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Abstract. We prove a result which describes, for each n � 1, all linear dependencies among n
images in a given elliptic curve of special points in a given modular or Shimura curve under a given
parameterization (or correspondence). Our result unifies and improves in certain aspects previous
work of Rosen–Silverman–Kühne and Buium–Poonen.
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1. Introduction and main results

Let Y be a modular (or Shimura) curve, E an elliptic curve over C, and V � Y � E an
irreducible correspondence (i.e. an irreducible closed subvariety of Y �E of dimension 1
dominant to both factors). If .s; x/ 2 V we will call x a V -image of s. We prove a result
describing, for each n � 1, all linear dependencies in E among the V -images of n special
points (see below) in Y . An example of particular interest is when V is the graph of a
modular parameterization � W Y ! E and then the V -images of special points are known
as CM points or Heegner points (though the latter term is usually taken to involve some
further assumptions). A number of results in the literature establish linear independence
of CM points under suitable hypotheses. After framing our result we compare it with
previous results.

The special subvarieties in En are the cosets of abelian subvarieties by torsion points
(“torsion cosets”); the special subvarieties of Y n when Y is the modular curve Y.1/ are
described e.g. in [13, 3.2]; they are fibre products of special points and modular curves.
In general, see [20, Definition 2.5]. The special subvarieties of Y n are described in §2.
Special points in either ambient are special subvarieties of dimension zero: torsion points
in En, and in Y.1/n, tuples of singular moduli. We identify varieties with their sets of
complex points and subvarieties are assumed to be relatively closed.

Definition. With notation as above, and n�1, let �Y n ;�En be the projections of Y n�En

onto the first and second factors, respectively.
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(i) A distinguished component in V n is a (geometrically) irreducible component W �
V n \ .S � B/, where S � Y n and B � En are special subvarieties, such that
�Y n.W / D S and �En.W / � B .

(ii) A distinguished component W in V n is called dependent if the special subvariety B
may be taken so that the inclusion B ¨ En is strict.

(iii) A distinguished componentW in V n is called exemplary if, setting B to be the smal-
lest special subvariety ofEn with �En.W /�B , there is no distinguished component
W 0 strictly larger than W with �En.W 0/ � B .

Observe that when V is the graph of a parameterization � W Y ! E, a distinguished
component is simply the graph of the restriction of � to a special subvariety S � Y n.
Note that an exemplary component need not be dependent, but the unique non-dependent
exemplary component is V n itself, being a component of V n \ .Y n �En/.

Let x1; : : : ;xn 2E be V -images of special points s1; : : : ; sn 2Y . Write sD .s1; : : : ; sn/
2 Y n, x D .x1; : : : ; xn/ 2 En. If .s; x/ 2 W for some dependent distinguished compon-
ent in V n, then the points x1; : : : ; xn 2 E are linearly dependent in E. Note that, for
us, linear dependence in E is always taken to be over End.E/. We have End.E/ D Z
unless E has CM (complex multiplication), in which case End.E/ is an order in an ima-
ginary quadratic field. Conversely, if x1; : : : ; xn are linearly dependent in E then .s; x/ is
contained in some dependent exemplary component.

The following theorem thus gives a description of every linear dependence among
V -images of n special points.

Theorem 1.1. Let V � Y � E be as above with Y a modular curve or a Shimura curve
and n � 1. Then there are only finitely many exemplary components in V n.

Note. We have assumed that V is dominant to both factors. However, only the dominance
to Y is needed in Theorem 1.1. Suppose V D Y � ¹xº. Then for each n, one has the unique
exemplary component .Y � ¹xº/n, which is dependent if and only if x is torsion.

Example. It is well known that X0.11/ has the structure of an elliptic curve, so we may
set E D Pic0.X0.11//. Consider the Atkin–Lehner involution w. Now on E, w is a non-
trivial automorphism, so its graph must be an abelian subvariety. Set � W X0.11/! E to
be the identification taking .1/! 0. Then �.w.1// D �.0/ is a torsion point, and thus
if we set S � X0.11/2 to be the graph of w, then S is a special curve whose �-graph is
exemplary.

A number of results in the literature assert linear independence properties of the V -
images of CM points. The fact that only finitely many V -images of special points can
be torsion was proved in [21, Theorem 1.5] for modular parameterizations and Heegner
points (generalized to certain Shimura curve parameterizations in [14, Theorem 1]) and is
equivalent to the assertion of Theorem 1.1 for n D 1. This also follows from the stronger
results in [5], in particular Theorem 1.1 there, and was reproved as a “special point prob-
lem” within the Zilber–Pink conjecture in [25, Theorem 1.3].

We deduce some consequences of Theorem 1.1 and compare with some further results
in the literature. It is convenient for the statement to order the (countable set of) special,
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non-fibral curves of Y 2. When Y is the modular curve, we let XN � Y � Y for N � 1 be
the classical modular curve of level N , i.e. the locus of points .s1; s2/ such that there is a
cyclic isogeny of degree N between the corresponding elliptic curves. When Y is not the
modular curve, we fix .XN /N2N to be any ordering of our choosing.

The discriminant �.s/ of a special point s 2 Y.1/ is the discriminant of the quadratic
order which is the endomorphism ring of the corresponding CM elliptic curve; in general
see §5, above 5.1. The size of the discriminant measures the “complexity” of a special
point.

Definition. Let D be a positive integer. A set ¹s1; : : : ; snº of special points in Y is called
D-independent if, for each i , j�.si /j>D and, for i ¤ j , there is no relation .si ; sj / 2XN
with N � D.

Corollary 1.2. For n � 1 there exists a positive integer D D D.Y; E; V; n/ such that if
¹s1; : : : ; snº is D-independent then any V -images x1; : : : ; xn of s1; : : : ; sn are linearly
independent in E.

Note. Here and below we do require that V is dominant to E, so that any dependent
component must arise from a proper special subvariety of Y n.

Proof of Corollary 1.2. For s D .s1; : : : ; sn/ to have a V -image which is dependent
requires s to lie in one of finitely many proper special subvarieties S1; : : : ; Sk � Y n.
We claim the maximal, non-fibral proper special subvarieties are all pulled back from
non-fibral special curves in Y 2 for some pair of coordinates. To see this, note that any
proper semisimple subgroup of SLn2 – which is surjective on all coordinate projections
– projects to the graph of an isomorphism on some two coordinates. Since special sub-
varieties are orbits of semisimple subgroups, the claim follows. Thus, for each i , s 2 Si
requires either that some coordinate is equal to a fixed special point, or that .si ; sj / 2 XN
for some i ¤ j and fixed N . This is not possible if s is D-independent for sufficiently
large D.

Corollary 1.2 improves a result of Kühne [15, Theorem 2], which in turn improves, in
some respects, Rosen–Silverman’s [32, Theorem 1]. The results differ in detail and so it
is not straightforward to compare them. With respect to Kühne’s result, ours implies inde-
pendence even for CM points corresponding to orders in the same CM field, if the orders
are sufficiently far apart (i.e. if the corresponding singular moduli are D-independent
up to suitable D; the previous results required the CM fields of the si to be distinct).
Note however that Kühne’s result is effective, whereas ours is not. With respect to [32],
Kühne’s result ameliorates the condition on the class number in [32, Theorem 1], which
was insufficient to imply finiteness. But note that the constant C.E/ in [32, Theorem 1] is
independent of n, a feature not recovered in subsequent results. The results in [15,32] also
exclude CM elliptic curves E (though see [33]), and all these results restrict to modular
parameterizations of E=Q (and [32] restricts to CM by maximal orders).

Let † denote the set of V -images in E of special points of Y .
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Corollary 1.3. For n � 1 there exists a positive integer N D N.Y; E; V; n/ such that if
x1; : : : ; xN 2 † are distinct then there is a linearly independent subset of ¹xiº of size at
least n.

Proof. Given n we can find N such that any set of N distinct V -images of special points
contains a subset of size n for which the corresponding special points are D.Y;E; V; n/-
independent. (And N is effective given D.)

Corollary 1.4. Let � be a finitely generated subgroup of E of rank r . Then j� \ †j �
N.Y;E; V; r C 1/.

This re-proves Buium–Poonen’s [5, Theorem 1.1] (and generalizes to correspond-
ences their result (Theorem 2.5) for maps from Shimura curves to elliptic curves) and in
a uniform way: the size of the intersection is bounded depending only on the rank of � .
However, we cannot recover their Bogomolov-type result.

In §2 we show that Theorem 1.1 is a consequence of the Zilber–Pink conjecture (ZP).
The framing of ZP in terms of “optimal subvarieties” (as in [13]; see §2) suggests the
formulation of Theorem 1.1. We are not able however to prove the full ZP statement
for V n; see the comments before Proposition 2.1.

Our proof of Theorem 1.1 goes via point-counting on definable sets in o-minimal
structures, and utilizes a suitable Ax–Schanuel theorem, as in various earlier works deal-
ing with special cases of ZP, and in this respect follows in particular the approach in [27] in
studying “CM-points” for the multiplicative group. As there, various issues arise from the
fact that we cannot prove the full Zilber–Pink statement for V n. But unlike in [27], where
we showed that no positive-dimensional dependent distinguished components exist, we
must here deal with this possibility, which complicates the point-counting and the applic-
ation of Ax–Schanuel, in view of our inability to affirm the full ZP. We must show that
we are able to restrict throughout to atypical intersections of a specific form.

In effect, we must prove a very strong result of André–Oort type: each proper special
subvariety of En has a preimage in Y n. This gives a countably infinite collection of sub-
varieties of Y n which is not contained in any algebraic family. We must show that there
are only finitely many special subvarieties of Y n which are contained and maximal in any
one of this countably infinite collection.

In the modular case we show that our results can be extended to include the Hecke
orbits of a finite number of points in addition to special points. The Hecke orbit of u 2 Y
is ¹v 2 Y W 9N W .u; v/ 2 XN º.

Definition. Let Y be a modular curve and U � Y .
(i) A U -special point of Y is a point which is either special or in the Hecke orbit of

some u 2 U .
(ii) A U -special point in Y n is an n-tuple of U -special points in Y .

(iii) A U -special subvariety of Y n is a weakly special subvariety which contains a U -
special point.

Now we consider again an irreducible correspondence V � Y �E.
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Definition. Let notation be as above.
(i) A distinguished U -component in V n is a component W � V n \ .S � B/, where

S � Y n is U -special, B � En is special, �Y n.W / D S , and �En.W / � B .
(ii) A distinguished U -component W in V n is dependent if B (may be taken such that

it) is a proper special subvariety.
(iii) A distinguishedU -componentW is exemplary if, settingB to be the smallest special

subvariety of En with �En.W / � B , there is no distinguished U -component W 0

strictly larger than W with �En.W 0/ � B .

Theorem 1.5. Given V � Y � E as above with Y a modular curve, U � Y finite, and
n � 1, there are only finitely many exemplary U -components in V n.

One may deduce corollaries analogous to 1.2–1.4 above. The last recovers a result
of Baldi [1, Theorem 1.3], (obtained via equidistribution), which is also a special case
of results of Dill [9, 10], affirming a conjecture of Buium–Poonen [6, Conjecture 1.7];
see the discussion in [1]. Baldi obtains a stronger “Bogomolov”-type result, which we
do not. These results are in the circle of the André–Pink conjecture (see [29] and further
references in [1]), though Theorem 1.5 is rather an “unlikely intersection” result in such
contexts. Of course it too is subsumed under the general Zilber–Pink conjecture.

With existing arithmetic estimates, Theorem 1.5 and its corollaries should generalize
to Shimura curves, with a suitable notion of Hecke orbit.1

The structure of the paper is as follows. In §2 we define Shimura curves for our pur-
poses and gather facts we need about them. The Zilber–Pink setting is recalled in §3. The
Ax–Schanuel statement and refinements we need are given in §4. Some arithmetic estim-
ates are collected in §5. Theorems 1.1 and 1.5 are proved in §6 when everything is defined
over a number field, and extended to C in §7. In this paper, definable will mean “defin-
able in the o-minimal structure Ran; exp”; for background on o-minimality and on Ran; exp
see [24].

2. Shimura curves

2.1. Definitions

Definition. A Shimura curve simply means a connected Shimura variety of dimension
one, which is of abelian type.2

We define Ag to be the moduli space of principally polarized abelian varieties of
dimension g. Recall that a Shimura variety S is Hodge type if S admits an injective

1There is an issue with abelian varieties that one could consider isogenies not necessarily
respecting the polarization, which complicates matters.

2These include all quaternionic Shimura curves, as well as those studied by Deligne [8, Sec-
tion 6]. The authors do not know whether all one-dimensional Shimura varieties are of abelian type.
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homomorphism into Ag . A Shimura variety S is said to be of abelian type if it admits an
isogeny to a Shimura variety of Hodge type.

We let Y denote an arbitrary Shimura curve, and state and prove some basic facts.
These are probably known to experts but we collect them here for the reader’s conveni-
ence.

Recall first that Y is uniformized by the upper half-plane H, and can be written
as �nH for some discrete arithmetic subgroup � � SL2.R/.

By fixing an isogeny to a Shimura variety of Hodge type, we may therefore associate
to every special point on Y a CM principally polarized abelian variety.

2.2. Weakly special subvarieties

In this section we determine the structure of weakly special subvarieties of Y n. In partic-
ular, we prove that there are only non-trivial relations on two variables at a time. As in the
introduction, let .XN /N2N be any ordering of the special, non-fibral curves in Y 2.

Lemma 2.1. Let V �Y n be a weakly special variety. Then there is a partition of
¹1; : : : ; nº into disjoint subsets K; I1; : : : ; In .in which K only is permitted to be empty/
such that:

� For any k 2 K, the projection �k W V ! Y ¹kº is constant.

� For any a ¤ b belonging to the same Ij , the image of the projection �a;b W V ! Y ¹a;bº

is special.

Proof. First, note that a non-fibral weakly special curve in Y 2 must be special. This fol-
lows from the fact that the corresponding semisimple group is a conjugate of the diagonal
SL2 in SL22 and is therefore its own normalizer.

We can assume without loss of generality that none of the coordinates are constant
on Y , by projecting them away. Now set d D dimV , and let ¹n1; : : : ; nd º be indices such
that zn1

; : : : ; znd
are algebraically independent over V . We will prove that for any other

coordinate zr , there exists an index i such that zr is algebraic over zni
.

To see this, let J � ¹n1; : : : ; nd º be a minimal set of indices such that zr is algebraic
over C.zj /j2J . Assume for the sake of contradiction that jJ j � 2. Since fibres of weakly
special varieties are weakly special, by fibring over zj D c we obtain a family of weakly
special varieties Vc . Moreover, for each c 2 C it follows that zr is algebraic over zjc

for some jc 2 J . This implies that �r;jc
.Vc/ is a finite union of non-fibral weakly special

curves. Now we may choose an index j 2 J and a special curveXN such that for infinitely
many values of c 2 C we have XN � �r;j .Vc/. But now since V is irreducible, it follows
that V D ��1r;j .XN /, contradicting the minimality of J .

A special point of Y is one for which the corresponding elliptic curve or abelian
variety is CM, and a special subvariety is a weakly special subvariety which contains a
special point; equivalently, in the above description, any coordinate which is constant is
special.
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Finally, we shall make use of the following definition to group the weakly specials
into natural families.

Definition. We define the slope of a weakly special variety V � Y n to be the partition
K; I1; : : : ; In given by Lemma 2.1, as well as the images �a;b.V / for each pair a ¤ b

belonging to the same Ij .

3. The Zilber–Pink setting

We place Theorem 1.1 in the context of the Zilber–Pink conjecture (ZP) proposed inde-
pendently, in slightly different formulations, by Zilber [36], Bombieri–Masser–Zannier
[3], and Pink [30].

This concerns a .connected/ mixed Shimura variety M and its collection � of special
subvarieties. One also has the larger collection of weakly special subvarieties. For defini-
tions see e.g. Pink [29, Definitions 2.1, 4.1] and Gao [11, Definition 3.9]. Let Z �M be
a subvariety. For S 2 � , a component A � Z \ S is atypical if

dimA > dimZ C dimS � dimM:

(The intersection is called unlikely if dimZC dimS � dimM <0.) ZP predicts a descrip-
tion in finite terms of all “atypical” intersections of Z with special subvarieties S 2 � .

For a subvariety Z � M we let hZi denote the smallest special subvariety of M
containing Z, and by hZiws the smallest weakly special one.

We define the defect ı.Z/ of Z and the weakly special defect ıws.Z/ by

ı.Z/ D dim hZi � dimZ; ıws.Z/ D dim hZiws � dimZ:

Definition. Let Z �M .
(i) A subvariety A � Z is called optimal if it is maximal for its defect as a subvariety

of Z. That is, if A � B � Z and ı.B/ � ı.A/ then B D A.
(ii) A subvariety A � Z is called geodesic optimal if it is maximal for its weakly special

defect as a subvariety of Z.

The following is formally equivalent to the strongest form of ZP, namely the analogue
for a mixed Shimura variety of the conjectures of Zilber and Bombieri–Masser–Zannier
(for semiabelian varieties and Gm), as shown in [13]. (The notion here called “geodesic
optimal” was earlier introduced as “cd-maximal” in a different context in [31] in the
setting of Gm.)

Conjecture 3.1 (ZP). Let Z �M . Then Z has only finitely many optimal subvarieties.

The ambient variety Y n �En is an example of a weakly special subvariety of a mixed
Shimura variety (it is special precisely if E has CM). Namely, let

E ! Y

be the universal family over Y (of elliptic curves if Y is a modular curve, or of abelian
surfaces if Y is a Shimura curve). Then E is a mixed Shimura variety (see e.g. [11]),
in which Y can be identified with the zero-section. If E is isomorphic to the fibre over
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s 2 Y then it may be identified with this fibre, which is weakly special. Correspondingly,
Y n �En may be identified with a weakly special subvariety of En � En.

It is well-known (see e.g. Pink [30]) that ZP implies a similar statement for its
weakly special subvarieties, whose “special subvarieties” are simply the intersections of it
with special subvarieties of the ambient mixed Shimura variety. There are corresponding
notions of smallest special and weakly special subvariety containing a given subvariety,
defect and weakly special defect, and ZP can be expressed in terms of the corresponding
notion of “optimal” as above; in what follows, the notation h�i and defects will always be
with respect to the ambient variety Y n �En.

Proposition 3.1. Let S be a pure Shimura variety of abelian type and T an abelian
variety. Then the .weakly/ special subvarieties of S � T are precisely the products U �B
of (weakly) special U � Y n; B � T .

Proof. There is a Shimura morphism S ! S 0 to a Hodge-type pure Shimura variety
S 0 � Ag . Say dim T D h. We may identify S 0 � T with a weakly special subvariety
of the product of mixed Siegel modular varieties, Xg �Xh ! Ag �Ah. Let � be the
projection under which T projects to a point in Ah. By [11, Proposition 3.7], a (weakly)
special subvariety of Xg is (up to a finite cover of �.S 0/) a translate of an abelian subs-
cheme of ��1.�.S 0//! �.S 0/ by a torsion section and then by a constant section over
a weakly special subvariety �.S 0/ � Ag . It follows that (weakly) special subvarieties of
S � T are products of (weakly) special subvarieties of the factors. The converse always
holds.

Presumably the same holds for any product P � T of a pure Shimura variety and an
abelian variety.

It follows then that, for Z � Y n �En,

hZi D h�Y n.Z/iY n � h�En.Z/iEn

and likewise for hZiws.
Given V � Y � E, we consider ZP for V n � Y n � En. If x 2 En is a V -image of a

special point s 2 Y n and x is dependent then x 2 B for some proper special subvariety
of En. Then .s; x/ 2 V n \ .¹sº �B/, and since dim.¹sº �B/C dimV n < 2n this shows
that any dependent image of a special point is an “unlikely” or “atypical” intersection in
the sense of the Zilber–Pink conjecture.

The following shows that exemplary components are optimal subvarieties of V n, and
hence that Theorem 1.1 is a consequence of ZP. However, we are not able to prove ZP
for V n (once n � 3); the analogous situation when E is replaced by the multiplicative
group Gm is discussed in detail in [27].

Proposition 3.2. An exemplary component in V n is an optimal subvariety of V n.

Proof. Let W � V n \ .S � B/ be an exemplary component with �Y n.W / D S and
B D h�En.W /i. Then dimW D dim S and the smallest special subvariety of Y n � En

containing W is S � B . Hence the defect of W is

ı.W / D dim hW i � dimW D dimS C dimB � dimW D dimB:
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If W were not optimal, it would be contained in some larger subvariety W 0 � V n of the
same, or lower defect. Write

hW 0i D S 0 � B 0:

Then B � B 0 and dimW 0 � dimS 0 and

ı.W 0/ D dim hW 0i � dimW 0 D dimS 0 C dimB 0 � dimW 0:

If ı.W 0/ � ı.W / we must have B 0 D B and dimW 0 D dim S 0, which would mean that
W 0 is a distinguished component in V n on S 0, containing W , projecting into B . But by
the maximality of W we have W 0 D W .

We will need the “weak” analogue of the above. A weakly distinguished component
in V n is a component W � V n \ .S � B/ where S; B are weakly special subvarieties.
It is weakly exemplary if, taking B D h�En.W /iws, there is no weakly distinguished
component W 0 strictly larger than W with �En.W 0/ � B .

Proposition 3.3. A weakly exemplary component in V n is a geodesic optimal subvariety
of V n.

Proof. The same as in Proposition 3.2.

The Ax–Schanuel theorem only detects weakly special subvarieties, and we thus need
to show (as has already been shown in several other settings, including for all pure
Shimura varieties by Daw–Ren [7]) that optimal subvarieties are geodesic optimal. For
this we establish the “defect condition”.

Definition. A weakly special subvariety X of a mixed Shimura variety has the defect
condition if, for A � B � X , we have

ı.B/ � ıws.B/ � ı.A/ � ıws.A/;

the defects being with respect to the special and weakly special subvarieties of X .

Proposition 3.4. Let S be a pure Shimura variety of abelian type and T an abelian
variety. Then S � T has the defect condition.

Proof. For an abelian variety (as well as for Gn
m and products of modular curves) the

defect condition is established in [13, Proposition 4.3], and for a general pure Shimura
variety in [7, 4.4]. By Proposition 3.1, the (weakly) special subvarieties of S � T are
products of (weakly) special subvarieties of the factors. Thus we have

hAi D h�S .A/iS � h�T .A/iT

so that

ı.A/ � ıws.A/ D ı.�S .A// � ıws.�S .A//C ı.�T .A// � ıws.�T .A//;

and likewise for B , and the defect condition for S � T follows from the defect conditions
in S and T by addition.
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It is conjectured in [13] that the defect condition holds in all mixed Shimura varieties.

Proposition 3.5. An optimal subvariety is geodesic optimal.

Proof. This follows formally once one has the defect condition, as in [13].

4. An Ax–Schanuel result

The Ax–Schanuel property for the uniformization map

uM W D !M

realizing a mixed Shimura variety M as a quotient of a suitable Hermitian symmet-
ric domain D by a discrete arithmetic group � is a functional transcendence statement
for uM analogous to the classical Ax–Schanuel theorem for the exponential function
exp W C! C�. For discussion and proof of such results see [11,19]. Such a result implies
a corresponding statement for each weakly special subvariety X �M , uniformized by an
irreducible component of u�1M .X/.

The Ax–Schanuel result we need is for the uniformization

u W H �C ! Y �E

and its cartesian powers. We will use the same notation

u W Hn
�Cn

! Y n �En

for cartesian powers of u.
We will (as usual in ZP applications) use only the “two-sorted” form, which we now

state, after noting the following convention. Strictly speaking, Hn has no algebraic sub-
varieties. By an algebraic subvariety of U , where U � Hn � Cn is a weakly special
subvariety, we will mean an irreducible analytic component of the intersection of U with
an algebraic subvariety (in the usual sense) of the ambient Cn �Cn.

Theorem 4.1. Let U 0 be a weakly special subvariety of Hn �Cn with image u.U 0/DX 0

a weakly special subvariety of Y n �En. LetZ � X 0, A� U 0 be algebraic varieties, and
� an irreducible analytic component of A \ u�1.Z/. Then

dim� D dimZ C dimA � dimX 0

unless � is contained in a proper weakly special subvariety of U 0.

Proof. The Ax–Schanuel statement is easily seen to be invariant under isogenies of the
Shimura varieties, and the abelian varieties. We therefore assume throughout the proof
that Y is a special subvariety of Ag .

Since the statement is about the uniformization corresponding to a weakly special sub-
variety of E2n, the result follows from the Ax–Schanuel statement for the uniformization

H2n
�C2n

! E2n
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and since Y 2n, the “pure” Shimura variety underlying E2n, is a special subvariety of Ag ,
the Siegel modular variety of principally polarized abelian varieties, when g � 2n the
required Ax–Schanuel follows from the corresponding statement for the universal fam-
ily Xg of abelian varieties over Ag , namely the Ax–Schanuel theorem for the uniformiz-
ation

Hg �Cg
! Xg :

This theorem is due to Gao [11, Theorem 1.1], extending, for Ag , the result for a general
pure Shimura variety in [19, Theorem 1.1].

As in [7,13], this can be reformulated in terms of a suitable notion of “optimality”, for
which we adopt the terminology used by Daw–Ren [7, §§5.7–5.9], to distinguish it from
“optimality” as above in §2.

Definition. Let Z � Y n �En be a subvariety.
(i) An intersection component of u�1.Z/ is an irreducible analytic component of the

intersection of u�1.Z/ with an algebraic subvariety of Hn �Cn.
(ii) If A is an intersection component of u�1.Z/ with Zariski closure hAiZar, we define

its Zariski defect to be

ıZar.A/ D dim hAiZar � dimA:

(iii) An intersection componentA of u�1.Z/ is called Zariski optimal if one cannot find a
larger intersection component of u�1.Z/ which does not increase the Zariski defect.

(iv) An intersection component A of u�1.Z/ is called geodesic if A is a component of
u�1.Z/ \ hAiZar and hAiZar is weakly special.

Proposition 4.2. Let Z � Y n � En be a subvariety. A Zariski optimal component of
u�1.Z/ is geodesic.

Proof. The equivalence of 3.1 and 3.2 is purely formal and the proof is carried out in
[13, below 5.12].

Definition. A Möbius subvariety of Hn is an algebraic subvariety defined by setting some
coordinates constant, and relating some other pairs of coordinates by elements of SL2.R/.

We let F denote a standard fundamental domain for the uniformization of Y � E.
The uniformization map restricted to F is definable (in this case by results of Peterzil–
Starchenko [24]), and the Möbius subvarieties of Hn form a definable family.

This means that if we consider the definable family of subvarieties of Hn �Cn com-
prising all products of Möbius suvarieties of Hn and linear subvarieties of Cn, and define
the set of Zariski optimal ones by the difference of their dimension and the dimension of
the intersection with u�1.V /, just among these which go through F , we will get elements
of SL2.R/ whose graphs define the slopes (up to � and ƒ) of all geodesic optimal com-
ponents. By the slope of a Möbius subvariety in Hn we mean, for each pair of dependent
coordinates, the element g 2 SL2.R/ such that the projection to H2 is the (projection of
the) graph of the action by g. And by the slope of a weakly special subvariety in Cn, as the
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uniformizing space for En where E D ƒnC, we mean the linear subvariety of Cn which
projects to a translate of the weakly special subvariety. This then implies the finiteness
of such slopes in Y n � En, and any geodesic optimal component of V n will have some
preimage component going through F .

We need the corresponding finiteness for the particular type of components we con-
sider. Namely, if W is a dependent component, we consider a component U of its preim-
age in Hn �Cn. It is a component of the intersection of u�1.V n/ with suitable preimage
M � L of hW i D S � B , and is thus a geodesic component which projects onto M and
thus has dimU D dimM .

We need to observe that, if Zariski optimal, such a component comes from a max-
imal dependent (weakly) special image, i.e. something of the same form. In fact we need
something further along these lines in the proof of 1.1, in order to get from “something
positive-dimensional algebraic” to a component of the right form.

Proposition 4.3. Let U be of the following type: it is a component of A � L intersecting
u�1.V n/, where A is algebraic, and L is linear which projects onto A.

If U is maximal of this type for the given L then L and A are weakly special and U
is Zariski optimal.

Proof. We have dimU D dimA and so

ıZar.U / � dimL:

Suppose that U � U 0, where U 0 is Zariski optimal, and hence geodesic optimal, with U 0

a component of the intersection of u�1.V n/ with weakly special A0 � L0, and A0 � L0 is
the Zariski closure of U 0. Then

ıZar.U
0/ D dimA0 C dimL0 � dimU 0:

But dimU 0 � dimA0 and L � L0. If

ıZar.U
0/ � ıZar.U /

we must have L D L0 and dimU 0 D dimA0 so that U 0 is a preimage of a weakly dis-
tinguished component. By the maximality of U we have U D U 0 and then L D L0 and
A D A0 are weakly special.

Now we get the finiteness statement (analogous to [25, Prop. 10.2, and the definable
family version 10.3/13.1]). A strongly special subvariety in Y.1/n is defined in [13, 3.2];
it is a fibred product of modular curves. In Y n it is generally a special subvariety which
projects dominantly to each factor.

Proposition 4.4. For each n there are only finitely many strongly special subvarieties
in Y n which have a V -image which lies in any proper weakly special subvariety of En.
Moreover, the same holds even if one allows V to vary in a definable family.
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Proof. We prove the stronger version for a definable family of V . We take the definable
space of productsM �L of Möbius and linear subvarieties, and take the definable subset
of maximal ones in the above sense. As the maximal such varieties are Zariski-optimal,
and hence geodesic optimal, the set of slopes of the corresponding Möbius varieties can-
not be positive-dimensional, and hence, being definable, it is finite. This set of slopes
contains the slopes of all the strongly special subvarieties described in the proposition.

5. Arithmetic estimates

Constants C; C 0; : : : ; c; c0; : : : in the following depend on E; Y; V; n and the choice of a
fundamental domain FY for the uniformization H! Y . We fix Y to be a Shimura curve.
In what follows, h;H denote the logarithmic and exponential heights.

For a special point s 2 Y , we let �.s/ denote the discriminant of the corresponding
CM abelian variety associated to s by virtue of Y being of abelian type. Recall that in
the general case, this is the discriminant of the centre of the endomorphism ring, and in
the classical case where Y is the modular curve, it is equal to the discriminant of the
corresponding quadratic order.

Proposition 5.1. Let s 2 Y be a special point with discriminant �.s/ and let z 2 FY be
a preimage of s. Then

(1) h.s/ � c.�/j�.s/j� for any � > 0;
(2) H.z/ � C j�.s/jc;
(3) ŒQ.s/ W Q�� �.s/j1=2C� for any � > 0;
(4) ŒQ.s/ W Q�� c.ı/j�.s/jı for some fixed ı > 0.

Proof. For classical singular moduli: (1) Given in [13, Lemma 4.3]. (2) Elementary (with
c D 1), given in [25]. (3) See [22] for an explicit result. (4) Use the classical (ineffective)
Landau–Siegel bound. The same bounds follow for a modular curve Y as a finite cover
of Y.1/.

For Shimura curves: (2) follows from work of the second author appearing in [26],
(1), (3), and (4) follow from [35] combined with the comparison (see e.g. [23]) of Faltings
height with height of a moduli point.

We assume E is in Weierstrass form (but an estimate of the same form then follows if
it is not) and defined over a number field K0 of degree D0 D ŒK0 W Q�. Let q denote the
Néron–Tate height on E (see e.g. [4] or [16]).

We have the following Theorem E of Masser [16]. Set

� D �.E;K/ D inf q.x/;

with the infimum taken over non-torsion x 2 E.K/, and let

! D !.E;K/

be the cardinality of the torsion subgroup of E.K/.
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Theorem 5.2. Let x1; : : : ; xn 2 E.K/ with Néron–Tate heights bounded by q � �. There
is a basis for the relations

m1x1 C � � � Cmnxn D 0E ; mi 2 Z;

with all mi having
jmi j � n

n�1!.q=�/.n�1/=2:

To accommodate CM, we work, like Barroero [2], in E2n with xi ; �xi , where E
has CM by the order Z C Z�. We have q.�x/ D N.�/q.x/ D j�j2q.x/ (see e.g. [34,
Lemma 1]). We write ka C b�k D max ¹jaj; jbjº for a C b� 2 End.E/. Then under the
previous hypotheses a set of generators for the relation group can be found with

kmik � .max ¹1; j�jº/2n�1.2n/2n�1!.q=�/.2n�1/=2;

where q is an upper bound for q.xi /, i D 1; : : : ; n.
Following [16] we have the following estimates for �; !, where we set D D ŒK W Q�

and L D log.D C 2/:
� � C�1D�3L�2

by results of, respectively, Laurent (CM) and Masser (non-CM) cited in [16], and

! � CDL

(see discussion in [16]).
Combining the above estimates yields the following result, where kmk is as above in

the CM case, but in the non-CM case we set kmk D jmj.
For a tuple s D .s1; : : : ; sn/ 2 Y n of special points with discriminants�.si / we define

the complexity of s by �.s/ D max j�.si /j.

Proposition 5.3. There are constantsC;C 0; c, depending onE;Y;V;n, with the following
property. Let .s1; x1/ : : : ; .sn; xn/ 2 Y �E be V -graphs of special points with discrimin-
ants �.si / and set � D �.s/ D �.s1; : : : ; sn/. Then, for � � C 0, there is a generating
set for the linear relations satisfied by the xi in E with

kmik � C�c :

Proof. The difference jq � hj is bounded on E.K0/ by some constant c� (see e.g. [4]).
On the other hand, if x is a V -image of s then H.x/ � CH.s/c and

ŒK0.x/ W K0� � C ŒQ.s/ W Q�:

Thus, D � C�c by 5.1(3).
If the maximum h of the h.xi / is sufficiently large then we will have h � c� � � and

2h � q. Then h � C�c by 5.1(1), and now all the constituents of the bound in 5.2 are
bounded in terms of �.

Propositions 5.3 and 5.1(2) will be used in the next section to bound the height of a
rational/quadratic point on a suitable definable set, while 5.1(4) will be used to show that
there are “many” such points.
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6. Proof of theorems over Q

Proof of Theorem 1:1 when E; V are defined over Q. Let K0 be a number field over
which E; Y , V and all elements of End.E/ are defined.

We consider an exemplary componentW � V n, a V -image of some special subvariety
S � Y n, with h�En.W /i D B . Then any Galois conjugate W 0 of W over K0 is also
an exemplary component (of the conjugate S 0 of S , with h�En.W 0/i D B 0 and B 0 the
corresponding conjugate of B), and vice versa.

By Lemma 2.1 we can write S as a product S D S1 � ¹S2º of some strongly special
S1 � Y

A1 on some subset A1 � ¹1; : : : ; nº of coordinates, and a special point S2 2 Y A2

where A2 � ¹1; : : : ; nº is the complement subset to A1.
By Proposition 3.4 there are only finitely many such S1 to consider, and so we may

assume they are all defined over K0.
We can writeW DW1 �W2 and write �j ; �k for the coordinates inEA1 ;EA2 respect-

ively. We will show that if � 2 EA2 is a V A2 -image of a special point S2 of sufficiently
large complexity (depending on S1) then W is not exemplary, and this will establish the
requisite finiteness.

It may be that the projection ofW1 toEA1 is contained in some proper weakly special
subvariety, which means that there are some equations of the formX

i2A1

mi�i D p; mi 2 End.E/; p 2 E;

holding on this projection. We let p1; : : : ; pk be the points corresponding to a generating
set of such relations. Note that the linear span of the pi is Gal.Q=K0/-invariant, so we
can make all the pi defined over K0.

If we take a generating set of all the equations over End.E/ satisfied by the points in
�En.W / then this defines an algebraic subgroup B0 of which B is a connected compon-
ent. Any such equation of the formX

i2A1

mi�i C
X
j2A2

nj�j D 0; mi ; nj 2 End.E/;

entails that
P
mi�i is constant on W1 and is equivalent to some equation involving the

pi ; �j , and vice versa. We then consider the system of equations

kX
iD1

m0ipi C
X
j2A2

nj�j D 0; m0i ; nj 2 End.E/;

corresponding (and equivalent) to the system defining B0, where � is a V A2 -image of S2.
Let d0 be the dimension of the subvariety this cuts out in EA2 .

By Proposition 5.3 there is a set of generators of all such relations with

kmik; knj k � C�.S2/
c :
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Fix a preimage � D .�1; : : : ; �k/ 2 F kE of .p1; : : : ; pk/. Let us first suppose thatE has
NCM (“not CM”), and d D dimB . Let G be the Grassmannian of .d0 C k/-dimensional
affine linear C-subspaces of CkCn2 where n2 D jA2j.

Take the definable set

X D ¹.z; w; g/ 2 F
A2

Y � F
A2

E �G W u.z; w/ 2 V
A2 ; .�; w/ 2 gº;

where FE is a standard fundamental domain for the uniformization C! E, and, project-
ing, the definable set

Z D ¹.z; g/ 2 F
A2

Y �G W 9w 2 F
A2

E W .z; w; g/ 2 Xº:

A special point S2 2 Y A2 of “large” complexity �.s/ leads to “many” points in Z
which are quadratic in the FY coordinates and rational (even integral) in the g coordinates.
More specifically, for sufficiently large �.s/ we get (by 5.1(4), 5.1(2), and 5.3)

� �.S2/
c such points of height at most � �.S2/

c0

:

Hence, by the Counting Theorem (see e.g. [28]), there is a connected, semialgebraic
set R in Z belonging to a fixed definable family, in which the z coordinates cannot be
constant (since the positive-dimensional semialgebraic sets need to account for “many”
different conjugates of s). Since all of the Galois conjugates of a point have the same
slopes mi ; nj we can moreover assume that R has a fixed slope.

Lemma 6.1. The projection of R to G is a point.

Proof. Let ˇ be the covering space of B0 and ˇ0 D CA2=ˇ. Consider the image R0 �
F
A2

Y � Fˇ 0 of the preimage of R in X . Again by the counting theorem, R0 contains a
semialgebraic set R00 belonging to a fixed definable family, with “many" rational points
coming from a single Galois orbit. Now note thatR00 maps into the image V 0 of V n inside
the product Y A2 � EA2=B0. Thus by Ax–Lindemann, the image of R00 lies in a weakly
special subvariety contained in V 0. However, the projection of V 0 to Y A2 is finite-to-one,
and therefore the weakly special subvariety containing the image of R00 must have no
abelian part, and therefore its projection to EA2=B0 is a point, as desired.

By Lemma 6.1 we may write R D A � g0 with g0 2 G and A � HA2 semialgebraic.
Let L be the linear subspace of CkCn2 corresponding to g0. Note that L projects to
some Galois conjugate of B inside EA2 . Let L� � Ck be the fibre of L over �. Now,
by definition of A, we know that A � L� \ u�1.V A2/ has a component U which maps
onto A. Note that the Zariski defect of U is at most d0.

By Proposition 4.3, there exists a weakly special subvariety A� containing A and a
component U � of A� � L� \ u�1.V A2/ containing U which maps onto A� with defect
at most d0. Since A� contains special points, it must in fact be special. Let S� be the
image of A� in Y A2 . It contains at least one (in fact “many”) Galois conjugates of S2. By
definition, a suitable V -image of S1 � S� is contained in a coset of B0. We may now take
a Galois conjugate of S� which contains S2, thus giving a larger exemplary component
projecting to the same torsion coset, which is a contradiction.
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Now suppose that E has CM by the order ZCZ�. We now let G parameterize .n2 C
2k C d0/-dimensional complex affine subspaces in C2kC2n2 and consider the definable
set

X D ¹.z; w; g/ 2 F
A2

Y � F
A2

E �G W u.z; w/ 2 V
A2 ; .�; ��; w; �w/ 2 gº

and, projecting, the definable set

Z D ¹.z; g/ 2 F
A2

Y �G W 9w 2 F
A2

E W .z; w; g/ 2 Xº:

The rest of the proof is as in the NCM case.

Proof of Theorem 1:5 when E; V;U are defined over Q. This is very much the same as
the argument above but using different arithmetic estimates, drawn from [12], and a dif-
ferent definable set on which to count points.

We again consider an exemplary U -component of the form W1 �W2, a V -image of
some S1 � ¹S2º as above with S2 2 Y A2 a U -special point. There are again only finitely
many such decompositions to consider, by 4.4.

Let us consider U -special points S2 D .si / 2 Y A2 of a particular form, namely points
in which si is in the Hecke orbit of a fixed ui 2 U for i 2 A2, and all the ui are non-
special. Then there is a unique cyclic isogeny between the elliptic curves corresponding
to ui and si whose degree we denote Ni . For such a point S2 we define its U -complexity
by

�.S2/ D max ¹N1; : : : ; Nnº:

We observe that the height of S2 is controlled by �.S2/; using the results of Faltings
relating Faltings heights of isogenous elliptic curves and Silverman’s comparison of Falt-
ings height and height of the j -invariant (see the discussion on heights under isogenies in
[12, proof of Lemma 4.2, p. 15]) we have

h.S2/ � C max ¹1; logNiº

(constants now depend on Y , E, V , U and n). If .S2; �/ 2 V A2 , the above leads (via
Masser’s Theorem E) to bounds of the form

kmk � C�.S2/
c

on the size of entries in a set of generators for the relation group of .p; �/.
On the other hand, the degrees ŒQ.si / W Q� are controlled by �.S2/ via isogeny

estimates (see the discussion on degrees in [12, §6, above proof of 1.3]) which imply
ŒQ.si / W Q� � C 0N

1=6
i and hence

ŒQ.S2/ W Q� � C
0�.S2/

c0

:

Finally, if �i 2 FY is a preimage of ui and zi 2 FY is a preimage of si then zi D g�i
for some gi 2 GLC2 .Q/ with

H.gi / � cN
10
i

(see [12, Lemma 5.2]).
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We now count points though on a different definable set, because U -special points
are not algebraic and the counting must be done for GLC2 .Q/ points in a definable subset
of GLC2 .R/.

We fix a preimage � 2 F A2

Y of .u1; : : : ; un2
/ and consider the definable set

X D ¹.h; �; w; g/ 2 GLC2 .R/
A2 � F kE � F

A2

E �G W

h� 2 F
A2

Y ; u.h�;w/ 2 V A2 ; .�; w/ 2 gº

and its projection

Z D ¹.h; g/ 2 GLC2 .R/
A2 �G W 9w 2 F

A2

E W .h�; �; w; g/ 2 Xº:

A U -special point S2 of the form being considered of “large” complexity leads to
“many” rational points on Z. If �.S2/ is sufficiently large then by counting we get a real
algebraic curve in Z which (since these come from “many” distinct points in F A2

Y and by
complexification) gives rise to a complex algebraic curve A � HA2 and an intersection
component of A � Lg of Zariski defect d as previously. This leads to a contradiction as
in the argument above, so that �.S2/ is bounded for an exemplary U -component, giving
finiteness for S2 of this type.

The general case will follow by combining the treatment of special and non-special
points using a suitable definable set (i.e. using FY for special coordinates and GLC2 .R/ for
coordinates in the Hecke orbit of a non-special u 2 U ) and a combinatorial argument.

7. Going from Q to C

We fix Y to be a Shimura curve, and a positive integer t . Consider the following statement:

Conjecture 7.1. Let E be an elliptic curve. Given V � Y � E , U � Y finite of size t ,
and n � 1, there are only finitely many exemplary U -components in V n.

We shall prove in this section that Conjecture 7.1 over Q implies it in general. This,
combined with the work in the previous section, proves Theorems 1.1 and 1.5.

7.1. Setup

Let F be a finitely generated subfield of C such that V � Y.1/ �E and U are all defined
overF . ThenF can be thought of as the function field of an irreducible algebraic variety S
over some number field K � F . Replacing S with a dense open subset, we assume that
E extends to an elliptic scheme E over S and V extends to a flat family V over S .

We pick a generic regular point s0 2 S.C/ such that K.s0/ is isomorphic to F , and
pick an open ball B � S.C/ around s0, so that in B we can trivialize the homology of E

over S .
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7.2. Ordering points in S

We will need to order points in S , so we proceed as follows. Let f WS!P dimS be a quasi-
finite map. Then we define the f -degree of a point s in S.Q/ to be the degree of its image
under f , and the f -height hf .s/ to be the (logarithmic) height of its image under f . By
Northcott’s theorem, there are finitely many points of bounded f -degree and f -height.
We only consider heights for the subset Sf of S whose image lands in P dimS .K/.

7.3. The proof that Conjecture 7.1 over Q implies Conjecture 7.1 over C

By Proposition 4.4 there are only finitely many strongly special subvarieties whose Vu-
image lies inside any proper weakly special subvariety of Eu for any u 2 B . Thus, there
are only finitely many families of special subvarieties we have to consider. By rearranging
coordinates, we may assume they are all of the form T � p � q where T � Y m is a fixed
strongly special subvariety, and p 2 Y.1/k is a CM point, and q has coordinates isogenous
to points in U .

Now, for the sake of contradiction let pi ; qi;s0 be an infinite sequence of such points
such that T � pi � qi;s0 are projections of U -exemplary components for Vs0 . Let Ai
be the smallest torsion coset containing the Vs0 -image of T � pi � qi;s0 . Then for each
point s 2 S.Q/ \ B , the image of T � pi � qi;s is still contained in Ai;s . But we have
assumed the statement for Q-points, and thus for each s there are finitely many U -special
subvarieties containing all the T � pi � qi;s whose Vs-image is contained in a proper
torsion coset.

Let T1.s0/; : : : ; Tm.s0/ be the smallest collection of Us0 -special subvarieties contain-
ing all the T � pi � qi;s0 .

Lemma 7.1. For large enough d , for a density 1 set of points s in Sf ordered by f -
height, T1.s/; : : : ; Tm.s/ is the smallest collection of Us-special subvarieties containing
all the T � pi � qi;s .

Proof. First, note that the degrees of CM points tend to infinity. Thus, the set of points
s 2 Sf such that Us is CM is contained in a proper subvariety, and so has density 0.
Next, since U -special subvarieties are defined simply by imposing isogeny relations, it is
sufficient to prove that for a density 1 set of points s the points us; vs are not isogenous,
for u; v distinct points in U .

Now, for s 2 Sf , it follows that h.us/; h.vs/ � hf .s/, and thus by the Masser–
Wüstholz isogeny bound [18, Main Theorem] it follows that if us; vs are isogenous then
there is an isogeny between them of degree O.hf .s/�/ for some fixed � > 0. Now, the
degree of the N -isogeny releation in Y 2 is O.N �/ for some fixed � > 0, and therefore
the set of all s 2 Sf with hf .s/ < X such that us; vs are isogenous is contained inO.X�/
divisors of f -degree at most O.X�/. Now, the size of ¹s 2 Sf W h.s/ < Xº is asymptotic
to eŒKWQ�X.dimSC1/, whereas the number of points in any divisor of degree d of height at
most X is O.deŒKWQ�X dimS /. The result follows.

Thus we are done once we prove the following.
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Lemma 7.2. Let E be an elliptic scheme over S , and let W � En be an irreducible
algebraic subvariety. If Ws is contained in a proper abelian subvariety for a density 1 set
of s 2 Sf , then W is contained in a proper abelian subscheme.

Proof. Replacing W by its own n-fold self-sum we may assume that W is a coset of an
abelian subscheme. Quotienting out by the corresponding abelian subscheme, we may
further assume that W is finite over S , and base changing S by a finite map we may
assume that W is a section over S . By the Main Theorem of [17], it follows that for a
density 1 set of points s the n points of Es represented by Ws are linearly independent.
This completes the proof when E does not have generic CM. If E has generic CM, we let
� be an extra endomorphism. Then we conclude by applying the same theorem of [17] to
the 2n points of Es given by the coordinates of Ws as well as those of �W s .
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