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Abstract. We construct a topological model for cellular, 2-complete, stable C-motivic homotopy
theory that uses no algebro-geometric foundations. We compute the Steenrod algebra in this context,
and we construct a “motivic modular forms” spectrum over C.
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1. Introduction

The topological modular forms spectrum tmf [4] detects a significant portion of the stable
homotopy groups. Classes detected by tmf are viewed as well-understood, while classes
not detected by tmf are viewed as more exotic. Similarly, Adams differentials, or Adams–
Novikov differentials, detected by tmf are well-understood. From this perspective, the
essential property of tmf is that its cohomology is the quotient A==A.2/ of the Steen-
rod algebra A by the subalgebra A.2/ generated by Sq1, Sq2, and Sq4. This means that
the cohomology of A.2/ is the E2-page of the Adams spectral sequence for tmf , so this
spectral sequence can be computed effectively.

For the purposes of computing motivic stable homotopy groups, it is desirable to have
an analogous “motivic modular forms” spectrum mmf whose cohomology is A==A.2/, in
the motivic sense. The existence of such a motivic spectrum over C immediately resolves
the status of many possible differentials in the classical Adams spectral sequence [15].
Such a motivic spectrum was first considered (hypothetically) in [13].
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One of the main goals of this manuscript is to establish the existence of mmf in the
C-motivic context. Our techniques heavily depend on an algebraically closed base field of
characteristic zero, but our intuition is that motivic modular forms ought to exist in much
greater generality.

Conjecture 1.1. A motivic modular forms spectrum exists over any smooth base.

One possible approach to constructing mmf is to follow the classical construction of
tmf in the motivic context. This would require a careful understanding of motivic elliptic
cohomology theories and moduli spaces of E1-structures.

We avoid these technical difficulties with a novel approach. We first construct an
1-category of �?S0-modules that is entirely topological in nature. Foundationally, it
depends only on infinite sequences of classical spectra, with no reference to smooth
schemes, affine lines, A1 � 0, etc.

The 1-category of �?S0-modules is carefully engineered to mimic the computa-
tional properties of C-motivic stable homotopy theory. We define an “Eilenberg–Mac
Lane” �?S0-module �?HF2, and we compute that its homotopy groups are of the form
F2Œ� �, i.e., the same as the motivic cohomology of C. We also directly compute the co-
operations for �?HF2, i.e., the Steenrod algebra in the context of �?S0-modules, and
we obtain an answer that is identical to the C-motivic Steenrod algebra. We emphasize
that our construction and our computations are independent of the much harder motivic
computations of Voevodsky [25]–[27].

The key idea relies on an observation from [12] about the structure of the C-motivic
Adams–Novikov spectral sequence (see also [14, Chapter 6]). The weights in this spec-
tral sequence follow a simple pattern. The object �?S0 is defined in such a way that its
bigraded homotopy groups are computed by an identical spectral sequence.

Having constructed the 1-category of �?S0-modules, we study the �?S0-module
�?tmf , and we show that this object has the desired computational properties, i.e., its
cohomology is A==A.2/ in the �?S0-module context.

Finally, we prove that the homotopy category of 2-complete �?S0-modules is equival-
ent to the 2-complete cellular C-motivic stable homotopy category. Thus, the completedb�?tmf corresponds to some cellular C-motivic spectrum that deserves to be called mmf .

Motivic homotopy theory has been at the center of a recent breakthrough in the com-
putation of stable homotopy groups of spheres [14], [15]. From the perspective of that
project, the1-category of �?S0-modules makes motivic homotopy theory no longer rel-
evant. In particular, the stable homotopy group computations of [15] no longer logically
depend on Voevodsky’s computations of the motivic cohomology of a point, nor on his
computation of the motivic Steenrod algebra. For this reason, we completely avoid results
and constructions from motivic homotopy theory until Section 6.

On the other hand, the theory of �?S0-modules does not make motivic homotopy
theory obsolete. Since �?S0-modules only capture the 2-complete cellular motivic spec-
tra, they miss phenomena of arithmetic interest, including the rational part of motivic
homotopy theory. Moreover, we currently cannot construct analogous models for motivic
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Tab. 1. Some values ofb�?
X b�?X
HF2 HF2
HZ2 HZ2
KU KGL^

ku kgl^

KO KQ^

ko kq^

BP BPGL^

BP hni BPGLhni^

MU MGL^

homotopy theory over base fields other than C, although it seems plausible that at least
R-motivic cellular spectra have a topological model.

Our construction of �?S0-modules can be generalized to other contexts. The complex
cobordism spectrum MU is built into the definitions from the very beginning, but one
can use other cohomology theories in the same way. Moreover, the basic construction
can be iterated to obtain interesting multi-graded homotopy theories. See the work of
Pstrągowski [22] in this direction.

The cofiber of � is a very interesting motivic spectrum with curious properties [6], [8].
It would be interesting to study the cofiber of � from the perspective of �?S0-modules.
We do not carry out this investigation in this manuscript because it is not central to our
goal of constructing mmf . On the other hand, it is possible that �?S0-modules are useful
for understanding exotic motivic periodicities [5], [17], and the cofiber of � would play a
critical role in that pursuit.

The functor �? (or more precisely, its 2-completed version b�?) provides a new tool
for producing motivic spectra from classical spectra. If X is a classical cell complex
with cells in only even dimensions, then b�?X is a motivic cell complex in which 2k-
dimensional cells of X correspond to .2k; k/-dimensional cells of b�?X . The behavior of
odd-dimensional cells under �? is a bit more complicated. Table 1 shows that many of the
motivic spectra commonly studied can be constructed with this tool. (Here, X^ refers to
the 2-completed version of a motivic spectrumX .) On the other hand, the functor �? does
not seem to interact well with �-periodicization; see Remark 3.17 for more discussion.

We mention recent work of Pstrągowski [22] that constructs a topological model for
cellular C-motivic stable homotopy theory using different foundational techniques. We
discuss in Remark 6.13 how to establish a direct equivalence between �?S0-modules and
even MU -based synthetic spectra.

We also mention work of Heine [10] that is more formal.
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1.1. Odd primes

In this manuscript, we focus only on the prime 2. We compute homology with F2-coef-
ficients, and work with the 2-primary Steenrod algebra. We construct a motivic modular
forms spectrum mmf that has the correct 2-primary properties.

In fact, it is possible to carry out these computations at odd primes as well, relying
on results of [24] about the structure of odd primary C-motivic homotopy theory. For
example, one can compute odd primary Steenrod algebras, and show that mmf has the
correct odd primary properties.

Nevertheless, we do not write out the details because the proofs are identical, and the
new computations are essentially the same as the classical ones. In particular, the exotic
formula

�2i C ��iC1 D 0

from Theorem 4.10 has no odd primary analogue; the classical relation �2i D 0 still holds.
Because the computations are essentially the same as the classical ones at odd primes,
we suspect that there are limited potential applications for the odd primary version of our
results.

1.2. Organization

We begin in Section 2 with a discussion of a certain diagram 1-category of spectra.
In Section 3, we define the functor �? from ordinary spectra to filtered spectra, and we
develop the key properties of this functor that allows for a rich computational theory of
�?S

0-modules.
In Section 4, we begin our computations by computing the Steenrod algebra for �?S0-

modules. We carry these computations further in Section 5 when we study �?tmf .
Finally, in Section 6, we show that the homotopy theory of �?-modules is equivalent

to the 2-complete cellular C-motivic stable homotopy category.

1.3. Notation and conventions

Throughout the article, we adopt the perspective of stable1-categories for our homotopy
theories. In Section 6, we work entirely in a 2-complete setting.

We use the symbol Z in two different ways. Sometimes it is an indexing category for
a diagram, in which case we are thinking of Z as a partially ordered set in the standard
way. At other times, Z is used for the coefficients of a computation.

The1-category Sp is the usual stable1-category of spectra (or 2-complete spectra
in Section 6).

We will use different gradings in different contexts. For the sake of clarity, we adopt
the following conventions:

(1) � denotes an integer grading corresponding to the usual grading on spectra. For
example, this grading is used for stable homotopy groups of classical spectra.
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(2) ? represents an indexing in Zop. This symbol is used exclusively for filtered spec-
tra, i.e., 1-functors from Zop to spectra (or 2-complete spectra in Section 6). For
example, the notation X? indicates an1-functor

X W Zop
! Sp:

(3) � denotes the cosimplicial degree of a cosimplicial object.

2. Filtered spectra and a colocalization

In this section, we construct a closed symmetric monoidal stable1-category of filtered
spectra. The objects that we are considering come entirely from the classical stable homo-
topy category. The monoidal structure arises from Day convolution.

Note that we are using only a few formal properties of the1-category Sp of spectra.
Our construction could be generalized to filtered objects in any presentable closed sym-
metric monoidal stable1-category, but we work only with Sp for the sake of simplicity.

2.1. Filtered spectra

Definition 2.1. The stable1-category of filtered spectra is the1-category SpZop
of1-

functors from the1-nerve of the category Zop, considered as a poset, to the1-category
Sp of spectra.

The objects of SpZop
are Zop-diagrams in Sp up to coherent homotopy, in the follow-

ing sense. A filtered spectrum X? is a sequence ¹Xw j w 2 Zopº of spectra, together with
a choice of morphisms Xw ! Xw0 , for all w � w0, and a choice of coherent homotop-
ies relating compositions of the structure morphisms. We will typically denote a filtered
spectrum by a sequence

X? D � � � ! X1 ! X0 ! X�1 ! � � � ;

in which the homotopies are implicit. Similarly, we describe a morphismX?! Y? in this
1-category by a sequence ¹Xw! Yw jw 2Zopº of coherently homotopically compatible
maps.

In SpZop
, the weak equivalences are exactly the pointwise weak equivalences, i.e., the

maps f WX? ! Y? such that each component fw WXw ! Yw induces an isomorphism on
homotopy groups. In particular, an object X? is contractible precisely when every spec-
trumXw is contractible. Moreover, homotopy limits and homotopy colimits are computed
pointwise in this diagram1-category.

In the1-category SpZop
, we have a bigraded family of sphere objects, as described

in Definition 2.2. We will show later in Lemma 2.6 that these spheres generate all filtered
spectra in the appropriate homotopical sense.
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Definition 2.2. The sphere S s;w of bidegree .s; w/ is the object of SpZop
defined by

� � � ! � ! � ! S s
id
! S s

id
! � � � ;

where S s;wv is � in if v > w and S s;wv is S s if v � w.

Recall that such 1-categories of functors canonically possess a closed symmetric
monoidal structure, given by the Day convolution product (see [9], [18, Section 2.2.6]),
which is induced by the monoidal structure of the source category. Explicitly, in filtered
degree w we have

.X? ˝ Y?/w ' hocolim
iCj�w

Xi ^ Yj : (1)

The unit for this product is the sphere S0;0 of Definition 2.2. Moreover, the convolution
product commutes with homotopy colimits in each variable [9, Lemma 2.13]. We denote
by †s;w the suspension endofunctor

S s;w ˝ .�/WSpZop
! SpZop

:

More concretely, †s;wX? is the filtered spectrum such that .†s;wX?/v is †s.Xv�w/.
The “formal suspension” in SpZop

is the same as †1;0, i.e., there is a cofiber sequence

X? ! � ! †1;0X?

for every filtered spectrum X?.

Definition 2.3. Let colim? W SpZop
! Sp be the functor that takes a filtered spectrum X?

to the spectrum colimw Xw .

We are now ready to show that the bigraded spheres generate the 1-category of
filtered spectra.

Definition 2.4. The stable homotopy group �s;wX? is the abelian group ŒS s;w ; X?�.

The direct sum ��;?X of all stable homotopy groups ofX is a bigraded abelian group.

Remark 2.5. It follows from a standard adjunction argument that �s;wX? is equal to the
pointwise homotopy group �sXw .

Lemma 2.6. In the 1-category SpZop
, a map is a weak equivalence if and only if it

induces an isomorphism on ��;?. Equivalently, SpZop
is generated as a stable1-category

by the spheres S0;w for w 2 Zop.

Proof. By definition, a map f WX? ! Y? 2 SpZop
is a weak equivalence if and only if

each fw WXw ! Yw is a weak equivalence, and fw is a weak equivalence if and only if it
induces a �� isomorphism. Finally, Remark 2.5 establishes the first claim.

The second claim follows from a standard argument (see for instance [11, The-
orem 1.2.1]), since the first claim implies that X? is equivalent to the zero object in SpZop

if and only if the bigraded abelian group ��;?X? is zero.
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2.2. t -structure

Definition 2.7. (1) Let SpZop

�0 be the full 1-subcategory of SpZop
consisting of filtered

spectra X? such that �s;wX? D 0 for s < 2w, i.e., �sXw D 0 for s < 2w.

(2) Let SpZop

�0 be the full1-subcategory of SpZop
consisting of filtered spectra X? such

that �s;wX? D 0 for s > 2w, i.e., �sXw D 0 for s > 2w.

Proposition 2.8. Definition 2.7 equips SpZop
with a t-structure.

Proof. Suppose that X? and †Y? belong to SpZop

�0 and SpZop

�0 respectively. We will show
that any mapX?! Y? is trivial. The simplicial mapping space Map.X?; Y?/ is the homo-
topy limit

holim
i�j

Map.Xi ; Yj /:

When i � j , the space Map.Xi ;Yj / is contractible since �nXi D 0 if n< 2i and �nYj D 0
if n � 2j . Therefore, the homotopy limit is contractible as well.

The1-subcategory SpZop

�0 is closed under suspension since the suspension functor on
filtered spectra is defined pointwise. Similarly, the1-subcategory SpZop

�0 is closed under
desuspension.

Finally, for any filtered spectrum X?, we have the diagram

// ��4X2 //

��

��2X1 //

��

��0X0 //

��

���2X�1 //

��

���4X�2 //

��
// X2 //

��

X1 //

��

X0 //

��

X�1 //

��

X�2 //

��
// �<4X2 // �<2X1 // �<0X0 // �<�2X�1 // �<�4X�2 //

where ��n and �<n are the usual connective cover and Postnikov section functors on
spectra. The top row of the diagram is a filtered spectrum in SpZop

�0 , the bottom row is
a filtered spectrum in SpZop

��1, and the columns are fiber sequences of ordinary spectra.
Since fiber sequences of filtered spectra are defined pointwise, this diagram defines a
fiber sequence of filtered spectra.

Remark 2.9. The heart of the t -structure of Proposition 2.8 is the category of graded
abelian groups. A filtered spectrum X? is in the heart if and only if �2wXw is the only
non-zero homotopy group of Xw for all w, i.e., X? is of the form

� � � ! †2wC2H�2wC2 ! †2wH�2w ! †2w�2H�2w�2 ! � � � :

Then the structure maps †2wC2H�2wC2 ! †2wH�2w are necessarily null-homotopic.
This shows that the functor

X? 7!
M

�2wXw

from the heart to graded abelian groups is an equivalence.
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Lemma 2.10. The1-subcategory SpZop

�0 is closed under Day convolution.

Proof. Let X? and Y? belong to SpZop

�0 . Then .X? ˝ Y?/w is the colimit

colim
iCj�w

Xi ^ Yj :

Since Xi is a 2i -connective spectrum and Yj is a 2j -connective spectrum by assumption,
the colimit is taken over 2w-connective spectra, so the result is 2w-connective.

We write .��0/? for the right adjoint, in the appropriate 1-categorical sense, to the
inclusion SpZop

�0 ! SpZop
. More concretely, .��0/? W SpZop

! SpZop

�0 is the functor that
takes a filtered spectrum X? to

� � � ! ��4X2 ! ��2X1 ! ��0X0 ! ���2X�1 ! ���4X�2 ! � � � :

Corollary 2.11. The truncation functor .��0/? is lax symmetric monoidal.

Proof. Lemma 2.10 says that the inclusion SpZop

�0 ! SpZop
is strong symmetric monoidal.

Therefore, its right adjoint is lax symmetric monoidal.

3. The functor �?

The goal of this section is to define and study a functor �? from Sp to SpZop
. The functor

is constructed in such a way that it interacts with the Adams–Novikov spectral sequence
in an interesting way.

Definition 3.1. LetMU �C1 be the cosimplicial spectrum whose nth term is the .nC 1/-
fold smash product of MU with itself, and whose faces and degeneracies are induced
from the multiplication and unit of the ring structure on MU .

The cosimplicial spectrum MU �C1 is the usual tool for constructing the MU -based
Adams spectral sequence. More precisely, the Bousfield–Kan spectral sequence that com-
putes the totalization Tot.X ^MU �C1/ is the Adams–Novikov spectral sequence that
converges to the homotopy of X . Convergence of the Adams–Novikov spectral sequence
just means that the totalization Tot.X ^MU �C1/ is equivalent to the (appropriately com-
pleted) spectrum X .

We work with the MU -based Adams spectral sequence, rather than the BP -based
Adams spectral sequence, because MU has better formal multiplicative properties
than BP . Computationally, there is no difference between the two perspectives.

Definition 3.2. Let X be a spectrum.

(1) Let ��2w.X ^MU �C1/ be the cosimplicial spectrum formed by taking the .2w � 1/-
connected cover of each term of the cosimplicial spectrum X ^MU �C1.

(2) Define the filtered spectrum �?X such that each �wX is the totalization
Tot ��2w.X ^MU �C1/.
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We now turn to a particular spectral sequence computing the homotopy groups
of �?X . We grade Ext in the form .s; f /, where f is the homological degree and s C f
is the total degree. In other words, s is the stem, and f is the Adams–Novikov filtra-
tion. While inconsistent with historical notation, this choice aligns well with the usual
graphical representations of the Adams–Novikov spectral sequence.

Proposition 3.3. Let X be a spectrum, and let w 2 Zop. There is a spectral sequence

E
s;f;w
2 .X/ D

´
Exts;fMU�MU .MU�;MU�X/ if s C f � 2w;

0 otherwise

that converges to �s;w�?X . These spectral sequences are compatible with the filtered
spectrum structure on �?X , in the sense that the morphism �wX ! �w�1X induces the
evident inclusion Es;f;w2 .X/! E

s;f;w�1
2 .X/.

Proof. The spectral sequence is the Bousfield–Kan spectral sequence associated to the
cosimplicial spectrum ��2w.X ^MU �C1/. The spectral sequence converges to ��;?�?X
by definition of �?X . Our goal is to identify the E2-page of this Bousfield–Kan spectral
sequence.

The E1-page of the Bousfield–Kan spectral sequence is

E
s;f;w
1 D �sCf .��2wMU^fC1/;

and the d1 differential is the map

�sCf .��2w.X ^MU^fC1//! �sCf .��2w.X ^MU^fC2//

induced by the alternating sum of cofaces. When sC f < 2w, theE1-page is zero. When
s C f � 2w, the E1-page is isomorphic to

E
s;f;w
1 .X/ D �sCf .X ^MU^fC1/;

and the d1 differential is the map

�sCf .X ^MU^fC1/! �sCf .X ^MU^fC2/:

This is identical to theE1-page and d1 differential for the classical Adams–Novikov spec-
tral sequence forX . Therefore,Es;f;w2 .X/ is equal to the Adams–NovikovE2-page forX
when s C f � 2w.

Remark 3.4. For fixed w, the spectral sequence Es;f;w2 .X/ is a truncated version of
the classical Adams–Novikov spectral sequence for X , as shown in Figure 1. Above the
line s C f D 2w of slope �1, Es;f;w2 .X/ equals the classical Adams–Novikov spectral
sequence. Below this line, Es;f;w2 .X/ is zero. If X is n-connected and 2w � n, then
the truncation is trivial, and Es;f;w2 .X/ is equal to the classical Adams–Novikov spectral
sequence.
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s

f

s C f D 2w

zero

classical Adams–Novikov

Fig. 1. The spectral sequence of Proposition 3.3. The region below the diagonal line is zero. The
region above the diagonal line is isomorphic to the classical Adams–Novikov spectral sequence in
that range.

Classical Adams–Novikov differentials whose source is above the line of slope �1
occur in E

s;f;w
r .X/ as well. However, classical Adams–Novikov differentials whose

source is below the line of slope �1 do not occur in Es;f;wr .X/. Of particular interest are
classical differentials that cross the line s C f D 2w. Consequently, there are non-zero
permanent cycles in Es;f;w1 .X/ that are zero in the classical Adams–Novikov E1-page.

Remark 3.5. Not coincidentally, when X D S0, the spectral sequence of Proposition 3.3
is identical to the motivic Adams–Novikov spectral sequence for computing the stable
homotopy groups of the motivic sphere spectrum [12], [14]. Consequently, the bigraded
homotopy groups of the filtered spectrum �?S

0 are the same as the bigraded motivic
homotopy groups of the motivic sphere spectrum.

Later when we study specific examples of �?X , we will use specific computational
information about X to deduce analogous computational information about �?X . Pro-
position 3.6 is the precise tool for transporting such information.

Proposition 3.6. Let X be a bounded-below spectrum. Then colim? �?X is equivalent
to X .

Proof. By Definition 3.2, colim? �?X equals

colim
w

Tot.��2w.X ^MU �C1//:

Since X is bounded-below, we can write the Tot as an inverse limit of Totn, where the
maps Totn ! Totn�1 increase in connectivity. Since filtered colimits commute with the
finite limits Totn, and preserve connectivity, one sees that the filtered colimit commutes
with totalization in the present situation. So we have

Tot
�

colim
w

��2w.X ^MU �C1/
�
D Tot.X ^MU �C1/:
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The latter object is the same as X , precisely because the Adams–Novikov spectral
sequence converges for connective X .

Remark 3.7. The functor �? admits a different perspective. Recall that on filtered spec-
tra, there is the Beilinson t -structure (not to be confused with the t -structure of Sub-
section 2.2). The Beilinson t -structure is characterized by the property that a connective
object is a filtered spectrum X? whose associated “chain complex”

� � � ! †nXn=XnC1 ! †nC1XnC1=XnC2 ! � � �

consists of connective spectra. This chain complex in the homotopy category of spectra
induces the E1-page of the spectral sequence associated to the filtered spectrum.

The following observation was privately communicated to us by Ben Antieau. As far
as we are aware, it is not documented in this form in the literature yet. For a general
discussion of the Beilinson t -structure, we refer the reader to [2].

Starting with a filtered spectrum X?, we can first take the Whitehead tower �Beil
�wX?

in the Beilinson t -structure (which is now a bi-filtered spectrum), and then eliminate the
original filtration by passing toX 0w D colim? �

Beil
�wX?. The resulting new filtered spectrum

X 0? has the same colimit, meaning we can think of it as a filtration on the same “underlying
spectrum” as X?. Furthermore, its associated spectral sequence agrees with the one of X?
up to a page shift: Er .X 0?/ D ErC1.X?/. This construction is a higher algebra version
of Deligne’s décalage functor, which in turn is a more structured version of deriving an
exact couple, directly on the level of filtered chain complexes.

The pointwise Postnikov filtration on the cosimplicial Adams–Novikov resolution of a
spectrumX leads to the Whitehead filtration in the Beilinson t -structure on the associated
filtered spectrum Tot?.X ^MU �C1/. Thus, in the case whereX has evenMU -homology
(for example, for the sphere spectrum), �?X agrees, up to a reindexing to account for
the “double speed” of our filtration, with Antieau’s spectral décalage functor applied to
the Adams–Novikov tower of X . In particular, the associated graded object of �?X has
homotopy groups given by the Adams–Novikov E2-page of X , which one can directly
see from the Bousfield–Kan spectral sequence used in Proposition 3.3. Under the cor-
respondence to C-motivic homotopy theory discussed in Section 6, this corresponds to
the observation that the motivic homotopy groups of S0;0=� coincide with the classical
Adams–Novikov E2-page.

3.1. The ring �?S0

Our next goal is to show that �?S0 is a commutative algebra object in the 1-category
SpZop

. This will allow us to consider �?S0-modules in SpZop
.

We will need to work in the 1-category of cosimplicial filtered spectra, or equi-
valently in filtered cosimplicial spectra. Such objects are .Zop ��/-shaped diagrams of
spectra.
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In accordance with our general grading conventions,X�? denotes a cosimplicial filtered
spectrum, where ? refers to the filtered degree while � refers to the cosimplicial degree.
Thus every X s? is a filtered spectrum, and every X�w is a cosimplicial spectrum.

The 1-category of cosimplicial filtered spectra is symmetric monoidal with respect
to Day convolution applied pointwise in the cosimplicial direction. More concretely, if
X�? and Y �? are cosimplicial filtered spectra, then X�? ˝ Y

�
? is the cosimplicial filtered

spectrum such that
.X�? ˝ Y

�
? /
s
? D X

s
? ˝ Y

s
? ;

where the latter product is the Day convolution product of filtered spectra as in (1). We
refer to this product in the proof of Proposition 3.8 when we study lax symmetric mon-
oidal functors taking values in cosimplicial filtered spectra.

Proposition 3.8. The functor �? is lax symmetric monoidal.

Proof. We will show that �? is a composition of three lax symmetric monoidal functors.
First, consider the functor Sp ! Sp� that takes a spectrum X to the cosimplicial

spectrum X ^MU �C1. This functor is lax symmetric monoidal, i.e., there are natural
maps

.X ^MU �C1/ ^ .Y ^MU �C1/! .X ^ Y / ^MU �C1;

because MU �C1 is a commutative ring object in the1-category of cosimplicial spectra.
Second, recall the truncation functor .��0/? on filtered spectra defined at the end of

Section 2.2. Let .��0/�? be the functor from cosimplicial filtered spectra to cosimplicial
filtered spectra that applies .��0/? pointwise in the cosimplicial direction. This functor
is also lax symmetric monoidal because .��0/? is lax symmetric monoidal by Corol-
lary 2.11.

Finally, we have the totalization functor from cosimplicial filtered spectra to filtered
spectra that applies Tot pointwise in the filtered direction. This functor is lax symmetric
monoidal because it is a homotopy limit in the1-category of filtered spectra.

Remark 3.9. The functor �? is not strong monoidal. We will see in Examples 3.14
and 3.16 that �?S2 equals †2;1�?S0, while �?S1 equals †1;0�?S0. Therefore, the map

�?S
1
^

�?S0
�?S

1
! �?.S

1
^ S1/

is the map � W †2;0�?S0 ! †2;1�?S
0, which is not an equivalence of filtered spectra.

Theorem 3.10. The filtered spectrum �?S
0 is an E1-ring object in the1-category of

filtered spectra.

Proof. This follows immediately from Proposition 3.8 because lax symmetric monoidal
functors preserve E1-ring objects.

We can now define the1-category in which we are primarily interested.
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Definition 3.11. Let Mod�?S0 be the 1-category of left �?S0-modules in the 1-cat-
egory of filtered spectra.

We showed in Proposition 3.8 that the functor �? is lax symmetric monoidal. There-
fore, �?X is a �?S0-module for every spectrum X .

Equivalences in Mod�?S0 are defined to be equivalences on the underlying filtered
spectra. For any two �?S0-modules X and Y , let ŒX; Y ��?S0 be the set of homotopy
classes of �?S0-module maps from X to Y .

Proposition 3.12. In the 1-category Mod�?S0 , a map is a weak equivalence if and
only if it induces an isomorphism on Œ†p;q�?S0;���?S0 for all p and q. Equivalently,
Mod�?S0 is generated under homotopy colimits by the objects†p;q�?S0 for all p and q.

Proof. This follows from Lemma 2.6, together with the adjunction

Œ†p;q�?S
0; X��?S0 Š �p;qX:

3.2. Exactness properties of �?

In general, the functor �? is not exact, in the sense that it does not preserve all cofiber
sequences. However, we shall show that �? preserves certain types of cofiber sequences.
These results are essential for computations later in Sections 4 and 5.

Lemma 3.13. For any spectrum X , the filtered spectrum �?.†
2kX/ is equivalent to

†2k;k�?X .

Proof. We have that �w.†2kX/ is equal to

Tot.��2w.S2k ^X ^MU �C1//;

which is equivalent to

Tot.S2k ^ ��2.w�k/.X ^MU �C1//:

The functor Tot commutes (up to homotopy) with suspension since homotopy limits com-
mute with desuspension. We conclude that �w.†2kX/ is equal to †2k�w�kX .

Example 3.14. When X is S0, Lemma 3.13 implies that �?S2k equals †2k;k�?S0.

Lemma 3.15. Let X be a spectrum such that MU�X is concentrated in even degrees.
Then �?.†2kC1X/ equals †2kC1;k�?X .

Proof. We see that �w.†2kC1X/ is equal to Tot.��2w.S2kC1 ^ X ^MU �C1//, which
is equivalent to Tot.S2kC1 ^ ��2.w�k/.X ^MU �C1// because each X ^MU �C1 has
homotopy groups concentrated in even degrees. Similarly to the proof of Lemma 3.13,
we conclude that �w.†2kC1X/ is equal to †2kC1�w�kX .

Example 3.16. When X is S0, Lemma 3.15 implies that the filtered spectrum �?S
2kC1

equals †2kC1;k�?S0.
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Remark 3.17. The functor �? does not commute with suspensions. For example, con-
sider the first Hopf map � W S1 ! S0. Then �?� is a map †1;0�?S0 ! �?S

0, of rel-
ative degree .1; 0/. On the other hand, consider †� W S2 ! S1. Then �?.†�/ is a map
†2;1�?S

0 ! †1;0�?S
0, of relative degree .1; 1/.

Proposition 3.18. Let X ! Y ! Z be a cofiber sequence such that MU2w�1X !

MU2w�1Y is injective for all w. Then

�?X ! �?Y ! �?Z

is a cofiber sequence of filtered spectra.

Proof. The given condition implies that

�2w�1.X ^MU nC1/! �2w�1.Y ^MU nC1/

is injective for all w and all n. Since the composite

��2w.X ^MU nC1/! ��2w.Y ^MU nC1/! ��2w.Z ^MU nC1/ (2)

is null-homotopic, we get a map

cofib.��2w.X ^MU nC1/! ��2w.Y ^MU nC1//! ��2w.Z ^MU nC1/:

A diagram chase in homotopy groups shows that this is an equivalence, so (2) is a cofiber
sequence for all w and all n. The functor Tot preserves cofiber sequences because fiber
sequences are the same as cofiber sequences, and Tot is a homotopy limit. Therefore,

�wX ! �wY ! �wZ

is a cofiber sequence for all w.

Proposition 3.18 includes a technical condition about odd MU -homology. We would
like to show that this condition holds for a large class of spectra. With that goal in mind,
Definition 3.19 encapsulates some standard notions in a convenient form.

Definition 3.19. A spectrum X is a bounded-below, finite type, even-cell complex if it is
a finite complex with cells only in even dimensions, or if it is the homotopy colimit of a
sequence

� D X .0/ ! X .1/ ! X .2/ ! � � � ;

where there are cofiber sequences

X .n�1/ ! X .n/ ! S2kn

for some integers kn that tend to1 as n!1. Analogously, X is a p-local (resp., com-
plete) bounded-below, finite type, even-cell complex if it admits the same structure with
p-localized (resp., completed) spheres as cofibers.
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Remark 3.20. A spectrum X satisfies Definition 3.19 if and only if it is bounded below,
and H�.X IZ/ is concentrated in even degrees, is torsion-free, and is degreewise finitely
generated. Specific examples includeMU , as well asBP andBP hni in the p-local sense.

In the p-complete context, one can use H�.X I Fp/ instead of integral homology to
detect bounded-below, finite type, even-cell complexes.

Note that if X and Y are bounded-below, finite type, even-cell complexes, then so is
X ^ Y . This follows from the standard fact that X ^ Y has a cell structure in which the
n-cells correspond to pairs of i -cells in X and j -cells in Y such that i C j D n. This
remains true for the p-local variant, and true for the p-complete variant if we use the
completed smash product.

Lemma 3.21. Let X be a .p-local/ bounded-below, finite type, even-cell complex. Then
MU ^X splits as anMU -module into a wedge

W
†2knMU of even shifts ofMU .even

shifts of MU.p/ in the p-local variant/. In particular, if Y is a spectrum whose MU -
homology is concentrated in even degrees, then MU�.X ^ Y / is concentrated in even
degrees.

Proof. Let X be the homotopy colimit of the diagram

X .0/ ! X .1/ ! X .2/ ! � � � ;

with cofiber sequences
X .n�1/ ! X .n/ ! S2kn :

Inductively assume that the MU -homology of X .n�1/ is concentrated in even degrees.
Since the MU -homology of S2kn is also concentrated in even degrees, we get a short
exact sequence

0!MU�X
.n�1/

!MU�X
.n/
!MU�S

2kn ! 0:

Since the MU -homology of S2kn is furthermore free as an MU�-module, the sequence
splits. Inductively, we see that MU�X

.n/ is free as an MU�-module. Since MU� com-
mutes with filtered colimits, this follows for MU�X as well. Finally, a basis x2kn

for
MU�X gives rise to a map _

†2knMU !MU ^X;

which is an equivalence since it is an isomorphism on homotopy groups.
For the other statement, observe that

MU�.X ^ Y / D ��.MU ^X ^ Y / '
M

��.†
2knMU ^ Y / '

M
MU��2kn

Y;

which is concentrated in even degrees.
The p-local variant follows from the same argument, with the obvious modifications.
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Remark 3.22. When Y is S0, Lemma 3.21 shows that the MU -homology of a (p-local)
bounded-below, finite type, even-cell complex is concentrated in even degrees.

Corollary 3.23. Let
X ! Y ! Z

be a cofiber sequence of .p-local/ bounded-below, finite type, even-cell complexes, and
let W be a spectrum whose MU -homology is concentrated in even degrees. Then

�?.X ^W /! �?.Y ^W /! �?.Z ^W /

is a cofiber sequence.

Proof. Lemma 3.21 establishes the hypothesis of Proposition 3.18.

Remark 3.24. WhenW is S0, Corollary 3.23 shows that �? preserves cofiber sequences
of (p-local) bounded-below, finite type, even-cell complexes.

Lemma 3.25. Let
� � � ! Xi ! XiC1 ! � � �

be a sequential diagram of uniformly bounded-below spectra such that the connectivity
of the maps Xi ! XiC1 tends to infinity. Let X D colimi Xi . Then

hocolim
i

�?.Xi /! �?.X/

is an equivalence.

Proof. We observe that formation of the cosimplicial object ��2w.Xi ^MU �C1/ com-
mutes with filtered colimits levelwise. We have to check that in our given situation, the
filtered colimit also commutes with totalization. To see this, we first recall that filtered
colimits always commute with finite limits. Thus, in the diagram

hocolim Tot.��2w.Xi ^MU �C1// Tot.��2w.X ^MU �C1//

hocolim Totn.��2w.Xi ^MU �C1// Totn.��2w.Xi ^MU �C1//

the bottom map is an equivalence for any n. Since Xi and X are bounded below, the
vertical maps are isomorphisms on homotopy groups through a range increasing with n.
Since the upper horizontal map is independent of n, it follows that it induces an isomor-
phism on all homotopy groups, and thus is an equivalence.

Proposition 3.26. Let X be a .p-local/ bounded-below, finite type, even-cell complex,
and let Y have MU -homology concentrated in even degrees. Then

�?X ^
�?S0

�?Y ! �?.X ^ Y /

is an equivalence.



C-motivic modular forms 3613

Proof. Let X be the homotopy colimit of

X .0/ ! X .1/ ! X .2/ ! � � � ;

with cofiber sequences
X .n�1/ ! X .n/ ! S2kn

(or their p-local variant).
Corollary 3.23 shows that

�?.X
.n�1/

^ Y /! �?.X
.n/
^ Y /! �?.S

2kn ^ Y /

is a cofiber sequence.
We have a diagram

�?X
.n�1/ ^�?S0 �?Y �?X

.n/ ^�?S0 �?Y �?S
2kn ^�?S0 �?Y

�?.X
.n�1/ ^ Y / �?.X

.n/ ^ Y / �?.S
2kn ^ Y /

in which the rows are cofiber sequences. The right vertical map is an equivalence by
Lemma 3.13 and Example 3.14. The left vertical map is an equivalence by an induction
assumption. Therefore, the middle vertical map is also an equivalence.

Apply homotopy colimits to obtain the equivalence

hocolim
n

�
�?X

.n/
^

�?S0
�?Y

�
! hocolim

n
.�?.X

.n/
^ Y //:

The source of this map is equivalent to �?X ^�?S0 �?Y because the homotopy colimit
commutes with �? by Lemma 3.25, and also with smash products. The target is equivalent
to �?.X ^ Y / by Lemma 3.25.

4. The Steenrod algebra

Consider the �?S0-module �?HF2. The Adams–Novikov spectral sequence for HF2
collapses. It follows by inspection of the definition of �? that �?HF2 is equal to the
filtered spectrum

� � � � ! � ! HF2 ! HF2 ! � � � ;

where the values are � in filtrations greater than zero, and the values areHF2 in filtrations
less than or equal to zero. In particular, ��;?�?HF2 is isomorphic to F2Œ� �, where � has
degree .0;�1/. Not coincidentally, these homotopy groups are isomorphic to the motivic
stable homotopy groups of the C-motivic Eilenberg–Mac Lane spectrum.

The goal of this section is to compute the Hopf algebra of co-operations on �?HF2.
This Hopf algebra is the dual Steenrod algebra in the context of �?S0-modules.
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Definition 4.1. Let A�;? be the Hopf algebra ��;?.�?HF2 ^�?S0 �?HF2/�;?.

We begin by studying �?BP and related objects.

Example 4.2. The Adams–Novikov spectral sequence for BP collapses. It follows from
the definition that �?BP is equal to the filtered spectrum

� � � ! ��4BP ! ��2BP ! BP ! BP ! � � � :

In particular, note that ��;?�?BP is isomorphic to Z.p/Œ�; v1; v2; : : :�, where � has
degree .0;�1/ and vi has degree .2iC1 � 2; 2i � 1/. Not coincidentally, these homotopy
groups are isomorphic to the motivic stable homotopy groups of the C-motivic Brown–
Peterson spectrum BPGL.

Example 4.3. Generalizing both �?HF2 and Example 4.2, we find that the filtered spec-
trum �?BP hni is

� � � ! ��4BP hni ! ��2BP hni ! ��0BP hni ! ���2BP hni ! � � � :

Moreover, ��;?�?BP hni is isomorphic to Z.p/Œ�; v1; : : : ; vn�, where � has degree .0;�1/
and vi has degree .2iC1 � 2; 2i � 1/.

If R is a ring spectrum and x is an indeterminant of degree n, then we write RŒx� for
the ring spectrum

W
i †

niR, with the obvious multiplication corresponding to multiplic-
ation in a polynomial ring. We use the same notation for a filtered ring spectrum R and a
bigraded indeterminant. The object RŒx0; x1; : : :� with multiple indeterminants is defined
analogously.

Recall that BP ^ BP is equivalent to BP Œt1; t2; : : :�, where ti has degree 2iC1 � 2
[23, Theorem 4.1.18]. We now establish an analogous result for �?BP .

We observed in Proposition 3.8 that �? is lax monoidal. Therefore, it takes ring objects
to ring objects. In particular, �?BP and �?BP ^�?S0 �?BP have ring structures induced
from the usual ring structures on BP and BP ^ BP .

Proposition 4.4. As a ring object, the filtered spectrum �?BP ^�?S0 �?BP is equivalent
to �?BP Œt1; t2; : : :�, where ti has bidegree .2iC1 � 2; 2i � 1/.

Proof. We observed in Remark 3.20 that BP is a p-local bounded-below, finite type,
even-cell complex. Therefore, Proposition 3.26 applies, and �?BP ^�?S0 �?BP is equi-
valent to �?.BP ^ BP/, which is equivalent to �?.BP Œt1; t2; : : :�/. An argument similar
to the proof of Lemma 3.25 shows that �? commutes with the infinite wedge that defines
BP Œt1; t2; : : :�. Finally, use Lemma 3.13 to determine the bidegree of ti .

Proposition 4.5. The ring ��;?.�?BP ^�?S0 �?BP/ is isomorphic to

Z.p/Œ� �Œv1; v2; : : : ; t1; t2; : : :�;

where � has degree .0;�1/, and vi and ti both have degree .2iC1 � 2; 2i � 1/.

Proof. This follows from Example 4.2 and Proposition 4.4.
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The computation of Proposition 4.5 is a bigraded version of the classical computation
[23, Theorem 4.1.19]

BP�BP D Z.p/Œv1; v2; : : : ; t1; t2; : : :�:

Definition 4.6. The �?HF2-homology of a �?S0-module X is

H�;?.X/ D ��;?

�
X ^
�?S0

�?HF2
�
:

Proposition 4.7. The bigraded ring H�;?.�?BP/ is isomorphic to the free polynomial
ring F2Œ� �Œ�1; �2; : : :�, where � has degree .0;�1/ and �n has degree .2nC1 � 2; 2n � 1/.

The computation of Proposition 4.7 is a bigraded version of the classical computation
[3], [23, Theorem 4.1.12(b)]

H�.BP / D F2Œ�1; �2; : : :�:

Here we are using the non-standard description

F2Œ�0; �1; : : : ; �1; �2; : : :�

�2i C �iC1

of the classical dual Steenrod algebra, since it aligns better with the notation for the dual
Steenrod algebra A�;? given below in Theorem 4.10.

Proof. First we determine the additive structure of H�;?.�?BP/. Let X.�1/ be �?BP ,
and define X.n/ inductively to be the cofiber of

vn W †
2nC1�2;2n�1X.n � 1/! X.n � 1/:

From the descriptions of �?HF2 and �?BP at the beginning of Section 4, we see
that �?HF2 is hocolimn X.n/. This mimics the standard construction of HF2 as
BP=.v0; v1; : : :/.

We have cofiber sequences

†2
nC1�2;2n�1�?BP ^

�?S0
X.n � 1/

vn
�! �?BP ^

�?S0
X.n � 1/! �?BP ^

�?S0
X.n/:

Starting from Proposition 4.5, we can analyze the associated long exact sequences in
homotopy groups. Inductively, we compute that ��;?.�?BP ^�?S0 X.n// is isomorphic
to F2Œ� �ŒvnC1; vnC2; : : : ; �1; �2; : : :�, where each �i corresponds to ti in Proposition 4.5.
In the limit, we obtain F2Œ� �Œ�1; �2; : : :� as desired.

Finally, we determine the multiplicative structure of H�;?.�?BP/. Recall from Pro-
position 3.6 that colim? �?BP equals BP . Computationally, applying colim? has the
effect of inverting � , so H�;?.�?BP/Œ�

�1� and H�.BP / ˝ F2Œ�˙1� are isomorphic
as rings. Now H�.BP / and F2Œ�1; �2; : : :� are isomorphic as rings [3]. Therefore,
H�;?.�?BP/Œ�

�1� and F2Œ�˙1�Œ�1; �2; : : :� are isomorphic as rings. This determines the
ring structure on H�;?.�?BP/ as well, since H�;?.�?BP/ has no � -torsion.
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Remark 4.8. The last paragraph of the proof of Proposition 4.7 uses a technique that
we shall rely on frequently. First, we determine an F2Œ� �-module M additively, and we
note that it has no � -torsion. Then we use classical information to recognize additional
structure on MŒ��1�. Finally, we deduce additional structure on M itself since M has no
� -torsion.

Proposition 4.9. The bigraded ring H�;?.�?BP hni/ is isomorphic to

F2Œ� �Œ�nC1; �nC2; : : : ; �1; �2; : : :�

�2i C ��iC1
;

where � has degree .0; �1/, �i has degree .2iC1 � 1; 2i � 1/ and �i has degree
.2iC1 � 2; 2i � 1/.

Proof. We determine the additive structure of H�;?.�?BP hni/. The multiplicative struc-
ture then follows by comparison to the classical case, using the strategy described in
Remark 4.8. In order for this strategy to work, it is essential to observe that all modules
under consideration turn out to have no � -torsion.

Let Y.n/ be �?BP , and define Y.k/ for k > n inductively to be the cofiber of

vk W †
2kC1�2;2k�1Y.k � 1/! Y.k � 1/:

From the descriptions of �?BP and �?BP hni at the beginning of Section 4, we see
that �?BP hni is hocolimn Y.n/. This mimics the standard construction of BP hni as
BP=.vnC1; vnC2; : : :/.

Suppose for induction that H�;?.Y.k// is isomorphic to

F2Œ� �Œ�nC1; �nC2; : : : �k ; �1; �2; : : :�

�2i C ��iC1
:

Proposition 4.7 establishes the base case.
Consider the cofiber sequence

Y.k/ ^
�?S0

�?HF2 ! Y.k C 1/ ^
�?S0

�?HF2

! †2
kC2�1;2kC1�1Y.k/ ^

�?S0
�?HF2:

Using the strategy of Remark 4.8 and the analogous classical fact, we see that multiplica-
tion by vkC1 is zero on H�;?.Y.k//. Therefore, we have a short exact sequence

H�;?.Y.k//! H�;?.Y.k C 1//! H�;?.†
2kC2�1;2kC1�1Y.k//:

This establishes the additive structure of H�;?.Y.k C 1//.

Theorem 4.10. The dual Steenrod algebra A�;? is isomorphic to

F2Œ� �Œ�0; �1; : : : ; �1; �2; : : :�

�2i C ��iC1
;
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where the comultiplication is given by the formulas

�.�i / D �i ˝ 1C

iX
kD0

�2
k

i�k ˝ �k ; �.�i / D

iX
kD0

�2
k

i�k ˝ �k :

Proof. The additive structure is given by the n D 0 case of Proposition 4.9.
The formulas for the multiplication and comultiplication are deduced using the

strategy of Remark 4.8 and the analogous classical formulas.

Remark 4.11. Having described the Steenrod algebra in Theorem 4.10, we can now
return to the computations of H�;?.��BP/ and H�;?.��BP hni/ in Propositions 4.7
and 4.9. These objects have the evident A�;?-subcomodule structures reflected in the
notation. This explains the use of �i in Propositions 4.7 and 4.9, rather than the use of
ti as in Proposition 4.5. The computation of these comodule structures follows from the
analogous classical result, using the strategy of Remark 4.8 since there is no � -torsion.

5. Motivic modular forms

In this section, we study the �?S0-module �?tmf . We will show that this object has the
desired properties of a “motivic modular forms” spectrum. Note that �?tmf is anE1-ring
by Proposition 3.8.

In Section 4, we worked with �?HF2-homology because the dual Steenrod algebra
is easier to describe than the Steenrod algebra. We now work with the dual �?HF2-
cohomology because it is easier to state the specific computational results that we are
pursuing.

Definition 5.1. The �?HF2-cohomology of a �?S0-module X is

H�;�.X/ D ��;�F�?S0.X; �?HF2/;

where F�?S0.�;�/ is the internal function object in the1-category of �?S0-modules.

Under suitable bounded-below, finite type assumptions on X , the �?HF2-cohom-
ology of X and the �?HF2-homology of X are algebraic F2Œ� �-duals.

The main goal is to show that the �?HF2-cohomology of �?tmf is isomorphic to
A==A.2/. This implies that the cohomology of A.2/ is the E2-page of the �?HF2-based
Adams spectral sequence for �?tmf .

Definition 5.2. Let A be the dual of A�;?. Using the monomial basis of A�;?, let

(1) Sq1 be dual to �0;

(2) Qi be dual to �i ;

(3) Sq2
n

be dual to �2
n�1

1 for n � 1;

(4) P 0j be dual to �j�1 for j � 1;

(5) P ij be dual to �2
i�1

j for i � 1 and j � 1.
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We will need to refer to some quotients of the dual Steenrod algebra A�;? computed
in Theorem 4.10.

Definition 5.3. (1) Let A.n/�;? be the quotient

F2Œ� �Œ�0; �1; : : : ; �n; �1; �2; : : : ; �n�

�2i C ��iC1; �
2n

1 ; �
2n�1

2 ; : : : ; �2n ; �
2
n

of A�;?, and let A.n/ be the dual subalgebra of A.

(2) Let E.n/�;? be the quotient
F2Œ� �Œ�0; �1; : : : ; �n�

�20 ; �
2
1 ; : : : �

2
n

of A�;?, and let E.n/ be the dual subalgebra of A.

It is straightforward to check that E.n/ is an exterior algebra on the elements Q0;
Q1; : : :Qn, and A.n/ is the subalgebra of A generated by Sq1, Sq2; : : : ;Sq2

n

.

Definition 5.4. We define the finite even-cell complexes:

(1) X is the cofiber of � W S3 ! S0.

(2) Y is the cofiber of � W †X ! X .

(3) Z is the cofiber of w1 W †5Y ! Y .

The best way to describe w1 is in terms of the Adams spectral sequence for maps
†5Y ! Y . It is detected by the element whose May spectral sequence name is h21. This
is essential below in Lemma 5.5 when we relate w1 to the Steenrod operation P 12 .

For our purposes, the essential property of Z is that tmf .2/ ^ Z is equivalent to
BP h2i [19]. We will start with the cohomology of �?tmf .2/ ^�?S0 �?Z, and then work
backwards to obtain the cohomology of �?tmf .2/ ^�?S0 �?Y , �?tmf .2/ ^�?S0 �?X , and
finally �?tmf .2/. The basic idea is not original. See, for example, [28, Proposition 1.7] for
an analogous argument that computes the homology of BP hni. See also [16, Section 5]
for a motivic version of an argument that computes the cohomology of ko.

Lemma 5.5. In the1-category of �?S0-modules, there are cofiber sequences

†3;2�?S
0
! �?S

0 �X
�! �?X

�X
��! †4;2�?S

0;

†1;1�?X ! �?X
�Y
�! �?Y

�Y
��! †2;1�?X;

†5;3�?Y ! �?Y
�Z
�! �?Z

�Z
��! †6;3�?Y:

In �?HF2-cohomology, the compositions

�?X
�X
��! †4;2�?S

0 †4;2�X
����! †4;2�?X;

�?Y
�Y
��! †2;1�?X

†2;1�Y
����! †2;1�?Y;

�?Z
�Z
��! †6;3�?Y

†6;3�Z
�����! †6;3�?Z

are multiplication by Sq4 D .�21 /
_, Sq2 D �_1 , and P 12 D �

_
2 respectively.
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Proof. Apply Corollary 3.23 to the cofiber sequence

S0 ! X ! S4

to obtain the cofiber sequence

�?S
0 ! �?X ! �?S

4:

Lemma 3.13 identifies the third term to be†4;2�?S0, and then rotate to obtain the cofiber
sequence in part (1).

The arguments for parts (2) and (3) are essentially identical. Apply Corollary 3.23 to
the cofiber sequences

X ! Y ! †2X and Y ! Z ! †6Y

to obtain the cofiber sequences

�?X ! �?Y ! �?†
2X and �?Y ! �?Z ! �?†

6Y:

Lemma 3.13 identifies the third terms to be†2;1X and†6;3Y respectively, and then rotate
to obtain the cofiber sequences in parts (2) and (3).

The assertion about the action in cohomology follows from the analogous clas-
sical facts, using the strategy of Remark 4.8. It is essential to observe that H�;?.�?X/,
H�;?.�?Y /, and H�;?.�?Z/ have no � -torsion. In fact, they are free F2Œ� �-modules of
ranks 2, 4, and 8 respectively.

One way to understand the maps in classical cohomology is to observe that �, �,
and w1 are represented in the Adams spectral sequence in filtration 1. They are detected
by h2, h1, and h21, which have cobar representatives Œ�21 �, Œ�1�, and Œ�2� respectively. Here
we are using the non-standard description

F2Œ�0; �1; : : : ; �1; �2; : : :�

�2i C �iC1

of the classical dual Steenrod algebra, since it aligns better with the notation for the dual
Steenrod algebra A�;? given in Theorem 4.10.

Lemma 5.6. MU�tmf .2/ is concentrated in even degrees.

Compare Lemma 5.6 with [19, Corollary 5.2], which is stronger. The lemma is true
without 2-localization, but we only need the 2-local statement here. At other primes, an
analogous, but easier, variant of the given argument goes through.

Proof of Lemma 5.6. Consider the maps

� W S3 ! S0; � W †X ! X; w1 W †
5Y ! Y:

The targets of these maps are bounded-below, finite type, even-cell complexes, while the
sources are suspensions of bounded-below, finite type, even-cell complexes. For degree
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reasons, these maps are zero inMU -homology. After smashing withMU , all three maps
have sources and targets that are freeMU -modules by Lemma 3.21. This means that they
are null-homotopic after smashing with MU , since they are zero in MU -homology.

We get short exact sequences

0!MU�tmf .2/ !MU�.tmf .2/ ^X/!MU�.†
4tmf .2//! 0;

0!MU�.tmf .2/ ^X/!MU�.tmf .2/ ^ Y /!MU�.†
2tmf .2/ ^X/! 0;

0!MU�.tmf .2/ ^ Y /!MU�.tmf .2/ ^Z/!MU�.†
6tmf .2/ ^ Y /! 0:

Starting with the classical equivalence BP h2i ' tmf .2/ ^ Z (see [19]), we see that
MU�.tmf .2/ ^ Z/ is concentrated in even degrees, since MU�.BP h2i/ is. The exact
sequences then imply thatMU�.tmf .2/ ^Y /,MU�.tmf .2/ ^X/ and finallyMU�.tmf .2//
are also concentrated in even degrees.

Proposition 5.7. H�;?.�?tmf .2/ ^�?S0 �?Z/ is isomorphic to A==E.2/.

Proof. Start with the equivalence BP h2i ' tmf .2/ ^Z (see [19]). Lemma 5.6 establishes
the hypothesis of Proposition 3.26, so we get

�?BP h2i ' �?tmf .2/ ^
�?S0

�?Z:

Proposition 4.9 describes H�;?.�?BP h2i/, which is algebraically dual to what we want.
By inspection of Proposition 4.9 and the description ofE.2/ in Definition 5.3, dualization
shows that H�;?.�?BP h2i/ is isomorphic to A==E.2/.

Proposition 5.8. H�;?.�?tmf .2/ ^�?S0 �?Y / is isomorphic to A==F , where F is the
subalgebra of A generated by Q0, Q1, Q2, and P 12 .

Note that the dual F�;? of F is

F2Œ� �Œ�0; �1; �2; �2�

�20 ; �
2
1 D ��2; �

2
2 ; �

2
2

:

Proof of Proposition 5.8. We shall establish a commutative diagram

0

H�;?.�?tmf .2/ ^�?S0 �?Y /

ı

OO

A==F
foo

OO

H�;?.�?tmf .2/ ^�?S0 �?Z/

��
Z

OO

A==E.2/

OO

Šoo

H�;?†6;3.�?tmf .2/ ^�?S0 �?Y /

��
Z

OO

†6;3A==F
†6;3foo

OO

ı

OO

0

OO
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The left column is the long exact sequence associated to the third cofiber sequence of
Lemma 5.5 smashed with �?tmf .2/. The right column is short exact; one inspects the
projectionA==E.2/!A==F and recognizes the kernel to be†6;3A==F , generated by P 12
as a right A-module. The middle horizontal arrow is the isomorphism of Proposition 5.7.

It remains to construct the top and bottom horizontal maps, to show that they are
the same up to suspension, and to show that both squares commute. The second part of
Lemma 5.5 implies that the image of P 12 in H�;?.�?tmf .2/ ^�?S0 �?Z/ is contained in
the image of ��Z . Since the left column is exact, this shows that the image of P 12 maps to
zero under ��Z . In particular, the composition

A==E.2/! H�;?
�
�?tmf .2/ ^

�?S0
�?Z

�
! H�;?

�
�?tmf .2/ ^

�?S0
�?Y

�
factors through A==F . This establishes the map f and the commutativity of the top
square.

The existence of the bottom horizontal map, and the commutativity of the bottom
square, now follow from a formal diagram chase, using the fact that the columns are exact.
In fact, the top and bottom horizontal maps are the same map, up to suspension. This
follows from the second part of Lemma 5.5, using the fact that †6;3A==F is generated
by P 21 .

Now we must show that f is an isomorphism. A diagram chase shows that †6;3f
(and therefore also f ) is an injection.

Finally, we use induction on the degree � to show that f is a surjection. The base case
is � D �1, since all objects are concentrated in degrees � � 0.

Let ˛ be an element of H�;?.�?tmf .2/ ^�?S0 �?Y /. Apply the boundary map ı to
obtain ı.˛/ inH�C7;?C3.�?tmf .2/ ^�?S0 �?Y /. By induction on �, we may assume that
ı.˛/ D f .ˇ/ for some ˇ in A==F . If we chase ˇ around the lower left corner of the
bottom square, we get 0 since ��Zı is the zero map. On the other hand, the composition
around the upper right corner of the bottom square is an injection. Therefore, ˇ must be
zero, and ı.˛/ is zero as well.

We have now shown that ˛ equals ��Z.
/ for some 
 in H�;?.�?tmf .2/ ^�?S0 �?Z/.
Using the isomorphism in the middle row and the commutativity of the top square, we
conclude that ˛ lies in the image of f , as desired.

Proposition 5.9. H�;?.�?tmf .2/ ^�?S0 �?X/ is isomorphic to A==G, where G is the
subalgebra of A generated by Q0, Q1, Q2, P 12 , and Sq2.

Note that the dual G�;? of G is

F2Œ� �Œ�0; �1; �2; �1; �2�

�20 D ��1; �
2
1 ; �

2
1 D ��2; �

2
2 ; �

2
2

:
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Proof. The proof is essentially the same as the proof of Proposition 5.8, using the diagram

0

H�;?.�?tmf .2/ ^�?S0 �?X/

OO

A==Goo

OO

H�;?.�?tmf .2/ ^�?S0 �?Y /

OO

A==F

OO

Šoo

H�;?†2;1.�?tmf .2/ ^�?S0 �?Y /

OO

†2;1A==Goo

OO

OO

0

OO

Theorem 5.10. H�;?.�?tmf / is isomorphic to A==A.2/.

Equivalently, the �?HF2-homology of �?tmf is A�;?�A.2/�;? F2Œ��.

Proof of Theorem 5.10. We first observe that the functor �? is compatible with 2-loc-
alization, as one easily sees from its definition. In particular, �?HF2 is 2-local, and the
�?HF2-cohomology of �?tmf agrees with the �?HF2-cohomology of �?tmf .2/.

The remainder of the proof is essentially the same as the proofs of Propositions 5.8
and 5.9, using the diagram

0

H�;?.�?tmf .2//

OO

A==A.2/

OO

oo

H�;?.�?tmf .2/ ^�?S0 �?X/

OO

A==G

OO

Šoo

H�;?†4;2.�?tmf .2//

OO

†4;2A==A.2/

OO

oo
OO

0

OO

Remark 5.11. The same technique can be used to compute that H�;?.�?ko/ equals
A==A.1/. In this case, one uses the cofiber sequences

HZ
2
�! HZ! HF2;

†2ku
v1
�! ku! HZ;

†1ko
�
�! ko! ku:

See [16, Section 5] or [28, Proposition 1.7] for similar arguments.
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6. Comparison to C-motivic homotopy theory

In this section, we work with 2-complete versions of the categories SpC of cellular
motivic spectra, the ordinary category Sp of spectra, and our category Mod�?S0 of �?S0-
modules, which we will denote by cSpC , cSp, and bMod�?S0 respectively. To avoid cumber-
some notation, we use Sn and Sn;w to refer to the 2-completions of the respective spheres
throughout the section.

We will show that there is an equivalence between the stable1-categories cSpC and
bMod�?S0 . This means that both SpC and Mod�?S0 are uncompleted versions of the same
category, but they do not agree before completion. For example, the completed C-motivic
element � 2 �0;�1.S0;0/ does not exist in the uncompleted SpC . On the other hand, �
does exist in Mod�?S0 since it is just the structure map of the filtration.

Recall that SpC is a stable 1-category, and thus for any motivic spectra X and Y ,
there exists a mapping spectrum Fs.X; Y / with the property that �kFs.X; Y / equals
Œ†k;0X; Y �. The subscript s indicates that we are considering only the function object
as a classical spectrum, not as a motivic spectrum.

We will rely on the Betti realization functor B WcSpC !
cSp from the1-category of

cellular 2-complete C-motivic spectra to the 1-category of ordinary 2-complete spec-
tra. Recall that B.Sp;q/ is Sp . Also, the map � W S0;�1 ! S0;0 realizes to the identity
S0 ! S0.

Lemma 6.1. If p � q, then Betti realization induces an equivalence

MapbSpC
.S0;p; S0;q/

'
�! MapbSp.S

0; S0/:

Proof. This corresponds to the observation in [7] that Betti realization induces an iso-
morphism �s;w ! �s when w � 0, which in turn follows from naive considerations of
the C-motivic Adams–Novikov spectral sequence.

The key point of Lemma 6.1 is that when p � q, a map S0;p ! S0;q is uniquely
determined up to homotopy by its Betti realization.

Now consider Z as a poset category with respect to �, with symmetric-monoidal
structure obtained from addition.

Lemma 6.2. Up to contractible choice, there is a unique symmetric-monoidal1-functor
S0;? W Z!cSpC that sends n 7! S0;n such that B.S0;?/ is the constant functor Z!cSp
with value S0. The induced maps S0;n ! S0;nC1 are homotopic to � .

Proof. A lax symmetric-monoidal functor between symmetric-monoidal 1-categories
C ! D is the same as a functor C˝ ! D˝ of the associated colored operads. Thus
the data of a lax symmetric-monoidal 1-functor F W Z ! C gives, for each tuple
.i1; : : : ; ik I n/ with i1 C � � � C ik � n, a point in the associated multi-mapping space
MapC .F.i1/˝ � � � ˝F.ik/;F .n//, with coherence homotopies between the various ways
to compose and permute the domain factors.
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For our desired functor S0;?, the relevant multi-mapping spaces in cSpC are of the
form MapbSpC

.S0;i1C���Cik ; S0;n/. Betti realization induces an equivalence

MapbSpC
.S0;i1C���Cik ; S0;n/

'
�! MapbSp.S

0; S0/ (3)

by Lemma 6.1.
The constant functor Z!cSp with value S0 is lax symmetric-monoidal, since S0 is

an E1-ring spectrum. The corresponding coherence data on multi-mapping spaces lifts
uniquely (up to contractible choice) along the equivalences (3), giving us the desired lax
symmetric-monoidal functor S0;?. To see that it is symmetric-monoidal, it is enough to
observe that the lax structure maps

S0;i1 ˝ � � � ˝ S0;ik ! S0;i1C:::Cik

are in fact equivalences by Lemma 6.1 because their Betti realizations are the equivalences
S0 ˝ � � � ˝ S0 ' S0.

Finally, we must identify the maps S0;n ! S0;nC1. The Betti realizations of these
maps are the identity on S0, so they must be homotopic to � by Lemma 6.1.

Definition 6.3. Define �˝ S0;? WcSpZop
!cSpC by the formula

Y? ˝ S
0;?
D hocolim

i�j
Yi ˝ S

0;j :

Definition 6.3 is a type of Day convolution, using that motivic spectra are tensored
over classical spectra, and using the fixed motivic object S0;?.

Lemma 6.4. The functor �˝ S0;? WcSpZop
!cSpC is symmetric-monoidal.

Proof. This follows by direct computation with the definitions. Let X? and Y? be two
objects of cSpZop

. Then .X? ˝ Y?/˝ S0;? equals

hocolim
iCj�p

.Xi ^ Yj /˝ S
0;p: (4)

On the other hand, .X? ˝ S0;?/ ^ .Y? ˝ S0;?/ equals�
hocolim
i�p

Xi ˝ S
0;p
�
^

�
hocolim
j�q

Yj ˝ S
0;q
�
;

which equals
hocolim
i�p;j�q

.Xi ^ Yj /˝ .S
0;p
^ S0;q/:

We may identify S0;p ^ S0;q with S0;pCq by Lemma 6.2. We then obtain the same
expression as in (4).

Definition 6.5. Define �
0;?
s W cSpC !

cSpZop
to be the right adjoint of � ˝ S0;? WcSpZop

!cSpC .



C-motivic modular forms 3625

More explicitly, �0;?s X is the filtered spectrum

� � � ! Fs.S
0;nC1; X/! Fs.S

0;n; X/! Fs.S
0;n�1; X/! � � � ;

where the structure maps are determined by the maps of S0;? from Lemma 6.2. The
notation reflects the fact that the definition of �0;?s is similar to the usual desuspension
functor, except that we use the spectrum-valued function object instead of the internal
function object. Another possible description of �0;?s is that it corresponds under the
equivalence between functors cSpC !

cSpZop
and functors cSpC � Zop !cSp tocSpC � Zop

!cSp W .X; n/ 7! Fs.S
0;n; X/:

Remark 6.6. Recall from Section 2 that the bigraded homotopy group �i;j .Y?/ of a
filtered spectrum Y? is equal to �iYj . For any motivic spectrumX , the group �i;j .�

0;?
s X/

is equal to �iFs.S0;j ; X/, which equals the motivic stable homotopy group �i;jX . This
observation is precisely the point of the construction of�0;?s ; it records the motivic stable
homotopy groups of X in a filtered spectrum.

The functor �0;?s is automatically lax symmetric-monoidal with respect to Day con-
volution, since its left adjoint is symmetric-monoidal. One consequence is that �0;?s X is
an �0;?s .S0;0/-module for all X . Our next goal is to identify �0;?s .S0;0/.

Betti realization induces a map

Fs.S
0;w ; 1MGLnC1/! F.S0; bMU nC1/ D bMU nC1;

where the object on the right is the usual function object for classical spectra. Lemma 6.7
determines this map more explicitly.

Lemma 6.7. For all w and n, the map Fs.S0;w ; 1MGLnC1/! bMU nC1 is the canonical
map

��2w.bMU nC1/! bMU nC1:

Proof. Recall that ��bMU is isomorphic to the 2-completed Lazard ring Z2Œx1; x2; : : :�,
where xi has degree 2i [20]. Also, ��;�1MGL is isomorphic to Z2Œ� �Œx1; x2; : : :�, where
xi has degree .2i; i/ [12, Theorem 7]. Moreover, Betti realization takes xi to xi .

The classical homotopy groups of Fs.S0;w ; 1MGL/ are equal to the motivic homotopy
groups ��;w.1MGL/. From the description in the previous paragraph, we see that these
groups are the same as the homotopy groups of ��2w.bMU/, and that Betti realization

Fs.S
0;w ; 1MGL/! bMU

induces an isomorphism on homotopy groups in degrees 2w and above. This establishes
the result for the case n D 0.

The proof for n > 0 is similar, using the fact that MU nC1 splits as a wedge of even
suspensions ofMU [1, p. 87], and 1MGLnC1 splits correspondingly as a wedge of†2k;k-
suspensions of 1MGL [21].
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Proposition 6.8. The filtered spectrum �
0;?
s S0;0 is equivalent to b�?S0.

Proof. Using the fact that the motivic Adams–Novikov spectral sequence converges
strongly, [12, Theorem 8], we find that S0;0 is equivalent to Tot.1MGL�C1/, where
1MGL�C1 is the standard cosimplicial 1MGL-resolution of S0;0. Therefore, for each w,
the spectrum �

0;w
s S0;0 is equivalent to �0;ws Tot.1MGL�C1/. Using the fact that homo-

topy limits commute with function spectra, this is equivalent to Tot.Fs.S0;w ; 1MGL�C1//.
Lemma 6.7 identifies this spectrum with Tot.��2w bMU �C1/, which is precisely the 2-
completion of �wS0.

Since �0;?s is lax symmetric-monoidal, Proposition 6.8 shows that the functor �0;?s
takes values in 2-complete �?S0-modules, rather than just filtered spectra. From this per-
spective, we can define its left adjoint as a functor from bMod�?S0 to cSpC .

Definition 6.9. Let

bMod�?S0 !cSpC W Y? 7! Y? ˝
�?S0

S0;?

be the left adjoint to the functor �0;?s WcSpC ! bMod�?S0 .

We can describe Y? ˝�?S0 S0;? in more concrete terms, although this description is
not strictly necessary. It is the geometric realization of the simplicial bar construction

� � � ! Y? ˝b�?S0 ˝ S0;? //
//
//// Y? ˝ S0;�:

In each degree, all but the last tensor symbol indicate Day convolution of two filtered
spectra, while the last tensor symbol represents the functor of Definition 6.3.

Recall the suspension functor †i;j for filtered spectra described in Section 2.

Lemma 6.10. The motivic spectrum .†i;jb�?S0/˝�?S0 S0;? is equivalent to S i;j .

Proof. By adjointness, maps .†i;j�?S0/˝�?S0 S0;? ! Y correspond to maps S i;j !
�
0;?
s Y of filtered spectra. From the definition of S i;j in Definition 2.2, such maps corres-

pond to maps S i ! Fs.S
0;j ; Y / in spectra, which in turn correspond to maps S i;j ! Y

in motivic spectra.

Proposition 6.11. For any 2-complete �?S0-module Y?, the functor � ˝�?S0 S0;?

induces an isomorphism

�i;j .Y?/ D Œ†
i;jb�?S0; Y?�! h

S i;j ; Y? ˝
�?S0

S0;?
i
D �i;j

�
Y? ˝

�?S0

S0;?
�
:

Proof. First suppose that Y? is of the form †p;qb�?S0. Then Y? ˝�?S0 S0;? is equal
to Sp;q by Lemma 6.10, so �i;j .Y? ˝�?S0 S0;?/ equals the motivic stable homotopy
group �i�p;j�q . On the other hand, �i;j .Y?/ is equal to �i�p.b�j�qS0/, which equals
�i�pFs.S

0;j�q; S0;0/ by Proposition 6.8. Finally, this last group also equals the motivic
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stable homotopy group �i�p;j�q . Thus, the proposition holds when Y? is of the form
†p;qb�?S0.

Let C be the class of all 2-complete �?S0-modules Y? for which the proposition
is true. We have just shown that C contains †p;qb�?S0. Moreover, C is closed under
arbitrary coproducts and filtered colimits by compactness of the completed spheres in cSp
and cSpC .

Finally, if X? ! Y? ! Z? is a cofiber sequence of �?S0-modules and any two of
X?, Y?, and Z? belong to C , then the third belongs to C as well by the five lemma
applied to long exact sequences of homotopy groups.

Finally, Proposition 3.12 implies that C equals the entire1-category bMod�?S0 .

Theorem 6.12. The functors � ˝�?S0 S0;? and �0;?s are inverse equivalences betweencSpC and bMod�?S0 .

Proof. Since equivalences in cSpC and in bMod�?S0 are both detected by bigraded
homotopy groups, it suffices to show that the counit map .�0;?s X/ ˝�?S0 S0;? ! X

induces an isomorphism of motivic stable homotopy groups, and that the unit map
Y? ! �0;?.Y? ˝�?S0 S0;?/ induces an isomorphism of bigraded homotopy groups of
filtered spectra. These claims follow from Remark 6.6 and Proposition 6.11.

Remark 6.13. In order to prove Theorem 6.12, we used formal categorical tools, together
with the following non-formal properties of the cellular 2-complete C-motivic stable1-
category cSpC:

(1) Map.S0;p; S0;q/ ' Map.S0; S0/ if p � q (see Lemma 6.1).

(2) The bigraded C-motivic homotopy groups detect equivalences; equivalently, cSpC is
generated by the bigraded spheres.

(3) Fs.S0;w ; 1MGLnC1/ ' ��2w.bMU nC1/ (see Lemma 6.7).

The same formal categorical tools can be applied to establish an equivalence between
Mod�?S0 and the 1-category of even MU -based synthetic spectra [22], even without
completing. The required non-formal properties of synthetic spectra are immediate con-
sequences of [22, Theorems 1.5, 6.2, and Proposition 4.60].

Acknowledgements. We thank Saul Glasman for some helpful hints about E1-rings in stable1-
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