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Abstract. Consider the maximal operator

C f .x/ D sup
�2R

ˇ̌̌ X
y2Znn¹0º

f .x � y/e.�jyj2d /K.y/
ˇ̌̌

.x 2 Zn/;

where d is a positive integer,K a Calderón–Zygmund kernel and n � 1. This is a discrete analogue
of a real-variable operator studied by Stein and Wainger. The nonlinearity of the phase introduces a
variety of new difficulties that are not present in the real-variable setting. We prove `2.Zn/-bounds
for C , answering a question posed by Lillian Pierce.
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1. Introduction

Let d and n be positive integers andK a homogeneous Calderón–Zygmund kernel on Rn,
taking the form

K.x/ D p:v:
�.x/

jxjn
;

where � is a smooth function on Rn n ¹0º that is homogeneous of degree zero. We also
assume that

´
Sn�1 �.x/ d�.x/ D 0, where � denotes the surface measure on the sphere

Sn�1 � Rn. Consider the following operator acting on functions f W Zn ! C:

C f .x/ D sup
�2R

ˇ̌̌ X
y2Znn¹0º

f .x � y/e.�jyj2d /K.y/
ˇ̌̌

.x 2 Zn/; (1.1)
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where jyj D .y21 C � � � C y
2
n/
1=2 and e.x/ D e2�ix . This is a discrete analogue of a max-

imal operator studied by Stein and Wainger [11]. We also refer to C as a discrete Carleson
operator. This is motivated by the formal resemblance to Carleson’s operator given by the
presence of a supremum over the modulation parameters �. However, we stress that the
(substantial) difficulties encountered in the analysis of the present operator are of a fun-
damentally different nature than those encountered in the analysis of Carleson’s operator.
The nonlinearity of the phase causes a number of new challenges arising from a curious
fusion of number-theoretic and analytic phenomena which are not present in the real-
variable case. We refer to the introduction of [3] for further discussions motivating the
study of this operator and to [8], [7], [6], [9] for background and recent progress on some
other related discrete analogues in harmonic analysis. The following is our main result.

Theorem 1.1. There is a constant C 2 .0;1/ such that

kC f k`2.Zn/ � Ckf k`2.Zn/: (1.2)

The constant C only depends on d , n and K.

The case n D d D 1 was the subject of a question posed by Lillian Pierce during a
2015 workshop at the American Institute of Mathematics. We build on key partial progress
previously obtained in [3], where a restricted supremum was considered.

The specific choice of the phase in (1.1) and the assumptions made on the kernel K
are imposed primarily in favor of simplicity. Various extensions for other phase func-
tions could be topics for further investigation. Another interesting problem is to prove `p

bounds for p 6D 2, which is the topic of a forthcoming sequel to this paper, [4].

Structure of the paper. In §2 we introduce some basic facts and notations used throughout
the proof. The most substantial of these are certain known exponential sum estimates
from [10].

In §3 we give the proof of Theorem 1.1. The basic strategy follows that of [3], split-
ting the multiplier into a number-theoretic approximate (‘major arcs’) and an error term
(‘minor arcs’). This approach goes back to Bourgain [1] and can be viewed as an instance
of the Hardy–Littlewood circle method. The proof involves four distinct components,
which (with a slight abuse of terminology) we refer to as ‘Minor arcs I/II’ and ‘Major
arcs I/II’.

In §4 (‘Minor arcs I’) we perform a preliminary T T � argument to reduce the set of
modulation parameters �.

In §5 (‘Minor arcs II’) we estimate the error terms from a number-theoretic approx-
imation of the multipliers. This is a standard argument using the fundamental theorem
of calculus (which only becomes possible after the crucial reduction from §4). This is
already featured in [3].

In §6 (‘Major arcs I’) we handle the number-theoretic component of the main contri-
bution to the multiplier by exploiting exponential sum estimates. A somewhat unanticip-
ated dichotomy appears here between the cases d D 1 and d � 2.

In §7 (‘Major arcs II’) we handle the full supremum by combining the number-
theoretic component with a delicate multi-frequency analysis similar to [3]. A new aspect
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is that we make crucial use of a numerical inequality (see (2.3)) that also appeared in
recent works of Mirek and Trojan and Mirek, Stein and Trojan [9], [8], [7].

This allows us to avoid the use of versions of Bourgain’s logarithmic multi-frequency
lemma [1] and variation-norm estimates from [2], which could be used to give an altern-
ative argument (as suggested by a remark in [3]). Avoiding the use of Bourgain’s lemma
is desirable in view of extensions beyond `2.

2. Preliminaries

We write A . B to denote existence of a constant C such that A � C � B , where the
admissible dependencies of the constant C will be specified, or clear from context.
Throughout the text we allow constants to depend on the ambient dimension n, the
degree d and the kernel K. Similarly, A � B signifies that both A . B and B . A.
The notation A D B C O.X/ stands for jA � Bj . X . Moreover, we write A � B to
express that 1

2
B � A � 2B .

2.1. Fourier transforms on Zn, Tn, Rn and transference

For Fourier transforms of functions f W Zn ! C, g W Tn ! C we use the notationsbf .�/ D FZnf .�/ D
X
x2Zn

e.�� � x/f .x/;

F �1Œg�.x/ D F �1Zn Œg�.x/ D

ˆ
Tn
e.� � x/bg.�/ d�:

Here Tn D .R=Z/n. A function g WRn!C that satisfies g.xC z/D g.x/ for all z 2Zn

will be called periodic and be silently identified with the corresponding function on Tn.
For a function h W Rn ! C we write

bh.�/ D FRnh.�/ D

ˆ
Rn
e.�� � x/h.x/ dx;

F �1Œh�.x/ D F �1Rn Œh�.x/ D
bh.�x/:

In particular, Fourier transforms on Zn or Rn will be denoted by the same symbols unless
the distinction is not clear from context, or is emphasized for other reasons.

For a bounded periodic function m W Rn ! C we denote by m.D/ the associated
Fourier multiplier acting on Zn, defined as

m.D/f .x/ D F �1Zn Œm � FZnf �.x/ .x 2 Zn/:

We slightly abuse notation and also write m.D/ for the Fourier multiplier acting on Rn,
defined as

m.D/h.x/ D F �1Rn Œm � FRnf �.x/ .x 2 Rn/:
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Let .m�/�2ƒ be a family of bounded functions supported on a fundamental domain
of Tn (such as a translate of the unit cube Œ0; 1/n) and denote their periodizations by

m�.�/ D
X
z2Zn

m�.� C z/ .� 2 Rn/:

We will make use of the following transference principle.

Lemma 2.1. Suppose that for some constant A > 0,


sup
�2ƒ

jm�.D/f j




L2.Rn/

� Akf kL2.Rn/:

Then 


sup
�2ƒ

jm�.D/f j




`2.Zn/

.n Akf k`2.Zn/;

where the implicit constant only depends on n.

The proof of this fact is standard (see [1, Lemma 4.4]; there in the case n D 1, but the
argument also works for n � 2).

2.2. Some notation and T T �

For a function K W Zn � Zn ! C we denote by TK the operator defined formally by

TKf .x/ D
X
y2Zn

K.x; y/f .y/: (2.1)

Then the operator TKT
�
K

is formally given by TKT
�
K
D TK] , where the kernel K] is

K].x; y/ D
X
z2Zn

K.x; z/K.y; z/:

2.3. Kernel decomposition

Let  be a smooth function on Rn supported in ¹1=2 � jxj � 2º with 0 �  � 1 andP
j2Z  j .x/ D 1 for every x 6D 0, where  j .x/ D  .2�jx/. Decompose

K.x/ D
X
j�1

Kj .x/;

withK1.x/ D
P
j�1 j .x/K.x/ andKj .x/ D  j .x/K.x/ for j � 2. Then for all j � 1

and all x 2 Rn n ¹0º,

jKj .x/j . 2�jn; jrKj .x/j . 2�j.nC1/; suppKj � ¹x W jxj � 2jC1º: (2.2)
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2.4. A numerical inequality

We record a Rademacher–Menshov-type numerical inequality that was also crucially used
in [8, Lemma 2.3]: for complex numbers .aj /jD0;:::;2s we have

max
0�j�2s

jaj j � jaj0 j C
p
2

sX
lD0

� X
0��<2s�l

ja.�C1/2l � a�2l j
2
�1=2

; (2.3)

for every integer j0 with 0 � j0 � 2s . This follows from an appropriate decomposition
into dyadic intervals [5, 9].

2.5. Exponential sum estimates

Given integers x1; : : : ; xm at least one of which is non-zero we often use the notation
.x1; : : : ; xm/ for the greatest common divisor of x1; : : : ; xm. It will be clear from context
whether .x1; : : : ; xm/ refers to the greatest common divisor, or the vector of the integers
x1; : : : ; xm. For a positive integer q we use the notation

Œq� D Z \ Œ0; q/:

The letter q always denotes a positive integer throughout the text. By a reduced rational
we mean a fraction a=q with a 2 Z and .a; q/ D 1. For a positive integer D � 2, x 2 Rn

and real coefficients � D .�˛/1�j˛j�D we define the polynomial

P.�I x/ D
X

1�j˛j�D

�˛x
˛;

where ˛ 2 Nn
0 denotes a multiindex. A key ingredient will be the following exponential

sum estimate, due to Stein and Wainger [10, Proposition 3].

Proposition 2.2. Let R � 1, ' a smooth function on Rn such that

j'.x/j � 1 and jr'.x/j � .1C jxj/�1

for all x 2 Rn, and ! a convex set contained in the ball of radius 100R centered at the
origin. Then for every " > 0 there exists ı > 0 only depending on "; n; D such that the
following holds: for every � with the property that for some ˛0 with 1 � j˛0j � D there
exists a reduced rational a=q 2 Q such that

j�˛0 � a=qj � 1=q
2 and R" � q � Rj˛0j�";

we have ˇ̌̌ X
x2Zn\!

e.P.�I x//'.x/
ˇ̌̌
� CRn�ı ;

where the constant C only depends on ", n, D.
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2.6. Approximation of the multipliers

For j � 1, � 2 R and � 2 Rn we define the multipliers

mj;�.�/ D
X
y2Zn

e.�jyj2d C � � y/Kj .y/: (2.4)

This defines a periodic function both in � and �. Following Bourgain [1], the starting
point for our arguments is an appropriate approximation for the value of mj;�.�/ when �
and � are close to rationals with small denominator. To formulate the result, we define the
exponential sums

S

�
a

q
;

b
q

�
D

1

qn

X
r2Œq�n

e

�
a

q
jr j2d C

b
q
� r

�
(2.5)

for rationals a=q 2 Q, b=q 2 Qn with .a; b; q/ D 1 (note that this condition makes
S.a=q;b=q/ well-defined).

By Proposition 2.2 there exists ı > 0 such that

jS.a=q;b=q/j .d;n q�ı : (2.6)

The following observation will be crucial at various points in the proof of Theorem 1.1.

Lemma 2.3. Suppose that a=q 2 Q, b=q 2 Qn, .a; b; q/ D 1 and .a; q/ > 1. Then
S.a=q;b=q/ D 0.

We postpone the standard proof of this to the end of this section. Next, we define the
real-variable versions of the multipliers mj;�.�/ by

ĵ;�.�/ D

ˆ
Rn
e.�jyj2d C � � y/Kj .y/ dy: (2.7)

At this point we record the following standard oscillatory integral decay estimate in the
spirit of van der Corput’s lemma:

j ĵ;�.�/j . .1C 22dj j�j C 2j j�j/�
1
2d : (2.8)

For the proof we refer to [11, Proposition 2.1]. This estimate does not enter in the proof of
the approximation result in this section, but will be important later on. Our basic approx-
imation result for the multipliers mj;�.�/ now reads as follows.

Lemma 2.4. Let j; q be positive integers with q � 2j�2. Let a 2 Z and b 2 Zn with
.a;b; q/ D 1. Further, assume that � 2 R and � 2 Rn are such that

j� � a=qj � ı2�.2d�1/j and j� � b=qj � ı; (2.9)

where ı 2 .2�j ; 1/. Then

mj;�.�/ D S.a=q;b=q/ ĵ;��a=q.� � b=q/CO.qı/; (2.10)

where the implicit constant depends only on d; n;K.



Discrete Stein–Wainger 3189

Proof. The proof is similar to that of [1, Lemma 5.12]. Writing y D uqC r with u 2 Zn,
r 2 Œq�n, we can express mj;�.�/ as

q�n
X
r2Œq�n

e

�
a

q
jr j2d C

b
q
� r

�
Iq;r

�
� �

a

q
; � �

b
q

�
;

where
Iq;r .�; �/ D q

n
X
u2Zn

e.�juq C r j2d C � � .uq C r//Kj .uq C r/:

It suffices to show that for every r 2 Œq�n and every .�; �/ 2 R �Rn with

j�j � ı2�.2d�1/j ; j�j � ı

we have the relation

Iq;r .�; �/ D

ˆ
Rn
e.�jt j2d C � � t /Kj .t/ dt CO.ıq/: (2.11)

The integral on the right-hand side of (2.11) equals

qn
ˆ

Rn
e.�jtq C r j2d C �.tq C r//Kj .tq C r/ dt;

which in turn can be split as

qn
X
u2Zn

ˆ
Œ0;1�n

e
�
�juq C r C tqj2d C � � .uq C r C tq/

�
Kj .uq C r C tq/ dt: (2.12)

In this display it holds that

j�juq C r C tqj2d � �juq C r j2d j . ıq

since jr j � q, juq C r C qt j � juq C r j � 2j and � � ı2�.2d�1/j . Similarly,

j� � .uq C r C tq/ � � � .uq C r/j . ıq:

Using also
´

Rn jKj .t/j dt � 1, this implies that (2.12) is

qn
X
u2Zn

ˆ
Œ0;1�n

e.�juq C r j2d C � � .uq C r//Kj .uq C r C tq/ dt C O.ıq/: (2.13)

Finally, note from (2.2) that

jKj .uq C r C tq/ �Kj .uq C r/j . 2�j.nC1/q � 2�jnıq:

Then we see that (2.13) can be written as

qn
X
u2Zn

e.�juq C r j2d C � � .uq C r//Kj .uq C r/CO.ıq/;

which establishes (2.11).
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Proof of Lemma 2.3. Let .a; q/ D v > 1. Write a D a0v and q D q0v. Then

qnS.a=q;b=q/ D
X
u2Œv�n

X
r2Œq0�n

e

�
a0

q0
juq0 C r j2d C

b
q
� .uq0 C r/

�
D

� X
r2Œq0�n

e

�
a0

q0
jr j2d C

b
q
� r

�� nY
iD1

X
ui2Œv�

e

�
bi
v
� ui

�
:

Since .a; b; q/ D 1 and v > 1, there must exist i0 such that bi0 is not divisible by v. But
that implies

P
`2Œv� e

� bi0
v
`
�
D 0:

3. Proof of Theorem 1.1

To prove the theorem, we need to obtain an `2.Zn/ bound for the maximal operator

sup
�2R

ˇ̌̌X
j�1

mj;�.D/f
ˇ̌̌
;

where mj;� is defined in (2.4). A first observation is that for each fixed j ,


sup
�2R
jmj;�.D/f j





`2.Zn/

. kf k`2.Zn/;

by the triangle inequality, Young’s convolution inequality and (2.2). As a consequence,
we may in the following assume that j � j0, where j0 is a sufficiently large constant
depending on d and n.

Before we proceed, we give a rough description of what will be done. For this purpose,
we will be deliberately vague when using the terms ‘small’ and ‘close’. At this point,
the reader should imagine these terms as being relative to appropriate fractional powers
of 2j , which might differ at each occurrence and will have to be chosen carefully in what
follows. Roughly speaking, the approximation (2.10) tells us what mj;�.�/ is when �
and � are close to rationals with small denominator. On the other hand, Proposition 2.2
tells us that jmj;�.�/j is small if any of �; �1; : : : ; �n is not close to a rational with small
denominator. This naturally leads to a decomposition ofmj;� into two new functions. The
first arises from summing the main contributions S.a=q; b=q/ ĵ;��a=q.� � b=q/ over a
suitable collection of rational .a=q; b=q/ with small q. In the terminology of the Hardy–
Littlewood circle method, these are the major arcs. The second function is an error term,
which will subsume both the approximation error from (2.10) and the minor arcs, i.e. the
cases when at least one of �; �1; : : : ; �n is not close to one of the chosen rationals. This
decomposition is stated below as (3.6). Following this approach naively already leads to
a fundamental problem: the error term crucially depends on �, but we know only little
more about it except that its absolute value is small. This leaves us with few strategies
to handle the maximal operator corresponding to the error term. This was one of the
reasons for the restriction on the parameters � imposed in [3]. By a preliminary T T �
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argument on the multiplier mj;�.�/, we may discard ‘most’ parameters �: as long as we
discard � sufficiently close to a rational with sufficiently small denominator, the T T �

argument yields summable decay in j (see Proposition 3.1 below). For each j , this only
leaves � contained in a union of a few small intervals (see (3.2) below). This allows us to
bound the remaining maximal operator for the error term by a standard argument using
the fundamental theorem of calculus, the crucial size information on the error and a crude
�-derivative estimate (see Proposition 3.2 below). We proceed with the precise estimates.

3.1. Decomposition of the multiplier and minor arcs

Define

Aj D ¹a=q 2 Q W .a; q/ D 1; q 2 Z \ Œ1; 2bj"1c/º; (3.1)

Xj D
[
˛2Aj

¹� 2 R W j� � ˛j � 2�2djC"1j º; (3.2)

where "1 2 .0;2�5/ is a small fixed number that will be determined depending on d and n.
Observe that the union in (3.2) is disjoint. The T T � argument alluded to above yields the
following result.

Proposition 3.1. There exists 
 > 0 only depending on d , n, "1 such that for all j � 1,


 sup
� 62Xj

jmj;�.D/f j




`2.Zn/

. 2�j
kf k`2.Zn/:

The proof can be seen as somewhat parallel to that of Stein–Wainger [11] and is given
in §4. From now on we can restrict our attention to the multipliersmj;�.�/1Xj .�/. In order
to define the major arc approximations we need to set up some notation. For a positive
integer s define

Rs D ¹.a=q;b=q/ 2 Q �Qn
W .a;b; q/ D 1; q 2 Z \ Œ2s�1; 2s/º:

Fix a smooth radial function � on Rn with 0 � � � 1 that is supported in ¹j�j � 1=2º and
equal to 1 on Œ�1=4; 1=4�n. For s � 1 and � 2 Rn we write �s.�/ D �.210s�/. Further
define, for s with s � "1j ,

Lsj;�.�/ D
X

.˛;ˇ/2Rs

S.˛; ˇ/ˆ�j;��˛.� � ˇ/�s.� � ˇ/; (3.3)

where ˆ�j;� is given by
ˆ�j;� D ĵ;� � 1j�j�2�2djC"1j : (3.4)

From the definition of Rs it is clear that Ls
j;�
.�/ is periodic in � and �. Also note that if

Ls
j;�
.�/ 6D 0 (where s � "1j ), then � 2 Xj . Define

Lj;� D
X

1�s�"1j

Lsj;�: (3.5)
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Next, the function Ej;� is defined as the difference of mj;�1Xj .�/ and Lj;� so that

mj;� � 1Xj .�/ D Lj;� CEj;�: (3.6)

From the definitions,Lj;�.�/ andEj;�.�/ are periodic in � and � and vanish unless �2Xj .

Proposition 3.2. If the constant "1 is chosen small enough .depending only on d and n/,
there exists 
 > 0 depending on d , n, "1 such that for all j � 1,


 sup

�2Xj

jEj;�.D/f j




`2.Zn/

. 2�j
kf k`2.Zn/:

The proof is given in §5. The basic idea is that the absolute value of Ej;� should be
small (two reasons to believe this are Lemma 2.4 and Proposition 2.2) and its �-derivatives
are not too large. The structure ofXj then allows us to effectively deploy the fundamental
theorem of calculus to deal with the supremum over �.

3.2. Major arcs

It now remains to bound the maximal operator associated with the multiplierX
j�1

Lj;� D
X
j�1

X
1�s�"1j

Lsj;� D
X
s�1

Ls�;

where we have set
Ls� D

X
j�"�1

1
s

Lsj;�: (3.7)

The proof of Theorem 1.1 will be completed if we can exhibit 
 > 0 such that for all
s � 1, 


sup

�2R
jLs�.D/f j





`2.Zn/

.d;n 2�
skf k`2.Zn/: (3.8)

We now begin with the definition of some auxiliary sets of rationals:

As D ¹˛ 2 Q W .˛; ˇ/ 2 Rs for some ˇº;
Bs.˛/ D ¹ˇ 2 Qn

W .˛; ˇ/ 2 Rsº;

B]
s D ¹b=q W b 2 Zn; q 2 Z \ Œ2s�1; 2s/º: (3.9)

By definition,
.˛; ˇ/ 2 Rs ” ˛ 2 As; ˇ 2 Bs.˛/

and
Bs.˛/ � B]

s for all ˛:

Also note that Bs.˛/ D ; if ˛ 62 As . Fix a smooth radial function z� with 0 � z� � 1
that equals to one on ¹j�j � 1=2º (and hence on the support of �) and is supported in
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¹j�j � 1º. Set z�s.�/D z�.210s�/. Given a bounded functionm on Rn we define the periodic
multipliers

Ls;˛Œm�.�/ D
X

ˇ2Bs.˛/

S.˛; ˇ/m.� � ˇ/�s.� � ˇ/; (3.10)

L ]
s Œm�.�/ D

X
ˇ2B

]
s

m.� � ˇ/z�s.� � ˇ/: (3.11)

A crucial observation is the factorization

Ls;˛Œm� D Ls;˛Œ1� �L
]
s Œm�; (3.12)

which holds because for each �, there is at most one ˇ 2 B
]
s such that z�s.� � ˇ/ 6D 0.

The kernel associated with the multiplier (3.10) is given by

F �1Zn ŒLs;˛Œm��.y/ D
X

ˇ2Bs.˛/

S.˛; ˇ/

ˆ
Œ0;1�n

e.� � y/m.� � ˇ/�s.� � ˇ/ d�

D

X
ˇ2Bs.˛/\Œ0;1/n

S.˛; ˇ/e.ˇ � y/F �1Rn Œm � �s�.y/; (3.13)

where y 2 Zn. With this notation in mind we write the multiplier in question as

Ls� D Ls;˛Œˆ
s
��˛�; (3.14)

where we have set
ˆs� D

X
j�"�1

1
s

ˆ�j;�: (3.15)

and ˛ is the unique element of As such that j�� ˛j � 2�2s�10 (say), or an arbitrary value
from the complement of As if no such ˛ exists (in this case, Ls

�
.�/ D 0 anyways). Here,

uniqueness of such ˛ follows because two distinct rationals with denominators � 2s must
be at least 2�2s apart. In view of (3.14) and the factorization (3.12) it is reasonable to
begin with the following number-theoretic estimate.

Proposition 3.3. There exists 
 > 0 depending on d and n such that for every s � 1,


 sup
˛2As

jLs;˛Œ1�.D/f j




`2.Zn/

. 2�
skf k`2.Zn/: (3.16)

This will be proved in §6 by making use of exponential sum estimates. The factoriza-
tion (3.12) invites us to consider the companion maximal operator

f 7! sup
�2R
jL ]

s Œˆ
s
��.D/f j:

Using Bourgain’s multi-frequency lemma and the variational estimates from [2] it is pos-
sible to show that this maximal operator has `2 ! `2 operator norm . s2 (the proof is
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omitted in this paper, because this claim will not be needed). However, it is technically
not straightforward to combine this result with Proposition 3.16 to treat the maximal oper-
ator associated with (3.14). Instead, we take a different route that relies on the numerical
inequality (2.3) and a theorem of Stein and Wainger [11]. The following proposition is
proved in §7.

Proposition 3.4. The constant "1 can be chosen small enough depending on d and n so
that there exists 
 > 0 depending on d; n such that for every s � 1,


sup

�2R
jLs�.D/f j





`2.Zn/

. 2�
skf k`2.Zn/: (3.17)

This establishes (3.8) and thereby Theorem 1.1.

4. Minor arcs I: Proof of Proposition 3.1

Since the output mj;�.D/f .x/ only depends on the values of f in a 2jC1-neighborhood
of the point x, a standard localization argument allows us to assume that f is supported
in the set

Bj D ¹y 2 Zn W jyj � 2j º:

Fix an arbitrary function � W Zn ! R nXj and write

Tj;�f .x/ D mj;�.x/.D/.f 1Bj /.x/ D
X
y2Zn

f .y/Kj;�.x; y/;

where
Kj;�.x; y/ D e.�.x/jx � yj

2d /Kj .x � y/1Bj .y/:

Then the kernel of Tj;�T �j;� is given by

K
]

j;�
.x; y/ D

X
z2Zn

e.�.x/jzj2d � �.y/jy � x C zj2d /

�Kj .z/Kj .y � x C z/1Bj .x � z/: (4.1)

Note that K
]

j;�
.x; y/ D 0 unless

jxj � 2jC2 and jyj � 2jC2: (4.2)

Let ı0 > 0 and c0 > 0 be determined later and define

Ej;� D ¹.x; y/ 2 Zn � Zn W jK]

j;�
.x; y/j � c02

�j.nCı0/º:

Lemma 4.1. The constants c0 and ı0 can be chosen depending on d; n; "1 such that for
every j � 1,

jEj;�j . 22nj�
1
10 "1j ; (4.3)

where "1 is as in (3.1) and (3.2).
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Before proving this statement we show how it can be used to finish the proof of Pro-
position 3.1. By definition of Ej;�,

jK
]

j;�
.x; y/j . 2�nj�ı0j 1BjC2�BjC2.x; y/C 2

�nj 1Ej;�.x; y/:

With (4.3) this implies

kK
]

j;�
k`2.Zn�Zn/ . 2�ı0j C 2�

1
20 "1j : (4.4)

By the Cauchy–Schwarz inequality we have

jhT
K
]

j;�

f; gij �
X
x2Zn

X
y2Zn

jg.x/j jf .y/j jK
]

j;�
.x; y/j

� kf k`2.Zn/kgk`2.Zn/kK
]

j;�
k`2.Zn�Zn/;

which by (4.4) and `2 duality leads to

kTj;�k`2!`2 D kTK
]

j;�

k
1=2

`2!`2
. 2�
j

with 
 D min
�
1
2
ı0;

1
40
"1
�
. It remains to prove Lemma 4.1.

In fact we will prove something stronger: the claim is that after choosing c0 and ı0
suitably we have, for every fixed .x0; y�/ 2 Zn�1 � Zn,

j¹x1 2 Z W .x1; x
0; y�/ 2 Ej;�ºj . 2j�

1
10 "1j : (4.5)

In other words, each .x0; y�/-slice of Ej;� has small cardinality. By Fubini’s theorem and
(4.2) this implies the claimed inequality (4.3).

For future reference, we will be more careful with explicit constants than strictly
necessary in this proof. The reader can safely ignore all constants only depending on d in
the estimates that follow. Fixing .x0; y�/ 2 Zn�1 � Zn, we define

E D ¹x1 2 Z W .x1; x
0; y�/ 2 Ej;�º:

Set "0 D 1
10
"1.

Claim. The numbers c0 and ı0 can be chosen such that the following holds: for every
u 2 E there exists a reduced rational a=q with q � 2"0jC1d such that

j.u � y�1 /�.y
�/ � a=qj � 2�j.2d�1/C"0j : (4.6)

Proof. Note that the coefficient of z2d�11 in the phase of (4.1) is equal to
2d.x1 � y1/�.y/. By Dirichlet’s approximation theorem, there exists a reduced rational
a=q with q � 2j.2d�1/�"0j such that

j2d.u � y�1 /�.y
�/ � a=qj � q�12�j.2d�1/C"0j � 1=q2:

Applying Proposition 2.2 (with R D 2j ) we may choose c0 and ı0 (depending on the
choice of "0) so that q� 2"0j (because jK]

j;�
.u;x0;y�/j � c02

�j.nCı0/). Dividing through
by 2d yields the claim.
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From now on we fix c0 and ı0 to make the statement in the claim valid. We will also
assume j � j0, where j0 is a large constant depending only on d that will be determined
later. Our goal is now to show that jEj � 2j�"0j . Arguing by contradiction, we assume
that

jEj > 2j�"0j : (4.7)

It is clear that
E � Œ�2jC2; 2jC2�: (4.8)

We now exploit the three properties (4.6)–(4.8) to prove that �.y�/ 2Xj , which estab-
lishes the required contradiction. First, we claim that there exist u1; u2 2 E such that

1 � u2 � u1 � 2
"0jC5; (4.9)

Indeed, suppose that all elements of E were pairwise separated by at least 2"0jC5. Then,
by (4.8) we would have jEj � 2j�"0j�1, which contradicts (4.7). Consequently, there must
exist u1; u2 2 E such that (4.9) holds. By (4.6) there exist reduced rationals a=q; a0=q0

with max.q; q0/ � 2"0jC1d and

j.u1 � y
�
1 /�.y

�/ � a=qj � 2�j.2d�1/C"0j ;

j.u2 � y
�
1 /�.y

�/ � a0=q0j � 2�j.2d�1/C"0j :

Then,
j�.y�/ � a�=q�j � 2�j.2d�1/C"0jC1; (4.10)

where a�=q� D .u2 � u1/�1.a0=q0 � a=q/ is a reduced rational with

q� � qq0.u2 � u1/ � 2
3"0jC7d2: (4.11)

With (4.10) we have already obtained a somewhat decent rational approximation
for �.y�/. However, to conclude �.y�/ 2 Xj , we need to show that the approximation is
actually tighter by almost another factor of 2�j on the right-hand side (see (3.2)). Denote
the set of reduced rationals a=q 2 Œ0; 1/ with q � 2"0jC1d and a 2 Œq� by A . Then for
each ˛ 2 A we define

F˛ D ¹u 2 E W j.u � y�1 /�.y
�/ � ˛jT � 2

�.2d�1/jC"0j º;

where j�jT D minz2Z j� C zj � j�j. By (4.6), we have E �
S
˛2A F˛ . Since also jA j �

d222"0jC1, the pigeonhole principle and (4.7) imply that there exists ˛0 D a0=q0 2 A
such that

jF˛0 j � 2
j�3"0j�1d�2:

Now we invoke the pigeonhole principle again in the following form (this step can
be skipped if d > 1): for positive integers N; k with .2N C 1/k�1 � 2, cover a set A �
Œ�N;N �\Z with k intervals, each of length .2N C 1/k�1. One of the intervals, call it I ,
must satisfy jA \ I j � jAjk�1 � 1. Writing v1 D min A \ I and v2 D max A \ I we
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then have jAjk�1 � 2 � v2 � v1 � .2N C 1/k�1. Applying this fact to our situation with
N D 2jC2, A D F˛0 , and k D d25"0j e, we exhibit v1; v2 2 F˛0 such that for j � j0
large enough,

2j�8"0j�3d�2 � v2 � v1 � 2
j�5"0jC4: (4.12)

By definition of F˛0 there exist integers `1; `2 such that

j.v1 � y
�
1 /�.y

�/ � .˛0 C `1/j � 2
�.2d�1/jC"0j ;

j.v2 � y
�
1 /�.y

�/ � .˛0 C `2/j � 2
�.2d�1/jC"0j :

This implies, using the lower bound in (4.12), thatˇ̌̌̌
�.y�/ �

`2 � `1

v2 � v1

ˇ̌̌̌
� 2�2djC9"0jC3d2: (4.13)

We claim that
`2 � `1

v2 � v1
D
a�

q�
: (4.14)

Indeed, suppose not. Then, from (4.12) and (4.11),ˇ̌̌̌
`2 � `1

v2 � v1
�
a�

q�

ˇ̌̌̌
�

1

.v2 � v1/q�
� 2�jC2"0j�11d�2:

On the other hand, from (4.10) and (4.13),ˇ̌̌̌
`2 � `1

v2 � v1
�
a�

q�

ˇ̌̌̌
� 2�.2d�1/jC"0jC2;

for j � j0 large enough. This yields a contradiction (again, for j � j0 large enough).
Thus, (4.14) holds. Summarizing, we have proved that

j�.y�/ � a�=q�j � 2�2djC10"0j

for j � j0 large enough (from (4.14) and (4.13)). Further, .a�; q�/ D 1 and q� �

d223"0jC7 � 2b10"0j c for large enough j � j0. Recalling that we set "0 D 1
10
"1, this

means precisely that �.y�/ 2 Xj .

Remarks. 1. The argument simplifies slightly in the case d > 1: in place of the upper
bound in (4.12), the trivial upper bound 2jC3 would be sufficient.

2. From the proof it is clear that the factor 1
10

appearing in (4.3) is not sharp. However,
this is not relevant for our discussion.

5. Minor arcs II: Proof of Proposition 3.2

We will make use of the following fact.
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Lemma 5.1. Let ƒ � R be a disjoint union of intervals .Ij /1�j�N with jIj j � ı, and
.m�/�2ƒ a family of bounded periodic functions on Rn such that

sup
�2ƒ

km�kL1.Tn/ � A; (5.1)

the function Ij ! C, � 7! m�.�/, is absolutely continuous for a.e. � 2 Rn and every
j D 1; : : : ; N , and

sup
�2ƒ

k@�m�kL1.Tn/ � B: (5.2)

Then 


sup
�2ƒ

jm�.D/f j




`2.Zn/

� .N 1=2AC .2NABı/1=2/kf k`2.Zn/:

The proof is via a standard argument using the fundamental theorem of calculus which
we postpone to the end of this section. In order to apply Lemma 5.1 to the multipliers
.Ej;�/�2Xj we will prove that

jEj;�.�/j . 2�
j (5.3)
for some 
 > 0 only depending on d; n (in particular, not depending on the choice of "1)
and all � 2 Xj ; � 2 Rn, j � 1. Moreover, we see directly from the definitions (3.6), (3.3),
(2.7), (2.4) that for a.e. � 2 Xj , � 2 Rn and every j � 1,

j@�Ej;�.�/j . 22dj : (5.4)

Then Lemma 5.1 (withƒDXj \ Œ0;1/,m�DEj;�,N D jAj j � 22"1j , ı� 2�2djC"1jC1)
gives 


 sup

�2Xj

jEj;�.D/f j




`2.Zn/

. 2
1
2 .3"1�
/j kf k`2.Zn/: (5.5)

Thus we obtain the claimed decay in j as long as "1 < 1
3

 . We turn our attention to

proving (5.3).
Assume � 2 Xj (otherwise Ej;�.�/ D 0). Fix "2 D 2�5 (this can be replaced by any

sufficiently small absolute constant with "2 > "1). We define the major arcs

Mj D

[
.˛;ˇ/2Rs ;
1�s�"2j

Mj .˛; ˇ/; where

Mj .˛; ˇ/ D ¹.�; �/ 2 R �Rn W j� � ˛j � 2�2djC"2j ; j� � ˇj � 2�jC"2j º:

We need the following disjointness statement for the neighborhoods of the rationals
involved in the sum defining Lj;�.�/.

Lemma 5.2. For each .�; �/ 2 R �Rn there exists at most one .˛; ˇ/ with .˛; ˇ/ 2 Rs

for some 1 � s � "2j such that

S.˛; ˇ/ˆ�j;��˛.� � ˇ/�s.� � ˇ/ 6D 0: (5.6)

If that is the case and also s � "1j , then

Lj;�.�/ D L
s
j;�.�/ D S.˛; ˇ/ˆ

�
j;��˛.� � ˇ/�s.� � ˇ/:

.Otherwise, Lj;�.�/ D 0:/



Discrete Stein–Wainger 3199

Proof. Fix .�; �/ 2 R � Rn. Take .˛; ˇ/ 2 Rs and .˛0; ˇ0/ 2 Rs0 such that (5.6) holds.
Suppose that ˛ 6D ˛0. Then

2�2"2j � 2�.sCs
0/
� j˛ � ˛0j � 2�2djC"1jC1:

This is a contradiction. Thus, ˛ D ˛0. Write .˛;ˇ/D .a=q;b=q/, .˛0; ˇ0/D .a0=q0;b0=q0/
with .a;b; q/ D .a0;b0; q0/ D 1 and 2s�1 � q < 2s , 2s

0�1 � q0 < 2s
0

. By Lemma 2.3 and
(5.6) we have .a; q/ D 1 and .a0; q0/ D 1. But since ˛ D ˛0, this implies q D q0 and thus
s D s0. Taking another look at (5.6) we see that ˇ D ˇ0 (by inspecting the support of
�s D �s0 ). The claim about Lj;�.�/ follows from the claim we just proved, and (3.5) and
(3.3).

The proof of (5.3) naturally splits into several cases.

Case 1: .�; �/ 2Mj . Then there exist 1� s0 � "2j and .˛0;ˇ0/ 2Rs0 such that .�; �/ 2
Mj .˛0; ˇ0/. From Lemma 2.4 (with ı D 2�jC"2j , q � 2"2j ) we gather that

mj;�.�/ D S.˛0; ˇ0/ ĵ;��˛0.� � ˇ0/CO.2
�jC2"2j /: (5.7)

We distinguish two further cases.

Case 1.1: 1 � s0 � "1j . From Lemma 5.2 we deduce

Lj;�.�/ D L
s0
j;�
.�/ D S.˛0; ˇ0/ ĵ;��˛0.� � ˇ0/:

With (5.7) this gives

jEj;�.�/j D jmj;�.�/ � Lj;�.�/j . 2�jC2"2j :

Case 1.2: "1j < s0 � "2j . We may write ˛0 D a0=q0, ˇ0 D b0=q0 with .a0;b0; q0/D 1,
2s0�1 � q0 < 2

s0 . In particular, q0 � 2b"1j c.
We claim that we must have .a0; q0/ > 1. Indeed, suppose .a0; q0/D 1. Since � 2Xj ,

there exists a reduced rational a1=q1 with q1 < 2b"1j c and

ja1=q1 � �j � 2
�2djC"1j

Since q0 > q1, the reduced rationals a1=q1 and a0=q0 do not coincide. Therefore,

2�."1C"2/j �
1

q0q1
�

ˇ̌̌̌
a1

q1
�
a0

q0

ˇ̌̌̌
� 2�2djC"2jC1:

This is a contradiction. Thus we must have .a0; q0/ > 1 and so S.˛0; ˇ0/ D 0 by
Lemma 2.3. In particular, jmj;�.�/j . 2�jC2"2j by (5.7). Also, from Lemma 5.2 we see
that Lj;�.�/ D 0.

Case 2: .�; �/ 62Mj . In this case we bound

jEj;�.�/j � jmj;�.�/j C jLj;�.�/j

and estimate the two terms on the right-hand side separately.
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Fix � < "2
nC1

and set N D 2j . By Dirichlet’s approximation theorem there exist
reduced fractions a=q; b1=r1; : : : ; bn=rn with q � N 2d�� , max.r1; : : : ; rn/ � N 1�� andˇ̌̌̌

� �
a

q

ˇ̌̌̌
�
1

q
N�2dC�;

ˇ̌̌̌
�k �

bk

rk

ˇ̌̌̌
�
1

rk
N�1C� for k D 1; : : : ; n:

Setting q� D lcm.q; r1; : : : ; rn/, we must have q� � 2b"2j c because .�; �/ 62Mj . Thus at
least one of q; r1; : : : ; rn must be� 2�j (otherwise q� � 2�.nC1/j , which is a contradiction
because � < "2

nC1
). By Proposition 2.2 we then obtain

jmj;�.�/j . 2�ıj :

It remains to estimate jLj;�.�/j. Suppose that Lj;�.�/ 6D 0. Then by Lemma 5.2 there
exists .˛; ˇ/ 2 Rs for some 1 � s � "1j such that

Lj;�.�/ D S.˛; ˇ/ˆ
�
j;��˛.� � ˇ/�s.� � ˇ/: (5.8)

Then j� � ˛j � 2�2djC"2j : Since .�; �/ 62Mj ,

j� � ˇj � 2�jC"2j :

With (2.8) and (5.8), this implies

jLj;�.�/j � j ĵ;��˛.� � ˇ/j . 2�
"2
2d
j :

Proof of Lemma 5.1. By the fundamental theorem of calculus we have, for absolutely
continuous g W Œa; b�! C,

sup
�2Œa;b�

jg.�/j2 � jg.a/j2 C 2

ˆ b

a

jg.t/j jg0.t/j dt:

Hence,


sup
�2ƒ

jm�.D/f j



2
`2.Zn/

�

NX
jD1

kminf Ij .D/f k
2
`2.Zn/

C 2

NX
jD1

X
x2Zn

ˆ
Ij

jmt .D/f .x/j j@�mt .D/f .x/j dt: (5.9)

By the Cauchy–Schwarz inequality and Fubini’s theorem,X
x2Zn

ˆ
Ij

jmt .D/f .x/j j@�mt .D/f .x/j dt

�

�ˆ
Ij

kmt .D/f k2`2.Zn/ dt
�1=2�ˆ

Ij

k@�mt .D/f k2`2.Zn/ dt
�1=2

:

Combining this with (5.9) and using Plancherel’s theorem with the assumptions (5.1) and
(5.2) we obtain the claim.

Remark. Observe that the same argument works for `p with p 6D 2 and more general
families of operators.
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6. Major arcs I: Proof of Proposition 3.3

Note that since Ls;˛Œ1� D Ls;˛C1Œ1�, we may restrict the supremum to ˛ 2 As \ Œ0; 1/,
without loss of generality. Also, from (3.13) we have

F �1Zn ŒLs;˛Œ1��.y/ D
X

ˇ2Bs.˛/\Œ0;1/n

S.˛; ˇ/e.ˇ � y/�s.y/;

where �s D F �1Rn Œ�s�. Note that k�skL1.Rn/ � 1. For an arbitrary function ˛ W Zn !
As \ Œ0; 1/ we define

Ks;˛.x; y/ D F �1Zn ŒLs;˛.x/Œ1��.x � y/: (6.1)

Then Proposition 3.3 is a consequence of the following.

Proposition 6.1. There exists 
 > 0 depending only on d; n such that

kTKs;˛f k`2.Zn/ . 2�
skf k`2.Zn/;

with the implicit constant only depending on d and n, but not on the functions ˛; f . .The
notation TKs;˛ is defined in (2.1)./

Remark. The proof shows that the same result holds with `2 replaced by `p for every
p 2 .1;1/ (with decay rate depending on p).

Proof of Proposition 6.1. For every x 2 Zn there exist q.x/ 2 Z\ Œ2s�1; 2s/ and a.x/ 2
Œq.x/� with .a.x/; q.x// D 1 such that

˛.x/ D a.x/=q.x/:

For the proof we will employ a T T �-argument. We begin by computing the kernel
of T T �. Note that TKs;˛T

�
Ks;˛
D T

K
]
s;˛
; where

K]
s;˛.x; y/ D

X
z2Zn

Ks;˛.x; z/Ks;˛.y; z/:

From (6.1),

K]
s;˛.x; y/ D

X
ˇ2Bs.˛.x//\Œ0;1/

n;
ˇ 02Bs.˛.y//\Œ0;1/

n

S.˛.x/; ˇ/e.x � ˇ/S.˛.y/; ˇ0/e.�y � ˇ0/

�

hX
z2Zn

�s.x � z/�s.y � z/e.z � .ˇ
0
� ˇ//

i
:

Next we claim that for every ˇ; ˇ0 2 B
]
s \ Œ0; 1/

n with ˇ 6D ˇ0,X
z2Zn

�s.x � z/�s.y � z/e.z � .ˇ
0
� ˇ// D 0: (6.2)

To see this, define a Schwartz function on Rn by

„.t/ D �s.x � t /�s.y � t /e.t.ˇ
0
� ˇ// .t 2 Rn/:
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Then b„.�/ D ŒMx z�s �M�y z�s�.� C ˇ � ˇ0/;

where we have used the notation Mug.x/ D e.u � x/g.x/. From the definitions of z�s
and B

]
s we then see for � 2 Zn that b„.�/ D 0 unless � C ˇ � ˇ0 D 0. However, ˇ; ˇ0 2

Œ0; 1/n and ˇ 6D ˇ0 imply ˇ � ˇ0 62 Zn. Hence, by the Poisson summation formula the
left-hand side of (6.2) is equal toX

z2Zn

„.z/ D
X
�2Zn

b„.�/ D 0:
As a consequence,

K]
s;˛.x; y/ D �s;˛.x; y/ � Œ�s � �s�.x � y/; (6.3)

where we set

�s;˛.x; y/ D
X

ˇ2Bs.˛.x//\Bs.˛.y//\Œ0;1/n

S.˛.y/; ˇ/S.˛.x/; ˇ/e..y � x/ � ˇ/: (6.4)

For the following computation we fix .x; y/ 2 Zn � Zn and write

a D a.y/; q D q.y/; a0 D a.x/; q0 D q.x/

for short. As a consequence of Lemma 2.3, we may assume .a; q/D .a0; q0/D 1 and read
the sum over ˇ in (6.4) as running over the set

¹b=q W b 2 Œq�nº \ ¹b=q0 W b 2 Œq0�nº;

which is equal to
¹b=q[ W b 2 Œq[�nº;

where we have set q[ D .q; q0/. Thus,

�s;˛.x; y/ D
X

b2Œq[�n
S.a=q;b=q[/S.a0=q0;b=q[/e..y � x/ � b=q[/:

Expanding the exponential sums by (2.5), we can rewrite this as

.qq0/�n
X

r2Œq�n;r 02Œq0�n

e

�
a

q
jr j2d �

a0

q0
jr 0j2d

�� X
b2Œq[�n

e

�
b
q[
� .r � r 0 C y � x/

��
;

which, in view of the relation N�1
P
l2ŒN � e.lz=N / D 1z�0 .mod N/, is equal to�

q0

q[

��n X
u2Œq0=q[�

n

q�n
X
r2Œq�n

e

�
a

q
jr j2d �

a0

q0
jr C y � x C u � q[j

2d

�
: (6.5)

Inspection of this exponential sum reveals several scenarios in which no cancellation can
be expected. For instance, a typical case where (6.5) exhibits no cancellation is when
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a D a0, q D q0 and y � x is divisible by q (then �s;˛.x; y/D 1). Additional degeneracies
arise in the case d D 1, requiring a more careful analysis. For w 2 Zn we define

Sx;y.w/ D q
�n

X
r2Œq�n

e

�
a

q
jr j2d �

a0

q0
jr C wj2d

�
: (6.6)

In the case d � 2 it will suffice to exploit cancellation from the exponential sum (6.6),
whereas in the case d D 1 we will sometimes need to make use of cancellation from the
sum over u in (6.5).

The case d � 2. Viewing the phase in (6.6) as a polynomial in r , the coefficient of r2d�11

is equal to �2da0w1=q0: This leads us to define

Ex D ¹w 2 Zn W .2dw1; q.x// � 2s=2º:

By sorting modulo q.x/ and counting divisors of q.x/ we see that for z 2 Zn, N � 2s

and every " > 0,
N�njEx \ .z C ŒN �

n/j ." 2�s=2C"s : (6.7)

If w 62 Ex , then Proposition 2.2 (with R D q � R.2d�1/�", crucially using d � 2) yields

jSx;y.w/j . 2�
s

for some sufficiently small 
 2 .0; 1=2/ depending on d and n. Using the triangle inequal-
ity on the sum over u in (6.5) leads to the estimation

j�s;˛.x; y/j . 2�
s C
X
�jq.x/

.q.x/=�/�n
X

u2Œq.x/=��n

1Ex .y � x C u � �/; (6.8)

where we have removed the .x; y/-dependence of q[ D .q.x/; q.y// by summing over all
divisors of q.x/. Hence, recalling (6.3), we see for every x 2 Zn thatX

y2Zn

jK]
s;˛.x; y/j . 2�
s C �.q.x// sup

u2Zn

X
y2Zn

1Ex .y � x C u/j�s � �sj.x � y/;

where �.q/ denotes the number of divisors of q. Using the standard divisor bound
�.q/ ." q", (6.7) and rapid decay of �s � �s , we obtainX

y2Zn

jK]
s;˛.x; y/j . 2�
s

for every x 2 Zn. Since also K
]
s;˛.x; y/ D K

]
s;˛.y; x/, we infer from Schur’s test that

kT
K
]
s;˛
k`2.Zn/!`2.Zn/ . 2�
s :

This concludes the proof of Proposition 6.1 in this case.

The case d D 1. First assume that q[D .q.x/;q.y//� 2s=3: Then q0=q[ � 22s=3�1. View-
ing the phase in (6.5) as a polynomial in u, the coefficient of u21 is�a0q2

[
=q0, which equals
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a reduced rational with denominator in Œ2s=3; 2s� \ Z. Thus, applying Proposition 2.2 to
the exponential sum over u yields

j�s;˛.x; y/j . 2�
s

for a small enough 
 > 0. Next we handle the case that q[ � 2s=3. We will exploit can-
cellation from the summation over r in (6.5). The exponential sum on the right-hand side
of (6.6) factors into n one-dimensional sums. It will be enough to estimate the first factor,
which is given by

I D q�1
X
r12Œq�

e

�
A

Q
r21 �

2a0w1

q0
r1

�
;

whereA=QD a=q � a0=q0 with .A;Q/D 1. We are led to distinguish two cases. Suppose
that Q � 2s=3. Then, since also Q � qq0=q[ � 25s=3, we may apply Proposition 2.2 to
obtain

jI j . 2�ıs (6.9)

for some small enough ı > 0. On the other hand, assumeQ � 2s=3. Then, by reorganizing
the summation modulo Q,

I D q�1
�X
s2ŒQ�

e

�
A

Q
s2 �

2a0w1

q0
s

��
�

� X
u2ŒM�

e

�
�
2a0w1Q

q0
u

��
CO.2�2s=3/;

whereM D bq=Qc. Summing the geometric sum over u and using the triangle inequality
on the sum over s we get

jI j . 2�2s=3j1 � e.2a0w1Q=q
0/j�1 . 2�2s=3j2a0w1Q=q

0
j
�1
T ; (6.10)

where j�jT D minz2Z j� C zj. Note that Q depends on both x and y. To remove the
dependence on y we define for a positive integer � � 2s=3 the set

E.�/x D ¹w1 2 Z W j2a0w1�=q
0
jT � 2

�s=2
º: (6.11)

Let �D .2�; q0/ . 2s=3 and qD q0=�. Let R � Z be a complete residue system modulo q.
Then a0 2�

�
R is also a complete residue system modulo q. Thus

jE.�/x \Rj D j¹` 2 Œq� W j`=qjT � 2
�s=2
ºj . q2�s=2:

Since q � q0 < 2s , we then have, for every N � 2s and z 2 Z,

N�1jE.�/x \ .z C ŒN �/j . 2�s=2:

Define
Ex D

[
��2s=3

¹w 2 Zn W w1 2 E
.�/
x º: (6.12)

Then if w 62 Ex , we gather from (6.6) and (6.9)–(6.11) that

jSx;y.w/j � jI j . max.2�s=6; 2�ıs/
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and for every z 2 Zn and N � 2s ,

N�njEx \ .z C ŒN �
n/j . 2�s=6:

The fact that we have chosen the exceptional set Ex only depending on x (as opposed
to both x and y) allows us to recycle the crude argument using Schur’s test seen in the
case d � 2. Indeed, summarizing the above we have shown that (6.8) again holds for all
.x;y/ 2Zn �Zn with Ex defined as in (6.12) (and 
 > 0 small enough, possibly different
from above). This completes the proof of Proposition 6.1.

7. Major arcs II: Proof of Proposition 3.4

Before we begin with the proof we collect some preliminary results. First note from (3.13)
that for every bounded function m on Rn,

Ls;˛Œm�.D/f .x/ D
X

ˇ2Bs.˛/\Œ0;1/n

S.˛; ˇ/e.x � ˇ/F �1Rn Œm�s� �M�ˇf .x/; (7.1)

whereMaf .x/D e.x � a/f .x/ denotes modulation by a (and � must denote convolution
on Zn, since f is only defined on Zn). The factorization (3.12) will allow us to prove the
following consequence of Proposition 3.3.

Lemma 7.1. Let I be a countable set and .m�/�2I a family of bounded functions on Rn.
Then there exists 
 > 0 such that for every s � 1,


 sup

˛2As

jLs;˛Œm� �.D/f .x/j




`2x;�.Zn�I/

.d;n 2�
s
�

sup
j�j�1

km�.�/k`2�.I/

�
kf k`2.Zn/:

Observe that Proposition 3.3 is the special case I D ¹�º, m� � 1. We also need the
following result which can be seen as a variant of Lemma 7.1 (in the case I D ¹�º) for
maximally truncated singular integrals.

Lemma 7.2. For j � 1 let Kj be a mean zero C 1 function supported on ¹jxj � 2j º such
that there exists a constant A > 0 with

2jnjKj .x/j C 2
j.nC1/

jrKj .x/j � A (7.2)

for all j � 1 and x 2 Rn. Write

Ka;b.x/ D
X
a�j<b

Kj .x/:

Then there exists 
 > 0 such that for all s � 1,


sup
J�1

sup
˛2As

jLs;˛Œ
1K0;J �.D/f j





`2.Zn/

. 2�
skf k`2.Zn/: (7.3)

Here the implicit constant depends only on A; d; n, andb� denotes the Fourier transform
on Rn.
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The proofs of Lemmas 7.1 and 7.2 are postponed to §7.4 and §7.5, respectively. We
now begin with the proof of Proposition 3.4. The maximal operator in question can be
bounded by

sup
˛2As

sup
j�j�2�C0s

ˇ̌̌ X
j�"�1

1
s

Ls;˛Œ ĵ;��.D/f .x/
ˇ̌̌
; (7.4)

where C0 D .2d � 1/"�11 is a large constant.
Motivated by phase considerations, we introduce a frequency scale parameter ` 2 Z

to partition the scales j for every fixed � as

J`;� D ¹j � "
�1
1 s W j�j2

2dj
� 2`º;

where A � B means 1
2
B � A � 2B . Note that J`;� has at most one element and is often

empty. Define ê
`;�.�/ D

X
j2J`;�

ĵ;�.�/:

Let C1 be a large positive constant that is to be determined later. We distinguish three
cases:

L1 D ¹` 2 Z W ` � C1sº;

L2 D ¹` 2 Z W �C1s < ` < C1sº;

L3 D ¹` 2 Z W ` � �C1sº;

and bound the `2 norm of (7.4) accordingly by

3X
iD1




 sup
˛2As

sup
j�j�2�C0s

ˇ̌̌X
`2Li

Ls;˛Œê`;��.D/f ˇ̌̌ 



`2.Zn/

: (7.5)

It remains to bound these three summands separately, which is the content of the next
three subsections.

7.1. The high frequency case: ` 2 L1

This is the easiest case. Here ` � C1s. From Stein and Wainger’s theorem [11] we see


sup
�2R
jê`;�.D/gj




L2.Rn/
. 2�
`kgkL2.Rn/

for some 
 > 0. Since
#Rs . 2Cs for some C > 0,

we may choose C1 large enough so that the trivial bound jS.˛; ˇ/j � 1, the triangle
inequality on the summation over ˇ and a transference argument using Lemma 2.1 imply
that the first summand in (7.5) is . 2�


0skf k`2.Zn/ for some 
 0 > 0.
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7.2. The intermediate frequency case: ` 2 L2

First note that #L2 . s, so we may consider the terms for each fixed ` 2 L2 separately.
The arguments differ slightly depending on the sign of ` with the terms for ` � 0 being
the more problematic ones. Set `C D max.0; `/. We begin estimating


 sup

˛2As

sup
j�j�2�C0s

jLs;˛Œê`;��.D/f j



`2.Zn/

by 


 sup
j�"�1

1
s

sup
˛2As

sup
j�j�2`�2dj

jLs;˛Œ ĵ;��.D/f j




`2.Zn/

: (7.6)

Let # denote an appropriately compactly supported, smooth and nonnegative function
such that

´
# D 1 and let #j .x/ D 2�jn#.2�jx/. With � such that j�j � 2`�2dj we

define
ˆ[j;�.�/ D ĵ;�.�/ � ĵ;�.0/1#j�`C.�/:

The definition is made so that ˆ[j;�.0/ D 0 and ˆ[j;� satisfies favorable estimates that
will be stated below (see also [3, Lemma 3.22]). Observe that j ĵ;�.0/j . 1 (there is also
decay in j`j but we will only need that later on). We now estimate (7.6) by the sum of� X

j�"�1
1
s




 sup
˛2As

sup
j�j�2`�2dj

jLs;˛Œˆ
[
j;��.D/f j




2
`2.Zn/

�1=2
(7.7)

and 


 sup
j�"�1

1
s

sup
˛2As

jLs;˛Œ1#j�`C �.D/f j




`2.Zn/

: (7.8)

We begin by handling the latter term. Since `C � C1s we can bound (7.8) by


sup
J�1

sup
˛2As

jLs;˛Œc#J �.D/f j



`2.Zn/

(7.9)

as long as "1 is chosen small enough so that "�11 � C1 (which is possible, since the choice
of C1 is independent of that of "1). Expanding into a telescoping sum

#J D #0 C
X

0�j<J

.#jC1 � #j /;

we bound (7.9) by


 sup
˛2As

jLs;˛Œb#0�.D/f j



`2.Zn/

C




sup
J�1

sup
˛2As

ˇ̌̌
Ls;˛

h X
0�j<J

. b#jC1 � b#j /i.D/f ˇ̌̌ 



`2.Zn/

:

(7.10)

Using Lemma 7.1 for the first term and Lemma 7.2 for the second term we see that the
previous display is . 2�
skf k`2.Zn/ as required.
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It remains to estimate the main term (7.7). The uncertainty principle suggests that
the value of jˆ[j;�.D/g.x/j stays approximately constant as � varies over an interval of
length . 2�2dj . This motivates the following standard argument (similar to §5). Define
I D ¹j�j � 2`�2dj º D Œ�b;�a� [ Œa; b� with 0 < a < b, set ı D 2�2dj and define

F D F`;j D

[
0�k<d.b�a/=ıe

¹aC kı;�b C kıº:

The set F`;j has cardinality d3 � 2`e � 2`
C

. For every differentiable function G W I ! C
we have, by the fundamental theorem of calculus,

sup
�2I

jG.�/j � kGk`2.F/ C ı

ˆ 1

0

kG0.�C tı/k`2�.F/ dt:

Using this with
G.�/ D Ls;˛Œˆ

[
j;��.D/f .x/

we bound (7.7) by� X
j�"�1

1
s

X
�2F`;j




 sup
˛2As

jLs;˛Œˆ
[
j;��.D/f j




2
`2.Zn/

�1=2
C

ˆ 1

0

� X
j�"�1

1
s

X
�2F`;j

2�4dj



 sup
˛2As

jLs;˛Œ@�ˆ
[
j;�C2�2dj t

�.D/f j



2
`2.Zn/

�1=2
dt:

Applying Lemma 7.1, we see that (7.7) is � A2�
skf k`2.Zn/ with

A2 . sup
j�j�1

X
j�"�1

1
s

X
�2F`;j

jˆ[j;�.�/j
2

C sup
j�j�1

sup
t2Œ0;1�

X
j�"�1

1
s

X
�2F`;j

2�4dj j@�ˆ
[
j;�C2�2dj t

.�/j2:

To show that A . 1 we will use the following estimates. Let j � 1 and j�j � 2`�2dj . If
` � 0, then for all N � 0,

jˆ[j;�.�/j C 2
�2dj
j@�ˆ

[
j;�.�/j .N 2�`n=21j�j�2`�j C 2

�`N 2j j�j1j�j.2`�j

C .2j j�j/�N 1j�j&2`�j :
(7.11)

If ` < 0, then for all N � 0,

jˆ[j;�.�/j C 2
�2dj
j@�ˆ

[
j;�.�/j .N min.2j j�j; .2j j�j/�N /: (7.12)

These estimates imply that A . 1. Both estimates follow from direct computation
using the definitions. We indicate some of the details for the term ˆ[j;�.�/; the term
2�2dj @�ˆ

[
j;�.�/ satisfies the same estimates and is handled in the same way. First suppose
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that `� 0. If j�j � 2`�j , we use van der Corput’s lemma, which gives j ĵ;�.�/j. 2�`n=2.
Moreover, j ĵ;�.0/j.N 2�`N for allN � 0 using integration by parts. If j�j& 2`�j , then
integration by parts gives j ĵ;�.�/j .N .2j j�j/�N for all N � 0. Also using rapid decay
of the Schwartz function b#j�` we obtain the claim. If j�j . 2`�j , we use ˆ[j;�.0/ D 0,
the mean value theorem and the estimate jrˆ[j;�.�/j .N 2j 2�`N . It remains to con-
sider (7.12). Suppose that ` < 0. If j�j . 2�j , we argue in the same way as before using
the mean value theorem. If j�j & 2�j , integration by parts and rapid decay of b#j give
jˆ[j;�.�/j .N .2j j�j/�N as required.

7.3. The low frequency case: ` 2 L3

The third summand in (7.5) can be written as


 sup
˛2As

sup
j�j�2�C0s

ˇ̌̌ X
J��j�JC;�

X
ˇ2Bs.˛/\Œ0;1/n

S.˛; ˇ/e.x � ˇ/F �1Rn Œ ĵ;� � �s�

�M�ˇf .x/
ˇ̌̌ 



`2x.Zn/

; (7.13)

where J� D "�11 s and JC;� is the largest integer j such that �22dj < 2�C1sC1. By the
triangle inequality, the previous display is

. 2.nC1/s



 sup
j�j�2�C0s

�� � jf j




`2x.Zn/

C




 sup
˛2As

sup
J�J�

ˇ̌̌
Ls;˛

h X
J��j�J

cKj i.D/f ˇ̌̌ 



`2.Zn/

; (7.14)

where �� D je�� �Rn F �1Rn .�s/j and

e��.y/ D X
J��j�JC;�

�
F �1Rn Œ ĵ;��.y/ �Kj .�y/

�
D

X
J��j�JC;�

.e.�jyj2d / � 1/Kj .�y/:

Using the definition of JC;� we obtain �� � jf j . 2�C1sMHLf , where MHL denotes the
discrete Hardy–Littlewood maximal function. If we choose C1 > nC 1, this takes care of
the first term in (7.14), while the second term is handled by an application of Lemma 7.2
(setting Kj D 0 for 0 � j < J�).

7.4. Proof of Lemma 7.1

By (3.12),
Ls;˛Œm� �.D/f D Ls;˛Œ1�.D/

�
L ]
s Œm� �.D/f

�
:

From Proposition 3.3 we obtain 
 > 0 such that for every � 2 I and s � 1,


sup
˛2R
jLs;˛Œm� �.D/f .x/j





`2x.Zn/

.d;n 2�
skL ]
s Œm� �.D/f k`2.Zn/:
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Using (3.11) and Parseval’s identity, we get

kL ]
s Œm� �.D/f k

2
`2.Zn/ D

ˆ
Œ0;1�n

ˇ̌̌ X
ˇ2B

]
s

m�.� � ˇ/z�s.� � ˇ/bf .�/ˇ̌̌2 d�:
Summing over � 2 I and using disjointness of the supports of the functions z�s.� � ˇ/ for
different ˇ we have

kL ]
s Œm� �.D/f .x/k

2

`2x;�.Zn�I/
D

ˆ
Œ0;1�n

X
�2I

X
ˇ2B

]
s

jm�.� � ˇ/z�s.� � ˇ/bf .�/j2 d�
�

�
sup

�2Œ0;1�n

X
�2I

X
ˇ2B

]
s

jm�.� � ˇ/z�s.� � ˇ/j
2
�
kf k2

`2.Zn/;

which by definition of z�s (and disjointness again) is

�

�
sup
j�j�1

X
�2I

jm�.�/j
2
�
kf k2

`2.Zn/:

7.5. Proof of Lemma 7.2

From the assumptions we have the standard estimate

jcKj .�/j . min.2j j�j; .2j j�j/�1/ (7.15)

for all � 2 Rn and j � 1. We distinguish two cases: either J � 2Cs or J > 2Cs . Here C
is a large constant (to be determined).

Case I: J � 2Cs . Using the numerical inequality (2.3), we bound jLs;˛Œ
1K0;J �.D/f .x/j

by
p
2
X
l�Cs

� X
��2Cs�l

jLs;˛Œ
5
K�2l ;.�C1/2l �.D/f .x/j2

�1=2
plus

jLs;˛ŒcK1�.D/f .x/j:

By Lemma 7.1 the maximal operator associated with the second term has `2 ! `2 oper-
ator norm . 2�
s as required. Hence, it remains to estimate� X

��2Cs�l




 sup
˛2As

jLs;˛Œ
5
K�2l ;.�C1/2l �.D/f .x/j




2
`2x.Zn/

�1=2
for every fixed l � Cs. By Lemma 7.1 this quantity is

. 2�
s sup
j�j�1

� X
��2Cs�l

j
5
K�2l ;.�C1/2l .�/j2

�1=2
kf k`2.Zn/;

which in turn is . 2�
skf k`2.Zn/ by (7.15). This concludes the proof for Case I.
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Case II: J > 2Cs . Here we will exploit the enormous magnitude of the spatial scale J .
The argument is vaguely similar to the proof of Cotlar’s inequality for maximally
truncated Calderón–Zygmund operators. By subtracting a Calderón–Zygmund operator
(leading to a term that no longer involves a supremum over J and is handled directly by
Lemma 7.1) it suffices to consider


 sup

˛2As

sup
J�2Cs

jLs;˛Œ
1KJ;1�.D/f j





`2.Zn/

: (7.16)

Let ' denote a nonnegative Schwartz function on Rn with suppb' � ¹j�j � 1=2º and´
' D 1. Write

'j .x/ D 2
�jn'.2�jx/:

We claim that it suffices to estimate


 sup
˛2As

sup
J�2Cs

jLs;˛Œc'J bK�.D/f j




`2.Zn/

: (7.17)

where K DK0;1. To see this we consider


 sup
˛2As

sup
J�2Cs

jLs;˛Œ
1KJ;1

�c'J bK�.D/f j




`2.Zn/

: (7.18)

This is majorized by


 sup
˛2As

jLs;˛Œ
1KJ;1

�c'J bK�.D/f j




`2
x;J

.Zn�N0/
;

which by Lemma 7.1 is

. 2�
s sup
j�j�1

�X
J�1

j
1KJ;1.�/ �c'J .�/ bK.�/j2

�1=2
kf k`2.Zn/:

From (7.15) and the definition of ' one derives

j
1KJ;1.�/ �c'J .�/bK.�/j . min.2J j�j; .2J j�j/�1/;

which concludes the proof of the claim. Thus it remains to bound (7.17). Using (7.1) and
band-limitedness of ' we write

Ls;˛Œc'J bK�.D/f .x/ D
X

ˇ2Bs.˛/\Œ0;1/n

S.˛; ˇ/e.x � ˇ/.'J �Ks �M�ˇf /.x/;

where the convolutions are in Zn and Ks D F �1Rn .
bK � �s/.

Denote the least common multiple of all integers in the interval Œ2s�1; 2s� by Qs . By
choosing C large enough we may achieve that if J � 2Cs , then

2J � Q100n
s :
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Then Qs is small compared with the spatial scale of 'J and this allows us to compare
(7.17) favorably with the averaged version�

1

Qn
s

X
u2ŒQs �n




 sup
˛2As

sup
j�1

ˇ̌̌ X
ˇ2Bs.˛/\Œ0;1/n

S.˛; ˇ/e.x � ˇ/.'J �Ks

�M�ˇf /.x � u/
ˇ̌̌


2
`2x.Zn/

�1=2
: (7.19)

The resulting difference term can be handled by the mean value theorem and using the
inequality 2J � Q100n

s . More specifically, given u 2 ŒQs�n we brutally estimate


 sup
˛2As

sup
J�2Cs

ˇ̌̌ X
ˇ2Bs.˛/\Œ0;1/n

S.˛; ˇ/e.x � ˇ/
�
.'J �Ks �M�ˇf /.x/

� .'J �Ks �M�ˇf /.x � u/
�ˇ̌̌




`2x.Zn/
:

. 2.nC1/s sup
ˇ2Œ0;1/n




 sup
J�2Cs

j.'J � 'J .� � u// �Ks �M�ˇf j




`2.Zn/

:

Since juj2�J � Q�100nC1s � 2�.100nC1/s , the previous display is (say)

. 2�10s sup
ˇ2Œ0;1/n

kMHL.Ks �M�ˇf /k`2.Zn/ . 2�10skf k`2.Zn/;

where MHL denotes the discrete Hardy–Littlewood maximal function.
It now remains to estimate (7.19). Expanding the `2 norm and changing variables

x 7! x C u we write the square of (7.19) as

1

Qn
s

X
u2ŒQs �n

X
x2Zn

sup
˛2As

sup
j�1

ˇ̌̌ X
ˇ2Bs.˛/\Œ0;1/n

S.˛;ˇ/e..xC u/ �ˇ/.'J �Ks �M�ˇf /.x/
ˇ̌̌2
:

By changing variables u 7! v � x and using periodicity (Qs is divisible by the denomin-
ator of ˇ for all ˇ 2 B

]
s ) this becomes

1

Qn
s

X
v2ŒQs �n

X
x2Zn

sup
˛2As

sup
j�1

ˇ̌̌ X
ˇ2Bs.˛/\Œ0;1/n

S.˛; ˇ/e.v � ˇ/.'J �Ks �M�ˇf /.x/
ˇ̌̌2
:

After having decoupled v and x we arrive at the pointwise estimate

sup
˛2As

sup
j�1

ˇ̌̌
'J �

X
ˇ2Bs.˛/\Œ0;1/n

S.˛; ˇ/e.v � ˇ/.Ks �M�ˇf /
ˇ̌̌

. MHL

�
sup
˛2As

ˇ̌̌ X
ˇ2Bs.˛/\Œ0;1/n

S.˛; ˇ/e.v � ˇ/.Ks �M�ˇf /
ˇ̌̌�
:

Applying the `2 bound for MHL, changing variables back v 7! u C x and using
Lemma 7.1 finishes the estimate.
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