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Abstract. The emergence of long range order at low temperatures in atomistic systems with con-
tinuous symmetry is a fundamental, yet poorly understood phenomenon in physics. To address
this challenge we study a discrete microscopic model for an elastic crystal with dislocations in
three dimensions, previously introduced by Ariza and Ortiz. The model is rich enough to support
some realistic features of three-dimensional dislocation theory, most notably grains and the Read–
Shockley law for grain boundaries, which we rigorously derive in a simple, explicit geometry. We
analyze the model at positive temperatures, in terms of a Gibbs distribution with energy function
given by the Ariza–Ortiz Hamiltonian plus a contribution from the dislocation cores. Our main
result is that the model exhibits long range positional order at low temperatures. The proof is based
on the tools of discrete exterior calculus, together with cluster expansion techniques.

Keywords. Ariza–Ortiz model, dislocations, grain boundaries, Read–Shockley law, exterior
discrete calculus, cluster expansion

1. Introduction

The derivation of the low temperature properties of crystalline solids, starting from a
microscopic, atomistic, model, represents a formidable challenge for both theoreticians
and practitioners. Realistic atomistic models for solids are characterized by the invari-
ance under the Euclidean symmetries of translations and rotations, which are supposedly
broken at low temperatures, as the very existence of crystals in nature witnesses. Unfor-
tunately, from a mathematical point of view, our understanding of the phenomenon of
continuous symmetry breaking is still quite limited and, as a consequence, the mathemat-
ical theory of crystalline solids is still in a primitive stage. Even at zero temperature, there
are only limited results on the ground state structure of the system: in particular, there are
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only few, highly simplified, atomistic models for which one can rigorously prove that the
ground state is periodic [8, 12, 14, 41]. Even less is known at positive temperatures where
most rigorous results are restricted to lattice systems, e.g. [1,20,25]. A notable exception
is [5] which establishes the existence of orientational order in a particle system without
lattice structure.

Heuristically, we expect that the low energy physics of crystalline materials is dom-
inated by dislocations defects, which interact among each other via an electrostatic-like
interaction, and by the formation of grains, which correspond to portions of the crys-
tal with some fixed rotation relative to a background orientation. The grain boundaries
are collections of dislocations that are geometrically necessary to connect differently ori-
ented lattices. Remarkably, even though isolated dislocations interact among each other
via a Coulomb-like interaction, the energy of a grain appears to scale like the size of its
boundary. For a recent mathematical account of this phenomenon, see [31].

There is significant literature on continuum theories for dislocations; see [26] for a
starting point. Typically dislocations are represented as closed loops, and the energy of a
single dislocation loop is proportional to its length [23]. Discrete dislocation line dynam-
ics represent a very popular simulation technique for studying plasticity since the early
1990s; see e.g. [10] and [27] for a recent account of mathematical results. Continuum
models for dislocation configurations have been studied successfully within the frame-
work of �-convergence; see e.g. [11, 21–23]. However, very few results are available
on the microscopic derivation of effective continuum theories for dislocations or grain
boundaries [13, 31].

Note that macroscopic effects like plasticity or grain boundary motion are strongly
temperature dependent; therefore, it is of particular interest to develop a thermal theory of
dislocations, including an equilibrium theory based on the Gibbs distribution.

In this paper, we consider a simple atomistic model for crystalline solids, previously
introduced by Ariza and Ortiz [2]. The Ariza–Ortiz model, even if highly simplified, pos-
sesses some realistic features expected in real solids, which make it a good starting point
for a quantitative understanding of the effects of dislocations and of the formation of
grain boundaries. In particular, it has been used to perform discrete dislocation calcula-
tions of defects and grain boundaries in graphene [3, 4, 33]. The Ariza–Ortiz model is
a discrete model where the interaction energy depends not only on the positions of the
particles, but also on the bond structure; see (2.3) below for its precise definition. The
model shares some analogies with the Villain model for rotators, in that the energy satis-
fies an exact additive decomposition property, which allows us to distinguish clearly the
elastic (‘spin wave’) degrees of freedom, and those associated with dislocation defects;
see also [30, 36, 42]. The simplicity of the model allows us to derive sharp estimates on
the energy of the grains, on the one hand, and to rigorously characterize key properties of
the equilibrium distribution of dislocations at positive temperatures, on the other.

Concerning the kinematics of the Ariza–Ortiz model, we confirm that it supports poly-
crystalline configuration with energy cost bounded from above by the size of the grain
boundary (Theorem 3.2). We also derive sharp asymptotic bounds, albeit in a simpler
two-dimensional setting (Theorem 3.3). Our results confirm that the energy density of
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grain boundaries for small angles is consistent with the Read–Shockley law [38]


.�/ D �.c0 � c1 log �/C o.�/; 0 < � � 1; (1.1)

where 
.�/ > 0 is the grain boundary energy density and � is the orientation difference.
See also [31], where the authors establish an upper bound consistent with the Read–
Shockley law.

Concerning positive temperatures, we introduce a Gibbs distribution with energy func-
tion given by the Ariza–Ortiz Hamiltonian plus a contribution from the dislocation cores.
Our main result is that for low temperatures the system exhibits positional long range
order (Theorem 3.1). In particular, this implies that polycrystalline configurations have
low probability. To the best knowledge of the authors these are the first rigorous res-
ults on dislocations configurations at positive temperature in a microscopic, atomistic,
model. See also [6], where similar results have been recently obtained in the context of a
related mesoscopic model for crystalline solids. The proof of long range order is based on
the strategy developed in [19, 29] for the three-dimensional XY model and other lattice
models with Abelian continuous symmetry. The key steps consist in: first, a reduction
of the model to an effective model for the dislocation defects, interacting via a tensorial
analogue of the electrostatic force; second, a cluster expansion treatment of the latter. The
computation of the Green function characterizing the effective interaction among dislo-
cations requires some care, in that the derivation must be compatible with the underlying
symmetries of the system, most notably linearized rotational symmetry. This is the key
novel feature of the Ariza–Ortiz model, compared to other ‘scalar’ models treated pre-
viously. In this part, we take advantage of the tools of exterior discrete calculus, some
aspects of which we briefly review below, for the reader’s convenience.

The paper is organized as follows. In Sect. 2 we define the Ariza–Ortiz model and
discuss its symmetries. In Sect. 3 we state our main results, first on the existence of long
range order at positive, low enough, temperatures, then on the energy scaling of grains and
grain boundaries. In Sect. 4 we review a few selected aspects of exterior discrete calculus,
required in the proofs of our main results. In Sect. 5, we prove Theorem 3.1 on long-range
positional order. In Sect. 6, we prove Theorem 3.3 on the asymptotic computation of the
energy of a grain and derive the Read–Shockley law. Finally, in the appendices we collect
a few technical results, including the explicit definition of the lattice cellular complex for
the face-centered cubic lattice, and the asymptotic computation of the correlation decay
in the ‘spin wave approximation’.

2. The Ariza–Ortiz model

Let L � R3 be the face-centered cubic (FCC) lattice, i.e. L D ¹n1b1 C n2b2 C n3b3 W

n 2 Z3º where

b1 D
1
p
2

0@01
1

1A ; b2 D
1
p
2

0@10
1

1A ; b3 D
1
p
2

0@11
0

1A ; (2.1)
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and let

ƒ D ƒ.N/ D ¹n1b1 C n2b2 C n3b3 W ni D b�N=2C 1c; : : : ; bN=2c; i D 1; 2; 3º � L

(2.2)
be a finite box. We will write x � y if x; y 2 L are nearest neighbors, i.e. jx � yj D 1.
Note that each lattice point x has exactly twelve nearest neighbors and x � y if and only
if y D x ˙ bl with l 2 ¹1; : : : ; 6º and b1; b2; b3 as in (2.1), b4 WD b3 � b2, b5 WD b1 � b3,
b6 WD b2 � b1. The Hamiltonian is a quadratic form acting on pairs .u; �/,

HAO.u; �/ D
1

2

X
x�y

Œ.u.y/ � u.x/ � �.x; y// � .y � x/�2: (2.3)

where the displacement u WL!R3 satisfies Dirichlet boundary conditions onƒ, u.x/D0
if x 62ƒ; � W ¹.x;y/ 2L2 W x � yº!L assigns a lattice-valued slip to each nearest neigh-
bor pair .x;y/ and it also satisfies Dirichlet boundary conditions onƒ, that is, �.x;y/D 0
if x; y 62 ƒ. We assume that �.x; y/ D ��.y; x/, so that the energy associated with a
nearest neighbor pair .x; y/ is independent of the orientation. Moreover, we let

P
x�y

be the sum over the unordered pairs of nearest neighbor sites. The interpretation of � is
that it accounts for crystallographic slip where atoms are being displaced in the direction
of the Burger vector across the slip plane. The deformed configuration is given by the
collection of points x C u.x/ with x 2 ƒ. The functional HAO accounts for the elastic
energy which is caused by the displacement u in the presence of the slip field � . It should
be interpreted as the quadratic approximation of a more complex, non-linear energy. The
model has been introduced in [2], which we refer to for details about its microscopic inter-
pretation. See also Appendix A for a heuristic derivation of the model and a discussion
about its microscopic meaning.

Note that we study the Ariza–Ortiz model in setting of the FCC lattice because it rep-
resents the only simple three-dimensional lattice, involving only nearest neighbor interac-
tions, satisfying a rigidity estimate à la Korn, that is,

P
x�y Œ.u.x/ � u.y// � .x � y/�

2 &P
x�y ju.x/ � u.y/j

2 (see (5.13) below).

2.1. Symmetries of the Ariza–Ortiz model

Consider the infinite volume version of the Ariza–Ortiz energy (2.3), obtained by assum-
ing that u and � , rather than satisfying Dirichlet boundary conditions on ƒ, decay suf-
ficiently fast at infinity so that the infinite sum involved in the definition of the energy
makes sense. Such infinite volume Ariza–Ortiz energy is invariant under three different
types of symmetry transformations:

1. Translations: u 7! uC � where � 2 R3 is a constant vector.

2. Linearized rotations: u 7! uC s where s.x/D Sx and S 2R3�3 is a skew symmetric
matrix.

3. Gauge invariance: .u; �/ 7! .u C v; � C dv/ where v W L ! L and dv.x; y/ WD
v.y/ � v.x/.
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The presence of the first and third symmetry is a direct consequence of the ‘gradient
structure’ of the Ariza–Ortiz energy, that is, of the fact that it depends on u; � only upon
the combination du � � . Invariance under linearized rotations is an approximation of the
invariance under rotations: u.x/ 7!R.xC u.x//� x for allR 2 SO.3/. The invariance of
the Ariza–Ortiz energy under linearized rotations is a consequence of the observation that
.du.x; y/C S .y � x// � .y � x/D du.x; y/ � .y � x/ for any skew-symmetric matrix S .
Previously studied models such as the Villain XY model (see, e.g., [18,19]), are invariant
under the analogues of the first and the third symmetries, but in that context there is no
analogue of the second symmetry, which is, instead, a distinctive feature of microscopic
models of elasticity. There are significant consequences resulting from the invariance of
linearized rotation, most notably the existence of grains (cf. Theorem 3.2).

Note that, in a finite box ƒ with Dirichlet boundary conditions, the first and second
symmetries are broken. On the contrary, the third symmetry is also present in finite
volume, provided that v is chosen to satisfy Dirichlet boundary conditions like u. Physic-
ally, gauge invariance corresponds to the possibility of conveniently re-labeling the atoms
and, correspondingly, of re-defining the nearest neighbors, without any energy cost. Math-
ematically, gauge invariance implies that the energy only depends on the dislocation part
of � , defined in the following section.

3. Main results: Long range order and grain boundaries

3.1. Existence of long range order

Before defining the Boltzmann–Gibbs distribution we recall from Sect. 2.1 the notation
du.x; y/ D u.y/ � u.x/ and that the Ariza–Ortiz energy with Dirichlet boundary condi-
tions on ƒ is gauge invariant in the sense that

HAO.uC v; � C dv/ D HAO.u; �/

for each v W L ! L that satisfies Dirichlet boundary conditions on ƒ. To remove this
degeneracy we say that two slip fields � and � 0 are equivalent if d� D d� 0 with

d� W ¹.x1; x2; x3/ 2 L3
W x1 � x2 � x3 � x1º ! L;

d�.x1; x2; x3/ D �.x1; x2/C �.x2; x3/C �.x3; x1/:

The function q D d� is called the dislocation part of � . Note that if � satisfies Dirichlet
boundary conditions, then also q does, i.e., q.x1; x2; x3/ D 0 for x1; x2; x3 2 ƒc . A dis-
cussion of the link between slip fields without dislocations (d� D 0) and the existence of
v W L! R3 such that dv D � can be found in Sect. 4.

The field d� assigns to each triangular face f , identified with a 3-cycle of nearest
neighbor sites, a current flowing orthogonally to f , in the direction induced by the orienta-
tion of f . Typically qD d� is decomposed into a sum of dislocation lines, i.e., qD

P
j qj ,

where the supports of the qj are the maximal connected components of supp q. Each of
these qj can be thought of as a current loop. It will be shown in Sect. 4 that dq D 0, where
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dq is the discrete analogue of the curl of q: it is a function defined on the elementary cells
of L that, on each cell, equals the sum of the values of q on the faces of the cell, with
the appropriate orientation. In terms of the current loop representation of q, this curl-free
condition means that the current loops are closed.

Denoting by � the set of representatives of non-equivalent slip fields satisfying Dirich-
let boundary conditions (i.e., vanishing on edges contained in ƒc), we are now in a
position to define the expectation of a gauge-invariant observable ' (i.e., '.u; �/ D
'.u C v; � C dv/ for any v W L! L supported in ƒ) with respect to the Boltzmann–
Gibbs distribution by

Eˇ;ƒ.'/ D
1

Zˇ;ƒ

X
�2�

Z
du e�ˇ .HAO.u;�/CW.d�// '.u; �/ (3.1)

with
Zˇ;ƒ D

X
�2�

Z
du e�ˇ .HAO.u;�/CW.d�//;

and the integral is over R3jƒj (recall that u.x/ 2 R3 for x 2 L, and u.x/ � 0 if x 2 ƒc).
The function W represents the energy contribution of the dislocation cores and has the
form

W.q/ D
X
f

w.q.f //; (3.2)

where w is even and the sum runs over the unordered set of faces of L (i.e., the set of
3-cycles of nearest neighbor sites in L, modulo their orientation). We assume that

w.q.f // � w0jq.f /j
2

for some positive constant w0. We remark that the purely additive structure of the core
energy, (3.2), is assumed here just for simplicity: our proofs could be adapted to the case
of correlated energies, provided their correlation decays to zero sufficiently fast at large
distances, but we prefer to stick to the assumption of exact additivity here, in order to keep
technicalities to a minimum.

Note that the condition that ', like HAO, is invariant under gauge transformations is a
natural requirement: essentially, we are saying that slip fields differing by exact forms are
physically indistinguishable.

We will be specifically interested in the following observables: for x; y 2 L and
v0 2 L� (the dual of L, whose basis vectors m1; m2; m3 are defined by the conditions
bi �mj D 2�ıi;j , see (C.1)), we let

'v0Ix.u/ D cos.u.x/ � v0/;

and we let
'v0Ix;y.u/ D cos..u.y/ � u.x// � v0/

be the corresponding two-point observable. It is apparent that both 'v0Ix.u/ and
'v0Ix;y.u/ are gauge-invariant, thanks to the condition that v0 2 L�. The one-point
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observable 'v0Ix is appropriate for testing the breaking of translational symmetry (i.e.,
of symmetry 1 in Sect. 2.1) in the presence of Dirichlet boundary conditions: in fact,
it is peaked at u.x/ D 0 mod L (in particular, it is not invariant under translations
u.x/ 7! u.x/ C � ), and it has zero average under translations of u.x/. Similarly, the
corresponding two-point observable 'v0Ix;y is appropriate for testing the existence of pos-
itional long range order.

We define the expectations

cˇ;ƒ.v0I x/ WD Eˇ;ƒ.cos.u.x/ � v0//;

cˇ;ƒ.v0I x; y/ WD Eˇ;ƒ.cos..u.y/ � u.x// � v0//:
(3.3)

We are interested in taking the thermodynamic limitƒ!L, which, for boxesƒDƒ.N/

as in (2.2), simply means the limit N !1.

Theorem 3.1. Let v0 2 L�. There are positive constants C; ˇ0; r0; which do not depend
on x; y or ˇ, such that if ˇ > ˇ0 and jx � yj > r0, then

lim inf
ƒ!L

cˇ;ƒ.v0I x/ � e�C=ˇ ;

lim inf
ƒ!L

cˇ;ƒ.v0I x; y/ � e�C=ˇ :
(3.4)

Conditions (3.4) establish the existence of translational symmetry breaking and long
range positional order in the three-dimensional setting; in particular, the first equation
implies that, for ˇ large enough, the weak limit as ƒ ! L of the Gibbs state Eˇ;ƒ
breaks the translational symmetry u.x/ 7! u.x/C � . Conversely, at small enough ˇ, it
is expected that the limiting Gibbs state is invariant under such translational symmetry,
that cˇ;ƒ.v0I x/ decays exponentially to zero in the distance dist.x; ƒc/ as ƒ! L, and
that lim infƒ!L cˇ;ƒ.v0Ix; y/ decays exponentially to zero as jx � yj ! 1, because of
the screening phenomenon [9], but this remains to be proved for the Ariza–Ortiz model.
The limiting value lim infƒ!L cˇ;ƒ.v0I x/, which passes from being positive at large ˇ
to being (at least conjecturally) identically zero at low ˇ, has the interpretation of order
parameter for positional order.

The reason why we write lim infƒ!L rather than limƒ!L in (3.4) is that a priori we
do not know whether the limit exists: our system is of Coulomb type and the standard the-
ory of the existence of the thermodynamic limit does not apply directly. There are several
results in the literature about the existence of the thermodynamic limit of Coulomb sys-
tems in 3D, but they do not apply literally to our case (see e.g. [16,32] and the review [9]
and references therein). It is likely that they could be adapted to our context as well, but
this is beyond the scope of our paper.

Theorem 3.1 is a consequence of Theorem 5.1 which is stated with proof in Section 5.
Theorem 5.1 and its proof provide a more detailed estimate than (3.4): in particular, they
show that both cˇ;ƒ.v0I x/ and cˇ;ƒ.v0I x; y/ factor exactly into the product of two con-
tributions, one associated with a Gaussian average (the ‘spin wave contribution’) and
one associated with an effective theory for the dislocation cores. The first contribution is
explicit, and asymptotically equal, asƒ!L and jx � yj!1, to e�C0=.2ˇ/ resp. e�C0=ˇ
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for the one-point resp. two-point observable, with an explicit constant C0. The second is
bounded via cluster expansion and the use of Jensen’s inequality, following the strategy
of [19, 29], and leads to an exponentially small correction to the spin wave contribution.
Note that the assumption d D 3 plays a key role both in the computation of the spin wave
contribution (Section 5.1) and in the estimate of the correction due to the dislocation cores
(Section 5.2).

Theorem 3.1 is analogous to [6, Theorem 3], which, however, refers to long range
orientational order in a mesoscopic model for a solid with dislocations. An important dif-
ference between our setting and the one in [6] concerns the modeling part. While our
model, even though simplified, has a direct microscopic interpretation, theirs involves an
auxiliary set of currents, whose microscopic interpretation is not immediate. It is likely
that the model in [6] could be obtained starting from a more fundamental atomistic one,
via a suitable coarse graining procedure. It would be very interesting to substantiate this
expectation by rigorous results. From a technical point of view, the tensorial structure of
the Ariza–Ortiz Hamiltonian on the FCC lattice introduces some extra difficulties, com-
pared to [6], in the reduction to an effective model of dislocations and in the treatment
thereof, which we solve thanks to the tools of discrete exterior calculus, reviewed below.
On the other hand, the general strategy of our proof is analogous to that in [6], in that both
rely on the ideas of [19, 29].

If the dimension is 1 or 2 then the existence of long range positional order is pre-
vented by the Mermin–Wagner theorem [34, 35] (see also [17, 28, 37, 39]). However, the
Mermin–Wagner theorem does not prevent the possibility of having orientational order
in two dimensions; actually, spin wave theory suggests that orientational order should be
present in two dimensions [34]. It is not a priori clear, not even heuristically or intuitively,
whether the presence of dislocations, and in particular of grains, can destroy the predic-
tion based on spin wave theory. Therefore, it would be extremely interesting to prove or
disprove the existence of long range orientational order in a concrete atomistic model for
a two-dimensional elastic crystal with dislocation. Probably, the simplest such model is
the analogue of the model studied in this paper, in a two-dimensional setting (e.g., when
the 3D FCC lattice is replaced by the 2D triangular lattice). We expect that the methods
developed in [18] for the study of the Kosterlitz–Thouless transition in the 2D Villain
rotator model may be adapted to such a case. We plan to come back to this problem in a
future publication.

3.2. Energy scaling of grains

An important question which cuts to the core of the crystal problem is whether the Ariza–
Ortiz model accounts for structures such as grain boundaries. Grains only exist because
of the additional symmetry of atomistic systems: (linearized) rotational symmetry, some-
times also referred to as ‘objectivity’. More precisely, let S 2 R3�3 be a skew-symmetric
matrix and G � L be the location of the grain, which we assume to be simply connec-
ted and bounded. We say that a pair .u; �/, with u W L! R3 a displacement field and
� W E1 ! L a lattice-valued slip field (here E1 is the set of nearest neighbor pairs of L
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and �.x; y/ is assumed to be odd under the orientation flip .x; y/ 7! .y; x/) supports a
perfect grain G with orientation S if it is gauge equivalent to a configuration .u0; � 0/ such
that

u0.x/ � u0.y/ D

´
S.x � y/ if ¹x; yº � G ;

0 if ¹x; yº � G c ;
(3.5)

� 0.x; y/ D 0 if x � y and either ¹x; yº � G or ¹x; yº � G c : (3.6)

We say that .u0; � 0/ is gauge equivalent to .u; �/ if .u0; � 0/ D .uC v; � C dv/ for some
lattice-valued function v (see Sect. 2.1). Note that (3.5)–(3.6) do not impose any constraint
on the nearest neighbor bonds .x; y/ such that x 2 G and y 2 G c , or vice versa. For later
reference, we denote this set of bonds by Eb

1.G / (‘b’ for ‘boundary’):

Eb
1.G / D ¹.x; x

0/ 2 E1 W ¹x; x
0
º \ G ¤ ; and ¹x; x0º \ G c ¤ ;º;

and we let jEb
1.G /j denote the number of elements of Eb

1.G / modulo orientation. It is not
obvious from the outset whether a pair .u;�/ supporting a perfect grain G with orientation
S can be chosen such that the associated energy is smaller than the volume of G . For
example, the pair .uS ; 0/ with

uS .x/ D

´
Sx C � if x 2 G ;

0 else;
(3.7)

clearly supports a perfect grain G with orientation S , for any fixed � 2 R3. However, it
can be easily checked that min� HAO.uS ; 0/ � jE

b
1.G /jdiam.G /2 & jG j4=3 if jG j is large.

The fact that the energy HAO.uS ; 0/ is larger than jG j is a consequence of the discon-
tinuity across the boundary of G . However, one should not conclude from this that the
‘optimal grain energy’ scales more than extensively: on the contrary, it is remarkable that,
for large grains, it scales proportionally to the size of the grain boundary Eb

1.G /, as sum-
marized in Theorem 3.2 below. Of course, before formulating our result, we first need to
clarify what we mean by ‘optimal grain energy’. Let us remark that there is no unique,
well-established, notion of grain energy at a microscopic level. In fact, such a notion is
well-defined at the mesoscopic level, in which case it is related to the distribution of dis-
locations at the boundary of the grain, and is known to scale proportionally to the grain
boundary (see e.g. [40]). Here we propose a microscopic definition thereof, which we
expect to reduce to the usual mesoscopic definition in an appropriate scaling limit. A rig-
orous connection of our microscopic definition with the continuum one is an interesting
open problem, which goes beyond the purposes of this paper.

We let the optimal grain energy be defined as

EG .S/ WD lim inf
ƒ!L

lim
�!0C

inf
�2M

.�/
S
.G /

inf
u
HAO.u; �/; (3.8)

where M
.�/
S .G / is the set of �-minimizers of HAO.uS ; �/, with uS as in (3.7), over the

slip fields compatible with the grain G : more explicitly, M
.�/
S .G / is the set of lattice-

valued slip fields � such that there exists � (see (3.7)) for which �; � realize the infimum
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of inf� inf�� HAO.uS ; �/ within a precision �, where the � on inf�� indicates the constraint
supp� �Eb1 .G /. We are ready to state the basic bound on EG .S/, showing, as anticipated
above, that the optimal grain energy scales like the grain boundary for large grains.

Theorem 3.2. For any skew-symmetric matrix S 2 R3�3 and any bounded connected
set G ,

EG .S/ � 6 jE
b
1.G /j: (3.9)

It is very likely that our upper bound can be improved, i.e., it is not sharp. In fact, the
construction of matching upper and lower bounds in the limit of a large grain constitutes
an interesting mathematical problem.

Proof of Theorem 3.2. In order to prove the theorem, we will construct a lattice-valued
slip field �S supported onEb

1.G / such thatHAO.uS ; �S /� 6jE
b
1.G /j, where uS is defined

as in (3.7), with � D 0. We first determine slip amplitudes �.l;n/ 2R such that the matrix S
can be decomposed into simple slip systems, i.e.

S D
X
.l;n/

�.l;n/ bl ˝mn (3.10)

with the convention that bl 2 L are the slip vectors and mn 2 L� are the slip plane
normals. The standard 12 slip systems of the FCC lattice are

.l; n/ 2 ¹.1; 2/; .1; 3/; .2; 1/; .2; 3/; .3; 1/; .3; 2/; .4; 1/; .4; 4/; .5; 2/; .5; 4/; .6; 3/; .6; 4/º;

where b1; : : : ; b6 are the nearest neighbor vectors of the FCC lattice introduced at the
beginning of Sect. 2, m1; m2; m3 are the basis vectors of L� (see (C.1)), and m4 D
m1 Cm2 Cm3. A simple calculation delivers the following solution of (3.10):

S D
1

4�

�
S12 Œb3 ˝ .m1 �m2/C b6 ˝ .m3 Cm4/�

C S13Œ.b2 ˝ .m1 �m3/ � b5 ˝ .m2 Cm4/�

C S23Œb1 ˝ .m2 �m3/C b4 ˝ .m1 Cm4/�
�
:

Once the slip amplitudes �.l;n/ are fixed, we let

�S .x; y/ D ��S .y; x/ WD �
X
.l;n/

bl b�.l;n/ x �mnc if x � y with x 2 G and y 62 G ;

and �S .x; y/ D 0 otherwise.
Let us now compute HAO.uS ; �S /. We partition the set E1 into three groups:

E1 D E
i
1.G / [E

o
1.G / [E

b
1.G /;

where E i
1.G / is the set of bonds inside G , while Eo

1.G / is the set of bonds outside G . The
partition of E1 induces a decomposition of the energy,

HAO.uS ; �S / D H
inside
AO .uS ; 0/CH

outside
AO .uS ; 0/CH

boundary
AO .uS ; �S /;
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where we use the fact that �S is zero on E i
1 [ E

o
1. Now, recalling that duS .x; y/ D

S.x � y/ for .x; y/ 2 E i
1, we find H inside

AO .uS ; 0/ D 0, by the invariance under linearized
rotations. Moreover, H outside

AO .uS ; 0/ D 0, simply because uS .x/ D 0 for x 2 G c . Finally,
by the very definition of uS and �S ,

H
boundary
AO .uS ; �S / D

1

2

X
.x;y/2Eb

1
.G /W

x2G ; y2Gc

X
.l;n/

Œ.x � y/ � bl .�.l;n/ x �mn � b�.l;n/ x �mnc/�
2:

(3.11)

Now, the difference in parentheses on the right side is between 0 and 1. Therefore, recall-
ing that jx � yj D jbl j D 1 and that the sum over .l; n/ runs over 12 different terms, we
find

H
boundary
AO � 6jEb1 .G /j;

as desired.

In order to visualize the ‘optimal’ location of the atoms within a grain, we remark that
the pair .uS ; �S / used in the proof of Theorem 3.2 is gauge equivalent to a configuration
.u; �/ such that (1) ju.x/j � 6 for x 2 G , and u.x/ D 0 otherwise, (2) the support of � is
contained in E i

1.G /. In order to exhibit such an equivalent pair, we let u D uS C vS and
� D �S C dvS , with .uS ; �S / the same as those used in the proof of the theorem, and

vS .x/ D

´
�
P
.l;n/ blb�.l;n/x �mnc if x 2 G ;

0 otherwise:

In the left panel of Fig. 1 we visualise such a displacement field u in a two-dimensional
setting where S D 1

5

�
0
1
�1
0

�
and Neumann boundary conditions are used (see Sect. 4.1

for the definition of Neumann boundary conditions). The colored triangles are the support
of d� . The minimizer ofHAO.�;�/ is shown in the right panel of Fig. 1. The corresponding

Fig. 1. Left: The displacement u D uS C vS for the two-dimensional Ariza–Ortiz model on the
triangular lattice with Neumann boundary conditions and S D 1

5

�0
1
�1
0

�
. Colored triangles indicate

the support of d� , with � D �S C dvS . Right: The relaxed displacement field u� which minimizes
HAO.�; �/.
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minimal energy, infuHAO.u; �/, is the one that the system will reach after relaxation at
fixed slip field � . In the limit of large grain, it is supposed to provide a good approximation
for the optimal grain energy EG .S/ in (3.8). As will be proved in the following sections,
remarkably, the minimal energy infuHAO.u; �/ only depends on the ‘charge distribution’
q D d� , which therefore characterizes the grain from an energetic point of view.

3.3. Read–Shockley law

Theorem 3.2 shows that the optimal energy of a perfect grain scales like its boundary, but
does not provide an explicit formula for the surface tension, that is, the proportionality
constant in front of jEb

1.G /j, in the limit of a large grain. Physically, there are explicit
expectations for the surface tension, specifically in the limit of small rotation angles:
according to the Read–Shockley formula [38], given a large grain, rotated by a small
angle � with respect to a reference crystalline background, its total energy is proportional
to its boundary, with a proportionality constant 
.�/ of the form (1.1). An upper bound
which is consistent with the logarithmic scaling can be found in [31].

In this section, we state two results about the exact, asymptotic, computation of the
energy of a dislocation dipole and of two walls of dislocations with opposite charges, far
away from each other. In particular, the energy of the two parallel walls of dislocations
with opposite charges is expected to correspond to the optimal energy of a grain sup-
ported in the region between the two walls (the electrostatic analogue to keep in mind
is a capacitor: dislocations correspond to the charges on the plates of the capacitor, and
the intermediate region between the plates is where the elastic energy concentrates), in
the sense of definition (3.8). The reader can convince herself/himself that the smaller the
density of dislocations on the walls, the smaller the rotation angle of the grain, and that in
the limit of small density of dislocations, the rotation angle goes to zero linearly with the
density. Therefore, the computation of the energy of the ‘dislocation capacitor’ performed
below provides information on the optimal energy of the corresponding grain. Our main
result is that we recover the Read–Shockley law for a grain with such a simple, specific,
geometrical shape.

The computations are reported in Sect. 6. For simplicity, we perform the computations
in two dimensions, but similar results, including the logarithmic dependence of the surface
tension on the rotation angle, in the sense of (1.1), can be extended to three dimensions, by
assuming that the distribution of dislocations under consideration is translation invariant
in the third coordinate direction; however, in three dimensions the computations become
cumbersome and their key features would be hidden behind unimportant technical com-
plications – therefore, we prefer to restrict to 2D and leave the tedious but straightforward
extension to higher dimensions to the interested reader.

We denote by T the triangular lattice and, with some abuse of notation, we let its basis
vectors be b1 D

�
1
0

�
, b2 D 1

2

�
�1p
3

�
. For later reference we also define b3 D �b1 � b2 D

1
2

�
�1
�
p
3

�
. Given a finite box ƒ � T of side N (the 2D analogue of (2.2)), we let the

2D Ariza–Ortiz energy in ƒ with Dirichlet boundary conditions be defined by the same
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0 1 2 · · · n

1 2 · · · n

Fig. 2. Graphical illustration of the charge distribution qndip for n D 6. The shaded triangles, corres-
ponding to faces f0 and fn, indicate the support of qndip. We also show in red the support of a slip
field �ndip such that d�ndip D q

n
dip (see (6.3)). The sites labeled j D 1; : : : ; n on the bottom (resp. top)

row have coordinates jb1 (resp. jb1 � b3).

formula (2.3); with some abuse of notation, we denote the 2D energy by the same symbol
HAO.u; �/.

We consider a dislocation dipole formed by a pair of opposite charges˙b1, separated
by a distance n in direction b1, whose ‘charge distribution’ is

qndip D .1f0 � 1fn/b1 (3.12)

with fn D .0; b1;�b3/C nb1 (see Fig. 2). We also consider two parallel arrays of dislo-
cations, formed by M dislocation dipoles as in (3.12), arranged at a distance m

p
3 from

one another in the direction orthogonal to b1, whose charge distribution is

q
M;n;m
grain .f / D

MX
jD1

qndip.f � jm.b2 � b3//: (3.13)

In the limit M !1, the charge distribution qM;n;mgrain tends to that of two infinite walls
of dislocations, separated by a distance n, with charge density � 1=m. As discussed in
Appendix B, its energy is expected to coincide at dominant order with the optimal energy
of a grain supported in the region between the walls, rotated by an angle � � 1=m, in the
limit m!1.

Theorem 3.3. Let

Edip.n/ D lim
ƒ!T

min ¹HAO.u; �/ W d� D qndipº; (3.14)

Egrain.n;m/ D lim
M!1

1
p
3mM

h
lim
ƒ!T

min ¹HAO.u; �/ W d� D q
M;n;m
grain º

i
(3.15)

be the energy of a dipole and the energy density of a grain boundary per unit length, in
the thermodynamic limit. Then

Edip.n/ D
logn

2�
p
3
CO.1/; n� 1; (3.16)

and
lim
n!1

Egrain.n;m/ D
logm
6�m

CO.1=m/; m� 1: (3.17)
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The proof of Theorem 3.3 is given in Sect. 6. Equation (3.17) is the desired Read–
Shockley law for the energy of a grain boundary. Its remarkable feature is that it is
asymptotically independent of the separation among the two arrays of charges it con-
sists of. This is in sharp contrast with the ‘capacitor law’, i.e., with the formula for the
energy of two parallel arrays of ‘scalar’ dipoles, i.e., of a similar arrangement of charges
in the usual Coulomb lattice gas, which scales linearly in n at large separation n. For a
technical comparison of the computations leading to the Read–Shockley and the capacitor
laws, see Sect. 6.2.1 below.

Note that the Egrain.n;m/ does not include a contribution from the dislocation cores.
Of course, the inclusion of such a contribution, of the form W.q/ (see (3.2)), can be done
without any additional difficulty. Note that the extra energy from the dislocation cores
would contribute O.1=m/ to the right side of (3.17), and therefore would not modify the
dominant asymptotics of the Read–Shockley law.

4. Exterior calculus

In this section, we review a few basic aspects of discrete exterior calculus, which is a
fundamental tool used in the proof of the main results. In particular, an application of the
Hodge decomposition to the Ariza–Ortiz model will allow us to decompose its energy in
the sum of a ‘spin wave’ part plus a ‘dislocation’ part; such a decomposition is central to
our analysis and will be used systematically in the following.

4.1. Cellular complex, discrete p-forms and discrete differential

The domain of the three-dimensional Ariza–Ortiz model is given by cells consisting of

� vertices E0,

� oriented edges E1 (ordered vertex pairs),

� oriented faces E2 (polygons whose sides are consistently oriented edges),

� oriented volumes E3 (polyhedra whose faces are consistently oriented faces),

which form a cellular complex [24]. The orientation of a face f 2 E2 is defined by the
direction of a reference vector, orthogonal to f ; the sides of f are said to be consistently
oriented if their orientation satisfies the ‘right-hand rule’. The orientation of a volume
v 2 E3 is either ‘outward’ or ‘inward’; its faces are said to be consistently oriented if the
directions of their reference vectors all point, correspondingly, in the outward or inward
direction. The case of interest to us is where the vertices coincide with a Bravais lattice,
which is commonly referred to as a lattice cellular complex. We are specifically inter-
ested in the case that E0 D L, with L the face-centered cubic lattice, in which case we
let, in particular, E1 be the set of all ordered pairs of ‘nearest neighbor’ sites (those at
smallest Euclidean distance), and E2 the set of oriented triangular faces associated with
the 3-cycles of nearest neighbor sites. A detailed description of the corresponding cellular
complex is given in Appendix C.
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The boundary operator @p W Ep ! Ep�1 with p > 0 returns the set of boundary cells
with the appropriate orientation. By repeated applications of the boundary operator, any
p-cell c with p > 0 is mapped to a set of vertices in E0, which we refer to as the ‘set of
vertices of c’ and denote by V.c/. We only require a small subset of cohomology theory
and will use a minimalistic setup. In particular, the action of @p is defined via explicit
formulae in Appendix C; the reader is encouraged to confirm that it coincides with the
standard definition [24, Sect. 3].

The vector space Cp is the set of p-forms, functions u W Ep ! R3 that are odd
under orientation flip. The lattice-valued p-forms, that is, those that return values in
L, will be denoted by C

p

L
. We define for p D 0; 1; 2 the exterior derivative operators

dp W Cp ! CpC1. If p D 1; 2, they are given by the formula

dpu.c/ D
X

c02@pC1c

u.c0/; c 2 EpC1; (4.1)

and if p D 0 and e D .x; y/ 2 E0 is an oriented edge then

d0u.e/ D u.y/ � u.x/: (4.2)

A straightforward calculation shows that dpC1dp D 0 for p D 0; 1 (see, e.g., [24, Lemma
2.1]). In some cases, it is useful to interpret dpC1dp as being zero also for p D 2, in which
case we let d3 WD 0. Whenever the notation is unambiguous, we will drop the label p from
dp (i.e., if it is clear from the context that u is a p-form, then we will write du instead of
dpu).

We are interested in the cellular complexes and the corresponding set of p-forms,
obtained by taking finite portionsƒ of L, with prescribed boundary conditions, Dirichlet,
Neumann, or periodic. For simplicity, we restrict to cases in which such finite portions are
parallelepipeds of size N , as in (2.2).

In the case of Neumann boundary conditions, we let ƒp be the subset of Ep consist-
ing of the p-cells c whose set of vertices is contained in ƒ; the p-forms of interest are
those that depend only on the p-cells in ƒp . In the case of Dirichlet boundary conditions
or periodic boundary conditions we maintain the same cellular complex as for L. For
Dirichlet boundary conditions the relevant p-forms are those that assume non-zero val-
ues on cells whose vertices have non-empty intersection with ƒ. For periodic boundary
conditions the p-forms of interest are N -periodic in the directions b1; b2; b3. In all these
cases, with some abuse of notation, we denote by .ƒ0; ƒ1; ƒ2; ƒ3/ the cellular complex
and by Cp the corresponding sets of p-forms.

For any given finite ƒ as in (2.2) and all the three boundary conditions introduced
above, the vector spaces Cp are finite-dimensional Hilbert spaces with canonical inner
product1 h � ; � i. Thanks to the relation dpdp�1D0, for pD1;2;3, one finds that rangedp�1

1We use the convention that, for u; v 2 C0, hu; vi D
P
x2ƒ0

u.x/ � v.x/, while, for u; v 2 Cp

with p D 1; 2; 3, hu; vi D 1
2

P
c2ƒp

u.c/ � v.c/, where we recall that, for p > 0, ƒp is the set
of oriented p-cells; the factor 1=2 in front of the sum is chosen so that every unoriented p-cell is
effectively counted just once.
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is contained in null dp and we can define the cohomology groups

Hp
D null dp=range dp�1; p D 0; 1; 2; 3;

with the conventions that = denotes the standard quotient operator, null d3 D C3, and
H 0 D null d0. As usual, we say that

� u 2 Cp is closed if du D 0 (i.e., u 2 null dp);

� u 2 Cp is exact if u D dv for some v 2 Cp�1 (i.e., u 2 range dp�1).

In terms of these definitions, Hp is the subspace of closed p-forms modulo the exact
p-forms (i.e., modulo the following equivalence relation for closed p-forms: u1 � u2,
u2 � u1 D dv for some v 2 Cp�1). The space Hp characterizes the obstructions to the
solvability of the equation du D v if v 2 Cp is closed. If Hp D ¹0º, then any closed
v is automatically exact. More generally, v 2 Cp is exact if and only if it is closed and
additionally satisfies dimHp linear constraints.

The cohomology groups associated with the boxƒwith Dirichlet, Neumann and peri-
odic boundary conditions are known, and are the following.

Dirichlet boundary conditions:

Hp
D

´
R if p D 3;

¹0º else.
(4.3)

Neumann boundary conditions:

Hp
D

´
R if p D 0;

¹0º else.
(4.4)

Periodic boundary conditions:

Hp
D

´
R if p D 0 or p D 3;

R3 if p D 1 or p D 2:
(4.5)

In order to prove these formulas, note that the box ƒ is topologically equivalent to a
three-dimensional ball B3 � R3. Therefore, the cohomology for Neumann boundary
conditions corresponds to the de Rham cohomology of the ball, which is given by the
Poincaré Lemma [7]. The cohomology with Dirichlet boundary conditions corresponds
to the cohomology with compact supports for the ball B3 � R3; the result then fol-
lows from Poincaré duality between de Rham cohomology and cohomology with compact
supports [7]. Finally, the cohomology with periodic boundary conditions is the de Rham
cohomology of a three-dimensional torus T 3 � S1 � S1 � S1; the result is then an applic-
ation of the Künneth formula [7].

In the following, we will also need a quantitative version of the Poincaré Lemma for
lattice-valued 2-forms, in the form stated next.
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Proposition 4.1. Consider the cellular complex associated with a finite portion ƒ of the
FCC lattice L, as in (2.2), with Dirichlet or Neumann boundary conditions, together with
the associated set of p-forms .note in particular that H 2 D ¹0º/. Let q 2 C2

L
be closed,

with finite support. Let B � R3 be the smallest parallelepiped with edges parallel to the
basis vectors b1, b2, b3 such that supp q � B . There exists a constant c > 0, independent
of ƒ, and a 1-form n 2 C1 with the following properties:

(1) n is L-valued,

(2) dn D q,

(3) the support of n is contained in B ,

(4) maxe2ƒ1 jn.e/j � chq; qi
2.

The proof is a straightforward adaptation of that of [29, Lemma 3.2].

4.2. Hodge decomposition

In this section, we obtain a representation of HAO.u; �/ in terms of d� . Setting q D d�
we can choose a representative displacement and slip field .u� ; �q/ 2 C0 � C1 such that
d�q D q and du� D � � �q . With such a choice,

HAO.u; �/ D HAO.u � u� ; �q/:

Interestingly, it is possible to choose .u� ; �q/ so that the energy decomposes into a purely
elastic part and a dislocation part:

HAO.u; �/ D HAO.u � u� ; 0/CHAO.0; �q/

(cf. Theorem 4.3 below). In general �q is not L-valued, which means that a physical
interpretation is not obvious. While the additive decomposition simplifies our analysis
significantly, we believe that it is not central to the validity of our main results.

To establish the additive decomposition of the Ariza–Ortiz energy we employ the
classical Hodge decomposition. The fundamental idea is to construct the relevant uq and
�q in terms of solutions of the Poisson equation.

The Laplace operator �p W Cp ! Cp is defined by

�p WD dp�1d�p�1 C d�pdp; p D 0; 1; 2; 3; (4.6)

where d�p�1 W C
p ! Cp�1 is the adjoint of dp�1 with respect to h�; �i (for p D 0, (4.6)

should be interpreted as�0 D d�0d0, i.e., d�1 D d��1 WD 0). Also in this case, as in Sect. 4,
we will drop the dependence upon p whenever the space which�p or d�p�1 act on is clear
from the context. Note that d and d� both commute with � (that is, dp�p D �pC1dp and
d�p�1�p D �p�1d�p�1).

Proposition 4.2. If Hp D ¹0º, then the Laplace operator � W Cp ! Cp is invertible.
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Proof. The invertibility of the Laplacian is an immediate consequence of the classical
Hodge decomposition, which we prove next:

Cp D null dp ˚ null d�p�1: (4.7)

To see this decomposition, we first demonstrate that null dp and null d�p�1 are orthogonal.
Let u; v 2 Cp be such that duD 0 and d�v D 0. SinceHp D ¹0º, there exists w 2 Cp�1

such that u D dw. Therefore

hu; vi D hdw; vi D hw; d�vi D 0;

as desired. Next, we demonstrate that

' 2 .null dp ˚ null d�p�1/
?
H) ' D 0:

Suppose that (i) h'; ui D 0 for all u 2 null dp , that is, for all p-forms u such that u D dw
for some w 2 Cp�1; (ii) h'; vi D 0 for all v 2 null d�p�1, in particular for all the p-
forms such that v D d�z for some z 2 CpC1. By using (i), h'; dwi D hd�'; wi D 0 for
all w 2 Cp�1, that is, d�' D 0. Moreover, by using (ii), h'; d�zi D hd'; zi D 0 for all
z 2 CpC1, that is, d' D 0) ' D d for some  2 Cp�1. In conclusion,

h'; 'i D hd ; 'i D h ; d�'i D 0;

as desired (in the last step we have used d�' D 0). This concludes the proof of (4.7).
We are now in a position to prove the invertibility of �. We first prove injectivity.

Assume that �u D 0, from which

0 D hu;�ui D hdu; dui C hd�u; d�ui;

that is, duD 0 and d�uD 0. In view of (4.7), this implies that uD 0, and so� is injective.
Next, we prove surjectivity. Assume that u 2 .range�/?, i.e. hu;�vi D 0 for all v. Then
h�u; vi D 0 for all v, that is, �u D 0, which implies u D 0, as we already saw.

The condition Hp D ¹0º motivates the use of Dirichlet or Neumann boundary condi-
tions, in which cases H 1 D H 2 D ¹0º, so that the Laplacians acting on 1- and 2-forms
are invertible.

With this notation the Ariza–Ortiz energy can be written as a functional

HAO W C
0
� C1L ! R; HAO.u; �/ D

1
2
hdu � �;B.du � �/i; (4.8)

where B 2 Lin.C1;C1/ is the linear operator such that, for any v 2 C1,

.Bv/.e/ D .v.e/ � ıe/ ıe;

and, given e D .x; y/, we denote ıe WD y � x. We are now in a position to establish the
decomposition of the Ariza–Ortiz energy into the elastic and the dislocation parts.
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Theorem 4.3. Let ƒ � L be as in (2.2), and consider the Ariza–Ortiz Hamiltonian (4.8)
with Dirichlet or Neumann boundary conditions. Assume that q 2 C2

L
satisfies dq D 0.

For any � 2 C1
L

with d� D q, the Ariza–Ortiz energy admits the additive decomposition

HAO.u; �/ D
1
2
hd.u � u� /; B.d.u � u� /i C 1

2
h�q; B�qi; (4.9)

where �q is the minimizer of v 7! hv; Bvi on C1 .rather than on C1
L
/ subject to the

constraint dv D q, and u� is defined as

u� D d���1.� � �q/: (4.10)

If we take Dirichlet boundary conditions, then the minimizer �q is given by �q D Gq with

G D .1 � dA�1d�B/d���1; (4.11)

where A W C0 ! C0 is the invertible operator A WD d�Bd.

For later reference, we note that the adjoint of G can be explicitly written as

G� D ��1d.1 � BdA�1d�/: (4.12)

As an immediate consequence of (4.9) one obtains

min
u
HAO.u; �/ D

1
2
h�q; B�qi: (4.13)

Proof of Theorem 4.3. Formula (4.10) implies that du� D dd���1.� � �q/. Moreover,
thanks to the commutation relation d� D �d, and recalling that d� D d�q , we also find
that d�d��1.� � �q/ D d���1d.� � �q/ D 0. Combining these two identities, we find

du� D .dd� C d�d/��1.� � �q/ D � � �q : (4.14)

Furthermore, as �q is the solution of a constrained minimization problem, there exists
a Lagrange parameter � 2 C2 such that �q satisfies the Euler–Lagrange equation B�q
D d��. Hence, thanks to d�d� D 0, one obtains

d�B�q D 0: (4.15)

Therefore,

HAO.u; �/ D
1
2
hdu � �;B.du � �/i D 1

2
hdu � � C �q � �q; B.du � � C �q � �q/i

(4.14)
D

1
2
hd.u � u� /; B d.u � u� /i C 1

2
h�q; B�qi � hu � u� ; d�B�qi

(4.15)
D HAO.u � u� ; 0/CHAO.0; �q/;

which establishes (4.9).
To derive formula (4.11) we decompose �q according to the Hodge decomposition

(4.7): �q D ' C  with d' D 0 and d� D 0. We find  D d���1q: in fact, with this
position, d' D d�q � dd���1q D 0, where in the last step we have used the fact that
dd���1q D .dd� C d�d/��1q D q (in turn, d�d��1q D 0 follows from the fact that
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d commutes with ��1 and dq D 0). In conclusion, �q D ' C d���1q with d' D 0.
Since H 2 D 0, ' is exact, and therefore

�q D du0 C d���1q (4.16)

for some u0 2 C1. Equations (4.16) and (4.15) together imply that

d�B.d���1q C du0/ D 0:

Since d�BdDAwe obtain u0D�A�1d�Bd���1q, and so �q D .1�A�1d�B/d���1q
as desired, provided thatA is invertible. Finally, the invertibility ofA for L the FCC lattice
and ƒ � L a finite box with Dirichlet boundary conditions is proved in Appendix D.

5. Proof of Theorem 3.1

Our goal is to compute a lower bound on

Eˇ;ƒ.'/ D
1

Zˇ;ƒ

X
�2�

Z
du e�ˇ .HAO.u;�/CW.d�// '.u/; (5.1)

in the two cases that '.u/ D 'v0Ix.u/ D cos.u.x/ � v0/ and '.u/ D 'v0Ix;y.u/ D

cos..u.x/ � u.y// � v0/. These functions can be conveniently rewritten in terms of the
functions g; h and Qg; Qh, defined as follows:

� g � gv0Ix WD 1xv0 and Qg � gv0Ix;y WD .1x � 1y/v0, or equivalently

hg; ui D u.x/ � v0; h Qg; ui D .u.x/ � u.y// � v0:

� d�h D g and d� Qh D Qg, or equivalently hh; dui D hg; ui and h Qh; dui D h Qg; ui.

To show that the equation d�h D g actually has a solution we can consider a pairwise
disjoint collection .ei /niD1 � E1 of oriented edges that form an oriented connected path
Px!xext from x to xext, where xext is some vertex outside ƒ, which we fix once and for
all at distance 1 from ƒ. With such a path we can define

h.e/ � hv0Ix;xext.e/ WD

8̂̂<̂
:̂
�v0 if e 2 Px!xext ;

v0 if Ne 2 Px!xext ;

0 else;

where in the second line Ne is the edge with the same vertices as e but with opposite
orientation. Analogously, we let Qh D hv0Ix;y and note that, with this choice, d� Qh D Qg. In
terms of these definitions, for any � 2 C1

L
,

'v0Ix.u/ D cos hg; ui D cos hh; dui D cos hh; du � �i;

'v0Ix;y.u/ D cos h Qg; ui D cos h Qh; dui D cos h Qh; du � �i;
(5.2)

because both hh; �i and h Qh; �i are 0 mod 2� .
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Thanks to the decomposition (4.9), in the cases of interest (5.1) can be rewritten as

Eˇ;ƒ.'v0Ix/

D
1

Zˇ;ƒ

X
�2�

Z
du e�

ˇ
2 hd.u�u� /;Bd.u�u� /i e�ˇW.q/�

ˇ
2 h�q ;B�qi cos hh; du � �i; (5.3)

where q D d� , and similarly for Eˇ;ƒ.'v0Ix;y/, with h replaced by Qh. Recalling (4.14),
we can rewrite du� � D d.u� u� /� �q , with �q D Gq, so that, renaming u� u� � u0,

Eˇ;ƒ.'v0Ix/ D
1

Zˇ;ƒ

X
q2C2�

Z
du0 e�

ˇ
2 hdu

0;Bdu0i e�ˇW.q/�
ˇ
2 hq;G

�BGqi cos hh; du0 �Gqi;

(5.4)

where C2� D ¹q 2 C2
L
W dq D 0º is the set of closed, lattice-valued 2-forms satisfying

Dirichlet boundary conditions onƒ; again, Eˇ;ƒ.'v0Ix;y/ admits an analogous represent-
ation, with h replaced by Qh. Note that the probability measure on the right side of (5.4)
is factorized: it is the product of a Gaussian measure P sw

ˇ;ƒ
on u0 (the spin wave part of

the measure) and a discrete measure P dis
ˇ;ƒ

on the dislocation cores q. This factorization
property is due to the quadratic nature of the Ariza–Ortiz model, and makes our statistical
mechanics version of the Ariza–Ortiz model reminiscent of the Villain model for clas-
sical rotators. Of course, the partition function inherits the same factorization property:
Zˇ;ƒ D Z

sw
ˇ;ƒ

Zdis
ˇ;ƒ

, with

Zsw
ˇ;ƒ D

Z
du0 e�

ˇ
2 hdu

0;Bdu0i; Zdis
ˇ;ƒ D

X
q2C2�

e�ˇW.q/�
ˇ
2 hq;G

�BGqi : (5.5)

Plugging this representation in (5.4) and in its analogue for Eˇ;ƒ.'v0Ix;y/, and noting that
P sw
ˇ;ƒ

and P dis
ˇ;ƒ

are even, we find

cˇ;ƒ.v0I x/ D Eˇ;ƒ.'v0Ix/ D Esw
ˇ;ƒ.cos hh; du0i/Edis

ˇ;ƒ.cos hh;Gqi/;

cˇ;ƒ.v0I x; y/ D Eˇ;ƒ.'v0Ix;y/ D Esw
ˇ;ƒ.cos h Qh; du0i/Edis

ˇ;ƒ.cos h Qh;Gqi/:
(5.6)

Theorem 3.1 is a consequence of the following more refined version thereof.

Theorem 5.1. Given v0 2 L�, there exist positive constants C0; C; c; ˇ0; r0 such that if
ˇ � ˇ0 and jx � yj � r0, then

lim
ƒ!L

Esw
ˇ;ƒ.cos hh; du0i/ D e�C0=.2ˇ/;

lim
ƒ!L

Esw
ˇ;ƒ.cos h Qh; du0i/ D e�C0=ˇ

�
1CO

�
log jx � yj
jx � yj

��
;

(5.7)

where h D hv0Ix;xext and Qh D hv0Ix;y; moreover,

lim inf
ƒ!L

Edis
ˇ .cos hh;Gqi/ � e�C e�cˇ ;

lim inf
ƒ!L

Edis
ˇ .cos h Qh;Gqi/ � e�C e�cˇ ;

(5.8)
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which implies that we have lim infƒ!L cˇ;ƒ.v0I x/ � exp¹�C0=.2ˇ/ C O.e�cˇ /º and
lim infjx�yj!1 lim infƒ!L cˇ;ƒ.v0I x; y/ � exp¹�C0=ˇ CO.e�cˇ /º.

The rest of the section is devoted to the proofs of (5.7) and (5.8).

5.1. The spin wave contribution to the two-point function: proof of (5.7)

Recalling the definitions A D d�Bd and g D d�hD 1x � v0, we find that the spin wave
contribution to the one-point function is

Esw
ˇ;ƒ.cos hh; du0i/ D

1

Zsw
ˇ;ƒ

Z
du exp

²
�
ˇ

2
hdu0; B du0i C ihh; du0i

³
D

1

Zsw
ˇ;ƒ

Z
du0 exp

²
�
ˇ

2
hu0; A u0i C ihg; u0i

³
D exp

²
�
1

2ˇ
hg;A�1gi

³
: (5.9)

As proved in Appendix D, the thermodynamic limit of the right side can be explicitly
written in Fourier space:

lim
ƒ!L
hg;A�1gi D

Z
B

dk

jBj
Og.�k/ � OA�1.k/ Og.k/; (5.10)

where B D ¹�1m1 C �2m2 C �3m3 W �i 2 Œ0; 1/º is the Brillouin zone (recall thatm1;m2;
m3 are the basis vectors of L�, see Appendix C), jBj is its volume,

Og.k/ D
X
z2L

g.z/ eik�z D v0 eik�x ; (5.11)

and if …l D bl ˝ bl then

OA.k/ D 2

6X
lD1

…l .1 � cos.k � bl //: (5.12)

In Appendix D we prove that OA.k/ is singular iff k 2 L� and that if k is close to 0 then
OA.k/ D OA0.k/.1CO.k// with

c0k
21 � OA0.k/ �

3
2
k21; (5.13)

where the positive constant c0 can be chosen, e.g., to be c0 D .3�
p
5/=4. We remark that

this bound depends critically on the structure of the underlying lattice: changing FCC into
cubic does not preserve the property that OA.k/ behaves qualitatively like the Laplacian k2

at low momenta. The inverse operator reads

OA.k/�1 D OA0.k/
�1.1CO.k//; (5.14)

so that the integral on the right side of (5.10) is convergent and we can rewrite

lim
ƒ!L
hg;A�1gi D C0 WD

Z
B

dk

jBj
v0 � OA

�1.k/v0:
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Note that the fact that C0 is finite crucially depends on the fact that we are in three
(or rather in more than two) dimensions: in two dimensions its analogue would be
logarithmically divergent. This concludes the proof of the first relation of (5.7). The
proof of the second is analogous: a repetition of the previous computation implies that
Esw
ˇ;ƒ

.cos h Qh; du0i/ D exp
®
�
1
2ˇ
. Qg;A�1 Qg/

¯
with

lim
ƒ!L
h Qg;A�1 Qgi D

Z
B

dk

jBj
v0 � OA

�1.k/v0 jeikx � eiky j2

D 2C0 � 2

Z
B

dk

jBj
v0 � OA

�1.k/v0 e�ik.x�y/; (5.15)

which leads to the second relation of (5.7), thanks to the fact thatˇ̌̌̌Z
B

dk

jBj
v0 � OA

�1.k/v0 e�ik�.x�y/
ˇ̌̌̌
� c1

1C log jx � yj
jx � yj

; (5.16)

for a suitable constant c1 > 0; see Appendix D for details.

5.2. The dislocation contribution to the two-point function: proof of (5.8)

We now want to bound from below the dislocation contribution to the one-point function,
namely

Edis
ˇ .cos hh;Gqi/ D

1

Zdis
ˇ;ƒ

X
q2C2�

e�ˇW.q/�
ˇ
2 hq;G

�BGqi cos hh;Gqi;

and similarly for the two-point function. Recall that the probability weight e�ˇW.q/ is of
factorized form, e�ˇW.q/ D

Q
f e�ˇw.q.f //, where the product runs over the faces that

have non-zero intersection withƒ and w.q.f // � w0jq.f /j2 for some positive w0. Note
that this weight can be equivalently rewritten as

e�ˇW.q/ D
hY
f

�.q.f //
i

e�ˇ
w0
2 hq;qi; (5.17)

where �.x/ D exp¹�ˇŒw.x/ � w0jxj2=2�º � exp¹�ˇw0jxj2=2º. The observable of
interest can be rewritten as Zdis

ˇ;ƒ
.h/=Zdis

ˇ;ƒ
.0/, with

Zdis
ˇ;ƒ.h/ D

X
q2C2�

e�ˇW.q/�
ˇ
2 hq;G

�BGqiCihh;Gqi :

The goal is to find a lower bound onZdis
ˇ;ƒ

.h/=Zdis
ˇ;ƒ

.0/, of lower order than the spin wave
contribution. We now perform a sine-Gordon transformation: we introduce the Gaussian
measure �ˇ .d�/ with covariance ˇ.G�BG C w01/> 0, so that

e�
ˇ
2 hq;.G

�BGCw01/qi D

Z
�ˇ .d�/ eihq;�i;
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and rewrite
Zdis
ˇ;ƒ.h/ D

X
q2C2�

hY
f

�.q.f //
i Z

�ˇ .d�/ eihq;�CG
�hi :

Remark 5.2. The presence of the w01 term in the covariance ˇ .G�BG C w01/ is cru-
cial for making it positive definite, rather than just non-negative. In fact, G�BG has null
directions. To see this, take � 2 C1

L
to beCb4 resp. �b4 on the edge .0; b1/ resp. .b1; 0/,

and zero otherwise, so that B� D 0 but q WD d� ¤ 0. With these definitions, it is easy to
check that .q;G�BGq/D .�q;B�q/D 0: in fact, �q is the minimizer of .v;Bv/DkBvk2

among the v 2 C1 such that dv D q; taking v D � , we have Bv D 0, so B�q D 0.

We now perform the sum over q in two steps: we first fix the support of q and then
sum over the charge configurations compatible with that support:

Zdis
ˇ;ƒ.h/ D

X
X�ƒ2

X
q2C2� W

suppqDX

h Y
f 2ƒ2

�.q.f //
i Z

�ˇ .d�/ eihq;�CG
�hi

�

Z
�ˇ .d�/

h X
X�ƒ2

K.X; � CG�h/
i
:

For short, we shall writeK.X;�CG�h/DK.X/. Note thatK.X1 [X2/DK.X1/K.X2/
if X1; X2 � ƒ2 are disconnected, i.e., if there is no 3-cell whose boundary contains both
an element ofX1 and an element ofX2; the key thing to observe is that in such a situation,
if we let q D q1C q2 with suppq1 DX1 and suppq2 DX2, the constraint d.q1C q2/D 0
‘factorizes’ into dq1 D dq2 D 0. Note that this factorization into locally neutral contribu-
tions is another point where the condition that we are in more than two dimensions enters
crucially. Given X , we let X1; : : : ; Xn be its maximally connected components and note
that

K.X/ D �.X1/ � � � �.Xn/;

where
�.X/ D 1.X is connected/

X
q2C2� W

suppqDX

hY
f 2X

�.q.f //
i

eihq;�CG
�hi

The upper bound on � implies that

j�.X/j �
�X
b2LW
b¤0

e�
ˇ
2w0jbj

2
�jX j

: (5.18)

We use the factorization property of K to rewrite Zdis
ˇ;ƒ

.h/ as

Zdis
ˇ;ƒ.h/ D

Z
�ˇ .d�/

�X
n�0

1

nŠ

X
X1;:::;Xn�ƒ2

�.X1/ � � � �.Xn/ı.X1; : : : ; Xn/

�
;
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where ı.X1; : : : ; Xn/ D
Q
1�i<j�n ı.Xi ; Xj /, and ı.X; Y / D 1 if X and Y are discon-

nected, andD 0 otherwise. As is well known (see, e.g., [15, Proposition 5.3]),X
n�0

1

nŠ

X
X1;:::;Xn�ƒ2

�.X1/ � � � �.Xn/ı.X1; : : : ; Xn/

D exp
°X
n�1

X
X1;:::;Xn�ƒ2

�.X1/ � � � �.Xn/'.X1; : : : ; Xn/
±
; (5.19)

where '.X1; : : : ; Xn/ is the Ursell function: if Gn is the complete graph on the vertex set
¹1; : : : ; nº, then

'.X1; : : : ; Xn/ D
1

nŠ

X
G�Gn

connected

Y
¹i;j º2G

.ı.Xi ; Xj / � 1/ for n > 1;

while '.X1/ D 1 for n D 1. Note that �.X1/ � � � �.Xn/'.X1; : : : ; Xn/ is non-zero only if
Y DX1 [ � � � [Xn is connected. The sums in (5.19) are absolutely convergent, uniformly
in ƒ, provided that there exists a positive function a.X/, independent of ƒ, such that, for
any fixed, connected, non-empty X� � ƒ2,X

X�ƒ2

j�.X/j ea.X/.1 � ı.X;X�// � a.X�/

(see [15, Theorem 5.4]). In our case, if ˇ is sufficiently large, thanks to the upper bound
on �.X/ in (5.18), we can choose a.X/D e�ˇw0=4 jX j. We now insert the definition of �
in (5.19) and rewrite it as

(5.19) D exp
°X
q2C2�

z.ˇ; q/ eihq;�CG
�hi
±

with

z.ˇ; q/D
X
n�1

X
q1;:::;qn2C2�
q1C���CqnDq

h nY
iD1

1.Xi is connected/
ih nY
iD1

� Y
f 2Xi

�.qi .f //
�i
'.X1; : : : ; Xn/;

(5.20)

where on the right side Xi WD supp qi . Using the fact that �.x/ is exponentially small, as
well as the fact that the Ursell function decays exponentially to zero at large distances, we
infer that, for ˇ large enough,

jz.ˇ; q/j � e�
ˇ
4w0kqk1 e�

ˇ
8w0 jsupp qj (5.21)

(see Appendix E for a proof). Note also that z.ˇ;q/ is zero unless q has connected support.
Putting things together we find that

Zdis
ˇ;ƒ

.h/

Zdis
ˇ;ƒ

.0/
D

Z
mˇ .d�/ exp

°
�

X
q2C2�

z.ˇ; q/Œcos hq; �i.1 � cos hq;G�hi/

C sin hq; �i sin hq;G�hi�
±
;
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where

mˇ .d�/ D
�ˇ .d�/ e

P
q2C2�

z.ˇ;q/ cos hq;�iR
�ˇ .d�/ e

P
q2C2�

z.ˇ;q/ cos hq;�i
:

We now apply Jensen’s inequality, i.e.,
R
mˇ .d�/ exp¹.�/º � exp¹

R
mˇ .d�/.�/º, and find

(noting that
R
mˇ .d�/ sin hq; �i D 0 and j

R
mˇ .d�/ cos hq; �ij � 1)

Zdis
ˇ;ƒ

.h/

Zdis
ˇ;ƒ

.0/
� exp

°
�

X
q2C2�

jz.ˇ; q/j.1 � cos hq;G�hi/
±
: (5.22)

We now need to manipulate hq; G�hi. Proposition 4.1 implies that there exists an L-
valued 1-form nq such that dnq D q. Recall that

� the support of nq is contained in B.q/, the smallest parallelepiped containing the sup-
port of q,

� the maximum of jnqj is bounded in terms of the 2-norm of q: knqk1 � ckqk42 for some
positive c.

Therefore, recalling the definition of G� in (4.12), we get

hq;G�hi D hdnq; d��1.1 � BdA�1d�/hi D hnq; d�d��1.1 � BdA�1d�/hi: (5.23)

Now recall that d�d D � � dd�, so that

hq;G�hi D hnq; hi � hnq; BdA�1d�hi � hnq; dd���1.1 � BdA�1d�/hi: (5.24)

Now the first term on the right side is an integer multiple of 2� , and can be dropped for
the purpose of computing the cosine. Since d� commutes with �, the last term equals

�hnq; d��1.d� � d�BdA�1d�/hi;

which is zero, simply because d�BdA�1 D 1. We are left with the second term, which
can be rewritten in terms of g D d�h; in conclusion,

hq;G�hi D �hnq; BdA�1gi mod 2�: (5.25)

If we now plug this into (5.22) and bound 1 � cos x � x2=2, we find

Zdis
ˇ;ƒ

.h/

Zdis
ˇ;ƒ

.0/
� exp

²
�
1

2

X
q2C2�

jz.ˇ; q/jh�; nqi
2

³
;

where
� D BdA�1g:

Recalling that knqk1 � ckqk42 and suppnq � B.q/, we find

h�; nqi
2
� c2kqk82

X
e;e02B.q/

�.e/�.e0/:
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Using this bound, we get

Zdis
ˇ;ƒ

.h/

Zdis
ˇ;ƒ

.0/
� exp

²
�
c2

2

X
e;e02ƒ1

�.e/�.e0/
X
q2C2�

jz.ˇ; q/j kqk821.B.q/ 3 e; e
0/

³
:

Now, using the bound (5.21) on z.ˇ; q/, we get (see Appendix E for details)X
q2C2�

jz.ˇ; q/j kqk82 1.B.q/ 3 e; e
0/ � e�

ˇ
8w0Œ1Cdist.e;e0/�; (5.26)

provided that ˇ is large enough. Therefore,

Zdis
ˇ;ƒ

.h/

Zdis
ˇ;ƒ

.0/
� exp

²
�
c2

2
e�

ˇ
8w0

X
e;e02ƒ1

�.e/�.e0/ e�
ˇ
8w0dist.e;e0/

³
� e�c.ˇ/h�;�i;

where in the last step we used Young’s inequality and

c.ˇ/ D
c2

2
e�

ˇ
8w0

X
e02E1

e�
ˇ
8w0dist.e;e0/ :

Finally, we note that
h�; �i D hg;A�1gi;

which, combined with (5.9), implies the desired estimate, the first inequality of (5.8).
A step by step repetition of the argument with h and g replaced by Qh and Qg, respectively,
leads to the second inequality of (5.8).

6. Proof of Theorem 3.3

In this section we compute the energy of a dislocation dipole qndip (see (3.12)), asymptot-

ically as n!1, and the energy of two parallel arrays of dipoles qM;n;mgrain (see (3.13)),
asymptotically as M !1 first, then n!1, then m!1.

Note that, also in two dimensions, the Ariza–Ortiz energy satisfies the additive decom-
position property (4.9), from which we get

min ¹HAO.u; �/ W d� D qº D 1
2
hq;G�BGqi (6.1)

(see (4.13); with some abuse of notation, in this section we denote by A; B; G the ana-
logues for the triangular lattice of the operators A; B; G introduced in Sect. 4.2 for the
case of the FCC lattice).

6.1. The energy of a dipole: proof of (3.16)

Let �ndip be such that d�ndip D q
n
dip. Then

Edip.n/ D min ¹H.u; �ndip/ W u 2 C0º:
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The optimal 0-form u satisfies Au D d�B�ndip and consequently

Edip.n/ D
1
2
h�ndip; B�

n
dipi � h�

n
dip; BdA�1d�B�ndipi

C
1
2
hdA�1d�B�ndip; BdA�1d�B�ndipi

D
1
2
h�ndip; B�

n
dipi �

1
2
hd�B�ndip; A

�1d�B�ndipi: (6.2)

We choose

�ndip.x; x C bl / D

8̂̂<̂
:̂
b1 if l D 2 and x D j b1 for some j 2 ¹1; : : : ; nº;

�b1 if l D 3 and x D j b1 � b3 for some j 2 ¹1; : : : ; nº;

0 else.

(6.3)

It is a simple exercise to check that d�ndip D q
n
dip. For a visualization of the support of the

slip field �ndip see Fig. 2.
We compute the energy in (6.2) by using this �ndip. We start by computing B�ndip:

B�ndip.x; x C bl / D

8̂̂<̂
:̂
�
1
2
b2 if l D 2 and x D jb1 for some j 2 ¹1; : : : ; nº;

C
1
2
b3 if l D 3 and x D jb1 � b3 for some j 2 ¹1; : : : ; nº;

0 else,

which implies that the first term on the right side of (6.2) satisfies (recall that the number
of red bonds equals 2n)

h�ndip; B�
n
dipi D n=2:

In order to explicitly compute the second term on the right side of (6.2) in the thermody-
namic limit, it is convenient to fix a convention for the Fourier transform: given functions
u; �; q on vertices, edges, faces of the infinite triangular lattice, respectively, we let

u.x/ D

Z
B

dk

jBj
Ou.k/ e�ik�x ; x 2 T ;

�.x; x C bl / D

Z
B

dk

jBj
O�.k; l/ e�ik�x ; x 2 T ; l D 1; 2; 3;

where
B D ¹k 2 R2 W k � bl 2 Œ0; 2�/; l D 1; 2º

is the (first) Brillouin zone, and jBj D 8�2=
p
3 its area. With this notation, the thermo-

dynamic limit of the second term on the right side of (6.2) can be written as

lim
ƒ!T
hd�B�ndip; A

�1d�B�ndipi D

Z
B

dk

jBj
2d�B�ndip.�k/

OA�1.k/2d�B�ndip.k/; (6.4)

where OA.k/ is the Fourier symbol of A. Note that, for any 0-form u,

Au.x/ D

3X
lD1

�
2u.x/ � u.x C bl / � u.x � bl /

�
…l ;
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where …l D bl ˝ bl is the projector in direction bl . Therefore, passing to Fourier space,
we get

OA.k/ D 2

3X
lD1

…l .1 � cos.k � bl //

D

0@3 � 2 cos k1 � cos k1
2

cos
p
3k2
2

p
3 sin k1

2
sin
p
3k2
2

p
3 sin k1

2
sin
p
3k2
2

3 � 3 cos k1
2

cos
p
3k2
2

1A ; (6.5)

which implies

det OA.k/ D 3
�

cos
k1

2
� cos

p
3 k2

2

�2
C 6

�
1 � cos

k1

2
cos

p
3 k2

2

�
.1 � cos k1/ � 0;

and det OA.k/ D 0, k D 0 mod L�.
In order to compute 2d�B�ndip.k/ in (6.4), we first note that

1B�ndip.k; l/ D

8̂̂̂<̂
ˆ̂:
�

eik1
2

eink1 �1
eik1 �1

b2 if l D 2;

C
eik1
2

eink1 �1
eik1 �1

e�ik�b3 b3 if l D 3;

0 else.

Moreover, for any 1-form f ,

d�f .x/ D
3X
lD1

.�f .x; x C bl /C f .x � bl ; x//

D
1

jBj

Z
k2B

dk e�ik�x
3X
lD1

.eik�bl �1/ Of .k; l/;

which implies

2d�B�ndip.k/ D �
eik1

2

eink1 �1
eik1 �1

Œ.eik�b2 �1/b2 � .1 � e�ik�b3/b3�:

In conclusion,

lim
ƒ!T
hd�B�ndip; A

�1d�B�ndipi D
1

4

Z
B

dk

jBj

ˇ̌̌̌
ˇeink1 �1eik1 �1

ˇ̌̌̌
ˇ
2

� Œ.e�ik�b2 �1/b2 � .1 � eik�b3/b3� � OA.k/�1Œ.eik�b2 �1/b2 � .1 � e�ik�b3/b3�

D
1

4

Z
B

dk

jBj

1 � cos.k1n/
1 � cos k1

F.k/ (6.6)

with

F.k/ WD Œ.e�ik�b2 �1/b2 � .1 � eik�b3/b3� OA�1.k/Œ.eik�b2 �1/b2 � .1 � e�ik�b3/b3�:
(6.7)
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In the vicinity of the singularity, letting …k D k ˝ k=k
2 be the projector in direction k,

OA.k/ D 3
8
k2.1C 2…k/CO.k

4/;

so that
OA�1.k/ D

8

9k2
.31 � 2…k/.1CO.k

2//:

Using these properties of OA�1.k/we see that the function F.k/ in (6.7) is even, uniformly
bounded on B, and analytic in k away from k D 0. In the vicinity of the singularity, it
behaves like

F.k/ D
2

k4
.k41 C k

4
2 �

2
3
k21k

2
2/CO.k

2/ D 2 �
16

3

k21k
2
2

k4
CO.k2/: (6.8)

In order to extract the dominant contributions from (6.6), we rewrite F.k/D F..0;k2//C
ŒF .k/� F..0; k2//� with F..0; k2//D 2. The contribution from F..0; k2// reads, for any
small � > 0,

1

2

Z
B

dk

jBj

1 � cos.k1n/
1 � cos k1

D
1

2�

Z �

��

dk1
1 � cos.k1n/

k21
CO.1/ D

n

2
CO.1/;

where the remainderO.1/ is uniformly bounded as n!1. By using (6.8), we can rewrite
the contribution from F.k/ � F..0; k2//, for any small � > 0, as

1

4

Z
Œ��;��2

dk

jBj

1 � cos.k1n/
k21=2

�
�
16

3

k21k
2
2

k4

�
CO.1/

D �
1

p
3�2

Z
Œ��;��2

dk
k22.1 � cos.k1n//

k4
CO.1/; (6.9)

where again the remainder O.1/ is uniformly bounded as n!1. The dominant term in
(6.9) can be computed explicitly, and gives

(6.9) D �
1
p
3�

Z �

0

dk1

k1
.1 � cos.k1n//CO.1/ D �

1
p
3�

lognCO.1/: (6.10)

Putting things together, we obtain (3.16), as desired.

6.2. The energy of a pair of infinite, parallel grain boundaries: proof of (3.17)

Let

�
M;n;m
grain .x; x0/ D

M�1X
jD0

�ndip.x �mj.b2 � b3/; x
0
�mj.b2 � b3//

with �ndip defined in (6.3). By proceeding as in the previous subsection, we find that

1

M
h�
M;n;m
grain ; B�

M;n;m
grain i D

n

2
;
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while

1

M
hd�B�M;n;mgrain ; A�1d�B�M;n;mgrain i

D
1

4M

Z
B

dk

jBj

1 � cos.k1n/
1 � cos k1

1 � cos.Mm
p
3 k2/

1 � cos.m
p
3 k2/

F.k/; (6.11)

where F.k/ is as in (6.7). Now

lim
M!1

1

M
hd�B�M;n;mgrain ; A�1d�B�M;n;mgrain i

D
1

16�m

2m�1X
jD0

Z 2�

0

dk1
1 � cos.k1n/
1 � cos k1

F..k1; pj //; (6.12)

where pj D pj .m/ D
2�j

m
p
3

. In order to compute this expression asymptotically, as
n; m ! 1, it is convenient to rewrite F..k1; pj // as ŒF ..k1; pj // � F..0; pj //� C
F
��
0; 2�j
m
p
3

��
, where F..0; pj // D 2 (in the case j D 0, this identity should be under-

stood as limk1!0 F..k1; 0// D 2). The contribution from F..0; pj // reads

1

8�m

2m�1X
jD0

Z 2�

0

dk1
1 � cos.k1n/
1 � cos k1

D
n

2
;

while the one from F..k1; pj // � F..0; pj // reads

1

16�m

2m�1X
jD0

Z 2�

0

dk1
1 � cos.k1n/
1 � cos k1

ŒF ..k1; pj // � 2�:

A computation shows that the difference in brackets is O.k21/ for k1 close to 0 (pos-
sibly non-uniformly in j;m); correspondingly, if we let n!1, the term proportional to
cos.nk1/ under the integral sign goes to zero as .logn/=n. Summarizing,

lim
n!1

Egrain.n;m/ D
1

32
p
3�m2

2m�1X
jD0

Z 2�

0

dk1
2 � F..k1; pj //

1 � cos k1
CO.1=m/:

The dominant contribution to the first term on the right side as m ! 1 comes from
the region .k1; pj / 2 Œ��; ��2, the contribution from the complement being bounded uni-
formly in m (here � is an arbitrarily small, positive constant). Moreover, by rewriting

1 � cos k1 for k1 small as k2
1

2
.1C O.k21//, and by expanding F.k/ as in (6.8), we find,

letting J� D b
p
3 �m=.2�/c,

lim
n!1

Egrain.n;m/ D
4

3
p
3�m2

J�X
jD0

Z �

0

dk1
p2j

.k21 C p
2
j /
2
CO.1=m/:
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Finally, recalling that pj D
2�j

m
p
3

, by summing over j and integrating over k1, we find

lim
n!1

Egrain.n;m/ D
logm
6�m

CO.1=m/; (6.13)

asymptotically as m!1. This is the desired ‘Read–Shockley’ law for the energy of a
grain boundary.

6.2.1. Comparison of the Read–Shockley formula with the capacitor law. As promised
above, let us now make a technical comparison between the derivation of the Read–
Shockley formula (6.13) and the analogous computation when the operator B is replaced
by the identity. In this case we lose the key feature of our discrete elasticity model, that
is, invariance under linearized rotations. This is the physical reason why the scaling of the
corresponding energies are completely different.

More specifically, let u be an R2-valued function on T , � a lattice-valued function on
the nearest neighbor bonds of T , and q a lattice-valued function on the faces of T , with
finite support and zero total charge,

P
f q.f /D 0. Consider the minimum energy defined

by

E D 1
2

min
.u;�/
¹jdu � � j2 W d� D qº D 1

2
min
v
¹jvj2 W dv D qº;

where the minimum over v is taken over R2-valued (rather than T -valued) functions
on the nearest neighbor bonds of T . The minimizer �q is characterized by the Euler–
Lagrange equations d�q D q and d��q D 0. Clearly �q D d���1q satisfies those equations
and is the unique minimizer. Hence

E D 1
2
hq;��1qi;

i.e. the modified Ariza–Ortiz energy reduces to a lattice Coulomb interaction. To com-
pute E for specific 2-forms q it is convenient to work with the Fourier representation of
the Laplacian acting on 2-forms. A simple calculation shows that

�q.x; j / D

´
3q.x; 1/ � q.x; 2/ � q.x C b2; 2/ � q.x � b3; 2/ if j D 1;

3q.x; 2/ � q.x; 1/ � q.x � b2; 1/ � q.x C b3; 1/ if j D 2;

where we use the abbreviation q.x; 1/ D q.x; x C b1; x � b3/ and q.x; 2/ D

q.x; x � b2; x C b1/; see Fig. 3 for a visualization of the two face types.
We write the Fourier transform of 2-forms q by

q.x; j / D

Z
B

dk

jBj
Oq.k; j / e�ikx ; x 2 T ; j D 1; 2;

and obtain the Fourier symbol

c�q.k/ D � 3 ��.k/

���.k/ 3

�
Oq.k/;
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Type 1

Type 2

Fig. 3. The face types of the triangular lattice.

where�.k/D 1C e�ik�b2 C eik�b3 and we use the convention that each coefficient of the
symbol is interpreted as a multiple of the 2-dimensional identity matrix (i.e. the symbol
is actually a Hermitian 4 � 4-matrix). In conclusion,

E D
1

2
.q;��1q/ D

1

2

Z
B

dk

jBj

1

9 � j�.k/j2
OqT .�k/

�
3 �.k/

��.k/ 3

�
Oq.k/:

Let us now compute the energy of the dislocation dipole: If q D qndip (cf. (3.12)) then the
corresponding energy is

Edip.n/ D 3

Z
B

dk

jBj

1 � cos.k1n/
9 � j�.k/j2

:

Note that, close to the singularity k D 0, we have j�.k/j2 D 9� 3
2
jkj2 CO.k3/, so that,

for any � > 0,

Edip.n/ D
2

jBj

Z
Œ��;��2

1 � cos.k1n/
jkj2

dk CO.1/ D

p
3

2�
lognCO.1/;

which is qualitatively the same as the energy of the dislocation dipole, (3.16). Since the
energy of a single dipole is asymptotically the same at large distances, up to a multiplic-
ative constant, both for this lattice Coulomb case and the standard case of the Ariza–Ortiz
model, one may naively expect that the energy of two parallel arrays of dipoles is also
qualitatively the same in the two models. However, this is not the case. If we consider a
charge distribution which resembles two parallel capacitor plates where q D qM;n;mgrain (cf.
(3.13)), then

Egrain.n;m/ D lim
M!1

p
3

mM

Z
B

dk

jBj

1 � cos.k1n/
9 � j�.k/j2

1 � cos.mM
p
3 k2/

1 � cos.m
p
3 k2/

D lim
M!1

p
3

4�m2

2m�1X
jD0

Z 2�

0

dk1
1 � cos.k1n/

9 � j�.k1; pj /j2
;

where pj D pj .m/ D
2�j

m
p
3

. The dominant contribution to the right side as n!1 at m

fixed comes from the region .k1; pj / 2 Œ��=m; �=m�2 mod L�, for any small � > 0, the
contribution from the complement being bounded from above uniformly in n, as n!1
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(this is an immediate consequence of the fact that the only zero of 9 � j�.k/j2 is k D 0).
On the other hand, the contribution from .k1;pj / 2 Œ��=m;�=m�

2 mod L� grows linearly
in n, as n!1, so that, noting that 9 � j�.k1; 0/j2 D 3

2
k21 CO.k

3
1/ for k1 small,

lim
n!1

1

n
Egrain.n;m/ D lim

n!1

1

n

p
3

4�m2

Z �=m

��=m

dk1
1 � cos.k1n/

3
2
k21

D

p
3

2m2
;

which is the usual electrostatic energy of an infinite capacitor. Note the linear behavior
of the energy in n, as n!1, to be compared with the asymptotic independence of the
energy of a grain boundary in n in the Ariza–Ortiz model (see (3.17)).

Appendix A. Interpretation of the model

In this appendix we provide a heuristic interpretation of the Ariza–Ortiz model, which
aims at clarifying its connection with more fundamental microscopic models for atomic
crystals. For a more systematic discussion, from a different perspective, the reader is
referred to the original paper [2] where the model has been introduced.

For simplicity, we restrict our discussion to two dimensions. Assume that the particles
interact via a classical, rotationally invariant, pair potential V , with a non-degenerate min-
imum at distance, say, 1. If such a minimum is deep and narrow the potential energy of a
particle configuration can be well approximated by a sum over nearest neighbors:

E.z/ D
1

2

X
�;�2DT.z/W

���

V.jz.�/ � z.�/j/; (A.1)

where the sum runs over ordered pairs of nearest neighbor sites of the graph DT.z/,
the Delaunay triangulation of the particle configuration z (i.e., the dual of the Voronoi
diagram of z); in (A.1), z.�/ and z.�/ indicate the coordinates in R2 of the vertices
of the graph DT.z/ labelled � and �, respectively. Under the assumption that the pair
potential V has a deep, narrow minimum, located at 1, we expect that the low-energy
particle configurations are such that the nearest neighbor pairs involved in the summation
in (A.1) have distance jz.�/ � z.�/j close to 1. See Fig. 4 for an example.

The inconvenient feature of (A.1) is that the sum runs over the nearest neighbor sites
of a graph, whose structure depends upon the configuration itself. A more convenient way
of expressing the same energy is to reduce to a fixed reference graph, after appropriate
redefinition of the nearest neighbor bonds. In our 2D setting, the natural reference graph
is the regular triangular lattice of unit mesh, denoted T . Given a particle configuration2 z,

2Implicitly, we assume that the particle configuration z is sufficiently ‘reasonable’ that the
desired one-to-one correspondences between vertices and nearest neighbor pairs of DT.z/ and
T are well-defined. We expect that particle configurations are almost all reasonable, with respect
to the infinite volume Gibbs measure with energy (A.1) and inverse temperature ˇ, provided ˇ is
sufficiently large.
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Fig. 4. A particle configuration z and its Delaunay triangulationDT.z/. Notice that, in this example,
the graph DT.z/ is not a global deformation of the regular triangular lattice: there are sites with
seven neighbors ((0,0) and (3,1)) next to sites with five neighbors ((0,1) and (3,0)). These kinds of
defects correspond to dislocations, which play a key role in our analysis.

we establish a one-to-one correspondence of the vertices of DT.z/ with those of T (call
it the ‘vertex correspondence’) and a one-to-one correspondence of the ordered nearest
neighbor pairs of DT.z/ with those of T (call it the ‘bond correspondence’), in such a
way that (A.1) is re-expressed as a sum over ordered pairs of nearest neighbor sites of T

(note that the bond correspondence we introduce is not the one induced by the vertex
correspondence, see below for its definition and an explicit example):

E.z/ D
1

2

X
x;y2T W
x�y

V.jz.'.x; y// � z. .x; y//j/: (A.2)

Here .'.x; y/;  .x; y// is the image of an ordered nearest neighbor pair in DT.z/ under
the aforementioned bond correspondence.3 Letting

u.x/ D z.x/ � x; (A.3)

�.x; y/ D y � x �  .x; y/C '.x; y/; (A.4)

where u and � are the displacement and slip fields, respectively, (A.2) can be further
rewritten as

E.z/ D
1

2

X
x;y2T W
x�y

V
�
jx � y C u.'.x; y// � u. .x; y//C �.x; y/j

�
: (A.5)

The slip field � is a key feature of our model, and it provides a direct way of measuring the
change of the nearest neighbors, as well as the occurrence of dislocations. For example,
if the ‘charge’ q D

P
i �.xi ; xiC1/ is different from zero for some closed path xi 2 T ,

3Reversing the order of the nearest neighbor pair .x; y/, we have .'.x; y/;  .x; y// D

. .y; x/; '.y; x//, which is a constraint to be imposed on the functions '; .
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then the path encloses a dislocation defect. The Burger vectors are closely related to the
charges q associated with elementary circuits (the boundaries of the triangular faces of T ),
but also depend on the orientation and the location of the path; their specific definition is
unimportant for our purposes, and therefore we skip it.

Example. Let us illustrate in a concrete case how to construct the one-to-one mappings
between the vertices and nearest neighbor pairs of DT.z/ and those of T , and how to
compute the slip field. Consider the graph DT.z/ associated with the configuration of
Fig. 4, and deform it so that its vertex set coincides with that of T , as depicted in Fig. 5.

Fig. 5. A deformation of the graph in Fig. 4 with the same vertex set as the regular triangular lattice.
The solid bonds correspond to the nearest neighbor edges of the original graph in Fig. 4. The dashed
bonds are the ‘missing’ nearest neighbor edges of T .

In Figures 4 and 5 we used the same labels for the corresponding vertices under the
mapping induced by the deformation of the graph. Moreover, in Fig. 5, we connected by
solid lines the images of the nearest neighbor pairs of DT.z/. These solid lines can be
put in one-to-one correspondence with the nearest neighbor pairs of T ; specifically, for
any positively oriented4 nearest neighbor bond .x; y/ of T , we let '.x; y/ � x, and

 .x; y/ D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

.0; 0/ if .x; y/ D ..1; 1/; .1; 0//,

.1; 1/ if .x; y/ D ..1; 0/; .0; 1//,

.1; 0/ if .x; y/ D ..2; 1/; .2; 0///,

.2; 1/ if .x; y/ D ..2; 0/; .1; 1//,

.2; 0/ if .x; y/ D ..3; 1/; .3; 0//,

.3; 1/ if .x; y/ D ..3; 0/; .2; 1//,

y otherwise.

4We use the convention that the ‘positively oriented’ nearest neighbor pairs of T are those of the
form .x; x C bl /, with l D 1; 2; 3 (here b1 D

�1
0

�
, b2 D

� �1=2
p
3 =2

�
, and b3 D �b1 � b2); of course,

the nearest neighbor pairs of the form .x; x � bl / are called negatively oriented. It is sufficient to
define the functions ';  and the slip field on positively oriented n.n. pairs: if .x; y/ is negatively
oriented, we let .'.x; y/;  .x; y// D . .y; x/; '.y; x//, so that �.x; y/ D ��.y; x/.
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With these conventions, the slip field on positively oriented edges is

�.x; y/ D

8̂̂<̂
:̂
�b1 if .x; y/ 2 ¹..1; 0/; .0; 1//; ..2; 0/; .1; 1//; ..3; 0/; .2; 1//º,

b1 if .x; y/ 2 ¹..1; 1/; .1; 0//; ..2; 1/; .2; 0//; ..3; 1/; .3; 0//º,

0 otherwise.

(A.6)

The Ariza–Ortiz model is obtained from (A.5) under a couple additional approxim-
ations. Letting x � y � `0 and u.'.x; y// � u. .x; y// C �.x; y/ � ı0, we rewrite
V.j`0C ı0j/ by expanding it in Taylor series around the minimum: recalling that j`0j D 1
and assuming ı0 to be small, we find

V.j`0 C ı0j/ D V.1/C
V 00.1/

2
.`0 � ı0/

2
CO.jı0j

3/:

Neglecting the remainder, dropping an additive constant and rescaling the resulting
energy, we obtain

E.z/ �
1

4

X
x;y2T W
x�y

�
.x � y/ �

�
u.'.x; y// � u. .x; y//C �.x; y/

��2
: (A.7)

This quadratic approximation corresponds to the standard small-strain assumption in con-
tinuum mechanics. Finally, we replace

u.'.x; y// � u. .x; y// � u.x/ � u.y/; (A.8)

which corresponds to the ‘linearized plasticity’ approximation in continuum mechanics.
After these replacements, we obtain

E.z/ �
1

4

X
x;y2T W
x�y

�
.x � y/ �

�
u.x/ � u.y/C �.x; y/

��2
; (A.9)

which is the Ariza–Ortiz model.
All the approximations involved in the previous scheme are uncontrolled, and their

validity should be (at least) checked a posteriori, by showing that the ‘typical’, low energy
configurations of the Ariza–Ortiz Hamiltonian are close (in a sense to be defined) to those
of the original, realistic Hamiltonian. This remains to be done: in fact, proving (even at
heuristic level) the correctness of these approximations is a major challenge in the field
and goes beyond the purposes of our paper. From a numerical point of view, the use of
the Ariza–Ortiz Hamiltonian gives results in qualitative agreement with the more realistic
energy function (A.5) (see Fig. 6).

Appendix B. On the energy of a grain supported on an infinite vertical strip

In this appendix we discuss the connection between the energy Egrain.n; m/ defined in
(3.15) and the optimal grain energy EG .S/ defined in (3.8), in the case of a grain G
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Fig. 6. A visualization of the relaxed configuration corresponding to the minimum over u of: the
energy function in (A.5) with V.x/D x2=2 at fixed Delaunay graph, equal to the one of Fig. 4 (left
panel); the Ariza–Ortiz Hamiltonian at fixed slip field, equal to the one in (A.6).

supported in a vertical strip of width n, ‘rotated’ by an ‘angle’ � � 1=m. As anticipated in
Sect. 3.3, for simplicity we restrict our attention to two dimensions. We recall that T is the
infinite 2D triangular lattice with basis vectors b1 D

�
1
0

�
, b2 D

� �1=2
p
3 =2

�
, and we let b3 D

�b1 � b2. We also letm1D 4�p
3

�p
3=2
1=2

�
,m2D 4�p

3

�
0
1

�
be a basis of the dual lattice T � such

that bi �mj D 2�ıi;j for i; j D 1; 2; moreover, we define m3 D m1 �m2 D 4�p
3

�p
3=2
�1=2

�
,

so that b3 �m3 D 0.
We consider a grain whose support is an infinite vertical strip of width n:

G D Ga[Gb with Ga WD ¹x D n1b1Cn2.b2�b3/ W 0 � n1 � n; n2 2 Zº;

Gb WD GaCb2:
(B.1)

Note that the complement of the grain is disconnected and consists of two semi-
infinite components, the left one, denoted G cL, and the right one, denoted G cR. We let

uS .x/ D

8̂̂<̂
:̂
0 if x 2 G cL;

Sx C � if x 2 G ;

�R if x 2 G cR;

(B.2)

with S D S.�/ D
p
3 �
�
0 1
�1 0

�
for some � 2 R (the normalization factor

p
3 is chosen

for later convenience, e.g., to have a prefactor �
2�

, rather than �

2�
p
3

, in (B.5)) and �; �R to
be fixed. We are interested in estimating the optimal grain energy per unit vertical length
that, in analogy with the definition (3.8) for the finite-grain case, is defined as follows:

eG .S/ D lim inf
ƒ!T

1
p
3
2
N

lim
�!0C

inf
�2M

.�/
S
.G /

inf
u
HAO.u; �/; (B.3)

where we recall that ƒ D ƒ.N/ is the 2D analogue of (2.2), whose vertical height is
p
3
2
N (which explains the normalization factor 1=.

p
3
2
N/ on the right side of (B.3)), and
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0

b2

b2 � b3

2b2 � b3

2.b2 � b3/

Fig. 7. A portion of the grain: the dark gray area represents the grain, and the circled sites are
those belonging to its left boundary. The light gray area is the left ‘boundary layer’, and the red
bonds (the ‘boundary bonds’) are those connecting sites in the grain with sites in its complement:
those are bonds on which the slip field � in the minimization problem (B.4) may be non zero;
correspondingly, the light gray faces are those where the ‘charge’ d� may be non-zero.

M
.�/
S .G / is the set of lattice-valued slip fields � such that there exist �; �R for which

�; �; �R realize the infimum of inf�;�R inf�� HAO.uS ; �/ within a precision �, where the
� on inf�� indicates the constraint that the support of � is over the bonds connecting the
grain with its complement, such as the red bonds of Fig. 7.

Let us focus on the minimization problem defining the set M
.�/
S .G /, i.e.,�p

3
2
N
��1 inf

�;�R
inf�
�

HAO.uS ; �/

D
�p

3
2
N
��1 inf

�;�R
inf�
�

1

2

X
x�y

Œ.x � y/ � .uS .x/ � uS .y/C �.x; y//�
2: (B.4)

Note that by definition the only non-zero terms in the sum on the right side are those
associated with boundary bonds .x; y/ with x 2 G and y 62 G (such as the red bonds
of Fig. 7): for such bonds uS .x/ � uS .y/ D Sx C � if x belongs to the left boundary,
and uS .x/ � uS .y/ D Sx C � � �R if x belongs to the right boundary. The goal is to
find a minimizer �.x; y/ for .x; y/ a boundary bond. For this purpose, it is convenient to
decompose S into simple slip systems. Recall that any 2 � 2 skew-symmetric matrix A
can be decomposed into simple slip systems, i.e., A D

P3
lD1 �l bl ˝ mn.l/, for suitable

coefficients �l , wheremnl 2 T � are the slip plane normals, namelymn.1/ Dm2,mn.2/ D
m1, and mn.3/ D m3. In particular, a simple computation shows that

S D S.�/ D �
2�
.b1 ˝m2 � b2 ˝m1 C b3 ˝m3/: (B.5)
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Setting temporarily � D 0, (B.5) suggests the following choice for the slip field minimizer
for .x; y/ a boundary bond with x 2 G and y 62 G :

�.x; y/ D �b1
˝
�
2�
x �m2

˛
C b2

˝
�
2�
x �m1

˛
� b3

˝
�
2�
x �m3

˛
C �R1y2Gc

R
; (B.6)

where hxi WD bx C 1=2c denotes the ‘nearest integer function’. On the left boundary
(similar considerations hold for the right one), x equals n2.b2 � b3/ or n2.b2 � b3/C b2
for some n2 2 Z, depending on whether x is in Ga or Gb . Note that, for x D n2.b2 � b3/,
we have

1
2�
x �m2 D 2n2;

1
2�
x �m1 D n2;

1
2�
x �m3 D �n2:

Therefore, on the left boundary, if x equals n2.b2 � b3/ or n2.b2 � b3/C b2, recalling
that b2 C b2 D �b1, we have

�.x; y/ D �b1.h2�n2i C h�n2i/; (B.7)

up to O.�/ corrections, which are present if x has the form n2.b2 � b3/C b2 (and are
small for � small). The computation leading to (B.7) neglected the presence of � in the
definition of uS and was not based on an exact minimization of the sum on the right side
of (B.4). However, the patient reader can check that, by performing an exact minimiz-
ation, one can choose � of order � and � can be chosen as in (B.7), up to a bounded
O.�/ correction (details left to the reader). Similarly, the exact minimization along the
right boundary leads to a slip field equal to the opposite of (B.7), up to a bounded O.�/
correction.

In conclusion, neglecting O.�/ fluctuation terms in the boundary slip field, which
are not expected to contribute to the optimal grain energy per unit vertical length at the
dominant order in the limit of small � and large n, the optimal slip field for the minim-
ization problem (B.4) equals �b1.h2�n2i C h�n2i/ on the boundary bonds of the grain
with vertical coordinate n2 (the minus and plus signs are for the left end right boundaries,
respectively). Notice that the charge distribution d� of such a slip field consists of isol-
ated charges equal to˙b1 or˙2b1 on suitable faces of the left and right boundaries (with
opposite signs on the two boundaries), vertically separated on average by a distance 1

2�
.

The average density of such boundary charge distribution equals ˙b1=.3�/, the same as
the charge distribution (3.13), provided we identify m with 1=.3�/.

Appendix C. The cellular complex of the FCC lattice

We recall that the three-dimensional FCC lattice L is the Bravais lattice with basis vectors
b1; b2; b3, as in (2.1). We also define the dual lattice L� as the Bravais lattice with basis
vectors

m1 D
p
2�

0@�11
1

1A ; m2 D
p
2�

0@ 1

�1

1

1A ; m3 D
p
2�

0@ 1

1

�1

1A : (C.1)
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Note that bi �mj D 2�ıi;j , with i; j D 1; 2; 3. For later reference, we also let

m4 D m1 Cm2 Cm3 D
p
2�

0@11
1

1A :
In terms of these definitions, the cellular complex associated with the FCC lattice is
defined in terms of the following cells:

1. The vertices x 2 E0 are the vertices of L, of the form x D n1b1 C n2b2 C n3b3.

2. The edges e 2 E1 are the ordered pairs of nearest neighbor vertices of L, namely pairs
.x; x0/ with x0 � x D ˙bl , l D 1; : : : ; 6; here b1; b2; b3 are as in (2.1), and we recall
that b4 D b3 � b2, b5 D b1 � b3, b6 D b2 � b1. The action of the boundary operator on
E1 is defined by @.x1; x2/ D ¹x1; x2º for any .x1; x2/ 2 E1. Note that, in the notation
of Sect. 4.1, @e D V.e/ for all e 2 E1, where V.e/ is the set of vertices of e.

3. The faces f 2 E2 can be identified with the 3-cycles of nearest neighbor vertices
.x1; x2; x3/ such that .xi ; xj / 2 E1, for i ¤ j , i; j D 1; 2; 3. There are eight funda-
mental types of faces:

f1 D .0; b2; b3/; f5 D .0; b1; b2/;

f2 D .0;�b2;�b3/; f6 D .0;�b1;�b2/;

f3 D .0; b3; b1/; f7 D .0; b6;�b5/;

f4 D .0;�b3;�b1/; f8 D .0;�b6; b5/:

plus those with opposite orientations:

f 01 D .0; b3; b2/; f 05 D .0; b2; b1/;

f 02 D .0;�b3;�b2/; f 06 D .0;�b2;�b1/;

f 03 D .0; b1; b3/; f 07 D .0;�b5; b6/;

f 04 D .0;�b1;�b3/; f 08 D .0; b5;�b6/:

The orientation o.f / of each face f D .x1; x2; x3/ can be identified with the nor-
mal vector computed via the ‘right-hand rule’, that is, o..x1; x2; x3// D .x2 � x1/ �
.x3 � x1/. Note in particular that the orientations of the fundamental faces fj ; f 0j
are o.fj / D �o.f 0j / D

1p
6�
mdj=2e. The set E2 can be obtained by translating the

fundamental faces ¹f1; : : : ; f 08º by the elements of L. The action of the boundary
operator on E2 is defined by @.x1; x2; x3/ D ¹.x1; x2/; .x2; x3/; .x3; x1/º for any
.x1; x2; x3/ 2E2. The set of vertices of a face is simply V..x1; x2; x3//D ¹x1; x2; x3º.
For later reference, we also let G.f / D 1

3

P
x2V.f / x be the barycenter of f .

4. The volumes v 2 E3 are the tetrahedra and the octahedra obtained by translating those
shown in Fig. 8 by the elements of L, together with an orientation o.v/ 2 ¹˙º; we shall
refer to the positive orientation as to the ‘outward’ orientation, and to the negative
as to the ‘inward’. Any element of v 2 E3 can be uniquely identified with the pair
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Fig. 8. The left panel shows the face-centered cubic structure. Bonds are shown with bold lines. The
edges of the cube are indicated with thin lines, they correspond to next-nearest neighbors.
The primitive unit cell of the FCC lattice is shown in the right panel. It can be dissected into a regular
octahedron and two regular tetrahedra, which are the 3-cells of our cellular complex. The figure
shows that there are two inequivalent type of tetrahedra: red and green. We shall call r-tetrahedra
(resp. g-tetrahedra) those that can be translated into the red (resp. green) tetrahedron.

.V .v/; o.v//, where V.v/ is the vertex set of v (note, in fact, that the un-oriented
volume associated to v is the convex hull of V.v/). The vertex sets of the r-tetrahedra
in Fig. 8 are of the form x C ¹0; b1; b2; b3º with x 2 L. The vertex sets of the g-
tetrahedra in Fig. 8 are of the form xC ¹0;�b1;�b2;�b3ºwith x 2L. The vertex sets
of the octahedra in Fig. 8 are of the form x C ¹b1; b2; b3; b1 C b2; b1 C b3; b2 C b3º

with x 2L. For later reference, we also letG.v/D 1
jV.v/j

P
x2V.v/ x be the barycenter

of v. The boundary operator on E3 is defined by the condition that its action on v 2
E3 returns the faces of its boundary, with the outward orientation if o.v/ D C, and
the inward orientation if o.v/ D �. In formulae, @v D ¹f 2 E2 W V.f / � V.c/ and
signŒ.G.f / �G.v// � o.f /� D o.v/º.

Appendix D. On the operator A and its inverse

In this appendix we discuss and prove a few basic properties of the operator d�0Bd0, both
when it acts on the 0-forms associated with the infinite FCC lattice L, and when it acts
on those associated with a finite box ƒD ƒ.N/ � L, of the form (2.2), with Dirichlet
boundary conditions. In order to avoid confusion between the two cases, in this appendix
(contrary to the rest of the paper) we denote by C0, resp. C0ƒ, the set of 0-forms asso-
ciated with the infinite lattice, resp. with the box ƒ with Dirichlet boundary conditions.
Correspondingly, we denote by A, resp. Aƒ, the operator d�0Bd0 acting on C0, resp. C0ƒ.
Note that Aƒ can be rewritten as

Aƒ D

6X
lD1

…l�l ; (D.1)



LRO in atomistic models for solids 43

where …l D bl ˝ bl is the projection along bl and �l W C0ƒ ! C0ƒ is the (non-negative)
one-dimensional Laplacian in the direction bl , namely, if f 2 �ƒ0 , then �lf .z/ D

2f .z/ � f .z C bl / � f .z � bl /.

D.1. Invertibility of Aƒ

Using (D.1) and the fact that�l � 0, we findAƒ � QAƒ WD
P3
lD1…l�l . The operator QAƒ

acts diagonally on the k index of the Dirichlet basis ¹uk;j º
jD1;2;3

k2ƒ�
D

, where, if m1; m2; m3
are the basis vectors of L� (see (C.1)),

ƒ�D WD ¹k D k1m1 C k2m2 C k3m3 W kl D
nl

2.N C 1/
with nl D 1; : : : ; N

¯
and

uk;j .x/ D

�
2

N C 1

�3=2h 3Y
lD1

sin.2�klxl /
i
ej ;

with kl D 1
2�
k � bl and ej the j -th standard Euclidean basis vector. We have QAƒuk;j .x/

D 2Œ
P3
lD1 ˛l…l �ijuk;i .x/, where ˛l WD 1� cos.2�kl /, which is positive for k 2ƒ�D . Of

course, 2
P3
lD1 ˛l…l � 2min ¹˛1; ˛2; ˛3º

P3
lD1…l . By using the explicit form of …l ,

we get

2

3X
lD1

…l D

0@2 1 1

1 2 1

1 1 2

1A ;
whose smallest eigenvalue is 1, that is, 2

P3
lD1 …l � 1. In conclusion, Aƒ � QAƒ �

mink2ƒ�
D
.1 � cos.2�kl //1, which is positive, proving the invertibility of Aƒ for any

finite box ƒ.

D.2. Proof of (5.10)

In order to prove (5.10), we derive upper and lower bounds on hg; A�1ƒ gi, that is, the
argument of the limit in the left side of (5.10), in the notation of this appendix. For the
reader’s convenience, we recall that gD gv0Ix D 1xv0, where x 2L and v0 2L�. With no
loss of generality (since we are interested in the thermodynamic limitƒ!L), we assume
that x 2 ƒ. The important feature of g to be used in the following is that it is compactly
supported, with support contained in ƒ. Note that

� hg;A�1ƒ gi D min
u2C0

ƒ

.hu;Aui � 2hu; gi/: (D.2)

We recall that the minimum on the right side is over the compactly supported 0-forms
u W L! R3 whose support is contained in ƒ. In order to get a lower bound, we write the
quadratic function hu; Aui � 2hu; gi in Fourier space, by using the convention u.z/ DR

B
dk
jBj
Ou.k/ e�ikz (see the line after (5.10) for the definition of B); then, we complete the
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square and drop the non-negative u-dependent term, thus getting

� hg;A�1ƒ gi � �

Z
B

dk

jBj
Og.�k/ � OA�1.k/ Og.k/; (D.3)

with Og.k/ and OA.k/ defined as in (5.11)–(5.12). As anticipated in Sect. 5.1, OA�1.k/ is
singular only at k D 0, close to which it behaves like � k�2 (see below for a proof):
therefore, the right side of (D.3) is finite for any compactly supported g.

In order to get an upper bound, we use the test function u�.z/ WD �ƒ.z/u1.z/, where
�ƒ.z/ WD min ¹1; 4 dist.z;ƒc/=N º (recall that N is the side of the box ƒ, see (2.2)) and

u1.z/ D

Z
B

dk

jBj
OA�1.k/ Og.k/ e�ik�z ; (D.4)

thus getting, for N sufficiently large,

� hg;A�1ƒ gi � hu�; Au�i � 2hu�; gi D
X
e2E1

.du�.e/ � ıe/2 � 2hu1; gi; (D.5)

where we recall that, for an edge e D .x; y/, ıe D y � x, and in the last identity we have
used the fact that, thanks to the definition of �ƒ, for N sufficiently large the support of
g D 1xv0 is contained in supp 1.�ƒ D 1/ � ƒ, so that in particular u� D u1 on the
support of g. Moreover, letting u.ze/ WD 1

2
.u.x/C u.y// for an edge e D .x; y/,X

e2E1

.du�.e/ � ıe/2 �
X
e2E1

.du1.e/ � ıe/2 C
X
e2E1

.d�ƒ.e//2 .u1.ze/ � ıe/2

� hu1; Au1i C
C

N 2

X
z2LW

dist.z;ƒc/�N=4C2

ju1.z/j
2 (D.6)

for some universal constant C > 0. Plugging (D.6) in (D.5), and using the fact that
hu1; Au1i � 2hu1; gi is equal to the right side of (D.3), we find

�hg;A�1ƒ gi � �

Z
B

dk

jBj
Og.�k/ � OA�1.k/ Og.k/C

C

N 2

X
z2LW

dist.z;ƒc/�N=4C2

ju1.z/j
2: (D.7)

We will prove below (see Sect. D.5) that

ju1.z/j D

ˇ̌̌̌Z
B

dk

jBj
OA�1.k/v0 eik�.x�z/

ˇ̌̌̌
� c1

1C log jx � zj
jx � zj

(D.8)

for some positive constant c1, so that, for N large enough and a suitable C 0 > 0,

C

N 2

X
z2LW

dist.z;ƒc/�N=4C2

ju1.z/j
2
� C 0

log2N
N

: (D.9)

Now, forƒ D ƒ.N/ large enough (see (2.2)), the right side of (D.9) vanishes as N !1,
which concludes the proof of (5.10).
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D.3. Invertibility of OA.k/ for k ¤ 0

Let us rewrite OA.k/ in (5.12) as

OA.k/ D 2

6X
lD1

˛l…l ; where ˛l WD 1 � cos.k � bl / � 0:

By using the explicit form of …l , following from the explicit expression of the vectors
b1; : : : ; b6, we find

OA.k/ D

0@˛2 C ˛3 C ˛5 C ˛6 ˛3 � ˛6 ˛2 � ˛5
˛3 � ˛6 ˛1 C ˛3 C ˛4 C ˛6 ˛1 � ˛4
˛2 � ˛5 ˛1 � ˛4 ˛1 C ˛2 C ˛4 C ˛5

1A ; (D.10)

whose determinant is

det OA.k/ D 4Œ˛1˛2˛3 C ˛1˛2˛4 C ˛1˛2˛5 C ˛1˛3˛4 C ˛1˛3˛6 C ˛1˛4˛5
C ˛1˛4˛6 C ˛1˛5˛6 C ˛2˛3˛5 C ˛2˛3˛6 C ˛2˛4˛5

C ˛2˛4˛6 C ˛2˛5˛6 C ˛3˛4˛5 C ˛3˛4˛6 C ˛3˛5˛6
�
: (D.11)

Note that all the terms in the sum are non-negative, bacause ˛l � 0. We want to argue that
.˛1; ˛2; ˛3/ ¤ .0; 0; 0/) det OA.k/ ¤ 0. Recall that

b4 D b3 � b2; b5 D b1 � b3; b6 D b2 � b1; (D.12)

so that ˛2 D ˛3 D 0) ˛4 D 0, etc.
If ˛1; ˛2; ˛3 are all positive, then det OA.k/ > 0, simply because the first term on the

right side of (D.11) is positive.
Suppose now that two of the elements of the triple .˛1; ˛2; ˛3/ are positive and the

third is zero, say ˛1; ˛2 > 0 and ˛3 D 0 (the other cases are treated analogously); from
(D.12), it follows that ˛4; ˛5 > 0. Therefore, det OA.k/ > 0, because the factor ˛1˛2˛4,
among others, is positive.

Finally, suppose that one of the elements of the triple .˛1; ˛2; ˛3/ is positive and the
other two are zero, say ˛1 > 0 and ˛2 D ˛3 D 0 (the other cases are treated analogously);
from (D.12), it follows that ˛5;˛6 >0. Therefore, det OA.k/> 0, because the factor ˛1˛5˛6
is positive.

This completes the proof that OA.k/ is invertible iff k ¤ 0 mod L�.

D.4. Proof of (5.13)

By expanding OA.k/ in Taylor series in k around k D 0, we get

OA.k/ D

6X
lD1

.k � bl /
2…l CO.k

3/ � OA0.k/CO.k
3/:



A. Giuliani, F. Theil 46

By using the explicit expression of the projectors …l , we find

OA0.k/ D
1

4

24.k2 C k3/2
0@0 0 0

0 1 1

0 1 1

1AC .k2 � k3/2
0@0 0 0

0 1 �1

0 �1 1

1AC permutations

35
D
k2

2
1C

0@k21=2 k1k2 k1k3
k1k2 k22=2 k2k3
k1k3 k2k3 k23=2

1A D k2

2
1C k ˝ k �

1

2
diag.k21 ; k

2
2 ; k

2
3/; (D.13)

from which the upper bound in (5.13) follows. We now get a lower bound on the eigen-
values of OB0.k/ WD OA0.k/ � k2

2
1. The characteristic polynomial of OB0.k/ is

P.�/ D ��3 C
k2

2
�2 C

3

4
�.k21k

2
2 C k

2
1k
2
3 C k

2
2k
2
3/C

5

8
k21k

2
2k
2
3 ;

which has three real roots. It is easy to see that the smallest root is larger than �ak2, with
a D

p
5�1
4

. This immediately follows from the fact that P.�ak2/ � 0 and P 0.�/ � 0 for
all � � �ak2. In order to check the first of these two inequalities, note that

P.�ak2/ � k6.a3 C a2=2 � a=4/;

simply because k�4.k21k
2
2 C k

2
1k
2
3 C k

2
2k
2
3/ � 1=3 for all k ¤ 0. Moreover, recalling that

aD .
p
5� 1/=4, we find that a3C a2=2� a=4D 0, which impliesP.�ak2/� 0. Finally,

in order to see that P 0.�/ � 0 for all � � �ak2, note that if � � �ak2, then

P 0.�/ D �3�2 C k2�C
3

4
.k21k

2
2 C k

2
1k
2
3 C k

2
2k
2
3/

� k4
�
�3a2 � aC

3

4

k21k
2
2 C k

2
1k
2
3 C k

2
2k
2
3

k4

�
:

Using again the fact that k�4.k21k
2
2 C k

2
1k
2
3 C k

2
2k
2
3/ �

1
3

, we find that, for all � � �ak2,

P 0.�/ � k4.�3a2 � aC 1=4/;

which is negative for a D .
p
5 � 1/=4. In conclusion, OB0.k/ D OA0.k/ � k2

2
1 � �ak2,

from which the lower bound in (5.13) follows.

D.5. Proof of (5.16) and (D.8)

Both (5.16) and (D.8) follow fromˇ̌̌̌Z
B

dk

jBj
. OA�1.k/v0/l e�ik�x

ˇ̌̌̌
� const �

1C log jxj
jxj

; (D.14)

which is valid for any l 2 ¹1; 2; 3º. In order to prove (D.14), we assume that jxj � ��1

for an arbitrary, sufficiently small �, and multiply the left side by jxj j with j 2 ¹1; 2; 3º.
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Then, we rewrite it asˇ̌̌̌
xj

Z
B

dk

jBj
. OA�1.k/v0/l e�ik�x

ˇ̌̌̌
D

ˇ̌̌̌Z
B

dk

jBj
. OA�1.k/v0/l@kj e�ik�x

ˇ̌̌̌
D

ˇ̌̌̌Z
B

dk

jBj
.@kj

OA�1.k/v0/l e�ik�x
ˇ̌̌̌
: (D.15)

Note that @kj OA
�1.k/ D � OA�1.k/ � @kj

OA.k/ � OA�1.k/ with

@kj
OA.k/ D 2

6X
lD1

…l .bl /j sin.k � bl /:

Recalling that OA.k/ is even, that it is singular iff k D 0, and that, for k close to zero,
it can be bounded from above and below by const � k2, we find that @kj OA

�1.k/ is odd,
it is singular iff k D 0 and, close to the singularity, it can be bounded from above by
const � jkj�3. Therefore, the right side of (D.15) can be rewritten asˇ̌̌̌Z

B

dk

jBj
.@kj

OA�1.k/v0/l sin.k � x/
ˇ̌̌̌

and, in order to bound it from above, we multiply the integrand by 1D �.k/C .1��.k//,
where �.k/ is a positive, monotone, C1 radial function, equal to 1 for jkj � � and equal
to 0 for jkj � 2�. Now, the term associated with 1� �.k/ is the Fourier transform of a C1

function, and therefore it decays faster than any power in real space. The term associated
with �.k/ can be bounded as follows:

const �
�Z
jkj�jxj�1

dk
jsin.k � x/j
jkj3

C

Z
jxj�1�jkj�2�

dk
1

jkj3

�
� const � log jxj:

Putting things together, we find that if jxj � ��1, then

jxj j
ˇ̌̌ Z

B

dk

jBj
. OA�1.k/v0/l e�ik�.x�y/

ˇ̌̌
� const � log jxj:

Summing over j from 1 to 3, we get the desired estimate (D.14).

Appendix E. Two technical estimates on cluster expansion

E.1. Proof of (5.21)

Starting from the definition of z.ˇ; q/ in (5.20), and using the bound on �.x/ stated one
line after (5.17), we get

jz.ˇ; q/j

�

X
n�1

X
q1;:::;qn2C2� W
q1C���CqnDq

h nY
iD1

1.Xi is connected/
ih nY
iD1

� Y
f 2Xi

e�
ˇ
2w0jqi .f /j

2
�i
j'.X1; : : : ; Xn/j;

(E.1)
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We now split the exponential factor in two parts,

e�
ˇ
2w0jqi .f /j

2

D e�
ˇ
4w0jqi .f /j

2

e�
ˇ
4w0jqi .f /j

2

;

and bound the product of e�
ˇ
4w0jqi .f /j

2
as

nY
iD1

� Y
f 2Xi

e�
ˇ
4w0jqi .f /j

2
�
� e�

ˇ
4w0kqk1 ; (E.2)

where we have used that (recall that q D
P
i qi )X

i

X
f 2Xi

jqi .f /j
2
�

X
i

X
f 2Xi

jqi .f /j �
X

f 2
S
i Xi

ˇ̌̌X
i

qi .f /
ˇ̌̌
� kqk1:

If we plug (E.2) in (E.1) and then weaken the constraint q1 C � � � C qn D q into
S
i Xi D

supp q, we obtain

jz.ˇ; q/j � e�
ˇ
4w0kqk1

X
n�1

X
X1;:::;Xn connectedWS

i XiDsuppq

�.X1/ � � � �.Xn/j'.X1; : : : ; Xn/j; (E.3)

with

�.X/ WD
�X
b2LW
b¤0

e�
ˇ
4w0jbj

2
�jX j

: (E.4)

(E.3) can be further bounded from above as

jz.ˇ; q/j � e�
ˇ
4w0kqk1

X
X1 connected

�.X1/.1 � ı.X1; supp q//

�

h
1C

X
n�2

X
X2;:::;Xn
connected

�.X2/ � � � �.Xn/
ˇ̌
'.X1; : : : ; Xn/

ˇ̌i
: (E.5)

Now, if a0.X/ is such thatX
X connected

�.X/ ea
0.X/.1 � ı.X;X�// � a

0.X�/

for any fixed, connected, non-empty X�, then the sum in square brackets in the second
line is bounded from above by ea

0.X/ [15, Theorem 5.4]. In our case, if ˇ is sufficiently
large, thanks to the definition of �.X/ in (E.4), we can choose a0.X/ D e�ˇw0=8 jX j.
Therefore,

jz.ˇ; q/j � e�
ˇ
4w0kqk1

X
X1 connected

�.X1/ ea
0.X1/.1 � ı.X1; supp q//

� e�
ˇ
4w0kqk1 a0.supp q/ D e�

ˇ
4w0kqk1 e�

ˇ
8w0 jsupp qj;

which is the desired estimate.
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E.2. Proof of (5.26)

Plugging (5.21) in the left side of (5.26), and using the fact that jsupp qj � kqk1 and
kqk2 � kqk1, we findX

q2C2�

jz.ˇ; q/j kqk821.B.q/ 3 e; e
0/

� e�
ˇ
8w0

X
q2C2�

e�
ˇ
4w0kqk1 kqk911.B.q/ 3 e; e

0/: (E.6)

We now weaken the constraint that B.q/ 3 e; e0 into kqk1 � dist.e; e0/ and find that, for ˇ
large enough,X

q2C2�

jz.ˇ; q/jkqk821.B.q/ 3 e; e
0/

� e�
ˇ
8w0

X
qW kqk1�dist.e;e0/

e�
ˇ
4w0kqk1 kqk91 � e�

ˇ
8w0.1Cdist.e;e0//; (E.7)

as desired.
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