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Abstract. We obtain an improved Fourier restriction estimate for a truncated cone using the method
of polynomial partitioning in dimension n > 3, which in particular solves the cone restriction con-
jecture for n = 5, and recovers the sharp range for 3 < n < 4. The main ingredient of the proof is
a k-broad estimate for the cone extension operator, which is a weak version of the k-linear cone
restriction conjecture for 2 < k < n.
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1. Introduction and main results

In this article, we obtain an improved Fourier restriction estimate for the cone in all
dimensions n > 3, and in particular solve the cone restriction conjecture of Stein [14]
in dimension n = 5.

The Fourier restriction conjecture is one of the central open problems in harmonic
analysis. It concerns a very basic question: whether f , the Fourier transform of a func-
tion f, can be meaningfully restricted to a hypersurface. Stein [14] conjectured that for
well curved surfaces such as sphere, paraboloid, or the cone studied in the present article,
this is indeed the case. The precise statement of Stein’s conjecture about the cone is the
following.

Conjecture 1 (Cone restriction conjecture). Let n > 3 and C be the truncated cone in R”
defined in (1.1) below. Forall 1 < p <2(n —1)/n,

| flelzrc:doy < Coll fllLr®n). VfeL?R"),

where do denotes the surface measure on C.
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This conjecture was so far known to be true only in dimensions n = 3 and 4, proved
by Barcel6 [ 1] and Wolff [19] respectively. The main contribution of the present article is
the resolution of the conjecture in dimension n = 5 and improved partial results towards
higher-dimensional cases.

The Fourier restriction conjecture on various surfaces with enough curvature is dir-
ectly connected to many open conjectures in analysis and PDE including the Kakeya
conjecture, the Bochner—Riesz conjecture, and the local smoothing conjecture for wave
equations. It is also known that certain versions of the restriction estimates can be used to
study problems in other related fields such as geometric measure theory (e.g. Falconer’s
distance set conjecture) and analytic number theory (e.g. estimating the number of solu-
tions to Diophantine equations). It has been extensively studied for decades, and we refer
to [5,6,9, 10] and the references therein for historical remarks on the problem and the
aforementioned connections. However, there are very few surfaces and dimensions for
which a sharp restriction theorem is known. For example, the restriction conjecture for
the paraboloid and the sphere remains open for n > 3. Moreover, it is known [16] that
there is a certain link between the restriction estimate for the cone in R”*! and that for
the paraboloid, sphere, or other conic sections in R”, which suggests possible further
applications of our result.

We now give the precise formulation of the main theorem. Let B"*~! be the open unit
ball in R”~! and denote its closure by B"~!. Given a function f : 2B"~'\ B*"~! - C,
where 2B”"~1 \ B"~! denotes the closed annulus {§ € R*~! : 1 < |£| < 2}, define the
truncated cone as

C={(E&) eR" I XR:E+-+ & =§, 158 <2} (1.1)

Then the associated Fourier extension operator from the truncated cone C is

Ef(x) = / Pt i+ € (g)

2Bn—1\Bn—1

It is well known that a Fourier restriction estimate is equivalent to a Fourier extension
estimate by a short duality argument. Therefore, our main restriction estimate can be
formulated as follows:

Theorem 1. For n > 3, the extension operator E from the cone satisfies

||Ef||LP(]R") = Cp”f”Lp(anfl\anl)v Vf € Lp(zén_l \ Bn_l)’

whenever
4 if n =3,
p>12-24EL ifn>3andnisodd, (1.2)
2-% if n > 3 and n is even.

When n = 3 and n = 4, this recovers the sharp range of p (p > 4 for n = 3 by Barcel6
[1]and p > 3 for n = 4 by Wolff [19]) for which the cone restriction estimate holds true.
When n = 5, Theorem 1 yields for the first time the sharp range p > 8/3 for the cone
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restriction estimate. When n > 6, Theorem | provides new partial progress towards the
sharp range p > 2(" 1) corresponding to Conjecture 1. Before our work, the best known
range for n > 4 was p > 2(n + 2)/n, proved by Wolff [19] using a bilinear method.

It is also interesting to study LY — L7 restriction estimates for ¢ # p. Stein con-
jectured that £ : LY — L? whenever p > 2;" D and q <2 2 == p based on the Knapp
example. When ¢ > p, such an estimate is immediately 1mphed by Theorem 1 using
Holder’s inequality. When ¢ < p, one can obtain the following estimate by slightly modi-
fying the proof of Theorem 1.

Theorem 2. For n > 3, the operator E defined above satisfies

IEf lLr@ny < Cpgll flLa@an—t\gn—1y. VS € LI2B" "1\ B"™),

whenever the tuple (p, q, k) is admissible in the sense that g > 2,2 < k <n and

p>2.02 <”n2p if k =2,

p>2- n+k A=K ifk=3.

(1.3)
n+k— z?p— 2n—k—1 k l

For each fixed n, one can optimize the range of L9 — L7 restriction estimate above
by choosing the most suitable k. In particular, in the case n = 5, taking k = 3, Theorem 2
implies the optimal conjectured range p > £, ¢’ < % p. The result in the open range of
(1.3) follows from a similar argument for Theorem 1. In order to obtain the endpoint
estimate, we apply bilinear interpolation with a bilinear cone restriction estimate obtained
in [19]. The interpolation argument is adapted from the work of Tao, Vargas and Vega
[17], where the paraboloid version of the question is studied.

We prove the theorems above using polynomial partitioning. The idea of applying the
polynomial method in harmonic analysis dates back to the resolution of the finite field
Kakeya problem by Dvir [8]. Later on, Guth and Katz [11] introduced polynomial par-
titioning techniques to solve the Erdds distinct distances problem in combinatorics. In
2014, Guth [9, 10] introduced polynomial partitioning into the study of restriction estim-
ates (see also Wang [18] and Hickman—Rogers [13] for further refinements), which was
used by Du, Guth and Li [7] to solve the Schrodinger maximal estimate in R2.

More precisely, polynomial partitioning will be used in Section 3 where we prove
a k-broad restriction inequality on the cone (Theorem 3), which is a weak version of
the k-linear restriction estimate (3.5). The k-broad to linear reduction (i.e. how The-
orem 3 implies Theorem 1) is similar to the arguments in [10] for the paraboloid: it will
be obtained by the k-broad estimates together with decoupling and Lorentz rescaling.

Compared to the case of the paraboloid treated in [9, 10], the main novelty of our argu-
ment is as follows. In the paraboloid case, polynomial partitioning reduces the problem to
a lower-dimensional problem using the so-called equidistribution property. This property,
however, fails to hold in the case of the cone. The failure essentially boils down to the fact
that the cone has vanishing curvature in one direction at each point, thus the geometry
of the resulting wave packets is more subtle. To overcome this geometric obstruction,
we remove a negligible part of Ef and show that the equidistribution property holds for
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the remaining part. We leave a more detailed discussion to Section 5.2.3. In addition, an
important ingredient in the induction by scales argument is to understand how the wave
packet decompositions (see Section 2 for definition) at various scales are related to each
other. This is another step in the proof where the cone has to be treated very differently
from the paraboloid. We address this question in Section 5.2.1, which seems to be of
independent interest.

The article is organized as follows. In Section 2, we recall several common notations
and basic tools in restriction theory (e.g. wave packet decomposition). Then, in Section 3
we introduce the aforementioned k-broad restriction inequality (Theorem 3), which will
be applied to obtain the main results, Theorems | and 2, in Section 6. The proof of The-
orem 3 is provided in Section 5 using polynomial partitioning, before which the basic
setup of the polynomial partitioning method is introduced in Section 4.

2. Preliminaries

2.1. Notations

Throughout the paper, we work with smooth functions f, g : 2B"~'\ B"~! — C. We use
BY% to denote an arbitrary ball in R” of radius R and oftentimes we write Bg = B}, for
short when the dimension of the space is clear from the context. The o-neighborhood of
a set E is denoted by N, (E). If Z is an algebraic variety in R”, then its tangent plane at
z € Z isdenoted by T, Z.

Our arguments will frequently involve a small parameter € > 0 and a large parameter
R > 1. Given positive numbers A, B and a list L of quantities, we use A <y B to denote
A < Cr, B for some absolute constant depending only on L and possibly the dimension 7;
similarly for A 27 B. And A ~ B isusedif both A <; B and A =1 B hold. Further,
Or (1) denotes a quantity that is smaller than a constant depending on L only. Moreover,
A Bif A<C.RBforanye >0and R > 1.

We say a quantity is RapDec(R) if it is bounded by a huge negative power of R, which
makes it negligible in our arguments. A function E f is said to be essentially supported in
a set 2 with an underlying parameter R if all appropriate norms of the tail of E f outside
Q are RapDec(R).

2.2. Wave packet decomposition

We briefly recall the wave packet decomposition, an essential tool in our argument. Fix
a large parameter R > 1. Cover the region 2B”~! \ B"~! by finitely overlapping sec-
tors 6 of length 1 (in the radial direction) and angular width R~'/2. Let {14} be a smooth
partition of unity subordinate to this cover, and write f =), ¥g f.

Next, we break up ¥y f according to frequency. We do it in two steps. First, we cover
R~ by finitely overlapping cubes of side length ~ R'/2%3 centered at v € R'/2+877~1,
Here § > 0 is a fixed small parameter. Let {1, } be a smooth partition of unity subordinate
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to this cover. We write

f=2 s )M
6,v

Second, we break the function (17, (g f)”)Y into even finer pieces according to 6.
More precisely, for each 0, let £ = (£6,1, ..., §9.n—1) be the point on the central line
of 6 with |€y| = 1. We cover the R'/2*5_cube centered at v by parallel thin plates P§ |

of radius ~ R/2%8 and thickness R®/2, where the normal direction of P(fv is & and

€=1,...,~RY2 Let {ng , be asmooth partition of unity subordinate to this cover. We
write

f=> 08 gmWe f)")Y.
0,v,L
Note that (17,)"(€) is rapidly decaying for £ outside of {§ € R"~!: |¢§] = R~/2} and
(nf) o) (€) is rapidly decaying for & € R”~! outside a thin tube of length 1 and radius

R~'/2 pointing in direction "g“g We can choose smooth functions 1//9 so that Wo is essen-
tially supported on 6, and 1//9 = 1 on a cR~/2-neighborhood of the support of ¢ for a
small constant ¢ > 0. Now we define

Tow = Vol(ns gno(Wo )MV,

Because of the rapid decay of 1, and (ng o)

£y — (5 om0 (W0 £)™)Y Lo < RapDec(R)| £ |2

Therefore, one has the decomposition

f= ff,+Emr where |Err|Lec < RapDec(R)|f |-
6,v,L

The functions { feev} are almost orthogonal. For any set 7 of (6, v, £), one has

2
J4 L2
H Z fe’””L2N Z ||f0,v||L2'

O,v,0)eT @,v,0)eT

When restricted to a large ball Br centered at the origin with radius R, E f(fv is
essentially supported on a thin tube Teev of length R® in the mini direction M(0) =

(€. 1), R in the long direction L(8) = (9, —1), and R'/2+% in the other directions.
More precisely, Teev can be identified with the R%-neighborhood of the Minkowski sum

Péfv + RL(0), where ng is viewed as a subset of R” with the nth coordinate zero
and by an abuse of notation, RL(0) means the line segment {tL(f) : 0 <t < R}. Note
that there is a one-to-one correspondence between the tubes TK and the parallelotopes

NRs(Peév + RL(0)) and they are of comparable sizes: 57, , C NR,s( , T RL(9))
C lOTeev. Therefore, we do not distinguish them in the followmg.
The following lemma shows that £ fgé’v is essentially supported on Teé,u'
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Lemma 2.1. If x € Bg \ T, , then

|Efy ,(x)| < RapDec(R)| f 2.

Proof. Let h be a function on R”~! satisfying supp/ C 2B"~1 \ B"~!. Then the Fourier
transform F of E/h in R” can be written as

F(ER)E. &) = h(E)Se, el
Similarly, F(E (hg)) = h(§)8, ¢l - §(£). hence
E(hg) = Eh * [g6x,=0]

where ¢ denotes the Fourier transform of g in R"~1.

By choosing 4 = ¥g and g = (ng’v nv(Yg /)™)Y, one can write Ef(f,v = E(hg). Note
that g is supported on PGZ’U.

We use stationary phase to estimate Eh. Inside Bg, |Eh(x)| < RapDec(R) if x is
outside a thin tube T9° centered at the origin, of length R in the long direction L(60),
R? in the mini direction M (), and R'/?>*% in the other directions. Recall that T(f’ , can
be identified with the R®-neighborhood of the Minkowski sum Pee, , T RL(8), which
contains the Minkowski sum Pez,v + T, the support of E(hg). Hence the desired result
follows. Again, here Pée.’v is considered as a subset of R” with the nth coordinate being
zZero. |

Let 7 be a collection of wave packets of f. In our argument, we often say f is
concentrated on wave packets from T, which means that

> /5,72 S RapDec(R)|| f 2.
O,0,0¢T

3. A k-broad estimate for the cone

Using a standard e-removal trick [15], one can reduce the desired global Fourier extension
estimate

IEf lLr@ny Sp f p@an—1\pn-1)y, ¥ p with (1.2),

to the following local version:

”Ef”LP(B’[D Sp,e REHflle(ZB”*l\B”*l)’ Ve > 0, VR > 1, Vp Wlth(]z) (3])

(Indeed, the range (1.2) is open, and the e-removal trick enables one to deduce the global
estimate at all p > p from the local estimate at p = p.)

In order to study estimates of the form (3.1) with E replaced by the Fourier extension
operator from the paraboloid, Guth [10] introduced a useful strategy that decomposes E f
restricted to Bg into a broad part and a narrow part. The narrow part is locally supported
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in some lower-dimensional subspace of R” and can be treated using decoupling [5] and
induction on spatial scales. He thus reduced (3.1) to an estimate of the broad part and
successfully derived (3.1) for a large range of p.

In this article, we prove (3.1) for the cone extension operator following the same
strategy. The narrow part of E f* will be treated in Section 6. In this section, together with
Sections 4 and 5, we deal with the broad part by formulating a k-broad norm and by
proving a general k-broad estimate (Theorem 3). For many arguments in the following
sections, the k-broad norm BL,’; behaves almost like the L? norm.

Fix a large constant R and K such that K <« R. We decompose 2B”~! \ B"~! in
the frequency space into sectors 7 of dimension 1 x K~! x --- x K~1, i.e. length 1 in
the radial direction and K~! in the other directions. Using a smooth partition of unity
subordinate to the cover {t}, one writes f = > _ f; where f; = fx:.

Let G(t) = Upc, L(0). Here, recall that 6 is a sector of 2B"~! \ B"~! of angu-
lar radius R~/2, and L(6) denotes the long direction of the wave packets determined
by 6. Then G(tr) C §"! is contained in a spherical cap with radius ~ K~!, represent-
ing possible long directions of wave packets in E f;. For any subspace V' C R”, we write
Angle(G(t), V) for the smallest angle between any non-zero vectors v € V and v’ € G(7).

In the physical space, we decompose the ball Bg C R” into small balls Bg2. For each
Bg2 C Bg, consider fBKz |E f,|? for every .

Heuristically, we say Ef is k-narrow at By if there exists I, the K~2-neighborhood
of some (k — 2)-dimensional linear subspace of R”~!, such that /| B> |E f|? is dominated
K

by fBK2 |E fr|?, where fr is the restriction of f on I'. If Ef is not k-narrow at Bga,

then we say it is k-broad at By and we have

J

In the above, G(t1) A --- A G(t) denotes the infimum of the wedge product L(61) A
.-+ A L(;) over all choices of sectors §; C t; of angular radius R™'/2, j = 1,... k.
The k-broad norm of E f, roughly speaking, will be defined as the sum of the right
hand side of (3.2) over those Bg2 where Ef is k-broad. However, in order to make
the argument rigorous, we need a more technical definition of k-broad norm that carries
similar heuristics.
Here are the details. For a fixed parameter 1 < A < K¢, define

k

|Ef|P < KOW f sup [TIEf1P% 32
B> T seees Tk

2 ol
K G(r))A~AG(zx)z K—0M /=1

V1,...,V4 (K—1)-subspaces of R” \ z: Angle(G(7),V,)>K~2,Ya

wes(Bg2) 1= min ( max / |Efr|p). (3.3)
BKZ

Then for any open set U being the union of some balls Bg2, we define the k-broad part
of [Ef|Lrw) by

VEAGr @)= 2. HEr(By2).
' BK2CU
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In fact, if defined on each Bg> as a constant multiple of the Lebesgue measure, pg s
can be extended to a measure on Bg. In particular, ig s (Br) = ||Ef||§L]€ (Br) Note
that a similar measure is used in [10] for the study of the broad part of the extension
operator from the paraboloid. There, a quantity similar to i g ¢ (Bg2) is defined but with a
different angle condition, Angle(G(t), V;) > K~!. Our angle condition is more relaxed,
hence makes the broad estimate slightly more difficult. However, this change is necessary
for the cone; later in the narrow case (Section 6), one needs to ensure that there are not too
many sectors T whose corresponding long directions are near a low-dimensional subspace
V C R". We leave a more detailed discussion on why K ~2 would be enough to Section 6.

The parameter A is introduced to make the norm BL IIZ A behave more like a regular L?
norm. In particular, it satisfies the following triangle inequality and Holder’s inequality,
which are adapted directly from [10, Lemmas 4.1 and 4.2]. Note that even though we are
working with the cone and with a different angle condition, the same arguments as in [10]
still work. We omit the proofs.

Lemma 3.1 (Triangle inequality). Supposel < p <oo, f =g+ hand A = Ay + A,
where A, A; are nonnegative integers. Then

”Ef”BL,{,’,A(U) s ||Eg||BL,’(’7A1(U) + ||Eh||BL,f,A2(U)-

Lemma 3.2 (Holder’s inequality). Suppose 1 < p, p1, p» <00, and 0 < ay,0 < 1 obey

a1 +ay =1and
1 (05} (6%

P pmop

Suppose that A = Ay + As. Then

o] a2
1Ef sy oy <NEfNgio @) VES NG, r oy

In order to be able to apply these inequalities many times in the argument (say, O¢(1)
times), one needs to choose A sufficiently large (depending on €). The relation between
the parameters K, A, R is

1 < A5 KSR,

The main result of this section is the following:
Theorem 3. Forany2 < k < n and any € > 0, there is a large constant A such that
” Ef ”BL]I()'A(BR) SG Re ” f ||L2(2B)171\Bl171) (34)

n+k
n+k—2"

forany p > p(k,n) :=2-

Theorem 3 is a weak version of the k-linear cone restriction conjecture, which says
thatif Uy, ..., Ur C 2B" 1\ B"1 are transverse, i.e. |[L(61) A -+ A L(6k)| = 1 for any
choices of 8; C U}, and f; is supported in U;, 1 < j < k, then

ITies0
j=1

k
< R€ ARV
LPBgr) "~ K ,1:[1 (RS TV (3-5)
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This has been proven in [19] and [4] in the cases k = 2 and k = n respectively. When
3 <k <n —1, it is unknown whether the k-linear cone restriction holds true. The only
progress towards it that the authors are aware of is due to Bejenaru [2, 3], where some
sharp (up to the endpoint) k-linear restriction estimate was obtained for a class of hyper-
surfaces with curvature including (k — 1)-conical surfaces, using very different methods.
Even though being a weaker result, (the corresponding version of) the k-broad estimate
has been shown by Guth [9, 10] to be sufficient for obtaining linear restriction estimates
for the paraboloid. This follows from an adapted argument of Bourgain and Guth [6],
where a method converting multilinear restriction estimates into linear restriction estim-
ates is introduced. In this sense, the core power of the k-linear restriction can be captured
by the k-broad estimate, which inspired us to take a similar path in our proof and suggests
possible further applications in other problems.

In the next two sections, we prove Theorem 3. Just as for the paraboloid, we apply
the method of polynomial partitioning, which exploits the algebraic structure of the broad
part of | E f|. We will emphasize the differences between the cases of the paraboloid and
the cone, while we only sketch the part of the proof where the argument for the paraboloid
in [10] applies equally well to our problem.

In Section 4, we recall some background on polynomial partitioning, provide an out-
line of the argument, and identify the main difficulties. Then, in Section 5, instead of
directly proving Theorem 3, we in fact prove a stronger inductive estimate (Theorem 6
below) that involves all intermediate dimensions 1 < m < n, which in particular recovers
Theorem 3 at m = n. This strengthening is necessary in order for us to tackle the issues
that arise over the course of induction and was also the strategy taken in [10].

4. Outline of polynomial partitioning

Polynomial partitioning has been a powerful tool widely used in the study of restriction
problems. It originated from the work of Guth—Katz [11] in their resolution of the Erdds
distinct distance conjecture in discrete geometry, and was introduced to the continuous
setting, in particular for the restriction estimates for the paraboloid, by Guth [9,10]. Briefly
speaking, it is a strategy of divide and conquer; it begins with identifying a polynomial
whose zero set partitions the mass of | Ef || 5 L7, into pieces. It thus suffices to estimate
the part of || Ef |5 L7, restricted to each small piece, and the part of | Ef | 5 L7, that is
restricted near the zero set of the polynomial. Both situations turn out to be suitable for
performing an induction type argument.

4.1. Tools from algebraic geometry

Given a polynomial P on R”, its zero set is denoted by Z(P). The basic partitioning
theorem our argument will rely on is the following.

Theorem 4 ([9, Theorem 1.4]). Suppose that W > 0 is a nonzero L' function on R”.
Then for each D there exists a nonzero polynomial P of degree at most D such that
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R™ \ Z(P) is a union of ~ D" disjoint open sets O;, and

/W:/ W, Vi, ]. 4.1)
0; 0;

We would like the zero sets of the partitioning polynomials that appear in our proof
to be smooth and regular, so that locally they can be well approximated by their tangent
planes. To ensure this, we choose to work with varieties that are transverse complete
intersections. The following definition is borrowed from [10, Section 5].

Definition 4.1. Fix integer m € [1,n] and let Py, ..., P,—;, be polynomials on R” whose
common zero set is denoted by Z( Py, ..., Py—y). The variety Z( Py, ..., Py—_p) is called
a transverse complete intersection if

VPI(X)A - AVPy_m(x) #0, Vxe&Z(Pi,..., Pum).

Define the degree of the transverse complete intersection as max;—1,... ,—m deg P;.

.....

A transverse complete intersection Z(Py,.. ., P,—;) is a smooth m-dimensional man-
ifold.

Remark 4.2. Theorem 4 does not guarantee that Z(P) is a transverse complete inter-
section. After a small pertubation and using Sard’s theorem, we could make Z(P) a
transverse complete intersection while changing “=""1in (4.1) to “~”. We refer the reader
to [10, Lemma 5.1 and Theorem 5.5] for details.

The information of E f is mostly carried by its wave packets. It is therefore useful to
understand how a wave packet may intersect a variety.

In our argument, sometimes one needs to control the number of times a wave packet
can cross a variety Z transversely, hence the following result becomes helpful.

Lemma 4.3 ([10, Lemma 5.7]). Let T be a cylinder of radius r with central line £ and
suppose that Z = Z(P1, ..., Py_m) C R" is a transverse complete intersection, where
the polynomials P; have degree at most D. For any a > 0, define

Zog:=1{z€Z :Angle(T,Z,0) > a}.
Then Z~q N T is contained in a union of < D™ balls of radius < ra~ L.

When applying the lemma, a typical choice is r = R1+9/2 and @ = R71/2+5_ Note
that in the case of the cone, the wave packets are thin tubes which are even smaller than
the cylinders 7' in the lemma above, hence the same result holds true for the wave packets.

4.2. Polynomial partitioning in R”

We now apply the polynomial partitioning theorem to g s, the measure that was defined
via the broad norm of Ef after (3.3). Let Bg C R” be the fixed large ball as before.
By Theorem 4 and Remark 4.2, for a large constant D <., 1 to be determined later,
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there exists a (nonzero) polynomial of degree at most D such that its zero set Z divides
Bgr \ Z into a disjoint union of O(D") parts O; with comparable measure (g (O;) ~
prlEs(BR).

Recall the wave packet decomposition E f = ZG,U, (E f(f ,» Where each wave packet
in the physical space is essentially supported in T[’v, a thin tube of length R, radius
RO+8)/2 and thickness R®. In the simplified model where each T(f, , is reduced to a line
segment, Tge’ , intersects at most D different parts O;, which is much less than the total
number of O;’s. In other words, the wave packets passing through a fixed O;, do not
interact much with other O;’s, which works in our favor when we do induction. However,
unlike a line segment, a tube Te{ , might intersect many more O;’s. In order to apply the
above heuristic, we need to first thicken Z to a wall W, which is defined as the RU+8)/2
neighborhood of Z. Let 0; := 0; \ W be a cell. Then one has the partition

BRch|_|5,~,

1

and each Teev intersects at most D cells.
Therefore,

ues(Br) = ZN»Ef(éi) + wes(W).

We say that we are in the cellular case if the first term dominates the right hand side of
the above equality, and in the algebraic case if the second term dominates.

4.2.1. Cellular case. This case can be treated in the same way as for the paraboloid,
based on the fact that each tube intersects at most O(D) cells. In fact, this case is even
easier since tubes in the cone case are thinner. Let E f; = ZT(QUH ;40 E fe,v' Then

Y NEAIG 280 S PIES 205,
i

By Plancherel,
Y UA12: < DIfI2..
i

Since ) ; ,uEf(é,-) ~ gy (BRr), there exists at least one cell O; (in fact, this is true for
most of the cells) such that both of the following estimates hold:

1

nef(BR) S D ugr(00), | £ill72 < D=t

/12

We cover O; with finitely many balls of radius R/2 and induct on the radius of the
ball Bg. The induction closes if p > nzTnl More precisely,

1Er(BR) < D" ugs(0;) S D" Z 1Er(O; N Brja)
BRr/2CBR

SRD"fill, £ RED"CTVPR| 117

L2 ~
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If D is chosen sufficiently large, the power of D dominates the implicit constant and the
induction is closed.

4.2.2. Algebraic case. A tube can intersect the wall W in two different ways, either cut-
ting across W or nearly tangent to Z.

Definition 4.4. Let Z, be an m-dimensional variety in R”. A tube Tgev is said to be
y-tangent to Z in B if
Ty, C Nyr(Zo) N 2B

and for all z € Zo N Nigyr(T{,) N 2Bg,

Angle(T;Zy, L(0)) <y, where L(0) denotes the long direction of T(f’v.

Fix § > 0. (In this outline section, § is the same as the one in Section 2 and is
much smaller than €. In later sections, the § in Ty and Tigns Will be §,,, depending
on dim Zy = m, as in Theorem 6.) If a tube intersects W, then we say it crosses W
transversely if it is not R~'/2+%_tangent to Z. Denote

Tans := {(6,v,8) : T(f’v crosses W transversely in Bg},

Tiang :={(0, v, ) : Tiv is R™1/2%% tangent to Z in Bg},

and let

. J4 . L
ftrans = Z fe,va ftang = Z fe,v~

(6,v,£) €T rans (OyUyE)GTlang

By the triangle inequality for the broad norm (Lemma 3.1), there are two different cases
to consider depending on which type of wave packets make the most contribution to

ner(W):
o Algebraic transverse: gy, (W) Z wgr(BRr);
e Algebraic tangential: pgy,, (W) 2 gy (BR).

The transverse case can be dealt with by induction. Cover W with balls {B; } of radius
pi= R'7% and notice that Te{ v € Trans crosses W transversely in at most < D" different
Bj’s according to Lemma 4.3 (by taking r = RU+9/2 and ¢ = R~1/248 in the lemma).
Fixa B; andlet Ef; := ZTOZ €T, TE (B, D Efel:v. By inducting on scales, one obtains

HEfran W) <D B f (Bi N W) <Y pgs, (B N W) + RapDec(R)| 17,

B; B;
< Zl)e”fi”iz + RapDec(R)[| £ |7, < p*DP" 2| f17, < RE(| f112,.
B,

Since D <¢m 1, we can choose R sufficiently large so that R3¢ > DP"/2 hence the last
inequality holds. Note that this argument is still the same as in the paraboloid problem.
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Things begin to change in the tangential case, where the cone restriction problem
becomes different from the paraboloid one. Because of the lack of curvature on the
straight lines on the cone, we choose to work with wave packets that are thinner than
the ones for the paraboloid, which however results in more wave packets lying inside the
RU+8)/2_peighborhood of a variety tangentially.

The main strategy in this case is to perform another polynomial partitioning inside W,
look into the cellular, transverse and tangential cases at the next level, and repeat. At each
step, the dimension of the variety (denoted as Z again) that the wave packets are tangent
to is reduced by 1. And the iteration stops when dim Z < k according to the following
lemma.

Lemma 4.5. If Ef is R™'/2%% tangent to a variety Z of degree O(1) and dimension
k — 1, then
IES gLy (Br) = RapDec(R)[ fllz>-

Proof. Fix any ball B of radius RO*9/2 inside the R(+%)/2_neighborhood of Z, for
any x € B N Z and any Té{v N B # (. By the assumption the long direction of Tee,u lies
inside the R~1/2+%_peighborhood of the tangent space T Z. Since the dimension of Ty Z
is k — 1, by the definition of the k-broad norm we have

1Ef g2y 8y S RapDec(R)| £ 2. .

Guth [10] applied this strategy for the paraboloid. The key idea is that if £ f is tangen-
tial to an m-dimensional variety Z, then one can essentially treat Z as R™ and make use
of a so-called equidistribution property. Morally, this property says that | E f | is roughly
a constant function locally along the normal direction of Z. This, however, is not true for
the cone. The main ingredient in our proof is to establish this equidistribution property
after removing some negligible part of E f .

5. Main inductive argument

In this section, we prove the broad estimate (Theorem 3), which will be a consequence of
a more general result (Theorem 6 below). As mentioned at the end of the previous section,
we will apply polynomial partitioning iteratively on a sequence of subvarieties in R” of
various dimensions.

To begin, we discuss how polynomial partitioning, introduced in the previous section
on R”, can be extended to partition a general subvariety in R”.

Theorem 5 ([10]). Fixr > 1 and d € N and suppose F € L' (R") is nonnegative and
supported on By N N,1/2+sZ for some 0 < § K 1, where Z is an m-dimensional transverse
complete intersection of degree at most d S¢,, 1. Then there exists D = D(e, d) with
d < D% Se.m 1 such that at least one of the following cases holds:
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(1) (Cellular case) There exists a polynomial P: R" — R of degree D and ~ D™ cells
O CZ\ N,1/245Z(P) such that O C B, and

/ F~D_m/ F  forall O.
0 Rn

1/2+6

Furthermore, each tube of length r and radius r intersects at most O(D) cells.

(2) (Algebraic case) There exists an (m — 1)-dimensional transverse complete intersec-
tion Y of degree at most O (D) such that

/ s F.
BrﬂNr1/2+3Z BrﬂNr1/2+3Y

Theorem 5 is proved, but not explicitly stated, in [10, Section 8.1]. We borrow the
exact statement of Theorem 5 from [13, Theorem 6.3]. We briefly sketch its proof here.

One first decomposes Z into O(1) pieces Z; such that the tangent spaces at points in
each piece Z; form an angle of at most 1/100 with a certain m-dimensional subspace V;.
There exists a Z; such that

/ F< / F.
Brﬂer/z_HgZ BrﬂNr1/2+5Zj

Next, one looks at only Z; and define the orthogonal projection r : R” — V;. Apply-
ing Theorem 4 with the function W(y) = fn—l(y) F, one can partition V; = R™ using
a polynomial Py, of degree D = D(e,d). Let P be the polynomial on R” defined as
P(x) = Py, ((x)). We then apply the polynomial partitioning argument presented in the
last section. If it is the cellular case for W defined on V; with Py, , then we would obtain
the cellular case in Theorem 5 with polynomial P. Otherwise it is the algebraic case
for W, so ~ 1 fraction of F is concentrated on the r'/2*¥_neighborhood of Z N Z(P).
We then apply Remark 4.2 to fine tune Z N Z(P) into a transverse complete intersection Y
after a small perturbation.

Instead of proving Theorem 3 directly, we prove the following stronger estimate,
which is similar to [10, Theorem 8.1] and is more suitable for induction.

Definition 5.1. Let S be a transverse complete intersection of degree D; ~ O(1) and of
dimension m < n inside Bg (S is understood as S N Bp if it is not completely contained
in BRr). Define

Ts :={(0.v.0) : T, is R™/2*% tangent to S in Bg}, (5.1)
where §,, > 0 is a fixed small parameter for each dimension m, to be chosen later.

Theorem 6. For € > 0, there exist small parameters 0 < § K -1 K -+ K §; K
8o < € and large parameter A such that the following holds. Let 1 < m < n and 7. =
Z(P1,..., Ph_ym) be a transverse complete intersection with deg P; < Dz Sem 1. Sup-
pose that [ is concentrated on wave packets from Tz as in Definition 5.1. Then for any
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2<k<n 1<A<Aandradius R > 1,

8(log A—log A) p—e+1/2
IEf gLy  (8r) Skiempy REROCEATED R 1))

whenever2 < p < p(m,k) :=2- m’T,;’iz where e := 1(1 — %)(n + k).

Observe that when m = n and Z = R”, by taking A = A and p = p(n, k) one com-
putes —e + 1/2 = 0, which implies Theorem 3. We also remark that for p = 2, Theorem 6
follows quickly from an L2 estimate similar to [10, Lemma 3.2],

IEF 122 5 < RIS (5:2)

By interpolation and Holder’s inequality for the broad norm (Lemma 3.2), Theorem 6
will thus follow from the endpoint case p = p(m, k), which we prove by induction next.
For technical reasons, we choose to present the proof by induction rather than iteration
as in [10]. This is also why we need to prove a stronger result that concerns algebraic
varieties of all intermediate dimensions m, which is more suitable for induction.

The rest of the section is devoted to the proof of Theorem 6.

We will repeatedly use the strategy introduced in Section 4. More precisely, the plan
is to induct on the dimension m, the radius R, and the parameter A.

It is easy to see that the base case m = k — 1 (for all R and A) follows from
Lemma 4.5. If A = 1, then by choosing A large enough, the desired estimate follows
from the trivial L! — L estimate of the extension operator E. If R is small, then the
desired estimate can be deduced by choosing the implicit constant sufficiently large. Now
suppose the desired estimate holds true if we decrease the dimension m, the radius R,
or A.

Recall that Z is a transverse complete intersection of dimension m. We first apply
Theorem 5; then it suffices to discuss the cellular case and the algebraic case separately.

5.1. The cellular case

Let O be a cell, and define fo =5, p)eT,, fee’v, where
To :={(6.v.0) : T4, N O # 0},
Since we are in the cellular case, for ~ D™ cells O,
D < m p < m p

Moreover, by orthogonality and the geometric observation that each (6, v, £) belongs to
< D collections Tp,

Y NA12. < DI I
i

Therefore, by the same argument as in Subsection 4.2.1, the induction for the nonalgebraic

: _ 2m
case closes since p = p(m,k) > 775.
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Remark 5.2. In fact, when proving the case m = k, one needs to first prove the slightly
larger endpoint case p = p(m, m) + § and then interpolate. This is to make sure that the
induction on scales argument treating the cellular case described above can close. More
precisely, this slight change will produce a gain of D% at the end of the cellular case
inductive argument, for some D = D(e, Dz). By choosing D sufficiently large, one then
closes the induction. We omit the separate discussion of this special case as the issue can
be handled in exactly the same way as in [10, Section 8.1, bottom of page 38].

5.2. The algebraic case

Fix p € [2, p(m, k)]. Recall that in the algebraic case, there exists a transverse complete
intersection Y of dimension m — 1, defined using polynomials of degree < D(e, Dz)
Ze.m 1, such that

REf(Ngis2+sm (Y) 0N Br) X wes(BR).

One first covers Bg by smaller balls B; of radius p, where p'/2+¥m—1 = R1/2+6m Then

||Ef||pLP (B ) ~ Z ||Ef} ”pLP (B ) +RapDeC(R)||f||L2’

where

fi= >0 fou Ti=A{0.v.0): Tf, 0 Ngijosn (Y) 0 B; # 0},
(,v,0)€T;

We further subdivide each group T; into tubes that are tangent to Y and ones that are
transverse to Y.
We say that Tge’v € T; is tangent t0 Y in B; if

Ty, N Bj C Ngij24sm (Y) N By = N1/245,_, (Y) N B (5.3)
and for any nonsingular point y € Y N B; N Nigr1/2+6m Tee,v’
Angle(L(6), T, Y) < p~V/2Hm—1, (5.4)
The groups of tangential and transverse wave packets are denoted by
Tjang :={(0,v,£) € Tj : Ty istangentto Yin B;},  Tjans := Tj \ T} angs

and let

fj,tang = Z fee,v» fj,trans = Z fBZ,v' (55)

(egvse)ETj,lang (Q,U,Z)GTj_[rans

Then by the triangle inequality (Lemma 3.1),

R g V4
;”Ef’ 1227 ) ~Z”Ef1mg”mp .,->+;”Ef”"a"s”BLi’,A/z(B_,-r
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We will estimate the contribution from the tangential wave packets and the transverse
wave packets separately by induction on the dimension m, parameter A and radius R.

Before diving into the study of the two cases, we first discuss a common ingredient
in their proofs: the relation between the wave packet decomposition of Ef; at the large
scale R and its wave packet decomposition inside B; at the small scale p. Understanding
this relation is one of the main novelties of the article. Note that even though a similar
discussion for the paraboloid can be found in [10, Section 7], many results there (for see
instance Remark 5.5 below) do not extend to the cone case, as the wave packet decom-
position for the cone and the paraboloid are different.

5.2.1. Adjusting the wave packet decomposition to a smaller ball. Fix a small ball
B(y, p) C B(0, R) with RY/2%8 < p < R.Let X = x — y and define

Wy(é) = y1&1 + -+ Yyn—1En—1 + yull.

We also define the map f(§) = e!¥»® f(£). Then Ef (x) = E f(X).
Consider the wave packet decomposition of f at scale p. In other words, for £ f (X)

defined on B(0, p), write 5 B
= Z / Z,Lw’

¢w, L

1/2 1/2+SZn—1

where each ¢ is a small sector of 2B”~! \ B"~! of radius p~ w e p and

1 < L < p'2. The (n — 1)-dimensional Fourier transform of each f; is essentially
supported inside a thin plate PLw of side length p'/2%% and thickness p® in the ball of

radius p!/2+4

centered at w. The small wave packet E f;Lw is essentially supported in
a thin tube wa of length p in the long direction L (), thickness p® in the mini direc-

tion M(¢), and width ,01/ 2+8 in the other directions. In the X coordinate, the tube is
contained in B(0, p), while in the x coordinates, the tube is translated to be in B(y, p).
We would like to study how the original wave packet decomposition f =Y e fé,‘Z v

is related to the new wave packet decomposition f => Ltw ]iLw.
For any (6, v, £) such that Teev N B(y, p) # @, define

Toe = {(C.w. L) : Dist(8.¢) < p~ /2, Dist(P£,,. Py, + P§ — vy () < R*}.

Recall that & is the point on the central line of 8 with |&g| = 1; Pe0 is the thin plate
centered at the origin in R”~! x {0} of side length R'/2%% thickness R®, with normal
direction §p; and PeZ , 18 the essential support of ( feév)’\.

Lemma 5.3. ( f(f o)~ is concentrated on small wave packets from Tg,v,[. In other words,

(ff)™ = > (gk,)™ +RapDec(R)|| f 2.

(¢w,L)eTp ¢

where g = f(fv.
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Proof. First, since ( f(f D= eV () fé/Z , 18 essentially supported on 6, it is obviously
concentrated in small wave packets (¢, w, L) satisfying Dist(6, &) < p~1/2.
Let ¢pg be a bump function that is 1 on 6 and 0 outside 26. Then the Fourier transform

of (fel,v)N = eiwy(g)feljv‘m is
@ ® fy,90)" = (Boe’ ) (fy )"

In the following, we apply stationary phase to show that (¢ge’¥> ©)* is rapidly decay-
ing outside —0gyry (§g) + Pé’. Then, it will follow that the Fourier transform of ( ffv)”

is essentially supported in Péf,u — 0g¥y, (§9) + Pé) . Hence, the second distance condition

in the definition of ng’v,g also holds true, which will complete the proof.
To show that (¢ge’¥»©) rapidly decays outside —dg vy, (§9) + P, we first Taylor
expand the phase function:

Uy (§) = Vy(Eg) + 06y (80) - (§ — §0) + ¥y it (§).

Note that we can ignore the constant terms vy (§g) and —0gr, (&g) - £g. Let @y =
e'Vv.uilghy We have

(poe’ O\ (x) = eV Eo)—10:¥y o) &y /eig'(x+a$wy(§9))(b6 () ds.

It thus remains to show that 59 is essentially supported on Peo.

Up to a rotation, we might assume that & = (0, ..., 0, 1). Consider the change of
variable A : (£1,...,6n—1) = (R™Y2&;,...,R™Y2¢, 5. &,_1). Then ¢y (A -) is supported
on the unit ball and

Bola™0) = [ S g 4y da

By definition, we have 0g (V) i1(A§)) = A[dgVry (AE) — 3¢y (A&p)]. In particular, this
implies for all £ in the unit ball that

(R_”il R, & _1)
|[Ag] 7T Ag T |Ag|

Indeed, since y, < R and |A&| ~ 1, the first n — 2 coordinates are bounded. The last
coordinate is also bounded because

< 1.

~

|85(1//y,tail(As))| =DYn

Enct — [AE| = Eumy — JRTVE2 4+ RTEZ, 4+ E2_ S RTVEP,

Therefore, when x > R?, @9 (A7'x)| <y R7N forall N. This proves the rapid decay
of ®g(x) outside P n

Let Tng be a small thin tube (¢, w, L) € Tg,v,g in the x coordinate (contained in
B(y, p)). We now discuss how TEL is related to the large tube T(fv.

W
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Lemma 5.4. Forany (¢, w, L) € ngv,g,

Angle(L(0), L(Q)) < p~ "2, Angle(M(0), M) < p~ /2,
Dist([Ty, N B(y.2p)] + 2P§. T},) S RP.

Proof. First, it is obvious that
Angle(L(0), L(0)) < p /2, Angle(M(6), M(¢)) < p~'/?

from the definition of Tg,v,e. It thus suffices to show the last inequality.
By definition, in the x coordinate,

TE, = PE, + pL(©) + {y}.

(When the ball B(y, p) is clear from the context, by abusing notation, we use Tng to
denote the set PéL’w + pL (&) 4+ {y}, where pL({) := {tL(¢) : 0 <t < p} and similarly
for pL(6) below.) By Lemma 5.3,

Dist(PL,. P&, + P§ — 0sy(§9)) < R°.

M0r69ver, PZL’w + pL(¢) C Pé’v + P(;) + pL(6) because Angle(L(¢), L(6)) < p~V/2.
Since |€g| = 1, we have 0¢ ¥y (§g) = " + yn&p where y' := (¥1,..., Yu—1). So

Dist(Tf,. 2P§ + Py, + pL(6) — {yaL(0)}) S R.
It suffices to show PB{U + pL(8) —{y,L(0)} C Teé,v N B(y,2p), which is obvious. =

Remark 5.5. Given a ball B(y, p), in the paraboloid case treated in [10, Section 7], many
large wave packets (6, v) might give rise to essentially the same set TQ,U (which is the
analog of our set ngv,g; see [10, p. 30, (7.1)] for the exact definition). The reason is that
for any 01,0, C ¢, if B(y,p) N R3Tp, , N R®Ty, ., # @, then B(y,2p) N 2R3 Ty, ,,, N
2R3Tp, ,, contains a medium tube segment 7, of length p and radius R'/2%3. And both
ng,vj, J = 1,2, consist of all the small wave packets (£, w) such that the small tube 7% ,,
lies in T},.

However, in the cone case, it is not true anymore that many (6, v, £) always give rise to
essentially the same set ng v.L- This is because T‘Z is too thin in the mini direction M(6).

If 61,6, C¢and B(y,p) N RIT! 9 o N R°T, Zz ;é @, then it might happen that B(y,2p) N
2RS Téfl o N 2ROT, zv is contained in 2R5 TL for a single small wave packet TtL

In fact, a small wave packet TCL might belong to as many as (R/p)#~2/2 different
Tg,y ¢, which is about the number of disjoint 8 C ¢.

Remark 5.5 suggests that it is difficult to use medium tube segments (of uniform length
and radius) as a bridge to pass back and forth between large and small wave packets,
unlike the situation with the paraboloid. Hence, in the following, we will only focus on
grouping large and small wave packets into different subcollections, which play the role
of the “medium tubes” in the cone case.
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Here are the details. Let &y be a sector on 2B"~1 \ B"~! of radius p~'/2, and let
vg € RY/2+877=1.1 B(0, p). We define

I’]’fé'(),v() = {(;7 w, L) : DiSt(é‘Ov Z) s 10_1/27 Pg'l:w C B(UO, Rl/2+28)7 L= 17 cees ,01/2},

where P;,w is the essential support of the Fourier transform of ]};Lw The tube Tglfw in

the x coordinate is Téw = PgL’w + pL(¢) + {y} where pL({) is the line segment {tL({) :
0 <t < p}. We also define

Teg00(¥) := {(8,v,0) : Dist(6, o) < p~ /2,
Ty, N B(y,p) C B(vo, RM>™%) 4 pL(Lo) + {y}, £=1,..., RV?}.

For vg, v} satisfying Dist(vg, vj) = RY/2+25 T, . and Tfo,v() are essentially dis-
joint. So are T¢, ,,(») and Tgo,u() (¥). In addition, the collections T¢, ,, and T%,UO are
essentially disjoint if Dist({o, () 2 p~ 12, So are Teqv0(y) and Tes vo (y). Moreover, the
collections T¢, », and T¢, ., (y) exhaust the set of all small wave packets {({, w, L)} and
the set of all large wave packets {(6, v, £)} that intersect B(y, p) respectively as (o, vg)
ranges over all possible choices.

Furthermore, for any (o, vg), these two collections are naturally connected:

Teo0 = U To,v,e-
(6,0,0)€Te v, ()

Therefore, applying Lemmas 5.3 and 5.4, one immediately obtains the following corol-
lary.

Lemma 5.6. If g is concentrated on large wave packets in T, ,,(V), then § = eiVyg
is concentrated on small wave packets in Tto,vw On the other hand, if g is concentrated
on small wave packets in Tfo,vo’ then inside B(y, p), g is concentrated on large wave
packets in Te, o ().

We need a few more notations before wrapping up the discussion on large and small
wave packets. For a given ball B(y, p) and any function g, define the part of g concen-
trated on large wave packets from T¢, 4, (V) as g¢y,vo:

oo = D &b (5.6)
6.0.0€ Tz 00 ()
Zowo = Y, Ztw (5.7)

@Gw,L)eTy v,

These give rise to the following decompositions of g and g into wave packets that are
grouped together by collections T¢,, ,,(y) and T¢, ,, respectively:

€= Y 8w +RapDec(R)llgllz2. &= Y Zsomwo + RapDec(R)[|F|z2.
($05v0) (§05v0)
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where the sums are over all possible sectors ¢o of width p~1/2
and all vy € RYV/2+877=11 B(0, p).

Moreover, it is easy to see that both decompositions satisfy orthogonality:

122, ~ 3 NgsomolZar 1122~ 3 1Zs0m0l2-.
(%o,v0) (%0,v0)

partitioning the annulus,

These decompositions will be used later in the transverse subcase. The discussion on how
to adjust f into a wave packet decomposition inside a smaller ball B(y, p) is complete.

Next, we will go back to the algebraic case and study its two subcases. Recall that we
need to study the following situation: there is a function g that is concentrated on wave
packets in Tz, and we would like to study E g restricted to a smaller ball B(y, p) C Br.

5.2.2. The tangential subcase. In this part, suppose
. p p
]Z_ |Efjaneligrr oy 2 VE5ep

We would like to apply the induction hypothesis that the desired estimate holds for m — 1,
A/2 and p. Hence, in each B;, we need to redo the wave packet decomposition of fj tang
at the smaller scale p and verify that the assumptions in Theorem 6 are satisfied, i.e. f; tang
is concentrated on small wave packets that are p~!/2+9m—1_tangent to the variety Y in the
ball B; of radius p.

Once we understood how to adjust E f; into small wave packets in B; for the cone in
the previous subsection, the verification of these properties is very similar to the para-
boloid case (see [10, Section 8.3]). We sketch the idea here. We know that fj ng is
concentrated on wave packets (0, v, £) € T} jang.

To simplify the notation, let g = f; wung and decompose

Z= ) &, +RapDec(R)| fl|2.
¢,w,L

We would like to check that g is concentrated on wave packets (¢, w, L) tangential to
Y in Bj in the sense of Definition 4.4. In other words, we would like to show that g is
concentrated on wave packets (¢, w, L) such that

TF, C Nyij24s,—, (Y) N Bj, (5.8)
and for any x € wa’ and any y € Y N B; with |x — y| < p!/2+m—1
Angle(L(¢). TyY) S p~ /2 +om=1, (5.9)

We know that g = f; wng is concentrated on wave packets (6, v, {) € T} jang, which by
definition obeys (5.3) and (5.4). These inequalities imply that TH{U N B; lies in the desired
neighborhood of Y N B; and makes a small enough angle with 7),(Y). By Lemma 5.3, for
any (6,v,%), (feliv)” is concentrated on wave packets (¢, w, L) € Tg,v’g. By the definition
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of Tg.y ¢ and Lemma 5.4, if (8,v,£) € T sung and (¢, w, L) € Ty, ¢, then wa obeys (5.8)
and (5.9).

We have thus verified the hypotheses of Theorem 6 for g with the variety Y on the
ball B;, and so by induction on dimension we get, for each j,

”Efj,tang”BLlva/z(Bj)
< C(K.€/2,m — 1, D(e, Dg))p/?pilloe A=Ioe(A/2) pmet1/2) £ 1] o

for all

m—14+k 1l 1
)< p< -1Lk)y=2 — ith 5\ 75 k).
<p=pm—1k) m—1+k—2 ¢ 2(2 P)(n+ :

Note that p(m, k) < p(m — 1, k), so the above estimate applies to all p € [2, p(m, k)].
Summing over all the balls B; (with total number < RO(‘sm*‘)), one has

IEf 8Ly (B
< ROGn=C(K, e/2,m — 1, D(e, Dyg))p/? plloe A-loel4/2) e t1/2) g
< ROCm=DC(K,e/2,m — 1, D(e, Dg))RE/>RO0eA—log D) g=et1/2) £y

where the last step follows from the observation that p~¢+1/2 < ROGm-1) R=e+1/2 3pq

,08 (log /I—log(A/Z)) < RS RS(log /I—log A) ,

recalling that § < &,,—1.

Since 8,1 < €, one has ROGm—1) ge/2 < RE€. The induction thus closes if one
chooses C(K, €,m, Dyz) larger than C(K,€/2,m — 1, D(e, Dyz)). The discussion of the
tangential subcase is complete.

5.2.3. The transverse subcase. In the transverse case, our goal is to estimate
I E £ teans I, .
JZ J,trans BL]?_A/z(Bj)

assuming that it dominates || E f || Our first claim is

p
BLY 4(Br)

D 1 fwansllZ2 S Poly(D(e. D2))I|f 12 (5.10)
J

~

Poly(D(e, Dz)) Se,m 1. Inequality (5.10) will enable us to reduce the desired estimate to
be inside each individual B;.
To see (5.10), one rewrites its left hand side as

S M fraransllzz = D Kj (0.0.£) € Tjrans} 1 £ o 125
J

6,v,0)

where Poly(D (e, Dz)) is a polynomial in D(e, Dgz). Since D(e, Dz) Se¢,m 1, we have
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Then it suffices to show that [{j : (6, v,£) € T} wans}| Se,p,, 1 foreach (8, v, £). According
to [10, beginning of Section 8.4], this is indeed the case. In fact, it is true even if one
replaces the wave packet T(-)Z,w by a cylinder (with radius r = RY/2H8m — pl/ 2+8m—1 and
the same central line as Tee, » 10 the long direction). This is in particular a consequence of

Lemma 4.3 (with the choice o = p_l/ 248m—1 ) and we omit the details.

Therefore, in the following, we would like to estimate E fj ians in each ball B; and
apply induction on the radius R. The induction hypothesis is: if f is concentrated on
wave packets from 77, the collection of wave packets Te{ , (atscale R) that are ,o_l/ 2+8m

tangent to the m-dimensional variety Z in B;, then
0(8)—
IEf sy 5,y < C(K.€e.m, Dg)ptOOH12) 1] >

where 2 < p < p(m,k) ande = %(% — %)(n + k). There are two obstacles preventing
us from applying the induction hypothesis directly.

First, E f is only known to be concentrated in the R'/2%%m _neighborhood of Z, which
is larger than the needed p!/2+%7 -neighborhood. Therefore, one needs to decompose the
R'/2+m _peighborhood of Z into different layers of thickness p'/2+%7 so that each layer
is a p!/2+¥m_peighborhood of a translate Z; of Z. We also need to do a wave packet
decomposition in B; at scale p similarly to the tangential subcase. Write g§ = f; irans and
decompose

§= ). &+ RapDec(p)[fllz2.
(¢ w,L)

One needs to verify that each small wave packet Tsz lies inside a unique layer Zj and that

TZL’w is p~1/2+8m _tangent to Z;. This is true and can be argued as in the paraboloid case:
each small wave packet comes from some large wave packets that are even more tangent
to Z, so the small wave packet lies entirely in some layer Z, and is also p~!/2+%n _tangent
to Zy. The justification proceeds exactly as in the paraboloid case, which we will sketch
later and refer the interested reader to [10, Section 7, pp. 32—33] for more details.

Second, notice that p€+9®)—e+1/2 jg oreater than RETOE—e+1/2 for p(n, k) < p <
p(m, k). In order to obtain the correct (negative) power, one needs to find more structure
between different layers. In the paraboloid case, the L2-norms of f on different layers
turn out to be roughly the same, which is referred to as the equidistribution phenomenon.
This is a key ingredient in the treatment of the corresponding case for the paraboloid
in [10]. However, the argument there does not apply to the cone since our tubes are thinner
and there are different mini directions existing for each wave packet. We solve this issue
by showing that there still holds an analogous version of the equidistribution property for
the cone, once a negligible part of f is removed. This is one of the main novelties of our
proof. In the following, we first establish the equidistribution property, and then apply it
to complete the proof of the transverse subcase.

Transverse equidistribution estimates. Intuitively, the property of equidistribution
holds true because of the following heuristic: when all the tubes are tangent to an
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m-dimensional low degree subvariety Z, the situation is similar to a k-broad restriction
problem in R™.
Given a point § = (§1,...,&,) on the cone

C={EeR" £+ +E_ | =E26>0,1<§ <2, VI<j<n—1},

the normal direction ng at § is parallel to (§1,...,§,—1, —§,). Fix a ball B of radius
R'/2%8m Let V be the tangent space of Z at some point in B N Z. Note that in hindsight, it
does not matter which point we pick (because of Definition 4.4 of tangent tubes). Assume
that V' is given by the equations

n
E aj,jXj =bl‘, i=1,...,n—m.
Jj=1

Then the collection of all points & on C such that the normal vector ng of C at £ is parallel
to V lies in the vector space V' given by

n—1
E ai,jéj—ai,nénzo, i=l,...,n—m.
Jj=1

Recalling (5.1), define
Tpz:={(0.v.0) € Tz : Tj, N B # 0}.

For any function i : 2B"~1 \ B"~! — C, let hp := 2 (0.0,0€Ts 4 hg’v. Define the lift
of hp onto the cone as Hp(-) := hp o (-), where = denotes the projection from the
cone C onto its first » — 1 coordinates. Then one observes that the support of Hp lies
inside Ng—1/2+s, VT N C. Indeed, supp Hp lies inside Ng—1/2+s, VT by the definition
of tangential wave packets, and supp Hp lying in C is due to the definition of Hp.

Remark 5.7. What does Ng—1/2+s, VT N C look like? One special case is when VT is
tangent to C. As shown in the proof of Lemma 5.8 below, in this case dim VT N C = 1
and Ng—1/248m VT N C is an R™1/4+20m_neighborhood of few radial line segments. In
general, if VT is tangent to C up to an angle of R~% (“K~2” in Lemma 5.8 below),
Ng—-1/248m VT NCisan O(R~%m)-neighborhood of few radial line segments.

Lemma 5.8. Decompose R" = V't @ W so that V't | W. Then either
(@) W andV are transverse in the sense that Angle(V, W) > K 2 or
(b) supp hp is contained in the union of O(1) sectors t; in 2B" 1\ B! of dimensions

IxK2x---x K2,

Proof. Leta; = (a;1,...,ain—1)and o; = (&;,—a; ). Suppose there exists w € W such
that Angle(w, V) < K~2. Since W L V'*, one can write w = Y /_|" Aja; =: (0, —wp).
Then by definition, it is straightforward to check that (0, w,) € V=, which in particular
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implies that the angle between w = (0, —wj,) and (0, wy, ) lies in the interval [ /2 — K2,
/2 4+ K~2]. Hence, for w and § = (£,&,) € supp Hp,

=12 2
|w| — Wy

B - £ — Eywp| _
[P =wi | o g2 fp_gzog, RSl iz
| < B — 2 <

&1 w]

After renormalization so that |w| = 1, the first inequality above shows that w2 — 1/2| <
CK~2. Combining the last two estimates, we have

|§ - wl - |wnéhn| — CR~V2+8m — |wn| CR™Y2+8m > 1 _ CcK~2,

] - [w| ~ 1&]- o] lw]
Thus the support of 1z must lie in an O (K ~2)-angular neighborhood of w. In particular,
supp hp lies in an O (K ~2)-angular region in 2B"~! \ B"~!, hence case (b) is true.  m

For a fixed variety Z, whether case (a) or (b) holds true depends only on the vector
space V', in other words, only on the ball B. If we are in case (b), by the definition of the
BL,’(’ norm, since supp p is contained in the union of O(1) sectors and we have chosen
1 € A K K, for all k > 2 we always have

|Eslf,p ) = HEna(B) = RapDec(R)|ha 2. 5.11)

On the other hand, if we are in case (a), the following lemma, adapted from the parabol-
oid case [10, Lemma 6.2], says that the L2 norm of Ehp is equidistributed in B along
directions transverse to V.

Lemma 5.9. Let hg =} (9, pyety, hg’v and Z be defined as in Theorem 6. Suppose
that B is a ball of radius RV?>*%m in Bg C R, and satisfies case (a) of Lemma 5.8. Then
forany p < R,

1/2

oGm R2\ "
/ |Ehp|* < RO m>(ﬁ) f |Ehg|* + RapDec(R)||hg||?..
Banl/2+8m (Z2) P 2B

Note that the angle condition in case (a) of Lemma 5.8 is used in the analog of [10,
Lemma 6.5], which is a key step in the proof of the above lemma.

Proof of Lemma 5.9. Recall that V' is the tangent space of Z at some point in B N Z,
hence

Tpz C Tpy :={(6.v.0) : Ts, N B # @ and Angle(L(6), V) < R™/>Fom},

According to the discussion above Remark 5.7, for all (8, v,{) € Tp g, (Ehf) L) is sup-
ported in Ng—1/2+8, VT N C. For any (n — m)-plane IT parallel to W passing through B,
if we view the restriction of Ehp to IT as a function G : IT — C, then its Fourier transform
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is supported in a ball of radius < R™1/2+% because V' L W. Therefore, by Lemma 6.4
in [10],

1/2—28m

R —dimW
EhgP? < | ———— /W s |[ERBI?, (512
/1:mB(xo,,O‘/2"“2“’")| 5| (P1/2+28’") Iul Blxo.RI>70 |Ehs] ( )

where x is any point and Wy, g1/2-2smy is a weight that is equal to 1 on B(xo, R1/2=28m)
and rapidly decaying outside of it. Since Angle(V, W) > K2, for some xo € B we have

I1 N Nyi/245m (Z) N B C I1 N B(xg, p'/?+2m), (5.13)
Therefore,
/ |Ehg|* S[ |Ehg|*
HﬂNp]/2+5m (Z)NB TINB(xq,pl/2128m)
RU2 —(n—m)
<ROGw ([ Z__ Wg|Ehg|*. (5.14)
,01/2 I

Note thatif x € IT \ 2B, |Ehp(x)| < RapDec(R)|//Ag||; 2, which implies

/ Wa|Ehs | < [ Ws|Ehp|? + RapDec(R)[5]2..
I1 I1Nn2B

Hence, by integrating over all IT that are parallel to W and passing through B, one obtains
the desired estimate. [

Remark 5.10. In the proof above, one can see that (5.12) and (5.13) are the key relations
for the derivation of the transverse equidistribution of E/p. Note that inequality (5.12) is
in fact general and stated in [10, Lemma 6.4]. In the paraboloid case, the angle condition
implying (5.13) always holds. However, in the cone case, this is not always true, which is
why we need to rule out case (b) in Lemma 5.8.

The key property we are going to demonstrate is: inside each ball B; of radius p, the
L2 norm of the part of the function fj s corresponding to case (a) of Lemma 5.8 is
equidistributed along the direction of a fixed vector b; the precise statement is postponed
to Lemma 5.13 below. Unlike the paraboloid case, we do not have such equidistribution
for the entire f; yans; however, (5.11) ensures that the leftover part of f; yans i inessential
as it makes a negligible contribution.

Fix B; = B(y. p) and again write g = f; yans for short. Cover B; by balls B of radius
RY/2+3m and partition N g1/2+sm (Z) N Bj = X4 U X3, where X, (resp. Xp) is the union
of the balls B in case (a) (resp. case (b)) as defined in Lemma 5.8.

Recall from Section 5.2.1 the definitions of the collections T, ., () of large wave
packets at scale R, Tto,vo of small wave packets at scale p, and the notations gz, v, &¢o,v0>
where g is a sector in 2B7~1 \ B"~! of radius p~'/2 and vy € R1+9/277=1 1 B(0, p).
We define ges,, the essential part of f; ians corresponding to case (a), as follows:

Zess = Z 8egvg — & — Z 80,005

(60,v0) € Tess (605v0) €T il
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where

Tess := {(§0,v0) : 3(6, v, €) € Tgy 1 (y) with Ty, N X, # 0},
Tait := {(l0, vo) : Y(6,v,0) € Tey 0(»), Tg,, N Xo = B}

Note that we only consider those Ty, ,, that contain some large wave packet intersect-
ing Bj, so Tes and Ty, above form a partition of all (o, vo) that matter to B;.

Remark 5.11. Another important observation is that for any given ({o, vo), if there exist
(0,v,£) € T, v,(y) and an R'/2*+8m _ball B such that T(fv N B N B; # @, then for all

(0", 0", 4") € Te, vy (), one has Tee,/ »» N2B # 0. This is because the union of all Teev N B;

over (6, v,£) € Tg,v,(») is a short tube of length p and radius ~ R'/2¥2. So when B
intersects this short tube, all Tge , automatically pass through 2B.

We now reduce the estimate of g = f} irans t0 its essential part. By the triangle inequal-
ity of Lemma 3.1, one has

1E8ls0g o) = 1Eeesllnng iy + [EC 3 tom)lpy )

(60,v0)€Trir
< 1Egesllsey o+ |E( X &tow)|,,
k.A/2\PJ] (tonaeTun BLk_A/Z(Xb)

+ RapDec(R) || /|2

= [ Egesllprr y + RapDec(R)|| f |22

ay2(Bj

In the above, the second step is a consequence of the definition of Ty, and the last step
follows from (5.11). It thus suffices to study g.ss from this point on. Now, we would like
to choose a direction, given by a vector b € R”™ with |b| < RY/2%%and decompose
the R'/2+3m _neighborhood of Z into layers of thickness p'/2+% along b.

Fix a (o, vg) € Tegs and an R/2+0m _pall B Tee,v N X, forsome (0,v,£) € Tey v, (V)3
then Lemma 5.9 applies to g¢, 4, and B.

Recall that the ball B determines locally a tangent space to Z, denoted by V, and a
vector space VT that contains points on the cone with normal direction parallel to V.
Since B C X, according to Lemma 5.8 one has Angle(V, W) > K~2, where W is the
orthogonal complement of ¥+ in R”. Choose any b € W with |b| < RY/2%9m then the
direction b is transverse to T Z for all x € B N Z. In fact, by a simple reduction, one can
assume without loss of generality that b is transverse (by an angle at least K—2) to Ty Z
for all points x € Z N B;.

Indeed, let A be a K—3-net of all directions in R”. Then there are O(K3®~1) points
(directions) in A. Decompose Ngi/2+5,(Z) N 2B; = |J Uy into O(K3®=1) disjoint
parts such that for each x € Uy N Z, the normal direction of T,Z is O(K ~3)-close to a
point in A. The disjointness of {Us}s and the triangle inequality imply that

VEf WLy o = 2 NEF Gy wy = 2o 1ERlIsey , ) + RapDec(R)If 17
S s
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Here Ef; := ZTOff AU 0 Efeev, hence there is rapid decay of |Ef — E fs| on U. It thus

suffices to study each E f; as there are only O(K>""~1) « R€ of them in total.

After this reduction, in the following, independently of the ball B, the choice of the
vector b will be fixed, as it is transverse to the tangent plane 7, Z for all x € Z N X,.
Our goal is to show that the L? norm of g is equidistributed along the direction b in
Ngi/2+6m (L) N Bj.

Note that in the paraboloid setting dealt with in [10], one can choose b’s freely in
each B, since equidistribution in the physical space (Lemma 6.2 of [10], the analog of our
Lemma 5.9) holds true on each B. We unfortunately do not have this luxury with the cone.
In fact, it can be as bad that only one B here has equidistribution. A key observation is that
this is already good enough for us. Essentially, the equidistribution of E g in the physical
space deduced in Lemma 5.9 will give rise to that of ||ges||z2 in the frequency space,
and after breaking g..; down into the orthogonal pieces {g¢,, v, }» the behavior of Eg¢, 4,
inside B will control ||g¢, v, |l 2. We state this last observation as the following lemma,
which is borrowed from the paraboloid case [10, Lemma 3.4]. Being a direct corollary of
orthogonality of wave packets and Plancherel, it works in the cone case equally well.

Lemma 5.12. Suppose that h is a function concentrated on a set T of wave packets and
that for every Tezv eT, Tezv N B, (z) # @ for some radius r > RY?%9m_Then

||Eh||i2(310,(z)) ~ r”h”zz

This, together with Remark 5.11, immediately implies that for any B C X, such that
BN Te‘iv # @, where (0, v,£) € Tg, ,(y) for some ({o, vg) € Teg, one has

220001172 ~ B2 1 Egey 017 20405y (5.15)

Along the direction of b, we decompose Np1/2+5, (Z) N Bj into layers of thickness
~ p1/2+8m More precisely, choose a set of vectors B = {b} with |b| < R'/2*9m guch that
{N,1/248m (Z + b) N B;} form a disjoint decomposition of Ng1/2+s, (Z) N B;. Since our
goal is to induct on the radius, we now look at the small wave packet decomposition of
g in B; at scale p and study how the small wave packets are distributed among different
layers.

Decompose

g= Y Zf,+ RapDec(p)] f|2-
(¢w,L)

Observe that for any (¢, w, L) in the wave packet decomposition in B;, if Tch intersects
N,1/2+8m (Z + b) N B; for some b € B, then according to Lemma 5.4, Tng is contained

in Nyp1/2+8m (Z + b) N B; and moreover Tsz is 2p~1/2+9m_tangent to Z + b in B;.
Define

Tz+b ={w,L): Téw is 2p_1/2+5m-tangent toZ + b in B;},

gy = Z ggL’w (5.16)
¢w,L)eTz4p
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Then

gess,b = Z Z giw .

(80,v0) €Tess ¢,w ,L)E']Nfzoyvo ﬂﬁz_;b

For each b € B, geg.» is concentrated on wave packets tangent to Z + b in B;, hence the
induction hypothesis at scale p applies to Zegs b -

The transverse equidistribution property as follows is the main estimate of this sub-
section.

Lemma 5.13. Let g.ss and b € B be as above. Then

B R1/2 —(n—m)
sl = ROO( 25 ) gl
Proof. For every (Cg, vg) € Tegs, define

5 _ sL
8to.v0,6 = Z 8w
(Z,w,L)GTzO,vO mpfzq-b

According to Lemma 5.6, g¢, v,,5 is concentrated on large wave packets Tee o 10 Teg 40 (¥).

Moreover, according to Remark 5.11, there exists some RY/2+8m pall B C X, such that
2 B intersects all Tee v € Tto,v0(¥). Since modulation does not change the L? norm, apply-
ing Lemma 5.12 to g¢, 4,5 and 2B, one obtains

5 2 —1/2-8m 2
1850006172 ~ R IEgz0.00 ||L2(ZOBﬁNp1/2+8m @+p) (.17

Recall also from (5.15) that

Igz0.00l72 ~ R™> 71 Egey uoll7 240m)-

Combining (5.17), Lemma 5.9, and (5.15), we obtain the equidistribution for each g¢, 4,:

2 o (R2\ 0T 2
”gé'(),uo,b”Lz <R ) (W) ||g§(),v()||L2~ (5.18)

Note that strictly speaking, Lemma 5.9 only applies to B instead of 20B. However, it is
easy to see that the same result holds true if we use a constant dilation of B from the
beginning. We omit this technicality.

By orthogonality, one has

2 2
lgeslZa ~ 3 lgzomol?a,
(COaUO)eTess

~ 2 ~ 2
”gess,b”LZ ~ Z ||g§o,v0,b||L2~
(80,v0) €Tess

Hence the desired estimate follows immediately from (5.18). [
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Now, we can use Lemma 5.13 to complete the estimate of the transverse subcase. This
part of the argument, once the above version of the equidistribution estimate is proved,
proceeds exactly as in the paraboloid case. We provide only a sketch, referring the inter-
ested reader to [10, Section 8.4, pp. 42—43] for details.

Recall that it suffices to estimate

p
Z ||EgeSS||BL],:.A/2(Bj).
J

Note that g.ss also implicitly depends on .
First, for each B; one has

p S p
”EgeSS”BL]!:,A/z(B_/) s (log R) Z ”E j?tsrbans,b”BLlva/z(Bj)’

beB
where £, is defined so that (535, )™ = Zessbs € [ = ey &g . ». Hence,
D < ess p
|| Ef ||BL£A(BR) ~ (log R) Z b;g ” Ef}',trans,b ”BL/]()AA/Z(Bj). (5 19)
j

Second, for each (o, vo) € Tess and each RY/2+8m_pall B C X, that intersects all ng 0
in Tgy 00 (), the sets B N Nj1/2+8, (Z + D) for different b € B are disjoint. Hence, by
(5.15) and (5.17),

~ 2 2
Z ”gé'o,vo,b”LZ 5 ||g§0,vo||L2-
beB

Since gess,p = Z(éo 00)€Tes 8to.v0,b 1s an orthogonal decomposition, and so is the decom-
position gess = Z(Zo v0) €Ty 80,00 ONE has the estimate

DN I Smsnlz2 =YD 1Zess 72 S Poly(D2)[1esll72 Seam lIgessllZ2. (5:20)

Jj beB Jj beB

Moreover, by the equidistribution estimate of Lemma 5.13,

5 0G) R1/2 —(n—m) 5
Iglgg I j,ir‘ans,b”LZ = R7" (,01/2) ”gess”Lz' (5.21)
By the inductive hypothesis, for each B; one has

¢ 5(A—log(A/2)) .—e+1/2 ¢
VEfmasllir , pia) = COK.€,m, Dy)p pPA—Iost/D) pmet /2y pes

< C(K.€,m, Dg) R p¢ ROUeA—loe ) pmet1/2) ess ) o

Jtrans,b

Combining the estimates (5.19)—(5.21), one has

p ess p
”Ef”BL]f‘A(BR) 5 (log R) Z le:g ||E-f_‘j,trans,b ”BL][:,A/z(Bj)
Jj be

~ RO® (C(K, €,m, Dz)peRb’(log A—logA)p—e-H/Z)P Z I ;::ans,b ||£2
J.b
R1/2)—(n—m)(p/2—l)

< ROCM(C(K.e.m, Dz)pr'“l“gf“"gA)p””2)”( 7
P

(ralies
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If p = p(m, k) is as defined in Theorem 6, then

1/2\ —(n—m)(p/2-1)
R ) _ (R—e+l/2)p’

—e+1/2\p
w5

hence

p
”Ef”BL][()’A(BR)
< Ce.p, RO (R/p)™*(C(K.€.m, Dg) R ROCEATIRD RmeT12)P) )17,
Note that R/p = ROGm—1) By choosing the parameters so that §,, < €8,—1, Oone can

have (R/p)~¢ dominate the other terms, thus Cc_p, R (R/p)~¢ < 1. The induction
in the transverse subcase is closed, and we have completed the proof of Theorem 6.

6. k-broad estimate implies linear restriction

6.1. L? — L7? restriction

In this subsection, we demonstrate how Theorem 3, the k-broad estimate, implies the
main Theorem 1, the linear cone restriction estimate. The first ingredient of the argument
is a decoupling inequality for the cone derived by Bourgain and Demeter [5], and the
second one is induction on scales. The main difference from the paraboloid case lies in
the second step, where a Lorentz rescaling is applied to the cone.

More precisely, we are going to prove forany R > 1 and p < g < oo that

IEfllLrBr) e REI fllLa (6.1)

whenever the k-broad estimate

IEf Ly ((BR) SKee RE|| fllLa

holds for p in the range

2n 2.n=1 if2<k<3
k.n)<p<—, k,n):= n—2 - =7
rem<p=i—s rkm {2@;‘;?; itk > 3.

The upper bound of the range for p comes from the requirement in the decoupling theorem
below. Note that the lower bound p(k, n) is different from the critical index p(k,n) =
2. ,,T;Eli > in Theorem 3. We claim that (6.1) (with p in the range above) implies The-
orem | immediately. Indeed, taking k = (n + 1)/2 when n is odd and k = n/2 + 1 when
n is even, max(p(k,n), p(k,n)) gives the lower bound for p in Theorem 1. Then The-
orem | follows by interpolating with the trivial L°° bound of £ and e-removal (see [15]).

We now begin the proof of (6.1). The k-broad estimate assumption says that

min max / \Ef.|P < C(K.e)RP|| f |2,
5 ViVatéVa JB
x2CBR K
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where V1, ..., V4 are (k — 1)-planes and we have used the abbreviation 7 ¢ V, to denote
Angle(G (1), V,) > K2 a=1,...,A. Foreach By, fix a choice of V7, ..., V4 so that
the minimum above is attained. Then

J

where the first term can be bounded using the k-broad estimate, while the second term
will be handled by the cone decoupling theorem of Bourgain and Demeter, which in our
notation states the following.

EfI? + Z[ AN

Byo reV

|Ef|P < KOW max/
¢Va JB K2

, (6.2)

K2

Theorem 7 ([5]). Assume supp f C Ng—2(C), the K~2-neighborhood of the truncated
cone C C R". Then on any ball Bg> of radius K?, for any § > 0,

1/2 2n
8 2
1/l S5 K222 Walioaw, )« Y2<ps<
QEPK_z(C)

where Pg—2(C) is a partition of Ng— 2(C) into sectors 0 of dimensions 1 x K~ <X
K~ ' x K72, f =3 fo such that fg = f)(@, and Wg,, is a weight approxlmately
equaling 1 on Bg> and rapidly decaying outside.

Applying this theorem to the second term followed by Holder’s inequality, for the
subspaces V, as in (6.2) one obtains

P
[ e] s k0 mana k®9020) 5 [ A1

Byo teVy, eV,

where we have observed that the number of 7 € V, is < max(1, K¥—3).

Indeed, by definition, T € V, means that the angle between 7 and V, is less than K 2.
By [12, Lemma 2.2], t N $”~! lies in a C,, K~ !-neighborhood of ¥, N C N S"~!. Note
that C N "1 is an (n — 2)-dimensional sphere, which we denote by S”~2. Recall that
dim V, = k — 1; the upper bound K*~3 then follows from the fact that V, N S”~2 has
dimension < k — 3. This is a unique feature of the cone, which is why in the definition of
the broad norm, we chose to define the angle between 7 and V, to be less than K 2 in
contrast to the paraboloid case where K~! is used.

Next, summing over Bg> C Br,a =1,..., A, one has

SIS DO

chBRa 1 K2 teVy,

D
< K max(1, K& 3 [wiEsp,
T

where W = ZBK2CBR WBK2 satisfies W < 1 on B, g and rapidly decays outside B;r.
Hence, combining this with the k-broad estimate, we get

/ |Ef|P < C(K,e)RP¢|| f |2, + CK® max(1, K*k=3)(#/27D) § :[ |Ef,|?.
Bpr Tt YBa2r
(6.3)
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from which we are going to prove by induction on the radius that
[ 1EfP < C@reIA 1 (64
Br

This is obviously true when R = 1 by the trivial L°° bound of E. Assume now that
(6.4) holds for radii less than R /2. We apply Lorentz rescaling to handle the contribution
of each f;. To do this, we first observe that our desired estimate (6.4) is preserved under
rotations. To see this, it is easier to work with the “lift” of the functions f on R”~! onto
the cone. For any f € L4(2B"~'\ B"™1), define F(§) = f(£) as a function supported
on the cone C. Then

||F||L‘1(dac) = ”f ”Lq(zén—l\gﬂ—l)
where dop is the pullback of the Lebesgue measure on R”~! under the projection £ > g? ,
and (6.4) can be rephrased as

IFdocllLrsr) < CEORPNFI] 40 (6.5)
Lemma 6.1. Let F be a function supported on the cone C, and A be any rotation in R".

Then for any set Q C R”" the following two inequalities are equivalent:
(1) [[FdocllLr@) < X1 FllLa@doc)

2) [IF(A™"Ydoe)llLra@y) < XIFA™ ) La@oqey)-

Proof. By a change of variables, since the Jacobian of the rotation is 1, the left hand sides
of both inequalities are the same, as also are the right hand sides. ]

Now we start estimating each fz, or equivalently its lift F;. We slightly abuse notation
by using 7 to denote both the sector in 2B”~! \ B"~! and its lift onto the cone. For
a fixed t, by symmetry of the cone, there is no loss of generality to assume that the
central line of 7 is in the first quadrant of the (§,—1, &,)-plane. (This can be achieved
through a rotation fixing the &,-axis, mapping C to itself and the central line of t into the
(¢,—-1, &n)-plane, combined with Lemma 6.1.) Next, we want to find a rotation A sending
the central line of t to be lying on the positive half of the &,_;-axis. In fact, 4 is exactly
the volume conserving linear transformation mapping £ = (£, £,) to @ = (&, w,) such
that £,_1 = (Wp—1 — ®n)/ V2, En = (Wn—1 + ®,)/ /2 and §=wj,j=1..,n-2,
under which the original vertical cone

C={eR" G+ +b =6 6>01=§=2.VI<j=<n-1}
is mapped to the tilted cone
T={weR": 0+ 40>, =20, 10y, V2 < wp_1 <22,
1 <w; £2,V1<j<n-2}
By a change of variable,
Frdoc(x) = Godor(y).  Gi(w) i= Fr(A™ () = Fe(§). = Ax,

where do7 is the pushforward of do¢c under the rotation A.
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We are now ready to apply rescaling. Introduce a new coordinate & such that

@ =Kwj, VI <j<n—2, @np1=wn1, on=Kw,.

Then
o 0f o on
Y1+ -+ op—1Yn—1+ Tyn
n—1
- . @+t D2,
=0+t 01 Y1+ ———F=—n
2,1
where

J, =K'y, Y1 <j<n—2, Jp1=n-1, In=K7yn

Observing that {® : w € 7} is contained in a constant dilation of the tilted cone T, say,
57, we have
|Gedor(y)| = K~"72|GLdosT (7).

where G.(®) is a function on the dilated cone 57 such that G.(®) = G;(w) on the
dilated At and 0 elsewhere. We then apply A~! to rotate 57 back to the vertical position,
which leads to - S

GidosT(y) = G (A)dosc(A7' 7).

‘We now end up with a restriction problem on 5C, while in the physical space the linear
transformation has sent the ball Bg into a tube of dimension RK™! x --- x RK™! x
RK™2 x R. There is still an obstruction preventing us from directly using the induction
assumption: this tube is not contained in a ball of radius less than R /2. Fortunately, this
can be easily overcome by covering the tube with no more than Cy balls of radius R/ Cy,
where 1 < Cp < K < R. For each ball Bg,c,, one can also assume that it is centered at
the origin, as translation in the physical space corresponds to modulation in the frequency
space which does not change the L7 norm. By the symmetry of Bg,c, and Lemma 6.1,
the induction assumption implies that

”G’/"dOSTHIIj‘"(BR/CO) = C(e)RPGCo_pe”G;”iq(dGST)
= C(RPCy " K" 2P1|G ||y (4o
Then, collecting the equalities above, we get

/B |Ef|? = ||FdOC||]€p(BzR) = K"=2p Z ”G;dOSTHZ"(BR/CO)
2R

Br/co
< C_'(e)RPGCOl_"E K~ (=2)p+(n-2)p/q ||Gr||€a(dgT)

= C(RPCy Pk =2+ e=Dnlay 7, (6.6)
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Plugging this back into (6.3), one has

| 1B = ek ORI
R
+ CC_'(E)RPEC(}_I’E max(1, K*=)@/2=0) gdt+n—(n=2)p+(=2)p/q Z Il e ||]Ijq.
T
Observing that there are < K n=2 gectors 7 in total and recalling that p < g, Holder’s
inequality implies that

Y ol fellZa < KODO=PID) £,
T
Plugging this into the inequality above, one has

[ Err < ek ORI
R
+ CC_'(e)RPGCOl_pe max(1, K(k—3)(p/2—1))K8+n—(n—2)p+(n—2) [¥a ||£q

where the dependence on ¢ in the exponent of K cancels out.

Then the induction closes if the exponent (excluding §) of K is strictly negative (so
that one can always choose § > 0 small enough to keep the exponent negative). Note that
the presence of Cy will not harm us, as for any fixed €, it makes a negligible contribution
when K is sufficiently large. When 2 < k < 3,

n—1
n—nm-2)p+n—-2)<0 &< p>2. 2§
n—
when k > 3,
2n—k +1
k=3)p/2-1)+n—-(n-2)p+(n-2)<0 < P>2'—2',l,_kJ_r1~

These give exactly the desired lower bound p(k, n), as claimed in (6.1).

6.2. L1 — LP restriction

This subsection is devoted to the proof of Theorem 2, again, using the k-broad estimate
of Theorem 3.

6.2.1. Interior of (1.3). When the pair (p, q) lies strictly inside the interior of the claimed
range in (1.3), the estimate follows from a very similar argument to that in the L? — L?
case, so we only sketch the necessary modifications that are needed in our current case
q < p.More precisely, fixany R > 0. When2 <g < p < nzT", Theorem 3 tells us that

n+k

IEf 8Ly ((BR) Ske R¢| fllLa, VYp = plk,n)=2- P
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We are going to show that

IEfLr(Br) Se RENS llLa (6.7)

2n

< <
whenever 2 < p < — and

pz2- M2 ¢ <22p ifk =2,
p = plk.n), p>—%”_m ifk > 3,

q

(6.8)

forsome 2 <k <n.

As in the previous subsection, we start by estimating the “broad” part of Ef by
Theorem 3 and treating the “narrow” part of it using the decoupling theorem of Bourgain—
Demeter. After decoupling, we apply Holder’s inequality to change from £2 to £4, reach-
ing the estimate

49 P
P
[ % e] <o & manaa,xozvon (5 [wa i) ) ) |
By eV, eV,
Summing over a = 1, ..., A and then over Bg> C Bpg using the Minkowski inequality,

we get

SN DS

Bg>CBRra=1 By2 eV,

<K max(] K &= 3)(7_7)1’) Z (Z(/ WBK2|Efr|p) )"

BK2 CBRr
9q.
p

4q
< K max(1, K(k‘3)(5‘5)”)(2( ) ,,)
4 DP

T B 2CBR
AN
< K man1, KO0 ([ 1££17)") "+ Rappee(RIL 1
Brr

T

P
Ef:

xR

D D
q q

where we have summed up Wp, , to a single weight W as in the previous subsection.
This gives us a slightly different form of (6.3):
[ Err < ckormisiz,
R

q y
q

+CK”’max(l,K(k—”(%—é)l’)(Z(/ |Ef,|1’)p). (6.9)
Bar

T

We then proceed as in the previous subsection to apply induction on scales to get (6.6).
Without the need of using Holder’s inequality, one can plug it into (6.9) to directly obtain

fB EfI)? < C(K.RY|| f |2,
R

+ CC(e)RPGCOl_pE max(1, K(k—3)(1/2—é)11)K8+n—(n—2)p+(n—2)g ”f”iq
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The induction closes if the exponent (excluding §) of K is strictly negative. When k = 2,
n—2
n—(n—2)p+(n—2)§ <0 = ¢ <)
n

when k > 3,

1 1 p n

2 q

These are exactly the desired conditions in (6.8).

Remark 6.2. In the case ¢ = 2, the range of tuples (p, ¢, k) in (6.8) is empty for all
2 < k < n, which explains the extra restriction one needs to put on ¢ in the admissibility
condition (1.3). Moreover, the elimination of the endpoint of the range of p follows from
e-removal.

6.2.2. Boundary of (1.3). In the previous subsection, we have already obtained the
desired linear restriction estimate for all pairs (p, g) that lie strictly inside the claimed
range (1.3); it thus remains to examine the boundary case ¢’ = "n;z p when k = 2 and
p= m when k > 3.

In order to do this, we apply a bilinear interpolation adapted from [17, Theorem 2.2]
where the case of the paraboloid is studied. The key idea here is that linear and bilinear
restriction estimates are essentially equivalent on the boundary line of (1.3).

2(n l)

Theorem 8. Letn > 3 and 1 < p,q < 0o be such that 2p > andq’ <=2 .2p.

Let R(q — 2p) denote the linear cone restriction estimate

I1Ef 20 ®ny < I1f e

and R(q x ¢ — p) the bilinear cone restriction estimate

ICEfO)ELr@ny < I fllall f2llza

for all functions f; supported in U; C 2B™"1 \ B"! such that Uy, U, are transverse.
Then

(1) R(qg — 2p) implies R(q x g — p);

(2) if R(g x g — p) holds for all (p, q) in a neighborhood of (p, q), then R(q — 2p)
holds.

It seems that this theorem has not been explicitly stated in the literature before, but
its proof is very similar to that of [17, Theorem 2.2]. In particular, the direction of linear
implying bilinear restriction simply follows from Holder’s inequality. In order to deduce
linear restriction from the bilinear restriction, one partitions the cone into sectors at differ-
ent scales and explores the quasi-orthogonality between pairs of sectors that are close to
each other at each scale, which follows from the bilinear restriction estimate after apply-
ing Lorentz rescaling as in Subsection 6.1 above. This then yields enough decay for all the



Y. Ou, H. Wang 3594

scales to be summable. In fact, when n > 4, the proof proceeds exactly as in [17, Theorem
2.2] after replacing n by n — 1. When n = 3, one needs to work through the argument sep-
arately as the case n — 1 = 2 is not covered in their theorem, but no new difficulty arises.
We omit the details.

Therefore, given 2 < k < n and a point (p, ¢) on the boundary of the region (1.3), it
suffices to find a neighborhood of (p, g) where the bilinear restriction holds true. Such a
neighborhood can be found by interpolating the bilinear restriction in the interior of (1.3)
that is implied by the linear estimate, together with the following theorem of Wolff.

Theorem 9 ([19, Theorem 1]). Forn > 3 and p > 1 4 2/n, the bilinear cone restriction
estimate R(2 x 2 — p) holds true.
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