
alg
m�n;2.m�n/

: (6.38)

Let I be as in (6.35). Then

c W H alg
n;m ! H

alg
m�n;2.m�n/

=I; b�a 7! c.b�a/C I; (6.39)

is an algebra isomorphism.
Now we explain the definition of the ideal J appearing in (6.33). Let I .1/n;m and I .2/n;m

be the ideals of H alg
m;2m spanned by®
b�a 2 H

alg
m;2m

ˇ̌
¹1; : : : ; m � nº ª ��1._//

¯
and (6.40)®

b�a 2 H
alg
m;2m

ˇ̌
¹2m � nC 1; : : : ; 2mº ª ��1.^/

¯
(6.41)

respectively (see Figure 6.9). In view of (6.28) and (6.29), we have In;m D I
.1/
n;m C I

.2/
n;m.

v        v        v    v

Fig. 6.9. When m D 4 and n D 2, the oriented circle diagram above represents an element in I .1/n;m
but not in I .2/n;m.
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This implies that

Kalg
n;m D H

alg
m;2m=Iƒn;m D .H

alg
m;2m=I

.1/
n;m/=.I

.1/
n;m C I

.2/
n;m=I

.1/
n;m/: (6.42)

From (6.39), we have H alg
m;2m=I

.1/
n;m D H

alg
n;mCn so (6.42) becomes

Kalg
n;m D H

alg
n;mCn=J (6.43)

where J is spanned by®
b�a 2 H

alg
n;mCn

ˇ̌
b�a is an oriented circle diagram and

¹mC 1; : : : ; mC nº ª ��1.^/
¯

(6.44)

We give an equivalent reformulation of (6.43). Let e W ƒn;m ! ƒcn;mCn be the inclu-
sion

e.�/.a/ WD

´
�.a/ if a � m;
^ if a > m:

(6.45)

For b�a 2 Kalg
n;m, we define

e.b�a/ D e.b/e.�/e.a/ 2 H
alg
n;mCn: (6.46)

Let J be as in (6.44). Then

e W Kalg
n;m ! H

alg
n;mCn=J; b�a 7! e.b�a/C J; (6.47)

is an algebra isomorphism.

7. More algebra isomorphisms

We will next identify Ksymp
n;m and Kalg

n;m as algebras for all n;m. The proof of Theorem 6.6
in [2] relied in an essential way on the fact that the Floer product for a triple of Lag-
rangians meeting pairwise cleanly can be understood, via ‘plumbing models’, as a pos-
sibly sign-twisted convolution product, and that for every triple of Lagrangians associ-
ated to compact weights, one could find non-vanishing Floer products which factored
through products associated to triples with plumbing models. By contrast, for the exten-
ded algebra, there are triples of weights and corresponding Lagrangians for which the
product of minimal degree generators cannot be written as a product of minimal degree
generators between interpolating Lagrangians with plumbing models. Instead of mimick-
ing the strategy of [2] in provingH symp

n;2n DH
alg
n;2n, we will instead reduce the isomorphism

of extended arc algebras (in stages) to Theorem 6.6 by restriction-type arguments similar
to those appearing in the proof of Lemma 5.10. The crucial point, as explained in Sec-
tion 6.4, is that all the extended arc algebras can be understood as subquotients of the
algebras H alg

n;2n.
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7.1. The compact cases

We first explain how to compute the algebra structure on H symp
n;m for all n;m. We assume

2n � m because H symp
n;m D 0 otherwise. Let c W ƒcn;m ! ƒc

m�n;2.m�n/
be the injection

given by (6.37). Let

H c
n;m WD

M
�0;�12ƒ

c
n;m

HF.Lc.�0/
; Lc.�1/

/; (7.1)

which is a subalgebra of H symp
m�n;2.m�n/

D H
alg
m�n;2.m�n/

, so in particular H c
n;m is formal.

We want to compare H symp
n;m with H c

n;m. Note that the Lagrangians underlying H symp
n;m are

diffeomorphic to .S2/n, whilst those relevant to H c
n;m are .S2/m�n, where m � n � n.

For each ordered pair .�0; �1/ such that �0; �1 2 ƒcn;m, we choose upper matchings
c.�0/ and c.�1/ such that

for a D 1; : : : ; m � 2n, the slope at aC
p
�1 of the matching path in c.�0/ starting

from aC
p
�1 is larger than that of the corresponding path in c.�1/: (7.2)

Remark 7.1. Condition (7.2) is used to eliminate the existence of certain pseudo-holo-
morphic maps. For example, let l0; l1; l2 be upper matching paths from 1 C

p
�1 to

2C
p
�1 such that the slopes at 1C

p
�1 are in decreasing order (Figure 7.1). Let Li be

the corresponding matching spheres. Let u be a solution contributing to the multiplication
map

CF.L1; L2/ � CF.L0; L1/! CF.L0; L2/ (7.3)

such that �E ı v is holomorphic. We claim that if the output of u maps to 1 C
p
�1

under �E , so do all the inputs of v. This is because if �E ı v restricted to the boundary
labelled by L0 is not a constant, then the image of v must have non-empty intersection
with the unbounded region of H n .l0 [ l1 [ l2/ by the holomorphicity of �E ı v. This
in turn implies that �E ı v is not relatively compact by the open mapping theorem, a
contradiction. As a result, one can show that �E ı v restricted to the boundary labelled by
L0 is a constant. Inductively applying this argument, one can show that the restriction of
�E ı v to the whole boundary is constant, and hence u itself is a constant map.

x          x
l

l

l

2

1

0

Fig. 7.1

The choices of matchings depend on the ordered pair we start with (cf. the discussion

around Figure 6.6); to emphasize this dependence, we denote the matchings by c.�0/
�0;�1
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and c.�1/
�0;�1 respectively. Let I�0;�1 be the subspace of CF.L

c.�0/
�0;�1 ; Lc.�1/

�0;�1 /

generated by

B�0;�1 WD
®
x 2 X.L

c.�0/
�0;�1 ; Lc.�1/

�0;�1 /
ˇ̌
¹1; : : : ; m � 2nº C

p
�1 ª �E .x/

¯
Let G�0;�1 WD X.L

c.�0/
�0;�1 ; Lc.�1/

�0;�1 / n B�0;�1 . We define I D
L

I�0;�1 , B WDL
B�0;�1 and G D

L
G�0;�1 . We use the symbol I because, as we will see in Lemma

7.6, I is actually an ideal.

Lemma 7.2. �1.I�0;�1/ � I�0;�1 , so I�0;�1 descends to a vector subspace of H c
n;m,

which we denote by I�0;�1 .

Proof. It suffices to show that if the x0-coefficient of�1.x1/ is non-zero for some x0 2 G ,
then x1 2 G .

By definition, x0 2 G implies that ¹1; : : : ;m� 2nº C
p
�1 � �E .x0/. Let v W†!E

be a J -holomorphic map contributing to the x0-coefficient of �1.x1/ such that near an
output puncture �0, v is asymptotic to the output lying above 1C

p
�1. We project v to

Hı by �E and apply the open mapping theorem. The condition (7.2) when a D 1 forces
at least one of the boundary components of † adjacent to �0 to be mapped constantly to
1C
p
�1 by �E ı v. Let the two boundary components of † adjacent to �0 be @i† and

@j†, respectively, and suppose �E ı vj@j† D 1C
p
�1. As a result, the other puncture

� 0 that is adjacent to @j† is also mapped to 1C
p
�1 by �E ı v. Let the other boundary

component of † that is adjacent to � 0 be @j
0

†.
By the Lagrangian boundary conditions, v.@i†/ and v.@j

0

†/ are both contained in the
Lagrangian components ofL

c.�0/
�0;�1 (orL

c.�1/
�0;�1 ). However, each ofL

c.�0/
�0;�1 and

L
c.�1/

�0;�1 has only one component whose projection to Hı contains 1C
p
�1. There-

fore @i† D @j
0

†, and the two punctures adjacent to @i† are both mapped to 1C
p
�1

under �E ı v. By the open mapping theorem, the restriction of �E ı v to the connected
component of † that contains �0 is a constant map, and that connected component of †
is a bigon.

The matching paths starting from 1 C
p
�1 and the Lagrangian matching spheres

lying above those paths are not Lagrangian boundary conditions of the restriction of v
to the other connected components of †. We can therefore apply the previous reasoning
inductively to a D 1; : : : ; m � 2n. The conclusion is that any v W †! E contributing
to the x0-coefficient of �1.x1/ contains m � 2n bigon components, each of which maps
by a constant map to aC

p
�1 under �E ı v, for a D 1; : : : ; m � 2n, respectively. This

implies that ¹1; : : : ; m � 2nº C
p
�1 � �E .x1/, and hence x1 2 G .

Corollary 7.3. HF.L
c.�0/

; L
c.�1/

/=I�0;�1 D HF.L�0 ; L�1/ as graded vector spaces.

Proof. For j D 0;1, by removing the matching paths of c.�j /
�0;�1 that contain aC

p
�1

for some a D 1; : : : ;m� 2n and translating the remaining matching paths by �.m� 2n/,
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we get an upper matching �j of �j . Therefore, there is an obvious bijective correspond-
ence

G�0;�1 ' X.L�0 ; L�1/ (7.4)

given by forgetting the elements in a tuple that lie above ¹1; : : : ; m � 2nº C
p
�1, and

then translating the rest by �.m � 2n/.
By the last paragraph of the proof of Lemma 7.2, there is a canonical isomorphism

between the chain complexes

CF.L
c.�0/

�0;�1 ; Lc.�1/
�0;�1 /=I�0;�1 Š CF.L�0 ; L�1/ (7.5)

which on generators is given by (7.4), and on differentials by incorporating or removing
the m � 2n constant bigon components from the proof of Lemma 7.2.

Lemma 7.4. The subspace I�0;�1 is independent of the choices of c.�0/
�0;�1 and

c.�1/
�0;�1 , provided (7.2) is satisfied.

Proof. Let c.�0/
a and c.�0/

b be two different choices of c.�0/
�0;�1 such that (7.2) is

satisfied for the pairs .c.�0/a; c.�1/
�0;�1

/ and .c.�0/b; c.�1/
�0;�1

/.

By interpolating slopes, there exists another choice c.�0/
c of c.�0/

�0;�1 such that
(7.2) is satisfied for the pairs .c.�0/c ; c.�0/a/ and .c.�0/c ; c.�0/b/. Let � be a con-
tinuation element (i.e the image of the identity element under a continuation map) of
HF.Lc.�0/c

; Lc.�0/a
/.

Let I a and I c be the respective I�0;�1 for the spaces HF.Lc.�0/a
; L

c.�1/
�0;�1 / and

HF.Lc.�0/c
; L

c.�1/
�0;�1 /. We need to show that the isomorphism

�2.�; �/ W HF.Lc.�0/a
; L

c.�1/
�0;�1 /! HF.Lc.�0/c

; L
c.�1/

�0;�1 / (7.6)

sends I a to I c . By Corollary 7.3 and for dimension reasons, it suffices to show that the
image of I a under �2.�; �/ is contained in I c . The same will then be true when we
replace c.�0/

a by c.�0/
b , so the result will follow.

The proof that �2.I a; �/ � I c is similar to the proof of Lemma 7.2. Let G a and G c

be the respective G�0;�1 for CF.Lc.�0/a
; L

c.�1/
�0;�1 / and CF.Lc.�0/c

; L
c.�1/

�0;�1 /. By
slight abuse of notation, we denote a chain level lift of � to CF.Lc.�0/c

; Lc.�0/a
/ by � . It

suffices to show that if the x0-coefficient of �2.x1; �/ is non-zero for some x0 2 G c , then
x1 2 G a.

By definition, x0 2 G c implies that ¹1; : : : ;m� 2nºC
p
�1 ��E .x0/. Let v W†!E

be a J -holomorphic map contributing to the x0-coefficient of �2.x1; �/ such that near an
output puncture �0, v is asymptotic to the output lying above 1 C

p
�1. We project v

to Hı by �E and apply the open mapping theorem. Note that both .c.�0/a; c.�1/
�0;�1

/

and .c.�0/c ;c.�0/a/ satisfying (7.2) implies that .c.�0/c ;c.�1/
�0;�1

/ also satisfies (7.2).
This forces at least one of the boundary components of † adjacent to �0 to be mapped
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constantly to 1C
p
�1 by �E ı v. Let the two boundary components of † adjacent to �0

be @i† and @j†, respectively, and suppose �E ı vj@j† D 1C
p
�1. As before, the other

puncture � 0 that is adjacent to @j† is also mapped to 1C
p
�1 by �E ı v. Let the other

boundary component of † that is adjacent to � 0 be @j
0

†.
By examining the slopes of the matching paths at 1C

p
�1 again, either @i† or @j

0

†

is mapped to the constant value 1C
p
�1 by �E ı v. Say @j

0

† is mapped this way; then
the next boundary components of † and @i† are mapped to components of the same
Lagrangian tuple (i.e. Lc.�0/c

, Lc.�0/a
or L

c.�1/
�0;�1 ) under v. As a result, these two

boundary components coincide, �E ı v restricted to the component of † containing �0 is
a constant map, and this component is a triangle.

Applying this argument to all a C
p
�1 for a D 1; : : : ; m � 2n, we conclude that

¹1; : : : ; m � 2nº C
p
�1 � �E .x1/ and hence x1 2 G a.

Remark 7.5. Lemma 7.4 also proves that the continuation element � lies in the vector
subspace spanned by the corresponding G � CF.Lc.�0/c

; Lc.�0/a
/.

Lemma 7.6. I � H c
n;m is an ideal. Moreover, there is an algebra isomorphism H c

n;m=I

' H
symp
n;m .

Proof. By Lemma 7.4, for �0; �1; �2 2 ƒcn;m, we can choose the upper matchings c.�j /

such that condition (7.2) is satisfied for both .c.�0/; c.�1// and .c.�1/; c.�2//.
In this case, the same argument as in the proof of Lemma 7.4 shows that if the

x0-coefficient of �2.x2; x1/ is non-zero for some x0 2 G 0;2, then x1 2 G 0;1 and
x2 2 G 1;2, where G i;j is the respective G for CF.L

c.�i /
; L

c.�j /
/. We define Bi;j sim-

ilarly. This implies that if x1 2 B0;1, x2 2 B1;2 [ G 1;2 (i.e. x2 is a basis element in
CF.L

c.�1/
; L

c.�2/
/), x0 2 B0;2 [ G 0;2 and the x0-coefficient of �2.x2; x1/ is non-zero,

then x0 2 B0;2. Similarly, if x1 2 B0;1 [ G 0;1, x2 2 B1;2, x0 2 B0;2 [ G 0;2 and the
x0-coefficient of �2.x2; x1/ is non-zero, then x0 2 B0;2. This precisely says that I is an
ideal in H c

n;m. (We are working in the cohomological algebra, so we only need to check
closure under �2.)

Moreover, we also know that any u contributing to the x0-coefficient of �2.x2; x1/
has m � 2n components of constant triangles. Therefore, under the identification of gen-
erators (7.4) in Corollary 7.3, the moduli spaces of holomorphic triangles defining the
products �2 on the two sides are also canonically identified. The result follows.

Next, we want to understand the ideal I in terms of the geometric basis of H c
n;m.

Consider the cochain model (cf. (6.16), (7.1))

H c
n;m D

M
�0;�12ƒ

c
n;m

HF.L
c.�0/

; Lec.�1// D
M

�0;�12ƒ
c
n;m

CF.L
c.�0/

; Lec.�1//: (7.7)

Define Iarc
�0;�1

to be the vector subspace of CF.L
c.�0/

; Lec.�1// generated by

Barc
�0;�1

WD
®
x 2 X.L

c.�0/
; Lec.�1//

ˇ̌
¹1; : : : ; m � 2nº C

p
�1 ª �E .x/

¯
: (7.8)
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Let G arc
�0;�1

WD X.L
c.�0/

; Lec.�1// nBarc
�0;�1

and define Iarc, Barc and G arc accordingly.

Lemma 7.7. There is an algebra isomorphism from
L

HF.L
c.�0/

�0;�1 ; Lc.�1/
�0;�1 / toL

CF.L
c.�0/

; Lec.�1// sending I to Iarc.

Proof. Let ��0;�1 2 HF0.L
c.�1/

�0;�1 ; Lec.�1// be a generator over Z. Then, for a sign-
consistent choice of ��0;�1 , the direct sum of

�2.��0;�1 ;�/ W HF.L
c.�0/

�0;�1 ; Lc.�1/
�0;�1 /! HF.L

c.�0/
�0;�1 ; Lec.�1// (7.9)

over all .�0; �1/ is an algebra isomorphism.

Without loss of generality, we can assume that c.�0/
�0;�1

D c.�0/. Note that we

can choose Ac.�1/ such that the pair .c.�1/
�0;�1

;Ac.�1// also satisfies (7.2). By the same
reasoning as in Lemmas 7.4 and 7.6, the image of I under (7.9) is contained in Iarc. Since
�2.��0;�1 ;�/ is an isomorphism on cohomology and the dimensions spanned by I and
Iarc in cohomology are the same, the image of I is precisely Iarc.

Lemmas 7.6 and 7.7 yield an algebra isomorphism
L

CF.L
c.�0/

; Lec.�1//=I
arc '

H
symp
n;m . We want to show that this isomorphism respects the geometric basis.

For �0; �1 2 ƒcn;m, we consider the composition of quasi-isomorphisms

CF.L�0 ; LQ�1/! CF.L�0 ; L�1/! CF.L
c.�0/

; L
c.�1/

/=I�0;�1

! CF.L
c.�0/

; Lec.�1//=I
alg
�0;�1

(7.10)

The first arrow is given by �2.�;�/ for a continuation element � 2 CF.LQ�1 ; L�1/. The
second arrow is the inverse of the chain isomorphism (7.5). The last arrow is (7.9), which
is given by �2.� 0;�/ for a continuation element � 0 2 CF0.L

c.�1/
; Lec.�1//.

We can assume that �0, Q�1 and �1 are obtained, respectively, by removing the left-
most m � 2n matching paths of c.�0/, Ac.�1/ and c.�1/, and translating by �.m � 2n/.
Let ��1 be a quasi-inverse of � . We can choose � 0 to be the image of ��1 under the canon-
ical inclusion CF.L�1 ; LQ�1/! CF.L

c.�1/
; Lec.�1// In this case, the composition (7.10)

coincides with the canonical cochain isomorphism

CF.L�0 ; LQ�1/! CF.L
c.�0/

; Lec.�1//=I
alg
�0;�1

; x 7! y; (7.11)

characterized by �E .y/D ¹1; : : : ;m� 2nº [ .�E .x/Cm� 2n/ (i.e. essentially the same
map as in (7.4), (7.5)). As a consequence, there is an algebra isomorphism from H

symp
n;m to

H c
n;m=I respecting the geometric basis.

For the combinatorial arc algebra, we have exactly the same quotient description
for H alg

n;m (see (6.39)). To conclude, we have

Proposition 7.8. The isomorphism ˆ of Lemma 6.5 restricts to an algebra isomorphism
from H

symp
n;m to H alg

n;m.
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7.2. All cases

In this section we show thatˆ is an algebra isomorphism fromK
symp
n;m toKalg

n;m for all n;m.
The strategy is similar to the previous section.

Let e W ƒn;m ! ƒcn;mCn be the inclusion given by (6.45). Let

He
n;m WD

M
�0;�12ƒn;m

HF.Le.�0/
; Le.�1/

/; (7.12)

which is a subalgebra of H symp
n;mCn D H

alg
n;mCn, so in particular He

n;m is formal. We want to
compare Ksymp

n;m with He
n;m.

For each ordered pair .�0; �1/ such that �0; �1 2 ƒn;m, we choose upper matchings
e.�0/ and e.�1/ such that

for a D 1; : : : ; n, the slope at mC aC
p
�1 of the matching paths in e.�0/

that ends at mC aC
p
�1 is more negative than that of e.�1/: (7.13)

Since the choices of matching depend on the ordered pair of weights, we denote the

matchings by e.�0/
�0;�1 and e.�1/

�0;�1 respectively. Let J�0;�1 be the subspace of
CF.L

e.�0/
�0;�1 ; Le.�1/

�0;�1 / generated by

B�0;�1 WD ¹x 2 X.L
e.�0/

�0;�1 ; Le.�1/
�0;�1 / j mC aC

p
�1 2 �E .x/

for some a D 1; : : : ; nº: (7.14)

Let
G�0;�1 WD X.L

e.�0/
�0;�1 ; Le.�1/

�0;�1 / nB�0;�1

and define J WD
L

J�0;�1 , B WD
L

B�0;�1 and G WD
L

G�0;�1 .

Lemma 7.9. �1.J�0;�1/ � J�0;�1 so J�0;�1 descends to a vector subspace of He
n;m,

which we denote by J�0;�1 .

Proof. Let x1 2B. We want to show that if the x0-coefficient of �1.x1/ is non-zero then
x0 2 B.

By definition, x1 2 G implies that mC aC
p
�1 � �E .x1/ for some a D 1; : : : ; n.

Let v W † ! E be a J -holomorphic map contributing to the x0-coefficient of �1.x1/
such that near an input puncture � , v is asymptotic to the element of x1 lying above
m C a C

p
�1. We project v to Hı by �E and apply the open mapping theorem. The

condition (7.13) at mC a C
p
�1 forces at least one of the boundary components of †

adjacent to � to be mapped constantly tomC aC
p
�1 by �E ı v. It immediately implies

that mC aC
p
�1 2 �E .x0/.

Corollary 7.10. HF.Le.�0/
; Le.�1/

/=J�0;�1 D HF.L�0 ; L�1/ as graded vector spaces.
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Proof. For j D 0; 1, by forgetting the points ¹1; : : : ; nº C m C
p
�1 and ‘extending’

the matching paths of e.�j /
�0;�1 that contain mC a C

p
�1 for some a D 1; : : : ; n to

thimble paths, we get an upper matching �j of �j . There is then an obvious bijective
correspondence

G�0;�1 ' X.L�0 ; L�1/ (7.15)

Moreover, there is a canonical isomorphism between the chain complexes

CF.L
e.�0/

�0;�1 ; Le.�1/
�0;�1 /=J�0;�1 Š CF.L�0 ; L�1/ (7.16)

which on generators is given by (7.15); the differentials on the left and right agree by the
proof of Lemma 7.9.

Lemma 7.11. The subspace J�0;�1 is independent of the choices of e.�0/
�0;�1 and

e.�1/
�0;�1 , provided (7.13) is satisfied.

Proof. Let e.�0/
a and e.�0/

b be two different choices of e.�0/
�0;�1 such that (7.13) is

satisfied for the pairs .e.�0/a; e.�1/
�0;�1

/ and .e.�0/b; e.�1/
�0;�1

/.

There exists another choice e.�0/
c of e.�0/

�0;�1 such that (7.2) is satisfied for
the pairs .e.�0/c ; e.�0/a/ and .e.�0/c ; e.�0/b/. Let � be a continuation element of
HF.Le.�0/c

; Le.�0/a
/.

Let J a and J c be the respective J�0;�1 for the spaces HF.Le.�0/a
; L

e.�1/
�0;�1 / and

HF.Le.�0/c
; L

e.�1/
�0;�1 /. We need to show that the isomorphism

�2.�; �/ W HF.Le.�0/a
; L

e.�1/
�0;�1 /! HF.Le.�0/c

; L
e.�1/

�0;�1 / (7.17)

sends J a to J c . By Corollary 7.10 and a dimension count, it suffices to show that the
image of J a under �2.�; �/ is contained in J c .

The proof that �2.J a; �/ � J c is similar to the proof of Lemma 7.9. Let Ba and Bc

be the respective B�0;�1 for CF.Le.�0/a
;L

e.�1/
�0;�1 / and CF.Le.�0/c

;L
e.�1/

�0;�1 /. By
slight abuse of notation, we denote a chain level lift of � to CF.Le.�0/c

; Le.�0/a
/ by � .

It suffices to show that if x1 2 Ba and the x0-coefficient of �2.x1; �/ is non-zero, then
x0 2 Bc .

Let v W†!E be a J -holomorphic map contributing to the x0-coefficient of�2.x1;�/
such that near an input puncture � , v is asymptotic to the element of x1 lying above
mC a C

p
�1. We project v to Hı by �E and apply the open mapping theorem. Since

.e.�0/
a; e.�1/

�0;�1
/ satisfies (7.13), it forces at least one of the boundary components

of † adjacent to � to be mapped constantly to m C a C
p
�1 by �E ı v. Let the two

boundary components of† adjacent to � be @i† and @j†, with Lagrangian labelsLe.�0/a

and L
e.�1/

�0;�1 , respectively.

If �E ıvj@j†DmCaC
p
�1, then we are done because we must havemCaC

p
�1

2 �E .x0/.
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If �E ı vj@i† D mC a C
p
�1, then we denote the next boundary component of †

adjacent to @i† by @i
0

†, which is equipped with the Lagrangian label Le.�0/c
. Using

the fact that .e.�0/c ; e.�1/
�0;�1

/ satisfies (7.13), we conclude that either @j† or @i
0

† is
mapped to mC aC

p
�1 under �E ı v. In either case, mC aC

p
�1 2 �.x0/.

By very similar arguments, the analogues of Lemmas 7.6 and 7.7 hold. In particular,
we obtain algebra isomorphisms

Ksymp
n;m ' H

e
n;m=J '

L
CF.L

e.�0/
; L ze.�1/

/=Jarc (7.18)

where Jarc is generated by (7.14). There is also exactly the same quotient description
for Kalg

n;m (see (6.47)). As a result, the analogue of Proposition 7.8 is also true.

Proposition 7.12. The map ˆ of Lemma 6.5 gives an algebra isomorphism from K
symp
n;m

to Kalg
n;m.

8. An nc-vector field

The algebra Ksymp
n;m in principle carries a non-trivial A1 structure. Seidel gave a neces-

sary and sufficient criterion for formality of an A1 algebra: it should admit a degree 1
Hochschild cohomology class which acts by the Euler field (see Theorem 8.8; a proof is
given in [1]). Following the language of non-commutative geometry, we call a degree 1
Hochschild cocycle a non-commutative vector field or nc-vector field; the motivating
example is a global vector field V 2 H 0.TZ/ � HH1.Db.Coh.Z// on an algebraic
variety Z. In this section, we apply the method from [1] to construct an nc-vector field
by counting holomorphic discs with prescribed conormal-type conditions at infinity.
This will be well-defined even if L has some non-compact Lagrangian components (see
Remark 8.2).

8.1. Moduli spaces of maps revisited

We first explain how to modify the moduli spaces of maps used in [1] to construct an
nc-vector field in our setting. Let R

dC1;h
.0;1/

be the moduli space of unit discs S with d C
1 boundary punctures ¹�iºdiD0, h ordered interior marked points mk.S/ and two more
distinguished ordered interior marked points s0; s1 such that s1 lies on the hyperbolic
geodesic arc between s0 and �0 (but s1 ¤ s0 and s1 ¤ �0). We have dim.RdC1;h

.0;1/
/ D

dim.RdC1;h/C 3. We call the h ordered interior marked points type-1 interior marked
points, and the two distinguished ordered interior marked points type-2 interior marked
points. We denote mk.S/ [ ¹s0; s1º by mk.S/C.

We can compactify R
dC1;h
.0;1/

to R
dC1;h

.0;1/ as in [1, Section 3.6] (which treats the case
h D 0). Informally, the compactification includes stable broken configurations as con-
sidered in [1, Section 3.6], with an extra condition that nodal sphere components arise
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when some of the interior marked points collide. In particular, the codimension 1 bound-

ary facets of R
dC1;h

.0;1/ are given by (in all the moduli below, the subset P � ¹1; : : : ; hº
remembers the type-1 ordered marked points that go to the same component):

(1) (¹�iC1; : : : ; �iCj º move together) A nodal domain in which a collection of input
boundary punctures bubble off:a

1�j�d; 0�i�d�j; h1Ch2Dh;P�¹1;:::;hº; jP jDh1

R
d�jC1;h1
.0;1/

�RjC1;h2 : (8.1)

When j D 1, we need h2 > 0 so that the domain is stable.
(2) (s1 ! s0) A domain with a sphere bubble carrying the two type-2 interior marked

points and some type-1 interior marked points attached to a disc carrying the remain-
ing type-1 interior marked points and the d C 1 boundary punctures. Letting Mh

0;3

denote the moduli space of spheres with one interior node, two type-2 marked points
and h unordered type-1 interior marked points, and R

dC1;h
1 denote the moduli space

of unit discs with one interior node, d C 1 boundary punctures and h type-1 interior
marked points, this component isa

h1Ch2Dh;P�¹1;:::;hº; jP jDh1

R
dC1;h1
1 �M

h2
0;3: (8.2)

The attaching point is understood to be the node on the disc and on the sphere respect-
ively.

(3) (¹�d�lC1; : : : ; �d ; �1; : : : ; �iº! �0) A nodal domain with two discs, one carrying both
type-2 interior marked points, some type-1 interior marked points and the boundary
punctures ¹�iC1; : : : ; �d�lº, the other carrying the remaining type-1 interior marked
points and boundary puncturesa

0�iCl�d; h1Ch2Dh;P�¹1;:::;hº; jP jDh1

RiClC1;h1 �R
d�i�lC1;h2
.0;1/

: (8.3)

When i C l D 0, we need h1 > 0 so that the domain is stable.
(4) (¹s1º [ ¹�1; : : : ; �i ; �d�lC1; : : : ; �d º ! �0) A nodal domain with two discs, one car-

rying d � i � l input boundary punctures, one type-2 interior marked point and some
type-1 interior marked points, the bubble carrying the second type-2 interior marked
point, and the remaining type-1 interior marked points and boundary punctures:a

0�iCl�d; h1Ch2Dh;P�¹1;:::;hº; jP jDh1

R
.iClC1/C1;h1
1 �R

d�i�lC1;h2
1 : (8.4)

We pick a consistent choice of strip-like ends and marked-points neighbourhoods

for elements in R
dC1;h

.0;1/ as in Section 2.2.2. This time, we require each marked-points

neighbourhood to contain s0 and s1, and denote it by �.mk.S/C/. For each S 2 R
dC1;h
.0;1/

,
we can define Gaff.S/ by (2.42) but with �.mk.S// being replaced by �.mk.S/C/. For
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a cylindrical Lagrangian label associating @jS to Lj for j D 0; : : : ; d and a choice
AS 2 Paff.S; ¹.Aj ; �Lj�1 ; �Lj /º

d
jD0/, we equip S with the additional data .J; K/ as in

(2.48) and (2.49), again with �.mk.S// replaced by �.mk.S/C/.
LetD0 �Hilbn.E/ be the divisor of ideals whose support meetsDE . We now assume

that

D0 is moveable, and the base locus of its linear system contains
no rational curve, (8.5)
there is a holomorphic volume form with simple poles on D0
(so c1.Hilbn.E// D PD.D0/): (8.6)

LetD00 be a divisor in Hilbn.E/ linearly equivalent to, but sharing no common irreducible
component with, D0. Let B0 D D0 \D00 be the base locus of the corresponding pencil;
we assume that it contains no rational curve. Note that these conditions will hold in the
case of type A Milnor fibres (see [1, Section 6]), and more generally (8.5) holds when
DE � E is moveable and (8.6) holds when there is a holomorphic volume form on E
with simple poles on DE (see [1, Lemma 6.3]).

Given x0 2 X.H0; L0; Ld / and xj 2 X.Hj ; Lj�1; Lj / for j D 1; : : : ; d , we define

R
dC1;h
.0;1/

.x0I xd ; : : : ; x1/ (8.7)

to be the moduli space of all maps u W S ! Hilbn.E/ such that8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

Œu� � ŒDr � D 0 and Œu� � ŒD0� D 1;
u.mk.S// � DHC; u.s0/ 2 D0; u.s1/ 2 D

0
0;

.Dujz �XK jz/
0;1 D 0 with respect to .Jz/u.z/ for z 2 S;

u.z/ 2 Sym.Lj / for z 2 @jS;
lims!˙1 u.�

j .s; �// D xj .�/ uniformly;

(8.8)

where J;K should be understood as their extension to Confn.E/ (see Remark 2.14).
Note that Lemmas 2.20 and 2.21 remain true for u 2R

dC1;h
.0;1/

.x0Ixd ; : : : ; x1/ so when
h D Ix0Ixd ;:::;x1 , (8.8) implies that Im.u/ \Dr D ; and u intersects DHC transversally.
On the other hand, since J D J Œn�E near s0; s1, Œu� � ŒD0� D 1 implies that the intersection
multiplicity of u with D0 at s0 and with D00 at s1 are both 1. (We will see later, in the
proof of Lemma 8.7, that every intersection between u and D0 contributes positively to
their intersection number.)

We want to discuss the regularity and compactification of R
dC1;h
.0;1/

.x0I xd ; : : : ; x1/

following Sections 2.2.7, 2.2.9, 2.2.10 and [1].

First, we pick a consistent choice of .AS ; J; K/ for all elements in R
dC1;h

.0;1/ and all
possible cylindrical Lagrangian labels and in/outputs. In particular, this implies that if

S 2 R
dC1;h

.0;1/ has a sphere component, then over that component K � 0 and the complex
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structure is J Œn�
E

. We can then introduce the following moduli spaces of maps that are

relevant for the compactification of R
dC1;h
.0;1/

.x0I xd ; : : : ; x1/:

R
dC1;h
1 .Hilbn.E/; .d0; dr / j x0I xd ; : : : ; x1/; (8.9)

Mh.Hilbn.E/ nDr j 1/: (8.10)

The moduli space (8.9) consists of maps u W S ! Hilbn.E/ such that S 2 R
dC1;h
1 ,

and 8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

Œu� � ŒD0� D d0, Œu� � ŒDr � D dr ;
u.mk.S// � DHC;

.Dujz �XK jz/
0;1 D 0 with respect to .Jz/u.z/ for z 2 S;

u.z/ 2 Sym.Lj / for z 2 @jS;
lims!˙1 u.�

j .s; �// D xj .�/ uniformly.

(8.11)

It has an evaluation map using the node to Hilbn.E/. The virtual dimension of (8.9) is

d C 2d0 C jx0j �

dX
jD1

jxj j (8.12)

where 2d0 comes from c1.Hilbn.E// D PD.D0/ and d comes from dim.RdC1
1 /,

For S 2 Mh
0;3, we can rigidify the domain and assume the type-2 marked points are

0; 1 and the node is1. The moduli space (8.10) consists of maps u W S ! Hilbn.E/ nDr
such that S 2Mh

0;3, 8̂<̂
:
Œu� � ŒD0� D 1;

u.mk.S// � DHC; u.0/ 2 D0; u.1/ 2 D
0
0;

u is J Œn�E -holomorphic:
(8.13)

It also has an evaluation map to Hilbn.E/ by evaluating at1. The virtual dimension of
(8.10) is

4nC 2c1.Œu�/C 2h � .4C 2h/ D 4n � 2 (8.14)

where 4n is the dimension of Hilbn.E/, c1.Œu�/ D Œu� � ŒD0� D 1, 2h is the dimension
of Mh

0;3 and 4C 2h comes from the incidence conditions.

Proposition 8.1 (cf. [1, Lemmas 3.18, 3.19]). Let h D Ix0Ixd ;:::;x1 . For generic consist-
ent choice of J; K satisfying (2.48) and (2.49), every u 2 R

dC1;h
.0;1/

.x0I xd ; : : : ; x1/ is

regular. Moreover, when R
dC1;h
.0;1/

.x0I xd ; : : : ; x1/ is 0-dimensional, it is compact. When

R
dC1;h
.0;1/

.x0Ixd ; : : : ; x1/ is 1-dimensional, it can be compactified by adding the following
boundary strata, which are themselves regular.
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(1) .corresponding to (8.1), (8.3)/a
x; h1Ch2Dh;P�¹1;:::;hº; jP jDh1

R
d�jC1;h1
.0;1/

.x0I xd ; : : : ; xiCjC1; x; xi ; : : : ; x1/

�RjC1;h2.xI xiCj ; : : : ; xiC1/; (8.15)a
x; h1Ch2Dh;P�¹1;:::;hº; jP jDh1

RiClC1;h1.x0I xd ; : : : ; xd�lC1; x; xi ; : : : ; x1/

�R
d�i�lC1;h2
.0;1/

.xI xd�j ; : : : ; xiC1/; (8.16)

(2) .corresponding to (8.2)/

R
dC1;h
1 .Hilbn.E/; .0; 0/ j x0I xd ; : : : ; x1/ �Hilbn.E/ M

0.Hilbn.E/ nDr j 1/;
(8.17)

R
dC1;h
1 .Hilbn.E/; .1; 0/ j x0I xd ; : : : ; x1/ �Hilbn.E/ B0; (8.18)

where in (8.17) and (8.18) the fibre products are taken with respect to the evaluation
maps, which are transverse.

We will see that Mh.Hilbn.E/ nDr j 1/ is empty when h > 0 (see Lemma 8.3 and
Corollary 8.4), which explains why it does not appear in (8.17). In the rest of this section,
we establish some regularity and compactness statements and prove Proposition 8.1.

Remark 8.2. We will establish the compactness result below following the method in
Section 2.2.10. The reason one should expect compactness to hold is because we are
counting discs with interior marked points going to D0 which corresponds to the vertical
infinity ofE, while non-compact Lagrangian components inL are only non-compact with
respect to the horizontal infinity of E, so the method in Section 2.2.10 applies without
substantial changes.

8.1.1. Moduli of Chern 1 spheres. We first discuss Mh.Hilbn.E/ nDr j 1/. Let C be a
Chern number 1 rational curve in E and q2; : : : ; qn 2 E be n � 1 pairwise distinct points
such that at most one of q2; : : : ; qn lies in C . The product determines a Chern number 1
rational curve in Symn.E/ which meets �E in at most one point. Therefore, it uniquely
lifts to an irreducible Chern number 1 rational curve QC in Hilbn.E/. We call QC a Chern
number 1 rational curve of product type. In fact, these are essentially all the irreducible
Chern number 1 rational curves in Hilbn.E/.

Lemma 8.3 ([1, Lemma 6.4]). Let C be an irreducible rational curve in Hilbn.E/ with
Chern number 1 and not contained in DHC. Then C is of product type.

Proof. By assumption, �HC.C / is an irreducible Chern number 1 rational curve in
Symn.E/. By the tautological correspondence, we get a (possibly disconnected) closed
complex curve C 0 in E of Chern number 1. It means that C 0 lies inside a finite union of
fibres of �E . Having Chern number 1 means that ŒC 0� � ŒDE � D 1, so C 0 is a union of a
Chern number 1 rational curve C 00 and n � 1 points in E. By the assumption that C is
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not contained in DHC (or equivalently �HC.C / is not contained in �E ), we know that the
points are pairwise disjoint and at most one of them lies inside C 00.

Corollary 8.4 (cf. [1, Lemma 6.4]). The moduli space Mh.Hilbn.E/ nDr j 1/ is regu-
lar and the evaluation map Mh.Hilbn.E/ nDr j 1/! Hilbn.E/ defines a pseudocycle.
In other words, the image of the evaluation map can be compactified by adding a real
codimension 2 .with respect to the image/ subset.

Proof. When h > 0, by Lemma 8.3, Mh.Hilbn.E/ nDr j 1/ is actually empty so there is
nothing to prove.

When h D 0, the regularity of Mh.Hilbn.E/ n Dr j 1/ follows from the explicit
description of Lemma 8.3 and the fact that every direct summand of the normal bundle
of a product-type Chern 1 rational curve in Hilbn.E/ n Dr has Chern number � �1.
Therefore, automatic regularity for these somewhere injective curves applies.

To define a pseudocycle, the codimension 2 subset to be added is the union of the
images of stable Chern number 1 rational curves in Hilbn.E/ that meet Dr non-trivially,
which is denoted by Br in [1]. It is of codimension 2 because every such stable Chern
number 1 rational curve maps to a point in Symn.Hı/ that lies inside �Hı \D

0 where
D0 is the divisor in Symn.Hı/ consisting of subschemes of Hı whose support meets
critical values of �E .

We denote the pseudocycle by GW1.

8.1.2. Moduli of discs. The following regularity statement follows as in Lemma 2.15.

Lemma 8.5 (Regularity). For generic consistent choice of .J; K/ satisfying (2.48) and
(2.49), every element in the moduli spaces (8.7) and (8.9) is regular.

For an element u in the moduli space (8.7) or (8.9), we can define E.u/ by (2.65).
Even though E is not exact, we can still define !geom

K and ! top
K on Confn.E/ � S . They

differ by RK which, by the same reasoning as in Lemma 2.28, is uniformly bounded
independent of u. Moreover, the integration of ! top

K over the graph of u is bounded a
priori by the Lagrangian boundary conditions and the intersection numbers with D0;Dr ,
because Hilbn.E/ n .D0 [Dr / is exact. To conclude, we have

Lemma 8.6 (Energy). For a fixed choice of ¹xj º
d
jD1 and a moduli space of maps (8.7)

or (8.9), there exists T > 0 such that for all elements u in the moduli space, we have
E.u/ < T .

We also have the corresponding statement for positivity of intersections.

Lemma 8.7 (Positivity of intersection). Let u be an element in (8.7) or (8.9). If u.z/ 2D0
.resp. u.z/2Dr /, then the intersection u.z/ between Im.u/ andD0 .resp.Dr / contribute
positively to the algebraic intersection number.

Proof. For both cases (D0 andDr ), this follows from the fact that the Hamiltonian vector
field in the perturbation term is tangent to (every stratum of) the divisor. For D0, this is
exactly Lemma 2.34. ForDr , the argument is similar to that of Lemmas 2.21 and 2.36.
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Proof of Proposition 8.1. Let uk W Sk ! Hilbn.E/ be a sequence of maps in (8.7). First
consider the case that there is a subsequence of Sk converging to S 2 R

dC1;h
.0;1/

. Without
loss of generality, we can assume Sk D S for all k.

The analogue of Lemma 2.32 holds. More precisely, if there is energy concentration at
a point in S but outside �.mk.S/C/, then it will produce a sphere bubble or a disc bubble
in Ee which intersects DE . By Lemma 8.7, this will imply that for large k, the algebraic
intersection number between uk and D0 is greater than 1, a contradiction.

Energy concentration cannot happen at a point outside mk.S/C: If energy concen-
tration happens at mk.S/C, then it is either at ¹s0; s1º or not. If not, the resulting sphere
bubble (tree) has Chern number 0, so it is contained in Hilbn.E/ (recall that c1.Hilbn.E//
D PD.D0/). Therefore, it intersects Dr positively by Lemma 2.5 and gives a contradic-
tion. If energy concentration happens at s0 or s1, say s0, then the bubble tree has either
Chern number 0 or Chern number 1. We get a contradiction in the former case as above.
For the latter case, the Chern number 1 bubble intersectsD00. Note that s1 is another point
in the stable domain that is mapped toD00. SinceD0 andD00 are homologous, that implies
that the algebraic intersection number between u and D0 is at least 2 in total. This again
gives a contradiction.

Energy concentration at strip-like ends give parts of (8.15) and (8.16). This finishes
the bubbling analysis when Sk has a subsequence converging to S 2 R

dC1;h
.0;1/

.
Now, if Sk has a subsequence converging to the boundary strata (8.1), (8.3), we get

the remaining terms in (8.15) and (8.16).
If Sk has a subsequence converging to the boundary strata (8.4), then for k large, u

has algebraic intersection at least 2 with D0 because each disc component in the limit
contributes at least 1.

Next, we consider the case that Sk has a subsequence converging to the boundary
strata (8.2). Without loss of generality, we can assume Sk D S lies in the boundary strata
(8.2) for all k. The analogue of Lemma 2.32 still holds. That is, there is no energy con-
centration at a point in S n �.mk.S/C/, and hence no energy concentration at a point in
S n mk.S/C. If energy concentration happens at mk.S/, we get a Chern 0 bubble and
the usual contradiction. If energy concentration happens at s0 or s1, say s0, then at least
one of the spheres (including the original one in the domain) has vanishing Chern num-
ber, so meets Dr . Therefore, the tree of spheres define a stable Chern number 1 rational
curve in Hilbn.E/ which lies in a real codimension 4 subset of Hilbn.E/ (see Corol-
lary 8.4). As a result, for a generic choice of data, there is no such stable Chern number 1
rational curve in the codimension 1 boundary strata of R

dC1;h
.0;1/

.x0I xd ; : : : ; x1/ when
R
dC1;h
.0;1/

.x0I xd ; : : : ; x1/ is 1-dimensional. Energy concentration of solutions in (8.2) at
strip-like ends is a higher codimension phenomenon.

When there is no energy concentration, the boundary strata (8.2) correspond precisely
to (8.17) and (8.18).

Finally, when Sk converges to some element in higher codimension strata, regularity
reasoning as in Corollary 2.39 shows that it cannot exist for generic .J; K/. This com-
pletes the proof.
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8.2. Pure Lagrangians

An nc-vector field of an A1 category A is a cocycle b 2 CC1.A;A/. Given an nc-vector
field b, a b-equivariant object is a pair .L; cL/ such that L 2 Ob.A/, cL 2 hom0

A.L; L/

and b0jL D �1.cL/. In this case, .L; cL/ is called a b-equivariant lift of L. Given two
b-equivariant objects .L; cL/ and .L0; cL0/, the map

a 7! b1.a/ � �2.cL0 ; a/C �
2.a; cL/ (8.19)

is a chain map from homA.L; L
0/ to itself. An nc-vector field is called pure if every

object L 2 Ob.A/ admits a b-equivariant lift .L; cL/ and for every pair .L; cL/; .L0; cL0/
of b-equivariant lifts, the endomorphism on H.homA.L;L

0// induced by (8.19) is given
by

a 7! jaja (8.20)

for all pure degree elements a 2 H.homA.L; L
0//, where j � j denotes degree. In other

words, purity asserts that (8.19) agrees with the Euler vector field.

Theorem 8.8 (Seidel). If an A1 category A over a field of characteristic 0 admits a pure
nc-vector field, then A is formal.

A proof is given in [1].

8.2.1. Construction. By Proposition 8.1, we can define a Hochschild cochain

Qb 2 CC�.F � cyl;n.�E /;F � cyl;n.�E // (8.21)

by counting rigid elements in R
dC1;h
.0;1/

.x0I xd ; : : : ; x1/ and then divide it by hŠ. The

cochain Qb is not closed due to the existence of the boundary strata (8.17) and (8.18).
To compensate for these strata, we consider the closed-open maps

CO W C �.Hilbn.E/ nDr /! CC�.F � cyl;n.�E /;F � cyl;n.�E //; (8.22)

co W C lf
2n�2�j .D0; .D0 \Dr / [D

sing
0 /! CCj .F � cyl;n.�E /;F � cyl;n.�E //

for j � 3; (8.23)

which are the direct analogues of the ones in [1, Section 3.5]. Here, lf refers to locally
finite chains. The only difference is that we added the type-1 interior marked points and
hence use R

dC1;h
1 .Hilbn.E/; .d0; dr / j x0I xd ; : : : ; x1/ for .d0; dr / D .0; 0/ and .1; 0/,

respectively, to define CO and co.
The boundary strata (8.17) and (8.18) correspond to

CO.GW1/ and co.ŒB0�/ (8.24)

respectively, where we recall B0 D D0 \ D
0
0. Using the fact that both CO and co are

chain maps, we get
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Proposition 8.9 (cf. [1, Proposition 3.20]). If both GW1 and ŒB0� are null-homologous
with primitives gw1 and ˇ0, then the sum

b WD Qb C CO.gw1/C co.ˇ0/ (8.25)

defines an nc-vector field for F � cyl;n.�E /.

We now specialize to the case whereE DAm�1 is the typeAMilnor fibre. It is shown
in [1, Lemmas 6.7, 6.8] that both GW1 and ŒB0� are null-homologous, so Proposition 8.9
applies. The Lagrangian spheres and thimbles in E have trivial first cohomology and so
(by exactness) trivial first Floer cohomology, so admit equivariant structures.

Lemma 8.10. For each � 2 ƒn;m, L� is pure.

Proof. The argument of [1, Lemma 6.9] generalizes to our situation: we briefly recall the
key points, adapted to the current set-up. By Lemma 2.24, the rigid count of R

dC1;h
.0;1/

.x0/

is 0 when h > 0. When hD 0, the domain is a disjoint union of n discs which are mapped
to different Lagrangian components of L�. Since the intersection with D0 is 1, exactly
one of these n discs hits DE transversally once, and the others are disjoint from DE and
are hence constant maps by exactness. The key point in the argument of [1, Lemma 6.9]
is that, over each point t 2  of a fibred Lagrangian L � E, there are exactly two holo-
morphic discs with boundary on L (the hemispheres of a P1-fibre of E). When  is a
matching path, this algebraic count gives a 7! 2a under the map (8.19) for the degree 2
generator a 2HF.L /. Moreover, by [1, Lemma 2.12] and the paragraph thereafter, (8.19)
necessarily vanishes on degree 0 generators of HF.L / whenever HF0.L / has rank 1
(which holds when  is a matching path or a thimble path). The result follows.

9. Formality

By Proposition 7.12, we know that on the cohomological level, the extended symplectic
arc algebra Ksymp

n;m agrees with the extended arc algebra Kalg
n;m. In this section, we prove

that the extended symplectic arc algebra is formal when working over a field of character-
istic 0, by proving that the nc-vector field constructed in 8.2.1 is pure. To simplify nota-
tion, in this section, given a weight �, we use � and � to denote �

alg
and �alg, respectively.

9.1. Some lemmas

Let �0; �1 2 ƒn;m.

Lemma 9.1 (Cyclic module structure). Let xmin be an oriented circle diagram �1�min�0
which corresponds to the minimal degree generator of HF�.L�0 ; L�1/. Let x be another
oriented circle diagram �1��0. Then there are two oriented circle diagrams �0�0�0 and
�1�1�1 such that

�2.�1�1�1; xmin/ D x D �
2.xmin; �0�0�0/: (9.1)

In particular, HF�.L�0 ; L�1/ is a cyclic module over HF�.L�i ; L�i / for both i D 0; 1.
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Proof. We give a proof when i D 0; the case i D 1 can be dealt with similarly.
Recall that, schematically, the product in the combinatorial arc algebra is computed

by stacking an oriented �0 [ �0 on top of an oriented �1 [ �0, and resolving / removing
the middle levels by a sequence of elementary cobordisms, which induce maps by the
action of an underlying TQFT.

The diagram �1 [ �0 consists of circles and lines. Let C1; : : : ; Ck be the circles, and
define, for j D 1; : : : ; k,

�o;j WD ¹ 2 �0 j  is contained in the circle Cj º: (9.2)

It is clear that �o;j ¤ ; for all j . Let �o WD
S
j �o;j and �l WD �0 n �o. In particular, if

 2 �0 is a line, then  2 �l .
The minimal degree generator xmin corresponds to orienting all the circles in �1 [ �0

counterclockwise (note that the orientations of the arcs in �1 [ �0 are uniquely determ-
ined by the rule (6.12), namely, the remaining _ must occupy the rightmost available
positions). On the other hand, let Cs1 ; : : : ; Cst be the circles in �1 [ �0 that are oriented
clockwise by x. For each j 2 ¹s1; : : : ; stº, we pick a single j 2 �o;j . Now we give
�0 [ �0 the orientation y that is uniquely determined by the property that a circle C in
�0 [ �0 is oriented clockwise if and only if C contains j for some j 2 ¹s1; : : : ; stº.

One feature of the Khovanov TQFT ([24], [25], which is recalled in (6.24) and (6.25))
is that a counterclockwise circle times a counterclockwise (resp. clockwise) circle is a
counterclockwise (resp. clockwise) circle. The analogue is true for the Khovanov-type
TQFT from [13,51]. One can check, by applying the rules underlying the Khovanov-type
TQFT from [13, 51], that our prescription ensures that �2.xmin; y/ D x (see Figure 9.1
for an example).

v

v vvv v v

v v v

v vvv v v

v v v

v vvv

v vv v v v v

v v v vvvvvv vvvv v

Fig. 9.1. From left to right: y (top) and xmin (bottom) before taking product; successively applying
two TQFT operations to the first picture; the product x. Clockwise orientations on circles are indic-
ated by H. We choose j to be the outermost upper arcs in the 2-circle components of x; this forces
the indicated Hs on y.

Lemma 9.2. Let �a be an oriented cap diagram and b� be an oriented cup diagram.
Then

�2.b��; ��a/ D b�a: (9.3)

In particular, the product map

HF.L�; Lb/ � HF.La; L�/! HF.La; Lb/ (9.4)

is non-zero.
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Proof. Note that ��a, b�� and b�a are oriented circle diagrams so the LHS and RHS of
(9.3) are well-defined.

Now we need to justify (9.3). If  2 � is a half-circle and the component in ��a
containing  is a circle C , then by the definition of �, we know that C is oriented counter-
clockwise. Similarly, if � 2 � is a half-circle and the component in b�� containing � is
a circle C 0, then C 0 is oriented counterclockwise. In this case, when we do the resolution
between  and � involved in the product, the outcome is also oriented counterclock-
wise. In other words, the resolution cobordism move does not change the orientation (see
Figure 9.2).

v vv v v v

v vv

Fig. 9.2. Orientation unchanged.

On the other hand, if the component of ��a containing  is a line, then we need to
first complete it to a circle before computing the product. Moreover, the circle to which it
is completed is oriented counterclockwise (see Figure 9.3). The same holds for b��.

v

v v v

v v
v

v v v

v vv v

v v

v v vv v v v v

Fig. 9.3. From left to right: 1) two oriented circle diagrams ��a, b��, 2) closure of the ori-
ented circle diagrams, all circles are oriented counterclockwise (see Section 6.4), 3) taking product,
4) removing the completion (grey).

Therefore, each type of resolution, and hence the product obtained from a composition
of such, does not change the orientations. This implies �2.b��; ��a/ D b�a.

By Proposition 7.12, we have the algebra isomorphismˆ WK
symp
n;m !K

alg
n;m so we have

�2.ˆ�1.b��/;ˆ�1.��a// D ˆ�1.b�a/

and (9.4) is non-zero.

The set ƒn;m of weights has a natural ‘Bruhat’ partial ordering (see Section 4.1).
Intuitively, it is given by exchanging pairs _ and ^; one increases in the Bruhat order
by moving _’s to the right [13, Section 2]. Given � 2 ƒn;m, there is a unique maximal
element w� in the set

¹w 2 ƒn;m j �w� is an oriented circle diagramº: (9.5)



C. Y. Mak, I. Smith 86

Explicitly, the maximal element is given by putting a _ on the right end points of all the
half-circles and lines in � (or �) and a ^ otherwise. In particular, it implies that � D w�
only when � has no half-circle component, that is, when � is the maximal weight inƒn;m.

Lemma 9.3. Let �0; �1 2 ƒn;m. At least one of the following statements holds.

(1) There is no � 2 ƒn;m such that �1��0 is an oriented circle diagram.

(2) There is some � 2 ƒn;mn¹�0; �1º such that �1��0 is an oriented circle diagram.
(3) �0 D w�1 or �1 D w�0 .

Proof. Suppose neither .1/ nor .2/ hold. We want to prove .3/.
Since .1/ and .2/ fail, there exists � such that �1��0 is an oriented circle diagram, but

every such � is given by �0 or �1. Without loss of generality, we assume that � D �1, so
in particular �0 � �1, since whenever ˛�ˇ is an oriented circle diagram, one has ˛ � �
and ˇ � � in the Bruhat order [13, Lemma 2.3]. We want to prove that �1 D w�0 .

Notice that if �1 [ �0 has a circle component, then there is �0 2ƒn;m such that �0 ¤ �
and �1�0�0 is an oriented circle diagram. It implies that �D �1 <�0 but we also have �0 �
� so �0 2ƒn;m n ¹�0;�1º. Since we have assumed that .2/ fails, we get a contradiction and
hence �1 [ �0 is a diagram with only line components (and there is only one orientation
given by � D �1).

Let s1 < � � � < sk be the integers which are the left end points of half-circles of �0. By
definition, �0.si /D _ for all i . If �1.si /D ^ for all i , then we are done, because then �1
has _ on all the right end points of half-circles and lines of �0, and hence �1 D w�0 .

If this is not the case, then let sj be the largest among s1; : : : ; sk such that �1.sj /D _.
Let sj C t be the right end point of the half-circle of �0 with left end point sj . By definition
of �0, exactly half of ¹sj C 1; : : : ; sj C t � 1º are labelled by ^ and half by _ with respect
to �0. Moreover, all of them lie in a half-circle of �0.

By the definition of sj , for l D 1; : : : ; t � 1, if �0.sj C l/ D _, then sj C j 2
¹sjC1; : : : ; skº so we have �1.sj C l/ D ^. Moreover, for �1��0 to have at least one
orientation, we need that �1.sj C t /D^ and for l D 1; : : : ; t � 1, if �0.sj C l/D^, then
�1.sj C l/ D _ (see Figure 9.4). Now, by the definition of �1, we see that �1��0 has a
circle passing through sj and sj C t . This contradicts the fact that �1��0 does not have
circle components.

v v v v
vv v v

Fig. 9.4. The weight and the cap diagram on top are �0 and �0; the weight and the cup diagram on
the bottom are �1 and �1.



Fukaya–Seidel categories of Hilbert schemes and parabolic category O 87

9.2. Consistent choice of equivariant structures

Let b be the nc vector field constructed in Proposition 8.9.

Proposition 9.4. There is a choice of b-equivariant structures on ¹L�º�2ƒn;m such that
b is pure.

Proof. By Lemma 8.10, L� is pure for each � 2 ƒn;m.
Any partial order admits a total order refinement. We choose a total ordering �T

on ƒn;m that is compatible with the Bruhat partial ordering �. We make choices of b-
equivariant structure on the L� with decreasing order of �.

Let �2ƒn;m and suppose that a b-equivariant structure onL� is chosen for all �>T �,
such that b is pure. We want to choose a b-equivariant structure on L� such that b is pure
on ¹L�º��T � .

We choose a b-equivariant structure on L� such that the minimal degree element of
HF.L�; Lw�/ has weight equal to the degree. By Lemma 9.1, HF.L�; Lw�/ is cyclic as a
module over HF.Lw� ; Lw�/ so the weight equals the degree for all pure degree elements
in HF.L�; Lw�/.

By Lemma 9.2, we have

�2.�w�w�; w�w��/ D �w��: (9.6)

This implies that x WD �w�w� in HF.Lw� ; L�/ has weight equal to its degree.
Let xmin be the minimal degree generator of HF.Lw� ; L�/. By Lemma 9.1, we know

that x D �2.xmin; y/ for some y 2 HF.Lw� ; Lw�/. It means that xmin also has weight
equal to its degree, and hence all elements of HF.Lw� ; L�/ have weights equal to their
degrees.

Now, suppose that � >T � but � ¤ w� , and purity holds for all of HF.L�0 ; L�/,
HF.L�; L�0/ such that �0 >T �. By Lemma 9.3, �; � satisfies either .1/ or .2/ of
Lemma 9.3. If .1/ holds, then HF.L�; L�/ D HF.L�; L�/ D 0 so purity is automatic.
If .2/ holds, let �0 > �; � be such that ��0� is an oriented circle diagram.

By Lemma 9.2, we have

�2.��0�0; �0�0�/ D ��0�: (9.7)

This means that ��0� in HF.L�;L�/ has weight equal to its degree. By Lemma 9.1 again,
we know the minimal degree elements in HF.L�;L�/ have weight equal to degree, hence
so do all elements in HF.L�; L�/. The same is true for HF.L�; L�/ because Lemma 9.2
also implies that

�2.��0�0; �0�0�/ D ��0�: (9.8)

By induction over the total order, the result follows.

Corollary 9.5. Over a field of characteristic 0, the A1 endomorphism algebra of the
direct sum of objects in the collection ¹L�º�2ƒn;m is formal.

Proof. This follows from Theorem 8.8 and Proposition 9.4.
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Proof of Theorem 1.1. Recall the notation for the tuple of Lagrangian thimbles T I from
Section 4. One can argue inductively to show that T .�/

�1._/ can be generated by ¹L� j
� 2 ƒn;mº using the exact triangles constructed in Section 3.2 (compare with Proposi-
tion 10.1).

We now give the details. When n D 1, ¹L� j � 2 ƒn;mº consists of one Lefschetz
thimble at the rightmost critical point, and all the matching spheres over matching
paths whose end points are consecutive critical values. This collection clearly generates
T .�/

�1._/, by applying Dehn twists in the matching spheres to the Lefschetz thimble.
We now argue inductively. Let k 2 NC. We assume that for all n < k, all m � n
and all �0 2 ƒn;m, the Lagrangian tuple T .�0/

�1._/ can be generated by the collection
¹L� j � 2 ƒn;mº. Now we consider the case n D k, m � n and let � 2 ƒn;m.

When ��1._/ D ¹m � n C 1; : : : ; mº, � is the maximal weight and we have L�
D T �

�1._/.
If � is not the maximal weight, then there is k 2 ¹1; : : : ; mº such that �.k/ D _ and

�.k C 1/ D ^. Let �00 be the weight given by ‘swapping positions k and k C 1’, that is,

�00.i/ D

8̂<̂
:
�.i/ if i ¤ k; k C 1;
^ if i D k;
_ if i D k C 1:

(9.9)

Let �0 2 ƒn�1;m�2 be the weight given by forgetting the positions k; k C 1, that is,

�0.i/ D

´
�.i/ if i < k;
�.i C 2/ if i � k:

(9.10)

We define
S
k;kC1 �

0 to be the admissible tuple in ¹im.z/� 1º consisting of one matching
path connecting kC

p
�1 and kC 1C

p
�1 and n� 1 thimble paths from i C

p
�1 to i

for each i 2 ��1._/ n ¹kº. The notation suggests that it is obtained from applying a ‘cup
functor’ to �0 in position k; k C 1 in the sense of [2].

By Corollary 3.5, we have the exact triangle

T .�
00/�1._/Œ�1�! LS

k;kC1 �
0 ! T .�/

�1._/
! T .�

00/�1._/: (9.11)

Note that the second term LS
k;kC1 �

0 can be generated by ¹L� j � 2 ƒn;mº by apply-
ing the ‘cup functor’

S
k;kC1 to the induction hypothesis. More precisely, by induction

hypothesis, the collection
¹L� j � 2 ƒn�1;m�2º

is sufficient to generate L� for all admissible tuples � D ¹1; : : : ; nº such that for all i ,
i is a thimble path from qi C

p
�1 to qi for some qi 2 ¹1; : : : ;mº. Together with Corol-

lary 3.5 (which implies that the ‘cup functor’ takes exact triangles to exact triangles), we
know that the collection

¹L� j � 2 ƒn;m; �.k/ D _; �.k C 1/ D ^º
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x    x    x    x x    x    x    x x    x    x    x

x    x x    x x    x

x    x    x    x

x    x
[1]

[1]

Fig. 9.5. The first row represents an exact triangle in the induction hypothesis. The second row is
the exact triangle after applying the ‘cup functor’

S
2;3 to it.

is sufficient to generate L� for all admissible tuples � D ¹1; : : : ; nº such that (see
Figure 9.5)
(1) i � ¹im.z/ � 1º for all i ,
(2) 1 is a matching path joining k C

p
�1 and k C 1C

p
�1,

(3) for i > 1, i is a thimble path from qi C
p
�1 to qi for some qi 2 ¹1; : : : ; mº.

On the other hand, the first and third terms of (9.11) have the property that �00 > �.
Since L� D T

��1._/ when � is maximal, by (9.11) and a second induction with respect

to the Bruhat ordering starting from the maximal weight, we know that T .�/
�1._/ can be

generated by ¹L� j � 2 ƒn;mº.

Conversely, L� can be generated by ¹T .�/
�1._/

j � 2 ƒn;mº, either again by directly
applying the exact triangles, or by appeal to Proposition 5.16. Therefore, by Proposi-
tion 4.5, we have quasi-equivalences

D�F �.�n;m/ ' perf-End
�M

T .�/
�1._/

�
' perf-Ksymp

n;m D perf-Kalg
n;m: (9.12)

Remark 9.6. Theorem 1.1 and Claim 3.6 together give a new proof of a result of [7],
namely that the Serre functor of the constructible derived category of the Grassmannian
is given by the action of the centre of the braid group.

There is an algebra isomorphism K
alg
n;m ' .K

alg
n;m/

op, given on basis elements by send-
ing an oriented circle diagram ˇ�˛ to its reflection ˛r�ˇr (see [13, (3.9)]). Together with
Theorem 1.1, this implies

Corollary 9.7. For all �; �0 2 ƒn;m, we have

HF.L�; L�0/ D HF.L�0 ; L�/ (9.13)

as graded vector spaces.

This is already non-trivial, because L�; L�0 are not compact Lagrangians, so it is not
a priori clear why they should satisfy this Poincaré duality type of equality (because of
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the non-trivial wrapping in constructing the category, the underlying cochain groups are
typically not equal).

The algebra isomorphismK
alg
n;m ' .K

alg
n;m/

op can be understood geometrically: we give
a sketch of the argument. By a hyperbolic isometry between the upper half-plane and the
unit disc, we can assume the target of �E is the unit disc B . We also assume that the
critical values lie on the real line, and that infinity in the upper half-plane is mapped top
�1 2 @B . For example, it can be achieved by applying the inverse of the hyperbolic iso-

metry f WB1!H of (5.12). Let �B WB!B be the reflection along the real line, which is
an anti-symplectic involution of B . We recall that for the construction of .E; !E / in Sec-
tion 5.1, !M is restricted from a product symplectic form !X . Therefore, by appropriately
choosing !R in Lemma 5.4, we can assume that there is an anti-symplectic involution
�E W E ! E covering �B .

Let u W S! YE be a solution that contributes to theA1 structure of F � cyl;n.�E /. Let
�S W S ! S be reflection in the real diameter of the disc, and S the image of S (equipped
with the push-forward data by �S ). Let �YE W YE ! YE be the anti-symplectic involution
induced by �E . In this case, �YE ı u ı �S W S ! YE is tautologically a solution to the
push-forward equation, which is itself a perturbed pseudo-holomorphic equation. Note,
however, that the ordering of the Lagrangian boundary conditions is reversed on @S .

This illustrates that, for appropriate choices of Floer data, the involution �E induces
an A1-equivalence

F � cyl;n.�E / ' .F � cyl;n.�E /
�/op; L 7! �E .L/; (9.14)

where F � cyl;n.�E /
� is quasi-equivalent to F � cyl;n.�E / but the wrapping at infinity for

CF.‹; ‹‹/ in F � cyl;n.�E /
� is defined to be wrapping the latter entry clockwise, with stop

at�
p
�1, whilst the wrapping in F � cyl;n.�E / is wrapping the former entry counterclock-

wise with stop at
p
�1 (see Figure 9.6). For more details of (quasi-)equivalences of the

kind of (9.14), see [48, Appendix].

x    x    x    x    x    x x    x    x    x    x    x x    x    x    x    x    x

Fig. 9.6. CF.L�; L�0/ (left), CF.�E .L�0/; �E .L�// in F �cyl;n.�E /
� (middle) and

CF.‰ ı �E .L�0/; ‰ ı �E .L�// (right). The dot on the boundary indicates the stop.

To identify F � cyl;n.�E /
� with F � cyl;n.�E /, we need to pick a quasi-equivalence

‰ between them. We choose the one that corresponds to moving the ‘stop’ �
p
�1 for

F � cyl;n.�E /
� to
p
�1 clockwise along the boundary of B and keeping a compact region
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containing the critical points unchanged (see Figure 9.6). This choice of quasi-equivalence
has the property that

‰ ı �E .L�/ D L� (9.15)

for all � 2 ƒn;m.
Applying ‰ ı �E to the hom space between the Lagrangians associated to weights in

ƒn;m, we get Corollary 9.7:

HF.L�; L�0/ D HF.‰ ı �E .L�0/; ‰ ı �E .L�// D HF.L�0 ; L�/ (9.16)

where the first equality comes from (9.14) and the second one comes from (9.15). Simil-
arly, applying ‰ ı �E to the multiplication maps, we can deduce Ksymp

n;m ' .K
symp
n;m /

op, so
(9.14) can be viewed as a geometric interpretation of the isomorphismK

alg
n;m ' .K

alg
n;m/

op.

Proof of Corollary 1.5. The statement follows from Theorem 1.1 and the fact that Kalg
n;m

D .K
alg
m�n;m/

op. The geometric origin of the latter equality is the Schubert-cells compatible
identification of the Grassmannians Gr.n;m/D Gr.m� n;m/ but, following [13, (3.10)],
it is not hard to give a concrete isomorphism in diagrammatic terms. We present their
isomorphism here using our notations.

Let PD W ƒn;m ! ƒm�n;m be the bijection

PD.�/.a/ D

´
^ if �.mC 1 � a/ D _;
_ if �.mC 1 � a/ D ^:

(9.17)

In words, PD is obtained by rotating � by � (see Figure 9.7).

∧    ∧    v    v    ∧    v ∧    v    ∧    ∧    v    v=

Fig. 9.7. Left: a weight �. Right: the weight PD.�/.

Each basis element of Kalg
n;m is an oriented circle diagram, for which we can per-

form a �-rotation to obtain another oriented circle diagram, and hence a basis element
of .Kalg

m�n;m/
op. This gives a bijection between basis elements of Kalg

n;m and .Kalg
m�n;m/

op.
Since clockwise cup becomes clockwise cap, and vice versa, this bijection preserves grad-
ing. Because of the diagrammatic nature of the defining TQFT, it is immediate that this
induces an algebra isomorphism, as observed in [13, (3.10)].

10. Dictionary between Lagrangians and modules

In this section, we summarize the dictionary between certain objects in F � cyl;n.Am�1/ (or
their Yoneda images as modules overKsymp

n;m ) and modules overKalg
n;m. None of our results
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rely on this dictionary: it is simply meant to help orient the interested reader. Given that,
we make free use of Claim 3.6 in this section.

Modules in this section are right modules, which differs from the convention used
in [13]. However, as remarked previously, there is a canonical algebra isomorphism
K

alg
n;m' .K

alg
n;m/

op, which identifies the rightKalg
n;m-modules used below with the leftKalg

n;m-
modules used in [13].

For an A1 or dg category/algebra C , we use perf-C and C -perf to denote the dg cat-
egory of perfect right, and respectively left, C -modules. We use ŒC ;D � denote the dg cat-
egory of C -D-bimodules. Since Kalg

n;m is homologically smooth, every proper (cohomo-
logically finite) module or bimodule is perfect.

10.1. Indecomposable projectives

For each �2ƒn;m, we defineP.�/ to be the submodule ofKalg
n;m generated by the oriented

circle diagrams of the form

P.�/ WD
L

K�alg�˛: (10.1)

The collection of all P.�/ (together with their grading shifts) is the set of all indecom-
posable projective modules of Kalg

n;m. Under the isomorphism K
symp
n;m ' K

alg
n;m, P.�/ is the

same as the Yoneda embedding ofL� as a rightKsymp
n;m -module. Thus, the indecomposable

projectives are the Lagrangians associated to weights.
By [13, Theorem 5.3], the set of all indecomposable injective modules of Kalg

n;m is
given by

P.�/� WD Hom.P.�/;K/ (10.2)

where the right module structure is given by fa.m/ WD f .ma�/ for a 2 Kalg
n;m,m 2 P.�/

and f 2 P.�/�. In other words, P.�/� is obtained by pulling back the left module
Hom.P.�/;K/ via the algebra isomorphismK

alg
n;mD .K

alg
n;m/

op. On the symplectic side, up
to a grading shift, Hom.P.�/;K/ is given by the Yoneda embedding of ��1.L�/ as a left
K

symp
n;m -module, where � is the global monodromy (see Claim 3.6), so P.�/� corresponds

to the pull-back of ��1.L�/ via the algebra isomorphism K
symp
n;m D .K

symp
n;m /

op.
In view of the geometric explanation of the equivalence Ksymp

n;m D .K
symp
n;m /

op given
in (9.14), P.�/� is given by the right Yoneda embedding of ‰ ı �E ı ��1.L�/.

10.2. Standard modules

For each � 2 ƒn;m, there is a standard module V.�/ defined in [13, (5.11)]. As a graded
vector space, V.�/ is generated by oriented cap diagrams of the form �˛. The collection
of all V.�/ gives a full exceptional collection for the dg category of right Kalg

n;m-modules
and Exti .V .�0/; V .�1// ¤ 0 for some i only if �0 < �1, where < is with respect to the
Bruhat partial ordering.
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x    x    x    x    x    x    

x    x   x    x    x    x    x    x    x    x    x    x    

Fig. 10.1. An example of ��1.L�/ (left), �E ı ��1.L�/ (middle) and ‰ ı �E ı ��1.L�/ (right).

An inductive construction of a projective resolution of V.�/ is described in [12, The-
orem 5.3]. By identifying P.�/ with the Yoneda image of L� and imitating that inductive
construction, we have

Proposition 10.1. The standard module V.�/, as an A1 module over Kalg
n;m D K

symp
n;m , is

quasi-isomorphic to the Yoneda image of T �
�1._/ up to grading shift.

Sketch of proof. We want to compare the projective resolution of the standard module
V.�/ and the iterated mapping cone decomposition of T �

�1._/ (cf. the proof of Theorem
1.1).

When ��1._/ D ¹m � nC 1; : : : ; mº, � is the maximal weight and P.�/ D V.�/. It
corresponds to L� D T

��1._/.
If � is not the maximal weight, then there is k 2 ¹1; : : : ; mº such that �.k/ D _ and

�.k C 1/ D ^. Let �00, �0 and
S
k;kC1 �

0 be as in the proof of Theorem 1.1.
The construction of the projective resolution of V.�/ comes from iteratively applying

the exact sequence of modules in [12, (5.8)]. On the other hand, by Corollary 3.5, we have
the exact triangle of Yoneda modules

T .�
00/�1._/Œ�1�! LS

k;kC1 �
0 ! T .�/

�1._/
! T .�

00/�1._/: (10.3)

Therefore, it is sufficient to prove that the exact sequence of modules in [12, (5.8)] cor-
responds to (10.3). This correspondence can be proved by induction on m, induction on
the partial ordering of weights (from high to low; note that �00 > �) and the fact that
HF.T .�

00/�1._/Œ�1�;LS
k;kC1 �

0/ has rank 1, so up to quasi-isomorphism there is only one
non-trivial mapping cone. We leave the details to the readers.

Thus, the standard modules are the Lefschetz thimbles.

Remark 10.2. In contrast to the collection of indecomposable projective modules, the
collection of standard modules does not have formal endomorphism algebra when n > 1.
A minimal model for the algebra when nD 2 is given in [27], which conjectured that this
minimal model is not formal; we give a proof of that conjecture in Appendix A.
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By [13, Theorem 5.3], the set of all costandard modules of Kalg
n;m are given by

V.�/� WD Hom.V .�/;K/ (10.4)

where the right module structure is given by fa.m/ WD f .ma�/ for a 2Kalg
n;m,m 2 V.�/�

and f 2 V.�/�. In other words, up to grading shift, it is given by the Yoneda embedding
of ��1.T �

�1._// as a right .Ksymp
n;m /

op-module after pull-back via the algebra isomorphism
K

symp
n;m D .K

symp
n;m /

op.
In view of (9.14) again, V.�/� is given by the right Yoneda embedding of ‰ ı �E ı

��1.T �
�1._//.

x    x    x    x    x    x    

x    x    x    x    x    x    
x    x    x    x    x    x    

Fig. 10.2. An example of ��1.T �
�1._// (left), �E ı ��1.T �

�1._// (middle) and ‰ ı �E ı

��1.T �
�1._// (right).

In fact, the ‰ ı �E ı ��1.T �
�1._// form the right Koszul duals of the thimbles (i.e.

HF.T �
�1
0
._/; ‰ ı �E ı �

�1.T �
�1
1
._/// D K if and only if �0 D �1, and equal to 0 other-

wise). It is well-known that costandard modules are right Koszul dual to standard modules
(see for example [9]).

10.3. Irreducible modules

For each � 2 ƒn;m, we define L.�/ to be the submodule of Kalg
n;m generated by the single

oriented circle diagram

L.�/ WD K���: (10.5)

The collection of all L.�/ is the set of all irreducible modules of Kalg
n;m.

It is not immediately clear in our context which Lagrangians correspond to the irredu-
cible modules. In view of the work of [18], and the ‘topological model’ for the compact
core of the space Yn;m arising from its description as a quiver variety (see e.g. [2]), it is
reasonable to believe that one can enlarge the category F � cyl;n.E/ to allow Lagrangian
discs that intersect exactly one of the ¹L�º� once and are disjoint from the others. These
would be the analogues of ‘cocore discs’ over the components of the skeleton of a plumb-
ing of cotangent bundles, and the Yoneda images of these Lagrangian discs are natural
candidates for the irreducible modules.
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11. Symplectic annular Khovanov homology

This section gives an application of our main results to link homology theories in the sense
of Khovanov. SupposemD 2n. A braid ˇ 2Brn in the n-string braid group defines bimod-
ules P .j /

ˇ
over each of the extended arc algebras Kalg

j;n with 0 � j � n. One can combine
a theorem of Roberts [39] with deep recent work of Beliakova, Putyra and Wehrli [8] to
infer that there is a spectral sequence

L
j HH�.P

.j /

ˇ
/)Kh.�.ˇ//, where �.ˇ/ is the link

closure of ˇ, and where Kh.�/ is the Khovanov homology [24] of the link � � S3, con-
structed as a categorification of the Jones polynomial. It is by now classical that Khovanov
homology can be understood as a certain morphism group Extperf-H alg

n;2n

.P; .ˇ � id/.P //

in the derived category of modules over the compact arc algebra H alg
n;2n (see [25]), where

ˇ � id 2 Br2n belongs to the 2n-string braid group and P is a particular projective. From
the viewpoint of the (extended) arc algebras, the existence of such a spectral sequence is
rather mysterious. The purpose of this section is to give a transparent account of why it
should exist, starting from a new semi-orthogonal decomposition of perf-Kalg

n;2n which we
shall derive from the geometric viewpoint afforded by Theorem 1.1.

We assume m D 2n in Sections 11 and 12 unless stated otherwise.

11.1. The annular symplectic theory

Let hs 2ƒn;m be the weight such that hs�1._/D ¹1; : : : ; nº. The corresponding tupleLhs
is called the ‘horseshoe’ Lagrangian tuple and the Lagrangian Sym.Lhs/ � Yn;m is the
horseshoe Lagrangian from [1,47]. Let Brn be the braid group on n strands. The paper [47]
associates to each element ˇ 2Brn a symplectomorphism �

.n/

ˇ
WYn;m!Yn;m, and defines

the symplectic Khovanov cohomology of the braid closure � D �.ˇ/ of ˇ to be

Khsymp.�.ˇ// WD HF.Sym.Lhs/; �
.n/

ˇ
.Sym.Lhs/// (11.1)

The main result of [47] is that Khsymp.�.ˇ// is a link invariant, i.e. it is independent of the
representation of � as a braid closure.

One can give an equivalent definition of symplectic Khovanov cohomology using
Lhs instead of its product Sym.Lhs/. Let E WD Am�1 denote the Milnor fibre. To each
simple braid element �i we associate the symplectomorphism ��i W E ! E given by the
Dehn twist along the i -th matching sphere (lying above the line joining i C

p
�1 and

i C 1 C
p
�1). This defines a representation Brm ! �0Sympct .E/. Let Brn ,! Brm

be the embedding of the left n strands. We have the restricted representation Brn !
�0Sympct .E/ so each braid ˇ 2 Brn determines a symplectomorphism �ˇ of E that
acts as the identity on the ‘right half’.

Then (see [31])

Khsymp.�.ˇ// D HF.Lhs; �ˇ .Lhs//: (11.2)

Let E1=2 be the An�1 Milnor fibre with its standard Lefschetz fibration �E1=2 .
We can define the symplectomorphism �ˇ of E1=2 for ˇ 2 Brn accordingly. Then �ˇ
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induces an A1 endofunctor of F � cyl;j .�E1=2/, and hence an A1-bimodule P .j /
ˇ

over

F � cyl;j .�E1=2/.

Definition 11.1. The symplectic annular Khovanov homology of the braid ˇ 2 Brn is the
direct sum of Hochschild homology groups

AKhsymp.ˇ/ WD

nM
jD0

HH�.F � cyl;j .�E1=2/; P
.j /

ˇ
/ (11.3)

where, by convention, F � cyl;j .�E1=2/DK and P .j /
ˇ
DK is the diagonal bimodule when

j D 0 (cf. Remark 1.2).

Symplectic annular Khovanov homology is clearly a braid invariant. It is not an invari-
ant of the link closure of the braid. Its definition is motivated by the fact that combinatorial
annular Khovanov homology, originally defined by a diagrammatic calculus for links in
a solid torus [4], is itself isomorphic to a direct sum of Hochschild homologies of braid
bimodules over the extended arc algebras, a recent theorem of [8] establishing a conjec-
ture due to [6]. Indeed, Theorem 1.1 and the same formality arguments for bimodules as
in [2] would prove that

Proposition 11.2. AKhsymp.ˇ/ is isomorphic to annular Khovanov homology when K
has characteristic 0.

We will prove Theorem 1.9 by constructing a spectral sequence AKhsymp.ˇ/ )

Khsymp.�.ˇ//.

Remark 11.3. One could also define a braid invariant as the direct sum of fixed point
Floer homologies of �ˇ on Yj;n over j 2 ¹0; : : : ; nº (where ‘partial wrapping’ would
remove fixed points at infinity). It seems likely that this geometric definition would
recover that of Definition 11.1, but establishing such an isomorphism is beyond the scope
of this paper. See [43] for closely related results.

Remark 11.4. There is an sl2 action on AKhsymp.ˇ/, by combining [21] and Proposi-
tion 11.2, which implies a rank inequality

rank.HH�.F � cyl;j .�E1=2/; P
.j /

ˇ
// � rank.HH�.F � cyl;jC1.�E1=2/; P

.jC1/

ˇ
//

for all j < n=2. Coupled with Remark 11.3, this predicts a non-trivial existence result
for periodic points of the symplectomorphisms of Yj;n associated to braids. It would be
interesting to construct the sl2 action symplectic-geometrically.

11.2. Embedding of algebras

LetE WDAm�1 and �E be the standard Lefschetz fibration. LetW1 WD ¹re.z/ < nC 1=2º
and W2 WD ¹re.z/ > nC 1=2º. Note that F �

cyl;j
W1

.�E / D F � cyl;j .�E1=2/. As explained

in Section 3.2, there is a faithful A1 functor tK W F �
cyl;j
W1

.�E /! F � cyl;n.�E / for each

object K of F �
cyl;n�j
W2

.�E /.
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By essentially the same argument, we can prove that

HF.L0 tK0; L1 tK1/ D HF.L0; L1/˝ HF.K0; K1/ (11.4)

for Li 2 F �
cyl;j
W1

.�E / and Ki 2 F �
cyl;j
W2

.�E /. Varying either the Li or Ki , Floer multi-
plication amongst the corresponding groups also respects the tensor product structure. Let
0� j � n be an integer. For each �2ƒj;n, one can define an objectL� in F �

cyl;j
W1

.�E / by

forgetting the right n critical values (see Figure 11.1). Our convention is F �
cyl;j
W1

.�E /DK
when j D 0, i.e. the category contains a unique object whose endomorphism algebra is the
ground field concentrated in degree zero; the object L� is by definition the unique non-
zero object in the category in this case. For the other extreme, when j D n, the object L�
is the tuple of Lagrangian thimbles (cf. Corollary 5.17). Similarly, for each�2ƒn�j;m�n,
one can define an objectK� in F �

cyl;n�j
W2

.�E / by forgetting the left n critical values. We
have an algebra isomorphismL

HF.L�0 tK�0 ; L�1 tK�1/ D K
symp
j;n �K

symp
n�j;m�n (11.5)

where the sum is over all �0; �1 2 ƒj;n and �0; �1 2 ƒn�j;m�n.

x    x    x    x    x    x     x    x    x    x    x    x

W2W1

Fig. 11.1. Lagrangian tuples L� (blue, left) and K� (black, right).

LetA be theA1 full subcategory of F � cyl;n.�E / consisting of objectsL� tK� over
all � 2ƒj;n, � 2ƒn�j;m�n and j D 0; : : : ; n. For each integer 0� j � n, we have the full
subcategory Aj of A given by the objects L� tK� over all � 2 ƒj;n and � 2 ƒn�j;m�n.

Lemma 11.5. For each integer 0� j � n, the endomorphism algebra of the objects inAj
is formal, and hence quasi-isomorphic to the right hand side of (11.5).

Proof. This can be seen as a version of the Künneth theorem: the A1 structure on a
product Lagrangian is quasi-isomorphic to the tensor product of a dg model for each
factor (see [3] for the relevant theory).

Alternatively, and more concretely, in our case we observe that each L� tK� is pure
with respect to the nc vector field for the same reason as in Lemma 8.10. Moreover, the
cohomological algebra of the collection of L� tK� splits as a tensor product, so we can
repeat the strategy from Section 9. We next give the details of this second approach.
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We choose total orderings �T1 and �T2 for ƒj;n and ƒn�j;m�n, respectively, both of
which refine the Bruhat partial ordering. We can define a total order �T on the pairs
.�; �/ 2 ƒj;n �ƒn�j;m�n by declaring that

.�0;�0/<
T .�1;�1/ if and only if .�0<

T
1 �1/ or .�0D�1 and�0<T2 �1/: (11.6)

Now, we can run the induction in the proof of Proposition 9.4.
For the rest of the proof, we use L�;� to denote L� t K�. Let .�1; �2/ 2

ƒj;n �ƒn�j;m�n and suppose that a b-equivariant structure on L�;� has been chosen for
all .�; �/ >T .�1; �2/ such that b is moreover pure. We want to choose a b-equivariant
structure on L�1;�2 such that b is pure on ¹L�;�º.�;�/�T .�1;�2/.

Recall the notation for the maximal element w� associated to � 2 ƒj;n from
(9.5). We choose a b-equivariant structure on L�1;�2 such that the minimal degree
element of HF.L�1;�2 ; Lw�1 ;w�2 / has weight equal to the degree. By Lemma 9.1,
HF.L�1;�2 ; Lw�1 ;w�2 / is cyclic as a module over HF.Lw�1 ;w�2 ; Lw�1 ;w�2 / so weight
equals degree for all pure degree elements in HF.L�1;�2 ; Lw�1 ;w�2 /. By Lemmas 9.1
and 9.2, and exactly the same argument as in Proposition 9.4, we know that all elements
of HF.Lw�1 ;w�2 ; L�1;�2/ have weights equal to their degrees.

Now, suppose that .�; �/ >T .�1; �2/ but .�; �/ ¤ .w�1 ; w�2/, and purity holds for
all of HF.L�0;�0 ; L�1;�2/, HF.L�1;�2 ; L�0;�0/ such that .�0; �0/ >T .�; �/.

Claim 11.6. If HF.L�;�;L�1;�2/¤ 0, then there exists .�0; �0/ >T .�;�/ such that both
��0�1 and ��0�2 are oriented circle diagrams.

Assuming Claim 11.6, one can show that purity also holds for HF.L�;�; L�1;�2/,
HF.L�1;�2 ; L�;�/ exactly as in the last two paragraphs of the proof of Proposition 9.4.
Therefore, the result follows by induction.

Proof of Claim 11.6. By assumption, we have

.w�1 ; w�2/ >
T .�; �/ >T .�1; �2/: (11.7)

By the definition of >T , we have � D �1 or � >T1 �1.
If � D �1, then � >T2 �2. If � ¤ w�2 , then by (2) of Lemma 9.3, there exists �0 >T2

�; �2 such that ��0�2 is an oriented circle diagram. We can take �0 D �1 so that we have
.�0; �0/ >T .�; �/ and both ��0�1 and ��0�2 are oriented circle diagrams.

If �D �1 and �D w�2 , then by (11.7), we have �1 ¤ w�1 (in fact, � D w� only when
� is the maximal weight, see (9.5)). In this case, we can take .�0; �0/ D .w�1 ; w�2/.

If � >T1 �1, then either � D w�1 or � ¤ w�1 . If � ¤ w�1 , then by (2) of
Lemma 9.3, there exists �0 >T1 �; �1 such that ��0�1 is an oriented circle diagram. As
HF.L�;�; L�1;�2/ ¤ 0, there exists �0 such that ��0�2 is an oriented circle diagram. We
can pick any such �0 because .�0; �0/ >T .�; �/ no matter which �0 we pick.

If � >T1 �1 but � D w�1 , then we pick �0 D � D w�1 . Since .w�1 ; w�2/ >
T .�; �/,

we have � <T2 w�2 . If �2 ¤ w�, then by (2) of Lemma 9.3, there exists �0 >T2 �;�2 such
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that ��0�2 is an oriented circle diagram so we are done. If �2 D w�, then � <T2 �2 so we
can take �0 D �2 because it implies that .�0; �0/ D .w�1 ; �2/ >

T .w�1 ; �/ D .�; �/ and
both ��0�1 and ��0�2 are oriented circle diagrams.

This completes the proof.

It is not clear whether the endomorphism algebra of the direct sum of all the objects
in A is formal or not. However, the dg category perf-A of perfect modules is formal in the
following weaker sense.

Lemma 11.7. perf-A is quasi-equivalent to perf-Kalg
n;m.

Proof. By iteratively applying exact triangles, we see that the objects in Aj can gen-
erate thimbles T D ¹T1; : : : ; Tnº in F � cyl;n.�E / such that j of the Ti ’s are contained
in ��1E .W1/, and the remaining n� j are contained in ��1E .W2/. Therefore, every thimble
of F � cyl;n.�E / can be generated by objects in A, so the result follows.

Lemma 11.8. LetX0 2 Aj0 andX1 2 Aj1 . If HF.X0;X1/¤ 0, then j0 � j1. As a result,
hAn; : : : ; A0i is a semi-orthogonal decomposition of A.

Proof. It is clear that CF.X0; X1/ D 0 if j0 < j1, because of the definition of Floer
cochains via positive isotopies along R D @H.

Theorem 11.9. perf-Kalg
n;m admits a semi-orthogonal decomposition hperf-An; : : : ;

perf-A0i, where for each j , perf-Aj is quasi-equivalent to perf-.Kalg
j;n �K

alg
n�j;m�n/.

Proof. This immediately follows from Lemmas 11.5, 11.7 and 11.8.

Theorem 11.9 categorifies the identity
�
m
n

�
D
Pn
jD0

�
n
j

��
m�n
n�j

�
for ranks of Grothen-

dieck groups.

Remark 11.10. Even though we are primarily interested in the case m D 2n in this sec-
tion, Theorem 11.9 holds for all n < m. This algebraic result seems to be new and may
be of independent interest.

We need another full subcategory of F � cyl;n.�E / that is analogous to A. Let

W Š
2 WD ¹nC 1=2 < re.z/ < mC 1=2 and im.z/ < 2º

[ ¹re.z/ < mC 1=2 and im.z/ < 1=2º (11.8)

and W Š
1 be the complement of W Š

2 . For � 2 ƒj;n and � 2 ƒn�j;m�n, we can consider
the corresponding upper Lagrangian tuples LŠ

�
2 F �

cyl;j
W Š
1

.�E / andKŠ� 2 F �
cyl;n�j
W Š
2

.�E /

(see Figure 11.2).
Let AŠ be the A1 full subcategory of F � cyl;n.�E / consisting of objects LŠ� t K

Š
�

over all � 2 ƒj;n, � 2 ƒn�j;m�n and j D 0; : : : ; n. For each integer 0 � j � n, we
have the full subcategory AŠj of AŠ given by the objects LŠ� tK

Š
� over all � 2 ƒj;n and

� 2 ƒn�j;m�n. The following Koszulness property justifies the notation .�/Š.
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x x x x x x x x x x x x

W2
!

W1
!

Fig. 11.2. Lagrangian tuples LŠ
�

(blue) and KŠ� (black).

Lemma 11.11. Let X Š 2 AŠi and X 2 Aj . If HF.X Š; X/ ¤ 0, then i D j .

Proof. The direction of wrapping shows that CF.X Š; X/ is non-zero only if i D j .

On the other hand, AŠ shares many features with A. By the same arguments as in
Lemmas 11.5 and 11.7, we know that perf-AŠ is quasi-equivalent to perf-Kalg

n;m and for
j D 0; : : : ; n, the category AŠj is formal with endomorphism algebraL

HF.LŠ�0 tK
Š
�0
; LŠ�1 tK

Š
�1
/ D K

symp
j;n �K

symp
n�j;m�n (11.9)

The analogues of Lemma 11.12 and Theorem 11.9 are

Lemma 11.12. Let X0 2 AŠj0 and X1 2 AŠj1 . If HF.X0; X1/ ¤ 0, then j0 � j1. As a
result, hAŠ0; : : : ; A

Š
ni is a semi-orthogonal decomposition of AŠ.

Theorem 11.13. perf-Kalg
n;m admits a semi-orthogonal decomposition hperf-AŠ0; : : : ;

perf-AŠni, where for each j , perf-AŠj is quasi-equivalent to perf-.Kalg
j;n �K

alg
n�j;m�n/.

In view of Theorems 11.9 and 11.13, when m D 2n, perf-.Kj;n � Kn�j;m�n/ is the
same as Œ.Kn�j;n/op; Kj;n�. By the isomorphism .Kn�j;n/

op D Kj;n (see Corollary 1.5),
this in turn is isomorphic to ŒKj;n; Kj;n�. Similarly, .Kj;n � Kn�j;n/-perf is the same as
ŒKj;n; .Kn�j;n/

op�, which in turn is isomorphic to ŒKj;n; Kj;n�.

11.3. A Beilinson-type spectral sequence

We next explain why a semi-orthogonal decomposition of an A1 category C induces a
spectral sequence with target a given morphism group in C . From now on, for an objectX ,
we use X r and X l to denote its right and left Yoneda modules, respectively.

Let C be a split-closed triangulated A1 category with a semi-orthogonal decomposi-
tion

C D hCn; : : : ;C0i: (11.10)

A Koszul dual semi-orthogonal decomposition is a semi-orthogonal decomposition

C D hC Š0; : : : ;C
Š
ni (11.11)
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such that for X 2 C Ši and Y 2 Ck

H.homC .X; Y // ¤ 0 only if i D k: (11.12)

Without loss of generality, we can assume each summand in the semi-orthogonal decom-
position is split-closed triangulated. Note that Koszul dual semi-orthogonal decomposi-
tions always exist [28].

Let �j WCj !C and �Šj WC
Š
j !C be the embeddings. Let �j WC!Cj and � Šj WC!C Šj

be the projection functors (i.e. the unique functors such that �j ı �j D idCj and �j ı �i D 0
for i ¤ j ). These functors induce pull-back functors on modules.

Lemma 11.14. Up to quasi-isomorphism, the left Yoneda embedding C Šj ! C -perf
factors through .�j /� W Cj -perf! C -perf.

Proof. Let X 2 C Šj . By (11.12), we have H.homC .X;X
0// D 0 for all X 0 2 Ci such that

i ¤ j . It implies that, up to quasi-isomorphism, we have

X l D .�j /
�
ı .�j /

�.X l /; (11.13)

so the result follows.

Since Yoneda embedding and .�j /� are both cohomologically full and faithful, so is
the functor

.�j /
�..�/l / W C Šj ! Cj -perf: (11.14)

By (11.12) again, we can see that

.�j /
�..�/l / W C Ši ! Cj -perf (11.15)

is the 0 functor when i ¤ j .

Lemma 11.15. (11.14) is essentially surjective, so induces a quasi-equivalence C Šj !

Cj -perf.

Proof. Combining the fact that (11.15) is the 0 functor and that both Yoneda embedding
and .�j /� are essentially surjective, we find that (11.14) is essentially surjective, so the
result follows.

Let  j W Cj -perf! C Šj be a quasi-inverse.

Lemma 11.16. Let X 2 C be quasi-isomorphic to an iterated mapping cone of the form

X D Cone.: : :Cone.X0 ! X1/ : : : Xn/ (11.16)

where Xj 2 C Šj for j D 0; : : : ; n. Then  j ı .�j /�.X l / is quasi-isomorphic to Xj .

Proof. By applying the functor  j ı .�j /�..�/l / to the iterated mapping cone (11.16),
and using the fact that (11.15) is the 0 functor, we see that only the object Xj contributes
and hence

 j ı .�j /
�.X l / '  j ı .�j /

�.X lj /: (11.17)
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By definition,  j ı .�j /�..�/l / is quasi-isomorphic to the identity functor on Cj so the
right hand side of (11.17) is in turn quasi-isomorphic to Xj .

Proposition 11.17. Let X;Y 2 C . There is a spectral sequence to H.homC .X; Y // from

nM
jD0

H..�Šj /
�.Y r /˝C Š

j
 j ı .�j /

�.X l // (11.18)

where  j ı .�j /�.X l /, as an object in C Šj , is regarded as a left C Šj -module via the Yoneda
embedding.

Proof. By (11.10),X is quasi-isomorphic to an iterated mapping cone of the form (11.16).
An expression of X as such a mapping cone induces a filtration on Y r .X/, with direct
sum of graded pieces being

nM
jD0

Y r .Xj /: (11.19)

Thus we have a spectral sequence from the cohomology of (11.19) to H.homC .X; Y //.
On the other hand, we have quasi-isomorphisms of cochain complexes

Y r .Xj / D .�
Š
j /
�.Y r /.Xj / D .�

Š
j /
�.Y r /. j ı .�j /

�.X l //

D .�Šj /
�.Y r /˝C Š

j
 j ı .�j /

�.X l /

where the second quasi-isomorphism comes from Lemma 11.16, and the other quasi-
isomorphisms come from the definitions of the objects involved.

Remark 11.18. In the extreme case where each Cj (and C Šj ) is an exceptional object,
the semi-orthogonal decomposition is a full exceptional collection and Proposition 11.17
reduces to the well-known Beilinson-type spectral sequence (cf. [40, Section (5l)]).

12. From annular to ordinary Khovanov homology

In this section, we explain how to apply Proposition 11.17 to the semi-orthogonal decom-
positions in Theorem 11.9 and 11.13 to obtain a spectral sequence from annular to ordin-
ary (symplectic) Khovanov homology.

Recall that for an A1 or dg category/algebra C , the Hochschild homology of a C -C -
bimodule P is defined to be

HH�.C ; P / WD H.�C ˝C -C P / (12.1)

where �C is the diagonal bimodule and ˝C -C is the derived tensor product over ŒC ;C �.
Equivalently, �C defines a right C ˝ Cop-module and P defines a left C ˝ Cop-module,
and we have

HH�.C ; P / WD H.�C ˝C˝Cop P / (12.2)
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The fact that Hochschild homology groups appear in the first page of a spectral sequence
to symplectic Khovanov cohomology arises from a relation between the horseshoe
Lagrangian and the diagonal bimodule, which we explain next. More precisely, in Sec-
tion 12.1, we compute .�j /�.Llhs/ and .�Šj /

�.�ˇ .Lhs/
r / for the embeddings �j W Aj !

F � cyl;n.�E / and �Šj W A
Š
j ! F � cyl;n.�E /. Then, we describe the quasi-inverse  j and

complete the proof of Theorem 1.9 in Section 12.2.

12.1. Horseshoe Lagrangian tuple and diagonal bimodule

Recall that we have the pull-back functor

.�j /
�
W F � cyl;n.�E /-perf! Aj -perf ' ŒKj;n; Kj;n�: (12.3)

The following is the key technical result.

Proposition 12.1. Up to grading shift, .�j /�.Llhs/ is quasi-isomorphic to the diagonal
Kj;n-bimodule.

We divide the proof into two steps. First, we will show that .�j /�.Llhs/ coincides with
the diagonal bimodule (up to grading shift) on the cohomological level. Then, we will
explain how to adapt the strategy in Section 9 to prove that this bimodule is formal. For
all the Lagrangian tuples in the proof, we continue to use our grading convention (6.8)
and the cost is that we will see eventually that .�j /�.Llhs/ corresponds to the diagonal
bimodule shifted by n� j instead of the diagonal bimodule. This arises from the fact that
there are n � j matching paths of .�j /�.Llhs/ that are oriented clockwise in the sense of
the algebraic extended arc algebra (see Remark 12.5).

Let � 2 ƒn�j;n and define 1 � c�;1 < � � � < c�;n�j � n as at the beginning of Sec-
tion 6.1. Let c�;i1 < � � � < c�;is be all the good points. Let

T WD ¹nC 1 � c�;il j l D 1; : : : ; sº; (12.4)
S WD ¹1; : : : ; nº [ .T C 1=3/ [ .T C 2=3/: (12.5)

We define .�C/0; .��/0 W S ! ¹_;^º by

.�C/0.a/ D

8̂<̂
:

PD.�/.a/ if a 2 ¹1; : : : ; nº n T;
_ if a 2 T;
^ if a 2 .T C 1=3/ [ .T C 2=3/;

(12.6)

and

.��/0.a/ D

´
_ if a 2 T C 1=3;
^ otherwise.

(12.7)

There is a unique order preserving bijective map (with the order induced from R)
f W ¹1; : : : ;nC2sº!S . Let�C WD .�C/0ıf 2ƒjCs;nC2s and�� WD .��/0ıf 2ƒs;nC2s .
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For � 2 ƒj;n, we define .� t ��/0 W S ! ¹_;^º by

.� t ��/0.a/ D

´
�.a/ if a 2 ¹1; : : : ; nº;
.��/0.a/ if a 2 .T C 1=3/ [ .T C 2=3/;

(12.8)

and let � t �� WD .� t ��/0 ı f 2 ƒjCs;nC2s . Note that both �C and � t �� lie in
ƒjCs;nC2s .

Lemma 12.2. For � 2 ƒj;n and � 2 ƒn�j;n, we have vector space isomorphisms

HFkCn�j�s.Lhs; �j .L�; K�// D HFk.L�C ; L�t��/ (12.9)

for all k. .Here n � j � s is the number of thimble paths in K�:/

The importance of Lemma 12.2 is that the right hand side of (12.9) is part of the
symplectic extended arc algebra. We will see later how to use (12.9), and the identification
of the symplectic and algebraic extended arc algebras (Proposition 7.12), to compute the
bimodule multiplication map of .�j /�.Llhs/.

Proof of Lemma 12.2. We use an upper matching to representLhs and a lower matching to
represent K� (see the first picture of Figure 12.1). Now, we apply a symplectomorphism
to ‘move the right half to the top’ and make all the matching paths of Lhs be straight
line segments (see the second picture of Figure 12.1). For each matching path of K�,
we apply a further symplectomorphism to ‘bend it to the right’ and make the two end
points become n C 1 � c�;il C 1=3 C

p
�1 and n C 1 � c�;il C 2=3 C

p
�1 (see the

third picture of Figure 12.1). Then, we remove all critical values contained in the thimble
paths of K� and all the paths that contain these critical values (see the fourth picture of
Figure 12.1). Finally, for those matching paths ofLhs that do not intersect with a matching
path of K�, we bend them to the right and turn them into thimble paths (see the fifth
picture of Figure 12.1).

x    x    x    x    x    x    ∧    v    v    v    ∧    ∧ x    x    x    x    x    x x    x    x      x      x    x 

x    x    x      x      x    x x    x    x      x      x    x 

Fig. 12.1. Turning Lhs (red) and K� (black) to L�C (red) and L�� (black), respectively.
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x    x    x    x    x    x    ∧    ∧    v    v    ∧    v ∧    v    ∧    ∧    v    vx    x    x    x    x    x    ∧    ∧    v    v    ∧    v

Fig. 12.2. CF.Lhs; �j .L�; K�// (left) and CF.L�C ; L�t��/ (right).

After this procedure, the set of critical values (the crosses and black dots in Fig-
ure 12.1) is exactly S , and we identify it with ¹1; : : : ; n C 2sº by f . The Lagrangian
tuples Lhs and K� become L�C and L�� respectively.

If we now add in a lower matching of L� that does not intersect with L�� , then
together with L�� we obtain a representative of L�t�� (see the second picture of Fig-
ure 12.2). Moreover, for degree reasons (either all generators have odd degree, or all have
even degree), both the cochain models CF.Lhs; �j .L�; K�// and CF.L�C ; L�t��/ have
vanishing differentials. Furthermore, there is an identification of the generators by send-
ing a generator x of CF.L�C ; L�t��/ to the generator y of CF.Lhs; �j .L�; K�// such
that �E .y/ is the union of �E .x/ and the end points of the thimble paths of K� (Fig-
ure 12.2). This identification increases the grading by the number of points added, which
is n � j � s. This completes the proof.

To prove Lemma 12.2, it suffices to consider a lower matching of L� to give a rep-
resentative of L�t�� . However, for this representative, there may be nested circles in the
union of matching and thimble paths of L�C and L�t�� , which will be inconvenient
later on. By possibly sliding the lower matching of L� across some matchings of L��
(and L� itself), we can choose a representative LA�t�� of L�t�� with no nested circles
(see the second picture of Figure 12.3). This corresponds to choosing another repres-
entative Le�t� of �j .L�; K�/, by sliding across some matching paths of K� (see the
first picture of Figure 12.3). For these representatives, we still have the (grading shifting)
cochain isomorphism with 0 differential,

CF�Cn�j�s.Lhs; Le�t�/ D CF�.L�C ; LA�t��/; (12.10)

which is again given by sending a generator x of CF.L�C ; LA�t��/ to the generator y of
CF.Lhs; Le�t�/ such that �E .y/ is the union of �E .x/ and the end points of the thimble

x    x    x    x    x    x    ∧    v    v    v    ∧    ∧ x    x    x      x      x    x 

Fig. 12.3. CF.Lhs; Le�t�/ (left) and CF.L�C ; LA�t��/ (right).
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paths of K�. The geometric generators on the right hand side of (12.10) are geometric
basis elements of Ksymp

jCs;nC2s , which are identified with the corresponding diagrammatic

basis elements of Kalg
jCs;nC2s under the map ˆ of Proposition 7.12.

Next, we want to compare the multiplication maps

CF.Le�0t�; Le�1t�/ � CF.Lhs; Le�0t�/! CF.Lhs; Le�1t�/ (12.11)

and

CF.LA�0t�� ; LA�1t��/ � CF.L�C ; LA�0t��/! CF.L�C ; LA�1t��/: (12.12)

The second and third terms of (12.11) and (12.12) are identified via (12.10), and the
identification of the first terms is defined similarly (i.e. adding to a generator x of
CF.LA�0t�� ; LA�1t��/ the intersection points of CF.K�; K�/ that lie above those crit-
ical values that are contained in the thimble paths of K� – see Figure 12.4; note that this
identification is degree preserving, because the points being added now have degree 0).

x    x    x    x    x    x    ∧    v    v    v    ∧    ∧ x    x    x      x      x    x 

Fig. 12.4. CF.Le�0t�; Le�1t�/ (left) and CF.LA�0t�� ; LA�1t��/ (right).

By the open mapping theorem, all solutions u contributing to the map (12.11) must
include n� j � s constant triangles which, under �E , map to the n� j � s critical values
that are contained in the thimble paths of K�. Removing these constant triangles (and
removing the thimble paths of K�), we can identify the moduli spaces defining the maps
(12.11) and (12.12), so the maps (12.11) and (12.12) agree under the identification above.

Let CF.L�
�0t��

; L
�

�1t��
/ be a cochain model for the pair .L�0t�� ; L�1t��/ which

contains the matching paths of �� used above, and such that the union of the matching
and thimble paths has no nested circles (see the first picture of Figure 12.5). In particular,
as the matching paths in �� are not nested, the Floer cochain complex canonically splits,

CF.L�
�0t��

; L
�

�1t��
/ D CF.L�

�0
; L

�

�1
/˝ CF.L�� ; L��/ (12.13)

where, for j D 0; 1,L�
�j

is obtained by removing the matchings corresponding to �� (see
the second picture of Figure 12.5). Moreover, as there is no nesting, the geometric generat-
ors are geometric basis elements ofKsymp

j;n ˝K
symp
s;2s . By Proposition 7.12, these geometric

generators can in turn be identified with diagrammatic basis elements in Kalg
j;n ˝ K

alg
s;2s .

Let

� W CF.L�
�0t��

; L
�

�1t��
/! CF.LA�0t�� ; LA�1t��/ (12.14)
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x    x    x      x      x    x x    x    x      x      x    x 

Fig. 12.5. CF.L�
�0t��

; L
�
�1t��

/ (left) and CF.L�
�0
; L
�
�1
/ (right).

be a continuation map (the induced map on cohomology is independent of choices). By
Proposition 7.12, we can completely describe

�2.�.�/;�/ W CF.L�
�0t��

; L
�

�1t��
/ � CF.L�C ; LA�0t��/! CF.L�C ; LA�1t��/

(12.15)

using the algebraic extended arc algebra. In particular, by applying (12.13) to the first
term of (12.15), we completely understand the map

�2.�.�˝ e��/;�/ W CF.L�
�0
; L

�

�1
/ � CF.L�C ; LA�0t��/! CF.L�C ; LA�1t��/

(12.16)

where e�� 2 CF.L�� ; L��/ is the unit (cf. Lemma 3.2).
On the other hand, we now consider

CF.L z�0 ; L z�1/ � CF.LPD.�/; L z�0
/! CF.LPD.�/; L z�1

/ (12.17)

where, for j D 0; 1, L z�j is defined by removing the matching paths (and their end points)
of L z�jt�

� that correspond to ��, and LPD.�/ is an upper matching such that there are no
nested circles in the union of the matching paths of LPD.�/ and L z�j (see Figure 12.6).

x    x    x      x      x    x x    x    x      x      x    x 

Fig. 12.6. CF.L�C ; LA�t��/ (left) and CF.LPD.�/; L z�0
/ (right).

Analogously, we have a continuation map

�0 W CF.L�
�0
; L

�

�1
/! CF.L z�0 ; L z�1/ (12.18)

and hence we can define

�2.�0.�/;�/ W CF.L�
�0
; L

�

�1
/ � CF.LPD.�/; L z�0

/! CF.LPD.�/; L z�1
/; (12.19)

which we also know completely because the geometric generators are all geometric basis
elements and we can apply Proposition 7.12.
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For j D 0; 1, we have a (grading shifting) cochain isomorphism (both sides have 0
differential as usual)

CF�Cs.L�C ; L z�jt�
�/! CF�.LPD.�/; L z�j

/ (12.20)

given by forgetting the points of a generator x that lie above .T C 1=3 C
p
�1/ [

.T C 2=3C
p
�1/. The grading shift arises from removing the grading contribution of

the points lying above .T C 1=3C
p
�1/ [ .T C 2=3C

p
�1/. There are two cases. If

a point lying above T C 1=3 C
p
�1 is removed, then its grading contribution, which

is 1, is removed and the rest of the gradings are unchanged. If a point lying above
.T C 2=3 C

p
�1/ is removed, then its grading contribution, which is 2, is removed

but there is grading change from 1 to 2 for the point lying above T C
p
�1. Indeed,

since there is a matching path from T C
p
�1 to T C 1=3C

p
�1 and another match-

ing path from T C 1=3C
p
�1 to T C 2=3C

p
�1, a generator has a point lying above

T C 2=3C
p
�1 if and only if it has a point lying above T C

p
�1. Therefore, in both

cases, each point removal results in a decrease of overall grading by 1.
The outcome of this discussion is the following:

Lemma 12.3. Under the cochain identifications (12.20), the maps (12.16) and (12.19)
are identified.

Proof. After applying Proposition 7.12 to the geometric basis elements for all the Floer
cochain groups involved, the maps (12.16) and (12.19) can be computed by the algebraic
extended arc algebra in Kalg

jCs;nC2s and in Kalg
j;n, respectively.

The upshot is that, for (12.16), elements of the form �˝ e�� correspond to orienting

the s circles in �1 t ��alg
[ �0 t ��

alg
associated to �� counterclockwise. Applying

TQFT type multiplication to these circles does nothing [13, (3.4)], and the rest of the
diagrammatic calculus operations (for (12.16) and (12.19)) are obviously identified.

As a consequence of Lemma 12.2, the identification between (12.11) and (12.12), and
Lemma 12.3, we get

Corollary 12.4. We have canonical vector space isomorphisms

HF�Cn�j .Lhs; �j .L�; K�// D HF�.LPD.�/; L�/; (12.21)

and under these isomorphisms, the multiplication maps

�2.�˝ eK ;�/ W HF.L�0 ; L�1/ � HF.Lhs; �j .L�0 ; K�//

! HF.Lhs; �j .L�1 ; K�// (12.22)

and

�2.�;�/ W HF.L�0 ; L�1/ � HF.LPD.�/; L�0/! HF.LPD.�/; L�1/ (12.23)
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are identified. Here, for (12.22),

�˝ eK W HF.L�0 ; L�1/! HF.L�0 ; L�1/˝ HF.K�; K�/

' HF.�j .L�0 ; K�/; �j .L�1 ; K�// (12.24)

is the obvious map where eK is the cohomological unit of HF.K�; K�/.

Remark 12.5. Another way to interpret the grading shift is as follows. We have seen
from Lemma 6.5 (or Proposition 7.12) that the map from the symplectic extended arc
algebra to the algebraic extended arc algebra is given by putting a _ to the points �E .x/,
where x is a geometric basis element. Each generator x of CF.Lhs; Le�t�/ (see the first
picture of Figure 12.3) must have j points lying above ¹1; : : : ; nº and n � j points lying
above ¹nC 1; : : : ; 2nº. That corresponds to making j counterclockwise caps and n � j
clockwise caps for the oriented cap diagram associated to Lhs. This is where the extra
n � j in the grading comes from.

By a completely analogous reasoning, we get

Corollary 12.6. We have canonical vector space isomorphisms

HF�Cn�j .Lhs; �j .L�; K�// D HF�.LPD.�/; K�/; (12.25)

and under these isomorphisms, the multiplication maps

�2.eL ˝�;�/ W HF.K�0 ; K�1/ � HF.Lhs; �j .L�; K�0//

! HF.Lhs; �j .L�; K�1// (12.26)

and

�2.�;�/ W HF.K�0 ; K�1/ � HF.LPD.�/; K�0/! HF.LPD.�/; K�1/ (12.27)

are identified. Here, for (12.26),

eL ˝� W HF.K�0 ; K�1/! HF.L�; L�/˝ HF.K�0 ; K�1/

' HF.�j .L�; K�0/; �j .L�; K�1// (12.28)

is the obvious map where eL is the cohomological unit of HF.L�; L�/.

Note that, after applying PD (which is grading preserving), (12.27) would become

�2.�;�/ W HF.LPD.�0/; L�/ � HF.LPD.�1/; LPD.�0//! HF.LPD.�1/; L�/ (12.29)

On account of Corollaries 12.4 and 12.6, and the fact that every basis element of
HF.�j .L�0 ; K�0/; �j .L�1 ; K�1// can be written as the product of

x ˝ eK 2 HF.�j .L�0 ; K�0/; �j .L�1 ; K�0// and

eL ˝ y 2 HF.�j .L�1 ; K�0/; �j .L�1 ; K�1//



C. Y. Mak, I. Smith 110

for some x; y, we now know that the multiplication map

HF.�j .L�0 ; K�0/; �j .L�1 ; K�1// � HF.Lhs; �j .L�0 ; K�0//

! HF.Lhs; �j .L�1 ; K�1// (12.30)

can be identified with the left and right multiplication maps

�2.�; �2.�;�// W HF.L�0 ; L�1/ � HF.LPD.�0/; L�0/ � HF.LPD.�1/; LPD.�0//

! HF.LPD.�1/; L�1/: (12.31)

In other words, we have now shown that .�j /�.Llhs/ coincides with the diagonal bimodule
(shifted by n � j ) on the cohomological level. Having this, we can now finish the proof
of Proposition 12.1

Completion of the proof of Proposition 12.1. In the previous paragraph, we have shown
that .�j /�.Llhs/ coincides with the diagonal Ksymp

j;n -Ksymp
j;n -bimodule on the cohomological

level. It remains to show that .�j /�.Llhs/ is formal as a bimodule over Ksymp
j;n , or formal as

a left module over Aj .
As in the proof of formality in Section 9, it suffices to show that we can fix a consistent

choice of b-equivariant structures for the collection of Lagrangians inAj together with the
single additional Lagrangian Lhs. As explained in Lemma 11.5, the existence of a consist-
ent choice of b-equivariant structures for the collection of Lagrangians inAj follows from
Section 9 so we now only need to show the consistency for the pairs .Lhs; �j .L�; K�//.

The strategy is as before. First observe that, by the identification between (12.30)
and (12.31) and Lemma 9.1, we know that HF.Lhs; �j .L�; K�// is a cyclic module over
HF.�j .L�; K�/; �j .L�; K�//.

Then, we can run the proof of Proposition 9.4. We choose a b-equivariant structure
on Lhs such that the rank 1 vector space HF.Lhs; �j .L�max

; K�max
// is pure, where �max

and �max are the unique maximal weights inƒj;n andƒn�j;n, respectively. FixingK�max
,

we want to inductively argue that HF.Lhs; �j .L�; K�max
// is pure for all �. Let � be

such that the purity of HF.Lhs; �j .L�0 ; K�max
// has been verified for all �0 >T �, where

>T is the total ordering of weights in Proposition 9.4; then we need to verify purity
for HF.Lhs; �j .L�; K�max

//. By Lemma 9.2, and the identification between (12.30) and
(12.31), there exists a weight �0 >T � such that we have a non-trivial product (this is the
analogue of (9.7))

HF.�j .L�0 ;K�max
/; �j .L�;K�max

//�HF.Lhs; �j .L�0 ;K�max
//!HF.Lhs; �j .L�;K�max

//:

Together with cyclicity, it implies that HF.Lhs; �j .L�; K�max
// is pure. Thus

HF.Lhs; �j .L�; K�max
// is pure for all �.

Similarly, we can fix L� and apply the inductive argument to HF.Lhs; �j .L�; K�//

with varying �. Altogether, we conclude that HF.Lhs; �j .L�; K�// is pure for all �; �
and hence .�j /�.Llhs/ is formal as a left module over Aj .

Lemma 12.7. Up to grading shift, .�j /�.�ˇ .Lhs/
l / is quasi-isomorphic to P .j /

ˇ
.
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Proof. We can apply the same method as in the proof of Proposition 12.1 to
.�ˇ /

�.�j /
�.�ˇ .Lhs//

l , where .�ˇ /
� W perf-Aj ! perf-Aj is the pull-back functor

under �ˇ . This is because, geometrically, CF.�ˇ .Lhs/; �ˇ .L/ t K/ can be canonically
identified with CF.Lhs; L tK/, as can all holomorphic polygons contributing to the A1
structure amongst tuples of such Floer groups. It may be worth emphasising that at this
point in the argument we use the fact that, working with pullback data for Hamiltonians,
almost complex structures, etc., the symplectomorphism �ˇ gives a canonical identific-
ation of moduli spaces of polygons; the corresponding isomorphism, from the algebraic
viewpoint, is much less transparent.

In consequence, .�ˇ /�.�j /�.�ˇ .Lhs//
l is also quasi-isomorphic to the diagonal

bimodule, and hence .�j /�.�ˇ .Lhs//
l is quasi-isomorphic to .��1

ˇ
/�� D P

.j /

ˇ
.

We have the analogous results for the embedding �Šj W A
Š
j ! F � cyl;n.�E / and the

induced pull-back

.�Šj /
�
W perf-F � cyl;n.�E /! perf-AŠj ' ŒKj;n; Kj;n�: (12.32)

Proposition 12.8. Up to grading shift, .�Šj /
�.Lrhs/ is quasi-isomorphic to the diagonal

bimodule.

Sketch of proof. A completely parallel argument applies (see Figures 12.7 and 12.8 for
illustration).

x    x    x    x    x    x    x     x    x    x    x    x x    x    x    x    x    x x    x    x      x      x    x 

x    x    x      x      x    x x    x    x      x      x    x 

Fig. 12.7. The counterpart of Figure 12.1.

x    x    x    x    x    x    x     x    x    x    x    x x    x    x      x      x    x 

Fig. 12.8. The counterpart of Figure 12.2.
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If one keeps track of the grading and follows our grading convention, then .�Šj /
�.Lrhs/

is quasi-isomorphic to the diagonal bimodule shifted by n � j (cf. Remark 12.5).

Lemma 12.9. Up to grading shift, .�j /�.�ˇ .Lhs/
r / is quasi-isomorphic to P .j /

ˇ
.

Proof. The proof repeats that of Lemma 12.7, but replacing Proposition 12.1 by Proposi-
tion 12.8.

12.2. Spectral sequence to Khovanov homology

Having Proposition 12.1 and Lemma 12.9, the last piece of information we need to under-
stand the E1-page of the spectral sequence in Proposition 11.17 is a description of a
quasi-inverse

 j W Aj -perf! AŠj (12.33)

of the functor .�j /�.�/l W AŠj ! Aj -perf. We are going to describe  j geometrically.
For � 2 ƒj;n and � 2 ƒn�j;m�n, we consider the upper Lagrangian tuples

L� 2 F �
cyl;j
W1

.�E / and K� 2 F �
cyl;n�j
W2

.�E / (see Figure 12.9). The disjoint union
L� t K� gives an object in F � cyl;n.�E /. On the other hand, we have LŠ

�
t KŠ� 2 A

Š
j ,

which is in particular an object in F � cyl;n.�E /.

x    x    x    x    x    x     x    x    x    x    x    x

Fig. 12.9. Lagrangian tuples L
�

(blue) and K� (black).

Lemma 12.10. For � 2 ƒj;n and � 2 ƒn�j;m�n, we have a quasi-isomorphism

.�j /
�.L� tK�/

l
' .�j /

�.LŠ
�
tKŠ�/

l (12.34)

of objects in Aj -perf.

Proof. For any objectL�0 tK�02Aj , there is an obvious isomorphism (see Figure 12.10)

CF.L� tK�; L�0 tK�0/ D CF.L�; L�0/˝ CF.K�; K�0/

D CF.LŠ
�
; L�0/˝ CF.KŠ�; K�0/

D CF.LŠ
�
tKŠ�; L�0 tK�0/:

Moreover, when X0; : : : ; Xd 2 Aj , for a careful choice of Floer data, one can actually
make the A1 structural maps

CF.Xd�1; Xd / � � � � � CF.X0; X1/ � CF.L� tK�; X0/! CF.L� tK�; Xd /;
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x    x    x    x    x    x     x    x    x    x    x    x x    x    x    x    x    x     x    x    x    x    x    x

Fig. 12.10. Floer cochain CF.LŠ
�
tKŠ�; L�0 tK�0/ (left) and CF.L

�
tK�; L�0 tK�0/ (right).

The intersection between the positive wrapping of L
�

and K�0 cannot contribute a generator to
CF.L

�
tK�; L�0 tK�0/ so the Floer cochain splits.

CF.Xd�1; Xd / � � � � � CF.X0; X1/ � CF.LŠ
�
tKŠ�; X0/! CF.L� tK�; Xd /

completely coincide. This implies the result.

Remark 12.11. By taking morphisms with an appropriate object in Ai for i ¤ j , one can
see that .L� tK�/

l is not quasi-isomorphic to .LŠ
�
tKŠ�/

l .

By Lemma 12.10, we know that the quasi-inverse  j is given, on the object level, by

 j W .�j /
�.L� tK�/

l
7! LŠ

�
tKŠ�: (12.35)

A further inspection of the proof of Lemma 12.10 shows that the quasi-isomorphism
(12.34) is functorial when we vary � 2 ƒj;n and � 2 ƒn�j;m�n. Together with the fact
that L� t K� is quasi-isomorphic to L� t K� in F � cyl;n.�E / (so the former can be
regarded as an object in Aj ), we have a commutative diagram

Aj Kj;n �Kn�j;n AŠj

Aj -perf

'

.�/l

'

.�j /
�.�/l

where the horizontal isomorphisms are the ones in (11.5), (11.9), which in particular send
L� tK� 2Aj toLŠ� tK

Š
� 2A

Š
j . This implies that j sits inside the commutative diagram

Aj Kj;n �Kn�j;n AŠj

Aj -perf

'

.�/l

'

 j

Proof of Theorem 1.9. By Proposition 11.17, we have a spectral sequence to Kh.�.ˇ//
from

nM
jD0

H
�
.�Šj /
�.�ˇ .Lhs/

r /˝AŠ
j
 j ı .�j /

�.Llhs/
�
: (12.36)
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By Proposition 12.1, Lemma 12.9 and the commutative diagram above, we have, up to
grading shift,

H
�
.�Šj /
�.�ˇ .Lhs/

r /˝AŠ
j
 j ı .�j /

�.Llhs/
�
D H.P

.j /

ˇ
˝Kj;n�Kj;n �Kj;n/

D HH�.Kj;n; P
.j /

ˇ
/;

which is what we want.

Appendix A. Non-formality of standard modules/thimbles

Here we explain that the endomorphism algebra of the Lefschetz thimbles in F �.�n;m/

may be non-formal when n > 1. The non-formality follows rather directly from the min-
imal model computed in Klamt’s thesis [27]. Since this is not required for our main results,
our treatment is somewhat brief.

When .n;m/ D .1; m/ the algebra is known to be formal; by duality, the same holds
when n D m � 1. On the other hand, if n > 1 and .n; m/ ¤ .m � 1; m/, the algebra
associated to .n; m/ D .2; 4/ occurs as an A1-subalgebra of the algebra associated to
.n; m/. It therefore suffices to consider the case .n; m/ D .2; 4/. In that case, there are
six Lefschetz thimbles (up to grading shift). We denote them by P.4j3/, P.4j2/, P.4j1/,
P.3j2/, P.3j1/ and P.2j1/, where P.njm/ corresponds to T ¹1;2;3;4ºn¹n;mº.

The cohomological algebra is given by the following quiver with relations, by Pro-
position 10.1 and [27, Section 5.2.8, 5.2.9]:

P.4j3/

P.4j2/ P.3j2/

P.4j1/ P.3j1/ P.2j1/

F
.4j3/

.4j2/
Id.4j3/
.4j2/

K
.4j3/

.2j1/

G
.4j3/

.2j1/

F
.4j2/

.4j1/
Id.4j2/
.4j1/

zF
.4j2/

.3j2/

Id.4j2/
.3j2/

F
.3j2/

.3j1/
Id.3j2/
.3j1/

zF
.4j1/

.3j1/

Id.4j1/
.3j1/

zF
.3j1/

.2j1/

Id.3j1/
.2j1/

The subscript and superscript of the name of the arrow indicate the target and the
source of the arrow, respectively. The definition of Id.kjl/

.ajb/
, F .kjl/

.ajb/
, zF .kjl/

.ajb/
, G.kjl/

.ajb/
, K.kjl/

.ajb/

for various k; l; a; b can be found in [27, Theorems 5.16–5.19]. The complete list of rela-
tions of the product structure can be found in [27, Table 5.25]. For example, zF .4j1/

.2j1/
D

Id.3j1/
.2j1/
zF
.4j1/

.3j1/
and F .4j2/

.4j1/
F
.4j3/

.4j2/
D 0. We remark that J .kjl/

.ajb/
in the table is defined in The-

orem 5.26 and J .4j2/
.3j1/

equals to F .3j2/
.3j1/

zF
.4j2/

.3j2/
and zF .4j1/

.3j1/
F
.4j2/

.4j1/
up to sign. Moreover, the

dimension of Ext.P.kjl/; P.ajb// can be found in [27, Section 5.2.6].
For the A1 structure, Klamt computed a minimal model with �3 ¤ 0 but �d D 0 for

d > 3. The list of non-zero �3 is given in [27, Table 8.4].
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Lemma A.1. When .n; m/ D .2; 4/, the endomorphism algebra of Lefschetz thimbles is
not formal.

Proof. Let B be the A1 endomorphism algebra of Lefschetz thimbles and B WD H.B/
be the underlying cohomological algebra. If B were formal, then the �3 of the minimal
model Klamt found would define the zero class in HH3.B;BŒ�1�/. This means that �3 D
dCC� for some � 2 CC2.B;BŒ�1�/, where dCC is the Hochschild differential.

From [27, Table 8.4], we have

�3. zF
.4j1/

.2j1/
; F

.4j2/

.4j1/
; F

.4j3/

.4j2/
/ D ˙K

.4j3/

.2j1/
: (A.1)

On the other hand, up to sign,

dCC�. zF
.4j1/

.2j1/
; F

.4j2/

.4j1/
; F

.4j3/

.4j2/
/ D zF

.4j1/

.2j1/
�.F

.4j2/

.4j1/
; F

.4j3/

.4j2/
/C �. zF

.4j1/

.2j1/
; F

.4j2/

.4j1/
/F

.4j3/

.4j2/

C �. zF
.4j1/

.2j1/
F
.4j2/

.4j1/
; F

.4j3/

.4j2/
/C �. zF

.4j1/

.2j1/
; F

.4j2/

.4j1/
F
.4j3/

.4j2/
/: (A.2)

By [27, Table 5.25], we have zF .4j1/
.2j1/

F
.4j2/

.4j1/
D F

.4j2/

.4j1/
F
.4j3/

.4j2/
D 0 so the last two terms of

(A.2) vanish.
One can check from [27, Section 5.2.6] that the dimension of Ext.P.2j1/; P.4j3//

is 4 and it is generated by Id.4j3/
.2j1/

, F .4j3/
.2j1/

D zF
.4j3/

.2j1/
, G.4j3/

.2j1/
and K.4j3/

.2j1/
. On the other

hand, one can check from [27, Table 5.25] that for any a 2 Ext.P.4j1/; P.4j3// and
b 2Ext.P.2j1/;P.4j2//, the sum zF .4j1/

.2j1/
aC bF

.4j3/

.4j2/
lie in the subspace spanned byF .4j3/

.2j1/
.

Therefore, K.4j3/
.2j1/

cannot be written as the sum of the first two terms of (A.2) so it is not

equal to dCC�. zF
.4j1/

.2j1/
;F

.4j2/

.4j1/
;F

.4j3/

.4j2/
/ for any � in CC2.B;BŒ�1�/, a contradiction, and the

result follows.

Remark A.2. Lemma A.1 shows that the strategy from Section 9 cannot be used to prove
that the collection of thimbles is formal. In other words, the cohomological algebra of the
thimbles is not compatible with the existence of such a consistent choice of equivariant
structure. It seems hard to pinpoint why one would expect the collection of Lagrangians
¹L�º�2ƒn;m to be better in this respect.
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