
© 2021 European Mathematical Society
Published by EMS Press and licensed under a CC BY 4.0 license

J. Eur. Math. Soc. 24, 3629–3678 (2022) DOI 10.4171/JEMS/1172

Chen Wan

On a multiplicity formula for spherical varieties

Received August 9, 2019

Abstract. In this paper, we propose a conjectural multiplicity formula for general spherical vari-
eties. For all the cases where a multiplicity formula has been proved, including Whittaker models,
Gan–Gross–Prasad models, Ginzburg–Rallis models, Galois models and Shalika models, we show
that the multiplicity formulas in our conjecture are the same as the multiplicity formulas that have
been proved. We also prove the conjectural multiplicity formula in two new cases.
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1. Introduction

Let F be a local field of characteristic 0,G be a connected reductive group defined over F ,
H be a connected closed subgroup of G, and � be a unitary character of H.F /. Assume
thatH is a spherical subgroup of G (i.e.H admits an open orbit in the flag variety of G).
For every irreducible smooth representation � of G.F /, we define the multiplicity

m.�; �/ WD dim.HomH.F /.�; �//:

One of the fundamental problems in the Relative Langlands Program is to study the mul-
tiplicitym.�;�/. In general, one expectsm.�;�/ to be finite and to detect some functorial
structures of � . We refer the reader to [19] for a detailed discussion of this kind of prob-
lems.

In his pioneering works [21] and [22], Waldspurger developed a new method to study
the multiplicities. His idea is to prove a local trace formula Igeom.f / D I.f / D Ispec.f /

for the model .G;H/, which would imply a multiplicity formulam.�;�/D mgeom.�; �/.
Here mgeom.�; �/ is defined via the Harish-Chandra character �� of � and is called the
geometric multiplicity. In [21] and [22], Waldspurger applied this method to orthogonal
Gan–Gross–Prasad models over the p-adic field. By proving the trace formula and the
multiplicity formula, he showed that for orthogonal Gan–Gross–Prasad models, the sum
of the multiplicities is always equal to 1 for all tempered local Vogan L-packets. Later
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his idea was adapted by Beuzart-Plessis [2], [4] to unitary Gan–Gross–Prasad models,
and by the author [23], [24] to Ginzburg–Rallis models. Subsequently, in [3], Beuzart-
Plessis applied this method to Galois models; in a joint work with Beuzart-Plessis [5], we
applied this method to Shalika models; and in a joint work with Zhang [25], we applied
the method to unitary Ginzburg–Rallis models.

For all the cases above, the most crucial step is to prove the local trace formula
Igeom.f / D I.f / D Ispec.f /. However, the proofs of these trace formulas, especially
the geometric side (i.e. I.f / D Igeom.f /), have each time been done in some ad hoc way
pertaining to the particular features of the case at hand. It makes now little doubt that
the local trace formulas and the multiplicity formulas should exist in some generality.
However, until this moment, it is not clear (even conjecturally) what would the formulas
look like for general spherical varieties. The reason is that although we can easily give a
uniform definition of the multiplicitym.�;�/, of the distribution I.f / and of the spectral
expansion Ispec.f / for all spherical varieties, the geometric multiplicity mgeom.�; �/ and
the geometric expansion Igeom.f / are more mysterious. There are no uniform definitions
of these objects for general spherical varieties.

Remark 1.1. The definitions of mgeom.�; �/ and Igeom.f / are very similar to each other.
So one only needs to define mgeom.�; �/ for general spherical varieties, which will lead
to the definition of Igeom.f /.

In this paper, we propose a uniform definition of mgeom.�; �/ (and hence Igeom.f /)
for general spherical varieties. To justify our definitions, we show that for all the cases
where the multiplicity formulas have been proved, including Whittaker models, Gan–
Gross–Prasad models, Ginzburg–Rallis models, Galois models, and Shalika models, our
definitions are the same as the ones in the known multiplicity formulas. We will also prove
the conjectural multiplicity formula for two new cases. We hope our definitions will give
a better understanding of the multiplicity formula and the local trace formula, and shed
some light on a potential proof of these formulas for general spherical varieties.

1.1. Main results

Let F; G; H; �; m.�; �/ be as above. Our goal is to define the geometric multiplicity
mgeom.�; �/ for general spherical varieties. Before explaining our definition, let us first
consider the baby case when G is a finite group. In this case, let ��.g/ D tr.�.g// be the
character of � . By the representation theory of finite groups, we know that m.�; �/ D
mgeom.�; �/ where

mgeom.�; �/ WD
1

jH j

X
h2H

��.h/�
�1.h/ D

X
x

1

jZH .x/j
��.h/�

�1.h/: (1.1)

Here the second summation is over a set of representatives of conjugacy classes of H ,
and ZH .x/ is the centralizer of x in H .

Guided by the finite group case and all the known cases, it is natural to expect that for
a general spherical pair .G;H/,mgeom.�;�/ should be an integral over certain semisimple
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conjugacy classes ofH.F / of the Harish-Chandra character �� . However, compared with
the finite group case, there are three difficulties in the definition of mgeom.�; �/ for spher-
ical varieties over a local field.

First, unlike the finite group case, the Harish-Chandra character �� is only defined
on the set of regular semisimple elements of G.F /. On the other hand, many semisimple
conjugacy classes of H.F / are not regular in G.F /, which means that �� is not defined
in those conjugacy classes. In order to solve this issue, we need to use the germ expan-
sions of �� . Roughly speaking, near every semisimple element (not necessarily regular)
of G.F /, �� can be written as a linear combination of the Fourier transforms of nilpo-
tent orbital integrals. The coefficients associated to regular nilpotent orbits in this linear
combination are called the regular germs of �� (see Section 2.4 for details). In order to
define �� at nonregular semisimple conjugacy classes, we need to use the regular germs
of �� . This creates the first difficulty: in general when F ¤ C, we may have more than
one F -rational regular nilpotent orbit. Hence for each spherical pair .G;H/, we need to
define a subset of regular nilpotent orbits whose regular germs will contribute to the geo-
metric multiplicity. This will be done in Section 6 by using the conjugacy classes in the
tangent space of G=H .

Secondly, we need to define the support (i.e. a subset of semisimple conjugacy classes
of H.F /) of the geometric multiplicity. In the finite group case, the support contains all
conjugacy classes of H . But this will not be the case for spherical varieties over local
fields. As we will see in Section 4, the geometric multiplicity is only supported on those
“elliptic conjugacy classes” t 2 H.F / satisfying the following two conditions:

� The centralizers of t in G and H , denoted by .Gt ; Ht /, form a minimal spherical
variety (we refer the reader to Section 2.6 for the definition).

� The group Gt is quasi-split over F .

The quasi-split condition provides the existence of regular germs since the existence of
regular nilpotent orbits is equivalent to the group being quasi-split. On the other hand, the
minimal spherical variety condition on the centralizer .Gt ; Ht / ensures that the “homo-
geneous degree” of the spherical varietyX DG=H near t (which is equal to the dimension
ofHt minus the dimension of the center) is equal to the homogeneous degree of the regu-
lar germs of the Harish-Chandra characters near t (which is equal to the dimension of the
maximal unipotent subgroup of Gt ). We refer the reader to Section 4 for details.

Thirdly, in the finite group case, we normalize the character �� by the number 1
jZH .x/j

.
For general spherical varieties, we would need an extra number d.G;H; F / which char-
acterizes how the G. NF /-conjugacy classes (i.e. stable conjugacy classes) in the tangent
space of G=H decompose into H.F /-conjugacy classes. We refer the reader to Section 5
for details.

After we have solved the three difficulties above, we are able to write down the defin-
ition of mgeom.�; �/ (and hence Igeom.f /) for all spherical varieties in Section 7. We will
state the conjectural multiplicity formula in Conjecture 7.4. In Section 8, we will show
that for all the known cases, our definitions ofmgeom.�; �/ are the same as the ones in the
known multiplicity formulas.
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Theorem 1.2. Assume that F is p-adic. For Whittaker models, Gan–Gross–Prasad mod-
els, Ginzburg–Rallis models, Galois models, or Shalika models, the geometric multipli-
cities defined in Definition 7.1 are the same as the ones in the multiplicity formulas that
have been proved. In particular, Conjecture 7.4 holds for all these models.

Our proof of Theorem 1.2 uses some Lie algebra version of the local trace formula for
Gan–Gross–Prasad models and Ginzburg–Rallis models, as well as a relation between the
Shalika germs and Kostant sections proved by Kottwitz (see Lemma 6.10). In general if
one can extend Lemma 6.10 to the Archimedean case, then we can also prove Theorem 1.2
when F D R (the case when F D C is trivial).

Remark 1.3. Unlike the finite group case, we do not expect the multiplicity formula
m.�; �/ D mgeom.�; �/ to hold for all irreducible smooth representations of G.F /. For
example, in the case when .G;H/ D .GL2;GL1/, the geometric multiplicity is just the
regular germ of �� at the identity element and one can show that the multiplicity formula
holds for all generic representations of G.F / D GL2.F /. However, it is easy to see that
the multiplicity formula fails for nongeneric (i.e. finite-dimensional) representations of
GL2.F /.

In general, the multiplicity formula should always hold for all supercuspidal rep-
resentations. When the spherical pair is tempered, it should hold for all discrete series
representations and for almost all tempered representations. When the spherical pair is
strongly tempered, it should hold for all tempered representations. We refer the reader to
Definition 7.3 for the definitions of tempered and strongly tempered spherical varieties.

Moreover, as observed by Prasad [17], if we want to make the multiplicity formula
hold for all irreducible smooth representations of G.F /, we need to replace the multipli-
city m.�; �/ by the Euler–Poincaré pairing EP.�; �/. We refer the reader to Section 7 for
details.

Finally, all of our discussion so far also makes sense when � is a finite-dimensional
representation of H.F /. In particular, we can define the geometric multiplicity and for-
mulate the conjectural multiplicity formula when � is a finite-dimensional representation
of H.F /. When F is p-adic, this is not interesting since characters are the only irredu-
cible finite-dimensional representations of H.F /. The case we are interested in is when
F D R and H.R/ D K is a maximal connected compact subgroup of G.R/. In this case,
our definition of the geometric multiplicity mgeom.�; �/ gives a conjectural multiplicity
formula m.�; �/ D mgeom.�; �/ for K-types of all irreducible smooth representations of
G.R/ (note that since H.R/ is compact, we have m.�; �/ D EP.�; �/ for all �). We
refer the reader to Sections 7.3 for more details. In Sections 8 and 9, we will prove this
conjectural multiplicity formula for K-types for GLn.R/ and for all complex reductive
groups.

Theorem 1.4. The conjectural multiplicity formula for K-types .i.e. Conjecture 7.12/
holds when

(1) G.F / D GLn.R/,
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(2) G D ResC=RH is a complex reductive group.

In particular, Conjecture 7.4 holds for these two cases.

The key ingredient in our proof of Theorem 1.4 is to show that both the multiplicities
and the geometric multiplicities behave nicely under parabolic induction. For the multi-
plicities, this follows from the Iwasawa decomposition and the reciprocity law. For the
geometric multiplicities, it follows from some formulas for the Harish-Chandra charac-
ters of induced representations (Proposition 2.7). After we have proved these facts, we
can use induction to finish the proof of Theorem 1.4. The upshot is that when G D GLn
(n > 2) or when G D ResC=RH is a nonabelian complex reductive group, the Grothen-
dieck group of finite length smooth representations of G.R/ is generated by the induced
representations.

1.2. Organization of the paper

The paper is organized as follows: In Section 2, we introduce basic notation and conven-
tions used in this paper. In Section 3, we will use some lower rank examples to explain and
motivate our definition of the geometric multiplicity. In Section 4, we will define a sub-
set of conjugacy classes of H.F /, which is the support of the geometric multiplicity. In
Section 5, we introduce a constant d.G;H; F / associated to minimal spherical varieties.
It characterizes how the G. NF /-conjugacy classes in the tangent space of G=H decom-
pose into H.F /-conjugacy classes. In Section 6, we define a subset of regular nilpotent
orbits associated to minimal spherical varieties. The regular germs of these nilpotent orbits
will contribute to the geometric multiplicity. Then in Section 7, combining the work of
Sections 4–6, we will define the geometric multiplicity mgeom.�; �/ and the geometric
expansion of the trace formula Igeom.f / for general spherical varieties. In Section 8, we
will show that for all the known cases, our definitions are the same as the ones in the
known multiplicity formulas. Finally, in Sections 9 and 10, we will prove the conjectural
multiplicity formula for K-types for GLn.R/ and for all complex reductive groups.

2. Preliminaries

2.1. Notation

Let F be a local field of characteristic 0, and  W F ! C� be a nontrivial additive charac-
ter. Let G be a connected reductive group defined over F , g be the Lie algebra of G, ZG
be the center of G, and AG.F / be the maximal split torus of ZG.F /. We use Gss, Greg

(resp. gss, greg) to denote the sets of semisimple and of regular semisimple elements of G
(resp. g). For x 2 Gss (resp. X 2 gss), let ZG.x/ (resp. ZG.X/ D GX ) be the centralizer
of x (resp. X ) in G and let Gx be the neutral component of ZG.x/. Similarly, for any
abelian subgroup T of G, let ZG.T / be the centralizer of T in G and let GT be the neut-
ral component of ZG.T /. We say x 2 Greg.F / is elliptic if Gx.F / is a maximal elliptic
torus ofG.F / (i.e.Gx.F /=ZG.F / is compact). We useGell.F / to denote the set of regu-
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lar semisimple elliptic elements of G.F /. Finally, for x 2 Gss.F / (resp. X 2 gss.F /), let
DG.x/ D jdet .1 � Ad.x//jg=gx jF (resp. DG.X/ D jdet .Ad.X//jg=gX jF ) be the Weyl
determinant where j jF is the normalized absolute value on F .

We say a subset � � G.F / (resp. ! � g.F /) is G-invariant if it is invariant under
G.F /-conjugation. For any subset��G.F / (resp. ! � g.F /), we define theG-invariant
subset

�G WD ¹g�1g j g 2 G.F /;  2 �º; !G WD ¹g�1g j g 2 G.F /;  2 !º:

We say aG-invariant subset� ofG.F / (resp. ! of g.F /) is compact modulo conjugation
if there exists a compact subset � ofG.F / (resp. g.F /) such that���G (resp. ! ��G).
AG-domain onG.F / (resp. g.F /) is an open subset ofG.F / (resp. g.F /) invariant under
G.F /-conjugation.

Finally, we fix a minimal Levi subgroup (resp. parabolic subgroup) M0.F / (resp.
P0.F / D M0.F /N0.F /) of G.F /. We say a parabolic subgroup of G.F / is standard if
it contains P0.F /. We say a Levi subgroup of G.F / is standard if it is a Levi subgroup
of a standard parabolic subgroup and it contains M0.F /. For two Levi subgroups L1.F /
and L2.F / of G.F /, we say that L1.F / contains L2.F / up to conjugation if there exists
g 2 G.F / such that L2.F / � gL1.F /g�1.

2.2. Useful function spaces

Let C1c .G.F // be the space of smooth compactly supported functions on G.F /. We use
C.G.F // to denote the Harish-Chandra–Schwartz space ofG.F / (see [4, Section 1.5] for
details). On the Lie algebra level, let C1c .g.F // (resp. �.g.F //) be the space of smooth
compactly supported functions (resp. Schwartz functions) on g.F /. When F is p-adic,
we have C1c .g.F // D �.g.F //.

Let C1c;scusp.G.F // � C
1
c .G.F // be the subspace of strongly cuspidal functions

in C1c .G.F //. Similarly we can define the spaces Cscusp.G.F //; C
1
c;scusp.g.F //; and

�scusp.g.F //. We refer the reader to [4, Section 5] for the definition and basic proper-
ties of strongly cuspidal functions. We say a function f 2 C.G.F // is a cusp form if all
right translations of f are also strongly cuspidal. We use ıC.G.F // to denote the space
of cusp forms on G.F /.

Finally, we can define the above function spaces with central character. For a unitary
character � ofZG.F /, let C1c .G.F /;�/ be the Mellin transform of the spaceC1c .G.F //
with respect to �. Similarly, we can also define the spaces C.G.F /;�/; C1c;scusp.G.F /;�/;

Cscusp.G.F /; �/; and ıC.G.F /; �/.

2.3. Representations

When F is p-adic, we say a representation � of G.F / is smooth if for every v 2 � , the
function

f W G.F /! �; f .g/ D �.g/v;
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is locally constant. When F is Archimedean, we say a representation � of G.F / is irre-
ducible smooth (resp. finite length smooth) if it is an irreducible (resp. finite length)
Casselman–Wallach representation of G.F /. We say a finite length smooth representa-
tion � of G.F / is an induced representation if there exists a proper parabolic subgroup
P DMN ofG and a finite length smooth representation � ofM.F / such that � D IGP .�/.
Here IGP .�/ is the normalized parabolic induction.

We use R.G/ to denote the Grothendieck group of finite length smooth representa-
tions of G.F /, and we write R.G/ind for the subspace of R.G/ generated by the induced
representations. The following proposition will be used in the proof of Theorem 1.4.

Proposition 2.1. Assume that F DR. IfGDGLn with n> 2 orGDResC=RH whereH
is a connected reductive group defined over R that is not abelian, then R.G/DR.G/ind.
In other words, R.G/ is generated by the induced representations.

Proof. This follows from the fact that Gell.R/ D ; when G D GLn (n > 2) or when
GDResC=RH whereH is a connected reductive group defined over R that is not abelian.
More specifically, since Gell.R/ D ;, G.R/ does not have any elliptic representations.
This implies that all tempered representations of G.R/ are generated by induced repres-
entations. Together with the Langlands classification, we get R.G/ D R.G/ind.

2.4. Quasi-characters and germ expansions

We fix a nondegenerate, symmetric, G-invariant bilinear form h ; i (i.e. the Killing form)
on g. For any complex valued Schwartz function f on g.F /, we define its Fourier trans-
form Of (which is also a Schwartz function on g.F /) to be

Of .X/ D

Z
g.F /

f .Y / .hX; Y i/ dY

where dY is the selfdual Haar measure on g.F / such that OOf .X/ D f .�X/.
Let Nil.g.F // be the set of nilpotent orbits of g.F / and Nilreg.g.F // be the set of

regular nilpotent orbits of g.F /. In particular, Nilreg.g.F // is empty unlessG.F / is quasi-
split. For every O 2 Nil.g.F // and f 2 �.g.F //, we use JO.f / to denote the nilpotent
orbital integral of f associated to O. Harish-Chandra proved that there exists a unique
smooth function Y 7! Oj .O; Y / on greg.F /, which is invariant under G.F /-conjugation,
and locally integrable on g.F /, such that for every f 2 �.g.F //, we have

JO. Of / D

Z
g.F /

f .Y / Oj .O; Y / dY:

On the other hand, for X 2 greg.F / and f 2 �.g.F //, let JG.X; f / be the orbital
integral. Harish-Chandra proved that there exists a unique smooth function Y 7! Oj .X;Y /
on greg.F /, which is invariant under G.F /-conjugation, and locally integrable on g.F /,
such that for every f 2 �.g.F //, we have

JG.X; Of / D

Z
g.F /

f .Y / Oj .X; Y / dY:
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Definition 2.2. Assume that F is p-adic. Let � be a smooth function on Greg.F / that is
invariant underG.F /-conjugation. We say � is a quasi-character if for every x 2Gss.F /,
there is a good neighborhood !x of 0 in gx.F /, and for every O 2 Nil.gx.F //, there
exists c�;O.x/ 2 C such that

�.x exp.X// D
X

O2Nil.gx.F //

c�;O.x/ Oj .O; X/

for every X 2 !x;reg. The coefficients ¹c�;O.x/ j O 2 Nil.gx.F //º (resp. ¹c�;O.x/ j O 2
Nilreg.gx.F //º) are called the germs (resp. regular germs) of � at x.

We refer the reader to [21, Section 3] for the definition of good neighborhoods. Sim-
ilarly, we can define quasi-characters on a Lie algebra.

Definition 2.3. Assume that F is p-adic. Let � be a smooth function on greg.F / that is
invariant under G.F /-conjugation. We say it is a quasi-character on g.F / if for every
X 2 gss.F /, there exists an open GX -invariant neighborhood !X � gX .F / of 0, and for
every O 2 Nil.gX .F //, there exists c�;O.X/ 2 C such that

�.X C Y / D
X

O2Nil.gX .F //

c�;O.X/ Oj .O; Y /

for every Y 2 !X;reg.

When F is Archimedean, we refer the reader to [4, Sections 4.2–4.4] for the definition
of quasi-characters. In this case, the germ expansions become

DG.x exp.X//1=2�.x exp.X//

D DG.x exp.X//1=2
X

O2Nilreg.gx.F //

c�;O.x/ Oj .O; X/CO.jX j/;

DG.X C Y /1=2�.X C Y /

D DG.X C Y /1=2
X

O2Nilreg.gX .F //

c�;O.X/ Oj .O; Y /CO.jY j/:

The most important examples of quasi-characters on G.F / are the Harish-Chandra
characters of finite length smooth representations of G.F /. Examples of quasi-characters
on g.F / are the functions Oj .X; �/ (X 2 greg.F /) and Oj .O; �/ (O 2 Nil.g.F //) defined
above.

Definition 2.4. For X 2 greg.F /, we use �O.X/ (O 2 Nil.g.F // in the p-adic case and
O 2 Nilreg.g.F // in the Archimedean case to denote the germ of the quasi-character
Oj .X; �/ at 0 2 g.F /.

The germs �O.X/ are called Shalika germs and we have the germ expansions

Oj .X; Y / D
X

O2Nil.g.F //

�O.X/ Oj .O; Y /; F p-adic;
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and

DG.X C Y /1=2 Oj .X; Y /

D DG.X C Y /1=2
X

O2Nilreg.g.F //

�O.X/ Oj .O; Y /CO.jY j/; FArchimedean;

for Y 2 greg.F / close to 0.
Finally, for f 2 Cscusp.G.F // (resp. f 2 �scusp.g.F //), let �f be the quasi-character

onG.F / (resp. g.F /) defined via the weighted orbital integrals of f . For f2�scusp.g.F //,
let O�f D � Of be the Fourier transform of �f . We refer the reader to [4, Sections 5.2 and 5.6]
for details.

2.5. Regular germs under parabolic induction

Let � be a finite length smooth representation of G.F / and let �� be its Harish-Chandra
character.

Definition 2.5. For x 2 Gss.F /, define

c�.x/ D

´
1

jNilreg.gx.F //j

P
O2Nilreg.gx.F //

c�� ;O.x/ if Nilreg.gx.F // ¤ ;I

0 if Nilreg.gx.F // D ;:

Remark 2.6. (1) The set Nilreg.gx.F // is nonempty if and only if Gx.F / is quasi-split.

(2) For x 2 Greg.F /, c�.x/ is just ��.x/.

(3) If Nilreg.gx.F // only contains a unique element Ox , then c�.x/ D c�� ;Ox .x/.

Let P DMN be a parabolic subgroup ofG, � be a finite length smooth representation
of M.F /, and � D IGP .�/ be the normalized parabolic induction. For all x 2 Gss.F /, let
XM .x/ be a set of representatives for the M.F /-conjugacy classes of elements in M.F /
that are G.F /-conjugate to x. The following result was proved in [4, Proposition 4.7.1];
it gives the behavior of c�.x/ under parabolic induction.

Proposition 2.7. For all x 2 Gss.F /,

DG.x/1=2c�.x/

D jZG.x/.F / W Gx.F /j
X

y2XM .x/

jZM .y/.F / WMy.F /j
�1DM .y/1=2c� .y/:

In particular, c�.x/ D 0 if the set XM .x/ is empty.

Remark 2.8. When G D GLn or when x 2 Greg.F /, the numbers jZG.x/.F / W Gx.F /j
and jZM .y/.F / WMy.F /j are always equal to 1. Hence the equality above becomes

DG.x/1=2c�.x/ D
X

y2XM .x/

DM .y/1=2c� .y/:
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2.6. Spherical subgroups

LetH �G be a connected closed subgroup also defined over F . We say thatH is a spher-
ical subgroup if there exists a Borel subgroup B of G (not necessarily defined over F
since G.F / may not be quasi-split) such that BH is Zariski open in G. Such a Borel
subgroup is unique up to H. NF /-conjugation. If this is the case, then we say .G;H/ is a
spherical pair and X D G=H is a spherical variety of G.

From now on, we assume that H is a spherical subgroup. We say the spherical pair
.G;H/ is minimal if the stabilizers of all open Borel orbits are finite modulo the center.
In other words, B \H=ZG \H is finite for all Borel subgroups B � G with BH open
in G. Examples of minimal spherical varieties are Whittaker models, Gan–Gross–Prasad
models, Ginzburg–Rallis models, and all split symmetric spaces. The following lemma
follows from the definition of minimal spherical pairs.

Lemma 2.9. Assume that .G; H/ is a spherical pair. Let B � G be a Borel subgroup.
Then dim.H/� dim.ZG \H/� dim.G/� dim.B/. Moreover, equality holds if and only
if .G;H/ is minimal. In other words, .G;H/ is minimal if and only if the dimension of
H=.H \ZG/ is equal to the dimension of the maximal unipotent subgroup of G.

Definition 2.10. Let P D MN be a proper parabolic subgroup of G. For a character
� W N.F /! C� of N.F /, we use M� to denote the neutral component of the stabilizer
of � in M (under the adjoint action). For m 2 M.F /, let m� be the character of N.F /
defined by m�.n/ D �.m�1nm/. We say � is a generic character if dim.M�/ is minimal,
i.e. dim.M�/ � dim.M�0/ for any characters � 0 W N.F /! C� of N.F /.

It is easy to see that if � is a generic character, so is m� for all m 2M.F /. Moreover,
there are finitely many generic characters of N.F / up to M.F /-conjugation (which are
in bijection with the open M.F /-orbits in n.F /=Œn.F /;n.F /� under the adjoint action).

In this paper, we restrict ourselves to the same setting as in [19]. In other words, we
consider two types of spherical varieties.

� The reductive case, i.e. H is reductive.

� The Whittaker induction of the reductive case: there exists a parabolic subgroup P D
MN of G, and a generic character � W N.F /! C� such that H D H0 Ë N where
H0 D M� � M is the neutral component of the stabilizer of � in M and H0 is a
reductive spherical subgroup of M .

In this case, we let G0 D M and we say that .G;H/ is the Whittaker induction of
.G0;H0; �/. IfH is already reductive, we just let .G0;H0; �/D .G;H; 1/. It is easy to
see that .G;H/ is minimal if and only if .G0;H0/ is.

Remark 2.11. In general the stabilizer of a generic character is not necessarily reductive
(e.g. the parabolic subgroup of GL3 whose Levi subgroup is GL2 � GL1) and also not
necessarily a spherical subgroup of M (e.g. the parabolic subgroup of GL9 whose Levi
subgroup is GL3 � GL3 � GL3).
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We use WG to denote the Weyl group of G. NF /. When H is reductive, we use
WX to denote the little Weyl group of the spherical variety X D G=H (defined in [11,
pp. 12–13]). The little Weyl group WX can be identified with a subgroup of WG . Finally,
let ZG;H D ZG \H and AG;H .F / be the maximal split torus of ZG;H .F /.

3. Some lower rank examples

In this section, we will give some lower rank examples to motivate and explain the defin-
ition of the geometric multiplicity in the next four sections.

Assume that F is a p-adic field. LetE DF.
p
ı/ be a quadratic extension of F , x 7! Nx

be the conjugation map on E and NE=F (resp. trE=F ) be the norm map (resp. trace map).
Let U2.F / � GL2.E/ be the quasi-split unitary group of two variables defined by

U2.F / D ¹g 2 GL2.E/ j Ngtw2g D w2º; w2 D

�
0 1

1 0

�
:

The Lie algebra of U2.F / has two regular nilpotent orbits OC and O� with�
0 i

0 0

�
2 OC;

�
0 i˛

0 0

�
2 O�:

Here i D
p
ı and ˛ 2 F � � Im.NE=F /. We are going to discuss the multiplicity formulas

for five spherical pairs related to the group U2.F /.

Case 1: Let G.F / D U2.F / and

H.F / D

²�
1 ix

0 1

� ˇ̌̌̌
x 2 F

³
be a maximal unipotent subgroup of G.F /. Up to conjugation, there are two generic
characters on the unipotent group H.F / given by

�C

��
1 ix

0 1

��
D  .x/; ��

��
1 ix

0 1

��
D  .˛x/

where  is a fixed additive character of F . This gives us two spherical pairs .G;H; �C/
and .G; H; ��/. The model .G; H; �C/ (resp. .G; H; ��/) is the Whittaker induction of
.G0;H0; �C/D .T; 1; �C/ (resp. .G0;H0; ��/D .T; 1; ��/) where T is the diagonal torus
of G. They are the Whittaker models of U2.F /. For an irreducible smooth representa-
tion � of G.F /, we use mC.�/ (resp. m�.�/) to denote the multiplicity with respect to
the pair .G;H; �C/ (resp. .G;H; ��/), i.e.

mC.�/ D dim.HomH.F /.�; �C//; m�.�/ D dim.HomH.F /.�; ��//:

The multiplicity formula in this case was proved by Mœglin and Waldspurger [16, Corol-
lary I.17]:

mC.�/ D mC;geom.�/ WD c�� ;OC ; m�.�/ D m�;geom.�/ WD c�� ;O�

for all irreducible smooth representations of G.F /.
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Case 2: Let G.F / D U2.F / � U2.F / and

H.F / D ¹.h; h/ j h 2 U2.F /º ' U2.F /:

Given an irreducible smooth representation � D �1 ˝ �2 of G.F /, let

m.�/ D dim.HomH.F /.�; 1//

be the multiplicity for the model .G;H/. Assume that the central character of � is trivial
on ZH .F / (otherwise the multiplicity is trivially zero). The multiplicity formula in this
case was proved by Clozel [6, Theorem 3]:

m.�/ D mgeom.�/ WD
X
T

jW.H; T /j�1
Z
T.F /

DH .t/��.t/ dt

for all discrete series representations of G.F /. Here T runs over a set of representatives
of maximal elliptic tori of H.F /, and W.H; T / is the Weyl group. It is easy to see that
this formula will fail for some non-discrete-series representations.

Remark 3.1. Note that for all the other cases in this section,H is abelian, and that is why
the Weyl group and the Wyel determinant do not show up in the geometric multiplicities
(because both are trivial in the abelian case).

Case 3 (a): Let G.F / D U2.F / and H.F / ' U1.F / � U1.F / be a maximal elliptic
torus of G.F /. The model .G; H/ is a special case of the unitary Gan–Gross–Prasad
models. For an irreducible smooth representation � of G.F / and a character � of H.F /,
we use m.�; �/ to denote the multiplicity with respect to the pair .G;H/. Assume that
the central character of � is equal to the restriction of � to ZG.F / � H.F / (otherwise
the multiplicity is trivially zero). The multiplicity formula in this case was proved by
Beuzart-Plessis [4, Theorem 11.2.2]:

m.�; �/ D mgeom.�; �/ WD
c�� ;OC C c�� ;O�

2
C

Z
H.F /

��.t/ dt

for all tempered representations ofG.F /. Moreover, one can easily show that this formula
actually holds for all irreducible smooth representations of G.F /.

Case 3 (b): If we replace the quasi-split unitary group U2.F / in Case 3 (a) by the non-
quasi-split unitary group U 02.F /, then the Lie algebra ofG.F / will no longer have regular
nilpotent orbit (because the group is not quasi-split). The multiplicity formula in this case
(also proved by Beuzart-Plessis [4, Theorem 11.2.2]) is

m.�; �/ D mgeom.�; �/ WD

Z
H.F /

��.t/ dt

for all irreducible smooth representations of G.F /.

Case 4: Let G.F / D U2.F / and H.F / ' GL1.E/ be a maximal quasi-split torus
ofG.F /. For an irreducible smooth representation � ofG.F / and a character � ofH.F /,
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we usem.�;�/ to denote the multiplicity with respect to the pair .G;H/. Assume that the
central character of � is equal to the restriction of � to ZG.F / � H.F / (otherwise the
multiplicity is trivially zero). The multiplicity formula in this case can be proved by an
argument that is similar to (but much easier than) the argument for the unitary Ginzburg–
Rallis model case in [25]:

m.�; �/ D mgeom.�; �/ WD c�� ;OC C c�� ;O� D 2 �
c�� ;OC C c�� ;O�

2

for all irreducible infinite-dimensional representations of G.F /. On the other hand, it is
easy to see that this formula will fail for some finite-dimensional representations ofG.F /.

For the rest of this section, by using the examples above, we will explain the obstacles
in the definition of the geometric multiplicity.

The first difficulty is the support of the geometric multiplicity. In Cases 1 and 3 (a), the
geometric multiplicity is supported on all semisimple conjugacy classes ofH.F /; in Case
2, it is only supported on the regular elliptic conjugacy classes of H.F /; in Case 3 (b),
it is supported on all semisimple conjugacy classes of H.F / except the center H.F / \
ZG.F /; in Case 4, it is only supported on the center H.F / \ZG.F /.

In general, the geometric multiplicity will be supported on certain “elliptic” conjugacy
classes x ofH.F /whose centralizers inG andH satisfying the following two conditions:

(1) The group Gx is quasi-split over F .

(2) The pair .Gx ;Hx/ is a minimal spherical pair.

For Cases 1 and 3 (a), it is easy to see that all the conjugacy classes satisfy these con-
ditions. For Case 2, H.F / has three types of conjugacy classes: the center, regular non-
elliptic conjugacy classes, and regular elliptic conjugacy classes. For x 2ZH .F /, we have
.Gx ;Hx/D .G;H/, which is not a minimal spherical pair. That is why the geometric mul-
tiplicity is not supported on the central elements. For a regular non-elliptic conjugacy class
x 2H.F /, the centralizer .Gx ;Hx/ is a minimal spherical pair, but x is not “elliptic” and
hence the geometric multiplicity is not supported on it. As a result, for Case 2, the geomet-
ric multiplicity is only supported on the regular elliptic conjugacy classes. For Case 3 (b),
all conjugacy classes of H.F / satisfy the “elliptic” condition and the minimal spherical
pair condition. But when x belongs to the centerH.F /\ZG.F /, Gx.F / D G.F / is not
quasi-split. Hence the geometric multiplicity is supported on all semisimple conjugacy
classes of H.F / except the center H.F / \ ZG.F /. Finally, for Case 4, all conjugacy
classes of H.F / satisfy the quasi-split condition and the minimal spherical pair condi-
tion. But if the conjugacy class does not belong to the center H.F / \ZG.F /, it violates
the “elliptic” condition and that is why the geometric multiplicity is only supported on the
center H.F / \ZG.F /.

We refer the reader to Section 4 for a detailed definition of the support of the geometric
multiplicity.

The second difficulty is to determine which regular germs will contribute to the geo-
metric multiplicity. In Cases 3 (a) and 4, the germs associated to both regular nilpotent
orbits of g.F / contribute to the geometric multiplicity. On the other hand, in Case 1, only
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one of regular germs contributes to the geometric multiplicity. This will be discussed in
Section 6. We will use the conjugacy classes in the tangent space of the spherical variety
X D G=H and the Kostant sections associated to regular nilpotent orbits to determine
which regular germs will contribute to the geometric multiplicity. Roughly speaking, the
regular germ associated to a regular nilpotent orbit will contribute to the geometric mul-
tiplicity if and only if certain conjugacy classes in the Kostant section associated to this
nilpotent orbit are contained in the tangent space of the spherical variety X D G=H . We
refer the reader to Section 6 for more details.

The third obstacle is an extra factor of the regular germs. For Cases 1–3, we just have
the regular germs (or the average of the regular germs in Case 3 (a)); while for Case 4,
we have the average of the regular germs times 2. So this extra factor is equal to 1 for
Cases 1–3, and to 2 for Case 4. This extra factor is related to the number of open Borel
orbits in G.F /=H.F /, the Weyl group of G. NF / and the little Weyl group of the spherical
varietyX DG=H . Another way to explain this factor is that it characterizes how the stable
conjugacy classes in the tangent space of X decompose into rational H.F /-conjugacy
classes. We refer the reader to Section 5 for more details.

Lastly, as shown in the examples above, the multiplicity formula may not work for
all the smooth irreducible representations, sometimes it only works for discrete series or
tempered representations. This is related to certain analytic behaviors of spherical variet-
ies and we refer the reader to Section 7.1 for more details.

4. The support of geometric multiplicity

In this section, let .G; H/ be a spherical pair which is the Whittaker induction of the
reductive spherical pair .G0;H0; �/. Recall that whenH is reductive, we let .G0;H0; �/D
.G; H; 1/. We are going to define a subset of semisimple conjugacy classes of H0.F /,
which will be the support of the geometric multiplicity. We will also define a measure on
this subset.

Definition 4.1 (the support of geometric multiplicity). Let �.G;H/ be the set ofH0.F /-
conjugacy classes x 2 H0.F / satisfying the following three conditions:

(1) (elliptic condition) The quotient .AGx .F / \H.F //=AG;H .F / is compact.

(2) The pair .Gx ;Hx/ is a minimal spherical pair.

(3) The group Gx.F / is quasi-split.

The set �.G;H/ is the support of the geometric multiplicity.

Remark 4.2. For a semisimple conjugacy class x 2 H0.F /, the distribution of the local
trace formula associated to .G;H/ has homogeneous degree dim.Hx/� dim.ZGx \Hx/
near x. Meanwhile, the germ expansion in Section 2.4 tells us that near x0, every Harish-
Chandra character is a combination of distributions with homogeneous degrees less than
or equal to the dimension of the maximal unipotent subgroup of Gx , while equality only
occurs when Gx.F / is quasi-split and the distributions are associated to the regular nil-
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potent orbits. As a result, near x, the homogeneous degree of the distribution of the local
trace formula associated to .G;H/ will always be greater than or equal to the homogen-
eous degrees of the distributions in the germ expansions of the Harish-Chandra characters,
and equality only occurs when the pair .Gx ; Hx/ is minimal, Gx.F / is quasi-split, and
the distributions are associated to the regular nilpotent orbits (see Lemma 2.9). That is
why we have the second and third conditions in the definition. That is also why only the
regular germs of Harish-Chandra characters will contribute to the geometric multiplicity.

In order to define a measure on �.G; H/, we will give an equivalent definition of
�.G; H/. More precisely, we will define �.G; H/ as a union of translations of subtori
of H0.F /. Then we can define a measure on �.G;H/ by using the Haar measures on the
subtori.

Definition 4.3. Let T .G; H/ be the set of all those closed (not necessarily connected)
abelian subgroups T .F / of H0.F / (up to H0.F /-conjugation) that satisfy the following
four conditions.

(1) Every element of T .F / is semisimple and .GT ; HT / is a minimal spherical variety
with GT .F / quasi-split.

(2) T .F / D ZZG.T /.F / \H.F / where ZZG.T /.F / is the center of ZG.T /.F /. In par-
ticular, we have ZG;H .F / � T .F / and AG;H .F / � T ı.F /. Here T ı.F / is the
neutral component of T .F /, which is a subtorus of H0.F /.

(3) The quotient T .F /=ZG;H .F / (or equivalently T ı.F /=AG;H .F /) is compact. This is
equivalent to H.F / \ AGT .F /=AG;H .F / being finite.

(4) There exists t 2 T .F / such that .Gt ;Ht / D .GT ;HT /.

Let T .G;H/ı D ¹T .F / 2 T .G;H/ j T .F / D T ı.F /ZG;H .F /º.

Remark 4.4. Condition (1) in Definition 4.3 is an analogue of conditions (2) and (3)
in Definition 4.1, while condition (3) in Definition 4.3 is an analogue of condition (1)
in Definition 4.1. Condition (4) ensures that T .F / contains no elements of the support
�.G;H/ while (2) ensures that T .F / is large enough to contain all elements of �.G;H/.

For T .F / 2 T .G;H/, there exists a nonempty (this follows from Definition 4.3 (4))
subset C.T;H/ of the component group T .F /=T ı.F / satisfying the following two con-
ditions:

� For  2 C.T;H/, .Gt ;Ht / D .GT ;HT / for almost all t 2 T ı.F /.

� For  2 T .F /=T ı.F / � C.T;H/, .Gt ;Ht / ¤ .GT ;HT / for all t 2 T ı.F /.

Definition 4.5. For T .F / 2 T .G; H/, let TH .F / D
S
2C.T;H/ T

ı.F / � T .F /

� H0.F /. Let TH .F /0 be the Zariski open subset of TH .F / consisting of those elements
t 2 TH .F / such that .Gt ;Ht / D .GT ;HT /.

Remark 4.6. For T .F / 2 T .G; H/ı, .Gt ; Ht / D .GT ; HT / for almost all t 2 T .F /,
which implies that TH .F / D T .F /.



C. Wan 3644

Lemma 4.7. The support �.G; H/ of the geometric multiplicity is equal toS
T.F /2T .G;H/ TH .F /

0.

Proof. From the definition it is clear that TH .F /0 is contained in �.G;H/ for all T .F / 2
T .G;H/. For the other direction, given t 2 �.G;H/, let T .F / D ZZG.t/.F / \H.F /.
Then it is easy to see that T .F / 2 T .G;H/ and t 2 TH .F /0. This proves the lemma.

Remark 4.8. The lemma above gives us a natural measure on �.G;H/. More specific-
ally, since TH .F / is a finite union of translations of subtori T ı.F /, the Haar measure
on T ı.F / induces a measure on TH .F / such that TH .F / � TH .F /0 has measure zero
(because TH .F /0 is a Zariski open subset of TH .F /). This gives us a measure on TH .F /0

and hence a measure on �.G;H/.
For example, for the model .G; H/ D .U2 � U2; U2/ in the previous section, the

geometric multiplicity is supported on the elliptic regular semisimple conjugacy classes
ofH.F /. The set T .G;H/ is equal to Tell.H/, a set of representatives of maximal elliptic
tori of H.F /. For T .F / 2 T .G;H/, we have TH .F / D T .F /, and TH .F /0 D Treg.F /

is the set of regular semisimple elements in T .F / (which is a Zariski open subset). The
measure on TH .F /0 D Treg.F / is induced from the Haar measure on the torus T .F / D
T ı.F / D TH .F /.

Remark 4.9. For t 2 H0;ss.F /, .Gt ; Ht / is the Whittaker induction of .G0;t ; H0;t ; �/.
Hence �.G; H/ D �.G0; H0/; T .G; H/ D T .G0; H0/ and TH .F / D TH0.F / for all
T .F / 2 T .G; H/ D T .G0; H0/. In other words, the geometric multiplicity of .G; H/
has the same support as the geometric multiplicity of .G0;H0/.

Remark 4.10. When the spherical variety X D G=H has no Type N spherical root (we
refer the reader to [19, Section 3.1] for the definitions of spherical roots and Type N
spherical roots), we expect that (although we cannot prove it at this moment) T .F / D
T ı.F /ZG;H .F / for all T .F / 2 T .G;H/ (i.e. T .G;H/ D T .G;H/ı). In other words,
the geometric multiplicity is essentially supported on some subtori of H0.F /. On the
other hand, when X D G=H has a Type N spherical root, the geometric multiplicity may
be supported on some translations of subtori of H0.F /.

For example, as we will see in Section 9, the geometric multiplicity of the model
.GLn.R/; SOn.R// (which has a Type N spherical root when n > 2) is supported on the
set (not necessarily connected when n > 2)

¹diag.In1 ;�I2n2 ; t / j t 2 T .R/º

where .n1; n2/ runs over the set

I.n1; n2/ WD ¹.n1; n2/ 2 Z�0 j n � n1 � 2n2 is a nonnegative even numberº

and T .R/ is a maximal elliptic torus of SOn�n1�2n2.R/. In particular, when n > 2, the
support of the geometric multiplicity contains some translations of subtori of SOn.R/.
The multiplicity formula for this case will be proved in Section 9.
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5. The constant d.G; H; F / for minimal spherical varieties

In this section, we assume that .G; H/ is a minimal spherical pair with H reductive.
Moreover, we assume that G is quasi-split over F . Then we can find a Borel subgroup
B D TN � G defined over F such that BH is open in G and B \H is finite modulo
the center. The goal of this section is to define a constant positive integer d.G; H; F /
associated to the spherical pair. This constant is the extra factor for the regular germs in
the formula for geometric multiplicity. We will first define this constant using the num-
ber of open Borel orbits and the Weyl groups. Then we will show that this number also
characterizes how the stable conjugacy classes in the tangent space of the spherical variety
X DG=H decompose intoH.F /-conjugacy classes. We will also define another constant
c.G;H;F / which is an analogue of the stabilizer jZH .x/j for the finite group case (1.1).

We use g; z D zg; h; b; t;n to denote the Lie algebras of G;ZG ; H; B; T; N . By our
choice of H and B , we have

h \ b D h \ z; g D hC b:

Let h0 D ¹X 2 h j hX; Y i D 0 for all Y 2 z \ hº and h? D ¹X 2 g j hX; Y i D 0 for all
Y 2 h0º. The space h? can be viewed as the tangent space of the spherical variety G=H
at the identity component 1 �H . We have

h D h0 ˚ .z \ h/; g D h0 ˚ b; g D h? ˚ n:

Let tH be the image of t under the projection map gD h? ˚ n! h?. Then dim.tH /
D dim.t/ � dim.t \ n/ D dim.t/ and we have tH D b \ h?. In particular, tH is inde-
pendent of the choice of T .

Lemma 5.1. If treg \ tH ¤ ;, then H \ B � T . In particular, H \ B is abelian.

Proof. Fix t 2 treg \ tH . Let  2 H \ B . In order to show that  2 T , it is enough to
show that  commutes with t . Since  2 B , we know that  t�1 D t C n for some n 2 n.
Since  2 H and t 2 h?, we know that t C n D  t�1 2 h?. This implies that n D 0.
Hence  commutes with t . This proves the lemma.

Definition 5.2. Let c.G;H;F / be the number of connected components ofB.F /\H.F /.

Lemma 5.3. The number c.G;H;F / is independent of the choice of B .

Proof. Let B D TN and B 0 D T 0N 0 be two Borel subgroups of G defined over F with
BH and B 0H being Zariski open in G. In order to prove the lemma, it is enough to show
that the group B.F / \H.F / is isomorphic to the group B 0.F / \H.F /.

By Lemma 5.1, up to conjugating T (resp. T 0) by an element of N.F / (resp. N 0.F /),
we may assume that B \H � T (resp. B 0 \H � T 0). Since BH and B 0H are Zariski
open in G, there exists h 2 H. NF / such that B D h�1B 0h. Then the morphism

B 0 \H 3 t 7! h�1th 2 B \H
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is an isomorphism. So it is enough to show that for all t 2 B 0.F / \ H.F /, we have
h�1th 2 B.F / \H.F /.

For � 2 Gal. NF=F /, since both B and B 0 are defined over F , we have h�1B 0hD B D
�.h/�1B 0�.h/. This implies that B 0 D h�.h/�1B 0�.h/h�1. Hence h�.h/�1 2 B 0 \H 0

� T 0. Together with the fact that B 0.F / \H.F / � T 0.F /, we have

�.h�1th/ D �.h/�1t�.h/ D h�1.h�.h/�1t�.h/h�1/h D h�1th

for all t 2 B 0.F / \H.F /. This implies that h�1th 2 B.F / \H.F /.

The lemma above shows that the constant c.G; H; F / is well defined, i.e. it only
depends on the groupsG;H and the field F . Now we define the constant d.G;H;F /. We
start with a lemma about the open Borel orbits.

Lemma 5.4. There is a bijection between open orbits in B.F /nG.F /=H.F / and
ker.H 1.F; H \ B/! H 1.F; H//. We use d 0.G; H; F / to denote the number of open
orbits in B.F /nG.F /=H.F /.

Proof. Let X D BH , which is an open subvariety of G. Then open orbits in
B.F /nG.F /=H.F / are just the orbits in B.F /nX.F /=H.F /. Let B.F /nX.F /=H.F /DSl
iD1B.F /iH.F /. For each i , there exist bi 2B. NF / and hi 2H. NF / such that i D bihi .

Then it is easy to see that the map

Gal. NF=F / 3 � 7! b�1i �.bi / D hi�.hi /
�1
2 H \ B

is a cocycle whose image inH 1.F;H \B/ only depends on the orbitB.F /iH.F /. Also
by definition, this cocycle becomes a coboundary in H . This gives a well defined map
from B.F /nX.F /=H.F / to ker.H 1.F; H \ B/! H 1.F; H//. One can easily check
that this map is a bijection.

Definition 5.5. We define

d.G;H;F / D d 0.G;H;F / �
jWG j

jWX j
:

Recall that WX is the little Weyl group of the spherical variety X D G=H and WG is the
Weyl group of G. NF /.

Remark 5.6. Since .G; H/ is a minimal spherical pair, it is wavefront if and only if
WG D WX . If this is the case, we have

d.G;H;F / D d 0.G;H;F / D jker.H 1.F;H \ B/! H 1.F;H//j:

We refer the reader to [19, Section 2.1] for the definition of wavefront spherical varieties.

Remark 5.7. For all the models considered in Section 3, the constant d.G;H;F / is equal
to d 0.G;H; F / since all the models there are symmetric pairs (in particular, wavefront).
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For all the models .G; H/ in Cases 1–3 of Section 3 and for all t 2 �.G; H/, one can
easily see that the spherical pair .Gt ; Ht / has only one open Borel orbit. That is why the
constant d.G;H;F / is equal to 1 for all these cases. For Case 4, the spherical pair .G;H/
has two open Borel orbits corresponding to F �=Im.NE=F / and hence d.G;H; F / D 2
for this case. That is why in the geometric multiplicity for Case 4, we have the average of
the regular germs times 2.

Remark 5.8. Here is an example of a non-wavefront spherical pair. Consider the
pair .G; H/ D .GL3; SL2/. It is easy to see that there is only one open orbit in
B.F /nG.F /=H.F /, i.e. d 0.G; H; F / D 1. On the other hand, the Weyl group WG is
equal to S3 while the little Weyl group WX is equal to S2 (see [12, Table 3]). As a result,
we have

d.G;H;F / D d 0.G;H;F / �
jWG j

jWX j
D 1 � 3 D 3:

The rest of this subsection is to study the relation between the number d.G;H;F / and
the slice representation (i.e. the conjugation action ofH.F / on the tangent space h?.F /).
We are going to show that almost all quasi-split regular semisimple G. NF /-conjugacy
classes (i.e. stable conjugacy classes) in h?.F / break into d.G; H; F /-many H.F /-
conjugacy classes.

Lemma 5.9. There exists a WG-invariant Zariski open subset t0 of treg such that for all
t 2 t0. NF /, the G. NF /-conjugacy class of t in h?. NF / breaks into jWG j

jWX j
-many H. NF /-con-

jugacy classes.

Proof. By quotienting H and G by the center ZG;H D H \ ZG , we may assume that
H \ZG D ¹1º. Then B \H is finite. We denote by X.T / the group of rational charac-
ters of T , and define a D Hom.X.T /;R/. Let X.X/ be the group of T -eigencharacters
on NF .X/.B/ where NF .X/.B/ is the multiplicative group of nonzero B-eigenfunctions
on NF .X/ and NF .X/ is the field of rational functions on X. NF /. Finally, let aX D

Hom.X.X/; R/. Since H \ B is finite, we have a D aX . Let a� D a�X be the dual
of a D aX , and let T �X D h? �H G be the cotangent bundle of X . By [11, Satz 7.1
and Korollar 7.2], we have h? �H D T �X � G D a�X �WX D a� �WX . Meanwhile,
g �G D a� �WG . This proves the lemma.

Remark 5.10. When .G; H/ is a symmetric pair (which is wavefront), we have
WG D WX . By the work of Kostant–Rallis [14, Theorem 1], we can even take t0 to
be treg. Examples of non-wavefront minimal spherical pairs are .SO2nC1; GLn/ and
.GL2nC1;Sp2n/.

Definition 5.11. We define h?;0 to be the set of elements in h? that are G-conjugate to
an element in t0.

Since t0 is Zariski open in treg, we know that h?;0 is a Zariski open subset of h?.
By Lemma 5.9, each G. NF /-conjugacy class in h?;0. NF / breaks into jWG j

jWX j
-many H. NF /-

conjugacy classes.
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Lemma 5.12. For every t 2 tH .F / regular semisimple, the H. NF /-conjugacy class of t
in h?.F / breaks into d 0.G;H;F /-many H.F /-conjugacy classes.

Proof. By conjugating T we may assume that t 2 treg.F /. By Lemma 5.1, we know that
H \ B � T . Let t 0 2 h?.F / be H. NF /-conjugate to t . Then there exists h 2 H. NF / such
that ht 0h�1 D t . For all � 2 Gal. NF=F /, we have

�.h/t 0�.h/�1 D ht 0h�1 D t:

In particular, �.h/h�1 commutes with t . This implies that �.h/h�1 2 H \ T D H \ B .
Then it is easy to see that the map

Gal. NF=F / 3 � 7! �.h/h�1 2 H \ B

is a cocycle whose image in H 1.F;H \ B/ only depends on the H.F /-conjugacy class
of t 0. Also it is easy to see that this cocycle becomes a coboundary in H . This gives a
well defined map from the set of H.F /-conjugacy classes in the H. NF /-conjugacy class
of t in h?.F / to ker.H 1.F; T0/! H 1.F;H//. One can easily check that this map is a
bijection.

Combining the lemmas above, we have proved the following proposition.

Proposition 5.13. For every t 2 h?;0.F /, ifGt .F / is a maximal quasi-split torus ofG.F /
.i.e. the conjugacy class of t is “quasi-split”/, then the G. NF /-conjugacy class of t .i.e.
the stable conjugacy class of t / in h?.F / breaks into d.G;H;F /D d 0.G;H;F /� jWG j

jWX j
-

many H.F /-conjugacy classes.

Remark 5.14. If H \ B � ZG , then by the same argument as above, we can even
show that every G. NF /-conjugacy class (not necessarily quasi-split) in h?;0.F / breaks
into d.G;H;F /-many H.F /-conjugacy classes.

Remark 5.15. In general, if .G; H/ is the Whittaker induction of .G0; H0; �/ with
.G0; H0/ minimal, we can also define an analogue of the space h?.F / by adding the
information of � (see Section 6.4). We will denote this space by „C h?0 .F /C n.F /; we
are still interested in how the stable conjugacy classes in„C h?0 .F /C n.F / decompose
into H.F /-conjugacy classes.

For most known cases, the stable conjugacy classes in „C h?0 .F /C n.F / coincide
with the H.F /-conjugacy classes, i.e. d.G0; H0; F / D 1. In other words, two regular
semisimple elements in „ C h?0 .F / C n.F / are G. NF /-conjugate to each other if and
only if they are H.F /-conjugate to each other. For Whittaker models, this follows from
the theory of Kostant sections ([13, Proposition 19], see also the summary in [15, Sec-
tion 2.4]). For Gan–Gross–Prasad models, it was proved in [21, Section 9] (the orthogonal
case) and in [4, Section 10] (the unitary case). For Ginzburg–Rallis models, it was proved
in [23, Section 8]. This property is crucial in the proofs of the local trace formula for those
cases.
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The only exception among the known cases is the Ginzburg–Rallis model for the
unitary group (see Section 8.3). In that case, the number d.G0;H0;F / is equal to 2, which
means that every G. NF /-conjugacy class in „C h?0 .F /C n.F / breaks into two H.F /-
conjugacy classes. However, although we have proved the multiplicity formula for this
model in [25], it was not proved by the trace formula method. Instead, we first considered
the Ginzburg–Rallis model for the unitary similitude group (where d.G0; H0; F / D 1).
We proved the trace formula and the multiplicity formula for the unitary similitude group
case. Hence we deduced the multiplicity formula for the unitary group case.

Hence if one wants to prove the multiplicity formula and the local trace formula for
general spherical varieties, one of the important steps is to develop a method to deal with
the cases when d.G0; H0; F / ¤ 1. Roughly speaking, we need to “stabilize” the trace
formula.

6. Nilpotent orbits associated to minimal spherical varieties

The goal of this section is to solve the last obstacle in the definition of geometric multipli-
city. We will determine the regular germs that contribute to the geometric multiplicity. Let
.G;H/ be a minimal spherical pair with G.F / quasi-split. The goal is to define a subset
N .G;H; �/ (note that � D 1 when H is reductive) of Nilreg.g.F //.

In Section 6.1, we define a notion of null conjugacy classes which plays a key role
in our definition of N .G; H; �/. Then in Section 6.2, we discuss the conjugacy classes
associated to regular nilpotent orbits (i.e. Kostant sections). Finally, we define N .G;H;�/

in Section 6.3 for the reductive case and in Section 6.4 for the nonreductive case.

6.1. Null conjugacy classes

Definition 6.1. Let L.G;H/ be the set of standard Levi subgroups L.F / of G.F / satis-
fying the following condition:

� There exists T .F / 2 T .G;H/ı with T .F / ¤ ZG;H .F / such that L.F / is conjugate
to the Levi subgroup ZG.AT /.F / where AT .F / is a maximal split torus of GT .F /.

Here the set T .G;H/ı is defined in Section 4.

Definition 6.2. For t 2Greg.F /, let T .F /DGt .F /,AT .F / be the maximal split subtorus
of T .F /, and L.t/.F / D ZG.AT /.F /, which is a Levi subgroup of G.F /. In particu-
lar, t is elliptic regular if and only if L.t/ D G. Similarly we can define L.X/.F / for
X 2 greg.F /.

Definition 6.3. We say X 2 greg.F / is null with respect to H if L.X/ does not contain
any element of L.G;H/ up to conjugation. Clearly, this definition only depends on the
G. NF /-conjugacy class (i.e. the stable conjugacy class) of X . As a result, we say a regular
semisimple conjugacy class (resp. stable conjugacy class) of g.F / is null with respect to
H if every element in it is null with respect to H .
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Remark 6.4. If T .G; H/ı D ¹ZG;H .F /º or ; (e.g. the Whittaker models), the set
L.G;H/ is empty, which implies that every regular semisimple element in g.F / is null
with respect to H .

Remark 6.5. Another way to understand the notion of null is via the quasi-character
� D Oj .X; �/ (X 2 greg.F /) on g.F /, defined in Section 2.4. By the definition of null and
[4, Proposition 4.7.1], if X is null with respect to H , then the regular germ of � at t.F /

is zero for all T .F / 2 T .G;H/ı with T .F / ¤ ZG;H .F /. Here t.F / is the Lie algebra
of T ı.F /.

In Section 8, we are going to use this property of null (together with some local trace
formulas on the Lie algebra) to show that our definitions of the geometric multiplicities
are the same as the ones that have already been proved for Gan–Gross–Prasad models and
Ginzburg–Rallis models.

6.2. Conjugacy classes associated to regular nilpotent orbits

Fix a regular nilpotent orbit O of g.F /. For „ 2 O, by the theory of sl2-triples, there
exists a homomorphism

' W F � ! G.F /

such that for all s 2 F �, we have '.s/„'.s/�1 D s�2„.
Since O is regular, ' is unique up to the center (i.e. two different choices of ' differ

by an element of Hom.F �; ZG.F //). Let N.F / and NN.F / be the unipotent subgroups
of G.F / whose Lie algebras are given by

n.F / D
°
X 2 g.F /

ˇ̌̌
lim
s!0

'.s/X'.s/�1 D 0
±
;

Nn.F / D
°
X 2 g.F /

ˇ̌̌
lim
s!0

'.s/�1X'.s/ D 0
±
:

In particular, „ 2 Nn.F /. Finally, let T .F / be the centralizer of Im.'/ in G.F /. Since
O is regular, we know that N.F / and NN.F / are maximal unipotent subgroups of G.F /,
T .F / is a maximal torus of G.F /, B.F / D T .F /N.F / and NB.F / D T .F / NN.F / are
Borel subgroups of G.F /, and B.F / and NB.F / are opposite to each other.

Remark 6.6. Let us consider an easy example when G D SL2 and „ D
�
0 1
0 0

�
. In this

case, we can define the map ' to be '.a/ D diag.a�1; a/. Then T is the diagonal torus
of SL2, NN is the upper triangular unipotent subgroup of SL2, andN is the lower triangular
unipotent subgroup of SL2.

Remark 6.7. The map

� W N.F /! C�; �.exp.X// D  .h„;Xi/; X 2 n.F /;

is a generic character of N.F /.

Definition 6.8. ForX 2 greg.F /, we say thatX is associated to O ifX isG.F /-conjugate
to an element in „ C b.F /. We say a regular semisimple conjugacy class of g.F / is
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associated to O if all its elements are associated to O. It is easy to see that this definition
does not depend on the choice of „. Moreover, „C b.F / is called the Kostant section
associated to O.

Remark 6.9. By the theory of Kostant sections ([13, Proposition 19], see also the sum-
mary in [15, Section 2.4]), for every stable regular semisimple conjugacy class of g.F /,
there is a unique conjugacy class inside it that is associated to O. Later in Section 8.1,
we will show that for any two different regular nilpotent orbits O1;O2 2 Nilreg.g.F //,
there exists a regular semisimple conjugacy class of g.F / that is associated to O1, but not
to O2.

Lemma 6.10. When F is p-adic, for all regular semisimple conjugacy classes ¹gXg�1 j
g 2 G.F /º of g.F /, �O.X/ D 1 if and only if X is associated to O. Here �O.X/ is the
Shalika germ defined in Section 2.4.

Proof. This was proved by Kottwitz [15, Theorem 5.1 and Corollary 5.2]. See [7, Propos-
ition 4.2] for a different proof.

Remark 6.11. In general we expect that the above lemma also holds when F D R (the
case of F D C is trivial).

6.3. The reductive case

We first consider the case when H is reductive. In the previous section, we have defined
the subspace h?.F / of g.F /.

Definition 6.12. Let N .G;H; 1/ be the subset of Nilreg.g.F // consisting of all elements
O 2 Nilreg.g.F // satisfying the following condition:

� For almost all regular semisimple conjugacy classes of g.F /, if the conjugacy class is
null with respect to H and is associated to O, then this class intersects h?.F /.

We refer the reader to Definition 6.3 for the definition of null.

6.4. The nonreductive case

Now we consider the nonreductive case. Let .G; H/ be the parabolic induction of
.G0; H0; �/. In other words, there exists a parabolic subgroup of P D MN of G, and
a generic character � W N.F /! C� of N.F / such that

� G0 D M and H D H0 Ë N where H0 � G0 D M is the neutral component of the
stabilizer of the character �.

Let NP DM NN be the opposite parabolic subgroup and let„ 2 Nn.F / be the unique element
such that

�.exp.X// D  .h„;Xi/; 8X 2 n.F /:
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Since .G;H/ is minimal, so is .G0; H0/. By the discussion of the reductive case, we
can define the subspace h?0 .F / of g0.F / D m.F / associated to the minimal spherical
pair .G0;H0/.

Definition 6.13. With the notation above, let N .G;H; �/ be the subset of Nilreg.g.F //

consisting of elements O 2 Nilreg.g.F // satisfying the following condition:

� For almost all regular semisimple conjugacy classes of g.F /, if the conjugacy class
is null with respect to H and is associated to O, then this conjugacy class intersects
„C h?0 .F /C n.F /.

Remark 6.14. This definition depends on the generic character � .

Conjecture 6.15. The set N .G;H; �/ is nonempty.

To end this section, we point out that the notion of null is crucial in our definition
of the set N .G; H; �/. The reason is that in most cases, the tangent space h?.F / (or
„ C h?0 .F / C n.F / in the nonreductive case) does not contain all regular semisimple
stable conjugacy classes of g.F /, but we do expect it contains almost all those regu-
lar semisimple stable conjugacy classes that are null with respect to H . Here are some
examples.

For the model
.G.F /;H.F // D .GL2n.R/;SO2n.R//;

the set T .G; H/ı consists of subgroups of the form ˙I2n�2m � .C1/m with 0 � m �
n (see Lemma 9.2). Here C1 is the norm 1 elements in C� identified with a torus of
GL2.R/ via ei� 7!

�
cos � sin �
� sin � cos �

�
. As a result, the set L.G;H/ consists of all standard Levi

subgroups of GL2n.R/ of the form .GL2.R//m � .GL1.R//2n�2m for 1 � m � n. This
implies that a regular semisimple conjugacy class in g.R/ D gl2n.R/ is null with respect
to H if and only if all its eigenvalues are real numbers. On the other hand, by basic linear
algebra, all eigenvalues of a symmetric real matrix are real numbers. This implies that
h?.R/ only contains those conjugacy classes that are null with respect to H . A similar
discussion also holds for the model .G.F /;H.F // D .GL2nC1.R/;SO2nC1.R//.

For the model
.G;H/ D .GL3;SL2/;

the set T .G;H/ı consists of all the maximal elliptic tori of SL2.F / and the trivial torus.
Hence the set L.G;H/ contains all standard Levi subgroups of GL3 of the form GL2 �
GL1. As a result, a regular semisimple conjugacy class in g.F / D gl3.F / is null with
respect toH if and only if all of its eigenvalues belong to F (i.e. its centralizer inG.F / is
a split torus). On the other hand, it is easy to see that a regular semisimple conjugacy class
appears in h?.F / if and only if at least one of its eigenvalues belongs to F (i.e. it is not
elliptic). In particular, h?.F / does not contain all regular semisimple conjugacy classes
of g.F /, but it does contain all those regular semisimple conjugacy classes that are null
with respect to H .
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7. The conjectural multiplicity formula and trace formula

7.1. The multiplicity formula

Let .G; H/ be a spherical variety that is the parabolic induction of the reductive pair
.G0;H0; �/ (as in the previous sections, if .G;H/ is reductive, we just let .G0;H0; �/ D
.G; H; 1/). Let ! W H0.F / ! C� be a unitary character. Then ! ˝ � is a character
on H.F / D H0.F / Ë N.F /. For any irreducible smooth representation � of G.F /, we
define

m.�; ! ˝ �/ WD dim.HomH.F /.�; ! ˝ �//:

Recall that ZG;H .F / D ZG.F / \H.F / and AG;H .F / is the maximal split torus of
ZG;H .F /. Let � be the restriction of the character ! to AG;H .F /. Then we know that
m.�; ! ˝ �/ D 0 unless the central character of � is equal to � on AG;H .F /. We fix a
central character � W ZG.F /! C� with �jAG;H .F / D �. Let Irr.G; �/ be the set of all
those irreducible smooth representations of G.F / whose central character is �. We use
…temp.G;�/ (resp.…disc.G;�/,…cusp.G;�/) to denote the set of tempered representations
(resp. discrete series, supercuspidal representations) in Irr.G; �/.

For T .F / 2 T .G;H/, we have defined TH .F / D
S
2C.T;H/ T

ı.F / in Section 4.
Let dt be the Haar measure on T ı.F /=AG;H .F / such that the total volume is 1 (note
that T ı.F /=AG;H .F / is compact). This induces a measure dt on TH .F /=AG;H .F / DS
2C.T;H/  � T

ı.F /=AG;H .F /.
Now we are ready to define the geometric multiplicity.

Definition 7.1. Let � be a quasi-character onG.F / with central character � (i.e. �.zg/D
�.z/�.g/ for z 2 ZG.F / and g 2 Greg.F /). Define

mgeom.�/ D
X

T.F /2T .G;H/

jW.H0; T /j
�1

�

Z
TH .F /=AG;H .F /

!�1.t/DH .t/
d.G0;T ;H0;T ; F /

jZH0.T /.F / W H0;T .F /j � c.G0;T ;H0;T ; F /

�
1

jN .GT ;HT ; �/j

X
O2N .GT ;HT ;�/

c�;O.t/ dt:

Here dt is the Haar measure on TH .F /=AG;H .F / defined above, the numbers
d.G0;T ; H0;T ; F / and c.G0;T ; H0;T ; F / are defined in Section 5, and W.H0; T / D
NH0.T /.F /=ZH0.T /.F / where NH0.T /.F / is the normalizer of T .F / in H0.F /.

For � 2 Irr.G; �/, we define the geometric multiplicity

mgeom.�; ! ˝ �/ D mgeom.��/:

The number
1

jZH0.T /.F / W H0;T .F /j � c.G0;T ;H0;T ; F /

is an analogue of 1
jZH .x/j

for the finite group case in (1.1).
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Remark 7.2. In general, the integral defining mgeom.�; ! ˝ �/ may not be absolutely
convergent, and one would need to regularize it.

Among all the known cases (i.e. Whittaker models, Gan–Gross–Prasad models,
Ginzburg–Rallis models, Galois models, and Shalika models), the integral defin-
ing mgeom.�; ! ˝ �/ is convergent for Whittaker models (this is trivial), orthogonal
Gan–Gross–Prasad models [21, Proposition 7.3], Ginzburg–Rallis models [23, Proposi-
tion 5.2], Galois models [3, Section 4.1], and Shalika models [5, Lemma 3.2]. For unitary
Gan–Gross–Prasad models, the integral is not convergent and one needs to regularize it
([2, Section 5] and [4, Section 11.1]).

Definition 7.3. When H is reductive, we say .G; H/ is tempered (resp. strongly
tempered) if all matrix coefficients of discrete series (resp. tempered) representations of
G.F / are integrable on H.F /=AG;H .F /. In general, if .G; H/ is the Whittaker induc-
tion of .G0; H0; �/, we say .G;H/ is tempered (resp. strongly tempered) if .G0; H0/ is
tempered (resp. strongly tempered).

Conjecture 7.4. (1) m.�/ D mgeom.�/ for all � 2 …cusp.G; �/.

(2) If .G;H/ is tempered, then m.�/ D mgeom.�/ for all � 2 …disc.G; �/. Moreover, let
d� be the natural measure on the set…temp.G;�/ as defined in [4, Section 2:6]. Then
m.�/ D mgeom.�/ for almost all � 2 …temp.G; �/ .under the measure d�/.

(3) If .G;H/ is strongly tempered, then m.�/ D mgeom.�/ for all � 2 …temp.G; �/.

Remark 7.5. In the last case of the conjecture, we expect that the multiplicity formula
holds not only for all the tempered representations, but also for all representations in
the generic L-packets. Note that we say an L-packet is generic if it contains a generic
representation.

As we said in the introduction, in general, if we want the multiplicity formula to hold
for all irreducible smooth representations (or even all finite length smooth representations)
of G.F /, we need to replace the multiplicity by the Euler–Poincaré pairing. One reason
is that both the Harish-Chandra character and the Euler–Poincaré pairing behave nicely
under short exact sequences, while the multiplicity does not. This was first observed by
Prasad [17]. To be specific, for two smooth (not necessarily finite length) representations
� and � 0 of G.F /, we define the Euler–Poincaré pairing

EPG Œ�; � 0� D
X
i

.�1/i dim.ExtiG Œ�; �
0�/:

Then for a finite length smooth representation � of G.F /, we define (here for simplicity
we assume that the split center AG;H .F / is trivial)

EP.�; ! ˝ �/ D EPG.�; IndGH .! ˝ �//:

Conjecture 7.6. Given a finite length smooth representation � of G.F /, the following
hold:
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(1) The Euler–Poincaré pairing EP.�; ! ˝ �/ is well defined. In other words,
ExtiG.�; IndGH .! ˝ �// is finite-dimensional for all i � 0.

(2) EP.�; ! ˝ �/ D mgeom.�; ! ˝ �/.

When F is p-adic, the first part of the conjecture was proved by Aizenbud and
Sayag [1].

Remark 7.7. When � is supercuspidal, we have ExtiG.�; IndGH .! ˝ �// D 0 for i > 0,
which implies that EP.�; ! ˝ �/ D m.�; ! ˝ �/. That is why the multiplicity formula
m.�; ! ˝ �/ D mgeom.�; ! ˝ �/ should always hold in the supercuspidal case.

Remark 7.8. For the examples in Section 3, the model in Case 2 is tempered but not
strongly tempered; that is why the multiplicity formula only holds for discrete series rep-
resentations. The models in the remaining cases are strongly tempered, so the multiplicity
formula holds for all the representations in the generic L-packets (for U2.F /, a repres-
entation belongs to a generic L-packet if and only if it is infinite-dimensional). For the
Whittaker model in Case 1, the Euler–Poincaré pairing is equal to the multiplicity [17,
Proposition 2.8] and hence the multiplicity formula holds for all irreducible smooth rep-
resentations. For Case 3, the Euler–Poincaré pairing is equal to the multiplicity because
the group H.F / is compact. So the multiplicity formula in this case also holds for all
irreducible smooth representations.

In Section 8, we will show that Conjecture 7.4 holds for Whittaker models, Gan–
Gross–Prasad models, Ginzburg–Rallis models, Galois models and Shalika models. For
each of these cases, there is a multiplicity formula that has already been proved. Hence in
order to prove Conjecture 7.4, we just need to show that our definition of the geometric
multiplicity is the same as the one in the known multiplicity formula. On the other hand,
Conjecture 7.6 is more difficult. The only known cases are the group case .G; H/ D
.H �H;H/, the Whittaker models, and the Gan–Gross–Prasad models for general linear
groups (see [17, Propositions 2.1, 2.8 and Theorem 4.2]).

7.2. The trace formula

We use the same notation as in the previous subsection. We first need to define the space of
test functions. When .G;H/ is tempered, we require f 2 Cscusp.G.F /; �/. When .G;H/
is not tempered, we require f 2 ıC.G.F /;�/\C1c .G.F /;�/. For such a test function f ,
we define the distribution I.f / of the trace formula to be

I.f / D

Z
H.F /nG.F /

Z
H.F /=AG;H .F /

f .g�1hg/! ˝ �.h/�1 dh dg:

In general the double integral above is not absolutely convergent (although each individual
integral is usually convergent) and one needs to introduce some truncation functions on
H.F /nG.F /.

For the geometric expansion, let �f be the quasi-character on G.F / defined via the
weighted orbital integrals of f . We define the geometric expansion of the trace formula
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to be
Igeom.f / D mgeom.�f /

where mgeom.�f / was defined in Definition 7.1.
For the spectral expansion, when .G;H/ is not tempered, let

Ispec.f / D
X

�2…cusp.G;�/

m.�; ! ˝ �/ tr.�_.f // (7.1)

where �_ is the contragredient of � . When .G;H/ is tempered, let

Ispec.f / D

Z
X.G;�/

D.�/�f .�
_/m.�; ! ˝ �/ d�: (7.2)

Here X.G;�/ is a set of virtual tempered representations ofG.F /with central character �
defined in [4, Section 2.7], where the numberD.�/ and the measure d� are also defined,
and �f .�_/ is defined in [4, Section 5.4] via weighted characters. Now we are ready to
state the conjectural trace formula.

Remark 7.9. When f 2 ıC.G.F /;�/\C1c .G.F /;�/, the expression on the right hand
side of (7.2) is equal to the one on the right hand side of (7.1).

Conjecture 7.10. (1) If .G;H/ is tempered, then

Igeom.f / D I.f / D Ispec.f / for all f 2 Cscusp.G.F /; �/.

(2) .G;H/ is not tempered, then

Igeom.f / D I.f / D Ispec.f / for all f 2 ıC.G.F /; �/ \ C1c .G.F /; �/.

Like the conjectural multiplicity formula, by our discussion in Section 8, we know
that Conjecture 7.10 holds for Whittaker models, Gan–Gross–Prasad models, Ginzburg–
Rallis models, Galois models and Shalika models.

Remark 7.11. Although the trace formulas are the same for the tempered case and the
strongly tempered case, the multiplicity formulas for these two cases behave differently.
As discussed in Conjecture 7.4, for the strongly tempered case, the multiplicity formula
should hold for all tempered representations; while for the tempered case, it only holds
for all discrete series representations and for almost all tempered representations. An easy
example of this kind would be the Shalika models (see [5, Remark 3.4]).

7.3. The case when ! is not a character

In this subsection, we assume thatF DR andH.R/DK is a maximal connected compact
subgroup of G.R/. Let ! be a finite-dimensional representation of H.R/. For a finite
length smooth representation � of G.R/, we can still define the multiplicity m.�; !/
and the Euler–Poincaré pairing EP.�; !/ as in the previous subsections. Moreover, since
H.R/ is compact, we have m.�; !/ D EP.�; !/.
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Meanwhile, let !_ be the dual representation of ! and let

�!_.h/ D tr.!_.h//; h 2 H.R/;

be the character of !_. Then we can define the geometric multiplicity mgeom.�; !/ as in
the character case in Definition 7.1. The only difference is that we replace !�1 by �!_ .
To be specific, we define

mgeom.�; !/ D
X

T.F /2T .G;H/

jW.H; T /j�1
Z
TH .F /=AG;H .F /

�!_.t/D
H .t/

�
d.GT ;HT ; F /

jZH .T /.F / W HT .F /j � c.GT ;HT ; F /

X
O2N .GT ;HT ;1/

c�� ;O.t/

jN .GT ;HT ; 1/j
dt:

Conjecture 7.12. For all finite length smooth representations � of G.R/, we have
m.�; !/ D mgeom.�; !/.

Conjecture 7.12 gives a conjectural multiplicity formula for K-types of all finite
length smooth representations of G.R/. In Sections 9 and 10, we will prove Conjec-
ture 7.12 whenG.R/D GLn.R/ and whenG D ResC=RH is a complex reductive group.
Clearly, it is enough to prove the conjecture when � and ! are irreducible.

8. The known cases

In this section, we assume that F is p-adic. We will show that for each of the known
cases, the geometric multiplicity defined in Definition 7.1 is the same as the one in the
multiplicity formula that has been proved. This implies that Conjectures 7.4 and 7.10 hold
for all these cases. We consider Wittaker models in Section 8.1, Gan–Gross–Prasad mod-
els in Section 8.2, Ginzburg–Rallis models in Section 8.3, Galois models in Section 8.4,
and Shalika models in Section 8.5.

We point out that none the models above has a Type N root. And for all these models,
we have T .G;H/ D T .G;H/ı (i.e. the geometric multiplicity is only supported on tori
of G.F /). This matches the discussion in Remark 4.10.

8.1. Whittaker models

Let G be a connected reductive group defined over F . Assume that G.F / is quasi-split.
Let B D TN be a Borel subgroup of G, NB D T NN be the opposite Borel subgroup, and
� W N.F /! C� be a generic character. Then there exists a unique element „ 2 Nn.F /
such that

�.exp.X// D  .hX;„i/; X 2 n.F /:

Without loss of generality, we assume thatG.F / has finite center (otherwise, we just need
to replaceN.F / byN.F /ZıG.F /whereZıG.F / is the neutral component ofZG.F /). For



C. Wan 3658

any irreducible smooth representation � of G.F /, define

m.�; �/ D dim.HomN.F /.�; �//:

The model .G;H; �/ D .G;N; �/ is called a Whittaker model of G and it is the Whittaker
induction of the model .G0;H0; �/ D .T; 1; �/.

Let O 2 Nilreg.g.F // be the nilpotent orbit containing „. By the work of Rodier
[18, theorem p. 161 and Remark 2 p. 162] for the split case and the work of Moeglin–
Waldspurger [16, Corollary I.17] for the general case, we have the multiplicity formula

m.�; �/ D c�� ;O.1/:

The goal of this subsection is to show that

mgeom.�; �/ D c�� ;O.1/:

First, it is easy to see that the set T .G;N / only contains the trivial torus. Combining
this with the fact that the Whittaker model is the Whittaker induction of the model .T; 1/,
we have

mgeom.�; �/ D
1

jN .G;N; �/j

X
O02N .G;N;�/

c�� ;O0.1/:

Hence it is enough to show that

N .G;N; �/ D ¹Oº:

By the definition of N .G; N; �/, we have O 2 N .G; N; �/. Let O0 2 Nilreg.g.F // with
O0 ¤ O. It is enough to show that O0 … N .G;N; �/. In this case, T .G;N / D ¹1º, which
implies that all regular semisimple conjugacy classes of g.F / are null with respect to N
(Remark 6.4). Combining this with Lemma 6.10, in order to show that O0 … N .G;N; �/,
it is enough to prove the following lemma.

Lemma 8.1. There exists a regular semisimple element X 2 greg.F / such that

�O.X/ D 1; �O0.X/ D 0:

Here �O.�/ and �O0.�/ are the Shalika germs defined in Section 2.4.

Proof. By the result of Shelstad [20, p. 276], the regular Shalika germ is either 0 or 1.
Hence if the statement of the lemma is false, we have �O.X/ D �O0.X/ for all regular
semisimple elements in g.F /. Since the distributions of nilpotent orbital integrals ¹JO.�/ j

O 2 Nil.g.F //º are linearly independent [10, Lemma 3.8], there exists f 2 C1c .g.F //
such that JO.f / D 1, JO0.f / D �1 and JO0.f / D 0 for all other nilpotent orbits (not
necessarily regular). By replacing f by f � 1! where ! is a small G-invariant neighbor-
hood of 0 in g.F /, we may assume that for all X 2 Supp.f / \ greg.F /, we have

JG.X; f / D
X

O02Nil.g.F //

�O0.X/JO0.f /:
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This implies that

JG.X; f / D
X

O02Nil.g.F //

�O0.X/JO0.f / D �O.X/ � �O0.X/ D 0

for all X 2 Supp.f / \ greg.F /. Hence JG.X; f / D 0 for all X 2 greg.F /. By [10, The-
orem 3.1], we know that JO.f / D JO0.f / D 0. This is a contradiction.

8.2. Gan–Gross–Prasad models

We only consider the orthogonal groups case; the unitary groups case is similar. We
first recall the definition of the model from [21, Section 7]. Let V be a vector space
of dimension d , and q be a nondegenerate symmetric bilinear form on V . Let r 2 N with
2r C 1� d . Suppose we have an orthogonal decomposition V DW ˚D˚Z whereD is
a one-dimensional anisotropic subspace and Z is a hyperbolic subspace of dimension 2r .
We fix a basis v0 of D and a basis .vi /iD˙1;:::;˙r of Z with q.vi ; vj / D ıi;�j . Let A be
the maximal split torus of SO.Z/ that preserves the subspace Fvi . Let G D SO.V /, and
let P DMN be the parabolic subgroup of G that preserves the filtration

Fvr � Fvr ˚ Fvr�1 � � � � � Fvr ˚ � � � ˚ Fv1

with A � M . In particular, M D AG0 with G0 D SO.V0/ and V0 D W ˚ D. Let � W
N.F /!C� be the generic character defined in [21, Section 7.2]. Its stabilizer inM.F / is
HC0 .F /D O.W /. LetH0 D SO.W / be the neutral component ofHC0 andH DH0 ËN .
The model .G � H0; H; �/ is a Gan–Gross–Prasad model for orthogonal groups (the
embedding H ! G �H0 comes from the diagonal embedding H0 ! G0 �H0 and the
embedding N ! G) defined by Gross and Prasad [9]. It is the Whittaker induction of the
model .G0 �H0; H0; �/ (which is also a Gan–Gross–Prasad model). Let � (resp. � ) be
an irreducible smooth representation of G.F / (resp. H0.F /). Define

m.� ˝ �; �/ D dim.HomH.F /.� ˝ �; �//:

The multiplicity formula for this model was proved by Waldspurger [21], [22]. The goal
of this subsection is to show that the geometric multiplicity mgeom.� ˝ �; �/ defined
in Section 7 is the same as Waldspurger’s definition in [21, Section 13.1]. We use
m0geom.� ˝ �; �/ to denote the geometric multiplicity defined by Waldspurger.

Remark 8.2. .G0 � H0; H0/ is a minimal wavefront spherical variety. Moreover, it is
easy to see that there is only one open Borel orbit in G0.F / �H0.F /=H0.F / and it has
trivial stabilizer. In particular, d.G0 �H0;H0; F / D c.G0 �H0;H0; F / D 1.

Proposition 8.3. The set T .G �H0;H/ consists of tori T .F / ofH0.F / .up to conjuga-
tion/ such that there exists an orthogonal decomposition W D W 0 ˚W 00 of W satisfying
the following conditions:

(1) The dimension of W 0 is an even number.

(2) T .F / is a maximal elliptic torus of H 00.F / D SO.W 0/.F /.
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(3) If d is odd, the anisotropic rank of V 00 D W 00 ˚D ˚Z is 1. If d is even, the aniso-
tropic rank ofW 00 is 1. This is equivalent to saying that SO.V 00/.F / and SO.W 00/.F /
are quasi-split.

In particular, T .G �H0;H/ D T .G �H0;H/
ı.

Remark 8.4. The proposition implies that T .G �H0; H/ is equal to the set T defined
in [21, Section 7.3], i.e. our definition of the support of the geometric multiplicity is the
same as Waldspurger’s definition for orthogonal Gan–Gross–Prasad models.

Proof of Proposition 8.3. It is easy to see that if a torus satisfies (1)–(3), it belongs to
T .G; H/. So we only need to prove the other direction: for given T .F / 2 T .G; H/,
we need to show that T .F / satisfies (1)–(3). Let W 00 be the intersection of the ker-
nel of t � 1 for t 2 T .F /. Then for almost all t 2 TH .F /, W 00 is the kernel of t � 1.
In particular, qjW 00 is nondegenerate and dim.W / � dim.W 00/ is even. Let W 0 be the
orthogonal complement of W 00 in W (i.e. W D W 0 ˚ W 00), and V 00 D W 00 ˚D ˚ Z.
Then T .F / is an abelian subgroup of SO.W 0/.F /, GT D SO.W 0/T � SO.V 00/, H0;T D
SO.W 0/T � SO.W 00/ andHT D SO.W 0/T � .SO.W 00/ËN 00/whereN 00DN \ SO.V 00/
is the unipotent radical of the parabolic subgroup P 00 D P \ SO.V 00/ of SO.V 00/. In
particular, .SO.V 00/ � SO.W 00/; SO.W 00/ Ë N 00/ is the Gan–Gross–Prasad model asso-
ciated to the decomposition V 00 D W 00 ˚D ˚ Z. We will show that the decomposition
W D W 0 ˚W 00 satisfies conditions (1)–(3).

Condition (1) follows from the fact that dim.W / � dim.W 00/ is even. Since GT .F /
and H0;T .F / are quasi-split, so are SO.V 00/.F / and SO.W 00/.F /. This proves (3). It
remains to prove (2). The following two statements follow from the definition of minimal
spherical varieties:

� If .G1; H1/ and .G2; H2/ are spherical pairs, then .G1 � G2; H1 �H2/ is minimal if
and only if .G1;H1/ and .G2;H2/ are minimal.

� For any connected reductive group H1, the spherical pair .H1 �H1;H1/ is minimal if
and only if H1 is abelian (i.e. it is a torus).

Since T .F /2 T .G;H/, .GT �H0;T ;HT / is minimal. By the statements above, we know
that SO.W 0/T is abelian, which implies that SO.W 0/T is a maximal torus of SO.W 0/.
By Definition 4.3 (3), we know that T .F / is the intersection of H.F / with the center of
ZG.T /.F /�ZH0.T /.F /, which implies that T .F /D SO.W 0/T .F / (i.e. T .F /DT ı.F /
is a maximal torus of SO.W 0/.F /). Finally, by Definition 4.3, T .F / is compact, which
implies that it is a maximal elliptic torus of SO.W 0/.F /. This proves (2) and finishes the
proof of the proposition.

Given T .F / 2 T .G �H0; H/ and let W D W 0 ˚ W 00 be the decomposition asso-
ciated to T . Then the model .GT � H0;T ; H/ is the product of the abelian model
.SO.W 0/T ; SO.W 0/T / D .T; T / and the Gan–Gross–Prasad model associated to the
decomposition V 00 D W 00 ˚ D ˚ Z. By Remark 8.2, we know that the constants
d.G0;T � H0;T ; H0;T ; F / and c.G0;T � H0;T ; H0;T ; F / associated to the Gan–
Gross–Prasad models are equal to 1. Moreover, since ZH0.T / D H0;T , the constant
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jZH0.T /.F / W H0;T .F /j in the definition of geometric multiplicity is also equal to 1.
Hence in order to prove mgeom.� ˝ �; �/ D m

0
geom.� ˝ �; �/, it remains to show that our

choice of nilpotent orbits in Section 6 is the same as Waldspurger’s in [21, Section 7.3].

Proposition 8.5. Assume that G.F / and H0.F / are quasi-split. Let OG .resp. OH / be
the regular nilpotent orbit of g.F / .resp. h0.F // defined in [21, Section 7.3]. Then

N .G �H0;H; �/ D ¹OG �OH º:

Proof. Let „C h?0 .F /C n.F / � g.F /˚ h0.F / be the space associated to the model
.G � H0; H; �/ as in Section 6.4. By Lemma 6.10 together with [21, Sections 11.4–
11.6], we know that O … N .G � H0; H; �/ for any O 2 Nilreg.g.F / � h0.F // with
O ¤ OG � OH . In fact, for any O 2 Nilreg.g.F / � h0.F // with O ¤ OG � OH , in [21,
Sections 11.4–11.6] Waldspurger has constructed an open subset tG.F / (resp. tH .F /)
of the regular semisimple conjugacy classes of g.F / (resp. h0.F /) such that for all
XG �XH 2 tG.F / � tH .F /, the following hold:

� �O.XG � XH / D 1 and the conjugacy class XG � XH does not intersect „ C
h?0 .F /C n.F /.

� The conjugacy class XG �XH is null with respect to H .

Combining this with Lemma 6.10, we find that O … N .G �H0;H; �/.
Now it remains to show that

OG �OH 2 N .G �H0;H; �/: (8.1)

The idea is to use the Lie algebra version of the local trace formula proved in [21]. Let fG
(resp. fH ) be a smooth compactly supported strongly cuspidal function on g.F / (resp.
h0.F /). Let �fG (resp. �fH ) be the quasi-character on g.F / (resp. h0.F /) associated to fG
(resp. fH ), and O�fG (resp. O�fH ) be its Fourier transform. By the local trace formula proved
in [21, Sections 7.9 and 11.2], we have

I.�fH ; �fG / D
X
T2T

jW.G; T /j�1
Z

t.F /H
DG�H0.t/1=2 O�fG �

O�fH .t/ dt (8.2)

where I.�fH ; �fG / is the Lie algebra analogue of the geometric multiplicity defined in
[21, Section 7.9], T is a set of representatives of maximal tori of G.F / �H0.F /, and
W.G; T / D NG.T /.F /=ZG.T /.F / is the Weyl group. For T 2 T , tH .F / is the set of
elements in treg.F / that are conjugate to an element in „C h?0 .F /C n.F / (which is an
open subset of treg.F /).

If OG � OH … N .G � H0; H; �/, by Lemma 6.10 and the definition of
N .G �H0; H; �/, there exists T0 2 T and a small open compact subset ! of t0;reg.F /

satisfying the following two conditions.

� For all X 2 !, X is null with respect to H and X is associated to OG �OH .

� The set !0 D ¹X 2 ! j X … t0.F /
H º has nonzero measure.
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Now choose fG and fH such that O�fG � O�fH is the characteristic function on !G�H0 .
Then the right hand side of (8.2) is equal toZ

!\t0.F /H
DG�H0.t/1=2 dt: (8.3)

Since every element in ! is null with respect to H and is associated to OG � OH , by
[4, Propositions 4.1.1, 4.7.1] (here we use the property of null in Remark 6.5) we have

I.�fH ; �fG / D c�fG��fH ;OG�OH .0/ D

Z
!

DG�H0.t/1=2�OG�OH .t/ dt

D

Z
!

DG�H0.t/1=2 dt D

Z
.!\t0.F /H /[!0

DG�H0.t/1=2 dt:

This contradicts (8.2) and (8.3) since !0 has nonzero measure. Hence OG � OH 2

N .G �H0;H; �/. This finishes the proof of the proposition.

8.3. Ginzburg–Rallis models

In this subsection, we consider Ginzburg–Rallis models. We will show that the geometric
multiplicities defined in Section 7 are the same as the ones in the multiplicity formulas
proved in [23], [24] (general linear groups case) and [25] (unitary groups and unitary
similitude groups cases). For simplicity, we only consider the quasi-split unitary group
and unitary similitude group cases; the non-quasi-split cases and the general linear groups
case follow from a similar and easier argument.

Set w2 D
�
0 1
1 0

�
, and wn D

�
0 1

wn�1 0

�
for n > 2. Let E=F be a quadratic extension.

We define the unitary groups and unitary similitude groups to be

Un.F / D ¹g 2 GLn.E/ j Ngtwng D wnº;

GUn.F / D ¹g 2 GLn.E/ j Ngtwng D �wn; � 2 F �º:

We use � W GUn.F /! F � to denote the similitude character.

8.3.1. The unitary similitude group case. Let G.F / D GU6.F /, P D MN be the para-
bolic subgroup of G with

N.F / D

²�
I2 X Y

0 I2 �w2 NX
tw2

0 0 I2

�ˇ̌̌̌
X; Y 2M2.E/; w2Xw2 NX

t
C w2Yw2 C NY

t
D 0

³
;

M.F / D

²�
h 0 0
0 g 0

0 0 �.g/w2. Nh
t /�1w2

�ˇ̌̌̌
g 2 GU2.F /; h 2 GL2.E/

³
:

Here Mn D Matn�n. Let H.F / D H0.F / ËN.F / with

H0.F / D

²�
h 0 0
0 h 0

0 0 �.h/w2. Nh
t /�1w2

�ˇ̌̌̌
h 2 GU2.F /

³
:
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Fix a character � of GU2.F /. Define the character ! ˝ � on H.F / by

! ˝ �

��
h 0 0
0 h 0

0 0 �.h/w2. Nh
t /�1w2

��
I2 X Y

0 I2 �w2 NX
tw2

0 0 I2

��
D �.h/ .trE=F .tr.X///:

Let � be an irreducible smooth representation of G.F /. Define

m.�; ! ˝ �/ D dim.HomH.F /.�; ! ˝ �//:

The model .G; H/ is the unitary similitude analogue of the Ginzburg–Rallis models
defined in [8], and it is the Whittaker induction of the model

.G0;H0; �/ D .M;H0; �/ D .GU2.F / � GL2.E/;GU2.F /; �/:

It is easy to see that both .G;H/ and .G0;H0/ are minimal.
In [25, Section 5.1], we proved the multiplicity formula

m.�; ! ˝ �/ D c�� ;Oreg.1/

C

X
T2Tell.H0/

jW.H0; T /j
�1

Z
T.F /=AH0 .F /

!.t/�1DH .t/c�� ;Ot .t/ dt

where Oreg is the unique regular nilpotent orbit of g.F /, Tell.H0/ is a set of representatives
of maximal elliptic tori ofH0.F /, and for T 2 Tell.H0/ and t 2 T .F /reg, Ot is the unique
regular nilpotent orbit in gt .F /. The goal of this subsection is to show that

mgeom.�; ! ˝ �/ D c�� ;Oreg.1/

C

X
T2Tell.H0/

jW.H0; T /j
�1

Z
T.F /=AH0 .F /

!.t/�1DH .t/c�� ;Ot .t/ dt: (8.4)

First, we show that T .G;H/ D T .G;H/ı D Tell.H0/ [ ¹1º. In fact, there are three
types of conjugacy classes in H0.F /: the center, elliptic regular conjugacy classes and
nonelliptic regular conjugacy classes. It is easy to see from the definition that the cen-
ter and the elliptic regular conjugacy classes satisfy all the conditions for the support
of the geometric multiplicity. On the other hand, the nonelliptic conjugacy classes viol-
ate the “elliptic” condition of the support of the geometric multiplicity. This implies that
T .G;H/ D T .G;H/ı D Tell.H0/ [ ¹1º.

For T 2 Tell.H0/, we have GT D ZG.T / and H0;T D ZH0.T /, and the model
.GT ; HT ; �/ is just the Whittaker model of GT . By the result in Section 8.1 for Whit-
taker models, in order to prove (8.4), we only need to consider the geometric multiplicity
at the identity ¹1º and prove the following lemma.

Lemma 8.6. (1) d.G0;H0; F / D c.G0;H0; 1/ D 1.

(2) N .G;H; �/ D ¹Oregº.
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Proof. It is easy to see that there is only one open Borel orbit in G0.F /=H0.F /, and
the stabilizer of this orbit is the center of H0.F /, which is connected. This implies that
d 0.G0; H0; F / D c.G0; H0; F / D 1. On the other hand, the model .G0. NF /; H0. NF //
is essentially the trilinear GL2 model .GL2 � GL2 � GL2;GLdiag

2 /, which is wavefront.
Hence d.G0;H0; F / D d 0.G0;H0; F / D 1. This proves (1).

For (2), since Oreg is the unique regular nilpotent orbit of g.F /, it is enough to show
that Oreg 2N .G;H; �/. The argument is exactly the same as for Gan–Gross–Prasad mod-
els in (8.1); the local trace formula (8.2) for this case was proved in [25, Section 4.3]. This
finishes the proof of the lemma and hence the proof of (8.4).

8.3.2. The unitary group case. LetG.F /DU6.F /,N �G be the unipotent subgroup as
in the unitary similitude group case, and P DMN be the parabolic subgroup of G with

M.F / D

²�
h 0 0
0 g 0

0 0 w2. Nh
t /�1w2

�ˇ̌̌̌
g 2 U2.F /; h 2 GL2.E/

³
' U2.F / � GL2.E/:

Let H.F / D H0.F / ËN.F / with

H0.F / D

²�
h 0 0
0 h 0

0 0 w2. Nh
t /�1w2

�ˇ̌̌̌
h 2 U2.F /

³
:

Fix a character � of U2.F /. Define the character ! ˝ � on H.F / by

! ˝ �

��
h 0 0
0 h 0

0 0 w2. Nh
t /�1w2

��
I2 X Y

0 I2 �w2 NX
tw2

0 0 I2

��
D �.h/ .trE=F .tr.X///:

Let � be an irreducible smooth representation of G.F /. Define

m.�; ! ˝ �/ D dim.HomH.F /.�; ! ˝ �//:

The model .G;H/ is the unitary analogue of the Ginzburg–Rallis models defined in [8],
and it is the Whittaker induction of the model

.G0;H0; �/ D .M;H0; �/ D .U2.F / � GL2.E/;U2.F /; �/:

It is easy to see that both .G;H/ and .G0;H0/ are minimal.
In [25, Proposition 5.4], we proved the multiplicity formula

m.�; ! ˝ �/ D c�� ;Oreg;1.1/C c�� ;Oreg;2.1/

C

X
T2Tell.H0/

jW.H0; T /j
�1

Z
T.F /

!.t/�1DH .t/c�� ;Ot .t/ dt

where Oreg;1;Oreg;2 are the regular nilpotent orbits of g.F /, Tell.H0/ is a set of represent-
atives of maximal elliptic tori of H0.F /, and for T 2 Tell.H0/ and t 2 T .F /reg, Ot is the
unique regular nilpotent orbit in gt .F /. The goal of this subsection is to show that

mgeom.�; ! ˝ �/ D c�� ;Oreg;1.1/C c�� ;Oreg;2.1/

C

X
T2Tell.H0/

jW.H0; T /j
�1

Z
T.F /

!.t/�1DH .t/c�� ;Ot .t/ dt: (8.5)
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By the same argument as in the unitary similitude group case, we only need to prove the
following lemma.

Lemma 8.7. (1) d.G0;H0; F / D 2 and c.G0;H0; F / D 1.

(2) N .G;H; �/ D ¹Oreg;1;Oreg;2º.

Proof. It is easy to see that there are two open Borel orbits of G0.F /=H0.F / (they cor-
respond to F �=Im.NE=F / where NE=F W E� ! F � is the norm map) and the stabilizer
of each orbit is the center ofH0.F /, which is connected. This implies that d 0.G0;H0; F /
D 2 and c.G0; H0; F / D 1. On the other hand, the model .G0. NF /; H0. NF // is the tri-
linear GL2 model which is wavefront. Hence d.G0; H0; F / D d 0.G0; H0; F / D 2. This
proves (1).

For (2), we cannot use the same argument as in the previous cases. The reason is that
in [25], we were not able to prove the local trace formula (8.2) for this model (this is
largely due to the fact that d.G0;H0; F / ¤ 1, see Remark 5.15). Instead, we are going to
use the result for the unitary similitude group case to prove (2).

Let „ C h?0 .F / C n.F / be the space associated to the model .G � H0; H; �/ as
in Section 6.4. Let g0.F / be the Lie algebra of GU6.F /, Oreg be the unique nilpotent
orbit of g0.F /, and .G0; H 0; �/ be the model in the unitary similitude group case. Then
OregDOreg;1 [Oreg;2 and g0.F /D g.F /˚ z.F /where z.F /D¹aI6 j a 2F º is contained
in the center of g0.F /. Moreover, „C h?0 .F /C n.F /C z.F / is the space associated to
the model .G0;H 0; �/.

Since O D Oreg;1 [Oreg;2, if a regular semisimple element X 2 g.F / is associated to
Oreg;1 or Oreg;2, then it is associated to O (as an element in g0.F /). Moreover, X is null
with respect to H if and only if it is null with respect to H 0. Hence by Lemma 8.6, for
almost all regular semisimple G.F /0-conjugacy classes in g.F /, if the conjugacy class is
null with respect to H and if it is associated to Oreg;1 or Oreg;2, then the class intersects
„C h?0 .F /C n.F /. As a result, in order to prove the lemma, it is enough to prove the
following statement.

(3) For all regular semisimple elements X1; X2 2 greg.F /, if X1 and X2 are null with
respect to H , then X1 and X2 are G0.F /-conjugate to each other if and only if they
are G.F /-conjugate to each other.

Let T .F /DG0X1.F /, andAT .F / be the maximal split subtorus of T .F /. SinceX1 is null
with respect toH ,L.F /DZG0.AT /.F / is contained in a Siegel Levi subgroup ofG0.F /
and we have X1 2 l.F /. In particular, X1 commutes with ZL.F /. Then (3) follows from
the fact that every element g 2 G0.F / can be written as g D g1z with g1 2 G.F / and
z 2 ZL.F /. This finishes the proof of the lemma and hence the proof of (8.5).

8.4. Galois models

LetE=F be a quadratic extension,H be a connected reductive group defined over F , and
GDResE=FH . Let � be a character ofH.F /. For an irreducible smooth representation �
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of G.F /, define
m.�; �/ D dim.HomH.F /.�; �//:

In [3, Theorem 3], Beuzart-Plessis proved the multiplicity formula for this model:

m.�; �/ D
X

T2Tell.H/

jW.H; T /j�1
Z
T.F /=AH .F /

�.t/�1DH .t/��.t/ dt

where Tell.H/ is a set of representatives of maximal elliptic tori of H.F /. We want to
show that

mgeom.�; �/ D
X

T2Tell.H/

jW.H; T /j�1
Z
T.F /=AH .F /

�.t/�1DH .t/��.t/ dt: (8.6)

For T 2 Tell.H/, we have HT .F / D ZH .T /.F / D T .F / and the model
.GT .F /; HT .F // is equal to the abelian model .T .E/; T .F //. This implies that
jZH .T /.F / W HT .F /j D d.GT ; HT ; F / D c.GT ; HT ; F / D 1 and N .GT ; HT / D ¹0º

(here 0 is the unique nilpotent orbit of gT ). Hence in order to prove (8.6), it is
enough to show that T .G; H/ D Tell.H/. It is easy to see from the definition that
Tell.H/ � T .G; H/. For the other direction, let T .F / 2 T .G; H/. Then .GT ; HT / D
.ResE=FHT ; HT /. In particular, it is minimal if and only if HT is abelian (i.e. it is a
maximal torus of H ). By Definition 4.3 (3), we know that T .F / D T ı.F / D HT .F / is
a maximal torus of H.F /. By Definition 4.3 (4), T .F /=AH .F / is compact. This implies
that T 2 Tell.H/ and proves (8.6).

8.5. Shalika models

Let G D GL2n, P DMN be a parabolic subgroup of G with

M D

²�
h1 0

0 h2

�ˇ̌̌̌
hi 2 GLn

³
;

N D

²�
In X

0 In

�ˇ̌̌̌
X 2 Matn�n

³
;

and H D H0 ËN with

H0 D

²�
h 0

0 h

�ˇ̌̌̌
h 2 GLn

³
:

Given a multiplicative character � W F �! C�, we can define a character ! ˝ � ofH.F /
by

! ˝ �

��
h 0

0 h

��
In X

0 In

��
WD  .tr.X//�.det.h//:

For an irreducible smooth representation � of G.F /, define

m.�; ! ˝ �/ D dim.HomH.F /.�; ! ˝ �//:
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The pair .G; H/ is called a Shalika model, it is the Whittaker induction of the model
.G0; H0; �/ D .M; H0/ D .GLn � GLn;GLn; �/. In a joint work with Beuzart-Plessis
[5, Theorem 1.4], we have proved the multiplicity formula

m.�; ! ˝ �/ D
X

T2Tell.H0/

jW.H0; T /j
�1

Z
T.F /=ZG.F /

!.t/�1DH .t/c�� ;Ot .t/ dt

where Tell.H0/ is a set of representatives of maximal elliptic tori of H0.F /, and for
T 2 Tell.H0/ and t 2 T .F /reg, Ot is the unique regular nilpotent orbit in gt .F /. We
want to show that

mgeom.�; ! ˝ �/ D
X

T2Tell.H0/

jW.H0; T /j
�1

Z
T.F /=ZG.F /

!.t/�1DH .t/c�� ;Ot .t/ dt:

(8.7)

For T 2 Tell.H0/, letK=F be the degree n extension such that T .F /'K�. Then the
model .GT ; HT ; �/ is just the Whittaker model for GL2.K/. By the result in Section 8.1
for Whittaker models, to prove (8.7) it is enough to show that T .G;H/ D Tell.H0/.

Since T .G;H/D T .G0;H0/ (Remark 4.9), we only need to show that T .G0;H0/D

Tell.H0/. But the model .G0; H0/ D .GLn � GLn;GLn/ is a special case of the Galois
models discussed in the previous subsection (just letH D GLn and E D F ˚ F ). By the
result in the previous subsection, T .G0;H0/ D Tell.H0/. This proves (8.7).

9. The proof of Theorem 1.4 (1)

The goal of this section is to prove the conjectural multiplicity formula for K-types for
GLn.R/, i.e. Theorem 1.4 (1). The proof has two parts. First we can easily prove the
formula when n � 2. The second step is to show that both the multiplicities and the
geometric multiplicities are invariant under parabolic induction. Then we can prove the
multiplicity formula by using Proposition 2.1.

In Section 9.1, we explicitly write down the geometric multiplicity in this case. Then
in Section 9.2, we reduce the proof of the multiplicity formula for .GLn.R/; SOn.R// to
the proof of the multiplicity formula for .GLn.R/;On.R//. The reason is that the models
.GLn.R/;On.R// behave nicely under parabolic induction. Finally, in Section 9.3 we
prove the multiplicity formula for .GLn.R/;On.R//.

9.1. The geometric multiplicity

Let F D R, G D GLn and H D SOn D ¹g 2 GLn j ggt D In; det.g/ D 1º. Then H.R/
is a maximal connected compact subgroup of G.R/. Let � be a finite length smooth
representation of GLn.R/ and ! be a finite-dimensional representation of SOn.R/. The
goal of this section is to prove the multiplicity formula

m.�; !/ D mgeom.�; !/
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where m.�; !/ D dim.HomH.R/.�; !// and the geometric multiplicity mgeom.�; !/

was defined in Section 7.3. In this subsection, we will give an explicit expression of
mgeom.�; !/; the result is summarized in Proposition 9.7.

Definition 9.1. Let I.n/ D ¹.n1; n2; k/ 2 .Z�0/3 j n1 C 2n2 C 2k D nº: For .n1; n2; k/
in I.n/, if n is even (, n1 is even), let Tn1;n2;k be the abelian subgroup of SOn.R/
defined by

Tn1;n2;k.R/ D ¹diag.˙In1 ;˙I2n2 ; t / j t 2 .C
1/kº

where C1 is the group of norm 1 elements in C and we identify it with SO2.R/ via
the isomorphism e2�i� 7!

�
cos � sin �
� sin � cos �

�
. In particular, t 2 .C1/k becomes an element of

SO2k.R/ � GL2k.R/ and diag.˙In1 ;˙I2n2 ; t / are elements of SOn.R/ � GLn.R/.
Similarly, if n is odd (, n1 is odd), we define

Tn1;n2;k.R/ D ¹diag.In1 ;˙I2n2 ; t / j t 2 .C
1/kº � SOn.R/:

Lemma 9.2. Assume that n is even. The set T .G; H/ .defined in Definition 4.3/ is the
union of Tn1;n2;k.R/ where .n1; n2; k/ 2 I.n/ with n1 � 2n2.

Proof. It is easy to see that Tn1;n2;k.R/ 2 T .G; H/. So it is enough to prove the other
direction. Let t be a semisimple element of H.R/ D SOn.R/ such that .Gt ; Ht / is a
minimal spherical pair. After conjugation, we may assume that t D diag.In1 ;�I2n2 ; t0/
where t0 is a semisimple element in SO2k.R/ such that t0 ˙ I2k 2 GL2k.R/ (i.e.˙1 are
not eigenvalues of t0). Here 2k D n � n1 � 2n2.

Since ˙1 are not eigenvalues of t0, the centralizer of t0 in GL2k.R/ is of the form
(note that all eigenvalues of t belong to C1)

GLk1.C/ � � � � � GLkm.C/

with k D k1 C � � � C km. Then

Gt .R/ D GLn1.R/ � GL2n2.R/ � GLk1.C/ � � � � � GLkm.C/;

Ht .R/ D SOn1.R/ � SO2n2.R/ � Uk1.R/ � � � � � Ukm.R/:

Since .Gt ;Ht / is a minimal spherical pair, we know that .ResC=RGLki ;Uki / is a minimal
spherical pair for 1 � i � m. This implies that ki D 1 for 1 � i � m. In other words, t0 is
a regular semisimple element of GL2k.R/.

Now we are ready to prove the lemma. Let T .R/ 2 T .G; H/. By conditions (1)
and (4) of Definition 4.3, there exists t 2 T .R/ such that .GT ; HT / D .Gt ; Ht / is a
minimal spherical pair. By the discussion above, up to conjugation, we may assume that
t D diag.In1 ;�I2n2 ; t0/where t0 2 SO2k.R/ is a regular semisimple element of GL2k.R/
and .n1; n2; k/ 2 I.n/. Combining this with condition (2) of Definition 4.3, we have

T .R/ D ZGt .R/ \H.R/ D ¹diag.˙In1 ;˙I2n2 ; t
0/ j t 0 2 T0.R/º

where T0.R/ is the centralizer of t0 in SO2k.R/, which is a maximal torus of SO2k.R/.
Up to conjugation, we may assume that n1 � 2n2. Then the lemma follows from the fact
that every maximal torus of SO2k.R/ is conjugate to .C1/k .
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Lemma 9.3. Assume that n is odd. Then the set T .G; H/ is the union of Tn1;n2;k.R/
where .n1; n2; k/ 2 I.n/.

Proof. The proof is similar to that of the previous lemma, so we skip it here.

Corollary 9.4. The geometric multiplicity mgeom.�; !/ is supported on

¹diag.In1 ;�I2n2 ; t / j t 2 .C
1/kº [ ¹diag.�In1 ; I2n2 ; t / j t 2 .C

1/kº

where .n1; n2; k/ 2 I.n/ with n1 � 2n2 when n is even; and it is supported on

¹diag.In1 ;�I2n2 ; t / j t 2 .C
1/kº; .n1; n2; k/ 2 I.n/

when n is odd.

Proof. This is a direct consequence of the previous two lemmas.

Lemma 9.5. (1) .G;H/ is a minimal spherical pair.

(2) d.G;H;R/ D 1 and c.G;H;R/ D 2n�1.

(3) N .G;H; 1/ D ¹Oº where O is the unique regular nilpotent orbit of g.R/ D gln.R/.

Proof. The first part is trivial. For (2), let B.R/ be the upper triangular Borel sub-
group of G.R/. Since .G; H/ is a symmetric pair which is wavefront, we know that
d.G;H;R/ D d 0.G;H;R/. By the Iwasawa decomposition, we have

G.R/ D B.R/H.R/ and B.R/ \H.R/ ' .Z=2Z/n�1:

This implies that d.G;H;R/ D d 0.G;H;R/ D 1 and c.G;H;R/ D 2n�1. The last part
follows from the arguments at the end of Section 6.

Given .n1; n2; k/ 2 I.n/, let T D Tn1;n2;k . Then the model .GT ; HT / is the product
of the models .GLn1.R/; SOn1.R//, .GL2n2.R/; SO2n2.R// and ..C1/k ; .C1/k/. The
following lemma is easy to verify.

Lemma 9.6. (1) The number jZH .T /.R/ W HT .R/j is equal to 1 if n1n2 D 0, and is
equal to 2 if n1n2 ¤ 0.

(2) If n1 D n2 D 0 .this only happens when n is even/, then

jW.H; T /j D 2k�1kŠ D 2n�k�n1�2n2�1kŠ:

If n1 D 2n2 ¤ 0 (this only happens when n is even and n � 4), then

jW.H; T /j D 2 � 2kkŠ D 2n�k�n1�2n2C1kŠ:

If n1 ¤ 2n2, then
jW.H; T /j D 2kkŠ D 2n�k�n1�2n2kŠ:
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Combining Corollary 9.4, Lemma 9.5 and Lemma 9.6, we find that (we set tn1;n2 D
diag.In1 ;�I2n2 ; t / and t 0n1;n2 D diag.�In1 ; I2n2 ; t /) mgeom.�; !/ is equal to

X
.n1;n2;k/2I.n/; n1>2n2

1

2n�k�1kŠ

Z
.C1/k

.DSOn.tn1;n2/c�.tn1;n2/�!_.tn1;n2/

CDSOn.t 0n1;n2/c�.t
0
n1;n2

/�!_.t
0
n1;n2

// dt

C

X
.n1;n2;k/2I.n/; n1D2n2¤0

1

2n�kkŠ

Z
.C1/k

.DSOn.tn1;n2/c�.tn1;n2/�!_.tn1;n2/

CDSOn.t 0n1;n2/c�.t
0
n1;n2

/�!_.t
0
n1;n2

// dt

C
1

2n�n=2�1
�
n
2
Š
� Z

.C1/
n
2

DSOn.t/c�.t/�!_.t/ dt

when n is even, and is equal toX
.n1;n2;k/2I.n/

1

2n�k�1kŠ

Z
.C1/k

DSOn.tn1;n2/c�.tn1;n2/�!_.tn1;n2/ dt

when n is odd where

� the Haar measure on C1 D SO2.R/ is chosen so that the total volume is 1;

� c�.tn1;n2/ D c�.diag.In1 ; �I2n2 ; t // is the regular germ of �� at tn1;n2 D

diag.In1 ;�I2n2 ; t /, and c�.t 0n1;n2/ D c�.diag.�In1 ; I2n2 ; t // is the regular germ of
�� at t 0n1;n2 D diag.�In1 ; I2n2 ; t /) (see Section 2.5 for the definition of regular germs);

� !_ is the dual representation of ! and �!_ is the character of !_.

When n is even, we can replace the element t 0n1;n2 D diag.�In1 ; I2n2 ; t / in the expres-
sion of mgeom.�; !/ by diag.I2n2 ;�In1 ; t / because they are conjugate to each other in
SOn.R/. Then we have

mgeom.�; !/ D
X

.n1;n2;k/2I.n/

1

2n�k�1kŠ

Z
.C1/k

DSOn.diag.In1 ;�I2n2 ; t //

� c�.diag.In1 ;�I2n2 ; t //�!_.diag.In1 ;�I2n2 ; t // dt:

In other words, we get the same expression as in the odd case. To summarize, we have
proved the following proposition.

Proposition 9.7. The geometric multiplicity mgeom.�; !/ is given by the following for-
mula:

mgeom.�; !/ D
X

.n1;n2;k/2I.n/

1

2n�k�1kŠ

Z
.C1/k

DSOn.diag.In1 ;�I2n2 ; t //

� c�.diag.In1 ;�I2n2 ; t //�!_.diag.In1 ;�I2n2 ; t // dt:
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9.2. A reduction

Given a finite length smooth representation � of GLn.R/ and a finite-dimensional repres-
entation ! of SOn.R/, we need to prove the multiplicity formula

m.�; !/ D mgeom.�; !/ (9.1)

where mgeom.�; !/ was defined in Proposition 9.7.
To prove (9.1), we need a multiplicity formula for the model .GLn.R/;On.R//. To

be specific, let !C be a finite-dimensional representation of On.R/ D ¹g 2 GLn.R/ j
ggt D Inº, !_C be its dual representation, and �!_

C
W On.R/! C be the character of !_C.

We use sgn W On.R/! ¹˙1º to denote the sign character of On.R/. Given a finite length
smooth representation � of GLn.R/, we define the multiplicity

m.�; !C/ D dim.HomOn.R/.�; !C//;

and the geometric multiplicity

mgeom.�; !C/ D
X

.n1;n2;k/2J.n/

1

2n�kkŠ

Z
.C1/k

DSOn.diag.In1 ;�In2 ; t //

� c�.diag.In1 ;�In2 ; t //�!_C.diag.In1 ;�In2 ; t // dt (9.2)

where J.n/ D ¹.n1; n2; k/ 2 .Z�0/3 j n1 C n2 C 2k D nº.

Remark 9.8. Here we extend the Weyl determinant DSOn.�/ from SOn.R/ to On.R/ by
the same formula, i.e. for x 2 On.R/ss, we define

DSOn.x/ D jdet .1 � Ad.x//json.R/=son.R/x j

where son.R/x is the centralizer of x in son.R/.

Remark 9.9. The reason we consider the models .GLn.R/;On.R// is that they behave
nicely under parabolic induction. To be specific, the intersection of On.R/ with the stand-
ard Levi subgroup GLn0.R/ � GLn00.R/ (n D n0 C n00) of GLn.R/ is On0.R/ � On00.R/,
while the intersection of SOn.R/ with GLn0.R/ � GLn00.R/ is S.On0.R/ � On00.R//.

Proposition 9.10. Let !C be a finite-dimensional representation of On.R/ and ! D
!CjSOn.R/, which is a finite-dimensional representation of SOn.R/. For all finite length
smooth representations � of GLn.R/, we have

m.�; !/ D m.�; !C/Cm.�; !C ˝ sgn/;

mgeom.�; !/ D mgeom.�; !C/Cmgeom.�; !C ˝ sgn/:

Proof. The second equation follows from the definitions of mgeom.�; !/ and
mgeom.�;!C/, together with the fact that �!_

C
˝sgn.h/D �!_

C
.h/ sgn.h/ for all h 2 On.R/.
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For the first equation, we just need to show that the linear map

HomOn.R/.�; !C/˚ HomOn.R/.�; !C ˝ sgn/! HomSOn.R/.�; !/;

l1 ˚ l2 7! l1 C l2;

is an isomorphism. It is clear that this map is injective, so we just need to show that it is
surjective. Given l 2 HomSOn.R/.�; !/, we have l D .l1 C l2/=2 where

l1 D l C !C."/
�1
ı l ı �."/; l2 D l � !C."/

�1
ı l ı �."/;

" D diag.�1; In�1/ 2 On.R/ � SOn.R/:

It is enough to show that

l1 2 HomOn.R/.�; !C/; l2 2 HomOn.R/.�; !C ˝ sgn/:

For v 2 � and h 2 SOn.R/, we have

l1.�.h/v/ D l.�.h/v/C !C."/
�1
�
l.�."h/v/

�
D !.h/l.v/C !C."/

�1
�
l.�."h"�1/�."/v/

�
D !.h/l.v/C !C."/

�1
�
!."h"�1/l.�."/v/

�
D !.h/l.v/C !.h/!C."/

�1l.�."/v/ D !.h/l1.v/

and

l1.�."/v/ D l.�."/v/C !C."/
�1
�
l.�."2/v/

�
D l.�."/v/C !C."/

�1
�
!."2/l.v/

�
D l.�."/v/C !C."/l.v/ D !C."/l1.v/:

This implies l1 2 HomOn.R/.�; !C/; and l2 2 HomOn.R/.�; !C ˝ sgn/ can be shown
similarly. This proves the proposition.

The following theorem will be proved in the next subsection. It is the multiplicity
formula for .GLn.R/;On.R//.

Theorem 9.11. For all finite length smooth representations � of GLn.R/ and for all
finite-dimensional representations !C of On.R/, we have

m.�; !C/ D mgeom.�; !C/: (9.3)

Now we are ready to prove (9.1). It is enough to consider the case when ! is irredu-
cible. We use !0 to denote the irreducible representation of SOn.R/ given by !0.h/ D
!."�1h"/ with " D diag.�1; In�1/. If ! ' !0, there exists an irreducible representa-
tion !C of On.R/ such that ! D !CjSOn.R/. Then (9.1) follows from Proposition 9.10
and Theorem 9.11.

If ! is not isomorphic to !0 (this only happens when n is even), then there exists an
irreducible representation !C of On.R/ such that ! ˚ !0 D !CjSOn.R/. By Proposition
9.10 and Theorem 9.11, we have

m.�; !/Cm.�; !0/ D mgeom.�; !/Cmgeom.�; !
0/:
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Hence in order to prove (9.1), it is enough to show that

m.�; !/ D m.�; !0/; mgeom.�; !/ D mgeom.�; !
0/:

The first equality follows from the fact that the linear map

HomSOn.R/.�; !/! HomSOn.R/.�; !
0/;

l 7! !C."/
�1
ı l;

is an isomorphism. The second equality follows from the facts that �!_.h/ D
�.!0/_."

�1h"/ for all h 2 SOn.R/ and �� is invariant under "-conjugation. This finishes
the proof of (9.1) and hence the proof of Theorem 1.4 (1).

9.3. The proof of Theorem 9.11

In this subsection, we are going to prove Theorem 9.11. To simplify the notation, we will
replace !C by !. We first consider the cases when n � 2. The case when n D 1 is trivial.
Now let n D 2. We need to show that for all smooth finite length representations � of
GL2.R/ and for all finite-dimensional representations ! of O2.R/, we have

m.�; !/ D mgeom.�; !/ (9.4)

where mgeom.�; !/ is defined to be

c�.I2/�!.I2/C c�.�I2/�!_.�I2/C 2��
��
1 0
0 �1

��
�!_

��
1 0
0 �1

��
4

C
1

2

Z
SO2.R/

��.t/�!_.t/ dt:

When � is finite-dimensional, by the representation theory of compact groups we have

m.�; !/ D

Z
O2.R/

��.t/�!_.t/ dt

D
��
��
1 0
0 �1

��
�!_

��
1 0
0 �1

��
2

C
1

2

Z
SO2.R/

��.t/�!_.t/ dt:

Here the Haar measure on O2.R/ (resp. SOn.R/) is chosen so that the total volume is
equal to 1. On the other hand, since � is finite-dimensional, we have c�.I2/ D c�.�I2/
D 0. This proves (9.4).

Then we consider the induced representations. Assume that � D I
GL2
B .�1 ˝ �2/

where B D TN is the upper triangular Borel subgroup of GL2.R/ and �1 ˝ �2 is a
finite-dimensional representation of T .R/DGL1.R/�GL1.R/. By the Iwasawa decom-
position GL2.R/ D B.R/O2.R/ and the reciprocity law, we have

HomO2.R/.�; !/ D HomO1.R/�O1.R/.�1 ˝ �2; !jO1.R/�O1.R//:
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By the representation theory of finite groups (note that O1.R/ D Z=2Z is a finite group),
we have

m.�; !/ D
��1.1/��2.1/�!_.I2/

4
C
��1.�1/��2.�1/�!_.�I2/

4

C
��1.1/��2.�1/�!_

��
1 0
0 �1

��
4

C
��1.�1/��2.1/�!_

��
�1 0
0 1

��
4

:

On the other hand, by Proposition 2.7, we have

mgeom.�; !/ D
��1.1/��2.1/�!_.I2/

4
C
��1.�1/��2.�1/�!_.�I2/

4

C
��1.1/��2.�1/�!_

��
1 0
0 �1

��
4

C
��1.�1/��2.1/�!_

��
�1 0
0 1

��
4

:

This proves (9.4).
Now we prove (9.4) for the general case. It is enough to consider the case when � is

irreducible. There are three kinds of irreducible smooth representations of GL2.R/: finite-
dimensional representations, principal series and discrete series representations. The first
two cases have already been considered, so it remains to consider the discrete series case.
Assume that � is an irreducible discrete series representation. Then there exists a charac-
ter �1 ˝ �2 of T .R/ D GL1.R/ � GL1.R/ such that � is the unique subrepresentation
of…D IGL2

B .�1 ˝ �2/ and � 0 D…=� is a finite-dimensional representation of GL2.R/.
We have

m.…;!/ D m.�; !/Cm.� 0; !/; mgeom.…; !/ D mgeom.�; !/Cmgeom.�
0; !/:

By the discussion above, we havem.…;!/Dmgeom.…;!/ andm.� 0;!/Dmgeom.�
0;!/.

Hence (9.4) also holds for discrete series representations. This proves Theorem 9.11 when
n � 2.

Now assume that n > 2; we are going to prove Theorem 9.11 for GLn.R/. By induc-
tion, we assume that Theorem 9.11 holds for GLk.R/ when k < n. By Proposition 2.1, in
order to prove Theorem 9.11, it is enough to prove the following proposition.

Proposition 9.12. Theorem 9.11 holds for all induced representations. In other words, if
� D I

GLn
P .�/ is an induced representation with P DMN a proper parabolic subgroup of

GLn and � a finite length smooth representation of M.R/, then m.�; !/ D mgeom.�; !/

for all smooth finite-dimensional representations ! of On.R/.

Proof. Let � be an induced representation of GLn.R/. Then there exists a maximal upper
triangular parabolic subgroup P D MN of GLn.R/ and a finite length smooth repres-
entation � of M.R/ such that � D IGLn

P .�/. Since P is maximal, M.R/ D GLn0.R/ �
GLn00.R/ for some n0; n00 > 0 with n D n0 C n00 and � D � 0 ˝ � 00 where � 0 (resp. � 00) is a
finite length smooth representation of GLn0.R/ (resp. GLn00.R/).

By the Iwasawa decomposition GLn.R/ D P.R/On.R/ and the reciprocity law, we
have

HomOn.R/.�; !/ ' HomOn0 .R/�On00 .R/.�1 ˝ �2; !jOn0 .R/�On00 .R//:
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Together with the induction hypothesis (applied to the pairs .GLn0.R/; On0.R// and
.GLn00.R/;On00.R//), we have

m.�; !/ D
X

.n0
1
;n0
2
;k0/2J.n0/;.n00

1
;n00
2
;k00/2J.n00/

1

2n
0�k0k0Š

1

2n
00�k00k00Š

Z
.C1/k0

Z
.C1/k00

DSOn0 .diag.In0
1
;�In0

2
; t 0//DSOn00 .diag.In00

1
;�In00

2
; t 00//c� 0.diag.In0

1
;�In0

2
; t 0//

�c� 00.diag.In00
1
;�In00

2
; t 00//�!_.diag.In0

1
;�In0

2
; t 0; In00

1
;�In00

2
; t 00// dt 0 dt 00: (9.5)

It remains to show that mgeom.�; !/ is equal to the right hand side of (9.5).
We first recall the definition of mgeom.�; !/ from (9.2):

mgeom.�; !/ D
X

.n1;n2;k/2J.n/

1

2n�kkŠ

Z
.C1/k

DSOn.diag.In1 ;�In2 ; t //

� c�.diag.In1 ;�In2 ; t //�!_.diag.In1 ;�In2 ; t // dt: (9.6)

For .n1; n2; k/ 2 J.n/ D ¹.n1; n2; k/ 2 .Z�0/3 j n1 C n2 C 2k D nº, let

I.n1; n2; k/ D ¹.n
0
1; n
00
1; n
0
2; n
00
2; k
0; k00/ 2 Z6�0 j n1 D n

0
1 C n

00
1; n2 D n

0
2 C n

00
2;

k D k0 C k00; .n01; n
0
2; k
0/ 2 J.n0/; .n001; n

00
2; k
00/ 2 J.n00/º:

By Proposition 2.7, for .n1; n2; k/ 2 J.n/ and t D t1 � � � � � tk 2 .C1/k with ti ¤ ˙1,
ti ¤ tj and ti ¤ tj for 1 � i ¤ j � n, we have

DSOn.diag.In1 ;�In2 ; t //c�.diag.In1 ;�In2 ; t //

D

X
.n0
1
;n00
1
;n0
2
;n00
2
;k0;k00/2I.n1;n2;k/

X
¹i1;:::;ik0 º;¹j1;:::;jk00 º

DSOn0 .diag.In0
1
;�In0

2
; t 0//

�DSOn00 .diag.In00
1
;�In00

2
; t 00//c� 0.diag.In0

1
;�In0

2
; t 0//c� 00.diag.In00

1
;�In00

2
; t 00// (9.7)

where

� i1 < � � � < ik0 and j1 < � � � < jk00 ; ¹i1; : : : ; ik0º runs over the subsets of ¹1; : : : ; kº
containing k0 elements and ¹j1; : : : ; jk00º D ¹1; : : : ; kº � ¹i1; : : : ; ik0º.

� t 0 D ti1 � � � � � tik0 and t 00 D tj1 � � � � � tjk00 .

Combining (9.5)–(9.7), we have m.�; !/ D mgeom.�; !/. This finishes the proof of
the proposition and hence the proofs of Theorems 1.4 (1) and 9.11.

10. The proof of Theorem 1.4 (2)

In this section, we are going to prove the conjectural multiplicity formula for K-types of
complex reductive groups, i.e. Theorem 1.4 (2). Let H be a connected reductive group
defined over R with H.R/ compact and let G D ResC=RH . Let � be a finite length
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smooth representation of G.R/ and ! be a finite-dimensional representation of H.R/.
We have defined the multiplicity

m.�; !/ D dim.HomH.R/.�; !//

in previous sections. Moreover, by the discussion in Section 8.4 (note that .G; H/ is a
special case of the Galois models), we know that the geometric multiplicity in this case is
defined by

mgeom.�; !/ D jW.H; T /j
�1

Z
T.R/

DH .t/��.t/�!_.t/ dt

D jW.G/j�1
Z
T.R/

DH .t/��.t/�!_.t/ dt

where T .R/ is a maximal torus of H.R/ (which is unique up to H.R/-conjugation) and
W.H; T / is the Weyl group which is isomorphic to the Weyl group W.G/ of G.R/ D
H.C/. The goal of this section is to prove Theorem 1.4 (2). In other words, we need to
show that

m.�; !/ D mgeom.�; !/: (10.1)

When G is abelian, (10.1) is trivial. Hence by induction, we may assume that (10.1)
holds for all proper Levi subgroups of G. By Proposition 2.1, it is enough to prove the
following proposition.

Proposition 10.1. Equality (10.1) holds for all induced representations. In other words,
if � D IGP .�/ is an induced representation with P DMN be a proper parabolic subgroup
ofG and � be a finite length smooth representation ofM.R/, thenm.�;!/Dmgeom.�;!/

for all finite-dimensional representations ! of H.R/.

Proof. By conjugatingM we may assume that P.R/\H.R/DM.R/\H.R/ is a max-
imal compact subgroup ofM.R/. SetHM DM \H , thenM ' ResC=RHM . Moreover,
we may choose the torus T so that T �HM (i.e. T .R/ is also a maximal torus ofHM .R/).
By the Iwasawa decomposition G.R/ D P.R/H.R/ and the reciprocity law, we have

HomH.R/.�; !/ ' HomHM .R/.�; !jHM .R//:

Combining this with our inductional hypothesis (applied to the pair .M.R/; HM .R//),
we have

m.�; !/ D jW.M/j�1
Z
T.R/

DHM .t/�� .t/�!_.t/ dt (10.2)

where W.M/ is the Weyl group of M.R/ D HM .C/.
For t 2 T .R/ \ Greg.R/, we have DH .t/ D DG.t/1=2 and DHM .t/ D DM .t/1=2.

Combining this with Proposition 2.7, we have

DH .t/��.t/ D
X
tM

DHM .tM /�� .tM /
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where tM runs over a set of representatives for the M.R/-conjugacy classes of elements
in T .R/ that areG.R/-conjugate to t (note that each regular semisimpleG.R/-conjugacy
class decomposes into jW.G/j

jW.M/j
-many M.R/-conjugacy classes). As a result, we haveZ

T.R/
DH .t/��.t/�!_.t/ dt D

jW.G/j

jW.M/j

Z
T.R/

DHM .t/�� .t/�!_.t/ dt: (10.3)

Now the proposition follows from (10.2) and (10.3). This finishes the proof of the pro-
position and hence the proof of Theorem 1.4 (2).
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