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Abstract. We prove a strong form of the trivial zero conjecture at the central point for the p-adic
L-function of a non-critically refined self-dual cohomological cuspidal automorphic representation
of GL2 over a totally real field, which is Iwahori spherical at places above p.

In the case of a simple zero we adapt the approach of Greenberg and Stevens, based on the
functional equation for the p-adic L-function of a nearly finite slope family and on improved p-
adic L-functions that we construct using automorphic symbols and overconvergent cohomology.

For higher order zeros we develop a conceptually new approach studying the variation of the
root number in partial families and establishing the vanishing of many Taylor coefficients of the
p-adic L-function of the family.
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Introduction

The complex analytic L-function of an algebraic cuspidal automorphic representation �
on a reductive group over a number field F lies at the heart of the Langlands program,
and the relationship between its analytic properties, namely the order of vanishing at
critical points, and the arithmetic of the conjecturally attached p-adic representation V�
of the absolute Galois group GF is the content of the famous Bloch–Kato conjectures.
Iwasawa theory, in turn, seeks to relate the arithmetic of the restriction of V� to the p-adic
cyclotomic extension of F , and the behavior of the p-adic analytic L-function Lp.�; s/
of � . The existence of p-adic L-functions for automorphic representations and families
thereof is a challenging problem in itself, but even when they have been constructed,
properties such as the location of their zeros and orders of vanishing have remained poorly
understood.

To ensure good analytic properties in the cyclotomic variable s, Lp.�; s/ contains
extra interpolation factors which can possibly vanish at a critical integer. Such zeros,
called trivial, were first considered for an elliptic curve E over Q in the seminal work of
Mazur, Tate and Teitelbaum [32]. If E has split multiplicative reduction at p, the p-adic
L-function Lp.E; s/ has a trivial zero at s D 1 and it was conjectured, and later proven
by Greenberg and Stevens [21], that

L0p.E; 1/ D L .E/ �
L.E; 1/

�E
;

where �E is the real period of E and L .E/ D
logp qE
ordp qE

is the so-called L -invariant,
qE being the Tate period of E. While trivial zeros of p-adic L-functions and their L -
invariants were considered by Mazur, Tate and Teitelbaum in their quest to formulate
a p-adic analogue of the Birch and Swinnerton-Dyer conjecture, various recent works
on the Bloch–Kato conjecture rely crucially on p-adic L-functions and the Iwasawa main
conjecture. In the context of geometric Galois representations the following more general,
albeit somewhat vague, trivial zero conjecture springs from various places in the literature
and is part of the ‘folklore’.

Let V be a p-adic representation of GQ, critical in the sense of Deligne, such that
Vp D V jGQp

is semistable. Let D � Dst.Vp/ be a regular submodule in the sense of
Perrin-Riou [38]. The works of Coates and Perrin-Riou posit the existence of a p-adic
L-function Lp.V; D; s/ satisfying an interpolation formula of the form Lp.V; D; 0/ D

��1V L.V; 0/E.Vp;D/, where �V is a Deligne period, L.V; s/ is the complex L-function
and E.Vp;D/ is a product of linear Euler factors.
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Trivial Zero Conjecture. Letting e denote the number of vanishing Euler factors in
E.Vp; D/ and EC.Vp; D/ the product of the remaining non-vanishing ones, the p-adic
L-function Lp.V;D; s/ vanishes to order at least e at s D 0 and

L.e/p .V;D; 0/ D eŠ �L .V;D/ � EC.Vp;D/ �
L.V; 0/

�V
;

where L .V;D/ is an arithmetic L -invariant. More generally, by the Trivial Zero Con-
jecture for a geometric representation V of GF and a collection of regular submodules
Dv � Dst.VjGFv / for v j p we mean the one for IndGQ

GF V and the regular submoduleL
vjp Ind

GQp
GFv

Dv .

Precise formulations of the Trivial Zero Conjecture exist in a number of restricted
settings. In the case when V is crystalline at p, Greenberg and Benois made explicit the
conjectural interpolation factor E.Vp; D/. Moreover, Greenberg in the case of ordinary
representations, and Benois in the semistable case, have defined arithmetic L -invariants
Galois cohomologically, when V satisfies a number of technical hypotheses (S, U, T
of [20] and (C1)–(C5) of [7]).

This article is devoted to proving the Trivial Zero Conjecture at the central point sD 0,
with precise interpolation factors and with the Greenberg–Benois arithmetic L -invariant,
for the Galois representation V�.1/ attached to a unitary self-dual cuspidal automorphic
representation � of GL2 over a totally real field F having an arbitrary cohomological
weight.

The construction of a p-adic L-function for � requires the choice of a regular
p-refinement z� , i.e., the choice for each v dividing p of a character �v of F �v which can
be realized uniquely as a subrepresentation of the Weil–Deligne representation attached
to �v via the local Langlands correspondence. Assuming that z� is non-critical (see Defin-
ition 2.12), there exists a p-adic L-function Lp.z�; s/.

Let Sp be the set of places of F above p and Stp the subset of places at which � is a
twist of the Steinberg representation. The set E of places for which the local interpolation
factor of Lp.z�; s/ vanishes at s D 1 consists of v 2 Stp such that �v is the Steinberg
representation.

Main Theorem (Theorem 7.1). Let z� be a non-critically refined cohomological self-
dual cuspidal automorphic representations of GL2 over F , which is Iwahori spherical at
places above p. Then Lp.z�; s/ has order of vanishing at least e D jEj at s D 1 and

L.e/p .z�; 1/ D eŠL .z�/ �
L.�; 1=2/

�z�
� 2jStpnE j

Y
v2SpnStp

.1 � ��1v .$v//
2; (0.1)

where $v is a uniformizer at v, L .z�/ is the Fontaine–Mazur L -invariant of Defini-
tion 5.3, and�z� is a Betti–Whittaker period defined in §1.7. Moreover, if the Greenberg–
Benois arithmetic L -invariant is defined, then the Trivial Zero Conjecture holds for the
Galois representation V�.1/ with the choice of regular submodule as in §5.3.
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The conjectural non-vanishing of the L -invariant is currently only known for elliptic
curves over Q (see [1]). Previously, the Trivial Zero Conjecture at the central point was
proved for modular forms over Q in [21, 48], and for parallel weight 2 ordinary Hilbert
cusp forms in [33] using a Rankin–Selberg construction for a single trivial zero and in
general in [47], building on ideas of [16, 36]. The non-criticality condition is implied by
the assumption of z� having non-critical slope (see Corollary 2.13) and is expected to be
true for most regular z� (see Bellaïche [4], Pollack–Stevens [39], and Bellaïche–Dimitrov
[5] when F D Q). After the completion of this article we were made aware of a preprint
of Bergdall and Hansen [8] who construct p-adic L-functions under the weaker condition
of z� being decent (see Remark 4.9).

In the case of a single trivial zero our approach to the Main Theorem is inspired by the
work of Greenberg–Stevens [21], and crucially uses the p-adic L-function of the unique
p-adic family containing z� , constructed and studied in the first part of the paper.

However, in the case of a multiple trivial zero, the computation of higher order derivat-
ives has long been known to lie outside the reach of the Greenberg–Stevens method, thus
requiring some genuinely new ideas. Indeed, the use of the functional equation for the p-
adic L-function of the family of maximal dimension containing z� , as suggested by Hida
and Mazur in the nearly ordinary case (see [33, §1]), does not suffice alone to compute
higher order derivatives. Our innovation consists in making use of partial p-adic families
to flip the sign of the root number and deduce the vanishing of many Taylor coefficients of
a certain p-adic analytic function Lp.x1; : : : ; xeIu/. We deduce the Main Theorem from
the following properties:

(i) (Specialization) Lp.0; : : : ; 0I u/ D hni
u=4
p Lp

�
z�; 2�u

2

�
, where � has tame con-

ductor n.

(ii) (Functional equation) Lp.x1; : : : ; xeI �u/ D z" � Lp.x1; : : : ; xeIu/ with z" 2 ¹˙1º.

(iii) (Retrieved L-value) .�2/e d
e

due
Lp.u; : : : ; uIu/

ˇ̌
uD0
D R.H.S. of (0.1).

(iv) (Taylor coefficients) Lp.x1; : : : ; xeI u/ contains only multinomials of total degrees
� e, and de

due
Lp.0; : : : ; 0Iu/

ˇ̌
uD0
D

de

due
Lp.u; : : : ; uIu/juD0.

Our construction of p-adic L-functions is geometric, based on the theory of auto-
morphic symbols introduced in [18] and on the construction of eigenvarieties using over-
convergent cohomology as in [50] and [22]. For a Hilbert modular variety YK this was
initiated in [2] and is fully developed in the present work. To an admissible affinoid
neigborhood U of the weight of � in the weight space, and a non-zero Up-eigenclass
ˆ in the compactly supported overconvergent cohomology Hdc .YK ;DU/, we attach in
§3 a canonical O.U/-valued distribution ev.ˆ/ having controlled growth on the Galois
group of the maximal abelian extension of F which is unramified outside p1. Specializ-
ing to the case whereˆ corresponds to the p-adic family passing through z� (see Theorem
2.14) we define Lp.�; s/ as the p-adic Mellin transform of ev.ˆ/ (see §4.2 and (6.4)).
A specific feature of our treatment is that, thanks to a precise choice of a p-refined auto-
morphic newform in � , the interpolation formula for Lp.�; s/ has no superfluous factors,
allowing us to establish the concise functional equation (ii) (see Theorem 6.4). While
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the proof of (iii) uses the improved p-adic L-functions constructed in §4.3, reinterpreting
(iii) in terms of arithmetic L -invariants requires an extra input from p-adic Hodge theory,
namely the existence of rigid analytic triangulations in the category of .'; �/-modules.

In the case of a simple zero (e D 1), property (iv) is an immediate consequence of the
functional equation (ii) as in the Greenberg–Stevens method. Establishing (iv) in the case
of a zero of higher order (e > 1), which is the keystone in our approach, demands to go
beyond the Greenberg–Stevens method and use partially improved p-adic L-functions as
well as study the behavior of ��;v in certain ‘partial’ p-adic families defined in §2.6.
This allows us to establish a number of relations between the Taylor coefficients of
Lp.x1; : : : ; xeI u/ which are not all predicted by the Trivial Zero Conjecture and which
we believe are of independent interest. Our results do not rely on the Leopoldt or the
Bloch–Kato conjectures. The formula that we show is true even when the archimedean
L-function vanishes at the central point, implying then that the order of vanishing of the
p-adic L-function is at least e C 1.

0. Notations and conventions

Throughout this paper, F will be a totally real number field of degree d and with ring of
integers OF . Let AF D A˝Q F D AF;f � F1 be the ring of adeles of F and denotebOF D OF ˝Z bZ.

We choose a generator $f 2 A�
F;f

of each fractional ideal f of F such that for any
finite place v of F one has $vf D $v �$f , where $v is a uniformizer of the ring of
integers Ov of Fv .

Moreover, we define the adele 1f 2 AF by

.1f/v D

´
1 if nv ¤ 0;

0 if nv D 0:

When f � OF we consider the strict idele class group

C`CF .f/ D F
�
nA�F =U.f/F

�C
1 ;

where .�/C denotes the connected component of identity in a real Lie group and U.f/
denotes the principal congruence subgroup of level f of bO�F . Moreover we denote by
E.f/ � O�F the group of totally positive units which are congruent to 1 modulo f .

Let † be the set of infinite places of F which are all real and can also be seen as
embeddings of F in the algebraic closure Q of Q inside C. The choice, for a given prime
number p, of an embedding �p W Q ,! Qp induces a partition † D

F
v2Sp

†v , where

� 2 †v if and only if v is the kernel of the composite map OF
�pı�
���! Zp� Fp .

We let .�/� denote the eigenspace corresponding to a character � of F �1=F
�C
1

D ¹˙1º†.
We denote by GE the absolute Galois group of a perfect field E. For S a finite set

of places of F we let GalS denote the Galois group of the maximal abelian extension
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of F which is unramified outside S . We let GalS1 D GalS[† and Galp1 D GalSp[†,
where Sp denotes the set of places above p. For S � Sp , we let †S D

F
v2S †v and

OF;S D
Q
v2S Ov .

The cyclotomic character �cyc W Galp1� Gal.F.�p1/=F /! Z�p corresponds, via
global class field theory, to the idele class character �cyc W F

�
CnA

�
F;f
! Z�p sending y toQ

v2Sp
NFv=Qp .yv/jyf jF . One has �cyc.$v/D j$vjv D q

�1
v if v … Sp [† and �cyc.$v/

D NFv=Qp .$v/q
�1
v if v 2 Sp . Define

h�ip D �cyc!
�1
p W Galp1 ! 1C 2pZp;

where !p is the Teichmüller lift of �cyc mod p if p is odd (resp. of �cyc mod 4 if p D 2).
Note that the character h�ip factors through the Galois group Galcyc D Gal.Fcyc=F / of
the cyclotomic Zp-extension Fcyc � F.�p1/ of F , hence can be raised to power any
s 2 OCp .

We normalize the Artin reciprocity map so that a uniformizer $v is sent to a geomet-
ric Frobenius Frobv , and p-adic Hodge theory so that the cyclotomic character �cyc has
Hodge–Tate weight �1. We consider the following non-trivial additive unitary character
of AF =F :

 W AF =F ! A=Q! C�;

where the first map is the trace, and the second is the usual additive character  0 on A=Q
characterized by ker. 0jQ`/ D Z` for every prime number ` and  0jR D exp.2i� �/. We
remark that the largest fractional ideal contained in ker. v/ equals .$�ıvv /, where ıv is
the valuation at v of the different d of F . With this notation the discriminant of F is
NF=Q.d/.

Let dx D ˝v dxv be the (self-dual) Haar measure on AF which induces the discrete
measure on F � AF and the Haar measure with volume 1 on AF =F . It has the property
that dx� is the usual Lebesgue measure for � 2 † and when v is a finite place,

R
Ov

dxv

D q
�ıv=2
v . We also let d�x D˝d�xv be the Haar measure on A�F =F

� such that d�x� D
jx� j

�1
� dx� for � 2 † and

R
O�v
d�xv D 1 for v finite.

Given a finite place v and a character �v of F �v of conductor cv , one can define the
local Gauss sum, which is independent of the choice of uniformizers, by

�.�v;  v; d
�/ D

Z
F �v

�v.y/ v.y/ d
�y D

Z
O�v

�v.u$
�cv�ıv
v / v.u$

�cv�ıv
v / du:

(0.1)

For � WF �nA�F !C� an idele class character of conductor c� we define the global Gauss
sum

�.�/ D
Y
v−1

�.�v;  v; d�v / D
Y
vjc�

�.�v;  v; d
�/

Y
v−c�1

�v.$
�ıv
v /; (0.2)

where the Haar measure d�v on F �v gives O�v volume 1 (resp. 1 � q�1v ) when �v is
unramified (resp. ramified).
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Part I
p-adic L-functions for families of nearly finite slope Hilbert cusp
forms

We develop a natural framework yielding simultaneous constructions of p-adic L-func-
tions and their improved counterparts for nearly finite slope families of Hilbert cusp forms.

1. Automorphic theory of Hilbert cusp forms

We recall the representation theory of Hilbert automorphic cusp forms and construct nor-
malized p-refined nearly finite slope newforms allowing us to define canonical periods.

1.1. Hilbert modular varieties

We consider the reductive group scheme G D ResOF
Z GL2 over Z. We let C1 be the

standard maximal compact subgroup of G1 and K1 D C1F �1.
The Hilbert modular variety of level K, an open compact subgroup of G.Af /, is

defined as the locally symmetric space

YK D G.Q/nG.A/=KK
C
1:

By the Strong Approximation Theorem for SL2.AF /, the fibers of the map

detK W YK ! F �nA�F =det.K/F �C1

are connected. For each Œ�� 2A�F =.F
� det.K/F �C1 /D �0.YK/ the connected component

YK Œ�� D det�1K .Œ��/ can be described as a quotient of the unbounded hermitian symmet-
ric domain GC1=K

C
1 by a congruence subgroup as follows. Choosing a representative

� 2 A�
F;f

of Œ�� (one can take it to be a uniformizer at some finite place), there is an
isomorphism

��nG
C
1=K

C
1 ' YK Œ��, g1 7! g1

�
� 0
0 1

�
; where �� D G.Q/ \

�
� 0
0 1

�
K
�
� 0
0 1

��1
GC1:

In what follows we assume that K is sufficiently small in the sense that for all g 2 G.A/:

G.Q/ \ gKKC1g
�1
D F � \KF �1: (1.1)

It is equivalent to ask that �� modulo its center �� \ F � is torsion-free, this property
being independent of the choice of the representative �. Then YK Œ�� is a complex manifold
admitting GC1=K

C
1 as a universal covering space with group ��=.�� \ F �/.

1.2. Local systems and cohomology

We will now describe two natural constructions of local systems on YK . In §1.3 we will
apply these constructions to attach local systems to algebraic representations of G. Con-
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sider first a left G.Q/-module V such that

F � \KF �1 acts trivially on V: (1.2)

By (1.1) and (1.2) the groupG.Q/\ gKKC1g
�1DF � \KF �1 acts trivially on V . There-

fore
G.Q/n.G.A/ � V /=KKC1 ! YK

is a local system with left G.Q/-action and right KKC1-action given by 
.g; v/k D
.
gk; 
 � v/.

Alternatively, given a left K-module V satisfying (1.2), one can consider the local
system VK ,

G.Q/n.G.A/ � V /=KKC1 ! YK ;

with left G.Q/-action and right KKC1-action given by 
.g; v/k D .
gk; k�1 � v/.
We will denote by VK (or V ifK is clear from the context) the corresponding sheaf of

locally constant sections on YK and will consider the usual (resp. compactly supported)
cohomology groups Hi .YK ;V/ (resp. Hic.YK ;V/). Although we use the same notation
for both constructions, it will be generally clear from the context which one applies and
otherwise we will name it explicitly. When the actions of G.Q/ and K on V extend
compatibly to a left action of G.A/, the resulting two local systems are isomorphic by
.g; v/ 7! .g; g�1 � v/, yielding an isomorphism of sheaves and their cohomology groups,
thus justifying the abuse of notation.

1.3. Cohomological weights

Let B be the standard Borel subgroup ofG consisting of upper triangular matrices, whose
Levi subgroup T consists of the diagonal matrices.

The characters of the torus ResFQ Gm can be identified with ZŒ†� as follows: for any
k D

P
�2† k�� 2 ZŒ†� and any Q-algebra A splitting F , we consider the character

.F ˝Q A/� 3 x 7! xk D
Y
�2†

�.x/k� 2 A�: (1.3)

The norm character NF=Q WResFQ Gm!Gm then corresponds to the element t D
P
�2† � .

Integral weights of G are given by characters of the form .a; d/ 7! akdk
0

for some
.k; k0/ 2 ZŒ†�2. Characters such that k� � k0� for all � 2 † are called dominant with
respect to B and parametrize the irreducible algebraic representations of G, explicitly
given by O

�2†

.Symk��k
0
�

� ˝Detk
0
�
� /:

Definition 1.1. We say that a dominant weight of G is cohomological if it is of the form�
.w � 2/t C k

2
;
.wC 2/t � k

2

�
;
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where .k;w/ 2 ZŒ†� �Z is such that for all � 2 † we have k� � 2 and k� � w .mod 2/.
We will identify the cohomological weight with the tuple .k;w/ defining it, and call w the
purity weight.

A dominant integral weight is cohomological exactly when the central character of
the corresponding G-representation factors through the norm NF=Q.

Given a cohomological weight .k;w/ and a Q-algebra A splitting F , we consider the
A-module Lk;w.A/ of polynomials f of degree at most k � 2t D .k� � 2/�2† in the
variables z D .z� /�2† with coefficients in A, endowed with the following right action of
G.A/ ' GL2.A/†:

fj
 .z/ D det.
/..wC2/t�k/=2.cz C d/k�2tf
�
azCb
czCd

�
; where 
 D

�
a b
c d

�
2 G.A/: (1.4)

Then its dual L_
k;w.A/ D HomA.Lk;w.A/;A/ is endowed with a left action of G.A/ given

by

.
 ��/.f /D �.fj det.
/�1�
 /; where 
 2 G.A/; � 2 L_k;w.A/; f 2 Lk;w.A/; (1.5)

and there is an isomorphism of left G.A/-modules

L_k;w.A/ '
O
�2†

.Symk��2
� ˝Det.2�k��w/=2

� /.A2/: (1.6)

For .k; w/ and A as above, the assumption (1.2) for the left G.A/-module L_
k;w.A/

reads

Nw
F=Q."/ D 1 for all " 2 F � \KF �1: (1.7)

Under this condition, applying the construction of §1.2 yields a sheaf L_
k;w.A/ whose

cohomology groups Hi .YK ;L_k;w.A// and Hic.YK ;L
_
k;w.A// will play a prominent role in

this paper.

1.4. Cohomological cuspidal automorphic representations

The aim of this section is to describe the cuspidal automorphic representations contrib-
uting to Hd .YK ;L_k;w.C// for .k;w/ a cohomological weight as in Definition 1.1 and K
satisfying (1.7), and to perform some archimedean computations which will be used to
interpret cohomologically the special values of automorphic L-functions. While the gen-
eral theory is well known, the applications we have in mind require an explicit version as
in [41, §4.4].

Let g1 (resp. k1) be the complexified Lie algebra of G1 (resp. K1). Using the
comparison between Betti cohomology over C and de Rham cohomology, and further
reinterpreting the de Rham complex in terms of the complex computing relative Lie
algebra cohomology, we obtain

Hdcusp.YK ;L
_
k;w.C// D Hd

�
g1; K

C
1; L

_
k;w.C/˝ C

1
cusp.G.Q/nG.A/=K/

�
D

M
�

Hd .g1; KC1; L
_
k;w.C/˝ �1/˝ �

K
f ;
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where � runs over the cuspidal automorphic representation of G.A/. By Künneth’s for-
mula,

Hd .g1; KC1; L
_
k;w.C/˝ �1/ D

O
�2†

H1.g� ; KC� ; L
_
k� ;w

.C/˝ �� /;

where H1.g� ; KC� ; L
_
k� ;w

.C/ ˝ �� / ¤ 0 if and only if �� is the irreducible infinite-
dimensional representation �k� ;w of GL2.R/ whose Langlands parameter C� Ì ¹1; j º !
GL2.C/ is given by

C� 3 z 7! jzjw=2
�
.z=z/.k��1/=2

.z=z/.k��1/=2

�
and j 7!

�
1

.�1/k��1

�
:

One can also describe �k� ;w as follows. Consider the unitary induction from B� to
G� of the character which is trivial on the unipotent radical and given on T� by

.a; d/ 7! a.k�Cw�2/=2d .w�k�C2/=2ja=d j1=2: (1.8)

By Frobenius reciprocity it has a unique non-trivial finite-dimensional quotient given by
Lk� ;w.C/ and the kernel turns out to be isomorphic to �k� ;w. The fact that the extension
is non-split implies the non-vanishing of H1.g� ; KC� ; L

_
k� ;w

.C/˝ �� /.

Definition 1.2. We say that an automorphic representation � of G.A/ has weight .k;w/
if �1 D˝�2† �k� ;w. The integer w is the purity weight of � , i.e., the weight of its central
character.

A cuspidal automorphic representation � of G.A/ contributes to Hd .YK ;L_k;w.C// if
and only if it has weight .k;w/ and �K

f
¤ 0. If such � exist then condition (1.7) is always

satisfied. Indeed, if � 2 �K , then for each " 2 F � \KF �1 and g 2 G.A/ we have

�.g/ D �
��
"
"

�
g
�
D �

�
g
�
"1

"1

��
D Nw

F=Q."/�.g/:

We will now specify a basis of

H1.g� ; KC� ; L
_
k� ;w

.C/˝ �k� ;w/ D Hom
C
C
�
.g�=k� ; L

_
k� ;w

.C/˝ �k� ;w/; (1.9)

where one considers the adjoint action ofCC� D
®
r.�/D

� cos.�/ � sin.�/
sin.�/ cos.�/

�ˇ̌
� 2R

¯
on g�=k� .

Let .w�� ; Nw
�
� / be the dual basis of the basis w� D 1

4

�
1 i
i �1

�
; Nw� D

1
4

�
1 �i
�i �1

�
of g�=k� .

Consider eval˙i 2 L_k� ;w.C/ defined by eval˙i .P / D P.˙i/. From (1.5) one finds
that

Ad.r.�//.w�� /D e
2i�w�� ; Ad.r.�//. Nw�� /D e

�2i�
Nw�� ; r.�/ � eval˙i D e˙i�.k��2/eval˙i :

Since the CC� -types r.�/ 7! e˙i�k� do not occur in L_
k� ;w

.C/ but do occur in the
induced representation from (1.8), one deduces that there is a unique function �� 2 �k� ;w
such that �� .� r.�//D e�i�k��� for all � 2R and normalized so that �� .1/D 1 (here we
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use the fact that the characters r.�/ 7! e˙i�k� and (1.8) agree on
�
�1
�1

�
since k� � w

.mod 2/). Hence

Hom
C
C
�
.g�=k� ; L

_
k� ;w

.C/˝ �k� ;w/ D C.w�� ˝ evali ˝ �� /˚C. Nw�� ˝ eval�i ˝ �� /:

Since
�
�1

1

�
� w�� D Nw

�
� ,
�
�1

1

�
� evali D .�1/.wCk��2/=2eval�i and

�
�1

1

�
� �� D

.�1/.wCk��2/=2�� , we see that

„���� D i
.2�w�k� /=2.w�� ˝ evali ˝ �� C �� .�1/ Nw

�
� ˝ eval�i ˝ �� /

is an eigenbasis of (1.9) for the action of C�=CC� D K�=K
C
�

det
�!
�
F �� =F

�C
� D ¹˙1º.

Lettingw�1D
N
�2†w

�
� and �1D

N
�2†�� , the space Hd .g1;KC1;�1˝L

_
k;w.C//

has the following basis indexed by the characters � W K1=KC1 D ¹˙1º
† ! ¹˙1º:

„��1 D
O
�2†

„���� D i
..2�w/t�k/=2

X
s12¹˙1º†

�.s1/.s1 � .w
�
1 ˝ evali ˝ �1//: (1.10)

1.5. Automorphic representations of nearly finite slope

In this section, we introduce the notion of a nearly finite slope cuspidal automorphic
representation � . These are stable under twists and encompass both Coleman’s finite slope
and Hida’s nearly ordinary cases. Furthermore, we define a p-refined line in such a � .

Definition 1.3. Let � be a cohomological cuspidal automorphic representation � ofG.A/
and let v 2 Sp be a place of F .

(i) �v has finite slope if either �v is a principal series representation with at least one
unramified character or �v is an unramified twist of the Steinberg representation.

(ii) �v has nearly finite slope if �v is not supercuspidal, or equivalently if it is a twist of
a finite slope representation by a finite order character.

(iii) A representation �v is regular if either it is a twist of the Steinberg representation or
it is a principal series representation with distinct characters �1;v ¤ �2;v .

(iv) A refinement of a nearly finite slope representation �v of GL2.Fv/ is a 1-dimensional
subrepresentation �v of the Weil–Deligne representation attached to �v via the local
Langlands correspondence for GL2.Fv/.

(v) For S � Sp , a [regular] S -refinement of an automorphic representation � is a pair
z�S D .�; ¹�vºv2S / such that �v is a [regular] refinement of �v for all v 2 S . When
S D Sp we call z� D z�Sp a p-refinement.

Suppose .�v; �v/ is a refined regular nearly finite slope representation.
If �v is a twist of the Steinberg representation, we let Kv be the Iwahori group

Iv D
®�
a b
c d

�
2 GL2.Ov/

ˇ̌
c 2 $vOv

¯
; (1.11)
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whereas if �v is a principal series representation, we let Kv D Iv \K1.vmv / where mv
is the conductor of �1;v=�2;v . Let

K 0v D K.�v; �v/ D ker.Kv
det
�! O�v

�v
�! C�/: (1.12)

For a uniformizer $v 2 Ov and ı 2 O�v we define the Hecke operators

U$v D
�
K 0v
�
$v

1

�
K 0v
�

and Uı D
�
K 0v
�
ı
1

�
K 0v
�
: (1.13)

Lemma 1.4. For any refined regular nearly finite slope representation .�v; �v/ one has

dim .�
K0v
v /.U$v��v.$v/;Uı��v.ı/jı2O�v /

D 1:

Proof. Since the O�v -action is semisimple, by (1.12) there is an isomorphism

.�
K0v
v /.Uı��v.ı/jı2O�v /

D .�v ˝ �
�1
v /Kv : (1.14)

If �v is either a twist of the Steinberg representation or a principal series representation
with �1;v=�2;v ramified, then (1.14) is 1-dimensional on whichU$v acts by �v.$v/. If �v
is a principal series representation with �1;v=�2;v unramified then (1.14) is 2-dimensional
and we conclude that the U$v -eigenspace for �v.$v/ is a line by regularity.

Let z�S D .�; ¹�vºv2S / be a regular S -refinement of a nearly finite slope cuspidal
automorphic representation of G.A/ of cohomological weight .k;w/.

Definition 1.5. Let u be an unramified prime of F such that

(i) any open compact subgroup K of GL2.AF;f / such that Ku D K0.u/ satisfies (1.1),

(ii) �u is an unramified principal series representation with Hecke parameters ˛u ¤ ˇu.

The existence of u satisfying (i) follows from [17, Lem. 2.1], while the fact that u

can be chosen to satisfy (ii) as well can be shown using the irreducibility of the Galois
representation V� . It is also a consequence of the Sato–Tate conjecture which is known to
hold for Hilbert cusp forms. In this case �K0.u/u is 2-dimensional on which Uu acts with
eigenvalues ˛u and ˇu.

Definition 1.6. Let E be a number field containing the Galois closure of F , the field of
rationality of �f , the Hecke parameters of �u, and the values of the characters .�v/v2Sp .

Let m� be the maximal ideal of the Hecke algebra T D EŒTv; Sv j v − nup� corres-
ponding to �f . For S � Sp , we consider the maximal ideal

mz�S D .m� ; Uu � ˛u; U$v � �v.$v/; Uı � �v.ı/ j ı 2 O�v ; v 2 S/

of the Hecke algebra zTS D T ŒUu; U$v ; Uı j ı 2 O�v ; v 2 S�, and we let mz� D mz�Sp .

Definition 1.7. Let K.z�S ; u/ D K0.u/
Q
v…S[¹uº K1.v

mv /
Q
v2S K

0
v where mv is the

conductor of �v and K 0v is as in (1.12). The .S; ˛u/-refined newline of a regular z�S is
given by

Nz�S ;˛u
D
�
�
K.z�S ;u/
f

�
mz�S
D
�
�
K.z�S ;u/
f

�
Œmz�S �;
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where Œmz�S � denotes the subspace annihilated by mz�S . While for v 2 Sp the U$v -
eigenvalue �v.$v/ on Nz�;˛u

depends on the choice of $v , its p-adic valuation is inde-
pendent of it.

Definition 1.8. The slope hz�v of z�v D .�v; �v/ is defined as the p-adic valuation of

�v.$v/
Y
�2†v

�.$v/
.k�Cw�2/=2:

We say that the refinement z�v has non-critical slope if evhz�v < min�2†v .k� � 1/.
For S � Sp , we say that z�S has non-critical slope if z�v has non-critical slope for each

v 2 S .
Finally, we say that z� D z�Sp has very non-critical slope ifX

v2Sp

evhz�v < min
�2†

.k� � 1/: (1.15)

1.6. Normalized .S;u/-refined eigenforms and Whittaker functions

Let z�S D .�; ¹�vºv2S / be a regular S -refinement of a nearly finite slope refinement of
a cuspidal cohomological automorphic representation � of G.A/. In this section we use
Whittaker models to choose a basis �z�S ;˛u

of the line Nz�S ;˛u
from Definition 1.7 for

which a suitable zeta integral yields the Jacquet–Langlands L-function of � . The cusp
form �z�S ;˛u

, divided by a suitable complex period, will yield an overconvergent cohomo-
logy class to which we will attach a p-adic L-function in §4.1.

The global Whittaker model W.�; / of � can be written as a restricted tensor product
of local Whittaker models W.�v;  v/, with respect to W ıv 2 W.�v;  v/ for v outside a
finite set of bad places, whereW ıv 2W.�v;  v/

GL2.Ov/ is such thatW ıv .1/D 1. To relate
values of complex L-functions to Whittaker integrals we will use the isomorphism

�
�
�! W.�;  /; � 7! W�.g/ D

Z
AF =F

�
��
1 x
0 1

�
g
�
 .�x/ dx; (1.16)

whose inverse is given by the Fourier expansion �.g/ D
P
�2F � W�

��
�
1

�
g
�
.

Given any collectionWv 2W.�v; v/ such thatWv DW ıv for almost all v, the tensor
˝Wv lies in W.�;  / and therefore is of the form W� for some � 2 � . We remark that
for any choice of isomorphisms W.�v;  v/ ' �v sending Wv to �v such that �v D �ıv
for almost all v (�ıv being the vector relative to which the restricted tensor product ˝0 �v
is defined), � and˝�v differ by a scalar, and hence � is a pure tensor itself.

We now specify explicitly such a collection of Whittaker functions, beginning with
places v 62 S [ † for which �

K1.v
mv /

v is a line. Let W new
v be the generator of the

line W.�v;  v/
K1.v

mv / given by the following formulas (see [41, §3.3.1] and [12,
Thm. 4.6.5]).
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(i) If �v is the unramified principal series representation with characters �1;v and �2;v
then

W new
v

��
$
m�ıv
v 1

��
D

´
q
�m=2
v

Pm
lD0 �1;v.$v/

l�2;v.$v/
m�l ; m � 0;

0; m < 0:
(1.17)

(ii) If �v is a principal series representation with unramified �1;v and ramified �2;v then

W new
v

��
$
m�ıv
v 1

��
D

´
q
�m=2
v �1;v.$v/

m; m � 0;

0; m < 0:
(1.18)

(iii) If �v is a twist of the Steinberg representation by the unramified character �v then

W new
v

��
$
m�ıv
v 1

��
D

´
q�mv �v.$v/

m; m � 0;

0; m < 0:
(1.19)

(iv) In all other cases W new
v

��
$
m�ıv
v 1

��
D

´
1; m � 0;

0; m < 0:

Denoting ¹˛u; ˇuº D ¹�1;u.$u/
p
qu; �2;u.$u/

p
quº the Hecke parameters of �u we

let
W ˛

u

��
y
1

��
D W new

u

��
y
1

��
� ˇuq

�1
u W new

u

��
y$�1u 1

��
:

Then we have W ˛
u

��
$mu 1

��
D

´
q�mu ˛mu ; m � 0;

0; m < 0:

Finally, we specify v-refined Whittaker functions at v 2 S . Recall that �v is a one-
dimensional subrepresentation of the Weil–Deligne representation attached to �v , which
is assumed to be non-supercuspidal. LetW 0v 2W.�v ˝ �

�1
v ; v/ be the new vector chosen

as above. If �v ˝ ��1v is ramified we let

W �
v D �v.$v/

ıv .�v ı det/ �W 0v 2 W.�v;  v/:

When �v ˝ ��1v is an unramified principal series representation with characters j � j1=2 ¤
j � j1=2�2;v=�1;v we let

W �
v D �v.$v/

ıv .�v ı det/ �
�
W 0v �

�2;v.$v/

qv�1;v.$v/
W 0v
�
�
�
$�1v 1

���
2 W.�v;  v/:

Formulas (1.17)–(1.19) then imply

W �
v

��
$
m�ıv
v 1

��
D

´
q�mv �v.$v/

m; m � 0;

0; m < 0:
(1.20)

Lemma 1.9. The image of Wz�S ;˛u;f D W
˛

u ˝
N
v…S[¹uºW

new
v ˝

N
v2S W

�
v in �f is a

basis of Nz�S ;˛u
.
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Proof. The statement is clear when v − pu since any isomorphism W.�v;  v/ ' �v
matches the new lines, as well as in the case v D u because by construction W ˛

u has
Uu-eigenvalue ˛u. Suppose that v 2 Sp . The function W �

v is K 0v-invariant as both W 0v
and �v ı det are. The fact that UıW �

v D �v.ı/W
�
v for ı 2 O�v then follows from the Kv-

invariance of W 0v . Finally, U$v fixes the refined new vector in W.�v ˝ �
�1
v ;  v/, hence

acts as �v.$v/ on W �
v .

For � 2 † we choose W� 2 W.�� ;  � / such that W� .� r.�// D e�ik��W� and
W�
��
y
1

��
D y.k�Cw/=2e�2�y for all y > 0 (see [12, 41]). Since �� ' �� ˝ sign� , we

have:

Lemma 1.10. W� has support in GC� and its image in �� belongs to the line generated
by �� .

Definition 1.11. We define the normalized .S; ˛u/-refined newform as the cusp form
�z�S ;˛u

2 � whose image under the isomorphism (1.16) corresponds to the pure tensor

Wz�S ;˛u
D Wz�S ;˛u;f ˝

O
�2†

W� :

We end this section by computing the local Whittaker integrals that yield the local
Euler factors of the complexL-function. The following proposition shows how the choice
of level f in the automorphic symbols in §3 reflects in the local Whittaker integrals.

Proposition 1.12. Suppose v 2 S and �v is a finite order character of F �v . Then

Zv D

Z
F �v

�v.y/W
�
v

��
y$

nv
v y

1

��
jyjs�1v d�y

D qıv.s�1/v �v.$
�ıv
v /.q�1v �v.$v//

nv
qv

qv � 1
Q.�v�v; s/

for Re.s/ sufficiently large, where cv denotes the conductor of �v�v , and

Q.�v�v; s/ D

8̂̂<̂
:̂
q
scv
v .�v�v/.$

ıv
v /�.�v�v;  v; d�v�v / if nv � cv � 1;�

1 � .�v�v/.$v/
qsv

��1�
1 �

qs�1v

.�v�v/.$v/

�
if nv > cv D 0;�

1 � .�v�v/.$v/
qsv

��1�
1 � 1

qv

�
if nv D cv D 0:

Proof. Since W �
v 2 W.�v;  v/ we have W �

v

��
y$

nv
v y

1

��
D  v.y/W

�
v

��
y$

nv
v

1

��
. By

(1.20),

Zv D �v.$v/
nvCıv

�

Z
F �v

.�v�v/.y/ v.y/.�v.$
�ıv
v /.��1v ı det/ �W �

v /
��
y$

nv
v

1

��
jyjs�1v d�y

D �v.$v/
nvCıv

X
m��nv�ıv

q�nv�ıv�msv

Z
O�v

.�v�v/.u$
m
v / v.u$

m
v / d

�u:
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If �v�v is ramified the above integral vanishes except form D �ıv � cv � �ıv � nv ,
in which case its value is the Gauss sum �.�v�v;  v; d

�// D qv�1
qv

�.�v�v;  v; d�v�v /

(see (0.1)).
If �v�v is unramified (cv D 0) then

..�v�v/.$v/q
�s
v /

ıv

.q�1v �v.$v//nvCıv
�Zv D Q.�v�v; s/

D

X
m��nv

..�v�v/.$v/q
�s
v /

m

Z
O�v

 v.u$
m�ıv
v / d�u;

which is computed using the formula

Z
O�v

 v.u$
m�ıv
v / d�u D

8̂̂<̂
:̂
1 if m � 0;
1

1�qv
if m D �1;

0 if m < �1:

1.7. Periods for .S;u/-refined newforms

The normalized .S;u/-refined newform �z�S ;˛u
of the previous section is a Hilbert cusp

form in the following sense:

Definition 1.13. A holomorphic Hilbert automorphic form of level K and weight .k;w/
is a function � W G.Q/nG.A/=K ! C such that for all � 2 †, z 2 F �� and r.�/ 2 KC� ,

�
�
�
�
z
z

�
r.�/

�
D zwe�i�k��

and, for all gf 2 G.Af /, the function �
�
gf
�
y1 x1
0 1

��
is holomorphic in x� C iy� in the

upper half-plane for every � 2 †. It is a cusp form if
R

AF =F
�
��
1 x
0 1

�
g
�
dx D 0 for all

g 2 G.A/.

Note that a classical weight k modular form for F DQ has wD 2� k. The restriction
to G.Af /GC1 of the Fourier expansion of � as above is supported on totally positive
elements, i.e.,

�.g/ D
X
�2F �
C

W�
��
�
1

�
g
�

for all g 2 G.Af /GC1: (1.21)

By Lemma 1.10 the normalized holomorphic cusp form �z�S ;˛u
can be written as

a pure tensor of the form �z�S ;˛u
D �z�S ;˛u;f ˝

N
�2† �� . Recall that for a char-

acter � W ¹˙1º† ! ¹˙1º we constructed in (1.10) a cohomology class „��1 2

Hd .g1; KC1; L
_
k;w.C/˝ �1/ yielding a map

‚�� W �
K
f

„��1˝

�����! Hd .g1; KC1; L
_
k;w.C/˝ �

K/� ,! Hdcusp.YK ;L
_
k;w.C//

� (1.22)

where K D K.z�S ; u/ is as in Definition 1.7. For E and mz�S as in Definition 1.6 we
consider the line

Hdcusp.YK ;L
_
k;w.E//

�
mz�S

: (1.23)
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Definition 1.14. Given a basis b�
z�S ;˛u

of the E-line (1.23), we let ��
z�S
2 C� be such

that ‚��.�z�S ;˛u;f / D �
�
z�S
b�
z�S ;˛u

. When � is the trivial character we denote this period
simply by �z�S .

Since ˛u; ˇu 2 E the period can be taken the same for either choice of Hecke para-
meter at u. The precise choice of a p-refined automorphic newform in §1.6 allows us to
prove the following formula describing the behavior of the periods ��

z�
under twisting by

characters. Here S D Sp .

Proposition 1.15. One can choose the bases b�
z�;˛u

in Definition 1.14 such that for every
algebraic Hecke character � of weight w and p-power conductor, one has

�
��1

e�˝� D i
�dw�f .$d/�

�!wp;1
z�

for any character � W ¹˙1º† ! ¹˙1º, where A� ˝ � D .� ˝ �; ¹�v ˝ �vºv2Sp /.
Proof. We drop ˛u to avoid cumbersome notation. By (1.20) and Definition 1.11
we have We�˝�;f D �.$d/Wz�;f � �f ı det (see also [40, Thm. 1.1]), hence �e�˝� D
�.$d/�z� � � ı det.

Since
�
�1

1

�
� evalk;wC2wi D .�1/w

�
�1

1

�
� evalk;wi , definition (1.10) implies that

„��1˝�1 ˝ �e�˝�;f
D i ..2�w�2w/t�k/=2

X
s12¹˙1º†

�.s1/.s1 � .w
�
1 ˝ �e�˝� ˝ evalk;wC2wi //

D i�dw�.$d/„
��1!

w
p;1

�1 ˝ .�z�;f � �f ı det/: (1.24)

For v 2 Sp let K 0v be as in (1.12) and let K 00v be the analogous subgroup for
.�v ˝ �v; �v ˝ �v/. LettingK 00 DKp

Q
v2Sp

.K 0v \K
00
v /, we see that �f factors through

�0.YK00/ ' A�
F;f

=F �C det.K 00/. Let

pr�b�
z� D .cŒ��/Œ��2�0.YK00 / 2

M
Œ��2�0.YK00 /

Hdcusp.YK00 Œ��;L
_
k;w.E/jYK00 Œ��/;

where pr W YK00 ! YK is the natural projection. One sees that .�f .Œ��/cŒ��/Œ��2�0.YK00 / is
E-rational as well, since the rational structure on Betti cohomology is imposed compon-
entwise. Identifying the local systems L_

k;w.E/ and L_
k;wC2w.E/, and then choosing the

basis b
��1!

w
p;1

e�˝� to correspond to .�f .Œ��/cŒ��/Œ��2�0.YK00 /, yields the desired relation in
view of (1.24) and Definition 1.14.

2. Overconvergent cohomology and partial nearly finite slope families

In this section we introduce overconvergent cohomology spaces for individual weights
and in families which naturally interpolate the spaces Hic.YK ;L

_
k;w.L// for cohomolo-

gical weights .k;w/. Moreover, we establish, in Theorem 2.7, a classicality criterion from
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which we deduce in Corollary 2.13 that cohomological z� of non-critical slope are non-
critical. Furthermore, we construct a cohomological cuspidal Hilbert eigenvariety in a
neighborhood of such a non-critical z� and show that it is etale over the weight space. We
remark that our local families do not a priori fit Buzzard’s eigenvarieties machine because
one cannot guarantee the projectivity of overconvergent cohomology groups beyond H0

and H1. Instead we adapt Hida’s axiomatic construction of nearly ordinary families to
the rigid analytic context and prove equidimensionality and etaleness using the fact that
cuspidal cohomology is supported in middle degree.

Finally, we construct partial nearly finite slope p-adic families that impose no restric-
tion on the local representation at a set of places S � Sp . These results are crucial to carry
out the construction of p-adic L-functions for families, and to control the behavior of the
local representation at v 2 Sp n S in partial families with fixed weights at †v .

2.1. Weight spaces

Let X be the .d C 1/-dimensional rigid analytic space over Qp such that

X.Cp/ D
®
� 2 Homcont.T .Zp/;C

�
p /
ˇ̌
9w� 2 Homcont.Z

�
p ;C

�
p /; �

��
z
z

��
D w�.z

t /
¯
:

(2.1)

Letting k�.z/ D �
�� z

z�1

��
� z2t for z 2 .OF ˝ Zp/� there is a finite morphism

X.Cp/! Homcont..OF ˝ Zp/
�
� Z�p ;C

�
p /; � 7! .k�;w�/: (2.2)

The cohomological weights ofG (see Definition 1.1) all belong to X and are very Zariski
dense in it.

Given an affinoid U � X we let O.U/ denote the ring of its rigid analytic functions
and consider the universal locally analytic character (see [50, Lem. 3.4.6])

h�iU W T .Zp/! O.U/�; t 7! .� 7! �.t//:

Definition 2.1. Fix a cohomological weight .k;w/. Given a subset S of Sp we let XS ,
resp. X0S , denote the rigid analytic subspace of X parametrizing weights which agree
with .k;w/ on Y

v2SpnS

�O�v 0

0 O�v

�
; resp.

Y
v2SpnS

�
O�v 0
0 1

�
:

We have XSp DX0Sp DX and dim XS D dim X0S � 1 D j†S j for any S ¨ Sp . The
space X0S is the natural place to consider partially improved p-adic L-functions (see §3.5
and §4.3), whereas the partially finite slope families of Hilbert modular cusp forms live
on its subspace XS . We thank the referees for their suggestion to highlight the difference
between these spaces, which is important for understanding the results of this paper.

2.2. Overconvergent modules

Following [50] we introduce certain modules that will be later used to define overconver-
gent sheaves on the Hilbert modular variety.
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Let L be a finite extension of Qp and X be an open compact subset of a finite-
dimensional Qp-vector space. Given n 2 Z�0, we let An.X; L/ denote the Banach
L-vector space of n-locally analytic functions on X and Dn.X; L/ its Banach dual
(see [50, §3.2.1]). More generally, given an admissible affinoid U � X we consider
the orthonormalizable Banach O.U/-modules An.X; O.U// D An.X; L/ b̋L O.U/

and Dn.X;O.U// D Dn.X; L/ b̋L O.U/ (see [22, §2.2]). The space A.X;O.U// DS
n2Z�0

An.X; O.U// of locally analytic O.U/-valued functions of X , endowed
with the inductive limit topology, is a Fréchet O.U/-module. The natural maps
DnC1.X;O.U//! Dn.X;O.U// are compact, and D.X;O.U// D lim

 �
Dn.X;O.U//

is a compact Fréchet O.U/-module. There is a functorial (in O.U/) pairing

h�; �i W D.X;O.U// � A.X;O.U//! O.U/; (2.3)

yielding D.X; O.U// ,! HomO.U/.A.X; O.U//; O.U//, but, as observed in [4,
Rem. 3.1], the natural injective maps Dn.X;O.U// ,! HomO.U/.An.X;O.U//;O.U//

need not be surjective. The above construction applies toX D OF ˝Zp considered as an
open compact subset of Qd

p .
We fix a cohomological weight .k;w/ and a subset S of Sp . We will now introduce

certain partial overconvergent distributions over an admissible affinoid US � XS con-
taining .k;w/. These distributions will allow us to construct p-adic families parametrized
by US containing � even when its local components �v for v 2 Sp n S have critical slope,
e.g. are supercuspidal, and to attach to them what appears to be a genuinely new kind of
p-adic L-function (see §4.4).

We consider the semigroup

�S D
Y

v2SpnS

GL2.Fv/
Y
v2S

GL2.Fv/ \
�
F �v �

� Ov Ov
$vOv O�v

��
(2.4)

and we define the partial Iwahori subgroup IS D �S \ G.Zp/ D
Q
v2SpnS

GL2.Ov/ �Q
v2S Iv .

Let K � G.Af / be an open compact subgroup satisfying (1.1) such that Kp � IS .
In particular, we allow Kv to be the maximal compact subgroup GL2.Ov/ at places
v 2 Sp n S . We let

AS;US
D A.OF;S ;O.US //˝L

O
�2†SpnS

Lk� ;w.L/ (2.5)

be the subspace of A.OF ˝Zp;O.US // consisting of functions which are polynomial of
degree at most .k� � 2/�2†v in the variables .z� /�2†v for all v 2 Sp n S . For � 2US .L/

we let AS;� D AS;¹�º. For n 2 Z�0 we let AS;�;n D AS;� \ An.OF ˝ Zp; L/ and we
denote by DS;�;n its topological dual. Finally, we consider the Banach O.US /-module
DS;US ;n D DS;�;n b̋L O.US / and the compact Fréchet O.US /-module

DS;US
D lim
 �

DS;US ;n:
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Definition 2.2. We consider the following continuous right action of 
2IS on f 2AS;US
:

fj
 .z/ D f
�
azCb
czCd

� ˝� .czCd/ 0

0 det.
/�.czCd/�1
�˛

US
; where z 2 OF ˝ Zp; 
 D

�
a b
c d

�
:

(2.6)

Furthermore, if for all v 2 S and all integers r � s we let fˇ̌�$rv 0

0 $sv

�.z/ D f .$ r�s
v z/.

A direct computation shows that the above actions uniquely extend to a continuous
right action of �S on AS;US

inducing, via the pairing (2.3), a continuous left action of
�S on DS;US

:

.
 � �/.f / D �.fjdet.
/�1�
 / for all � 2 DS;US
; f 2 AS;US

: (2.7)

For v 2 S one has
��
$v 0
0 1

�
� �
�
.f / D �.f .$v �// for all � 2 DS;US

; f 2 AS;US
.

Thus the element
Q
v2S

�
$v 0
0 1

�
2 �S induces a compact endomorphism on DS;US

(see
[50, §3.4.12]).

For � 2 US .L/ we consider the natural �S -equivariant specialization map

DS;US
! DS;US

˝O.US /;� L D DS;�: (2.8)

Let .k;w/ be a cohomological weight (see Definition 1.1). Using (1.4) and (1.5) one
sees that the natural injection Lk;w.L/ ,! AS;.k;w/ is equivariant for the right IS -action,
yielding a natural homomorphism of left IS -modules

#S W DS;.k;w/ ! L_k;w.L/: (2.9)

However, #S is not �S -equivariant, since for all v 2 S and � 2 DS;.k;w/, one has

#S
��
$v 0
0 1

�
� �
� Y
�2†v

�.$v/
.2�w�k� /=2 D

�
$v 0
0 1

�
� #S .�/: (2.10)

When S D Sp we will drop it from the notations, e.g., AU D ASp ;USp
, DU D

DSp ;USp
, � D �Sp .

2.3. Slope decomposition for overconvergent cohomology

Let U be an L-affinoid. We consider a compact Fréchet O.U/-module M D lim
 �

Mn

such that for all n 2 Z�0 the Banach O.U/-module Mn is orthornomalizable, endowed
with a compact endomorphism U W M ! M , i.e., a system of maps Un W Mn ! Mn

factoring through the natural projections Mn !Mn�1 which are compact. For h 2 Q�0,
if M admits a slope � h decomposition with respect to U written as M�h ˚M>h (see
[22, Def. 2.3.1]), then M�h is a finitely generated Banach O.U/-module.

The following result is a generalization to compact Fréchet O.U/-modules of a well-
known proposition about Banach O.U/-modules. If U0 �U is a subaffinoid, we let UU0

denote the endomorphism of MU0 DM ˝O.U/ O.U0/ induced by U .
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Proposition 2.3. Given any � 2 U.L/ and any h 2 Q�0, there exists an admissible L-
affinoid neighborhood U0 � U of � such that MU0 admits a slope � h decomposition
with respect to UU0 .

Proof. When U is a point, i.e., O.U/ is a p-adic field, then this is proven in [50,
Lem. 2.3.13].

By [22, Prop. 2.3.3] applied to the orthonormalizable Banach O.U/-module Mn

endowed with the compact endomorphism Un W Mn ! Mn, there exists an L-affinoid
neighborhood U0 � U of � such that Mn;U0 admits a slope � h decomposition with
respect toUn;U0 asM�h

n;U0
˚M>h

n;U0
. Since the Fredholm determinant det.1� x �Un jMn/

is independent of n (see [13, Lem. 2.7]), one can take the same U0 for all n. Passing to the
limit we obtain a direct sum decompositionMU0 D lim

 �
M�h
n;U0
˚ lim
 �

M>h
n;U0

. It remains to
see that this is a slope � h decomposition. Since the endomorphism U is compact, apply-
ing exactly the same steps as in the proof of [50, Cor. 2.3.4] shows that the natural maps
M�h
n;U0
! M�h

n�1;U0
are all isomorphisms, hence M�h

U0
' M�h

n;U0
is a finitely generated

Banach O.U0/-module for all n.

Let K � G.Af / be an open compact subgroup satisfying (1.1) and � � G.Af / a
semigroup containing K. Given a Fréchet O.U/-module M as above, we suppose that it
is endowed with a continuous left action of � such that (1.2) holds, and we let M denote
the associated sheaf on YK (see §1.2).

Proposition 2.4. Suppose that x 2 � induces a compact endomorphism on M . For
� 2 U.L/ and h 2 Q�0 there is an admissible L-affinoid neighborhood U0 � U of �
such that H�c.YK ;MU0/ admits a slope � h decomposition with respect to the Hecke
operator ŒKxK�.

Proof. By Proposition 2.3 there exists an admissibleL-affinoid U0�U containing � such
that MU0 admits a slope � h decomposition with respect to the endomorphism induced
by x. By [2, Lem. 2] the cohomology H�c.YK ;M/ can be computed by a bounded complex
R��c.K; MU0/ whose terms are compact Fréchet O.U0/-modules on which the Hecke
operator ŒKxK� acts compactly. Thus R��c.K;MU0/ admits a slope � h decomposition
with respect to ŒKxK� and the proposition follows from [22, Prop. 2.3.2].

Definition 2.5. Let .Ui /i2I be a family of O.U/-linear endomorphisms of an O.U/-
module M . Given hI D .hi /i2I 2 QI

�0 we let M�hI denote the subspace consisting of
elements having slope � hi with respect to Ui for all i 2 I .

We fix S � Sp such that Kp � IS . When condition (1.2) is satisfied by .k;w/, it is
also satisfied by all weights in US � XS sufficiently small containing .k;w/, yielding a
sheaf DS;US

on YK .
Considering the family

��
$v 0
0 1

��
v2S

of mutually commuting endomorphisms of
DS;US

and applying Proposition 2.4 to their product, which is compact, has the following
consequence.
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Corollary 2.6. For any hS 2 QS
�0 and any cohomological weight .k; w/ satisfy-

ing (1.2), there exists an admissible affinoid US � XS containing .k; w/ such that
H�c.YK ;DS;US

/�hS is a finitely generated O.US /-module, where the slope condition
is with respect to the family .U$v /v2S .

2.4. Classicality

For S � Sp and K � G.Af / as in §2.3, the map resulting from (2.9),

#S W H�c.YK ;DS;.k;w//! H�c.YK ;L
_
k;w.L//; (2.11)

intertwines for v 2 S the U$v -action on H�c.YK ;DS;.k;w// with the action of the normal-
ized

U ı$v D
� Y
�2†v

�.$v/
.k�Cw�2/=2

�
� U$v (2.12)

on H�c.YK ;L
_
k;w.L//. We remark that the U ı$v -action is independent of w.

Theorem 2.7. Let hS D .hv/v2S 2 QS
�0 be such that evhv < min�2†v .k� � 1/ for all

v 2 S . Then (2.11) induces an isomorphism of slope � hS subspaces in the sense of
Definition 2.5:

#S W H�c.YK ;DS;.k;w//
�hS

�
�! H�c.YK ;L

_
k;w.L//

�hS ; (2.13)

where we consider ¹U$v ; v 2 Sº on the left hand side and ¹U ı$v ; v 2 Sº on the right hand
side.

Proof. If S D Sp then this follows from [3, Thm. 8.7]. For a general S we will use a
partial version of the locally analytic BGG resolution. For � 2 †S the image of .k; w/
by a generator of the Weyl group of G� yields a cohomological weight .k� ; w/, where
k�� D 2 � k� and k�� 0 D k� 0 for all � 0 2 † n ¹�º. The restriction to AS;.k;w/ of the map
introduced in [50, Prop. 3.2.11] yields an IS -equivariant map‚S;� WAS;.k;w/!AS;.k� ;w/,
whose dual ‚_S;� W DS;.k� ;w/ ! DS;.k;w/ is IS -equivariant as well. From loc. cit. the
cokernel of the map X

�2†S

‚_S;� W
M
�2†S

DS;.k� ;w/ ! DS;.k;w/ (2.14)

is given by the continuous dual of the subspace of locally algebraic functions in AS;.k;w/.
The proof of the theorem then proceeds exactly as in [3, Thm. 8.7] using the fact that the
finite slope parts of the cohomology of algebraic and locally algebraic distributions coin-
cide (see [50, Lem.4.3.8]), and the following computation for v 2 S and � 2 DS;.k� ;w/:

‚_S;� ..
$v 0
0 1

/ � �/ D

´
$
�k�C1
v .$v 0

0 1
/ �‚_S;� .�/ if � 2 †v;

.$v 0
0 1

/ �‚_S;� .�/ if � 2 †S n†v:
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Remark 2.8. The map (2.14) is a locally-analytic analogue of Lepowsky’s generalized
BGG resolution for G relative to the parabolic subgroup given by GL2 at the places out-
side S and the upper triangular matrices at the places in S (see [29, Thm. 4.3]). On the
other hand, in [31] the author uses the general Lepowsky generalized BGG resolution
to prove classicality results for his construction of eigenvarieties for reductive algebraic
groups whose real points are compact modulo their center.

2.5. Axiomatic control and freeness

We will generalize a strategy due to Hida, establishing an exact control theorem and free-
ness results of the overconvergent cohomology and the Hecke algebra acting on it. The
motivating principle is that while, in general, one cannot establish torsion-freeness for
cohomology, this can be done when the cohomology is supported in a single degree. We
begin with an adaptation of [24, Lem. 7.1] to the setting of analytic families.

Let A be a regular local ring with maximal ideal m and let C be a subcategory of the
category of A-modules such that if M is in C and I is an ideal of A then M ˝A A=I is
also in C . Henceforth H � will denote a cohomology functor on C such that

(i) H � sends short exact sequences to long exact ones, and

(ii) H �.M/ is a finitely generated A-module for every M in C .

Lemma 2.9. Suppose M in C is A-flat and H �.M ˝A A=m/ is supported in degree d .
Then

(i) H �.M/ is supported in degree d and Hd .M/˝A A=m ' Hd .M ˝A A=m/,

(ii) Hd .M/ isA-torsion-free; in particular, ifA is a discrete valuation ring then Hd .M/

is a free A-module of rank dimA=m Hd .M ˝A A=m/.

Proof. Let T1; : : : ; Tk be a regular sequence in A and consider the filtration

I0 D 0 � I1 D .T1/ � I2 D .T1; T2/ � � � � � Ik D .T1; : : : ; Tk/ D m:

For i ¤ d we will prove by descending induction on r that H i .M ˝A A=Ir / D 0. The
base case r D k follows from the hypothesis. By flatness, we have a short exact sequence

0!M ˝ A=Ir�1
�Tr
��!M ˝ A=Ir�1 !M ˝ A=Ir ! 0:

The corresponding long exact sequence yields an injection

H i .M ˝ A=Ir�1/˝A=Ir�1 A=Ir ,! H i .M ˝ A=Ir /:

By the inductive hypothesis we have H i .M ˝ A=Ir�1/ ˝A=Ir�1 A=Ir D 0. Since the
A=Ir�1-module H i .M ˝ A=Ir�1/ is finitely generated, Nakayama’s lemma yields
H i .M ˝ A=Ir�1/ D 0. Finally, let i D d . The long exact sequence and the vanishing
result in degree d C 1 yield

Hd .M ˝ A=Ir�1/˝A=Ir�1 A=Ir ' Hd .M ˝ A=Ir /;
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and concatenating these isomorphisms for 1� r � k yields part (i). For (ii), note that it suf-
fices to show that Hd .M/ has no T -torsion where the non-zero divisor T can be assumed
to be T1. The arguments of (i) imply, by descending induction on r , that multiplication by
Tr is injective on Hd .M ˝ A=Ir�1/. The case r D 1 shows that multiplication by T is
injective on Hd .M/ as desired. Finally, when A is a discrete valuation ring the module
Hd .M/ is free of rank

dimA=m Hd .M/˝ A=m D dimA=m Hd .M ˝ A=m/:

We will now apply the abstract paradigm of Lemma 2.9 to the setting of overcon-
vergent sheaves and Hecke algebras. The rigid localization of an admissible L-affinoid
U � X at a point � 2 U.L/ is defined as O.U/� D lim

�!�2U0�U
O.U0/, where the limit

is taken over all admissible open subaffinoids U0 in U containing �. It is a local ring
which contains the algebraic localization of O.U/ at the maximal ideal m� at �. For an
O.U/-module F we let

F� D F ˝O.U/ O.U/� D lim
�!

�2U0�U

.F ˝O.U/ O.U0//: (2.15)

Lemma 2.10. Let F and G be finitely generated O.U/-modules. If there exists an
O.U/�-linear isomorphism F�

�
�! G�, then there exists an admissible open subaffinoid

U0 �U containing � such that F ˝O.U/ O.U0/ ' G ˝O.U/ O.U0/. In particular, if F�
is free over O.U/�, then there exists an admissible open affinoid U0 � U containing �
such that F ˝O.U/ O.U0/ is O.U0/-free.

Proof. Suppose f1; : : : ; fM generate F as an O.U/-module. Let � W F� ! G� be the
given isomorphism. The map � is uniquely determined by the elements �.f1/; : : : ;�.fM /
2 G�. Let U0 be an admissible neighborhood of � in U over which the elements �.fi /
are all defined. By O.U0/-linearity we get a homomorphism �U0 W F ˝O.U/ O.U0/!

G ˝O.U/ O.U0/. Since O.U0/ is noetherian, ker.�U0/ and coker.�U0/ are finitely gen-
erated O.U0/-modules, whose localizations at � vanish. It follows that, by shrinking U0

further, one may ensure that generators for ker.�U0/ and coker.�U0/ vanish, proving that
�U0 is an isomorphism. The last statement follows by taking G to be the free O.U/-
module of rank equal to the rank of F�.

Our final abstract lemma is an application of Lemma 2.9 to rigid spaces. Fix S � Sp .

Lemma 2.11. Let A D O.U/�, where U � XS is an admissible neighborhood of �,
and suppose that H �.DS;�/ is supported in degree d . Then, after possibly shrinking U,
Hd ..DS;U/�/ is O.U/�-free.

Proof. Since .DS;U/� is O.U/�-flat, Lemma 2.9(i) yields an isomorphism of O.U/�-
modules Hd ..DS;U/�/ ˝O.U/� L

�
�! Hd .DS;�/. It then follows from Nakayama’s

lemma that the module Hd ..DS;U/�/ can be generated over O.U/� by r D

dimL Hd .DS;�/ generators m1; : : : ; mr .
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Suppose there exists a relation f1m1C � � � C frmr D 0 with f1; : : : ; fr 2 O.U/� not
all 0. Then, for example, f1 2 O.U0/ n ¹0º for some closed polydisc U0 � U contain-
ing �. Since f1 is analytic, there exists a 1-dimensional disk V � U0 such that the image
of f1 in O.V/ is non-zero, yielding a dependence relation between m1; : : : ; mr over the
discrete valuation ring O.V/�. This contradicts Lemma 2.9(ii) since the O.V/�-rank of
Hd .DS;V ˝O.V/�/ would be � r � 1.

2.6. Etaleness at non-critical points

Our main interest is in compactly supported cohomology, which is not supported in
middle degree. To account for this, we will localize at the maximal ideal defined by z�
and will obtain etaleness at non-critical points in both full and partial p-adic families.

Let S � Sp and let z�S D .�; ¹�vºv2S / be a regular S -refinement of � (see Defini-
tion 1.3).

Henceforth we let K D K.z�S ; u/ (see Definition 1.7). By Corollary 2.6 for any
hS 2 QS

�0 there exists an L-affinoid neighborhood US of .k; w/ in XS such that
Hdc .YK ; DS;US

/�hS is a finitely generated O.US /-module. Since O.US / is noeth-
erian, the O.US /-algebra T�hS

S;US
, generated by the image of zTS (see Definition 1.6)

in EndO.US /.H
d
c .YK ;DS;US

/�hS /, is finite. For any subaffinoid U0S � US contain-
ing .k; w/ consider the maximal ideal of zTS ˝E;�p O.U0S / generated by mz�S and by
m.k;w/ and, by an abuse of notation, let mz�S denote its image in T�hS

S;U0
S

, as well as the

corresponding maximal ideal of the rigid analytic localization .T�hS
S;U0

S

/.k;w/ (see (2.15)).

The rigid localization of Sp.T�hS
S;US

/ at the point z�S corresponding to the maximal ideal

mz�S � T�hS
S;US

is given by the limit

.T�hS
S;US

/z�S ' lim
�!
z�S2V

O.V/

over all admissible neighborhoods V of z�S in Sp.T�hS
S;US

/. The weight map � W

Sp.T�hS
S;US

/!US induces a ring homomorphism O.US /.k;w/! .T�hS
S;US

/z�S . More gen-

erally, given a T�hS
S;US

-module F we let Fz�S D F ˝
T
�hS
S;US

.T�hS
S;US

/z�S . The natural map

F.k;w/ ! Fz�S induces an isomorphism

.F.k;w//mz�S
�
�! Fz�S : (2.16)

Definition 2.12. We say that z�S is non-critical if the mz�S -localization

#S W H�c.YK ;DS;.k;w//mz�S
! H�c.YK ;L

_
k;w.L//mz�S

of (2.11) is an isomorphism. When S D Sp we let TU D TSp ;USp
and will say that z� is

non-critical.
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Theorem 2.7 applied to hS D .hz�v /v2S (see Definition 1.8) has the following direct
consequence.

Corollary 2.13. If z�S has non-critical slope, then z�S is non-critical.

The main result of this section is the following control and freeness theorem for com-
pactly supported cohomology. Fix a character � of ¹˙1º†.

Theorem 2.14. Suppose that z�S is non-critical. Then, after possibly shrinking US�XS :

(i) H�c.YK ;DS;US
/�
z�S

is a free O.US /.k;w/-module of rank 1 and is supported in
degree d .

(ii) The weight map � W Sp.T�hS
S;US

/ ! US is etale at z�S , i.e., there exists an irredu-

cible component VS of Sp.T�hS
S;US

/ containing z�S such that � W VS ! US is an
isomorphism of affinoids. Moreover H�c.YK ;DS;US

/�;�hS ˝
T
�hS
S;US

O.VS / is sup-
ported in degree d and is free of rank 1 over O.US /.

(iii) For any cohomological weight � 2US , ��1.�/ 2VS corresponds to a non-critically
S -refined weight � cuspidal automorphic representation z��;S of G.A/.

Proof. (i) By non-criticality and cuspidality,

H�c.YK ;DS;.k;w//
�
mz�S

�
�! H�c.YK ;L

_
k;w.L//

�
mz�S

is supported in degree d and has dimension equal to dim.�K
f
/mz�S

D 1 (see Lemma 1.4).
Applying Lemmas 2.9(i) and 2.11 to the cohomology functor H �.�/ D H�c.YK ;�/

�
mz�S

shows that
H�c.YK ; .DS;US

/.k;w//
�
mz�S

�
�! H�c.YK ;DS;US

/�
z�S

is also supported in degree d and is O.US /.k;w/-free of rank 1 (see (2.16))
(ii) It follows from (i) that the natural map O.US /.k;w/ ! .TS;US

/z�S is an isomor-
phism and that H�c.YK ;DS;US

/�
z�S

has rank 1 and is supported in degree d . Both claims
then follow straightforwardly using Lemma 2.10.

(iii) After shrinking US , we may assume that any cohomological � 2 US n ¹.k;w/º
is non-constant, i.e. k� ¤ 2t , and such that evhz�v <min�2†v .k�;� � 1/ for all v 2 S . Let
m � zTS be the maximal ideal corresponding to the map zTS ! T�hS

S;US
! O.VS /! L

induced by ��1.�/. Using the same abuse of notation for m as we did for mz�S (see the
paragraph above (2.16)), (ii) yields an isomorphism

H�c.YK ; .DS;US
/�/

�
m

�
�! H�c.YK ;DS;US

/�;�hS ˝
T
�hS
S;US

O.VS /��1.�/ D H�c.YK ;DS;US
/�
��1.�/

of free O.US /�-modules of rank 1 supported in degree d . By using the long exact
sequences from the proof of Lemma 2.9 for the functor H �.�/ D H�c.YK ; �/

�
m

one can perform this time an ascending induction showing that the L-vector space
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H�c.YK ;DS;�/
�
m is 1-dimensional and supported in degree d . The non-critical slope

assumption on � implies, via Theorem 2.7, that

H�c.YK ;DS;�/
�
m

�
�! H�c.YK ;L

_
� .L//

�
m

is concentrated in degree d and is 1-dimensional, and therefore ��1.�/ corresponds to
a non-critically S -refined automorphic representation z��;S of G.A/ of weight � (see
Corollary 2.13). Finally, �� is necessarily cuspidal as otherwise it would necessarily be
an Eisenstein series and contribute to the usual cohomology in all degrees between d and
2d � 1, hence in all degrees between 1 and d of the compactly supported one (see, for
example, [34]).

Remark 2.15. Our construction of partial eigenvarieties will be crucially used in §7 for
the calculations of higher order derivatives of p-adic L-functions. In the literature we
find other examples of the use of partial eigenvarieties in arithmetic applications. For
example in [27] the authors use partial eigenvarieties for definite quaternion algebras to
study the parity conjecture for Hilbert modular forms. Another example is [15] where
partial eigenvarieties for definite unitary groups are used to attach Galois representations
to conjugate self-dual automorphic representations of GLn over CM fields.

3. Automorphic symbols and p-adic distributions

In this section we use the automorphic cycles introduced in [18] to construct, for any
ideal f � OF supported in S � Sp , natural evaluations on the cohomology of the Hilbert
modular variety with general coefficients, and show that they satisfy certain distribution
relations as f varies. When applied to a finite slope Up-eigenclass in overconvergent
cohomology, the construction yields a distribution of controlled growth on Galp1 in a
canonical way, i.e., independent of choices of uniformizers or representatives in idele
class groups. This will allow us in §4 to attach p-adic L-functions to nearly finite slope
families of Hilbert cusp forms, generalizing [2].

When the support of the ideal f is small, a case not previously considered, the relations
established when S varies will be used in §4.3 to construct partially ‘improved’ p-adic
L-functions.

For S ¨ Sp our construction allows us to attach to a family VS
�
�! US containing

a non-critical S -refinement z�S (see Theorem 2.14), a rather mysterious O.US /-valued
distribution on GalS1.

3.1. Fundamental classes and automorphic cycles

For an ideal f the d -dimensional open manifold XCf D E.f/ n F �C1 is orientable with
orientation induced by an orientation on F �C1 . The Borel–Moore homology HBM

i .XCf /

can be computed as the relative homology Hi .X
C

f ;X
C

f nX
C

f / whereX
C

f is the two-point
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compactification of XCf [18, Def. 1.5]. When i D d , HBM
d
.XCf / ' Z and one can choose

a fundamental class �f D ŒX
C

f � 2 HBM
d
.XCf / in a compatible way as f varies, such that

for all f j f 0 the finite map � W XCf0 ! XCf induces a commutative diagram

HBM
d
.XCf /

� //

��

��

Z

id

��
HBM
d
.XCf0 /

��

OO

� // Z

ŒE.f/WE.f0/��

OO

In top degree the map HBM
d
.XCf / ! Hdc .X

C

f /
_ sending � to c 7! c \ � D

R
�
c is an

isomorphism. When d � 2 one has HBM
d
.XCf /D Hd .X

C

f ;X
C

f nX
C

f /' Hd .X
C

f /. We let

Xf D A�F =F
�U.f/:

For any � 2 A�
F;f

representing a class Œ�� 2 C`CF .f/ ' �0.Xf/ we denote by Xf Œ�� the

connected component ofXf attached to Œ��. The mapXCf
��
�!Xf Œ�� yields an isomorphism

HBM
d
.XCf /

��
�! HBM

d
.Xf Œ��/ independent of the choice of the representative �. Hence �f

yields a fundamental class

�f;Œ�� D ��.�f/ 2 HBM
d .Xf Œ��/: (3.1)

In this entire section S � Sp , f � OF is an ideal supported in S and K � G.Af / is an
open compact subgroup containing

�
U.f/bOF
0 1

�
such that the image Kp of K in G.Qp/ is

contained in IS .
We define the automorphic cycle of level f as

C$f;K W Xf ! YK ; y 7!
��
y 0
0 1

��
$f 1f

0 1

��
;

which is a well-defined, continuous, finite map (see [19, Cor. 1.23]). When K is clear
from context it will be dropped from the notation of the automorphic cycle.

3.2. Evaluations

We will axiomatize and generalize some constructions from [18] and [2] on the evalu-
ations of automorphic cycles on the cohomology of the Hilbert modular varieties.

Let M be a left �S -module (see (2.4)) and let M be the sheaf on YK attached as
in §1.2 to M on which K acts via Kp � IS � �S . The pullback by C$f induces a
homomorphism

C �$f
W Hdc .YK ;M/! Hdc .Xf ; C

�
$f

M/: (3.2)

Since
�
$f 1f

0 1

��
u .u�1/1f$

�1
f

0 1

�
D
�
u 0
0 1

��
$f 1f

0 1

�
one sees that C �$f

M is the sheaf of
locally constant sections of the local system

C �$f
M D F �n.A�F �M/=U.f/! Xf ; (3.3)

where �.y;m/uD
�
�yu;

�
u .u�1/1f$

�1
f

0 1

��1
�m
�

for � 2F �, y 2A�F ,m2M and u2U.f/.
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Let Mf be the sheaf of locally constant sections of the local system

F �n.A�F �M/=U.f/! Xf ; (3.4)

where �.y;m/u D
�
�yu;

�
u 0
0 1

��1
�m
�

for � 2 F �, y 2 A�F , m 2M and u 2 U.f/.
Since the image of

�
$f 1f

0 1

�
in G.Qp/ belongs to �S , one can consider the map

A�F �M ! A�F �M; .y;m/ 7!
�
y;
�
$f 1f

0 1

�
�m
�
;

which sends the local system (3.3) to the one from (3.4). The resulting homomorphism of
sheaves tw$f W C

�
$f

M!Mf over Xf yields a homomorphism of cohomology groups

tw$f W H
d
c .Xf ; C

�
$f

M/! Hdc .Xf ;Mf/: (3.5)

Let ME.f/ denote the E.f/-coinvariants of M . Consider the sheaf ME.f/ attached to
the local system F �n.A�F �ME.f//=U.f/ with �.y;m/uD

�
�yu;

�
u
1

��1
�m
�
. There is

a natural map
coinvf W Hdc .Xf ;Mf/! Hdc .Xf ;ME.f//:

Trivializing the sheaf ME.f/ requires choosing a representative �2A�
F;f

of Œ��2C`CF .f/.
Then

triv� W Xf Œ�� �ME.f/ ! .ME.f//jXfŒ��; .a�u1u;m/ 7!
�
a�u1u;

�
u�1

1

�
�m
�
;

is an isomorphism of local systems yielding the desired trivialization map

triv�� W H
d
c .Xf Œ��;ME.f//! Hdc .Xf Œ��;Z/˝ME.f/:

Capping with �f;Œ�� from (3.1) yields an isomorphism Hdc .Xf Œ��;Z/˝ME.f/ ' ME.f/.
We define

ev�$f
.M/ D .� \ �f;Œ��/ ı triv�� ı coinvf ı tw$f ıC

�
$f;K

W Hdc .YK ;M/!ME.f/:

(3.6)

Where M is clear from context we will drop it from the notation of the evaluation map.

Lemma 3.1. The evaluation maps ev�$f
are covariant in M , in the sense that if # W

M !M 0 is a morphism of left �S -modules then # ı ev�$f
.M/ D ev�$f

.M 0/ ı # .

It follows from (2.12) that there is a commutative diagram

Hdc .YK ;DS;.k;w//

#S

��

$
..2�w/t�k/=2
f �ev�$f

.DS;.k;w//
// .DS;.k;w//E.f/

#S

��
Hdc .YK ;L

_
k;w.L//

ev�$f
.L_
k;w.L// // L_

k;w.L/E.f/

(3.7)
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Lemma 3.2. For � 2 A�
F;f

, u 2 U.f/ and �0 2 F ��uF �C1 we have ev�
0

$f
D
�
u�1p

1

�
� ev�$f

.

Proof. By (3.6) , it suffices to check that triv��0 D
�
id˝

�
u�1p

1

��
� triv�� . This follows from

the fact that triv�0.y;m/ D triv�
�
y;
�
u�1p

1

�
�m
�
.

Lemma 3.3. If v j f then for all ı 2 O�v we have ev�
$fı
D ev�$f

ı Uı .

3.3. Relations

We will prove a fundamental relation between the evaluations defined in §3.2, which will
later be used to prove an interpolation property and a growth property of certain p-adic
distributions on Galois groups, as well as a relation between the corresponding p-adic
L-functions and their improved counterparts.

Proposition 3.4. For v 2 S let prfv;f W C`
C

F .fv/! C`CF .f/ be the natural projection.
Choose a representative � 2 A�

F;f
for Œ�� 2 C`CF .f/ and for each Œı� 2 pr�1fv;f.Œ��/ let

ı 2 A�F and uı 2 U.f/ be such that ı 2 F ��uıF �C1 . Then

X
Œı�2pr�1fv;f.Œ��/

�
uı

1

�
� evı$fv

D

´
ev�$f

ı U$v if v j f;

ev�$f
ı U$v �

�
$v 0
0 1

�
� ev�$v$f

if v − f:

Proof. We first recall the definition of U$v . Let 
 D
�
$v 0
0 1

�
and consider the natural

projections pr1 W YK0.v/ ! YK and pr2 W YK0.v/ ! YK where K0.v/ D K \ 
K
�1 and
K0.v/ D K \ 
�1K
 . For clarity we will denote by MK the local system on YK , in
which case pr�1 MK DMK0.v/ and pr�2 MK DMK0.v/. Define

U$v D Tr.pr2/ ı Œ
� ı pr�1 W H
d
c .YK ;MK/! Hdc .YK ;MK/; (3.8)

where Œ
� W Hdc .YK0.v/;MK0.v//! Hdc .YK0.v/;MK0.v// is induced by the morphism of
local systems given by .g; m/ 7! .g
�1; 
 � m/ (note that the image of 
 in G.Qp/

belongs to�S ), pr�1 W H
d
c .YK ;MK/! Hdc .YK0.v/;MK0.v// is the pullback, and Tr.pr2/ W

Hdc .YK0.v/;MK0.v//D Hdc .YK ; p2� pr�2 MK/! Hdc .YK ;MK/ is the trace attached to the
finite map pr2.

We will now define analogous maps on Xf . The map

zCf;K0.v/ W Xfv ! YK0.v/; Œy� 7!
��
y 0
0 1

��
$f 1fv

0 1

��
;

is well-defined since for all � 2 F � and u 2 U.fv/, we have
�
u .u�1/1fv$

�1
f

0 1

�
2 K0.v/

and �
�yu 0
0 1

��
$f 1fv

0 1

�
D
�
� 0
0 1

��
y 0
0 1

��
$f 1fv

0 1

��
u .u�1/1fv$

�1
f

0 1

�
: (3.9)
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Case 1: v j f . In this case 1fv D 1f . Denoting by � 
 the right translation, one checks that
the following diagram commutes:

YK YK0.v/
�
 //pr2oo YK0.v/

pr1 // YK

Xf

C$f

OO

Xfv

prfv;foo

zC
f;K0.v/

OO

Xfv

C$fv;K0.v/

OO

Xfv

C$fv;K

OO

(3.10)

We consider the local system zC �
f;K0.v/

M D F �n.A�F � M/=U.fv/ on Xfv , where

u 2 U.fv/ acts on M by
�
u .u�1/1f$

�1
f

0 1

�
. Since�

$v 0
0 1

��
u .u�1/1fv$

�1
fv

0 1

�
D
�
u .u�1/1f$

�1
f

0 1

��
$v 0
0 1

�
;

one has a morphism of local systems

C �$fv ;K
M D C �$fv ;K0.v/

M! zC �
f;K0.v/

; Œ.y;m/� 7!
��
y;
�
$v 0
0 1

�
�m
��
;

inducing a homomorphism on the cohomology:

Œ$v� W Hdc .Xfv; C
�
$fv ;K0.v/

M/! Hdc .Xfv; zC
�

f;K0.v/
M/:

Pulling back the U$v defined in (3.8) by the vertical maps in (3.10), and noticing that the
etale maps pr2 and prfv;f have the same degree, yields a homomorphism

U$v D Tr.prfv;f/ ı Œ$v� W

Hdc .Xfv; C
�
$fv ;K

M/ D Hdc .Xfv; C
�
$fv ;K0.v/

M/! Hdc .Xf ; C
�
$f

M/: (3.11)

Next, we pull back the U$v action by the twisting operators. By (3.9) and the fact that�
$f 1f

1

��
1 �1f$

�1
f

1

�
D
�$f

1

�
belongs to the torus, we have a morphism of local systems

ztwf W
zC �
K0.v/;f

M!Mfv; .y;m/ 7!
�
y;
�
$f 1f

1

�
�m
�
:

Moreover, as v j f we have�
$f 1f

0 1

��
$v 0
0 1

�
D
�
$fv 1fv

0 1

�
;

hence the diagram

Hdc .Xfv; C
�
$fv ;K

M/
Œ$v � //

twfv

��

Hdc .Xfv; zC
�

f;K0.v/
M/

Tr.prfv;f/ //

ztwf

��

Hdc .Xf ; C
�
$f

M/

twf

��
Hdc .Xfv;Mfv/ Hdc .Xfv;Mfv/

Tr.prfv;f/ // Hdc .Xf ;Mf/

(3.12)
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is commutative. Taking coinvariants yieldsL
Œı�2pr�1fv;f.Œ��/

Hdc .XfvŒı�;ME.fv// //

˚ triv�
ı

��

Hdc .Xf Œ��;ME.f//

triv��
��L

Œı� Hdc .XfvŒı�/˝ME.fv/

˚

�
uı

1

�
�

//

˚�\�fv;Œı�

��

Hdc .Xf Œ��/˝ME.f/

�\�f;Œ��

��
˚Œı�2pr�1fv;f.Œ��/

ME.fv/

.mŒı�/Œı� 7!
P
Œı�mŒı� // ME.f/

(3.13)

where the map ME.fv/ ! ME.f/ is the canonical projection. The commutativity of the
upper square follows from the proof of Lemma 3.2, while the commutativity of the bot-
tom square follows from the compatible choice of fundamental classes �f;Œ�� and �fv;Œı�

in §3.1. The proposition then follows from (3.6), (3.12), and (3.13).

Case 2: v − f . The extra term comes from the fact prfv;f has degree 1 less than the degree
of pr2. Instead of (3.10) we consider the commutative diagram

YK YK0.v/
�
 //pr2oo YK0.v/

pr1 // YK

Xf

C$f

OO

Xf tXfv

idtprfv;foo

C
$f;K

0.v/
zC

f;K0.v/

OO

�$vtid // Xf tXfv

C$f;K0.v/
C$fv;K0.v/

OO

Xf tXfv

C$f
C$fv;K

OO

(3.14)

As in (3.11), pulling back the U$v defined in (3.8) by the vertical maps in (3.14) yields

U$v D Uv;1 C Uv;2 W H
d
c .Xf ; C

�
$f

M/˚ Hdc .Xfv; C
�
$fv ;K

M/! Hdc .Xf ; C
�
$f

M/;

where Uv;2 is given by the same formulas as U$v in Case 1, whereas Uv;1 comes from the
map .y;m/ 7!

�
$�1v y;

�
$v

1

�
�m
�
. Applying coinvf ı tw$f to both sides of the mapUv;1,

one completes the proof by checking the commutativity of the diagram

Hdc .Xf Œ�$v�;ME.f//
Uv;1 //

.�\�f;Œ�$v�/ıtriv
�
�$v

��

Hdc .Xf Œ��;ME.f//

.�\�f;Œ��/ıtriv��
��

ME.f/

�
$v

1

�
// ME.f/

Remark 3.5. This proposition completes and generalizes [2, Lem. 5.1]. The second part
of this proposition generalizes [21, Prop. 5.8(i)] used to obtain a relation between the
standard and improved p-adicL-function in the context of modular curves. Such relations
will be vastly generalized in Proposition 3.17.
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3.4. Distributions on Galois groups

The evaluation map ev�$f
.M/ constructed in §3.2 depends on a representative � 2 A�

F;f

of the class Œ�� 2 C`CF .f/ and on the choice of uniformizers. In this section we will focus
on the case where M D DU (see §2.2), with U an L-affinoid of the weight space X

(see §2.1), and produce distributions on Galois groups which are independent of the above
choices. These in turn will be used in §4 to construct p-adic L-functions.

By class field theory, for any integral ideal f supported in Sp there is an exact sequence

1! U.f/p=E.f/
�f
�! Galp1 ! C`CF .f/! 1; (3.15)

whereU.f/p D .OF ˝Zp/� \ .1C f.OF ˝Zp// andE.f/ is the p-adic closure ofE.f/
in U.f/p . We have .DU/E.f/�HomO.U/.A

E.f/
U

;O.U//, whereAE.f/
U

consists of f 2AU

such that fˇ̌� e
1

� D f for all e 2 E.f/ (see Definition 2.2). As in [2] we define an ‘exten-

sion by zero’ morphism

A.U.f/p=E.f/;O.U//! A
E.f/
U

; f 7! f �.z/ D

´ ˝�
z 0
0 1

�˛
U
f .z/ if z 2 U.f/p;

0 if z … U.f/p:
(3.16)

Dualizing, we get a map .DU/E.f/ ! D.U.f/p=E.f/; O.U//, which we denote by
� 7! ��.

Let Galp1Œ�� denote the pre-image of Œ�� 2 C`CF .f/ in Galp1. Multiplication by the
image of � 2 A�

F;f
in Galp1 under the Artin recipocity map yields a bijection

�� W U.f/p=E.f/
�
�! Galp1Œ��; up 7! ��f.up/: (3.17)

Dualizing, we obtain a map ��� W D.U.f/p=E.f/;O.U//
�
�! D.Galp1Œ��;O.U//. Expli-

citly, for all�2D.U.f/p=E.f/;O.U// and f 2A.Galp1Œ��;O.U//we have h����;f iD
h�; f ı ��i.

Lemma 3.6. The following map does not depend on the representative � of Œ��2C`CF .f/:

evŒ��$f
D ��� ı ev�;�$f

W Hdc .YK ;DU/! D.Galp1Œ��;O.U//: (3.18)

We omit the proof, which is a consequence of Lemma 3.2. The following result shows
that when v divides f for all v 2 Sp , the passage to ev�;�$f

does not make one loose inform-
ation.

Lemma 3.7. Given ˆ 2 Hdc .YK ;DU/, one has ev�$f
.ˆ/ 2

�
$f 1f

1

�
�DU. In particular,

for any f 2 AU one has hev�$f
.ˆ/; f i D hev�$f

.ˆ/; fj1Cf.OF˝Zp/i.
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Definition 3.8. We define

ev$f D

M
Œ��2C`C

F
.f/

evŒ��$f
W Hdc .YK ;DU/! D.Galp1;O.U//;

hev$f ; f i D
X

Œ��2C`C
F
.f/

hevŒ��$f
; fjGalp1Œ��i:

Proposition 3.9. Let Œ�� 2 C`CF .f/. Then for any v 2 Sp we have

evŒ��$f
ı U$v D

X
Œı�2pr�1fv;f.Œ��/

evŒı�$fv
and ev$f ı U$v D ev$fv :

Proof. Letˆ 2Hdc .YK ;DU/ and f 2A.Galp1;O.U//. Using Proposition 3.4 it suffices
to show that

˝�
$v

1

�
� ev�$v$f

.ˆ/; .f ı ��/
�
˛
D 0 when v − f and

˝�
uı

1

�
evı$fv

; .f ı ��/
�
˛

D hevı$fv
; .f ı �ı/

�i for all v, where ı 2 F ��uıF �C1 and uı 2U.f/ are as in Proposition
3.4. The former follows from (3.16) since for all up 2 U.f/p we have .f ı ��/�.$vup/

D 0. The latter follows from the fact that if up 2 U.f/p then applying Definition 2.2 and
(3.16) we get

.f ı ��/
� ˇ̌�1

u�1
ı

�.up/ D ˝� u�1ı
1

�˛
U
.f ı ��/

�.uıup/ D
˝� up

1

�˛
U
.f ı ��/.uıup/

D
˝�up

1

�˛
U
f .uı�up/D

˝�up
1

�˛
U
f .ıup/D

˝�up
1

�˛
U
.f ı�ı/.up/D .f ı�ı/

�.up/:

Suppose that ˆ 2 Hdc .YK ;DU/ is such that U$fˆ D ˛ıfˆ with ˛ıf 2 O.U/�. By
Lemma 3.3,

ev.ˆ/ D .˛ıf /
�1ev$f.ˆ/ 2 D.Galp1;O.U// (3.19)

is independent of the choice of uniformizers and by Proposition 3.9 it is independent of f

as well.
Our final result in this subsection concerns the growth of the distributions ev.ˆ/ on

Galp1. This will be used in §4 to uniquely characterize by interpolation property the p-
adic L-functions attached to non-critical nearly finite slope Hilbert cusp forms. Using the
notations from §2.2, A.Galp1;O.U// is a union of orthonormalizable Banach O.U/-
modules An.Galp1;O.U//, n 2 Z�0, and D.Galp1;O.U// D lim

 �
Dn.Galp1;O.U//.

The restriction of � 2 D.Galp1;O.U// to An.Galp1;O.U// belongs to the orthonor-
malizable Banach O.U/-module Dn.Galp1;O.U//, and its norm is denoted by k�kn.
The following definition generalizes the notion of growth introduced by Amice-Vélu and
Vishik (see [2, Def. 4.1]).

Definition 3.10. We say that a distribution � 2 D.Galp1;O.U// has growth at most
h 2 Q�0 if there exists C � 0 such that for each n 2 Z�0 we have k�kn � pnhC .

Proposition 3.11. Supposeˆ2Hdc .YK ;DU/ is such thatUpˆD ˛ıpˆwith ˛ıp 2O.U/�.
Then ev.ˆ/ 2D.Galp1;O.U// has growth at most hp , where hp is the p-adic valuation
of ˛ıp .
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Proof. This is proved in [2, Prop. 5.10] when UD ¹�º. Recall that from [50, Lem. 3.4.6]
we know that there exists m 2 Z�0 such that the universal character h�iU is m-locally
O.U/-analytic, and we may further assume that K �

�
U.pm/bOF
0 1

�
. Let O.U/ı � O.U/

be the ring of rigid functions bounded by 1 and denote by Dı
U;m

the O.U/ı-lattice in
the O.U/-Banach space DU;m. After rescaling ˆ we may assume that its image ˆm
under the natural restriction map belongs to Hdc .YK ;D

ı
U;m

/. By (3.18) and (3.19) for
f 2 An.Galp1;O.U//,

h.˛ıp/
n
� ev.ˆ/; f i D hev$np .ˆ/; f i D

X
Œ��2C`C

F
.pn/

hev�
$np
.ˆ/; .f ı ��/

�
i:

In view of (3.16) and the fact that jhT .Zp/iUjp D 1, to prove the proposition it suffices

to bound jhev�
$np
.ˆ/; gijp for each g 2 AE.p

n/

U;n
such that kgkn � 1, for all n � m and

� 2 A�
F;f

. By Lemma 3.7, there exist � 2 .DU/En and �0 2 .Dı
U;m

/En , where En D�
$np 1p
0 1

��1�E.pn/ 0
0 1

��
$np 1p
0 1

�
� K, such that ev�

$np
.ˆ/D

�
$np 1p
0 1

�
�� and ev�

$np
.ˆm/D�

$np 1p
0 1

�
��0. By functoriality of the evaluation maps (see Lemma 3.1), � and �0 have the

same restrictions to .AE.p
n/

U;m
/ˇ̌�$np 1p

0 1

�. Using this, a direct computation shows that � and

�0 also agree over .AE.p
n/

U;n
/ˇ̌�$np 1p

0 1

�. Thus, if g 2 AE.p
n/

U;n
is such that kgkn � 1 then

jhev�
$np
.ˆ/;gijp D

ˇ̌˝�
$np 1p
0 1

�
��;g

˛ˇ̌
p
D jh�;gˇ̌�$np 1p

0 1

�ijp D jh�0;gˇ̌�$np 1p
0 1

�ijp � 1:
3.5. Distributions evaluated at norm maps

To compute higher derivatives of p-adic L-functions at central trivial zeros we need to
construct partially improved p-adic L-functions. These will be obtained by evaluating
the distributions ev�$f

.DU/ on certain partially polynomial functions in AU for certain
well-chosen subaffinoids U of X. The improvement comes from the fact that if f is only
divisible by certain primes above p, then the support of ev�$f

.DU/ need no longer be
contained in .OF ˝ Zp/� (see Lemma 3.7). Part of the construction will also be used to
attach a new kind of p-adic L-function to the partial families from Theorem 2.14.

Given an L-affinoid U �X containing the cohomological weight .k;w/ and a subset
S � Sp , we let U0S D U \X0S (see Definition 2.1). Henceforth we fix an integer r such
that

j� WD r � 1C
w � 2C k�

2
� 0 for all � 2 †SpnS ; (3.20)

and for zSpnS 2 OF;SpnS we let zj
SpnS

D
Q
v2SpnS

Q
�2†v

�.zv/
j� . For the remainder of

this section we will only consider ideals f � OF whose support in contained in S . We let
E.f/ denote the p-adic closure of E.f/ in U.f/S D O�F;S \ .1C fOF;S /. Similarly to
(3.16) one considers the map

A.U.f/S=E.f/;O.U
0
S //! A

E.f/

U0
S

; f 7! f �S;r ;
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where for z D .zS ; zSpnS / 2 OF;S �OF;SpnS ,

f �S;r .z/ D

´
f .zS / � z

j

SpnS
�
Q
v2S

˝�
zv
1

�˛
U0
S

Nr�1
Fv=Qp

.zv/ if zS 2 U.f/S ;

0 if zS … U.f/S :
(3.21)

Dualizing we obtain a map .DU0
S
/E.f/! D.U.f/S=E.f/;O.U

0
S //, denoted � 7! ��S;r .

Note that for all v 2 Sp n S and zv 2 O�v one hasY
�2†v

�.zv/
j� D

˝�
zv
1

�˛
U0
S

Nr�1Fv=Qp
.zv/:

Definition 3.12. We say that r 2 Z is S -critical for the cohomological weight .k;w/ if

0 � r � 1C
w � 2C k�

2
� k� � 2 for all � 2 †SpnS :

When S D ; we say that r is critical.

Remark 3.13. (i) The inequality (3.20) holds for any cohomological weight in X0S .
(ii) If r is S -critical for .k; w/, then it is S -critical as well for any cohomological

weight in XS . Furthermore if US � XS is an L-affinoid containing .k;w/, then for all
f 2 A.U.f/S=E.f/;O.US // one has f �S;r 2 A

E.f/
S;US

.
(iii) Note that r 2 Z is critical for .k;w/ if and only if r � 1=2 is a critical point for

the L-function of an automorphic representation � of cohomological weight .k;w/ in the
sense of Deligne. Moreover, the central point .1 � w/=2 is critical if and only if w is even.
Using (1.4) and (1.5) one checks that the space of linear forms on .L_

k;w.L//E.OF / has a
basis � 7! �.zj / indexed by j D .k C .w � 2/t/=2C .r � 1/t , where r ranges over all
critical integers for .k;w/.

Moreover
#S;v ı .f ı .zS 7! zSn¹vº/

�
S;r D .#S;v ı f /

�
Sn¹vº;r

for f 2 A.U.f/Sn¹vº=E.f/;O.U0S // and v 2 S , where #S;v W O.U0S /! O.U0
Sn¹vº

/ is
the restriction map. Applying Lemma 3.1 yields

#S;v ı ev�$f
.DU0

S
/ D ev�$f

.DU0
Sn¹vº

/ ı #S;v: (3.22)

As in (3.17), for � 2 A�
F;f

, there is an isomorphism ��� W D.U.f/S=E.f/; O.U//
�
�!

D.GalS1Œ��;O.U//.

Lemma 3.14. The following map does not depend on the representative � 2 A�
F;f

of
Œ�� 2 C`CF .f/:

evŒ��;r$f;S
D �r�1cyc .�/Œ�

�
� ı .ev�$f

/�S;r � W Hdc .YK ;DU0
S
/! D.GalS1Œ��;O.U0S //: (3.23)
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Proof. Suppose �0 2 F ��uF �C1 with u 2 U.f/. By Lemma 3.2 we have

h��� ı .ev�$f
/�S;r ; f i D

˝� up
1

�
ev�
0

$f
; .f ı ��/

�
S;r

˛
D

D
ev�
0

$f
; .f ı ��/

�
S;r
ˇ̌�1

u�1p

�E:
Using Definition 2.2 and the fact that ��.up �/ D ��0 we find

.f ı ��/
�
S;r
ˇ̌�1

u�1p

� D ˝� u�1p
1

�˛
U0
S

.f ı ��/
�
S;r .up �/ D �

r�1
cyc .up/.f ı ��0/

�
S;r ; (3.24)

hence h��� ı .ev�$f
/�S;r ;f iD�

r�1
cyc .up/hev�

0

$f
; .f ı ��0/

�
S;riD�

r�1
cyc .up/h�

�
�0 ı .ev�

0

$f
/�S;r ;f i.

The above lemma allows one to introduce the following notation analogous to Defin-
ition 3.8:

evr$f;S
W Hdc .YK ;DU0

S
/! D.GalS1;O.U0S //:

We first state a distribution relation extending Proposition 3.9, whose proof is very
similar and uses the single additional fact that f �S;r

ˇ̌�
$v

1

� D 0 for all v 2 S .

Proposition 3.15. For v 2 S let prfv;f W C`
C

F .fv/! C`CF .f/ be the natural projection.
Then

evŒ��;r$f;S
ı U$v D

X
Œı�2pr�1fv;f.Œ��/

evŒı�;r$fv ;S
and evr$f;S

ı U$v D evr$fv ;S
:

The next result will be used in §4 to compare p-adic L-functions and improved ones.

Lemma 3.16. We have hevr$f;Sp
; �i D hev$f ; �

r�1
cyc �i.

Proof. Note that U0Sp D U. By definition,

f �Sp ;r .z/ D f
�.z/zt.r�1/ for f 2 A.U.f/p=E.f/;O.U//:

Using (3.23) and Definition 3.8 we find that for any Œ�� 2 C`CF .f/ and any f 2

A.Galp1Œ��;O.U//,

hevŒ��;r$f;Sp
; f i D �r�1cyc .�/hev�$f

; .f ı ��/
�
Sp ;r
i D hev�$f

; .f ı ��/
�.�r�1cyc ı ��/i

D hevŒ��$f
; f�r�1cyc i:

Finally, we relate the improved evaluations when S varies.

Proposition 3.17. For any v 2 S with v − f we have

.evŒ��;r
$f;Sn¹vº

ı #S;v � #S;v ı evŒ��;r$f;S
/ ı U$v

D

�
qr�1v

Y
�2†v

�.$v/
.w�2Ck� /=2

�
��
$�1v
ı evŒ�$v �;r

$f;Sn¹vº
ı #S;v;



D. Barrera, M. Dimitrov, A. Jorza 3476

where �$�1v W Gal.Sn¹vº/1Œ�$v�
�$�1v
����! Gal.Sn¹vº/1Œ�� and #S;v W O.U0S /! O.U0

Sn¹vº
/

is the restriction.

Proof. Using

f �Sn¹vº;r
ˇ̌�
$v

1

� D Y
�2†v

�.$v/
j�f �Sn¹vº;r and �cyc.$v/qv D NFv=Qp .$v/

we obtain

�r�1cyc .�/
˝�
$v 0
0 1

�
� ev�$v$f

; .f ı ��/
�
Sn¹vº;r

˛
D �r�1cyc .�/

Y
�2†v

�.$v/
j� hev�$v$f

; .f ı ��/
�
Sn¹vº;ri

D �r�1cyc .�$v/h�
�
�.ev�$v$f

/�Sn¹vº;r ; f i D q
r�1
v

Y
�2†v

�.$v/
j��rC1h��

$�1v
evŒ�$v �;r
$f;Sn¹vº

; f i:

Since j� � r C 1 D w�2Ck�
2

, Proposition 3.4 applied to the case v − f yields

�1�rcyc .�/
D
evŒ��;r
$f;Sn¹vº

ı U$v � q
r�1
v

Y
�2†v

�.$v/
.w�2Ck� /=2��

$�1v
evŒ�$v �;r
$f;Sn¹vº

; f
E

D
˝
ev�$f

ı U$v �
�
$v 0
0 1

�
� ev�$v$f

; .f ı ��/
�
Sn¹vº;r

˛
D

X
Œı�2pr�1fv;f.Œ��/

˝�
uı

1

�
� evı$fv

; .f ı ��/
�
Sn¹vº;r

˛
:

By (3.22) and a computation similar to the proof of Proposition 3.9 we obtain˝�
uı

1

�
� evı$fv

ı #S;v; .f ı ��/
�
Sn¹vº;r

˛
D �1�rcyc .�/ � #S;v.hevŒı�;r$fv ;S

; f i/:

Finally, by Proposition 3.15 we findX
Œı�2pr�1fv;f.Œ��/

#S;v ı evŒı�;r$fv ;S
D #S;v ı evŒ��;r$f;S

ı U$v :

Let ˆ 2 Hdc .YK ;DU0
S
/ be such that for all v 2 S we have U$vˆ D ˛ıvˆ with

˛ıv 2 O.U0S /
�. Letting ˛ıf D

Q
v2S .˛

ı
v/
nv , where nv denotes the valuation of f at v,

the distribution

evrS .ˆ/ D .˛
ı
f /
�1evr$f;S

.ˆ/ 2 D.GalS1;O.U0S // (3.25)

is independent of the choice of uniformizers (see Lemma 3.3) as well of the ideal f (see
Proposition 3.15). Lemma 3.16 and (3.19) then imply that

hevrSp .ˆ/; f i D hev.ˆ/;�r�1cyc f i for all f 2 A.Galp1;O.U0Sp //D A.Galp1;O.U//:
(3.26)

The following important consequence of Proposition 3.17 will be used in §4.3.
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Corollary 3.18. Forˆ 2 Hdc .YK ;DU0
S
/ as above, let ˛v D ˛ıv

Q
�2†v

�.$v/
.2�w�k� /=2.

Then for any continuous character � W Gal.Sn¹vº/1 ! O.U0
Sn¹vº

/� we have

h#S;v.evrS .ˆ//; �i D hevrSn¹vº.#S;v.ˆ//; �i
�
1 �

qr�1v

#S;v.˛v/�.$v/

�
:

4. p-adic L-functions

In this section we use the distribution valued maps from §3 to attach cyclotomic p-adicL-
functions to rigid analytic families of non-critically refined Hilbert cusp forms, which are
uniquely determined by an interpolation property (see Theorem 4.7). We also construct
improved p-adic L-functions, as well as ‘partial’ p-adic L-functions for families of S -
refined cusp forms, which do not appear to have been previously brought into light.

Let � be a cuspidal automorphic representation of G.A/ of central character !� and
cohomological weight .k;w/ (see Definition 1.1). Throughout this section we assume that
�v has nearly finite slope for all v 2 Sp , except in §4.4 where we only assume this at
S ¨ Sp . For z� D .�; ¹�vºv2Sp / a (regular) non-critical p-refinement (see Definitions 1.3
and 2.12) we consider the neat open compact subgroup K D K.z�; u/ � G.Af / from
Definition 1.7 and the .p;u/-refined newforms �z�;˛u

, �z�;ˇu
from Definition 1.11.

4.1. p-adic L-functions for nearly finite slope Hilbert cusp forms

Let L=Qp be a finite extension containing the image by �p of the number field E

from Definition 1.6. By cuspidality and non-criticality of z� , for each character � W
¹˙1º† ! ¹˙1º, the basis �p.b�z�;˛u

/ of Hdcusp.YK ;L
_
k;w.L//

�
mz�
D H�c.YK ;L

_
k;w.L//

�
mz�

(see (1.23)) lifts canonically to a basis ˆ�
z�;˛u

of Hdc .YK ;D.k;w//
�
mz�

having the same
U$v -eigenvalue ˛ıv 2 L

�, v 2 Sp . For f D
Q
v2Sp

vnv we let

˛ıf D
Y
vjp

.˛ıv/
nv ; ˛f D

Y
vjp

˛nvv ; ˛v D �v.$v/D ˛
ı
v

Y
�2†v

�.$v/
.2�w�k� /=2: (4.1)

Consider the distribution ev.ˆ�
z�;˛u

/ 2 D.Galp1; L/ defined in (3.19). In order to
attach a p-adic L-function to z� without missing Euler factors at u we need to also con-
sider the distribution ev.ˆ�

z�;ˇu
/2D.Galp1;L/ using the other Hecke parameter ˇu¤ ˛u

of �u (see Definition 1.5). We let

Lp.z�/ D
X

�W¹˙1º†!¹˙1º

˛uev.ˆ�
z�;˛u

/ � ˇuev.ˆ�
z�;ˇu

/

˛u � ˇu
2 D.Galp1; L/: (4.2)

For any f 2 A.Galp1; L/, we let Lp.z�; f / D Lp.z�/.f /.
By Proposition 3.11 the distribution Lp.z�/ has growth at most

P
v2Sp

evhz�v
(see Definition 1.8), and we will next show that it interpolates critical values of the
archimedean L-function of � and its twists.
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We let r be a critical integer for the weight .k;w/ and j D .r � 1/t C .w�2/tCk
2

� 0

(see Definition 3.12). As observed in Remark 3.13(ii) we have zj 2 Lk;w.L/E.OF / �
A.k;w/.L/

E.OF /. Let ��
z�
2 C� be the period from Definition 1.14. The following key

proposition allows us to relate the values at zj of the distributions constructed in §3 to
certain adelic integrals.

Proposition 4.1. Let f jp1 be an integral ideal, � 2A�
F;f

, and let ev�$f
D ev�$f

.D.k;w//.
Then

˛f�
r�1
cyc .�/

˛ıf
hev�$f

.ˆ�
z�;˛u

/; zj i

D
i .r�1/d

��
z�

X
s12¹˙1º†

s.r�1/t1 �.s1/

Z
XfŒ�s1�

�z�;˛u

�
y$f y1f

1

�
jyjr�1F d�y:

Proof. Since the right hand side in the above formula is in C, we will first prove that
the left hand side, which is a priori a p-adic number, belongs in fact to �p.E/. Denote
by L_

k;w.E/ the G.Q/-construction of a local system attached to L_
k;w.E/. Recall that

L_
k;w.L/ denotes the local system attached to L_

k;w.L/ by the Kp-construction. The fol-
lowing diagram commutes:

Hdc .YK ;L
_
k;w.E//

Tf

��

� � .g;v/ 7!.g;g�1�v/ // Hdc .YK ;L
_
k;w.L//

tw$f ıC
�
$f

��
Hdc .Xf ;L

_
k;w.E//

� �
.y;v/7!

�
y;
�
y�1

1

�
�v
�
//

triv�
�
ı coinvf

��

Hd .Xf ;L
_
k;w.L//

triv�� ı coinvf

��
Hdc .Xf Œ��/˝ L

_
k;w.E/E.f/

h�\�f;Œ��;z
j i

��

� �
id˝
�
��1

1

�
p // Hdc .Xf Œ��/˝ L

_
k;w.L/E.f/

h�\�f;Œ��;z
j i

��
E
� � .��1p /.r�1/t

// L

(4.3)

where the horizontal maps are induced from the morphisms of local systems written above
them, the map Tf is induced from the morphisms of local systems .y;v/ 7!

��
y$f y1f

1

�
; v
�

and, for � 2 F �, triv� is induced from the morphisms of local systems:

Xf Œ�� � L
_
k;w.E/E.f/ ! .L_k;w.E/E.f//jXfŒ��; .y; v/ 7!

�
y;
�
�
1

��1
� v
�
:

By definition of the evaluations in §3 and by the functoriality relation (3.7), the com-
position of the maps in the right column sends �p.b�z�;˛u

/ to hev�$f
.L_
k;w/.b

�
z�;˛u

/; zj i D
˛f

˛ıf
hev�$f

.ˆ�
z�;˛u

/; zj i. The commutativity of the diagram then yields

h.triv�� ı coinvf ıTf/.b
�
z�;˛u

/ \ �f;Œ��; z
j
i D

˛f

˛ıf
�.r�1/tp hev�$f

.ˆ�
z�;˛u

/; zj i 2 E: (4.4)
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Since the left column in (4.3) can be reproduced with L_
k;w.C/ instead of L_

k;w.E/, it
follows that the left hand side of (4.4) can be computed via analytic methods, namely the
comparison between Betti and de Rham cohomology over C. Since �r�1cyc .�/�

.1�r/t
p D

j�jr�1F one has to show

j�jr�1F h.triv
�
� ıcoinvf ı Tf/.‚

�
�.�z�;˛u;f // \ �f;Œ��; z

j
i

D i .r�1/d
X

s12¹˙1º†

s.r�1/t1 �.s1/

Z
XfŒ��

�z�;˛u

��
ys1$f y1f

1

��
jyjr�1F d�y: (4.5)

Explicitly, ‚��.�z�;˛u;f / 2 Hdcusp.YK ;L
_
k;w.C// D HddR;Š.YK ;L

_
k;w.C// is obtained as

follows. For each � 2 A�
F;f

the relative Lie algebra differentialO
�2†

w�� ˝ evali ˝ �� 2 Hd .g1; KC1; L
_
k;w.C/˝ �1/

yields a left-invariant d -form �z�;˛u

��
�
1

�
g1

�
.g1 � evali /.g�11 /

�.^� w
�
� / on GC1=K

C
1

which descends to ��nGC1=K
C
1 and, once translated by

�
�
1

�
, yields a d -form on YK Œ��:

�z�;˛u
.g/.g1 � evali /.g�1/�.^� w�� /:

Then

‚��.�z�;˛u;f /

D i
P
�2†.2�w�k� /=2

X
s12

�
˙1

1

�† �.s1/�z�;˛u
.gs1/.g1s1 � evali /..gs1/�1/�.^� w�� /:

By [19] there exists v 2 F and a commutative diagram

��nG
C
1=K

C
1

�
y
1

�
// YK Œ��

E.f/ n F �C1
�y //

u1 7!
�
u1 �v1

1

� OO
Xf Œ��

C$f

OO

inducing for g D C$f.y/ and h the Lie algebra of GL1 a commutative diagram

.g=k/�
.g�1/� //

��

��

.TgYK Œ��/
�

C�$f

��
h�

.y�1/� // .TyXf Œ��/
�

While g=k denotes the tangent space of GC1=K
C
1 at

�
1 �v1

1

�
and not at the identity,

the map � W h ! g=k is still given by u� D 1 7!
�
1 0
0 0

�
D w� C Nw� since horizontal



D. Barrera, M. Dimitrov, A. Jorza 3480

translations in the upper half-plane do not change dy. Hence

Tf.�z�;˛u
.g/.g1 � evali /.g�1/�.^� w�� //

D �z�;˛u

�
y$f y1f

1

���
y1

1

�
� evali

�
.y�1/�.^� u

�
� /:

Since y D ��uu1, we have y1 D �1u1 and

triv�� ı coinvf.Tf.�z�;˛u
.g/.g1 � evali /.g�1/�.^� w�� ///

D .�z�;˛u

�
y$f y1f

1

���
u1

1

�
� evali

�
.y�1/�.^� u

�
� //:

Now, a top degree invariant differential is a Haar measure, hence .y�1/�.^� u�� / D
d�y. By (1.5) we have

��
u1

1

�
� evali

�
.zj / D u

.r�1/t
1 ij , and since jyjF D j�jF ut1 we

deduce that

j�jr�1F h.triv
�
� ıcoinvf ı Tf/.�z�;˛u

.g/.g1 � evali /.g�1/�.^� w�� // \ �f;Œ��; z
j
i

D ij
Z
XfŒ��

�z�;˛u

��
y$f y1f

1

��
jyjr�1F d�y:

Since j� C 2�w�k�
2
D r � 1 for all � 2†, and since right translating g by elements of�

˙1
1

�† amounts to translating u1 by elements of ¹˙1º†, one obtains (4.5) and hence
the claim.

We now prove the main interpolation relation between p-adic and complex L-func-
tions.

Theorem 4.2. Let � be a finite order character of Galp1 and for v dividing p denote
by cv the conductor of �v�v . Let r 2 Z be a critical integer for .k; w/. Letting
NF=Q.i/ D id , one has

Lp.z�; � � �
r�1
cyc / D

Nr�1
F=Q.id/�.$

�1
d /

�
�1!

r�1
p;1

z�

L.� ˝ �; r � 1=2/
Y
v2Sp

E.z�v; �v; r/; (4.6)

where E.z�v; �v; s/ equals8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

q
scv
v .�v�v/.$

ıv
v /�.�v�v;  v; d�v�v / if cv � 1 and �v!���1v is ramified;�

1 �
.�v!��

�1
v /.$v/

qs�1v

� �.�v�v ; v ;d�v�v /

q
�scv
v .�v�v/.$

�ıv
v /

if cv � 1 and �v!���1v is unramified;�
1 �

.�v!��
�1
v /.$v/

qs�1v

��
1 �

qs�1v

.�v�v/.$v/

�
if �v ˝ �v is unramified;

1 �
qs�1v

.�v�v/.$v/
otherwise:

Proof. We will evaluate Lp.z�; � � �
r�1
cyc / using automorphic symbols of level f DQ

v2Sp
vnv such that nv � max.cv; 1/ and will see that the result does not depend on f ,

as expected.
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Using the notations from (4.1), (3.19), Definition 3.8, (3.18) and (3.16), one gets

hev.ˆ�
z�;˛u

/; � � �r�1cyc i D .˛
ı
f /
�1
hev$f.ˆ

�
z�;˛u

/; � � �r�1cyc i

D .˛ıf /
�1

X
Œ��2C`C

F
.f/

�.�/hev�$f
.ˆ�
z�;˛u

/; .�r�1cyc ı ��/
�
i

D ˛�1f

X
Œ��2C`C

F
.f/

�.�/
˛f�

r�1
cyc .�/

˛ıf
hev�$f

.ˆ�
z�;˛u

/; zj i:

By Proposition 4.1 the latter sum vanishes unless � D �1!r�1p;1, in which case it equals

I D
2d i .r�1/d

��
z�

Z
Xf

�.y/�z�;˛u

�
y$f y1f

1

�
jyjr�1F d�y:

Since Xf D F
�
CnA

�
F;f

F �C1 =U.f/ and the Haar measure on A�F gives U.1/ volume 1, we
have

I D
2d i .r�1/d

��
z�

Y
v2Sp

qnvv

�
1 �

1

qv

�
�

Z
F �
C
nA�
F;f

F
�C
1

�.y/�z�;˛u

�
y$f y1f

1

�
jyjr�1F d�y:

Since
�
y$f y1f

1

�
2 G.Af /G

C
1, using the Fourier expansion formula (1.21) we further

computeZ
F �
C
nA�
F;f

F
�C
1

�.y/�z�;˛u

�
y$f y1f

1

�
jyjr�1F d�y

D

Z
A�
F;f

F
�C
1

�.y/Wz�;˛u

�
y$f y1f

1

�
jyjr�1F d�y D

Y
v

Zv:

A standard calculation (see, e.g., [18, (16)]) shows that

Z� D

Z
R�
C

W�
�
y
1

�
yr�2 dy D

Z 1
0

e�2�yyj� dy D
j� Š

.2�/j�C1

D
1
2
L.�� ; r � 1=2/ if � j1:

A straightforward generalization of [41, Prop. 3.5] from �v trivial to �v unramified yields

Zv D

Z
F �v

�v.y/W
new
v

�
y
1

�
jyjr�1v d�y

D .q1�rv �v.$v//
�ıvL.�v ˝ �v; r � 1=2/ if v − pu1;

Z˛u D

Z
F �u

�u.y/W
˛

u

�
y
1

�
jyjr�1u d�yu D L.�u ˝ �u; r � 1=2/

�
1 � �u.$u/ˇu

qru

�
;

hence ˛uZ˛u�ˇuZˇu

˛u�ˇu
D L.�u ˝ �u; r � 1=2/. Finally, for v 2 Sp the integral Zv is

computed in Proposition 1.12 and E.z�v; �v; s/ D Q.�v�v; s/=L.�v ˝ �v; s/. Putting
everything together yields the desired formula.
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Remark 4.3. The interpolation formula (4.6) is independent of the choice of uniformizers
$v at v 2 Sp , since ��

z�

Q
v2Sp

�v.$
�ıv
v / is independent of that choice by Proposi-

tion 1.15.

We end this subsection by classifying the trivial zeros of Lp.z�/, i.e., by determining
when Lp.z�; � � �

r�1
cyc / in (4.6) vanishes regardless of the value of L.� ˝ �; r � 1=2/.

Proposition 4.4. Given a finite order character �v of F �v and r 2Z, one hasE.z�v;�v; r/
D 0 if and only if either

(i) �v ˝ ��1v is the Steinberg representation, r D 2�w
2

, and �v D ��1v � unr.q�w=2
v /, or

(ii) �v is a principal series representation, r D 3�w
2
.resp. r D 1�w

2
/ and �v D ��1v �

unr.q.1�w/=2
v / .resp. �v D �v!�1� � unr.q�.1Cw/=2

v /.

In the first case w is necessarily even and the trivial zero occurs at a central critical point,
while in the second case w is odd and the trivial zero occurs at a nearly central critical
point.

Proof. If �v is a twist (necessarily by �v) of the unitary Steinberg representation, then
E.z�v; �v; r/ is non-zero, unless cv D 0 in which case E.z�v; �v; r/D 1�

qr�1v

.�v�v/.$v/
. By

local-global compatibility, �v.$v/ is a Weil number of weight�w, i.e., an algebraic num-
ber whose absolute values are all equal to q�w=2

v . Hence E.z�v; �v; r/ vanishes precisely
as stated.

If �v is a principal series representation, then

E.z�v; �v; r/ D .1 � .�v�v/
�1.$v/q

r�1
v /.1 � .�v!��

�1
v /.$v/q

1�r
v /;

where the first (resp. second) factor is dropped if �v�v (resp. �v!���1v ) is ramified.
The Ramanujan conjecture for the cuspidal automorphic representation � , proven in [10,
Thm. 1], implies that �v.$v/ is a Weil number of weight 1 � w. Since !� has purity
weight w, the first (resp. second) factor can only vanish for r D 3�w

2
(resp. r D 1�w

2
)

precisely as stated.

4.2. Multi-variable p-adic L-functions

Since the construction of O.U/-valued distributions over Galp1 presented in §3.4 is func-
torial in the L-affinoid U, following the same steps as in §4.1 would allow us to attach
a p-adic L-function to a rigid analytic family containing z� . In addition to the cyclo-
tomic variable, this function will have several weight variables. In conjunction with its
improvements which will be constructed in the next subsection, this multi-variable p-
adic L-function will allow us to prove the Trivial Zero Conjecture for � at the central
point in the second part of this paper.

Let z� be a regular non-critical p-refinement of a cuspidal automorphic represent-
ation � of G.A/ of cohomological weight .k; w/. Letting h D .hz�v /v2Sp (see Defini-
tion 1.8), by Theorem 2.14 there exists an L-affinoid neighborhood U of .k;w/ in X and
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a connected component V of Sp.T�h
U
/ containing z� such that the weight map � W V

�
�!U

is an isomorphism. By shrinking U one can assume that w� ı !p D !w
p and

˛u.�
�1.�//2!�w

p .$u/w
�1
� .h$ui/ ¤ q

i
u for i 2 ¹0; 1; 2º and � 2 U; (4.7)

since the left hand side is an analytic function on � 2 U and (4.7) holds at .k;w/.

Definition 4.5. Given a character � W ¹˙1º† ! ¹˙1º we let ˆ�
U;˛u

2 Hdc .YK ;DU/
�h

be a basis of the free rank 1 O.U/-module Hdc .YK ;DU/
�;�h ˝

T�h
U

O.V/ (see The-

orem 2.14(ii)) such that .k;w/ ıˆ�
U;˛u

D ˆ�
z�;˛u

. For v 2 Sp we let ˛ıv 2 O.U/� denote
the U$v -eigenvalue on ˆ�

U;˛u
.

When � 2 U.L/ is cohomological, by Theorem 2.14(iii) there exists a p-refined
nearly finite slope cuspidal automorphic representation z�� of weight � whose system
of Hecke eigenvalues corresponds to ��1.�/ 2 V . Using the specialization map at such a
cohomological weight �, we obtain a class � ıˆ�

U;˛u
2 Hdc .YK ;D�/

�h which generates
the same line as the class ˆ�

z��;˛u.�/
from §4.1.

Definition 4.6. Let C �
�
2 L� be such that � ıˆ�

U;˛u
D C �

�
�ˆ�
z��;˛u.�/

.

Note that whereas C �
.k;w/ D 1 by definition, C �

�
2 L� is a p-adic period analogous to

those considered in [21], and cannot in general be rescaled to be 1, since the individual
periods ��

z��
for � cohomological are well-defined up to Q

�
. Since ˛u; ˇu 2 O.U/�,

one can analogously consider ˆ�
U;ˇu

and rescale it so that it yields the same p-adic peri-
ods C �

�
.

The multi-variable p-adic L-function is defined as the distribution (see (3.19))

Lp D
X

�W¹˙1º†!¹˙1º

˛uev.ˆ�
U;˛u

/ � ˇuev.ˆ�
U;ˇu

/

˛u � ˇu
2 D.Galp1;O.U//: (4.8)

For any finite order character � W Galp1 ! L�, the natural projection Galp1� Galcyc

yields

Lp;� D
˛uhev.ˆ�1

U;˛u
/; � �i � ˇuhev.ˆ�1

U;ˇu
/; � �i

˛u � ˇu
2 D.Galcyc;O.U//: (4.9)

Theorem 4.7. Let z� and U be as above. Fix a finite order character � W Galp1 ! L�.

(i) For any � 2 U.L/ cohomological, Lp;�.�/ D C
�1
�

Lp.z��; ��/ in D.Galcyc; L/.

(ii) Lp;� has order of growth at most
P
v2Sp

evhz�v and is uniquely determined by its
values

Lp;�.�; �
0�r�1cyc / D Lp.�; ��

0�r�1cyc /;

at finite order characters �0 of Galcyc and r 2 Z critical for � cohomological
.see (4.6)/.
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Proof. (i) follows from the definition and the functoriality of ev.
(ii) For � 2 U cohomological such that z�� has very non-critical slope (see (1.15)),

the distribution Lp;�.�/ on Galcyc has order of growth strictly less than the number
min�2†.k�;� � 1/ of critical integers for �. A well-known result of Vishik [51, Thm. 2.3,
Lem. 2.10], proven independently by Amice-Vélu, implies that Lp;�.�/ is uniquely
determined by its values at �0�r�1cyc , where �0 is a finite order character of Galcyc and
r 2 Z is critical for �. The claim is deduced by noticing that such � form a very Zariski
dense subset of U.

Remark 4.8. When Leopoldt’s conjecture holds for F at p, the kernel of the natural
projection Galp1�Galcyc is a finite abelian group and Lp is merely a collection of Lp;�
with � running over the characters of that group.

Remark 4.9. If z� is non-critical, but has critical slope, then interpolation formula (4.6)
does not suffice to determine Lp.z�/ uniquely, and we are indebted to J. Bellaïche for
having explained to one of us how the smoothness of the eigenvariety can be used to
palliate this indeterminacy. When � is Iwahori spherical at all places above p, a similar
approach has also been successfully used by Bergdall and Hansen [8] who construct Lp
for regular z� which are either non-critical, or such that H�c.YK ;Dk;w/mz� is concentrated
in degree d and the adjoint Bloch–Kato Selmer group H1

f
.F; ad.V�// vanishes.

It will be essential in §7.2 to control Lp;� under simultaneous variation in w� and
the cyclotomic variable. This, however, can only be achieved after a renormalization of
the p-adic periods, whose variations in U are a priori well-defined up to an invertible
analytic function. This is equivalent to rescaling the basis ˆ�

U;˛u
by an invertible element

of O.U/.

Proposition 4.10. For any finite order character � W Galp1 ! L�, the p-adic periods
C
�1
�

of Definition 4.6 can be renormalized so that for z 2 OCp and � 2 U such that
�.z/ D .k�;w�h�i2z/ 2 U, one has

Lp;�.�.z// D Lp;�.�; h�i
z
p �/: (4.10)

Proof. By analyticity it suffices to check (4.10) for z 2 Z and for � 2 U cohomological
such that z�� has very non-critical slope, since such pairs .�; z/ are very Zariski dense
in U � OCp . By Theorem 2.14 the weight map � W V ! U is etale at � and so, by the

assumption on z, if ��1.�/D z�� then ��1.�.z//DD�� ˝ j � jz . Noting that an integer r is
critical for � if and only if r � z is critical for � ˝ j � jz , Propositions 1.15 and 4.2 imply

Lp.D�� ˝ j � jz ; h�i�zp � �/ D Lp.z��; � �/ in D.Galcyc; L/:

As a result, C �1
�.z/
D C

�1
�

Lp;�.�.z/;h�i
z
p �/

Lp;�.�/
for � 2 U cohomological and for z 2 Z suffi-

ciently small (p-adically). For w�Dh�i2zw, the function � 7!Lp;�.�; h�i
z
p �/=Lp;�..k�;w//

belongs to O.U/�, for U sufficiently small, and interpolates C �1
�

=C
�1
.k�;w/

for � cohomo-
logical. We may therefore renormalize the periods C �1

�
to guarantee (4.10).
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Remark 4.11. As in Proposition 4.10, for any finite order characters � of Galp1 one has

Lp. z� ˝ �; �/ D Lp.z�; � �/ in D.Galcyc; L/: (4.11)

If there exists a finite order character � of Galp1 such that �jO�v D ��1v jO�v for all
v 2 Sp , then � ˝ � has finite slope. Such a character always exists when F DQ, allowing
one to reduce to the finite slope case. For general F , such a character may have auxiliary
ramification forcing the twisted finite slope form to have a tame level different from the
original one.

4.3. Improved p-adic L-functions

When Lp.z�/ has a trivial zero at a critical integer r the interpolation formula for
Lp.z�; ��

r
cyc/ ‘misses’ the special L-value L.� ˝ �; r � 1=2/. An idea due to Green-

berg and Stevens [21] is to then construct a so-called improved p-adic L-function having
only weight variables and interpolating, with non-vanishing extra factors, the critical L-
value. In order to retrieve the ‘missed’L-value even in the case where several local factors
E.z�v;�v; r/ simultaneously vanish we will construct for any S � Sp a rigid analytic func-
tion LS .�; �; r/ over an .j†S j C 1/-dimensional affinoid U0S DX0S \U, where U is as
in §4.2.

Consider the subset S � Sp containing all places v 2 Sp such that �v is ramified (note
that this is always the case if � has finite slope). For each character � W ¹˙1º†! ¹˙1º let
ˆ�

U;˛u
be as in §4.2 and denote by ˛ıv its U$v -eigenvalue. Denote by ˆ�

U0
S
;˛u

the image

of ˆ�
U;˛u

in Hdc .YK ;DU0
S
/�h. By Definition 2.1 and (4.1), for all v 2 Sp n S we have

˛v.�/ D ˛
ı
v.�/

Y
�2†v

�.$v/
.2�w�k� /=2 2 O.U0S /

�:

For any v 2 Sp n S , the rigid analytic function 1 � qr�1v

�v.$v/˛v.�/
2 O.U0S / specializes

at � cohomological to the interpolation factor 1 � qr�1v

.�v��;v/.$v/
from Theorem 4.2. Our

aim is to show that the meromorphic quotient Lp.�; ��
r
cyc/

Q
SpnS

�
1�

qr�1v

�v.$v/˛v.�/

�
is in

fact analytic and to compute its value at .k;w/. Achieving this requires to take a step back
and define the improved p-adic L-functions using the tools developed in §3.5.

Definition 4.12. For � W GalS1 ! L� a finite order character, we define the improved
p-adic L-function as

LS .�; �; r/ D
˛uhevrS .ˆ

�1!
r�1
p;1

U0
S
;˛u

/; �i � ˇuhevrS .ˆ
�1!

r�1
p;1

U0
S
;ˇu

/; �i

˛u � ˇu
2 O.U0S /:

It follows from (3.26) that LSp .�; �; r/ D Lp.�; ��
r�1
cyc /.

Theorem 4.13. (i) For v 2 S , we have the following equality in O.U0
Sn¹vº

/:

#S;v.LS .�; �; r// D LSn¹vº.�; �; r/

�
1 �

qr�1v

˛v.�/�.$v/

�
:
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(ii) For any cohomological weight � 2 U0S .L/ and any integer r critical for �, we have

LS .�; �; r/ D
Nr�1
F=Q.id/�.$

�1
d /

��
z��

� C �� � L.�� ˝ �; r � 1=2/

�

Y
v2S

E.z�v; �v; r/
Y

v2SpnS
�v unram.

�
1 �

�v!��
�1
v .$v/

qr�1v

�
;

where � D �1!r�1p;1 and C �
�

is the p-adic period introduced in Definition 4.6.

Proof. (i) It suffices to apply Corollary 3.18 to ˆ�
U0
S
;˛u

and to ˆ�
U0
S
;ˇu

.

(ii) Let f D
Q
v2S v

nv be such that nv � max.cv; 1/. Using the definition of evrS we
obtain

hevrS .ˆ
�
U0
S
;˛u
/; �i.�/ D .˛ıf .�//

�1
X

Œ��2C`C
F
.f/

�.�/�r�1cyc .�/hev�$f
.ˆ�

U0
S
;˛u
/; 1�S;ri.�/:

Letting j� D
�
r � 1 C

w��2Ck�;�
2

�
�2†

, we remark that � ı 1�S;r and zj� agree on the
support of ev�$f

.ˆ�
z��;˛u

/. Together with the definition of C �
�

this implies that

hevrS .ˆ
�
U0
S
;˛u
/; �i.�/ D C ��.˛

ı
f .�//

�1
X

Œ��2C`C
F
.f/

�.�/�r�1cyc .�/hev�$f
.ˆ�
z��;˛u.�/

/; zj�i:

The rest of the proof follows from Proposition 4.1 as in the proof of Theorem 4.2.

4.4. Partial p-adic L-functions

We will now explain how the construction of the previous subsection can be adapted to
the partial families constructed in Theorem 2.14. We are indebted to the referees for their
insight and encouragement to present this construction.

Henceforth we fix S ¨ Sp and we suppose we are given a regular non-critical
S -refinement z�S D .�; ¹�vºv2S / of � (see Definitions 1.3 and 2.12). We consider
the neat open compact subgroup K D K.z�S ; u/ � G.Af / from Definition 1.7. By
non-criticality of z�S , for each character � W ¹˙1º† ! ¹˙1º, the basis �p.b�z�S ;˛u

/ of
Hdc .YK ;L

_
k;w.L//

�
mz�S

(see Definition 1.14) lifts canonically to a basis of ˆ�
z�S ;˛u

of

Hdc .YK ;DS;.k;w//
�
mz�S

. Letting hS D .hz�v /v2S , by Theorem 2.14 there exists an L-

affinoid neighborhood US of .k;w/ in XS and a connected component VS of Sp.T�hS
S;US

/

containing z�S such that the weight map induces an isomorphism � W VS
�
�! US . We can

choose US sufficiently small so that it satisfies the technical properties stated in §4.2.

Definition 4.14. Fix a basis ˆ�
US ;˛u

of the free O.US /-module Hdc .YK ;DS;US
/�;�hS

˝
T
�hS
S;US

O.VS / of rank 1 such that .k; w/ ı ˆ�
US ;˛u

D ˆ�
z�S ;˛u

. For v 2 S we let

˛ıv 2 O.US /
� denote the U$v -eigenvalue on ˆ�

US ;˛u
.
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Given an integer r which is S -critical for .k; w/ (see Definition 3.12) and an integ-
ral ideal f supported at primes in S , Remark 3.13(ii) yields a map .DS;US

/E.f/ !

D.U.f/S=E.f/;O.US //. The construction performed in §3.5 applies mutatis mutandis
and yields a well-defined map

evr$f;S
W Hdc .YK ;DS;US

/! D.GalS1;O.US //:

For � W GalS1 ! L� a finite order character, we define the partial p-adic L-function

LS .�; �; r/ D
˛uhevrS .ˆ

�1!
r�1
p;1

US ;˛u
/; �i � ˇuhevrS .ˆ

�1!
r�1
p;1

US ;ˇu
/; �i

˛u � ˇu
2 O.US /:

For any cohomological weight � 2 US .L/, Theorem 2.14(iii) yields an S -refined
cuspidal automorphic representation z��;S of weight � whose system of Hecke eigenval-
ues corresponds to ��1.�/ 2 VS . Given any character � W ¹˙1º† ! ¹˙1º, the special-
ization � ı ˆ�

US ;˛u
of ˆ�

US ;˛u
at � generates the same line in Hdc .YK ;DS;�/

�;�hS as
ˆ�
z��;S ;˛u.�/

, hence there exists

C ��;S 2 L
� such that � ıˆ�US ;˛u

D C ��;S �ˆ
�
z��;S ;˛u.�/

:

Theorem 4.15. Given a finite order character � of GalS1, and given a cohomological
weight � 2 US .L/ for which r is critical, we have

LS .�; �; r/ D
Nr�1
F=Q.id/�.$

�1
d /

�
�1!

r�1
p;1

z��;S

C
�1!

r�1
p;1

�;S
L.�� ˝ �; r � 1=2/

Y
v2S

E.z�v; �v; r/:

Proof. The proof is based on Proposition 4.1 in the same way as the proof of Theorem 4.2.

One may also define partial p-adic L-functions which are improved at places lying in
a subset of S . We leave the details of the construction to the interested reader.

Part II
The Trivial Zero Conjecture at the central critical point

Throughout this part z� D .�; ¹�vºv2Sp / will be a regular non-critical p-refinement of a
cuspidal automorphic representation � ofG.A/ of cohomological weight .k;w/ and tame
conductor n satisfying the following assumption:

� has central character !� D j � jwF with w even, and

�v is Iwahori spherical for all v 2 Sp:
(4.12)

It follows that �v is unramified for all v 2 Sp and we let ˛v D �v.$v/. The set Sp is
then partitioned into Stp consisting of v such that �v is an unramified twist (by �v) of the
unitary Steinberg representation and its complement Sp n Stp consisting of v such that �v
is unramified.



D. Barrera, M. Dimitrov, A. Jorza 3488

5. Galois representations and arithmetic L -invariants

The Trivial Zero Conjecture stated in the introduction posits a relationship between the
special values of p-adic L-functions and arithmetic L -invariants. In this section we turn
to the Galois representation side of p-adic families and explain the connection between
two types of arithmetic L -invariants associated to Hilbert modular forms. Moreover we
will express them in terms of derivatives of Hecke eigenvalues, which will allow relating
them to p-adic L-functions in the last section.

5.1. Galois representations for Hilbert modular forms

By Theorem 2.14 there exists an L-affinoid neighborhood U of .k;w/ in X and a family
� WV

�
�!U containing z� such that for any � 2U cohomological, ��1.�/ 2V corresponds

to p-refined cuspidal automorphic representation z�� of weight �. The cohomological
points being Zariski dense in U, there exists a unique 2-dimensional pseudo-character
GF ! O.U/ interpolating the traces of the corresponding p-adic Galois representations
��� W GF ! AutL.V��/ attached to ��. Since V� is absolutely irreducible, using a result
of Nyssen [35] and Rouquier [44] one shows that, after possibly further shrinking U,
there exists a continuous Galois representation

�U W GF ! GL2.O.U// (5.1)

whose specialization at every cohomological weight � 2U is isomorphic to V�� . Further
shrinking U one can assume that the map � 7! .k�;w�/ defined in (2.2) is injective on U,
that w� ı !p D !w

p , and that (4.7) holds. When U satisfies all these assumptions and in
addition the tame conductor of �� equals n for every cohomological weight � 2 U (see
Lemma 5.1), we denote

X.z�/ D U: (5.2)

Lemma 5.1. The tame conductor of �� equals n for all cohomological weights � suffi-
ciently close to .k;w/.

Proof. By construction, for any cohomological weight � 2 U the tame level n� of ��
divides nu. We will use the Galois representation �U to show that, after shrinking U, one
has n�D n. The local-global compatibility at a finite place v … Sp , established by Carayol
[14] and Taylor [49], asserts that the Frobenius semisimplification of the Weil–Deligne
representation .rv;�; Nv;�/ attached to ���jGFv corresponds, via the local Langlands cor-

respondence, to ��;v ˝ j � j
�1=2
v . On the other hand, by [6, Lem. 7.8.14], one can attach to

�UjGFv a Weil–Deligne representation .rv;U; Nv;U/. By [6, Lem. 7.8.17], after possibly
shrinking U, the restriction of rv;U to the inertia subgroup at v has finite image whose
specialization at any cohomological weight � 2 U is isomorphic to the restriction of rv;�
to the same inertia subgroup. Therefore, to conclude that n� D n it suffices to show that
Nv;� D Nv;U. From [6, Prop. 7.8.19] it follows that Nv;� lies in the p-adic closure of the
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conjugacy class ofNv;U, which together with the fact that n� divides nu implies equality
except possibly when v D u. Finally, ��;u is unramified for all cohomological � 2 U,
since being an unramified twist of the Steinberg representation is excluded by (4.7).

To compute derivatives of analytic functions on X.z�/ in the following sections,
we will consider a subset of X.z�/ which can be parametrized with the variables
..k�;� /�2†;w�/ corresponding via (2.2) to characters of the formY

v2Sp

O�v � Z�p ! C�p ;

z D ..zv/v2Sp ; z0/ 7! .k;w/.z/ � hz0i
w��w
p

Y
v2Sp

Y
�2†v

�.hzviv/
k�;��k� ;

(5.3)

where h�iv W O�v ! 1C .$v/ is the natural projection map. This allows us to parametrize
X.z�/ by a neighborhood, denoted Xan.z�/, of .k;w/ in the space

Q
�2†.k� C 2pOCp /�

.wCOCp / of analytic weights. If we impose the weights to vary only in parallel direction
per place above p, i.e., if k�;� � k� D xv 2 OCp for all � 2 †v , then (5.3) becomesY
v2Sp

O�v �Z�p !C�p ; zD ..zv/v2Sp ; z0/ 7! .k;w/.z/ � hz0i
w��w
p

Y
v2Sp

hNFv=Qp .zv/i
xv
p :

(5.4)

5.2. Fontaine–Mazur L -invariants

Consider the 2-dimensional L-vector space V D V�
�
2�w
2

�
endowed with a continuous

action of GF . The local-global compatibility is also known at places v 2 Sp from the work
of Saito [45], Blasius–Rogawski [11] and Skinner [46]. Letting Vv D VjGFv , Dst.Vv/ D

.Vv ˝Qp Bst/
GFv is a free L˝ Fv;0-module of rank 2 (Fv;0 is the maximal unramified

subfield of Fv) carrying a semilinear Frobenius 'v and a nilpotent linear map Nv both
inherited from Fontaine’s ring Bst and such thatNv ı 'v D p'v ıNv . To be more precise,
the linear map 'fvv , where fv is the inertial index at v, has eigenvalues q.w�2/=2v ˛v and
q
�w=2
v ˛�1v , and the monodromy matrix vanishes if and only if �v is unramified. Moreover

the L˝Qp Fv-module Dst.Vv/˝Fv;0 Fv is endowed with a decreasing de Rham filtra-
tion Fil�.Dst.Vv/˝Fv;0 Fv/ whose jumps, called the labeled Hodge–Tate weights, occur
precisely at the integers ..k� � 2/=2;�k�=2/�2†v (we recall that we are using the con-
vention in which the cyclotomic character has Hodge–Tate weight �1). In particular
Fil0.Dst.Vv/˝Fv;0 Fv/ is free of rank 1 over L˝Qp Fv .

When �v ˝ j � j�w=2 is the Steinberg representation, there is a unique (up to a scalar)
basis .e1; e2/ of Dst.Vv/ such that 'fvv .e1/ D q

.w�2/=2
v ˛v � e1, 'fvv .e2/ D q

�w=2
v ˛�1v � e2

and Nv.e2/ D e1. When the unique refinement of Vv is non-critical in the sense of [30,
Def. 5.29], the Fontaine–Mazur L -invariant is the unique LFM.Vv/ 2 L˝Qp Fv such
that

Fil0.Dst.Vv/˝Fv;0 Fv/ D .L˝Qp Fv/ � .e1 CLFM.Vv/ � e2/:
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We next relate LFM.Vv/ to derivatives of Hecke eigenvalues. We will consider the
U ı$v -eigenvalues ˛ıv 2 O.X.z�// (see Definition 4.5) as functions ˛ıv..k�;� /�2†;w�/ by
restriction to Xan.z�/, and we will denote by dlogu ˛

ı
v the logarithmic derivative at .k;w/

in the direction u D ..u� /�2†; u0/, i.e., dlogu ˛
ı
v D

1
˛ıv.k;w/

d
dx
˛ıv..k;w/C x � u/

ˇ̌
xD0

.

Proposition 5.2. If u� D 1 D �u0 for all � 2 †v , then e�1v � TrFv=Qp .LFM.Vv// D

�2 dlogu ˛
ı
v , where ev is the ramification index at v.

Proof. The line defined by the direction u lies in the space X0
Spn¹vº

, and we denote by
U0 the portion of this line inside the ball Xan.z�/. We will write �U0 for the restriction to
U0 of the analytic Galois representation on Xan.z�/ obtained from �X.z�/ (see (5.1)), and
note that on this line ˛v D ˛ıv

Q
�2†v

�.$v/
.2�k��w/=2 is an analytic function. By [28],

Dst.�U0/
'
fv
v D˛v is an O.U0/ ˝Qp Fv;0-module of rank 1 and therefore we may apply

[52, Thm. 1.1]. Since det �U0 D �
w��1
cyc D �

w�1�xu0
cyc we have the following equality of

differentials at x D 0:

d˛v..k;w/C xu/

˛v.k;w/
D

1

2ev
TrFv=Qp .LFM.Vv/d.xu0//;

which immediately implies the formula, as u0 D �1.

The fact that dlogu ˛
ı
v does not depend on u as long as u� D 1 D �u0 for � 2 †v

will be used in the final section.

Definition 5.3. We define L .z�/ D
Q
v2E e

�1
v TrFv=Qp .LFM.Vv//, where E � Stp con-

sists of those places v for which �v ˝ j � j�w=2 is the Steinberg representation.

5.3. Greenberg–Benois L -invariants

The connection between the analytic Galois representation and the p-adic family runs
deeper than the above description, and in order to state this connection precisely, we
introduce the category of .'; �/-modules over Robba rings (we refer to [7, §1] for more
details). For v 2 Sp the Robba ring RFv is an Fv-algebra endowed with a continuous
map 'v and a continuous action of �v D Gal.Fv.�p1/=Fv/. Writing U D X.z�/, a
.'v; �v/-module over RFv ;U DRFv

b̋Qp O.U/ is a coherent, locally free sheaf D over
RFv ;U of finite rank endowed with a 'v-semilinear map 'D which gives an isomorphism
'�DD Š D, and a semilinear action of �v commuting with 'D . Furthermore, there exists
a functor D

�
rig associating to a continuous O.U/-linear representation of GFv a .'v; �v/-

module over RFv ;U. Since for � 2 U cohomological ���jGFv has labeled Hodge–Tate
weights ..k�;� � w�/=2; .2 � w� � k�;� /=2/�2†v , we deduce from [30, Thm. 1.8] (tak-
ing into account that [30, Def. 1.7(f)] has a typo, the exponents should be �i .z/� ) that
there exists a triangulation

D
�
rig.�UjGFv / �

�
 v;1 �

 v;2

�
; (5.5)



p-adic L-functions of Hilbert cusp forms and the trivial zero conjecture 3491

where  v;1;  v;2 W F �v ! O.U/� are continuous characters such that  v;1.$v/ D ˛
ı
v is

the analytically varying renormalized Hecke eigenvalue,  v;2.$v/D �
w��1
cyc .$v/.˛

ı
v/
�1,

and for zv 2 O�v ,

 v;1.zv/.�/ D
Y
�2†v

�.zv/
.w�Ck�;��2/=2;  v;2.zv/.�/ D

Y
�2†v

�.zv/
.w��k�;� /=2:

Suppose the Galois representation V D V�
�
2�w
2

�
satisfies H1

f
.F;V /D 0, as predicted

by the Bloch–Kato conjecture when L
�
�; 1�w

2

�
¤ 0. For v 2 Sp , the .'v;Nv/-submodule

Dv D Dst.�v.
2�w
2
// � Dst.Vv/ is regular in the sense of Perrin-Riou [38, §3.1.2] (see

also [37]). In this context, the technical conditions of Greenberg [20] and Benois [7]
mentioned in the introduction are all satisfied and there is a well-defined arithmetic L -
invariant LGB.V; ¹Dvº/ (this also uses [23, 43] extending the construction to an arbit-
rary F ). We will not recall its intricate construction, but will instead show that it can be
computed in this instance by a formula similar to that of Proposition 5.2.

Proposition 5.4. Assume that H1
f
.F;V /D 0. Then LGB.V; ¹Dvº/DL .z�/ �

Q
v2E f

�1
v .

Proof. Consider the triangulation of �U.
2�w
2
/ induced from (5.5) restricted to the

1-dimensional affinoid X.z�/ \X0
;

(see Definition 2.1). Proposition 4.4 implies that V
has a trivial zero contribution exactly from places v 2 E. Therefore we can apply [43,
Thm. 4.1, Prop. 4.13] to compute the L -invariant in terms of dlog in the parallel direc-
tion u� D 1 D �u0 for all � 2 † (the theorem in loc. cit. assumes parallel weights, but
its proof applies verbatim to general weights deforming in a parallel direction). Thus

LGB.V; ¹Dvº/ D
Y
v2E

f �1v dlogu.. 1;v 
�1
2;v/.$v//

� dlogu.. 1;v 
�1
2;v/.zv//= logp.NFv=Qp .zv//

D

Y
v2E

�2f �1v dlog˛ıv

for any units zv 2 O�v , v 2 E. The desired formula then follows from the equality
dlog. 1;v �12;v.zv// D

P
�2†v

u� logp �.zv/ D logp NFv=Qp .zv/.

Finally, we remark that D D
L
vjp Ind

GQp
GFv

Dv is a regular submodule of

.IndGQ
GF V /jGQp

. In the Main Theorem we are proving the Trivial Zero Conjecture for

the pair .IndGQ
GF V;D/.

6. Functional equations

In this section we establish functional equations for the p-adic L-functions constructed
in §4 based on their growth, interpolation properties, and the Godement–Jacquet func-
tional equation of the corresponding complex L-functions. These results will be used in
the proof of the Trivial Zero Conjecture at the central point in §7.
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6.1. Functional equations for archimedean L-functions

The Jacquet–Langlands global L-function and "-factor are products over all places of F ,

L.�; s/ D
Y
v

L.�v; s/ and ".�; s/ D
Y
v

".�v;  v; dxv; s/;

where  v and dxv are as in §0 and will henceforth be dropped for the notation. Under the
assumption (4.12), � ˝ j � j�w=2

F is unitary and self-dual, and its root number is given by

"� D "
�
�; 1�w

2

�
2 ¹˙1º: (6.1)

Let c� D n
Q
v2Stp v be the conductor of � . The functional equation states (see [26,

Thm. 11.1]) that

L.�; s/ D ".�; s/L.�_; 1 � s/; where ".�; s/ D "� � .NF=Q.d2c�//
1�w
2 �s : (6.2)

Proposition 6.1. Let � be a character of Galp1 of conductor c� D
Q
v2Sp

vcv . Then

c�˝� D n�c2� and "�˝� D "�NF=Q.c�/�.$n�/�.�/
2

Y
v2Stp ; cv>0

"
�
�v;

1�w
2

�
;

where �.�/ is the Gauss sum defined in (0.2) and n� D n �
Q
v2Stp ; cvD0 v.

Proof. The conductor formula follows from (4.12). The formula involving the "-factors
is checked by decomposing both sides as products of local terms and using [26, §1.3].

If either �v or �v is unramified then using j!� jwF D q
�w
v one has

"
�
�v ˝ �v;

1�w
2

�
D "

�
�v;

1�w
2

�
qcvv �v.$v/

c�v �.�v;  v; d�v /
2:

If v 2 Stp and �v is ramified, then using "
�
�v;

1�w
2

�
D ��v.$v/

�1q
�w=2
v one has

"
�
�v ˝ �v;

1�w
2

�
D "

�
�v;

1�w
2

�
qcvv �.�v;  v; d�v /

2"
�
�v;

1�w
2

�
:

6.2. Interpolation formulas

Under the assumption (4.12), Theorem 4.13 and Proposition 4.4 take the following more
familiar form, involving the global Gauss sum �.�/ (see (0.2)).

Corollary 6.2. For any S � Sp , r 2 Z critical for .k;w/ and � of conductor
Q
v2S v

cv ,

LS .z�;�; r/D LS ..k;w/; �; r/D
Nr�1
F=Q.id/

�
�1!

r�1
p;1

z�

L.� ˝ �; r � 1=2/�.�/
Y
v2Sp

ES .z�v; �v; r/;

whereY
v2Sp

ES .z�v; �v; r/ D
Y
cv>0

q
rcv
v

˛
cv
v

Y
cvD0
v…Stp

�
1 �

�v.$v/

˛vq
rCw�1
v

� Y
cvD0
v2S

�
1 �

qr�1v

˛v�v.$v/

�
:

Moreover ES .z�v; �v; r/ vanishes if and only if r D 2�w
2

is the central critical point,
v 2 S \ Stp and �v.$v/ D ˛

�1
v q

�w=2
v D �"

�
�v;

1�w
2

�
2 ¹˙1º.
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In §7 we will prove that the order of vanishing of Lp.z�; s/ at s D 2�w
2

is at least as
large as the number of places v where ES

�
z�v; �v;

2�w
2

�
D 0. We remark that the interpol-

ation formula from Corollary 6.2 only gives information about the vanishing of the p-adic
L-function, and leaves completely unanswered the question of higher orders of vanishing.

The next result will be used in §6.3 to prove the functional equation for p-adic L-
functions.

Corollary 6.3. Suppose z� satisfies (4.12) and let z"� D "� �
Q
v2Stp "

�
�v;

1�w
2

�
2 ¹˙1º.

Then

Lp.z�; �h�i
r�1
p / D z"� � .�!

w=2
p /.�$n/ � hni

r�1Cw=2
p Lp.z�; �

�1!�w
p h�i

1�w�r
p / (6.3)

for any finite order characters � W Galp1 ! L� and any integer r critical for .k;w/.

Proof. Since �_ D � ˝ j � j�w
F , the archimedean functional equation (6.2) for � ˝ �,

Proposition 6.1 and Corollary 6.2 for S D Sp yield

�
�1!

r�1
p;1

z�
Lp.z�; ��

r�1
cyc /

Nr�1
F=Q.id/�.�/

Q
v2Sp

E.z�v; �v; r/
D "�

Y
v2Stp ; cv>0

"
�
�v;

1�w
2

�
NF=Q.c�/�.�/2

� NF=Q.d2n�c2�/
1�w=2�r�.$n�/

�
�1!

r�1Cw
p;1

z�
Lp.z�; �

�1�1�w�r
cyc /

N1�w�r
F=Q .id/�.�/

Q
v2Sp

E.z�v; ��1v ; 2 � w � r/
:

Using the global Gauss sum identity NF=Q.c�/�.�/�.�/ D �f .�1/ D �1.�1/ we get

Lp.z�; ��
r�1
cyc /

D "�
Y

v2Stp ;cv>0

"
�
�v;

1�w
2

�
�
�.�$n�/Lp.z�; �

�1�1�w�r
cyc /

NF=Q.�n�c2�/
rCw=2�1

Y
v2Sp

E.z�v; �v; r/

E.z�v; ��1v ; 2 � w � r/
:

If cv D 0 and �v is unramified then ˛vˇv D q1�w
v and so E.z�v; �v; r/ D E.z�v; ��1v ; 2�

w� r/. If cv > 0 then E.z�v ;�v ;r/

E.z�v ;�
�1
v ;2�w�r/

D q
.2rCw�2/cv
v . Finally, if cv D 0 and v 2 Stp then

E.z�v; �v; r/

E.z�v; ��1v ; 2 � w � r/
D �˛vq

r�1Cw
v �v.$v/

�1
D "

�
�v;

1�w
2

�
qr�1Cw=2
v �v.$v/

�1:

Putting everything together and using n� D n �
Q
v2Stp ; cvD0 v we obtain

Lp.z�; ��
r�1
cyc / D z"��.�$n/NF=Q.�$n/

1�r�w=2Lp.z�; �
�1�1�w�r

cyc /:

Replacing � by �!1�rp , and noting that �cyc!
�1
p D h�ip is an even character, yields (6.3).

When z� has very non-critical slope, Corollary 6.3 provides enough relations to estab-
lish a functional equation for Lp.z�; � �/ 2 D.Galcyc;O.U// given its growth. If z� has
critical slope, but is still non-critical, then the functional equation will be proven in the
next subsection using the unique p-adic family containing z� from Theorem 2.14.
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6.3. Functional equations for p-adic L-functions

We recall that the multi-variable p-adicL-function Lp 2D.Galp1;O.X.z�/// from (4.8)
interpolates the p-adic L-functions Lp.z��; �/ 2 D.Galp1;O.X.z�/// for all cohomolo-
gical weights � 2 X.z�/.

The cyclotomic (resp. multi-variable) p-adic L-function attached to z� is defined as

Lp.z�; s/ D Lp.z�; !
�w=2
p h�i

s�1
p /; resp. Lp.�; s/ D Lp.�; !

�w=2
p h�i

s�1
p /; (6.4)

for s 2 OCp ; � 2 X.z�/. By Proposition 4.10 for z 2 OCp and .k�;w�/ 2 Xan.z�/ such
that .k�;w�h�i2z/ 2 Xan.z�/ one has

Lp..k�;w� C 2z/; s/ D Lp..k�;w�/; s C z/: (6.5)

Theorem 6.4. The sign z"�� of z�� is independent of the cohomological weight � 2X.z�/.
For any � 2X.z�/, for any multiplicative continuous character f 2 A.Galcyc; L/ and for
any finite order character � W Galp1 ! L�, one has

Lp.�; � � f / D z"� � .�!
w=2
p f /.�$n/hni

w�=2
p Lp.�; �

�w�
cyc ..� � f / ı .�/

�1//: (6.6)

In particular,Lp.z��; s/D z"� � hni
s�1Cw�=2
p Lp.z��; 2�w� � s/ as analytic functions in s.

Proof. We remark that the slope is constant in the family and equals
P
v2Sp

evhz�v
(see Definition 1.8). Consider a cohomological weight �0 2 X.z�/ having very non-
critical slope (see (1.15)). Since the elements Lp.�

0; ��/ and Lp.�
0; �
�w�0
cyc ��1�/ of

D.Galcyc;O.U// both have growth at most
P
v2Sp

evhz�v , by [51, Thm. 2.3, Lem. 2.10]
it suffices to check (6.6) for all f D �0h�ir�1p , where r is a critical integer for .k;w/ and �0

is a finite order character of Galcyc. This is precisely formula (6.3) applied to ��0, except
that there is z"��0 instead of z"� .

We now turn to the problem of showing that the sign is generically constant
in the family. Choose �0 2 X.z�/ as above for which 2 � w�0=2 is a crit-
ical integer. The absolute convergence of L.��0 ˝ �0; s/ for Re.s/ > 1 � w�0=2
implies that L.��0 ˝ �!�1p ; .3 � w�0/=2/ ¤ 0. Moreover Proposition 4.4 implies that

E.z��0;v; �v!
�w=2
p ; 2� w�0=2/¤ 0 for any v 2 Sp , and therefore Lp.�

0; �0�
1�w�0=2
cyc /¤ 0

by Corollary 6.2. Letting f D !�w=2
p h�is�1p , the quotient

".�; s/ D
hni

1�s�w�=2
p Lp.�; �!

�w=2
p h�is�1p /

�.�$n/Lp.�; ��1!
�w=2
p h�i

1�w��s
p /

;

is a well-defined, non-identically-zero meromorphic function in the variables .�; s/ 2
X.z�/�OCp . Indeed, we have shown that its numerator does not vanish at .�0;2�w�0=2/,
and ".�0;2�w�0=2/Dz"��0 by the functional equation. Similarly ".�;s/Dz"�� 2 ¹˙1º for
all cohomological weights � 2 X.z�/ having very non-critical slope and such that ".�; s/
is well-defined, and the Zariski density of such points implies that ".�; s/ is constant with
value z" 2 ¹˙1º, independent of �.
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To finish the proof of (6.6) it suffices to check that z" D z"�� for any cohomolo-
gical � 2 X.z�/. By a theorem of Rohrlich [42] applied at the central critical point,
there exists a finite order character �0 of Galp1 such that L

�
�� ˝ �0; 1�w�

2

�
¤ 0

and E.z��;v; �0v!
�w=2
p ; 1 � w�=2/ ¤ 0 for all v 2 Sp . Then Corollary 6.2 implies that

Lp.�; �
0�
�w�=2
cyc / ¤ 0, and it then follows from Corollary 6.3 that z"�� D z".

7. The Trivial Zero Conjecture

By Corollary 6.2, the set E � Sp of places at which the local interpolation factor
of Lp.z�; s/ vanishes at the central point 2�w

2
consists precisely of v 2 Stp such that

"
�
�v;

1�w
2

�
D �1.

Theorem 7.1 (Trivial Zero Conjecture at the central critical point). The p-adic L-func-
tion Lp.z�; s/ has order of vanishing at least e D jEj at 2�w

2
and

L
.e/
p

�
z�; 2�w

2

�
eŠ

D L .z�/
L
�
�; 1�w

2

�
Nw=2
F=Q.id/�

!
w=2
p;1

z�

� 2jStpnE j
Y

v2SpnStp

.1 � ˛�1v q�w=2
v /2:

Moreover, if the Greenberg–Benois arithmetic L -invariant is defined, the Trivial Zero
Conjecture of the introduction holds for the Galois representation IndGQ

GF V�
�
2�w
2

�
with

the choice of regular submodule as in §5.3.

The proof of Theorem 7.1 will occupy the remainder of this section.

7.1. Local behavior in partial families

Crucial for the computation of Taylor coefficients of our p-adic L-functions is the fol-
lowing technical lemma.

Lemma 7.2. Let S D Sp n ¹vº for some v 2 Stp . After possibly shrinking X.z�/, for any
cohomological � 2 XS \X.z�/ the local representation ��;v is an unramified twist of
the Steinberg representation .see Definition 2.1 and (5.2)/.

Proof. Let us first present an argument using p-adic Hodge theory and the existence of
the analytic Galois representation �U from (5.1). Let Z � X.z�/ \XS be the Zariski
closure of the subset of cohomological points � such that ��;v is unramified, i.e., ���;v is
crystalline. Since the labeled Hodge–Tate weights of ���;v are constant for all cohomo-
logical weights � 2 XS , a theorem of Berger and Colmez [9] (see also [15, Prop. 3.17])
implies that .k;w/ … Z, hence the claim.

We now give a proof based on the theory of partially finite slope families developed in
§2.6, which we believe is of independent interest. Let K D K.z�;u/ (which, by assump-
tion (4.12), is the same as K.z�S ; u/), h D .hz�w /w2Sp and hS D .hz�w /w2S . Writing
US D XS \X.z�/, the natural restriction map DUS

! DS;US
yields a zTS -equivariant

map Hdc .YK ;DUS
/�;�h ! Hdc .YK ;DS;US

/�;�hS such that the action of U$v on the left



D. Barrera, M. Dimitrov, A. Jorza 3496

agrees with that of U ı$v on the right. Under this map, the localization Hdc .YK ;DUS
/
�;�h
z�

maps to Hdc .YK ;DS;US
/
�;�hS
z�S

further localized at the ideal generated by U ı$v � ˛
ı
v and

Uı � �v.ı/ for ı 2 O�v , which does not vanish. Therefore, Theorem 2.14(ii) applied to
both Sp and S implies that, after possibly shrinking X.z�/, there exist components V

of T�h
US

and VS of T�hS
S;US

such that the weight maps � W V
�
�!US and �S W VS

�
�!US are

isomorphisms and there exists an O.US /-linear natural map between free rank 1 O.US /-
modules

H�c.YK ;DUS
/�;�h ˝

T�h
US

O.V/
�
�! H�c.YK ;DS;US

/�;�hS ˝
T
�hS
S;US

O.VS /: (7.1)

After fixing bases, the above isomorphism is necessarily given by multiplication by some
g 2 O.US /. Specializing at .k;w/, the classicality Theorem 2.7 implies that g.k;w/¤ 0,
since multiplication by g.k;w/ takes the class corresponding to z�K

f
to the class corres-

ponding to z�K
S;f

. We then shrink X.z�/ so as to ensure that g is nowhere vanishing on US .
By the proof of Theorem 2.14(iii), specializing (7.1) at � 2 US .L/ cohomological

yields

H�c.YK ;L
_
� .L//

�;�h
˝

T�h
��1.�/

L
�
�! H�c.YK ;L

_
� .L//

�;�hS ˝
T
�hS

S;��1
S
.�/

L;

which is an isomorphism since multiplication by g.�/ is a non-zero map betweenL-lines.
We conclude that z�� and z��;S have the same Hecke eigenvalues away from a bad set of
primes, and therefore �� ' ��;S by Strong Multiplicity One for GL2.

It therefore suffices to show that ��;S;v is Steinberg for all �2US . However, Theorem
2.14(iii) and its proof imply that z��;S is a non-critical S -refinement, hence

1 D dim H�c.YK ;DS;�/
�
mz��;S

D dim .�K�;S;f /mz��;S
:

Decomposing as tensor product we deduce that dim.�Iv
�;S;v

/D 1, as we are not localizing
using Hecke operators at v … S (see Definition 1.6). Hence ��;v ' ��;S;v is an unramified
twist of the Steinberg representations, as unramified representations have 2-dimensional
Iv-invariants.

7.2. Taylor coefficients

In this section we use the interplay between properties of partially improved p-adic L-
functions and the variation of the root number in partial finite slope families to establish
the vanishing of many Taylor coefficients of the p-adic L-function of the family.

Definition 7.3. Let u 2 4OCp and x D .xv/v2E 2 .2pOCp /
E . For any subset S � E we

denote xS D .xv/v2S and define �Sx;u D .k�;w�/ 2 Xan.z�/ by

w� D w � u and k�;� D

8̂̂<̂
:̂
k� for � 2 †SpnE ;

k� C u for � 2 †EnS ;

k� C xv for � 2 †S :
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Writing Lp.x; u/ D hni
u=4
p Lp

�
�Ex;u;

2�w
2

�
, Theorem 6.4 implies that

Lp.x;�u/ D z" � Lp.x; u/ with z" D .�1/e"� : (7.2)

In particular we may write Lp.x; u/ D
P
i�0Ai .x/u

i , where Ai .x/ is p-adic analytic in
.xv/v2E and the sum runs over i even (resp. odd) when z" D 1 (resp. z" D �1). By (6.5)
we see that

Lp.z�; s/ D hni
.2sCw�2/=4
p Lp..0/v2E ; 2 � w � 2s/:

By definition, �Sx;u 2 Xan.z�/ \X0
St.SpnE/

and we can define

LS .xS ; u/ D hni
u=4
p LSt.SpnE/.�

S
x;u;1;

2�w
2
/; (7.3)

where LSt.SpnE/ is the improved p-adic L-function from §4.3.
By definition we have Lp.x; u/ D LE .x; u/ and by Theorem 4.13 for all S � E,

Lp..xS ; .u/v2EnS /; u/ D LS .xS ; u/
Y

v2EnS

�
1 � ˛ıv.�

S
x;u/
�1

Y
�2†v

�.$v/
.k��2/=2

�
:

(7.4)

We now turn to the Taylor expansions of the functions Ai .x/. For a multi-index n D
.nv/v2E of non-negative integers we denote xn D

Q
v2E x

nv
v . For each i write the power

series expansion
Ai .x/ D

X
n2ZE

�0

ai .n/x
n:

We will prove that a large number of such coefficients vanish, a fact which is not implied
by the Trivial Zero Conjecture. More precisely, all coefficients of total degree < e and
most of the coefficients in degree e vanish. For S � E we will write nS D .nv/v2S and
n D .nS ; nEnS /.

For convenience we denote jnj D
P
v2E nv and knk D j¹v 2 E j nv ¤ 0ºj, so that

knk � jnj.
Our first technical result concerns the vanishing of certain linear combinations of the

Taylor coefficients ai .n/. Recall that the function Lp.x; u/ is even in u if z" D 1 and odd
in u if z" D �1.

Lemma 7.4. Let S � E be such that .�1/jEnS j D �z". For nS 2 ZS�0 and ` � e � jS j we
have X

nEnS

a`�jnEnS j.nS ; nEnS / D 0:

Proof. For xS 2 ZS>0 p-adically close to 0, � D �SxS ;0 2 Xan.z�/ \ X0
St.SpnE/

is a
cohomological weight such that k�;� D k� for � 2†SpnS . By Lemma 7.2 and the analyti-
city of the eigenvalue ˛ıv.�/ we conclude that ��;v ˝ j � j�w=2 is the Steinberg representa-
tion for all v 2 E n S , in particular "

�
��;v;

1�w
2

�
D �1. From this and from Theorem 6.4

we deduce that
"
�
��;

1�w
2

�
D .�1/jEnS j � z" D �1;
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which implies that L.��; 1�w
2
/ D 0. Corollary 6.2 then implies that LS .xS ; 0/ D 0.

Moreover, the fact that ".��;v; 1�w
2
/ D �1 for v 2 E n S implies that ˛ıv.�/ DQ

�2†v
�.$v/

.k��2/=2 for v 2 E n S . By Zariski density these equalities are also true
for all xS . Thus each factor in (7.4) vanishes at u D 0 and so ujEnS jC1 divides the ana-
lytic function Lp..xS ; .u/v2EnS /; u/. Expanding, we deduce that for all n 2 ZE�0,

ujEnS jC1 divides
X
nS

x
nS
S

X
i

X
nEnS

ai .n/u
jnEnS jCi :

Collecting terms of the form x
nS
S u` in the above divisibility yields the desired equality.

The following proposition proves that the Taylor expansion of Lp.x; u/ contains only
terms of degree � e.

Proposition 7.5. (i) If knk < e � i , then ai .n/ D 0.

(ii) For any given i < e, we have
P
jnjDe�i ai .n/ D 0.

Proof. If .�1/jEnS j D .�1/iC1 ¤ �z" then Ai .x/ D 0 by (7.2) and both claims are clear.
(i) We will prove this fact by induction on .knk C i; i/ ordered lexicographically. The

base case i D knk D 0 follows from Lemma 7.4 applied to nS D .0/v2S , ` D 0 and to
any S � E satisfying its hypothesis. Suppose now that aj .m/ D 0 for all j and m such
that either kmkC j < knkC i or kmkC j D knkC i and j < i . Since knk< e � i there
exists S � E such that jS j D e � i � 1, nv D 0 for all v 2 E n S , and knk D knSk. Then
.�1/jEnS j D .�1/iC1 D �z" and Lemma 7.4 applied to ` D i < jE n S j D i C 1 yieldsX

mEnS

ai�jmEnS j.nS ; mEnS / D 0:

Consider a term aj .nS ; mEnS / in the above sum and write m D .nS ; mEnS /. Then
kmk C j D knSk C kmEnSk C j � knk C jmEnS j C j D knk C i . The inductive hypo-
thesis then implies that aj .m/ D 0 whenever the previous inequality is strict, or when
j < i . The sole surviving term in the sum is then ai .nS ; .0/v2EnS / D ai .n/ D 0, as
desired.

(ii) Let S �E be any subset with cardinality e � i � 1� 0 and let nS D .1/v2S . Since
.�1/jEnS j D �z", Lemma 7.4 applied to ` D i C 1 D e � jS j yieldsX

nEnS

aiC1�jnEnS j.nS ; nEnS / D 0: (7.5)

Letting n D .nS ; nEnS / and noting that jnj D jS j C jnEnS j, we deduce from (i) that
aiC1�jnEnS j.n/D ae�jnj.n/ vanishes unless knk D jnj. Summing (7.5) over all such sub-
sets S � E yields

0 D
X

jS jDe�i�1

X
jnEnS jDknEnSk

ae�jnj.nS ; nEnS / D

iC1X
jD0

�
e � j

e � i � 1

� X
jnjDknkDe�j

aj .n/:

(7.6)
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Since
P
jnjDe�i ai .n/D

P
knkDjnjDe�i ai .n/ by (i), it suffices to prove the vanishing of the

latter, which is deduced from (7.6) by induction on i , using the fact that either A0.x/ D 0
or A1.x/ D 0.

Remark 7.6. While Proposition 7.5 implies that Lp.x; u/ only contains monomials of
total degree � e, our methods do not imply that these monomials are multiples of ue . For
example, when e D 4 and "� D 1, one can only show that

Lp.x1; x2; x3; x4; u/

D au2.x1 � x2/.x3 � x4/C bu
2.x1 � x3/.x2 � x4/C cu

4
C .degree � 5 terms/:

Similarly, for "� D 1 and e D 2 we have Lp.x1; x2; u/ 2 .x21x
2
2 ; u

2/, while for e D 3,

Lp.x1; x2; x3; u/ 2 .ux
2
1.x2 � x3/; ux

2
2.x1 � x3/; ux

2
3.x1 � x2/; ux1x2x3; u

3/:

7.3. Proof of the Trivial Zero Conjecture

In this section we prove Theorem 7.1.

Lemma 7.7. Keeping the hypotheses and notations of Theorem 7.1, the analytic function
Lp..u/v2E ; u/ vanishes at u D 0 to order at least e and

.�2/e

eŠ
�
d e

due
Lp..u/v2E ; u/

ˇ̌̌̌
uD0

D L .z�/ �
L
�
�; 1�w

2

�
Nw=2
F=Q.id/�

!
w=2
p;1

z�

� 2jStpnE j
Y

v2SpnStp

�
1 �

q
�w=2
v

˛v

�2
:

Proof. By (7.4) we see that

Lp..u/v2E ; u/ D L;.u/
Y
v2E

�
1 � ˛ıv.�

;
.u/;u/

�1
Y
�2†v

�.$v/
.k��2/=2

�
:

Since each interpolation factor vanishes at u D 0 it follows that the order of vanishing of
Lp..u/v2E ; u/ at u D 0 is at least e. Differentiating e times at u D 0 we deduce from
(7.3) that

d e

due
Lp..u/v2E ; u/

ˇ̌̌̌
uD0

D eŠLSpnE
�
z�;1; 2�w

2

� Y
v2E

dlog˛ıv:

Moreover by Corollary 6.2 one has

ESpnE
�
z�v;1;

2�w
2

�
D

´
.1 � ˛�1v q

�w=2
v /2 if v 2 Sp n Stp;

1C "
�
�v;

1�w
2

�
if v 2 Stp :

The desired formula then follows from Corollary 6.2 and Proposition 5.2 noting that
˛ıv.�

;
.0/;0

/ D
Q
�2†v

�.$v/
.k��2/=2 for v 2 E and "

�
�v;

1�w
2

�
D 1 for v 2 Stp nE.
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Proof of Theorem 7.1. Recall that Lp.z�; s/ D hni
.2sCw�2/=4
p Lp..0/v2E ; 2 � w � 2s/,

hence

L.m/p .z�; s/jsD2�w=2 D

mX
kD0

�
m

k

��
1
2

logphni
�m�k

.�2/k
dk

duk
Lp..0/v2E ; u/

ˇ̌̌̌
uD0

: (7.7)

Differentiating Lp..0/v2E ; u/ we see that dk

duk
Lp..0/v2E ; u/

ˇ̌
uD0
D kŠAk..0/v2E /. By

Proposition 7.5 these derivatives vanish for k < e, which implies that the order of van-
ishing of Lp.z�; s/ at s D 2�w

2
is at least e. Differentiating the power series expansion of

Lp..u/v2E ; u/ we see that

d e

due
Lp..u/v2E ; u/

ˇ̌̌̌
uD0

D eŠ
X
i

X
jnjDe�i

ai .n/:

By Proposition 7.5 the interior sum above vanishes when i < e, hence

d e

due
Lp..u/v2E ; u/

ˇ̌̌̌
uD0

D eŠae..0/v2E / D eŠAe..0/v2E / D
d e

due
Lp..0/v2E ; u/

ˇ̌̌̌
uD0

:

Then, (7.7) implies that

L.e/p .z�; s/jsD.2�w/=2 D .�2/
e d

e

due
Lp..0/v2E ; u/

ˇ̌̌̌
uD0

D .�2/e
d e

due
Lp..u/v2E ; u/

ˇ̌̌̌
uD0

;

and Theorem 7.1 then follows from Lemma 7.7.
Finally, it remains to explain why the Trivial Zero Conjecture of the introduction holds

for IndQ
F V�

�
2�w
2

�
. Let V D V�

�
2�w
2

�
and Dv � Dst.Vv/ regular submodules as in §5.3.

ThenD D
L
v2Sp

IndQp
Fv
Dv �Dst.IndQ

F V jGQp
/ is a regular submodule. By Proposition

5.4 and [43, Cor.3.9], we have

LGB
�
IndQ

F V�
�
2�w
2

�
;D
�
D LGB.z�/ D L .z�/

Y
v2E

f �1v :

The conjecture now follows from the main formula of this theorem and [25, p. 1398],
which explains that the analytic L -invariants of IndQ

F V and V also differ by
Q
v2E f

�1
v .
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