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Abstract. Given an integral p-adic variety, we observe that if the integral Hodge–de Rham spectral
sequence behaves nicely, then the special fiber knows the Hodge numbers of the generic fiber.
Applying recent advancements of integral p-adic Hodge theory, we show that such a nice behavior
is guaranteed if the p-adic variety can be lifted to an analogue of second Witt vectors and satisfies
some bound on dimension and ramification index. This is a (ramified) mixed characteristic analogue
of results due to Deligne–Illusie, Fontaine–Messing, and Kato. Lastly, we discuss an example
illustrating the necessity of the aforementioned lifting condition, which is of independent interest.
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1. Introduction

Given a smooth proper scheme X over some p-adic ring of integers OK , can we tell the
Hodge diamond of its generic fiber X by simply staring at the geometry of the special
fiber X0? In general, there is no hope of this being true. But surely if one puts some
constraints, this will be true.

There are two typical pathological phenomenons concerning Hodge and de Rham
cohomology groups in an integral p-adic situation: one being torsions in the cohomology
groups, the other being the non-degeneracy of the integral Hodge–de Rham spectral
sequence. In this paper we convey the idea that, for the question asked at the beginning,
the trouble comes from the second phenomenon. To be more precise, we define virtual
Hodge numbers for any smooth proper variety in characteristic p (see Definition 3.1).
In Proposition 3.4, we observe that if the integral Hodge–de Rham spectral sequence of a
lift X degenerates saturatedly (see Definition 2.3), then the virtual Hodge numbers of X0

agree with the Hodge numbers of the generic fiber X .
Then we show the following:
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Theorem 1.1 (Main Theorem). Let X ! Spf.OK/ be a smooth proper formal scheme,
and let W.�/ be the Witt ring of the residue field of OK . Let S WD W.�/[u] be the
Breuil–Kisin prism associated with OK and let E be an associated Eisenstein polynomial
[6, Example 1.3 (3)]. Assume that

(1) there is a lift of X over S=.E2/; and

(2) the relative dimension of X and the ramification index e of OK satisfy the inequality
dim.X0/ � e < p � 1.

Then the Hodge–de Rham spectral sequence for X is split degenerate. In particular, we
have equality of .virtual/ Hodge numbers:

hi;j .X0/ D h
i;j .X/:

One may think of this result as a mixed characteristic analogue of a theorem by Deligne–
Illusie [8]. There is a similar statement with weaker conclusion when dimX exceeds the
bound in (2) (see Porism 3.11). When OK is the Witt ring of a perfect field, condition (1)
is automatic and our result can also be deduced from Fontaine–Messing’s result [10] or
Kato’s result [12]. We summarize the implications between various relevant conditions
in Section 3.4. The proof of the main theorem uses recent theory of prismatic cohomology
due to Bhatt–Scholze [6] along with a result of Min [15]. For more details, see Section 3.

Lastly, one may wonder if either condition (1) or (2) is really necessary. Previously
in [14] we have constructed a pair of relative 3-folds over ZpŒ�p� with isomorphic special
fiber such that their generic fibers have different Hodge numbers, showing that the con-
clusion of Theorem 1.1 is not true in general. While it is unclear if condition (2) is really
necessary, in Section 4, which is independent of other sections, we extensively discuss an
example illustrating the necessity of condition (1).

Theorem 1.2 (see Theorem 4.14). There exists a smooth projective relative 4-fold X over
a ramified degree 2 extension OK of Zp such that both its Hodge–de Rham and Hodge–
Tate spectral sequences are non-degenerate. Moreover, the Hodge/conjugate filtrations are
non-split as OK-modules.

The idea of construction, which may be traced back to W. Lang’s work [13] and
Raynaud’s [16], is as follows. The exotic group scheme p̨ admits liftings over ramified
p-adic rings of integers. We choose a lift G over a degree 2 ramified p-adic ring of
integers, then we study the Hodge–de Rham and Hodge–Tate spectral sequences of BG,
the classifying stack ofG. With the aid of various computations in [2], we find out that both
are non-degenerate starting at degree 3 with non-split Hodge/conjugate filtrations starting
at degree 2. In the end, we take an approximation of BG to get the desired example.

2. Preliminaries on spectral sequences over DVRs

This section is a general discussion of spectral sequences associated with a filtered bounded
perfect complex over a DVR.
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Notation 2.1. Throughout this section, let R be a DVR with a uniformizer � . Denote
K WD RŒ1=�� and � WD R=� . Let .C; Fil�/ be a filtered object in Db

Coh.R/. We assume
that the filtration on C is exhaustive and complete.

Given a finitely generated R-module M , we denote by Mtor the torsion submodule
in M , and we denote its torsion-free quotient by Mtf WDM=Mtor.

Remark 2.2. We do not assume this filtration to be either increasing or decreasing, as it is
modeling both Hodge–de Rham and Hodge–Tate spectral sequences.

From .C; Fil�/ we naturally get a spectral sequence converging from H i .Grj / to
H i .C /. From now on, we will call it “the spectral sequence” if no confusion seems to
arise. In the following definition, we refine the classical notion of the spectral sequence
being degenerate.

Definition 2.3. (1) We say the spectral sequence degenerates or is degenerate if for all
pairs of integers .i; j /, the natural map Hi .Filj /! Hi .C / is an injection.

(2) We say the spectral sequence degenerates saturatedly or is saturated degenerate if it
degenerates and the induced injection Hi .Filj /tf ! Hi .C /tf is saturated.

(3) We say the spectral sequence degenerates splittingly or is split degenerate if it degen-
erates and the induced injection Hi .Filj /! Hi .C / splits.

Recall that an injection/inclusion of torsion-free R-modules N � M is said to be
saturated if �N D N \ �M or, what is the same, M=N is �-torsion-free.

Remark 2.4. It is obvious that the spectral sequence being split degenerate implies it
being saturated degenerate, and both imply it is degenerate.

In the case of Hodge–de Rham or Hodge–Tate spectral sequences (over mixed char-
acteristic DVRs), we know that they degenerate after inverting p (see [17, Corollary 1.8]
and [5, Theorem 1.7]). In this scenario, we have a condition on the E1-page of the spectral
sequence characterizing the spectral sequence being saturated or split degenerate:

Proposition 2.5. Suppose that the spectral sequence degenerates after inverting � . Then

(1) the spectral sequence is saturated degenerate if and only if

length.H i .C /tor/ D
X
j

length.H i .GrjC/tor/ for all i ;

(2) the spectral sequence is split degenerate if and only if there is an abstract isomorphism
of R-modules

H i .C /tor '
M
j

H i .GrjC/tor for all i .

Note that since we assumed that Fil� is exhaustive and saturated, the summation process
is finite.
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Proof of Proposition 2.5 (1). First notice that

length.H i .C /tor/ �
X
j

length.Grj .H i .C //tor/ �
X
j

length.H i .GrjC/tor/;

where the second inequality comes from the fact that the spectral sequence degenerates
after inverting � (so Grj .H i .C //tor must be a subquotient of H i .GrjC/tor). Therefore
the equality condition implies equality between Grj .H i .C //tor and H i .GrjC/tor. In other
words, every element in H i .GrjC/tor is a permanent cycle. Since the spectral sequence
degenerates after inverting � , we know that all the differentials in the spectral sequence
are torsion. Combining these two, we see that all the differentials are forced to be zero,
which exactly means that the spectral sequence must degenerate.

Now we have reduced the statement of (1) to: assume the spectral sequence degenerates;
then it is saturated degenerate if and only if the equality of lengths of �-torsions holds, and
this statement is handled in the following lemma.

Lemma 2.6. Let M be a finitely generated R-module with an exhaustive and saturated
filtration F�. Then Fitf �Mtf is saturated for all i if and only if

length.Mtor/ D
X
i

length.Gri /tor/:

Proof of Lemma 2.6. First observe that for any i we have an inequality

length.Mtor/ � length.Fitor/C length..M=Fi /tor/;

with equality holding if and only if the map

Mtor ! .M=Fi /tor

is surjective. Hence we see that the equality in the statement is equivalent to this map being
surjective for all i .

Applying the snake lemma to

0 // Fitor

��

// Fi

��

// Fitf

��

// 0

0 // Mtor // M // Mtf // 0

yields an exact sequence

0!Mtor=Fitor ! .M=Fi /tor ! .Mtf=Fitf/tor ! 0:

Here we used the fact that Fi \Mtor D Fitor. This short exact sequence says exactly that
the surjectivity of Mtor ! .M=Fi /tor is equivalent to Mtf=Fitf being torsion-free, which
concludes the proof of this lemma.

This completes the proof of Proposition 2.5 (1).
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Before proving the second part of Proposition 2.5, let us briefly discuss the condition
of an extension of finitely generated torsion R-modules being split.

Definition 2.7. Let M be a finitely generated torsion R-module. Write

M D

lM
iD1

R=�ni

where n1 � � � � � nl . Then the characteristic polygon of M , denoted by PM , is the graph
of the piecewise linear function defined on Œ0; l� passing through .0; 0/, with the i-th
segment of horizontal span 1 and slope ni .

Remark 2.8. It is easy to see that the width of PM is given by dim�.M=�M/, and the
end points are .0; 0/ and .dim�.M=�M/; length.M//.

Given two finitely generated torsion R-modules, we would like to compare the charac-
teristic polygons of an extension class and that of their direct sums.

Example 2.9 (see also [7, p. 502]). Consider an extension

0! N D R=� l !M ! R=�m ! 0:

Then we must have either M ' R=� lCm or M ' R=�n ˚ R=�mCl�n, where
min ¹n; mC l � nº � min ¹l; mº with equality if and only if the short exact sequence
splits.

We observe that the former case corresponds to N=� !M=� being not injective. In
the latter case we see that PM is always lower than or equal to PN˚M=N , and equality
holds exactly when the extension class splits. Here by PN˚M=N we mean the characteristic
polygon associated with the module N ˚M=N .

Inspired by this example, we give the following criterion characterizing split short
exact sequences of finitely generated torsion R-modules.

Proposition 2.10. LetM be a finitely generated torsionR-module, andN �M a submod-
ule. Suppose N=� !M=� is an injection. Then PM is lower than or equal to PN˚M=N ,
with equality holding if and only if N �M splits.

Proof. First assume we can prove the statement when N is cyclic (generated by one
element). Write N D N1 ˚N2. Inducting on the dimension of N=� , we see that

PM � PN1˚M=N1
� PN1˚N2˚M=N D PN˚M=N ;

with equality holding if and only if both N1 �M and N2 �M=N1 split, or equivalently
N D N1 ˚N2 �M splits. Therefore we reduce to the case where N D R=�n is cyclic.

Dually, we may induct on the dimension of .M=N/=� . By the same argument as
above, we may also assume that M=N is cyclic. Now we have reduced the statement to
the case where both N and M=N are cyclic, which is discussed in Example 2.9.
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We may extend this discussion to a multi-filtered situation, which is useful when
considering spectral sequences. Let us record one consequence of Proposition 2.10.

Corollary 2.11. Let .M; F�/ be a finitely generated torsion R-module with an exhaustive
and complete filtration. Suppose that we have an abstract isomorphism

M '
M
i

Gri :

Then all Fi �M are direct summands.

Proof. Without loss of generality, assume that the filtration is increasing. Now M 'L
i Gri is a Noetherian R-module, and since the filtration is exhaustive and complete,

we may assume that Fi D 0 for i < 0 and that there is an integer N such that Fj D M
whenever j > N .

Next let us show that the natural map Fi=� ! FiC1=� is injective for all i . Due to
right exactness of reduction modulo � , we have a chain of inequalities

dim�.M=�/ � dim�.FN�1=�/C dim�.GrN =�/ � � � �

� dim�.Fi=�/C
NX

jDiC1

dim�.Grj =�/ � � � � �
NX
jD0

dim�.Grj =�/ D dim�.M=�/;

where the last equality follows from the condition that M '
L
i Gri . Therefore all the

inequalities in the above chain must in fact be equalities, which is equivalent to saying all
the maps Fi=� ! FiC1=� are injective.

Now Proposition 2.10 implies that

PM � PGr0˚M=F0 � PGr0˚Gr1˚M=F1 � � � � � PL
i Gri ;

and our condition forces all the inequalities above to be equalities. Hence applying Propos-
ition 2.10 again yields what we want.

Now we turn to the proof of (the “if” part of) Proposition 2.5 (2).

Proof of Proposition 2.5 (2). By validity of (1), we see that in this situation, the spectral
sequence is already saturated degenerate. Therefore it suffices to show that the induced
filtration H i .FiljC/tor D FiljH i .C /tor on H i .C /tor is split for all i .

Notice that in our proof of (1), we established that the graded pieces of this filtration
are exactly given by H i .GrjC/tor. Now our condition implies that we have an abstract
isomorphism

H i .C /tor '
M
j

GrjH i .C /tor:

Applying Corollary 2.11, we see that H i .FiljC/tor D FiljH i .C /tor � H
i .C /tor is split

for all i .
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Inspired by Proposition 2.5, we make the following further definition concerning the
torsion part of various pages of the spectral sequence.

Definition 2.12. (1) We say the spectral sequence has saturated degenerate torsion in
degree i if

length.H i .C /tor/ D
X
j

length.H i .GrjC/tor/:

(2) We say the spectral sequence has split degenerate torsion in degree i if

H i .C /tor '
M
j

H i .GrjC/tor as R-modules:

The following proposition is similar to Proposition 2.5.

Proposition 2.13. Suppose that the spectral sequence .C;Fil�/ degenerates after invert-
ing � . Let i be an integer.

(1) If the spectral sequence has saturated degenerate torsion in degree i , then

H i .Grj /tor Š Grj .H i .C //tor:

Consequently, the maps H i .Filj /! H i .C / are injective and the induced injection
H i .Filj /tf ! H i .C /tf is saturated for all j .

(2) If the spectral sequence has split degenerate torsion in degree i , then the induced maps
H i .Filj /! H i .C / are split for all j .

Proof. For (1): In the proof of Proposition 2.5 (1) we have established that the equality
of lengths of torsions implies the claimed identifications. Since the spectral sequence is
assumed to be degenerate after inverting � , we immediately see that the mapsH i .Filj /!
H i .C / are injective.

Next we look at the following diagram:

0 // H i .Filj /tor //

��

H i .C /tor //

��

H i .C=Filj /tor

��

// 0

0 // H i .Filj / //

��

H i .C / //

��

H i .C=Filj /

��

H i .Filj /tf // H i .C /tf // H i .C=Filj /tf

Notice that the first two rows are exact, and the snake lemma gives us an exact sequence

0! H i .Filj /tf ! H i .C /tf ! H i .C=Filj /tf;

which implies that H i .C /tf=H
i .Filj /tf, as a submodule of H i .C=Filj /tf, is torsion-free.

For (2): Using what we have proved in (1), all we need to show is that the inclu-
sion H i .Filj /tor ! H i .C /tor splits, which follows from the identifications H i .Grj /tor Š

Grj .H i .C //tor and Corollary 2.11.
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One can also define what it means for the spectral sequence to have saturated/split
degenerate torsion in a range of degrees. Proposition 2.13 can be immediately generalized
to this generality.

The following proposition will be used in later sections.

Proposition 2.14. Let M be a finitely generated R-module, with N �M a submodule.
Suppose that Ntf �Mtf is saturated. Then

dimK NŒ1=�� D dim� Im.N=� !Mtf=�/:

Proof. Neither side changes when we pass from M to Mtf. Hence we may assume M is
torsion-free, in which case N is a direct summand by being a saturated submodule, and
the statement becomes trivial.

The next two lemmas have been pointed out by the anonymous referee; we thank them
for this suggestion.

Lemma 2.15. Let U ! V be a map of R-complexes. Let n be an integer and assume
that HnC1.U /! HnC1.V / is injective. Then we have an identification of subspaces in
Hn.V /=�:

Im.Hn.U /=� ! Hn.V /=�/

Š

��

Im.Hn.U=�/! Hn.V=�// \Hn.V /=�

Proof. Let us denote the cone of U ! V by C . The assumption yields an exact sequence

Hn.U /! Hn.V /! Hn.C /! 0:

Modulo � , and using right exactness, we get

Hn.U /=� ! Hn.V /=� ! Hn.C /=� ! 0:

Now we have the following diagram, with horizontal lines exact and vertical arrows
injective:

Hn.U /=� //
� _

��

Hn.V /=� //
� _

��

Hn.C /=�
� _

��

Hn.U=�/ // Hn.V=�/ // Hn.C=�/

A simple diagram chasing now gives the claimed identification.

Combining Proposition 2.14 and Lemma 2.15 gives

Lemma 2.16. Let U ! V be a map of R-complexes. Let n be an integer. Assume that

(1) the image of Hn.U /! Hn.V /tf is saturated inside Hn.V /tf; and

(2) the map HnC1.U /! HnC1.V / is injective.
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Then

dimK Im.Hn.U /Œ1=��! Hn.V /Œ1=��/

D dim� Im
��

Im.Hn.U=�/! Hn.V=�// \Hn.V /=�
�
! Hn.V /tf=�

�
:

Proof. We use Proposition 2.14, where N �M are given by the image of Hn.U / inside
Hn.V /. We then use Lemma 2.15 to rewrite the right hand side of the equality.

For our later purposes, we also need to discuss the relation of cohomologies of a perfect
R-complex and cohomologies of its dual.

Lemma 2.17. Let U be a perfect R-complex. Consider V D RHomR.U;RŒ0�/. Then for
any integer i we have canonical identifications:

H�iC1.V /tor Š HomR.H
i .U /tor; K=R/ and H�i .V /tf Š HomR.H

i .U /tf; R/:

Proof. We have an E2 spectral sequence:

ExtiR.H
j .U /;R/ H) H i�j .V /:

SinceR is a DVR, the terms on the second page vanish unless i 2 ¹0; 1º. Hence the spectral
sequence degenerates for degree reasons, and we get a natural short exact sequence

0! Ext1R.H
i .U /;R/! H�iC1.V /! HomR.H

i�1.U /;R/! 0:

Now we finish by recalling that given a finitely generated R-module M , one has canonical
identifications

HomR.M;R/ D HomR.Mtf; R/ and Ext1R.M;R/ D HomR.Mtor; K=R/:

3. Consequences of recent developments in integral p-adic Hodge theory

In this section we concentrate on the p-adic situation.

3.1. Notations and setup

Throughout this section, letK be a complete p-adic field with a chosen uniformizer � , ring
of integers OK and perfect residue field � WD OK=.�/. Recall that OK contains the ring of
Witt vectors of �, and the degree of the fraction field extension K0 WDW.�/Œ1=p� � K is
called the ramification index of K and denoted by e. This paper concerns low ramification
situation, in particular we assume that e � p � 1, therefore the ideal .�/ � OK has a
unique divided power structure.

Consider S WD W.�/[u] with a surjection S � OK , where u is sent to the chosen
uniformizer � . The kernel of this surjection is generated by an Eisenstein polynomial
I D .E.u//. Define the Frobenius �WS! S that extends the Frobenius on W.�/ and
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sends u to up; since S is p-torsion-free, this puts a unique ı-structure on S. The pair
.S; I / is a Breuil–Kisin type prism (see [6, Example 1.3 (3)]).

Let X be a smooth proper formal scheme over OK . We denote the special fiber of X

by X0 WD X �OK
� and the (rigid) generic fiber of X by X WD X �OK

K. We call X a
lifting of X0 over OK . In the case where e D 1, i.e. OK DW.�/, we call X an unramified
lift of X0.

3.2. Virtual Hodge numbers

Recall a natural identification R�crys.X0=W.�//˝L
W.�/ � ' R�dR.X0=�/, which implies

that we have a natural injection

H i
crys.X0=W.�//=p ,! H i

dR.X0=�/

for all i . Therefore we may regard H i
crys.X0=W.�//tf=p as a natural subquotient of

H i
dR.X0=�/.

Definition 3.1 (Virtual Hodge numbers). The Hodge filtration on H i
dR.X0=�/ induces

a natural filtration on the subquotient H i
crys.X0=W.�//tf=p. The virtual Hodge numbers

of X0 are given by

hi;j .X0/ WD dim� Fili .H iCj
crys .X0=W.�//tf=p/ � dim� FiliC1.H iCj

crys .X0=W.�//tf=p/:

Unwinding the definition, we have the following description of the i-th induced
filtration on Hn

crys.X0=W.�//tf=p:

Im
�
Im.Hn.�

�i
X0=�

/! Hn.��X0=�
// \Hn

crys.X0=W.�//=p ! Hn
crys.X0=W.�//tf=p

�
:

( )

Note that this definition only depends on the smooth proper variety X0 in characteristic p.

Remark 3.2. It is worth pointing out that in this definition, we may replace the Witt
vectors by any ring of integers OK as long as e � p � 1. By the de Rham–crystalline
comparison and the base change formula of crystalline cohomology [4, Corollary 7.3 and
Theorem 7.8], we have natural identifications:

� H i
crys.X0=W.�//˝W.�/ OK Š H

i
dR.X=OK/,

� H i
crys.X0=W.�//tf ˝W.�/ OK Š H

i
dR.X0=OK/tf,

� H i
crys.X0=W.�//=p Š H i

dR.X0=OK/=� , and

� H i
crys.X0=W.�//tf=p Š H

i
dR.X0=OK/tf=� .

These filtrations are only objects in characteristic p. The goal of this subsection is to show
that if the integral p-adic Hodge filtration behaves nicely, then these filtrations can tell us
something about the rational Hodge filtrations.

Proposition 3.3. Let X ! Spf.OK/ be as in Section 3.1. Assume that the integral Hodge–
de Rham spectral sequence of X degenerates. Then we have identifications of subspaces
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in Hn.��
X=OK

/=� Š Hn
crys.X0=W.�//=p:

Im.Hn.�
�i
X=OK

/=� ! Hn.��
X=OK

/=�/

Š

��

Im.Hn.�
�i
X0=�

/! Hn.��
X0=�

// \Hn
crys.X0=W.�//=p

Proof. This is a direct application of Lemma 2.15. We write U D R�.��i
X=OK

/ and

V D R�.��
X=OK

/. Then the cone C equals R�.��i�1
X=OK

/. The assumption on the Hodge–
de Rham spectral sequence implies the condition required in Lemma 2.15. Together with
the identification spelled out in Remark 3.2, we get the claimed identification.

Recall the definition of a spectral sequence being saturated degenerate in Definition 2.3.
The following is an immediate consequence of Lemma 2.16 applying to all the Hodge
filtrations of the de Rham complex, but let us repeat the proof one more time.

Proposition 3.4. Let X ! Spf.OK/ be as in Section 3.1. Assume that the integral Hodge–
de Rham spectral sequence of X is saturated degenerate. Then we have equality of .virtual/
Hodge numbers:

hi;j .X0/ D h
i;j .X/:

Proof. According to the definitions, we need to show that the dimension of the i-th
filtration on Hn

crys.X0=W.�//tf=p Š Hn
crys.X0=OK/tf=� agrees with the dimension of the

i -th filtration on Hn
dR.X/.

By Proposition 3.3, we may rewrite formula ( ) for the i-th filtration on
Hn

crys.X0=OK/tf=� Š H
n.��

X=OK
/tf=� as

Im
�
Hn.�

�i
X=OK

/=� ! Hn.��X=OK
/=� ! Hn.��X=OK

/tf=�
�
:

Our assumption implies that the submoduleHn.�
�i
X=OK

/�Hn.��
X=OK

/meets the condi-
tion of Proposition 2.14. This gives the claimed equality of the dimensions of filtrations.

3.3. Main Theorem

In this subsection, we explain the proof of the Main Theorem 1.1, which we repeat below:

Theorem 3.5. Let X ! Spf.OK/ be a smooth proper formal scheme. Assume that

(1) there is a lift of X over S=.E2/; and

(2) the relative dimension of X and the ramification index satisfy dim.X0/ � e < p � 1.

Then the Hodge–de Rham spectral sequence for X is split degenerate. In particular, we
have equality of .virtual/ Hodge numbers:

hi;j .X0/ D h
i;j .X/:
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Remark 3.6. (1) Modulo .u/, the surjection S=.E2/� OK becomes W2.�/� � (note
that E is an Eisenstein polynomial in u). So we may view this theorem as a mixed-
characteristic analogue of a theorem by Deligne–Illusie [8, Corollaire 2.4].

(2) Our result implies that a smooth proper variety X0 in positive characteristic knows
Hodge numbers of the generic fiber of a (formal) lifting provided (i) the lifting can be
further lifted to S=.E2/, and (ii) dim.X0/ � e < p � 1.

(3) Condition (1) of Theorem 3.5 is not so easy to verify. There are two cases we
can think of in which this condition is automatically guaranteed, the first being that
X is an unramified lift (for then the surjection S � OK admits a section), in which
case a stronger statement follows from the work of Fontaine–Messing [10] or Kato [12]
(see Remark 3.12). The second case is when X0 has unobstructed deformation theory,
e.g. when H 2.X0;T/ D 0, by deformation-theoretic considerations.

(4) Similar to the situation of Deligne–Illusie’s statement, there are examples showing
the necessity of condition (1). In fact one example comes from (ramified) liftings of
(counter-)examples to Deligne–Illusie’s statement in characteristic p due to Antieau–Bhatt–
Mathew [2]; see Section 4 and more precisely Theorem 4.14.

The main ingredients that go into the proof are some recent developments in integral
p-adic Hodge theory. So we first introduce these ingredients.

Recently Bhatt–Scholze [6] developed prismatic cohomology theory to unite many (if
not all) known p-adic cohomology theories one may attach to a p-adic smooth formal
scheme over a certain class of p-adic base rings. While their theory is in a much broader
context, we shall specialize their results to the situation of interest for this paper: they
introduced prismatic site .X=S/� on which there are two structure sheaves O� and
O� WD O�=E. The cohomology of O� on .X=S/� is denoted by R��.X=S/. There is a
natural map of ringed topoi (see [6, Construction 4.4])

�WShv..X=S/�;O�/! Shv.XKet;OX/:

The properties we need of these objects are summarized in the following:

Theorem 3.7 (Bhatt–Scholze).

(1) .[6, Corollary 15.4]/ There is a canonical isomorphism

R�dR.X=OK/ Š R��.X=S/˝
L
S ��OK ;

where ��OK is OK viewed as an S-module .or even algebra/ via the composite

S
�
�! S! OK D S=.E/.

(2) .[6, Theorem 4.10]/ There is a canonical isomorphism

�iX=OK
¹�iº Š Ri��O�:

Here .�/¹j º WD .�/˝OK
..E/=.E2//˝j . This induces an increasing filtration .called

the conjugate filtration/ on R��.X=S/˝
L
S OK giving rise to anE2 spectral sequence
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.called the Hodge–Tate spectral sequence/

E
i;j
2 D H

i .X; �
j

X=OK
/¹�j º H) H

iCj
HT .X=OK/ WD H

iCj .R��.X=S/˝
L
S OK/:

( )

(3) .[6, Remark 4.13 and Proposition 4.14], [1, Proposition 3.2.1]/ The map

OX ! ��1R��O�

splits if and only if X lifts to S=.E2/.

Lastly, we need a result of Min [15] concerning the S-module structure of H i
�.X=S/

in the case of small i and low ramification index:

Theorem 3.8 (Min [15, Corollary 5.4 and Theorem 5.11]). When i � e < p � 1, we have
an abstract isomorphism of S-modules

H i
�.X=S/ Š Sni ˚

M
j2J

S=pnj ;

where J is a finite set. Moreover, H iC1
� .X=S/ is u-torsion-free.

Using the result of Min and our analysis of spectral sequences in the previous section,
we may relate the behavior of the Hodge–de Rham and the Hodge–Tate spectral sequences.
Let T be the largest integer with T � e < p � 1, which is the threshold given by Min’s
theorem above.

Corollary 3.9. Let i � T be an integer. We have two equivalences:

(1) The Hodge–de Rham spectral sequence having saturated degenerate torsion in degree i
is equivalent to the Hodge–Tate spectral sequence having saturated degenerate torsion
in degree i .

(2) The Hodge–de Rham spectral sequence having split degenerate torsion in degree i
is equivalent to the Hodge–Tate spectral sequence having split degenerate torsion in
degree i .

Proof. Since OK and ��OK are of flat dimension 1 as S-modules, we have short exact
sequences

0! H i
�.X=S/˝S OK ! H i .R��.X=S/˝

L
S OK/! TorS

1 .H
iC1
� .X=S/;OK/! 0;

0! H i
�.X=S/˝S ��OK ! H i .R��.X=S/˝

L
S ��OK/

! TorS
1 .H

iC1
� .X=S/; ��OK/! 0:

Notice that S and S=p` are, as S-modules, Tor-independent with OK and ��OK .
Moreover, the Tor1 term is given by E.u/-torsions of HTC1

� .X=S/ and ��HTC1
� .X=S/.

Recall the relation [6, Theorem 17.2] between Breuil–Kisin prismatic cohomology and
Ainf-cohomology by Bhatt–Morrow–Scholze [5]. We also need to invole the fact that
the Ainf-cohomology groups after inverting p are always finite free over AinfŒ1=p�
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[5, Definition 1.5 and Theorem 1.8]. The result of [15, Lemma 5.3] and the u-torsion-
freeness of HTC1

� .X=S/ imply the Tor1 terms above when i D T also vanish.
Therefore in the situation considered, by Theorems 3.7 (1, 2) and 3.8, we have an

abstract isomorphism of OK-modules

H i
dR.X=OK/ ' H

i
HT.X=OK/ for all i � T .

Moreover, we know that both the Hodge–de Rham and Hodge–Tate spectral sequences
degenerate after inverting � (see [17, Corollary 1.8] and [5, Theorem 1.7]). Hence we
reduce these two statements respectively to Definition 2.12 (1, 2), by observing that the
starting pages of these two spectral sequences are formed by abstractly isomorphic OK ,
modules (after switching bi-degrees).

Finally, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. By anti-symmetrizing (cf. [8, step (a) of Theorem 2.1]) the section

�1OX
¹�1ºŒ�1�! ��1R��O�

given by the lift of X to S=.E2/ (see Theorem 3.7 (3)), we see that the conjugate filtration
splits (note that our constraint on dimX in particular implies the relative dimension is
smaller than p):

dimXM
iD0

�iOX
¹�iºŒ�i � ' R��O�:

Therefore we see that the Hodge–Tate spectral sequence ( ) has split degenerate torsion
in all degrees, and thus in particular in the range .�1; T �. By Corollary 3.9 the Hodge–de
Rham spectral sequence must also have split degenerate torsion in the same range of
degrees.

Now we invoke the duality statements for de Rham and Hodge cohomologies. By
Poincaré duality for de Rham cohomology [3, Chapter VII, Théorème 2.1.3] we have an
identification

R�dR.X=OK/ Š RHomR.R�dR.X=OK/;OK Œ�2d�/;

where d D dimX0 and we have implicitly identified de Rham and crystalline cohomologies.
Similarly, by Serre duality for Hodge cohomology [18, Tag 0BRT, Tag 0AU3, and Tag
0E9Z] we have an identification

R�.�d�iX=OK
/ Š RHomR.R�.�iX=OK

/;OK Œ�d�/:

Using Lemma 2.17 and what we obtained in the previous paragraph, we can now conclude
that the Hodge–de Rham spectral sequence has split degenerate torsion in degrees in
Œ2d C 1 � T;C1/.

The union .�1; T � [ Œ2d C 1 � T;C1/ covers all integers exactly when d � T .
Therefore condition (2) now implies that the Hodge–de Rham spectral sequence is split
degenerate by Proposition 2.5 (2). The last statement concerning numerical equalities
follows from Proposition 3.4.

https://stacks.math.columbia.edu/tag/0BRT
https://stacks.math.columbia.edu/tag/0AU3
https://stacks.math.columbia.edu/tag/0E9Z
https://stacks.math.columbia.edu/tag/0E9Z
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Remark 3.10. An ongoing project of Bhatt–Lurie establishes a duality statement for
prismatic cohomology. Assuming their result, together with Min’s result, one gets a
more uniform proof of the Main Theorem. Indeed, these results together imply that
under the assumption (2) all the prismatic cohomology of .X=S/� is of the shape Sn ˚L
j2J S=pnj . Notice, however, that their duality statement does not improve the bound

on dimension, because their duality statement is over the 2-dimensional ring S.

In the situation where dimX exceeds the bound, our argument produces the following.
Recall that T denotes the largest integer satisfying T � e < p � 1.

Porism 3.11. Let X be a smooth proper formal scheme over OK which lifts to S=.E2/.
Then the differentials in the Hodge–de Rham spectral sequence with target of total degree
� T are zero, and the induced Hodge filtrations on de Rham cohomology of degree� T are
split. Hence hi;j .X0/ D H

i;j .X/ for i C j � T � 1 .or equivalently .i C j C 1/ � e <
p � 1/.

Proof. By the first paragraph of the proof of Theorem 1.1, the Hodge–de Rham spectral
sequence has split degenerate torsion up to degree T . The statement about Hodge filtrations
being split follows from Proposition 2.13. The statement about equality of numbers
follows from Lemma 2.16; notice that in applying Lemma 2.16, we need the map of next
cohomological degree to be injective, which lowers the range of application by 1.

In this proof, we are not using the duality statement. In particular, following this proof,
if 2 dim.X0/ � e < p � 1, then we do not need to invoke the duality statement in the proof
of Theorem 1.1.

When e D 1, namely X0 has an unramified lifting, the result of Fontaine–Messing and
Kato gives something slightly more.

Remark 3.12. It is a result of Fontaine–Messing [10, Corollary 2.7 (iii)] and Kato [12,
Chapter II, Proposition 2.5 (1)] that given an unramified lift X, the Hodge–de Rham
spectral sequence degenerates up to degree p � 1, that is all the differentials with target
of total degree � p � 1 are zero. Moreover, they showed (see [10, Corollary 2.7 (ii) and
Remark 2.8 (ii)] and [12, Chapter II, Proposition 2.5 (2)]) that the integral Hodge filtrations
on H i

dR.X=OK/, where 0 � i � p � 1, are equipped with divided Frobenius structure and
altogether these form so-called Fontaine–Laffaille modules [9]. In particular, by a result of
Wintenberger [20], the Hodge filtrations are split submodules in the range 0 � i � p � 1.
Hence these results imply the following:

Corollary 3.13 (Corollary of [10, Corollary 2.7] or [12, Chapter II, Proposition 2.5]). Let
X be an unramified lift of a smooth proper variety X0. Then the degree � p � 2 Hodge
numbers of X are determined by X0.

Comparing those results concerning unramified liftings with our result, we see that
our approach (specialized to unramified liftings) so far can only prove analogous facts
with X0 of one dimension less. This is due to the fact that Min’s result was established
by proving the i-th prismatic cohomology of X=S shares the same structure as the i-th
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étale cohomology of the (geometric) generic fiber X , which (in general) only holds when
i � e < p � 1. Perhaps this obstacle may be overcome in the unramified case, which would
recover Fontaine–Messing’s or Kato’s result in this particular direction.

3.4. Summary

Given X=OK as in Section 3.1, let T be the largest integer satisfying T � e < p � 1. We
list several conditions on X=OK :

C.1. The formal scheme X lifts to S=.E2/.

C.2. The Hodge–Tate spectral sequence has split degenerate torsion up to degree T .

C.3. The Hodge–Tate spectral sequence has saturated degenerate torsion up to degree T .

C.4. The Hodge–de Rham spectral sequence has split degenerate torsion up to degree T .

C.5. The Hodge–de Rham spectral sequence has saturated degenerate torsion up to
degree T .

C.6. The Hodge–de Rham spectral sequence degenerates splittingly.

C.7. The Hodge–de Rham spectral sequence degenerates saturatedly.

C.8. The virtual Hodge numbers of X0 equal the Hodge numbers of X .

The relations between these conditions are summarized in the following diagram:

C.1 ˛ +3 C.2 +3
KS

ˇ

��

C.3KS
ˇ

��
C.4 +3
KS

ı

��

C.5KS
ı

��
e D 1

KS



7?

C.6 +3 C.7 � +3 C.8

Below we remind the readers under what condition (and why) we have some of these
implications:

� ˛ holds when dimX � p � 1 and follows from [6, Remark 4.13 and Proposition 4.14].

� ˇ follows from Min’s work [15] together with the analysis of relevant spectral sequences
(see Corollary 3.9).

�  holds provided dim X � p � 2 and follows from the work of either Fontaine–
Messing [10, Corollary 2.7] or Kato [12, Chapter II, Proposition 2.5].

� ı holds when dim X0 � T by duality of de Rham and Hodge cohomologies.

� � always holds and is the content of Proposition 3.4.

4. Lifting the example of Antieau–Bhatt–Mathew

One might wonder if it is really necessary to have both of conditions (1) and (2) in The-
orem 1.1, or even any condition at all, in order for the Hodge–de Rham spectral sequence to
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behave nicely. We mention that in [14] we found pairs of relatively 3-dimensional smooth
projective schemes over ZpŒ�p� such that their special fibers are isomorphic but the degree
2 Hodge numbers of their generic fibers are different. Therefore these give rise to examples
where the Hodge–de Rham spectral sequence is not saturated degenerate by Proposition 3.4.
The cohomological degree times the ramification index of these examples are twice of
p � 1, so these examples do not satisfy condition (2) in Theorem 1.1. Moreover, the author
suspects that these examples do not satisfy condition (1) either.

While it is unclear whether condition (2) in Theorem 1.1 is really necessary, in this last
section we would like to illustrate, by an example, the necessity of condition (1). More
precisely, we shall construct smooth proper schemes over degree 2 ramified extensions
of Zp such that the Hodge–de Rham spectral sequencies are not degenerate (starting at
degree 3), and the Hodge filtrations are non-saturated (starting at degree 2). The idea is to
approximate the classifying stack of a lift of p̨ (which only exists over a ramified ring of
integers), and the key computations and techniques are already in [2].

We remark that in a concise paper by W. Lang [13], examples in positive characteristic
which admit liftings to ramified DVRs but violate Hodge–de Rham degeneration have been
found. Lang used exactly the idea of approximating B p̨ , we learned from loc. cit. that
this idea goes back to Raynaud [16]. In the sense that our Theorem 1.1 may be thought of
as a generalization of Deligne–Illusie’s result, our example here can also be thought of as a
generalization of Lang’s.

4.1. Recollection of [19]

In this subsection, we give a preliminary discussion of group schemes of order p over
p-adic base rings. Fix a scheme S over Zp . Recall that in [19], the authors made a detailed
study of finite flat group schemes of order p over S ; let us summarize their results.

Firstly, all such group schemes are commutative [19, Theorem 1]. Secondly, for each
p there is a unit ! 2 Z�p (denoted as !p�1 in loc. cit.); see [19, Remark on p. 11] for a
recursive formula defining it, and a bijection between

(1) isomorphism classes of finite flat order p group schemes over S , and

(2) isomorphism classes of triples .L; a; b/ where L is a line bundle on S , elements a
and b are sections of line bundles: a 2 �.S;L˝.p�1// and b 2 �.S;L˝.1�p//, and
they satisfy the relation a˝ b D p!.

Here we have identified L˝.p�1/ ˝ L˝.1�p/ Š OS [19, Theorem 2]. The group asso-
ciated with .L; a; b/ is denoted by GL

a;b
, with underlying scheme structure given by

Spec.OS ˚L�1 ˚ � � � ˚L�pC1/ where the ring structure comes from L�p
a
�! L�1 [19,

p. 12]. So GL
a;b

is an étale group scheme if and only if a 2 �.S;L˝.p�1// is an invertible

section [19, p. 16, Remark 6]. Moreover, the Cartier dual of GL
a;b

is1 given by GL�1

b;a
[19,

p. 15, Remark 2].

1Note that they are commutative group schemes by the first sentence of this paragraph.
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Example 4.1. When S D Spec.Fp/, there is only one line bundle on S , namely OS .
Furthermore, p D 0 on S . Hence we see that group schemes of order p over S are
classified by pairs .a; b/ 2 F2p with the constraint that ab D 0. Note that these pairs have
no non-trivial automorphism as any invertible element u 2 F�p satisfies up�1 D 1. There
are three possibilities:

(1) a 6D 0, which forces b D 0, corresponding to a form of the étale group scheme Z=p.
When a D 1, it is Z=p.

(2) Dually, we can have b 6D 0 and a D 0, corresponding to a form of �p . It is �p when
b D 1.

(3) Lastly, if a D b D 0, we get p̨ .

4.2. A stacky example

Now we specialize to the case where S D Spec.OK/ is given by the valuation ring of a
p-adic field. There is no non-trivial line bundle on a local scheme such as S . In order
to lift p̨ from the residue field of OK , it suffices to find an element � 2 m such that
p=� 2 m. Here m denotes the maximal ideal in OK . We see that OK cannot be absolutely
unramified, and as long as it is ramified, we may find such an element � . From now on, let
us fix such a choice of OK and � .

Notation 4.2. Let K be a degree 2 ramified extension of Qp with ring of integers OK ,
a uniformizer � in the maximal ideal m � OK . Then � 0 WD p!=� is a uniformizer as
well. Denote S WD Spec.OK/ and let G WD GOS

�;� 0 be the lift of p̨ over S corresponding
to .�; � 0/.

In the following we shall study the Hodge–Tate and Hodge–de Rham spectral sequence
of BG. Note that BG is a smooth proper stack over Spec.OK/ with special fiber
BG �OK

Fp Š B p̨ . The following computation of Antieau–Bhatt–Mathew is very useful.

Proposition 4.3 (see [2, Proposition 4.10]). If p > 2, the Hodge cohomology group of
B p̨ is given by

H�.B p̨;^
�LB˛p=Fp

/ Š E.˛/˝ P.ˇ/˝E.s/˝ P.u/

where E.�/ .resp. P.�// denotes the exterior .resp. polynomial/ algebra on the desig-
nated generator. Here ˛ 2 H 1.B p̨;O/, ˇ 2 H 2.B p̨;O/, s 2 H 0.B p̨; LB˛p=Fp

/ and
u 2 H 1.B p̨; LB˛p=Fp

/. For p D 2 we replace E.˛/˝ P.ˇ/ with P.˛/.

Lemma 4.4. The cotangent complex of BG is LBG=OK
' O=.�/Œ�1�.

Proof. Observe that the equation of the underlying scheme of G is given by xp � �x,
hence we know that LG=OK

' OG=.�/. Therefore the underlying coLie complex of G is
also OG=.�/. As G is commutative, our statement follows from [11, Proposition 4.4].2

2Note that the cotangent complex of BG is the coLie complex shifted by �1.
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Remark 4.5. In the proof of [2, Proposition 4.10], the authors showed that the Postnikov
tower OB˛p

!LB˛p=Fp

a
�!OB˛p

Œ�1� of the cotangent complex ofB p̨ splits:LB˛p=Fp
'

OB˛p
˚OB˛p

Œ�1�. In our situation, we get a triangle in D.BG/:

OŒ�1�! LBG=OK
! O;

where the connecting morphism is multiplication by � . Specializing to the special
fiber B p̨ , we get a diagram

OŒ�1� //

��

LBG=OK
//

��

b

ww

c

%%

O

��

O=.�/ � uŒ�1� // LB˛p=Fp
//

aii
O=.�/ � s

( )

where b is the identification LBG=OK
' O=.�/Œ�1�. This gives a particular choice of

the splitting of LB˛p=Fp
' OB˛p

s ˚ OB˛p
uŒ�1�, where the classes s and u are as

in the statement of the aforementioned Proposition 4.3. Here let us name the map

spWLBG=OK

b˚c
���! OB˛p

uŒ�1�˚OB˛p
s ' LB˛p=Fp

, for we will use it later.

Next let us compute the Hodge cohomology groups of BG and identify the algebra
structure.

Proposition 4.6. For any pair .i; j / of integers, we have

H i .BG;^jLBG=OK
/ D

8̂̂<̂
:̂

OK ; i D j D 0;

Fp; j D 0; i D 2m > 0 or 0 < j � i;

0; otherwise.

Therefore specialization maps give rise to injections

spWH i .BG;^jLBG=OK
/ ,! H i .B p̨;^

jLB˛p=Fp
/

whenever i C j > 0. Moreover, these injections are compatible with multiplication and
differentials, and give an identification

H�.BG;^�LBG=OK
/ D

´
.OK Œˇ; u�˝E.�//=.��; �ˇ; �u/; p > 2;

.OK Œˇ; u; ��/=.��; �ˇ; �u; �
2 � ˇu2/; p D 2;

where ˇ 2 H 2.BG;O/ and u 2 H 1.BG; LBG=OK
/ both specialize to the designated

elements in the Hodge ring of B p̨ , and � 2 H 2.BG;LBG=OK
/ specializes to ˛uC ˇs

.up to scaling s by a unit/.

Proof. First we begin with the computation of cohomology of O. Similar to
the first paragraph of [2, proof of Proposition 4.10], we have H�.BG; O/ D

Ext�
OK Œy�=.yp�� 0y/

.OK ;OK/ by Cartier duality. Here we used the fact that the Cartier
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dual of G�;� 0 is G� 0;� whose underlying scheme structure is Spec.OK Œy�=.yp � � 0y//
with its identity section given by y D 0. Using the standard resolution�
� � � ! OK Œy�=.y

p
� � 0y/

yp�1�� 0

������! OK Œy�=.y
p
� � 0y/

y
�! OK Œy�=.y

p
� � 0y/

�
' OK

one verifies the computation when j D 0.
When j > 0, just observe that

^
�LBG=OK

D ^
� .O=.�/Œ�1�/ D Sym�.O=.�//Œ���:

Therefore we get

H i .BG;^jLBG=OK
/ D H i .BG;SymjO=.�/Œ�j �/ D H i�j .B p̨;O/;

which verifies the computation when j > 0 via Proposition 4.3.
The second statement follows from the fact thatH i .BG;^jLBG=OK

/ are all �-torsion
when i C j > 0 by the first sentence. In particular, by dimension considerations we see that
the induced map H 2.BG;O/! H 2.B p̨;O/ must be an isomorphism. Hence we may
pick a generator ˇ 2 H 2.BG;O/ which lifts the designated generator in H 2.B p̨;O/.

Next we deal with the statement concerning images of other specialization maps. Since
the map b in ( ) is an identification, we see that the b component of

H�.BG;LBG=OK
/

spDb˚c
�����!H�.B p̨;LB˛p=Fp

/DH��1.B p̨;O/ � u˚H
�.B p̨;O/ � s

is always an isomorphism. In particular we can choose generators of H 1.BG;LBG=OK
/

andH 2.BG;LBG=OK
/ corresponding to u and ˛ � u under b. Let us denote each generator

by u and � respectively.
The map c factors as the composition LBG=OK

! O ! O=.�/ � s. The first map fits
in the triangle

OŒ�1�! LBG=OK
Š O=�Œ�1�! O

with connecting morphism being multiplication by � . Since H 1.BG;O/ is shown to be
zero, we see that the map c on H 1.BG;LBG=OK

/ factors through zero, hence c.u/ D 0.
Still by the computation ofH�.BG;O/, the long exact sequence of cohomology associated
with the above triangle gives an isomorphismH 2.BG;LBG=OK

/!H 2.BG;O/. The map
O ! O=.�/ � s is just reduction modulo � , hence induces an injection H 2.BG;O/=� !

H 2.B p̨;O=.�/ � s/. Now the cohomology group H 2.BG;O/ is shown to be OK=� and
the dimension of H 2.B p̨;O=.�/ � s/ is 1, so we see that the map H 2.BG;O/=� !

H 2.B p̨;O=.�/ � s/ is an isomorphism. Therefore c.�/ D ˇ � s (up to a unit). Putting
these together, we have

sp.u/ D b.u/C c.u/ D u and sp.�/ D b.�/C c.�/ D ˛ � uC ˇ � s:

For the last sentence, let us just prove the case when p > 2; the case of p D 2 can be
proved in the same way. First we observe that we have

.OK Œˇ; u�˝E.�//
f
�! H�.BG;^�LBG=OK

/
sp
�! H�.B p̨;^

�LB˛p=Fp
/;
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with ˇ, u and � as in the statement. The map f must kill the relations ��; �ˇ; �u, as the
positive degree Hodge groups of BG are �-torsion. After quotienting out the relations, we
get an injection

.OK Œˇ; u�˝E.�//=.��; �ˇ; �u/
sp ıf
���! H�.B p̨;^

�LB˛p=Fp
/

on the positive degree part because of Proposition 4.3. Hence the map f induces an
injection

.OK Œˇ; u�˝E.�//=.��; �ˇ; �u/
f
�! H�.BG;^�LBG=OK

/:

By explicitly comparing dimensions of each bi-degree parts, one concludes that f must
also be surjective, hence an isomorphism.

Finally, we can understand the Hodge–de Rham spectral sequence of BG with the aid
of [2, Proposition 4.12].

Proposition 4.7. In the Hodge–de Rham spectral sequence of BG, we have .up to unit/
d1.�/ D u

2 and d1.ˇ/ D d1.u/ D 0 for all p. The de Rham cohomology of BG is given
by

H�dR.BG=OK/ ' OK Œˇ
0�=.pˇ0/;

where ˇ0 has degree 2.

Proof. The first sentence follows from [2, proof of Proposition 4.12] and the fact that
specialization gives an injection

spWH i .BG;^jLBG=OK
/ ,! H i .B p̨;^

jLB˛p=Fp
/

which is compatible with multiplication and differentials. Indeed, in that proof, it is shown
that in the special fiber we have d1.˛/ D u (up to a unit) and all other generators are
killed by differentials. Hence the specialization of our d1.�/ must be d1.˛u C ˇs/ D
d1.˛/u D u

2 (up to a unit). Since specialization is injective in positive cohomological
degrees (by Proposition 4.6), we conclude that d1.�/ D u2.

Using the fact that d1 is a differential, we see that on the E2-page the non-zero entries
are

E
i;j
2 D

8̂̂<̂
:̂

OK ; i D j D 0;

Fp � ˇn; i D 0; j D 2n > 0;

Fp � ˇnu; i D 1; j D 2nC 1 > 0:

In particular, there is no room for non-zero differentials, hence the spectral sequence
degenerates on the E2-page. In particular, we see that the length of de Rham cohomology
is as described in the statement of this proposition. To pin down the OK-module structure of
H�dR.BG=OK/, we use the fact that H i

dR.BG=OK/=� injects into H i
dR.B p̨=Fp/, which

is always one-dimensional for i � 0 due to [2, Proposition 4.10].
Lastly, pick a preimage of ˇ under H 2

dR.BG=OK/� H 2.BG;O/; denote it by ˇ0 2
H 2

dR.BG=OK/. SinceH�dR.BG=OK/!H�dR.B p̨=Fp/ is a map preserving multiplication,



S. Li 3822

we see that ˇ0n is a generator ofH 2n
dR .BG=OK/. This finishes the proof of the ring structure

on H�dR.BG=OK/.

Similarly, we can understand the Hodge–Tate spectral sequence of BG with the aid
of [2, Remark 4.13].

Proposition 4.8. In the Hodge–Tate spectral sequence of BG, we have .up to a unit/
d2.�/ D ˇ

2 and d2.ˇ/ D d2.u/ D 0 for all p. The Hodge–Tate cohomology of BG is
given by

H�HT.BG=OK/ ' OK Œu
0�=.pu0/;

where u0 has degree 2.

Proof. Recall that in characteristic p, the conjugate spectral sequence comes from the
canonical filtration on the de Rham complex of affine opens. Similarly when working
with a prism .A; I /, the Hodge–Tate spectral sequence comes from the canonical filtration
on the sheaf ��=.A=I/. When the prism is .Zp; .p//, one can ignore the Frobenius twist,
and hence identify the sheaf ��=Fp

with the sheaf (relative to Fp) of de Rham complex
(by either of [6, Theorem 1.8 (1) or (3)]). Therefore in this case, the Hodge–Tate spectral
sequence is identified with the conjugate spectral sequence.

Reduction modulo u gives rise to a map .S; .E//! .Zp; .p// of prisms. Since u
is mapped to � under S! OK , we see that the Hodge–Tate spectral sequence of BG
specializes, under reduction modulo � , to the conjugate spectral sequence of B p̨ .

Now the differentials in the conjugate spectral sequence of B p̨ are understood in
[2, Remark 4.13]. Using that remark, the proof of this proposition is almost the same
as the proof of Proposition 4.7, except we now have d2.˛/ D d2.ˇ/ D d2.u/ D 0 and
d2.s/ D ˇ in the special fiber. The multiplicative structure is justified by the fact that
de Rham and Hodge–Tate cohomologies are the same over Fp . Hence the even degree
part of the Hodge–Tate cohomology of B p̨ is also a polynomial algebra with a degree 2
generator.

In particular, both the Hodge–de Rham and Hodge–Tate spectral sequences are non-
degenerate with non-zero differentials starting at degree 3, and the Hodge (resp. conjugate)
filtrations on de Rham (resp. Hodge–Tate) cohomology is not split starting at degree 2.
When the prime is p � 11, these give rise to stacky examples satisfying condition (2) of the
main theorem, which violates the conclusion. The obstruction to liftingG to Spec.S=.E2//
specializes (modulo u) to the obstruction to lifting p̨ to Spec.W2/, which is non-zero.

Let us take a closer look at degree 2. By Proposition 4.7 we have a short exact sequence

0! H 1.BG;LBG=OK
/ D Fp � u! H 2

dR.BG=OK/ D .OK=p/ � ˇ
0

! H 2.BG;OBG/ D Fp � ˇ ! 0:

Therefore ˇ0 lifts ˇ, and � � ˇ0 D u, up to units. The latter also “explains” why u2 D 0
in de Rham cohomology (as .�2/ D .p/ by our assumption of e D 2). Similarly by
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Proposition 4.8 we have a short exact sequence

0! H 2.BG;OBG/ D Fp � ˇ ! H 2
HT.BG=OK/ D .OK=p/ � ˇ

0

! H 1.BG;LBG=OK
/ D Fp � u! 0:

Now up to units, u0 lifts u and ˇ D � � u0. Again, ˇ2 D 0 can be seen from the fact that p
divides �2 (actually they only differ by a unit in OK).

We can also determine the prismatic cohomology of BG using Proposition 4.8. Before
that, we need a few words about prismatic cohomology of a smooth proper stack.

Remark 4.9. Throughout this remark, let us focus on the Breuil–Kisin prism .S; .E//

associated with � 2 OK .
(1) Bhatt–Scholze showed that the prismatic cohomology satisfies (quasi-)syntomic

descent [6, Theorem 1.15 (2)]. Hence the presheaf, valued in the derived1-categoryD.S/,
on Synop

OK
(the syntomic site of OK) sending R to R��.Spf.bR/=S/ is a sheaf. Here bR

denotes the p-adic completion of R. Since our group scheme G is syntomic over OK , we
know that BG over OK is a syntomic stack (see [2, Notation 2.1]). In [2, Construction 2.7],
one finds a definition of R��.BG=S/. Concretely, given any syntomic cover U ! BG

with U a syntomic OK-scheme, we have

R��.BG=S/ ' lim
Œm�2�

R��.bUm=S/:
Here bUm denotes the p-adic formal completion of the .m C 1/-fold fiber product of
U ! BG. The syntomic sheaf property exactly guarantees that this formula does not
depend on the choice of the syntomic cover U ! BG.

(2) All the results stated previously concerning prismatic cohomology of smooth proper
formal schemes (e.g. a natural Frobenius structure, Theorem 3.7 and Theorem 3.8) still
hold verbatim for R��.BG=S/. This is because most of the statements in [6] are shown
by proving their analogues for affine formal schemes. Let us show that all the prismatic
cohomology groups of BG are finitely generated.

Since the sheaf ��=S is derived .p; E/-complete, the resulting cohomology groups
H�� .BG=S/ are also derived .p; E/-complete, as derived completeness is preserved
under taking limit. Since the Hodge–Tate cohomology groups of BG=S are finitely
generated over OK (by Proposition 4.8), the derived Nakayama Lemma implies that all the
cohomology groups H�� .BG=S/ are also finitely generated over S.

(3) We claim that Hn
� .BG=S/ is a Breuil–Kisin module [5, Definition 4.1] for all n.

This follows from the fact that BG is a quasi-compact separated smooth stack over OK
and the same argument laid out in [6]. Below let us spell out the argument for the sake of
being rigorous.

For any affine smooth formal scheme X over OK , the Frobenius on its prismatic
cohomology has an isogeny property [6, Theorem 1.15 (4)]: the Frobenius induces a
canonical isomorphism

��SR��.X=S/
Š
��!
�X

L�ER��.X=S/:
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We direct readers to [5, Section 6] for a discussion of the L� functor. In particular,
[5, Lemma 6.9] implies that, for any n, we have a functorial map

 nX W �
�nR��.X=S/! ��n��SR��.X=S/

such that its composition with the Frobenius in either direction is given by multiplying
by En.

Since the group scheme G is finite flat over OK , we know that BG is quasi-compact,
separated, and smooth over OK . For a justification of the smoothness, see [18, Tag 0DLS].
Therefore we may find a smooth cover X ! BG with X being an affine scheme and
smooth over OK . Together with the separatedness of BG ! OK , all of the bXm’s are
smooth affine formal schemes over OK .

Using the smooth cover X ! BG in the last paragraph, we have

R��.BG=S/ ' lim
Œm�2�

R��.bXm=S/:
The Frobenius is the totalization of the Frobenius on each of the R��.bXm=S/. Fix a
positive integer n, using the relation between canonical truncation and limit, we get

��nR��.BG=S/ ' �
�n lim

Œm�2�
��nR��.bXm=S/:

Because �S is finite flat, we also have

��n��SR��.BG=S/ ' �
�n lim

Œm�2�
��n��SR��.bXm=S/:

Lastly we totalize the maps  nbXm
to get a map

 nBG W �
�nR��.BG=S/! ��n��SR��.BG=S/:

This map composed with the Frobenius in either direction is given by multiplying by En,
as it is so for all of the maps  nbXm

. In particular, we see that Hn
� .BG=S/ is a Breuil–Kisin

module (of height n).

Finally, we are ready to compute the Breuil–Kisin prismatic cohomology of BG.

Proposition 4.10. The prismatic cohomology of BG is given by

H�� .BG=S/ ' SŒ Qu�=.p Qu/;

where Qu has degree 2.

Before giving the proof, we need an auxiliary lemma.

Lemma 4.11. Let M be a cyclic torsion Breuil–Kisin module over S with no E-torsion.
Then there is an integer n such that M ' S=.pn/.

Proof. Say M D S=I . First we know that MŒ1=p� D 0 [5, Proposition 4.3]. Since M
has no E-torsion, we see that M contains no non-zero finite S-submodule. Let n be the
smallest integer such that pn 2 I . It suffices to show that for any non-unit f 2 S � .p/,

https://stacks.math.columbia.edu/tag/0DLS
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the smallest integer m such that pmf 2 I is n. Suppose otherwise; then m < n. Then the
image of

S=.f; p/
�pn�1

����!M

is a non-zero (as pn�1 62 I ) finite (as the image of f in S=.p/ D k[u] is non-zero
and non-unit) submodule, which we have argued is impossible. Therefore we must have
n D m.

Proof of Proposition 4.10. The Hodge–Tate specialization gives us short exact sequences

0! H�� .BG=S/=.E/! H�HT.BG=OK/! H�C1� .BG=S/ŒE�! 0;

where MŒE� denotes the E-torsion of an S-module M .
We make the following claim:

(1) the odd degree prismatic cohomology groups of BG are zero; and

(2) the positive even degree prismatic cohomology groups of BG are cyclic andE-torsion-
free.

Indeed, by our Proposition 4.8, we see that H odd
� .BG=S/=.E/ D 0. Since H i

�.BG=S/

is E-complete, this gives (1) above. Using the above short exact sequence and vanishing
of odd degree Hodge–Tate cohomology established in Proposition 4.8, we find that the
positive even degree prismatic cohomology groups of BG are E-torsion-free. Then we use
Proposition 4.8 again, to see that for any i > 0we get an isomorphismH 2i

� .BG=S/=.E/Š

S=p � Qui . Therefore for each i we can find a map S! H 2i
� .BG=S/, which is surjective

modulo E. Since S itself is derived .p; E/-complete, the cokernel of this map is both
E-adically complete and vanishes modulo E. These two together imply that the cokernel
vanishes, in other words, the chosen map S! H 2i

� .BG=S/ is surjective, which shows
(2) above.

For any m we know that H 2m
� .BG=S/ is cyclic and E-torsion-free, hence it is either

free or isomorphic to S=.pn/ for some n (by the above lemma). To see that, we must
be in the latter case with n being 1, we use the fact that it is so under the Hodge–Tate
specialization. Powers of any generator inH 2

� .BG=S/ are generators of the corresponding
prismatic cohomology group, as it is so after the Hodge–Tate specialization (using again
E-adic completeness of these prismatic cohomology groups).

Remark 4.12. We do not know how the Frobenius acts on the prismatic cohomology
groups. Since the geometric generic fiber of BG is BZ=p, we at least know that the
Frobenius is not identically zero, by étale specialization of the prismatic cohomology [6,
Theorem 1.8 (4)]. On the other hand, since the Frobenius is zero for B p̨ , we know that
it cannot be surjective on H 2

� .BG=S/. Since ..Fp[u]/�/p�1 D .1C .u/;�/, we see that
after choosing an appropriate generator, the Frobenius on H 2

� .BG=S/ ' S=.p/ Š Fp[u]
sends 1 to  � ud , where  2 F�p and d is a positive integer. It would be interesting to
understand the relation between our choice3 of � and the values  and d .

3Recall that we need to make such a choice in order to lift p̨ .
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4.3. Approximating BG

In this last subsection, let us show that the pathologies of BG are inherited by approxim-
ations of BG, so that in the end we can get some scheme examples. For this purpose, it
suffices to follow [2, Section 6].

Proposition 4.13 (see also [2, Theorem 1.2]). For any integer d � 0, there exists a smooth
projective OK-scheme X of dimension d together with a map X ! BG such that the
pullback H i .BG;^jLBG=OK

/! H i .X;^jLX=OK
/ is injective for i C j � d .

Proof. We simply follow the first paragraph of [2, Section 6, proof of Theorem 1.2]. By
a standard argument (see e.g. [5, 2.7–2.9]), we can find an integral representation V of
G and a d -dimensional complete intersection Y � P.V / such that Y is stable under the
G-action, the action is free, and X WD Y=G ' ŒY=G� is smooth and projective over OK
together with a map X ! BG. We see that the special fiber of this map induces injections
on the corresponding Hodge cohomology groups. Now we observe that the composite map

H i .BG;^jLBG=OK
/! H i .B p̨;^

jLB˛p=Fp
/! H i .X0; �

j

X0=Fp
/

is injective when i C j � d (as a composite of two injective maps) and factors through
H i .BG;^jLBG=OK

/! H i .X; �
j

X=OK
/. Hence the latter map must also be injective

when i C j � d .

By choosing d D 4 and using Propositions4.7 and 4.8, we arrive at the following
theorem.

Theorem 4.14. There exists a smooth projective relative 4-fold X over a ramified degree
two extension OK of Zp such that both Hodge–de Rham and Hodge–Tate spectral
sequences are non-degenerate. Moreover, the Hodge/conjugate filtrations are non-split as
OK-modules.
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