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Abstract. We study restriction of logarithmic Higgs bundles to the boundary divisor and we con-
struct the corresponding nearby-cycles functor in positive characteristic. As applications we prove
some strong semipositivity theorems for analogs of complex polarized variations of Hodge struc-
tures and their generalizations. This implies, e.g., semipositivity for the relative canonical divisor of
a semistable reduction in positive characteristic and it gives some new strong results generalizing
semipositivity even for complex varieties.
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Introduction

Let X be a smooth projective variety defined over an algebraically closed field k of char-
acteristic p and let D be a simple normal crossing divisor on X . In this introduction we
assume that .X;D/ lifts to the ring W2.k/ of Witt vectors of length at most 2.

A logarithmic Higgs sheaf on .X; D/ is a pair .E; �/ consisting of a coherent OX -
module and an OX -linear map � WE!E˝�X .logD/ such that � ^ � D 0. Equivalently,
replacing � by O� W TX .log D/ ˝ E ! E one can consider a logarithmic Higgs sheaf
on .X;D/ as a Sym�TX .logD/-module, which is coherent when considered as an OX -
module.

Let MinHIG0.X;D/ be the category of locally free logarithmic Higgs sheaves of rank
r � p on .X;D/, which have vanishing Chern classes inH 2�

et .X;Ql / for some l ¤ p and
are semistable. In this case semistable means slope H -semistable with respect to some
ample divisorH , but one can show that the category MinHIG0.X;D/ does not depend on
the choice of H . One can also replace slope semistability by Gieseker semistability and
the category remains the same.

Let Y be an irreducible component of D and let { W Y ! X be the corresponding
embedding. One of the main aims of this paper is to prove the following theorem:
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Theorem 0.1. Let .E; �/ be an object of MinHIG0.X; D/. The restriction of .E; O�/
to Y defines a semistable Sym�{�TX .logD/-module. Moreover, this restriction can be
deformed to an element of MinHIG0.Y;DY /, where DY is the restriction of the divisor
D � Y to Y .

The precise statement of this theorem is contained in Theorem 3.11 and Corol-
lary 3.13. In fact, we prove a more general version that works also for Higgs sheaves
(or modules with an integrable connection) with non-vanishing Chern classes.

Together with the restriction theorem for curves not contained in the boundary
divisor D (see Theorem 4.7) this gives an inductive procedure for studying restriction
of elements of MinHIG0.X;D/ to curves. In particular, it implies the following theorem
(see Definition 5.1 for the definition of a strongly liftable morphism).

Theorem 0.2. Let .E; �/ be an object of MinHIG0.X;D/. Let C be a smooth projective
curve and let � W C ! .X;D/ be a separable morphism that is strongly liftable toW2.k/.
Then the induced Sym���TX .logD/-module ��E is semistable. In particular, if G is a
subsheaf of the kernel of ��� W ��E ! ��E ˝ ���X .logD/ then degG � 0.

This theorem has an obvious analogue in characteristic zero (see Theorem 5.4). But
even the last part of this theorem was not known in characteristic zero. Already this
part implies essentially all known semipositivity results (see below) for Higgs bundles
or complex polarized variations of Hodge structures due to Fujita [9], Kawamata [15],
Zuo [36], Fujino–Fujisawa [8, Theorem 5.21], Brunebarbe [3, Theorems 1.8 and 4.5],
[4, Theorem 1.2] and many others. Note that almost all the proofs of such results are ana-
lytic and use Hodge theory. A notable exception is Arapura’s proof of [1, Theorem 2] that
uses reduction to positive characteristic. However, his proof uses vanishing theorems and
it does not give any semipositivity results in positive characteristic.

We say that a sheaf E on .X;D/ is W2-nef if for any smooth projective curve C and
any morphism � W C ! .X;D/ that is strongly liftable to W2.k/ (see Definition 5.1), all
quotients of ��E have a non-negative degree.

The following corollary is a direct analogue of [4, Theorem 1.2] in positive character-
istic. In fact, it implies its generalization from the polystable to the semistable case.

Corollary 0.3. Let .E; �/ be an object of MinHIG0.X;D/. If E 0 is a locally split sub-
sheaf of E contained in the kernel of � then its dual .E 0/� is W2-nef on .X;D/.

Over complex numbers a typical example of application of such a result is to semi-
positivity of direct images of relative canonical sheaves. This happens also in positive
characteristic and we prove the following result (see Corollary 5.10 for a more precise
version).

Corollary 0.4. Let X and Y be smooth projective varieties and let B be a normal cross-
ing divisor on Y . Let f WX ! Y be a surjective morphism of relative dimension d , which
has semistable reduction along B . Set D D f �1.B/. Assume that there exists a lifting



Nearby cycles and semipositivity in positive characteristic 3831

Qf W . QX; QD/! . QY ; QB/ of f toW2.k/ with Qf a semistable reduction along QB . Assume that
p > d C dim Y . Then Rjf�.!X=Y .D// is a W2-nef locally free sheaf on .Y; B/ for all
integers j � 0.

This is a positive characteristic analogue of various semipositivity results due to Grif-
fiths [10], Fujita [9], Kawamata [15], Fujino–Fujisawa [8] and others.

In positive characteristic p there are well-known examples due to L. Moret-Bailly (see
[34, Exposé 8]), who exhibited for any integer n� 1 and any p a family of smooth abelian
surfaces f WX!P1 such that f�!X=P1 DOP1.�n/˚OP1.pn/. In particular, one needs
to add some additional assumptions to be able to get semipositivity results. The only
known results on semipositivity in positive characteristic concern either f�.!mX=Y .mD//
for m� 0 (see [27] in case !X=Y .D/ is f -nef, or [7] in the case of relative dimension 1
or 2), or they deal with f�!X=Y adding very strong assumptions on the fibers (see [33]
for the case dimX D 2 and dim Y D 1, and [28, Theorem 6.4] for a rather complicated
statement).

One of the important results that we prove is the following theorem that is a special
case of Theorem 2.1.

Theorem 0.5. Let E be a rank r reflexive sheaf with c1.E/ D 0 .inH 2
et .X;Ql / for some

l ¤ p/ and c2.E/Hn�2 D 0. Assume that E has a filtration M� such that all factors
of the filtration are torsion free of rank � p with �H .GrMj E/ D �H .E/. Assume also
that each factor has the structure of a slope H -semistable sheaf with an integrable log-
arithmic connection on .X;D/. Then E is locally free and it has vanishing Chern classes
in H 2�

et .X;Ql / for any l ¤ p. Moreover, every quotient GrMj E is locally free and has
vanishing Chern classes in H 2�

et .X;Ql /.

This result can be thought of as an analogue of a graded version of Schmid’s nilpotent
orbit theorem (see Remark 4.5). In the case D D 0 Theorem 0.5 gives [24, Theorem 11]
and fills in a gap in its proof. The stronger version, Theorem 2.2, generalizes Theorem 0.5
to the case of Higgs sheaves with possibly non-trivial Chern classes and in the case
D D 0 it is indispensable for the proofs of [32, Theorem 3.6, Corollary-Definition 3.8
and Theorem 3.10]. In this last case Theorem 2.2 allows computing higher Chern classes
of twisted preperiodic Higgs bundles.

The structure of the paper is as follows. In Section 1 we recall some results and prove
a few auxiliary results. In Section 2 we prove Theorem 0.5 in case D D 0. In Section 3
we construct a nearby-cycles functor and we check that it preserves some semistability
conditions. We also finish the proof of Theorem 0.5 in case D ¤ 0. In Section 4 we
give a few applications of Theorem 0.5. Section 5 is devoted to applications of these res-
ults to semistability and semipositivity of restriction of Higgs bundles to curves. We also
give some geometric applications to semipositivity of direct images of relative canonical
sheaves. The appendix contains a proof of the functoriality of the inverse Cartier trans-
form in the logarithmic case.
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Notation

Let X be a smooth variety defined over an algebraically closed field k and let D be a
normal crossing divisor onX . We often viewD as a closed subscheme ofX given locally
by one equation but by abuse of notation we also identify D with the corresponding Weil
divisor and write D D 0 instead of D D ;. All normal crossing divisors in the paper are
reduced simple normal crossing divisors. Sometimes we add “simple” to stress the place
where we need to use this assumption.

Let us recall that a logarithmic Higgs sheaf is a pair .E; �/ consisting of a coherent
OX -module and an OX -linear map � WE!E˝�X .logD/ such that � ^ � D 0. A system
of logarithmic Hodge sheaves is a Higgs sheaf .E; �/ with a decomposition E D

L
Ep;q

such that � maps Ep;q into Ep�1;qC1 ˝�X .logD/.
In this paper, whenever X is projective and we say that a logarithmic Higgs sheaf

.E; �/ is slope H -semistable for some ample H , we always implicitly assume that
E is torsion free. Let us recall that a system of logarithmic Hodge sheaves is slope
H -semistable as a system of logarithmic Hodge sheaves if and only if it is slope
H -semistable as a logarithmic Higgs sheaf (see [23, Corollary 3.5]).

Now let S be any scheme. We say that .X;D/ is a smooth log pair over S if X is a
smooth S -scheme and D is a relatively simple normal crossing divisor over S . We say
that f W .Y;B/! .X;D/ is a morphism of smooth log pairs if f W Y ! X is a morphism
and the support of B contains the support of f �1.D/.

If E is a coherent sheaf of rank r on a smooth projective variety X then we denote
by ch.E/ the Chern character of E. This is defined as an element of the rational Chow
ring CH�.X/ ˝Q but in this paper we abuse notation and denote by ch.E/ the image
of this class by the cycle map and we treat it as an element of the étale cohomology ring
H�et .X;Ql /, where l is different from the characteristic of the base field (or an element of
H�.X;Q/ in the case of complex manifolds). We denote by �.E/ the discriminant of E
defined as 2rc2.E/ � .r � 1/c21.E/. In the case of surfaces we use the degree map

R
X

to
identify the cohomology groupH 4

et .X;Ql / (orH 4.X;Q/) with Ql (respectively, Q) and
we think of �.E/ as an integer. Similarly, in higher dimensions the top degree intersec-
tions like �.E/H dimX�2 denote the degree of the cycle �.E/H dimX�2.

1. Preliminaries

1.1. Logarithmic Higgs sheaves

In this subsection we recall a few results on semistable logarithmic Higgs sheaves.
Throughout this subsection we fix the following notation.

Let X be a smooth variety of dimension n defined over an algebraically closed field k
of characteristic p. Let D be a normal crossing divisor on X .
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Let us recall the following theorem due to Ogus and Vologodsky [26] in the usual case
and Schepler [29] in the logarithmic case (see also [25, Theorem 2.5] and [18, Appendix]):

Theorem 1.1. Assume that .X;D/ is liftable toW2.k/ and fix such a lifting . QX; QD/. There
exists a Cartier transform C. QX; QD/, which defines an equivalence between the category of
torsion free OX -modules with an integrable logarithmic connection whose logarithmic
p-curvature is nilpotent of level � p � 1 and the residues are nilpotent of order � p, and
the category of torsion free logarithmic Higgs OX -modules with a nilpotent Higgs field of
level � p � 1.

From now on in this subsection we assume that X is projective and we fix an ample
divisor H on X . Let us recall the following boundedness result for logarithmic Higgs
sheaves.

Theorem 1.2. Fix some number � and a class c 2 H 2
et .X;Ql / for some l ¤ p. The

family of slope H -semistable logarithmic Higgs sheaves .E; �/ such that E is reflexive
with fixed rank r , c1.E/ D c and �.E/Hn�2 � � is bounded.

Proof. By [24, Lemma 5] one can find a constant C such that for any rank r slope H -
semistable logarithmic Higgs sheaves .E; �/ we have �max;H .E/ � �.E/C .r � 1/C .
Hence the result follows from [21, Theorem 3.4].

Note that in the above theorem it is not sufficient to fix r , c1.E/Hn�1 and
�.E/Hn�2. We will also need the following theorem, which is a special case of [23, The-
orem 5.5].

Theorem 1.3. Let .E; �/ be a slope H -semistable logarithmic Higgs sheaf. Then there
exists a decreasing filtration E D N 0 � N 1 � � � � � Nm D 0 such that �.N i / �

N i�1 ˝ �X .logD/ and the associated graded is a slope H -semistable system of log-
arithmic Hodge sheaves.

The result of [23, Theorem 5.5] (see also [19, Theorem A.4] in the case of flat torsion
free sheaves) also implies the following result:

Theorem 1.4. If .E;r/ is a slope H -semistable sheaf with an integrable logarithmic
connection then there exists a canonical Griffiths transverse filtration E D S0 � S1 �
� � � � Sm D 0 such that the associated graded system of logarithmic Hodge sheaves is
slope H -semistable.

The canonical filtration S� from Theorem 1.4 is called Simpson’s filtration of .E;r/.
This notion is used in the following generalization of [23, Theorem 5.12] and [20, The-
orem 2.2] (see [25, Theorem 3.1]).

Theorem 1.5. Assume the pair .X;D/ admits a lifting . QX; QD/ to W2.k/. If .E; �/ is a
slope H -semistable system of logarithmic Hodge sheaves of rank r � p then there exists
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a canonically defined Higgs–de Rham sequence

.V0;r0/
GrS0

%%

.V1;r1/
GrS1

##
.E0; �0/ D .E; �/

C�1
. QX; QD/

77

.E1; �1/

C�1
. QX; QD/

99

: : :

in which each .Vi ;ri / is slopeH -semistable and .EiC1; �iC1/ is the slopeH -semistable
system of logarithmic Hodge sheaves associated to .Vi ;ri / via its Simpson’s filtration S�i .

The following theorem is a generalization of [24, Theorem 10] to the logarithmic case.
We skip its proof as it is the same as in the non-logarithmic case.

Theorem 1.6. Assume the pair .X; D/ is liftable to W2.k/. Let d0 be a non-negative
integer such that TX .� logD/˝ OX .d0H/ is globally generated. Let .E; �/ be a slope
H -stable logarithmic Higgs sheaf of rank r � p. Take an integer

d >
r � 1

r
�.E/Hn�2

C
1

r.r � 1/Hn
:

Moreover, if r > 2, assume also that d > 2.r � 1/2d0. Let Y 2 jdH j be a smooth divisor
such that EY has no torsion and D \ Y is a normal crossing divisor on Y . Then the log-
arithmic Higgs sheaf .EY ; �Y / induced from .E; �/ via restricting to Y and composition
EY ! EY ˝�X .logD/jY ! EY ˝�Y .logD \ Y / is slope HY -stable.

Corollary 1.7. Assume the pair .X;D/ is liftable to W2.k/ and let d0 be as in the previ-
ous theorem. Let .E; �/ be a slope H -semistable logarithmic Higgs sheaf of rank r � p
and let d be an integer satisfying the same inequalites as in the previous theorem. Then
for a general divisor Y 2 jdH j the restriction .EY ; �Y / is slope HY -semistable.

Proof. LetM� be a Jordan–Hölder filtration of .E;�/. By definition this means that all the
quotients GrMi E are slope H -stable logarithmic Higgs sheaves with slopes �H .GrMi E/
equal to �H .E/. Existence of such a filtration for logarithmic slope H -semistable log-
arithmic Higgs sheaves is standard and follows by the same arguments as for the usual
slope H -stable sheaves (see, e.g., [12, §1.5 and §1.6]). To simplify notation let us set
Ei D GrMi E (we consider it as a logarithmic Higgs sheaf and not only a sheaf) and
ri D rkEi . Since Ei and Ej have the same slope, we have . c1Ei

ri
�
c1Ej
rj
/H D 0 and the

Hodge index theorem implies that

�.E/Hn�2

r
D

X �.Ei /H
n�2

ri
�
1

r

X
i<j

rirj

�
c1Ei

ri
�
c1Ej

rj

�2
Hn�2

�

X �.Ei /H
n�2

ri
:

Therefore our assumptions on d imply that we can apply Theorem 1.6 to each quotientEi .
So if we choose a smooth divisor Y 2 jmH j such thatD \ Y is a normal crossing divisor
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on Y and .Ei /Y has no torsion for every i then the restricted logarithmic Higgs sheaf
.Ei /Y is slope H -stable and hence .EY ; �Y / is slope HY -semistable. Note that a general
Y 2 jmH j satisfies the above assumptions by Bertini’s theorem and Lemma 1.13 below.

Remark 1.8. In Theorem 1.6 and Corollary 1.7 we can replace a logarithmic Higgs sheaf
with a sheaf with an integrable logarithmic connection. The proofs of the results remain
the same.

Let us also recall Bogomolov’s inequality for logarithmic Higgs sheaves (see [25,
Theorem 3.3] for a more general version).

Theorem 1.9. Assume that .X; D/ admits a lifting to W2.k/. Then for any slope H -
semistable logarithmic Higgs sheaf .E; �/ of rank r � p we have

�.E/Hn�2
� 0:

Remark 1.10. The above theorem also holds for sheaves with an integrable logarithmic
connection. Indeed, if .E;r/ is a rank r � p slopeH -semistable sheaf with an integrable
logarithmic connection and S� is its Simpson’s filtration then by the above theorem,

�.E/Hn�2
D �.GrSE/Hn�2

� 0:

1.2. Higher discriminants

Let us fix a smooth projective variety X defined over an arbitrary algebraically closed
field k.

Let E be a rank r > 0 coherent sheaf on X . Let us fix a prime l different from the
characteristic of the base field k and let us write

log.ch.E// D log r C
X
i�1

.�1/iC1
1

iŠr i
�i .E/

for some classes�i .E/ 2H 2i
et .X;Ql /, which we call higher discriminants of E (we can

also use �i .E/ 2 H�.X;Q/ in the case of complex manifolds). These discriminants are
polynomials in Chern classes ofE with integral coefficients. They are variants of Drezet’s
logarithmic invariants (with somewhat different normalization to get integral coefficients
and �2.E/ D �.E/). Note that for any line bundle L we have �i .E ˝ L/ D �i .E/ for
i � 2. This follows immediately from the fact that

log.ch.E ˝ L// D log.ch.E/ � ch.L// D log.ch.E//C c1.L/:

In the following we often use this property of discriminants without further notice.

Lemma 1.11. The following conditions in H�et .X;Ql / .or in H�.X;Q/ in the case of
complex manifolds/ are equivalent:

(1) r ici .E/ D
�
r
i

�
c1.E/

i for all i � 1,
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(2) �i .E/ D 0 for all i � 2,

(3) log ch.E/ D log r C c1.E/=r .

Proof. Equivalence of (2) and (3) is clear as �1.E/ D c1.E/. For simplicity of notation
let us assume that E is locally free; the proof in the general case is the same except that
we need to replaceE by its class inK0.X/ and do all the computations in Grothendieck’s
K-group.

By the Bloch–Gieseker covering trick [2, Lemma 2.1] there exists a smooth projective
variety QX and a finite flat surjective covering f W QX ! X together with a line bundle L
such that f �.detE/�1 D L˝r . Set QE WD f �E ˝ L: Note that c1. QE/ D 0 and

�i . QE/ D �i .f
�E/ for all i � 2.

Since f induces an injection H�et .X;Ql /! H�et .
QX;Ql /, condition (2) is equivalent

to the vanishing of �i . QE/ for all i � 1, i.e., to the equality log ch. QE/ D log r . Clearly,
this is equivalent to ci . QE/ D 0 for all i � 1.

For all i � 0 we have

ci . QE/ D ci .f
�E ˝ L/ D

iX
jD0

�
r � j

i � j

�
c1.L/

i�j cj .f
�E/:

Using c1.L/ D �1r c1.f
�E/ and the fact that the map H�et .X;Ql / ! H�et .

QX;Ql / is
injective, we see that the second condition is equivalent to the equalities

iX
jD0

�
r � j

i � j

�
.�c1.E//

i�j rj ci .E/ D 0 (1.1)

for all i D 1; : : : ; r . This follows from the fact that the equalities (1.1) for i � m are
equivalent to the equalities

r ici .E/ D

�
r

i

�
c1.E/

i (1.2)

for i D 1; : : : ;m. We prove this by induction onm. FormD 1 it is clear, so let us assume
it holds for 1; : : : ; m � 1. We can assume that (1.2) holds for i < m. Then we have

mX
iD0

�
r � i

m � i

�
.�c1.E//

m�ir ici .E/

D rmcm.E/ �

�
r

m

�
c1.E/

m
C

mX
iD0

.�1/m�i
�
r � i

m � i

��
r

i

�
c1.E/

m

D rmcm.E/ �

�
r

m

�
c1.E/

m
C

�
r

m

�
c1.E/

m
�

mX
iD0

.�1/m�i
�
m

i

�
D rmcm.E/ �

�
r

m

�
c1.E/

m:

This proves that under our assumptions, (1.1) for i D m is equivalent to (1.2) for i D m.
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1.3. Criterion for local freeness and restriction to divisors

LetX be an integral noetherian scheme and letE be a coherent sheaf of OX -modules. Let
S.E/ be the set of points x 2 X such that Ex is not a free OX;x-module. We call S.E/
the singular set of E.

Let us define the function ' W X ! Z by '.x/ D dimk.x/.E ˝ k.x//. Let � be the
generic point of X . For a point x 2 X , by [11, Chapter II, Lemma 8.9], Ex is a free
OX;x-module if and only if '.x/ D '.�/. On the other hand, by Nakayama’s lemma the
function ' is upper semicontinuous (see [11, Chapter III, Example 12.7.2]), so S.E/ D
¹x 2 X W '.x/ > '.�/º is closed.

In the following we say that E is locally free outside a finite number of points if S.E/
is a finite set of points.

Now let X be a smooth projective variety of dimension n defined over an arbitrary
algebraically closed field k. We will use several times the following criterion for local
freeness of graded sheaves associated to filtrations.

Lemma 1.12. Assume that n � 3 and let V be a reflexive sheaf on X with a filtration
Nm D 0 � Nm�1 � � � � � N 0 D V such that each N i is saturated in V . Let W DL
N i=N i�1 be the associated graded and assume that

(1) the reflexivization W �� of W is locally free, and

(2) W is locally free outside a finite number of points.

Then both V and W are locally free.

Proof. It is sufficient to prove the lemma for m D 2; the general case then follows easily
by induction on the length m of the filtration.

Assuming m D 2 our assumptions imply that N 1 is locally free and we have a short
exact sequence

0! N 0=N 1
! .N 0=N 1/�� ! T ! 0

for some sheaf T supported on a finite number of points. By assumption we also know
that .N 0=N 1/�� is locally free. Let us note that by Serre’s duality, Ext2.T; N 1/ is dual
to Extn�2.N 1; T ˝ !X / D H

n�2.T ˝ !X ˝ .N
1/�/ D 0 as n � 3. Hence by the long

Ext exact sequence, the canonical map Ext1..N 0=N 1/��; N 1/! Ext1.N 0=N 1; N 1/ is
surjective. Therefore there exists a coherent sheaf QV such that the following diagram is
commutative:

0 // N 1 // V

��

// N 0=N 1

��

// 0

0 // N 1 // QV // .N 0=N 1/�� // 0

But since V is reflexive and QV is locally free, the map V ! QV is an isomorphism (as it is
an isomorphism outside the support of T ). Hence T D 0 andW ��DW . This immediately
implies the required assertion.
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We will also need the following lemmas allowing us to keep track of singularities of
sheaves when restricting to divisors.

Lemma 1.13. Let ƒ be a base point free linear system on X and let E be a coherent
OX -module.

(1) If E is reflexive and Y 2 ƒ is integral then EY is a torsion free OY -module.

(2) If E is torsion free .resp. reflexive/ and Y 2 ƒ is general then EY is also torsion free
.resp. reflexive/ as an OY -module.

The above lemma follows from [12, Lemma 1.1.12 and Corollary 1.1.14].

Lemma 1.14. Let E be a rank r torsion free sheaf on X and let Y be an integral divisor
on X such that EY is locally free. Then S.E/\ Y D ;, i.e., E is locally free at all points
of Y . Moreover, if Y is ample then E is locally free outside a finite number of points.

Proof. Since every torsion free sheaf on a smooth curve is locally free, we can assume
that the dimension n of X is greater than 1. Since S.E/ has codimension � 2 in X , there
exists a codimension 1 point y 2 Y � S.E/. Let � be the generic point of X and �0 the
generic point of Y . Since EY is locally free, EY;y is a free OY;y-module and hence

dimk.y/EY;y ˝OY;y k.y/ D dimk.�0/EY;y ˝OY;y k.�
0/ D rkEY :

By the choice of y the OX;y-module Ey is free and hence

dimk.y/Ey ˝OX;y k.y/ D dimk.�/Ey ˝OX;y k.�/ D r:

Since Ey ˝OX;y k.y/ ' EY;y ˝OY;y k.y/ we see that EY has rank r . By assumption for
any point z 2 Y the OY;z-module EY;z is free, so we get

dimk.z/Ez ˝OX;z k.z/ D dimk.z/EY;z ˝OY;z k.z/ D dimk.�0/EY;z ˝OY;z k.�
0/ D r:

Then [11, Chapter II, Lemma 8.9] implies that Ez is a free OX;z-module, which proves
the first assertion.

Now let us assume that Y is ample. The singular set S.E/ is a closed subset of X
and S.E/\ Y D ;, so it does not have any irreducible components of dimension � 1. So
S.E/ is zero-dimensional.

2. Local freeness

In this section we fix the following notation. Let X be a smooth projective variety of
dimension n � 2 defined over an algebraically closed field k of characteristic p and let
D be a simple normal crossing divisor on X . We assume that D � X admits a lifting
to W2.k/. We also fix an ample divisor H on X .

The main aim of this section is to prove a large part of the following generalization of
Theorem 0.5 (the proof will be finished in Subsection 3.5):
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Theorem 2.1. Let E be a rank r reflexive sheaf with �.E/Hn�2 D 0. Assume that E
has a filtration M� such that all factors of the filtration are torsion free of rank � p with
�H .GrMj E/ D �H .E/. Also assume that each factor has the structure of a slope H -
semistable logarithmic Higgs sheaf .or of a slope H -semistable sheaf with an integrable
logarithmic connection/ on .X;D/. Then E is locally free and

cm.E/ D

�
r

m

��
c1.E/

r

�m
in H 2m

et .X;Ql / for all m � 1 and any l ¤ p. Moreover, every quotient GrMj E is locally
free and for all m � 1 we have

cm.GrMj E/ D
�
rj

m

��
c1.E/

r

�m
in H 2m

et .X;Ql /, where rj D rk GrMj E.

This theorem is a strong version of the following theorem to which we will reduce its
proof.

Theorem 2.2. Let .E; �/ .resp. .E;r// be a rank r � p slopeH -semistable logarithmic
Higgs sheaf .resp. a rank r �p slopeH -semistable sheaf with a logarithmic connection/.
Then the following conditions are equivalent:

(1) �.E/Hn�2 D 0 and E is reflexive,

(2) �.E/Hn�2 D 0 and E is locally free,

(3) cm.E/ D
�
r
m

�
. c1.E/

r
/m in H 2m

et .X;Ql / for all m � 1 and any l ¤ p.

Remarks 2.3. (1) To simplify notation, in Theorems 2.1 and 2.2 we deal with only one
polarization although one can also replace H by a collection of ample divisors as in, e.g.,
[24, Theorem 10].

(2) A special case of the implication .3/).2/ in Theorem 2.2 was proven in [20,
Proposition 3.12] using Faltings’s result on Fontaine modules.

(3) Theorem 2.2 implies that all the sheaves Ei and Vi appearing in the canonical
Higgs–de Rham sequence of a system of logarithmic Hodge sheaves, which satisfies the
equivalent conditions of Theorem 2.2 and has a nilpotent Higgs field, are locally free.

Theorem 2.2 generalizes [24, Theorem 11] to the case of logarithmic Higgs sheaves
with possibly non-trivial Chern classes. It also generalizes [32, Theorems 3.6 and 3.10],
which deal with systems of Hodge sheaves of rank r < p on X defined over k D NFp .
In this last case Theorem 2.2 allows one to compute higher Chern classes of twisted
preperiodic Higgs bundles. Let us also remark that a special case of the above result was
implicitly used in [1, proof of Theorem 3]. More precisely, in [1, proofs of Lemmas 4.4
and 4.5] (needed for [1, Theorem 3]) the author implicitly uses that B.E; �/ is locally
free if .E; �/ is locally free. He applies [1, Lemma 4.3] to B.E; �/ and that lemma does
not apply if B.E; �/ is not locally free. It is easy to find examples for which .E; �/
is semistable, E is locally free but B.E; �/ is not even reflexive. In particular, in both
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[1, Lemma 4.4] and [1, Lemma 4.5] one needs to assume that .E; �/ is semistable with
vanishing Chern classes and then use our Theorem 2.2. Note also that at the time of
writing [1], Theorem 2.2 was not stated in the logarithmic case that was used there. In
the logarithmic case, even if k D NFp and one has the vanishing of all Chern classes, the
method of proof of local freeness from [20, Proposition 3.12] does not apply.

The strategy of our proof of Theorem 2.2 in the caseDD 0 is modelled on the proof of
[24, Theorem 11]. Unfortunately, the latter proof of contains a serious gap: it is not clear
that the family ¹.Ei ; �i /º of Higgs sheaves considered in the proof is bounded as a priori
the sheavesEi need not be reflexive. However, if one assumes that in [24, Theorem 11] all
Chern classes vanish, then the arguments there show that E is locally free. This is already
sufficient for almost all the applications mentioned in [24] (except for Corollary 6 there,
which also needs an additional assumption on vanishing Chern classes; one also needs to
slightly adjust the proof of [24, Corollary 5]).

In general, one can easily find examples of Higgs–de Rham sequences starting with a
locally free sheaf for which other sheaves in the sequence are not reflexive. This causes
several complications that we need to overcome. The same error appeared independently
in the first version of [32, Theorem 3.10], where the authors claimed existence of a cer-
tain map on the open subset of the moduli space of semistable sheaves, parameterizing
reflexive sheaves. However, in the case of [32, Theorem 3.10], it is not so easy to adjust
the arguments adding additional assumptions (this would require at least our Lemma 1.11
and repeating the proof of [24, Theorem 11]). So in this case Theorem 2.2 offers the only
available proof.

A new idea appearing in the general proof of Theorem 2.2, compared to the case
D D 0, is that we need to use a nearby cycles functor to prove local freeness of the
restriction of E to the irreducible components of D.

2.1. Reduction from filtrations to sheaves

In this subsection we show how to reduce the proof of Theorem 2.1 to Theorem 2.2.
Before we do that let us prove a few independent lemmas:

Lemma 2.4. Let E be a rank r reflexive sheaf with �.E/Hn�2 D 0. Assume that E has
a filtration M� such that all factors of the filtration are torsion free of rank � p with
�H .GrMj E/ D �H .E/. Assume also that each factor has the structure of a slope H -
semistable logarithmic Higgs sheaf .or of a slope H -semistable sheaf with an integrable
logarithmic connection/ on .X; D/. Then for all j we have �.GrMj E/H

n�2 D 0 and
c1.GrMj E/=rk.GrMj E/ D c1.E/=r in H 2

et .X;Ql / for any l ¤ p.

Proof. To simplify notation let us set

Ei D GrMi E and ri D rkEi :

Since �H .Ei / D �H .Ej /, we have .c1Ei=ri � c1Ej =rj /H D 0. So the Hodge index
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theorem and Theorem 1.9 imply that

0 D
�.E/Hn�2

r
D

X �.Ei /H
n�2

ri
�
1

r

X
i<j

rirj

�
c1.Ei /

ri
�
c1.Ej /

rj

�2
Hn�2

�

X �.Ei /H
n�2

ri
� 0:

Hence �.Ei /Hn�2 D 0 and .c1.Ei /=ri � c1.Ej /=rj /2Hn�2 D 0 for all i and j . By
assumption we also have .c1.Ei /=ri � c1.Ej /=rj /Hn�1 D �H .Ei / � �H .Ej / D 0:

Now let us recall that by [16, Theorem 9.6.3] ifB is a divisor onX such thatBHn�1D

B2Hn�2 D 0, then the class of B in the group of divisors on X modulo algebraic equi-
valence is torsion. Using the cycle map we obtain the equality B D 0 in H 2

et .X;Ql / for
any l ¤ p.

Applying this fact toB D .c1.Ei /=ri � c1.Ej /=rj /we get the required equalities.

Lemma 2.5. Let .E; �/ .resp. .E;r// be a rank r � p slope H -semistable logarithmic
Higgs sheaf .resp. sheaf with an integrable logarithmic connection/with�.E/Hn�2D 0.
Then � .resp. r/ extends uniquely to a logarithmic Higgs field Q� .resp. an integrable
logarithmic connection Qr/ on the reflexivization E�� so that .E��; Q�/ .resp. .E��; Qr// is
slope H -semistable. Moreover, �.E��/Hn�2 D 0 and the canonical map E ! E�� is
an isomorphism outside a closed subset of codimension � 3.

Proof. The equality � ^ � D 0 implies ��� ^ ��� D 0, so Q� WD ��� is a logarithmic
Higgs field. In the second case we can extend r, e.g., in the following way. Let us set
U WD X � S.E/ and let j W U ,! X be the corresponding embedding. Then E�� D
j�.j

�E/ and we can define Qr by Qr D j�rj �. It is easy to see that this is a logarithmic
connection. It is integrable, because Qr ^ Qr W E�� ! E�� ˝�2X .logD/ is an OX -linear
map extending rU ^ rU D 0.

Note that for any torsion free sheaf G the line bundles det.G��/ and det.G/ are
isomorphic on X � S.G/ and S.G/ has codimension � 2. So det.G��/ ' det.G/ and
c1.G

��/ D c1.G/. Now for any subsheaf G � E�� we have .E \ G/�� D G�� as both
sheaves are reflexive and equal outside codimension � 2. So the sheaf E contains the
subsheaf E \ G of the same slope as G. This shows that passing to the reflexivization
preserves slope H -semistability (and also slope H -stability).

To prove the last part note that the canonical mapE! E�� is injective as by assump-
tion E is torsion free. Let T be the cokernel of this map. Without any loss of generality
we can assume that H is very ample. After restricting to a general complete intersection
surface Y 2 jH j \ � � � \ jH j, we get a short exact sequence

0! EY ! .E��/Y ! TY ! 0:

Since T is supported in codimension � 2, TY is supported on a finite number of points.
We have

0 D �.E/Hn�2
D �.EY / D �..E

��/Y /C h
0.Y; TY / D �.E

��/Hn�2
C h0.Y; TY /:
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Since .E��; ���/ is slope H -semistable, by Bogomolov’s inequality for logarithmic
Higgs bundles (see Theorem 1.9 and Remark 1.10) we have �.E��/Hn�2 � 0. Hence
we get �.E��/Hn�2 D 0 and h0.Y; TY / D 0. Since TY is supported on a finite number
of points, we get TY D 0. It follows that T is supported in codimension � 3.

Lemma 2.6. ReplacingH by some multiple we can assume that any Y 2 jH j is liftable to
QY � QX . Moreover, for any closed point x 2 U WD X � SuppD a general divisor Y 2 jH j

passing through x is smooth and the divisor D C Y is a normal crossing divisor. Then
DY DD \ Y is a normal crossing divisor on Y and the pair .Y;DY / is liftable toW2.k/.

Proof. The first part follows from [24, proof of Theorem 11]. Replacing H by a multiple
we can also assume that H is very ample. As in [6, proof of Theorem 3.1] we can also
assume that the subsystem ƒ � jH j consisting of all divisors containing x has x as its
scheme-theoretic base locus. If � WX 0!X is the blow up of x then, replacingH if neces-
sary by its multiple, we can also assume that ��H �E is very ample (see [11, Chapter II,
Proposition 7.10]). Let ¹Diºi2I be the irreducible components of D viewed as reduced
closed subschemes of X . Let us set D0i D �

�1.Di / and D0 D ��1.D/. By Bertini’s the-
orem for any J � I , a general Y 0 2 j��H � Ej intersects all irreducible components ofT
j2J D

0
j along smooth divisors. Then D0 C Y 0 is a normal crossing divisor on X 0. By

[6, Theorem 2.1] the image of a general divisor Y 0 2 j��H � Ej is smooth and it is a
general divisor inƒ. Hence for general Y 2ƒ,DC Y is a normal crossing divisor on X .
Moreover, QD C QY � QX is its lifting to W2.k/. This implies that also . QY ; QY \ QD/ lifts
.Y;DY / to W2.k/.

Lemma 2.7. Theorem 2.2 in dimension � n implies Theorem 2.1 in dimension � n.

Proof. The proof is by induction on the dimension n of X . If n D 1 then the assertion
follows from the fact that torsion free sheaves on a smooth curve are locally free. Assume
that the implication holds for varieties of dimension less than n and let X be of dimen-
sion n.

First we consider the case in which each factor of the filtration from Theorem 2.1
has the structure of a slope H -semistable logarithmic Higgs sheaf. Let us write Ej for
GrMj E and rj for its rank. Replacing H by its multiple, by Lemma 2.6 we can assume
that for all d � 1 and a general divisor Y 2 jdH j the pair .Y;DY DD \ Y / is log smooth
and liftable to W2.k/. By Corollary 1.7 (or simply by the Mehta–Ramanathan restriction
theorem for logarithmic Higgs sheaves) applied to each quotient of the filtration M�, for
large d and for a general section Y 2 jdH j, the restriction of each quotient Ej to Y is a
slopeHY -semistable logarithmic Higgs sheaf and the restriction EY is reflexive (here we
use Lemma 1.13). Hence by the induction assumption each .Ej /Y is locally free. So by
Lemma 1.14 each Ej is locally free outside a finite number of points of X .

Since by Lemma 2.4 we have �.Ej /Hn�2 D 0, Theorem 2.2 applied to X implies
that all E��j are locally free. Hence the assumptions of Lemma 1.12 are satisfied and we
conclude that E and all quotients Ej are locally free. By Theorem 2.2 this implies that
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cm.Ej / D

�
rj

m

��
c1.Ej /

rj

�m
;

which together with the equality c1.Ej / D
rj
r
c1.E/ finishes the proof of the last part of

Theorem 2.1. Then a simple computation of Chern classes shows that

cm.E/ D

�
r

m

��
c1.E/

r

�m
:

Now let us consider the case where each factor of the filtration M� from Theorem 2.1
has the structure of a slopeH -semistable sheaf with an integrable logarithmic connection.
The same arguments as above allow us to prove that for general Y as above, the restriction
.GrME/Y is locally free (here we use Remark 1.8 instead of Corollary 1.7). So GrME is
locally free outside a finite number of points and by Lemma 1.12 it is sufficient to prove
that .GrME/�� is locally free. Then GrME is locally free and we can finish as in the case
of logarithmic Higgs sheaves.

Let us set Ej D GrMj E and rj D rkEj . For general Y the restriction .Mi /Y is
a subsheaf of EY , so .M�/Y is a filtration of EY . If n > 2 then as above we have
�..Ej /Y /H

n�3 D 0 and hence by the induction assumption applied to EY we have

cm..Ej /Y / D

�
rj

m

��
c1.EY /

r

�m
for all m � 1:

For n D 2 such equalities are clear as we need to check them only for m D 1.
Let us recall that by Lemma 2.4 we have �.Ej /Hn�2 D 0. So by Lemma 2.5,

NEj WD .Ej /
�� is a slope H -semistable sheaf with an integrable logarithmic connec-

tion and we have �. NEj /Hn�2 D 0. Theorem 1.4 allows us to construct a filtration S�j
of NEj such that the associated graded GrSj NEj is a slope H -semistable Higgs sheaf with
�.GrSj NEj /H

n�2 D 0. Again using Lemma 2.5, we see that .GrSj NEj /
�� satisfies condi-

tion (1) of Theorem 2.1 and hence it is locally free.
Note that for general Y as above we have .S ij /Y � . NEj /Y and .GrSj NEj /Y D

Gr.Sj /Y . NEj /Y . Since Ej is locally free along Y , we have . NEj /Y D .Ej /Y . Therefore the
Chern classes of .GrSj NEj /Y satisfy condition (3) of Theorem 2.2 and thus .GrSj NEj /Y is
locally free. So by Lemma 1.14 the sheaf GrSj NEj is locally free outside a finite number
of points. Now we can use Lemma 1.12 to conclude that NEj is locally free. This proves
that .GrME/�� D

L
j
NEj is locally free as required.

2.2. Local freeness for sheaves with trivial boundary

In this subsection we prove Theorem 2.2 for D D 0. The proof for D ¤ 0 will be given
in Subsection 3.5 after some study of monodromy filtrations along the irreducible com-
ponents of D. The main difference between the cases D D 0 and D ¤ 0 lies in the proof
of Claim 2.2.2, which is much more complicated if D ¤ 0.
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Proof of Theorem 2.2 for D D 0. We prove the assertion by induction on the dimension
n of X . Let us assume that n D 2. Then the equivalence of (1) and (2) is obvious since
every reflexive sheaf on a smooth surface is locally free. The fact that (2) implies (3) is
also obvious as the equality in (3) for m D 1 is trivial and for m D 2 it is equivalent to
�.E/ D 0. The fact that (3) implies (1) follows from Lemma 2.5.

Now let us assume that n � 3 and that the equivalence of conditions (1)–(3) holds
for varieties of dimension less than n. Replacing H by its multiple we can assume the
following properties:

.�/ For every closed point x 2 X , a general divisor Y 2 jH j passing through x is
smooth and liftable to W2.k/ (see Lemma 2.6).

.��/ For every slope H -stable Higgs sheaf .F; �F / (resp. a sheaf .F; rF / with an
integrable connection) of rank � p on X and for every smooth divisor Y 2 jH j
such that FY is torsion free, the restriction .FY ; .�F /Y / (resp. .FY ; .rF /Y /) is
slope HY -stable (see Theorem 1.6 and Remark 1.8).

.���/ For every slope H -semistable Higgs sheaf .F; �F / (resp. a sheaf .F;rF / with an
integrable connection) of rank � p on X and for a general divisor Y 2 jH j, the
restriction .FY ; .�F /Y / (resp. .FY ; .rF /Y /) is slope HY -semistable (see Corol-
lary 1.7 and Remark 1.8).

First let us prove that (1) implies (2) and (3). Let .E; �/ (resp. .E;r/) be a reflexive
rank r � p slope H -semistable Higgs sheaf (resp. sheaf with an integrable connection)
with �.E/Hn�2 D 0.

CLAIM 2.2.1. We have �i .E/ D 0 for 2 � i < n.

Proof. By .���/, for a general divisor Y 2 jH j, the restriction .EY ; �Y / (resp. .EY ;rY /)
is slope HY -semistable. By Lemma 1.13 we also know that EY is reflexive. Since
�.EY /H

n�3
Y D d ��.E/Hn�2 D 0, by the induction assumption EY is locally free and

cm.EY / D
�
r
m

�
. c1.EY /

r
/m in H 2m

et .Y;Ql / for all m � 1 and any l ¤ p. By Lemma 1.11
this implies �i .EY / D 0 for 2 � i < n. By the Lefschetz hyperplane theorem, the inclu-
sion Y ,! X induces injections H 2i

et .X;Ql /! H 2i
et .Y;Ql / for i < n, which proves the

claim.

CLAIM 2.2.2. If .E; �/ .resp. .E;r// is slope H -stable then E is locally free.

Proof. Since E is reflexive, for any smooth hypersurface Y 2 jH j the restriction EY
is torsion free (see Lemma 1.13). So by .�/ for every closed point x 2 X we can find
Y 2 jH j passing through x such that Y is smooth and liftable to W2.k/. By .��/, for any
such Y the restriction .EY ; �Y / (resp. .EY ;rY /) is slope HY -stable. Since �i .E/ D 0
for 2 � i < n we get �i .EY / D 0 for 2 � i � dim Y D n � 1. So EY satisfies (3) and
our induction assumption implies that EY is locally free. Then Lemma 1.14 implies that
E is locally free at all points of Y . This shows that E is locally free on X .
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Now we can prove that E is always locally free. Let M� be a Jordan–Hölder filtration
of .E; �/ (or .E;r/) and let us set Ei D GrMi E and ri D rkEi . Then by Lemma 2.4 we
know that �.Ei /Hn�2 D 0 and for all i we have c1.Ei / D

ri
r
c1.E/ in H 2

et .X;Ql / for
l ¤p. By .�/ and .��/ for a general smooth hypersurface Y 2 jH j the restriction .Ei /Y is
slope HY -stable. Since E is reflexive, by Lemma 1.13 the restriction EY is also reflexive
for general Y . Therefore by the induction assumption EY is locally free. Moreover, our
induction assumption and Lemma 2.7 imply that all the factors .Ei /Y are also locally
free. So by Lemma 1.14 all Ei are locally free outside a finite number of points.

However, we also know that E��i is slope H -stable and �.E��i /H
n�2 D 0. So by

Claim 2.2.2 all sheavesE��i are locally free. Hence we can apply Lemma 1.12 to conclude
that E is locally free. This finishes the proof that (1) implies (2).

To finish the proof that (1) implies (3) note that by Theorem 1.3 there exists a decreas-
ing filtrationE DN 0 �N 1 � � � � �Nm D 0 such that �.N i /�N i�1˝�X (in the case
of integrable connections we use Simpson’s filtration) and the associated graded system
.E0; �0/ of logarithmic Hodge sheaves is slope H -semistable. Let us recall that by Claim
2.2.1 we already know that�i .E/D 0 for 2� i < n. Hence�i .E0/D 0 for 2� i < n. So
by .�/, .��/ and Lemma 1.11, for a general divisor Y 2 jH j the restriction .E0/Y satisfies
(3) on Y . So by the induction assumption .E0/Y is locally free, which by Lemma 1.14
implies that E0 is locally free outside a finite number of points. Since we already know
that (1) implies (2), we see that E��0 is locally free. Then Lemma 1.12 implies that E0 is
locally free.

Now let us consider the canonical Higgs–de Rham sequence starting with .E0; �0/
(see Theorem 1.5)

.V0;r0/
GrS0

%%

.V1;r1/
GrS1

##
.E0; �0/

C�1
99

.E1; �1/

C�1
99

: : :

where for simplicity we write C�1 to denote the inverse Cartier transform. By definition
each .Vm;rm/ is slope H -semistable and each .EmC1; �mC1/ is the slope H -semistable
logarithmic system of Hodge sheaves associated to .Vi ;ri / via Simpson’s filtration.

CLAIM 2.2.3. All Em are locally free.

Proof. Each .E��m ; Q�m/ is slope H -semistable, and since (1) implies (2) it is also locally
free. Note also that �i .Em/ D pim�.E/ D 0 for i < n, so the same argument as in the
case of E0 shows that each sheaf Em is locally free outside a finite number of points.
Now we prove by induction on m that Em and Vm are locally free. For m D 0 we already
know that E0 D E is locally free and hence so is V0 D C�1.E0/. So let us assume that
Vm�1 is locally free. Then Lemma 1.12 implies that Em is locally free and hence so is
Vm D C

�1.Em/, which finishes the induction.

Now let us write pm D rsm C qm for some non-negative integers sm and 0 �

qm < r . Let us set .Gm; �Gm/ WD .Em; Q�m/ ˝ detE�sm . By [24, Lemma 2] we have
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�i .Gm/D�i .Em/D p
im�i .E/ for 1� i � n, so�.Gm/D 0. Note also that c1.Gm/D

qmc1.E/ can take only finitely many values, so Theorem 1.2 implies that the family
¹.Gm; �Gm/ºm�0 of locally free slope H -semistable Higgs sheaves is bounded. In par-
ticular, the set ¹�n.Gm/ºm�0 D ¹pnm�n.E/ºm�0 is finite. Hence �n.E/ D 0, which
finishes the proof of vanishing of�i .E/ for all 2 � i � n. Now Lemma 1.11 implies that
for all m � 1,

cm.E/ D

�
r
m

�
rm

c1.E/
m

in H 2m
et .X;Ql /. This finishes the proof that (1) implies (3).

Clearly (2) implies (1), so it is sufficient to prove that (3) implies (1). Let us consider

a rank r � p slope H -semistable Higgs sheaf .E; �/ such that cm.E/ D
. rm/
rm
c1.E/

m for
allm � 2. By Lemma 2.5 we have�.E��/Hn�2 D 0. Since (1) implies (3) we know that

.E��; Q�/ satisfies cm.E��/ D
. rm/
rm
c1.E

��/m for allm � 1. As in the proof of Lemma 2.5
we see that c1.E��/ D c1.E/. So our assumptions imply that cm.E��/ D cm.E/ for all
m � 1. Since E and E�� have the same rank, the Riemann–Roch theorem implies that
the Hilbert polynomials of E and E�� are equal. Let T D E��=E. Then the short exact
sequence

0! E.m/! E��.m/! T .m/! 0

shows that the Hilbert polynomial of T is trivial. So T D 0 and E is reflexive. For a sheaf
with an integrable connection the proof of .3/).1/ is exactly the same.

3. Nearby cycles

The main aim of this section is to understand the restriction of an integrable logarithmic
connection (or a logarithmic Higgs sheaf) to the boundary divisor. We need this in order
to prove Theorem 2.2 in the case of non-trivial boundary. The proof is completed in Sub-
section 3.5.

For Hodge structures on complex varieties the restriction to the boundary divisor is
understood by means of a nearby-cycle functor for the category of real graded-polarized
families of mixed Hodge structures (see [3, Section 4]). Here we use a different approach
that allows us to keep more information about the restrictions. As in [3] this construction
is related to the standard constructions of a nearby-cycles functor going back to Grothen-
dieck, Deligne and Saito.

In this section we will use some basic facts and definitions related to Lie algebroids,
for which we refer to [23].

3.1. Nearby-cycles functor

Let X be a smooth projective variety of dimension n defined over an algebraically closed
field k. Let D be a simple normal crossing divisor on X and let Y be an irreducible
component of D.
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Let { W Y ,! X be the canonical embedding. We define a Lie algebroid LY on Y as
the triple .L; Œ�; ��; ˛/, where L D {�TX .logD/ is a locally free OY -module with the Lie
algebra structure induced from the standard Lie algebra structure on TX , and the anchor
map ˛ WL!Derk.OY /D TY is the canonical map induced by {. The anchor map induces
a k-derivation d�LY

W OY ! �LY D L
�.

Giving an LY -module structure LY ! EndkE on a coherent OY -module E is equi-
valent to giving an integrable d�LY

-connection rLY W E ! E ˝OY �LY (see [23, Lem-
ma 3.2]).

The usefulness of the above construction comes from the fact that the restriction to Y
defines an obvious functor

‰Y W MIC.X;D/! LY -Mod

from the category MIC.X; D/ of coherent OX -modules with an integrable logarithmic
connection on .X; D/ to the category LY -Mod of coherent OY -modules with an LY -
module structure. If .V;r/ is a coherent OX -module with an integrable connection on
.X;D/ then ‰Y .V;r/ is defined as the restriction {�V of V to Y , and the LY -module
structure is given by the integrable d�LY

-connection {�r W {�V ! {�V ˝ {��X .logD/.
By an abuse of notation we will often write .VY ;rjY / to denote ‰Y .V;r/.

Let L0Y be the trivial Lie algebroid underlying LY (i.e., we consider the same L D
{�TX .logD/ but with zero Lie bracket and zero anchor map). As above, we get the functor

ˆY W HIG.X;D/! L0Y -Mod

from the category HIG.X; D/ of coherent OX -modules with a logarithmic Higgs field
on .X;D/ to the category L0Y -Mod of coherent OY -modules with an L0Y -module struc-
ture. Note that L0Y -Mod is the same as the category of coherent OY -modules with
a Sym�.{�TX .logD//-module structure. As above, we will often write .EY ; � jY / for
ˆY .E; �/.

3.2. General monodromy filtrations

Let Y be a smooth projective variety of dimension n defined over an algebraically closed
field k. Let L be a smooth Lie algebroid on Y=k and let E be an L-module.

LetN WE!E be a nilpotent endomorphism of L-modules. By [5, Proposition 1.6.1],
N induces on E a unique finite increasing filtration M� by L-submodules such that

(1) N.Mi / �Mi�2 for all i ,

(2) N i induces an isomorphism GrMi E
'
�! GrM�iE for all i � 0.

We call M� the monodromy filtration for the L-module E.
Let us define the j -th primitive part Pj .E/ of E as the kernel of N jC1 W GrMj E !

GrM�j�2E for j � 0 and Pj .E/ D 0 for j < 0. Then by [5, (1.6.4)] we have the decom-
position into primitive parts

GrMj E D
M

i�max.0;�j /

N iPjC2i .E/ '
M

i�max.0;�j /

PjC2i .E/: (3.1)



A. Langer 3848

Lemma 3.1. If E is torsion free .as an OY -module/ then all quotients GrMj E are also
torsion free.

Proof. The proof is by induction on the rank of E. If E has rank 1 then N is nilpotent if
and only if N D 0, so the filtration is trivial.

Now let us assume that the assertion holds for all sheaves of rank less than the rank
of E. If N D 0 the assertion is trival, so we can assume that N ¤ 0. Since for j � 0 the
mapN j induces an isomorphism GrMj E

'
�! GrM�jE, the imageN jPj .E/ is the kernel of

N W GrM�jE ! GrM�j�2E. By [5, Corollaire (1.6.6)] the associated graded of the filtration
induced by M� on kerN satisfies

GrM�j .kerN/
'
�! N jPj .E/ ' Pj .E/:

But kerN � E is torsion free and since N is nilpotent, the rank of kerN is less than
the rank of E. So by the induction assumption all quotients GrM�j .kerN/ are torsion free.
Hence allPj .E/ are torsion free and by the decomposition (3.1) all GrMj E are also torsion
free.

Now let us fix an ample divisorH on Y . If an L-moduleE is slopeH -semistable then
we always assume that it is torsion free as an OY -module. The following lemma proves
that the monodromy filtration (or the filtration by primitive cohomology) of a slope H -
semistable L-module can always be refined to a Jordan–Hölder filtration.

Lemma 3.2. Let E be a slope H -semistable L-module. Then every quotient GrMj E of
the monodromy filtration M� of E is slope H -semistable with �H .GrMj E/ D �H .E/.
Moreover, all Pj .E/ are slope H -semistable with �H .Pj .E// D �H .E/.

Proof. The proof is by induction on the rank of E. For rank 1 the assertion is clear so
assume that it holds for all sheaves of rank less than the rank of E.

Let d be the largest integer such that M�d ¤ 0. Since E is slope H -semistable we
have �H .M�d / � �H .E/. But N d induces an isomorphism

GrMd E D E=Md�1

'
�! GrM

�dE DM�d

and by slopeH -semistability ofE we get �H .M�d /D �H .E=Md�1/� �H .E/. Hence
�H .M�d / D �H .E/ and M�d is slope H -semistable. So E=Md�1 ' M�d is also
slope H -semistable with �H .E=Md�1/ D �H .E/. This shows that Md�1 is slope H -
semistable with �H .Md�1/ D �H .E/. Note also that Md�1=M�d is torsion free by
Lemma 3.1. Since �H .M�d / D �H .Md�1/ D �H .E/, this implies that Md�1=M�d is
slope H -semistable with �H .Md�1=M�d / D �H .E/. But N induces on Md�1=M�d
a nilpotent endomorphism whose quotients coincide with the remaining quotients of the
monodromy filtration M� of E. Hence by the induction assumption all GrMj E are slope
H -semistable with �H .GrMj E/ D �H .E/.

The second assertion follows immediately from the first one and the decomposition
(3.1) of GrMj E into primitive parts.



Nearby cycles and semipositivity in positive characteristic 3849

3.3. Residue maps

Let X be a smooth projective variety of dimension n defined over an algebraically closed
field k. Let D be a simple normal crossing divisor on X and let Y be an irreducible com-
ponent of D. We can write D D D0 C Y for some divisor D0 which does not contain Y .
In the following we denote D0 by D � Y and set DY D .D � Y /jY .

Note that LY (see Subsection 3.1) is equipped with the canonical map Res W �LY D

{��X .logD/! OY given by the Poincaré residue. Using it for any LY -module E we
can define the residue endomorphism ResE as a composition

E
rLY
���! E ˝OY �LY

IdE ˝Res
������! E ˝OY OY D E:

Since Resıd�LY
D 0, this endomorphism is OY -linear. It is easy to check that ResE is an

endomorphism of LY -modules. In the same way we can define the residue endomorphism
of an L0Y -module.

Let LY -Mod0 (resp. L0Y -Mod
0
) be the full subcategory of LY -Mod (resp. L0Y -Mod)

containing as objects all LY -modules E (resp. L0Y -modules) with ResE D 0.
Similarly, let LY-Modnil (resp. L0

Y-Modnil ) be the full subcategory of LY -Mod (resp.
L0Y -Mod) containing as objects all LY -modules E (resp. L0Y -modules E) that have nil-
potent residue ResE .

Lemma 3.3. The category LY -Mod0 is equivalent to the category MIC.Y; DY /. Sim-
ilarly, the category L0Y -Mod

0
is equivalent to the category HIG.Y; DY /. Moreover, we

have natural functors
‡ W LY-Modnil ! MIC.Y;DY /

given by sending E to GrWE, where W� is the monodromy filtration of ResE , and

‡0 W L0
Y-Modnil ! HIG.Y;DY /

given by sending E to GrME, where M� is the monodromy filtration of ResE .

Proof. The short exact sequence

0! �Y .logDY /! {��X .logD/
Res
��! OY ! 0

shows that an LY -module E with ResE D 0 gives rise to a canonically defined integrable
logarithmic connection E! E ˝OY �Y .logDY /. Conversely, if .V;r/ is an element of
MIC.Y;DY / then r defines an integrable d�LY

-connection, so we get an LY -module V
with ResV D 0. If E is an L0Y -module with ResE D 0 then the same argument shows that
E is a logarithmic Higgs sheaf on .Y;DY /. This shows the first part of the lemma.

Now let us assume that E is an LY -module with nilpotent N D ResE . Let W� be
the corresponding monodromy filtration (in the category of LY -modules). Note that the

composition Wi
ResWi
����! Wi ! Wi=Wi�1 is zero as N.Wi / � Wi�1. Hence ResGrW

i
E D 0

and each quotient GrWi E is endowed with an integrable logarithmic connection rWi on
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.Y;DY /. Similarly, for an L0Y -module E with nilpotent N D ResE all quotients GrMi E
of the monodromy filtrationM� have canonically defined structure of a logarithmic Higgs
sheaf .GrMi E; �

M
i / on .Y;DY /.

LetDi be an irreducible component ofD different from Y . Let ResDi W�X .logD/!
ODi be the Poincaré residue along Di . Pulling it back to Y we get an OY -linear map
ResDiY W�LY D {

��X .logD/!ODY
i

, whereDY
i DDi \ Y . Now for any LY -moduleE

we consider the composition

E
rLY
���! E ˝OY �LY

IdE ˝Res
Di
Y

��������! E ˝OY ODY
i
D EDY

i
:

One can easily check that this map is OY -linear and it factors through the restriction map
E ! EDY

i
. Therefore it defines a map ResDiE W EDY

i
! EDY

i
that we call the residue

map of E along Di . In the same way we can define the residue maps along Di for any
L0Y -module E.

Remark 3.4. Let .V;r/ be an object of MIC.X;D/ and let E D ‰Y .V;r/ be the cor-
responding LY -module. Then the residue map ResE W E ! E coincides with the residue
map ResY r W VY ! VY . Similarly, for any irreducible component Di of D � Y the
residue map ResDiE W EDY

i
! EDY

i
coincides with the restriction of the residue map

ResDi r W VDi ! VDi to DY
i .

3.4. Compatibility of the Cartier transform with monodromy filtrations

Let X be a smooth projective variety of dimension n defined over an algebraically closed
field k and let D be a simple normal crossing divisor on X . Let Y be an irreducible
component of D.

Let Z D V .OY .�Y // be the total space of the normal bundle of { W Y ,! X and let
� W Z ! Y be the canonical projection. Let s W Y ! Z be the zero section and let Y0 be
its image.

Lemma 3.5. Set DZ D Y0 C �
�1.DY /. The short exact sequence

0! ���Y .logDY /! �Z.logDZ/! �Z=Y .logY0/ D OZ ! 0

is the pullback of

0! �Y .logDY /! {��X .logD/
ResY
���! OY ! 0:

Proof. Let us recall that the extension class of

0! �Y ! {��X .logY /
ResY
���! OY ! 0

in Ext1.OY ; �Y / D H 1.�Y / is equal to the Atiyah class of OY .�Y /, which is also the
image of the class of OY .�Y / in H 1.O�Y / under the map H 1.O�Y /! H 1.�Y /. Hence
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by [35, Proposition 3.3] the pullback of the above sequence to Z induces

0! ���Y ! �Z.logY0/! OZ ! 0:

Let ¹Diº be the divisors corresponding to the irreducible components ofD � Y . Now the
required assertion follows from the following standard exact sequences:

0! �Y ! �Y .logDY /!
M

ODi\Y ! 0;

0! {��X .logY /! {��X .logD/!
M

ODi\Y ! 0;

0! �Z.logY0/! �Z.logDZ/!
M

O��1.Di\Y / ! 0:

An alternative proof of the lemma can be obtained, e.g., by directly making a local
calculation and checking equality of the corresponding gluing conditions (cf. [35, proof
of Proposition 3.3]).

Let .V;r/ be a coherent OX -module with an integrable logarithmic connection r W
V ! V ˝ �X .logD/. After restricting to Y we see that VY acquires an integrable
�LY -connection. After a further pullback to Z we get an induced integrable logarithmic
connection

r
0
W ��VY ! ��VY ˝�Z.logDZ/:

The same construction allows us to associate to a logarithmic Higgs sheaf .E; �/ on
.X; D/ a logarithmic Higgs sheaf .��EY ; � 0/ on .Z; DZ/. Note that if � is nilpotent
then so is � 0.

Remark 3.6. One could naively hope that one can work with logarithmic connec-
tions on projective varieties by pulling back the LY -module .VY ; rjY / via ' W T D
P .OY .�Y /˚OY /! Y . Indeed, one has a short exact sequence

0! '��Y .logDY /! �T .logY0 C Y1 C ��1.DY //

! �T=Y .logY0 C Y1/ D OT ! 0;

where Y1 D T �Z is the image of the infinity section. But if p ¤ 2 then

0! '��Y .logDY /! '�.{��X .logD//! OT ! 0

defines a different extension class. This can be seen by computing the extension class of
both sequences after restricting to Y1. This forces us to deal with non-projective varieties,
where the difficulty is that one cannot directly apply Theorem 2.2.

Let us assume that the base field k has characteristic p and .X;D/ is liftable toW2.k/.
Let us fix a lifting . QX; QD/. This lifting induces a lifting . QY ; QDY / of .Y;DY / toW2.k/ and
also a compatible lifting . QZ; QDZ/ of .Z;DZ/ to W2.k/.

The following lemma is functoriality of Cartier transforms in a situation that is not
covered by Theorem 6.4 (we do not even have a map .Z;DZ/! .X;D/).
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Lemma 3.7. Let .E; �/ be a reflexive logarithmic Higgs sheaf on .X;D/ with a nilpo-
tent Higgs field of level � p � 1. If .V;r/ D C�1

. QX; QD/
.E; �/ then we have a canonical

isomorphism .��VY ;r
0/ ' C�1

. QZ; QDZ/
.��EY ; �

0/, and the diagram

.��VY ;r
0/

�� ResY r

��

' // C�1
. QZ; QDZ/

.��EY ; �
0/

C�1
. QZ; QDZ/

.�� ResY �/

��

.��VY ;r
0/

' // C�1
. QZ; QDZ/

.��EY ; �
0/

is commutative.

Proof. Since E is reflexive and Y is smooth, EY is torsion free. Since � is flat, ��EY
is also torsion free, so we can apply C�1

. QZ; QDZ/
to .��EY ; � 0/. We will use the notation

introduced in the proof of Theorem 6.4.
There exists an affine covering ¹ QU˛º˛2I of QX such that for each QU˛ we have a system

of logarithmic coordinates, i.e., x1; : : : ; xn such that QD \ QU˛ is given by
Qn0
iD1 xi D 0,

with x1 D 0 giving QY \ QU˛ . We can assume that O QU˛ .�
QY / is trivial and choose for

each ˛ its generator t . Let us also choose standard log Frobenius liftings QFU˛ W QU˛ ! QU˛
so that QF �U˛ .xi / D x

p
i . Then the projection QV˛ WD ��1. QU˛ \ QY /! QU˛ \ QY corresponds

to the projection . QU˛ \ QY / �W2.k/ SpecW2.k/Œt �! QU˛ \ QY . We choose a logarithmic
Frobenius lifting of . QV˛; QDZ \ QV˛/ to be QFV˛ D QF QU˛\ QY �

QFSpeckŒt�, where QFSpeckŒt� is
given by t 7! tp . Note that QDZ \ QV˛ is given by

Qn0
iD1 xi t D 0. We can locally write

� jU˛ D

n0X
iD1

�i ˝
dxi

xi
C

nX
iDn0C1

�i ˝ dxi ;

where �i W EU˛ ! EU˛ are some commuting endomorphisms. This allows us to identify
C�1
. QZ; QDZ/

.��EY ; �
0/. Over each QV˛ we have F �.��.EU˛\Y // with the connection given

by
r˛ WD rcan C .Id˝ �˛/ ı .F ���.� jY //;

where �˛ D
d QFV˛
p

. The isomorphism from Lemma 3.5 is locally given by ��.dx1
x1
jY / D

dt
t

, ��.dxi
xi
jY / D

dxi
xi

for 2 � i � n0 and ��.dxi jY / D dxi for n0 � i � n. So we get

r˛ WD rcan C F
���.�1jY /˝

dt

t
C

n0X
iD2

F ���.�i jY /˝
dxi

xi

C

nX
iDn0C1

F ���.�i jY /˝ x
p�1
i dxi :

On the other hand, locally on U˛ , .V;r/ can be identified with F �EU˛ with the connec-
tion given by

rjU˛ WD rcan C .Id˝ �0˛/ ı .F
��/;
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where �0˛ D
d QFU˛
p

. Writing down this formula in local coordinates we get

rjU˛ D rcan C

n0X
iD1

F ��i ˝
dxi

xi
C

nX
iDn0C1

F ��i ˝ x
p�1
i dxi :

Using the equality rcan D �
�.rcanjY / and the above formulas we get r˛ D ��.rjU˛\Y /.

Checking equality of gluing conditions is similar and left to the reader.
Finally, note that since the isomorphism .��VY ;r

0/ ' C�1
. QZ; QDZ/

.��EY ; �
0/ is func-

torial with respect to open embeddings V˛ �Z, it is sufficient to check the commutativity
of the diagram only locally. In the local situation this follows easily from the local equal-
ities

ResY rjU˛ D F
�.ResY � jU˛ /:

Let .E; �/ be a logarithmic Higgs sheaf on .X;D/ with a nilpotent Higgs field. Let
M� be the monodromy filtration for ResY � . Then each quotient GrMi EY is endowed with
a nilpotent logarithmic Higgs field �Mi on .Y;DY /.

Let .V; r/ be an object of MIC.X; D/. Assume that the residue ResY r is nilpo-
tent and let W� be the monodromy filtration for ResY r. Then each quotient GrWi VY is
endowed with a nilpotent integrable logarithmic connection rWi on .Y;DY /.

Proposition 3.8. Let .E; �/ be a reflexive logarithmic Higgs sheaf on .X; D/ with a
nilpotent Higgs field of level � p � 1 and let .V; r/ D C�1

. QX; QD/
.E; �/. Let M� be the

monodromy filtration for ResY � and let W� be the monodromy filtration for ResY r.
Then .GrMi EY ; �

M
i / is a torsion free logarithmic Higgs sheaf on .Y;DY / with a nilpotent

Higgs field of level � p � 1 and we have

.GrWi VY ;r
W
i / D C

�1

. QY ; QDY /
.GrMi EY ; �

M
i /:

Proof. Note that ��M� is a filtration of .��EY ; � 0/ by logarithmic Higgs submodules
on .Z; DZ/. Moreover, quotients of this filtration are logarithmic Higgs modules on
.Z; ��1.DY //. Similarly, ��W� is a filtration of .��VY ;r 0/ by integrable logarithmic
connections on .Z;DZ/ and the quotients are objects of MIC.Z; ��1.DY //.

Lemma 3.7 and uniqueness of the monodromy filtrations imply that

.��Wi ;r
0
i / D C

�1

. QZ; QDZ/
.��Mi ; �

0
i /;

where r 0i and � 0i denote the restrictions of r 0 and � 0 to the corresponding subsheaves. But
this implies that

��.GrWi VY ;r
W
i / D C

�1

. QZ; QDZ/
��.GrMi EY ; �

M
i / D C

�1

. QZ; B��1.DY /�
�.GrMi EY ; �

M
i /:

Pulling back this equality by the zero section s W .Y; DY / ! .Z; ��1.Y // and using
functoriality of the Cartier transform, we get the required assertion.
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3.5. Local freeness for sheaves: the general case

In this subsection we give a full proof of Theorem 2.2. The strategy is similar to that in
Section 2.2.

LetX be a smooth projective variety of dimension n� 2 defined over an algebraically
closed field k of characteristic p and let D be a simple normal crossing divisor on X . We
assume that D � X admits a lifting to W2.k/. Replacing H by its multiple we can also
assume the following properties:

.�/ For every closed point x 2 U WD X � SuppD and a general divisor Y 2 jH j
passing through x, the pair .Y;DY D D \ Y / is log smooth and liftable toW2.k/
(see Lemma 2.6).

.��/ For every slope H -stable logarithmic Higgs sheaf .F; �F / (resp. a sheaf .F;rF )
with an integrable logarithmic connection) of rank � p on .X;D/ and for every
smooth divisor Y 2 jH j such that FY is torsion free andDY DD \ Y is a normal
crossing divisor on Y , the restriction .FY ; .�F /Y / (resp. .FY ; .rF /Y /) is slope
HY -stable (see Theorem 1.6 and Remark 1.8).

.���/ For every slope H -semistable logarithmic Higgs sheaf .F; �F / (resp. a sheaf
.F;rF / with an integrable logarithmic connection) of rank � p on X and for a
general divisor Y 2 jH j, the restriction .FY ; .�F /Y / (resp. .FY ; .rF /Y /) is slope
HY -semistable (see Corollary 1.7 and Remark 1.8).

The proof of the following lemma is very similar to that of Claim 2.2.2.

Lemma 3.9. Let .E; �/ be a reflexive rank r � p slopeH -stable logarithmic Higgs sheaf
with �.E/Hn�2 D 0. If Theorem 2.2 holds for varieties of dimension less than n then E
is locally free on U and locally free outside a finite number of points of X .

Proof. If n D 2 then every reflexive sheaf on X is locally free, so we can assume that
n � 3. The same arguments as for Claim 2.2.1 show that �i .E/Hn�2 D 0 for 2 � i < n
(here we use .���/). SinceE is reflexive, the restrictionEY is torsion free for any smooth
hypersurface Y 2 jH j (see Lemma 1.13). So by .�/ and .��/, for every closed point x 2U
we can find Y 2 jH j passing through x such that the pair .Y;DY DD \ Y / is log smooth
and liftable toW2.k/ and the restriction .EY ; �Y / is slopeHY -stable. Since�i .E/D 0 for
2 � i � n we get �i .EY / D 0 for 2 � i � dimY D n� 1. So EY satisfies condition (3)
of Theorem 2.2 and our assumption implies that EY is locally free. Then Lemma 1.14
implies that E is locally free at all points of Y (and locally free outside a finite number of
points of X ). This shows that E is locally free on U .

Lemma 3.10. Let .E0; �0/ be a reflexive rank r � p slopeH -stable system of logarithmic
Hodge sheaves with �.E0/Hn�2 D 0. If Theorem 2.2 holds for varieties of dimension
less than n then E0 is locally free. Moreover, for every irreducible component Y of D the
L0Y -module ..E0/Y ; �0jY / is slope HY -semistable.
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Proof. Let us construct a certain sequence analogous to the canonical Higgs–de Rham
sequence of .E0; �0/ in the following way. We set .V0;r0/ WD C�1

. QX; QD/
.E0; �0/. Let S�0 be

Simpson’s (decreasing) filtration on .V0;r0/ and let . NE1 D GrS0V0; N�1/ be the associated
system of Hodge sheaves. Then we set .E1; �1/ WD .. NE1/��; N���1 / and then we repeat the
procedure. In this way we get the following sequence:

.V0;r0/

GrS0

%%

.V1;r1/

GrS1

##
.E0; �0/

C�1
99

. NE1; N�1/ // .E1; �1/

C�1
99

: : :

in which each logarithmic Higgs sheaf .Ej ; �j / is reflexive rank r �p slopeH -semistable
with �.Ej /H

n�2 D 0. This follows by induction as �. NEj /Hn�2 D �.Vj /H
n�2 D

p2�.Ej�1/H
n�2 D 0 and then Lemma 2.5 gives �.Ej /Hn�2 D 0. An easy induction

also shows that c1.Ej / D pj c1.E0/ for all j � 0.
By Lemma 3.9 every Em is locally free outside a finite number of points of X . Since

by Lemma 2.5, NEm is isomorphic to Em outside a closed subset of codimension � 3, NEm
is locally free outside a closed subset of codimension � 3.

Let Y be an irreducible component of D. Let E 00 be an L0Y -submodule of the L0Y -
module ..E0/Y ; �0jY /. Then by Lemma 3.7,

V 00 D s
�C�1

. QZ; QDZ/
.E 00/� s

�C�1
. QZ; QDZ/

.��.E0/Y ; �
0
0/D s

�.��.V0/Y ;r
0
0/D ..V0/Y ;r0jY /;

i.e., V 00 is an LY -submodule of ..V0/Y ;r0jY /.
We have a filtration NS�Y of .V0/Y defined by NSjY WD im..Sj0 /Y ! .V0/Y /. Since NE1 is

locally free outside a closed subset of codimension� 3, . NE1/Y is locally free on Y outside
a closed subset of codimension � 2. Therefore we have equalities of sheaves on Y ,

.Gr NSY ..V0/Y //
��
D ..GrS0V0/Y /

��
D .. NE1/Y /

��
D ..E1/Y /

��;

as all sheaves are reflexive and isomorphic on the set where . NE1/Y is locally free. Now
V 00 � .V0/Y has a filtration induced from NS�Y and the reflexivization of the associated
graded is a subsheaf of ..E1/Y /�� that after intersecting with .E1/Y gives an L0Y -sub-
module E 01 � ..E1/Y ; �1jY / such that �HY .E

0
1/ D p�HY .E

0
0/.

Repeating the above procedure allows us to construct a sequence ¹E 0mºm�0 of L0Y -
modules such that E 0m � ..Em/Y ; �mjY / and �HY .E

0
m/ D p

m�HY .E
0
0/.

Now let us write pm D rsm C qm for some non-negative integers sm and 0 � qm < r .
Let us set .Gm; �Gm/ WD .Em; �m/˝ detE�sm0 . Then�i .Gm/D�i .Em/D 0 for 2� i <
min.n; 3/ and c1.Gm/ D qmc1.E0/ can take only finitely many values. So Theorem 1.2
implies that the family ¹.Gm; �Gm/ºm�0 of reflexive slope H -semistable logarithmic
Higgs sheaves is bounded. It follows that the family ¹.Gm/Y ºm�0 of sheaves is also
bounded. Therefore the numbers

�HY .E
0
m ˝ det.E0/

�sm
Y / D pm�HY .E

0
0/ � rsm�HY ..E0/Y /

D pm.�HY .E
0
0/ � �HY ..E0/Y //C qm�HY ..E0/Y /
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are uniformly bounded from above. Hence we get �HY .E
0
0/ � �HY ..E0/Y /, i.e., the

L0Y -module ..E0/Y ; �0jY / is slopeHY -semistable. But we know that�i ..E0/Y /D 0 for
i � 2, so Lemma 1.11 and our assumption show that .E0/Y is locally free. By Lemma 1.14
this implies that E0 is locally free along Y . This proves that E0 is locally free along
SuppD. Since by Lemma 3.9 it is also locally free along U D X � SuppD, it is locally
free everywhere.

Proof of Theorem 2.2 for D ¤ 0. The proof in dimension 2 is the same as in Section 2.2
and we can proceed by induction on the dimension n of X . The same arguments as in the
proof of .1/).2/ in Section 2.2 show that Lemma 3.10 holds if .E0; �0/ is only slope
H -semistable.

Now let .E; �/ (resp. .E; r/) be a reflexive rank r � p slope H -semistable
logarithmic Higgs sheaf (resp. sheaf with an integrable logarithmic connection) with
�.E/Hn�2 D 0. By Theorem 1.3 there exists a decreasing Griffiths transverse fil-
tration N � of E such that the associated graded . NE0; N�0/ WD GrN .E; �/ is a slope
H -semistable system of logarithmic Hodge sheaves (in particular, N�0 is nilpotent). In the
case of logarithmic connections we use Simpson’s filtration S� instead of N �. Let us set
.E0; �0/ D .. NE0/

��; N���0 /. Then Lemma 2.5 implies that �.E0/Hn�2 D 0 and .E0; �0/
is slope H -semistable. If Theorem 2.2 holds for varieties of dimension less than n then
the above arguments show that E0 is locally free.

By Claim 2.2.1 we have�i .E/Hn�2 D 0 for 2� i < n, so also�i . NE0/Hn�2 D 0 for
2� i < n. Then for a general divisor Y 2 jH j, the restriction . NE0/Y satisfies condition .3/
of Theorem 2.2, so . NE0/Y is locally free. Hence by Lemma 1.14, NE0 is locally free outside
a finite number of points and Lemma 1.12 implies that E is locally free. This proves that
(1) implies (2). The rest of the proof of Theorem 2.2 is the same as in Section 2.2.

3.6. Nearby cycles in positive characteristic

Let X be a smooth projective variety of dimension n defined over an algebraically closed
field k of characteristic p and let D be a simple normal crossing divisor on X . In this
subsection we also assume that .X;D/ is liftable to W2.k/ and we fix a lifting . QX; QD/.

Let H be an ample divisor on X and let us fix a class � 2 H 2
et .X;Ql / for some

l ¤ p. We define the category MinHIG�.X;D/ of minimally semistable Higgs sheaves
of slope� as the full subcategory of the category HIG.X;D/ of logarithmic Higgs sheaves
on .X;D/, whose objects are pairs .E; �/, where

� E is a locally free OX -module of rank r � p,

� .E; �/ is slope H -semistable,

� c1.E/ D r� (i.e., the slope of E is equal to �),

� �.E/Hn�2 D 0 (i.e., E has a minimal possible discriminant).

By Theorem 2.2 for any object .E; �/ of MinHIG�.X;D/ we have cm.E/ D
�
r
m

�
�m

for all m � 1. Taking in Theorem 4.7 the identity as f , we see that the above category
does not depend on the choice of the polarization H .



Nearby cycles and semipositivity in positive characteristic 3857

Unfortunately, MinHIG�.X; D/ is not abelian as it does not contain direct sums of
objects. However, by Theorem 2.2 it satisfies all the other axioms of an abelian category.
In particular, it contains kernels, images and cokernels (cf. [25, Corollary 5]) and any
morphism in this category admits a canonical decomposition.

Let Y be an irreducible component ofD and let us fix a class � 2H 2
et .Y;Ql / for some

l ¤ p. Let us define the category Min-L0
Y-Mod� as the full subcategory of the category

L0Y -Mod (defined in Section 3.1), whose objects E satisfy the following conditions:

� as an OY -module, E is locally free of rank r � p,

� E is slope HY -semistable (as an L0Y -module),

� c1.E/ D r� and �.E/Hn�3
Y D 0.

Replacing L0Y by LY in the above definition one can also define the category
Min-LY-Mod� .

Theorem 3.11. Let Y be an irreducible component of D. Then ˆY W HIG.X; D/ !
L0Y -Mod induces the functor

ˆ
�
Y W MinHIG�.X;D/! Min-L0

Y-Mod
�Y
;

where �Y is the image of � under the restriction map H 2
et .X;Ql /! H 2

et .Y;Ql /.

Proof. Let .E; �/ be an object of MinHIG�.X; D/. By Theorem 1.3 there exists
a decreasing Griffiths transverse filtration N � of E such that the associated graded
.E0; �0/ WD GrN .E; �/ is a slope H -semistable system of logarithmic Hodge sheaves
(in particular, �0 is nilpotent). Moreover, by Theorem 2.2, E0 is locally free. By Lemma
3.10 we know that the L0Y -module ..E0/Y ; �0jY / is semistable. Then by openness of
semistability, .EY ; � jY / is also a semistable L0Y -module.

Let Min-L0
Y-Mod�nil be the full subcategory of Min-L0

Y-Mod� whose objects are
L0Y -modules E with ResE nilpotent. Replacing L0Y by LY we get the definition of
Min-LY-Mod�nil .

Theorem 3.12. Fix a class � 2 H 2
et .Y;Ql / for some l ¤ p. The functor ‡0 W L0

Y-Modnil
! HIG.Y;DY / from Lemma 3.3 induces the functor

‡0� W Min-L0
Y-Mod

�

nil ! MinHIG�.Y;DY /:

In particular, for any object E of Min-L0
Y-Mod�nil we have for all m � 1,

cm.E/ D

�
r

m

�
�m

in H 2m
et .Y;Ql /.

Proof. Let E be an object of Min-L0
Y-Mod�nil . We need to prove that every quotient

.GrMj E; �j / of the monodromy filtration M� of E is locally free, slope HY -semistable



A. Langer 3858

with cm.GrMj E/ D
�
rj
m

�
�m for all m � 1, where rj D rk GrMj E. This also implies that

cm.E/ D
�
r
m

�
�m for all m � 1.

By Lemma 3.2 we know that every quotient GrMj E of the monodromy filtration M�
of E is slope HY -semistable (as an L0Y -module) with �HY .GrMj E/ D �HY .E/. We also
know that GrMj E is endowed with a natural logarithmic Higgs field �Mj on .Y; DY /,
coming from the L0Y -action and triviality of the residue of GrMj E. Since any logarithmic
Higgs subsheaf of .GrMj E; �j / has a canonical structure of an L0Y -submodule, the pair
.GrMj E; �j / is slope HY -semistable. Therefore by Theorem 2.1 all quotients GrMj E are
locally free with cm.GrMj E/ D

�
rj
m

�
�m.

Corollary 3.13. Any element in the essential image of the functor

ˆ0Y W MinHIG�.X;D/! Min-L0
Y-Mod

�Y

has a filtration whose quotients are elements of MinHIG�Y .Y;DY /.

Proof. Assume that an object M of Min-L0
Y-Mod�Y is isomorphic to ˆ0Y .E; �/ for

some .E; �/ in MinHIG�.X; D/. In the last part of the proof of Theorem 3.11
we showed that there exists a decreasing Griffiths transverse filtration N � of .E; �/
such that ˆ0Y .GrN .E; �// is an object of Min-L0

Y-Mod�nil . In particular, by The-
orem 3.12 every quotient in the monodromy filtration of ˆ0Y .GrN .E; �// is an element
of MinHIG�Y .Y; DY /. The proof finishes by remarking that N � induces an analogous
filtration on M .

4. Applications of local freeness results

In this section we give some applications of Theorem 2.2.

4.1. Local freeness in positive characteristic

Let X be a smooth projective variety of dimension n � 2 defined over an algebraically
closed field k of characteristic p and let D be a simple normal crossing divisor on X . We
assume that D � X admits a lifting to W2.k/. We also fix an ample divisor H on X .

Lemma 2.7 and Theorem 2.2 immediately imply the following corollary:

Corollary 4.1. Let .E; �/ be a rank r � p slope H -semistable logarithmic Higgs sheaf.
Assume that E is reflexive and �.E/Hn�2 D 0. If .G; �G/ is a rank s factor in a slope
H -Jordan–Hölder filtration of .E; �/ then it is locally free and for all m � 1 we have

cm.G/ D

�
s

m

��
c1.E/

r

�m
in H 2m

et .X;Ql / for l ¤ p.
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The following corollary is a direct generalization of [24, Theorem 11] to the logar-
ithmic case.

Corollary 4.2. Let .E; �/ be a rank r � p slope H -semistable logarithmic Higgs sheaf
with ch1.E/Hn�1 D 0 and ch2.E/Hn�2 D 0. Assume that either E is reflexive or the
normalized Hilbert polynomial ofE is the same as that of OX . Then .E;�/ has a filtration
whose quotients are locally free slopeH -stable logarithmic Higgs sheaves with vanishing
Chern classes.

Proof. By Theorem 1.9 we have�.E/Hn�2 � 0. So by the Hodge index theorem we get

0D2rch2.E/Hn�2
Dc1.E/

2Hn�2
��.E/Hn�2

�c1.E/
2Hn�2

�
.c1.E/H

n�1/2

Hn
D0:

Hence we have �.E/Hn�2 D 0 and c1.E/2Hn�2 D 0. Since c1.E/Hn�1 D 0 this
implies that c1.E/ D 0 (see the proof of Lemma 2.4). If E is reflexive then the corol-
lary follows directly from Corollary 4.1. In the other case we argue as in the proof that
(3) implies (1) in Theorem 2.2. Namely, E�� satisfies condition (1) of Theorem 2.2 and
hence cm.E��/D 0 for allm � 1. Then the Hilbert polynomials of E and E�� are equal.
So the Hilbert polynomial of T D E��=E is trivial. This implies that T D 0 and E is
reflexive, which reduces us to the previous case.

4.2. Local freeness in characteristic zero

If X is a smooth projective variety then we denote by Nm.X/ the space of numerical
classes of cycles of codimension m with rational coefficients. Grothendieck’s standard
conjectures suggest that vanishing of some class of cycles H 2m.X;Q/ is equivalent to
vanishing of its image in Nm.X/, but this is not known to hold in general. However,
checking vanishing of classes in Nm.X/ is easier as one only needs to deal with some
intersection numbers. In general, one can also prove vanishing of rational Chern classes in
the theorems below but this requires more work and the use of the hard Lefschetz theorem.

By a standard spreading-out argument, Theorem 2.1, Theorem 2.2 and Corollary 4.2
imply the following generalization of [31, Theorem 2] to the logarithmic case.

Theorem 4.3. Let X be a smooth projective variety defined over a field of characteristic
zero and let D be a normal crossing divisor on X . Let H be an ample divisor on X and
let .E; �/ be a slope H -semistable logarithmic Higgs sheaf with ch1.E/Hn�1 D 0 and
ch2.E/Hn�2 D 0. Then the following conditions are equivalent:

(1) E is reflexive,

(2) E is locally free,

(3) the normalized Hilbert polynomial of E is the same as that of OX ,

(4) E has vanishing numerical Chern classes, i.e., cm.E/ D 0 in Nm.X/ for all m � 1,

(5) .E; �/ has a filtration whose quotients are locally free slope H -stable logarithmic
Higgs sheaves with vanishing rational Chern classes.
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Remark 4.4. The same theorems show that in the above theorem we can replace a logar-
ithmic Higgs sheaf by a sheaf with an integrable logarithmic connection.

Remark 4.5. Let .V;r/ be a polarized variation of Hodge structures on X � D with
unipotent monodromy along the irreducible components of D. Let . QV ; Qr/ be Deligne’s
canonical extension of .V;r/ with nilpotent residues along the irreducible components
of D. Then Schmid’s nilpotent orbit theorem implies that the Hodge filtration on V
extends to a filtration of QV with locally free subquotients.

Note that it is easy to see that QV has vanishing Chern classes in the de Rham cohomo-
logy of X (as all residues are nilpotent) and hence it also has vanishing Chern classes in
H 2�.X;Q/. Similarly, all the subobjects of . QV ; Qr/ have vanishing rational Chern classes.
In particular, . QV ; Qr/ is slope semistable. Therefore Theorem 1.4 gives Simpson’s filtra-
tion such that the associated graded .E; �/ is slope semistable. Since E has vanishing
rational Chern classes, Theorem 4.3 implies that E is locally free. Note that [23, Corol-
lary 5.6] implies that the associated graded of Simpson’s filtration of . QV ; Qr/ coincides
with the associated graded of the filtration obtained by Schmid’s theorem. Moreover, if
the associated graded .E; �/ is slope stable then the corresponding filtrations coincide.

Again, using spreading out, Theorem 2.2 implies the following theorem. However, we
also give a different proof by deducing it from Theorem 4.3 that was already known in the
non-logarithmic case (D D 0). Note also that Corollary 4.2 can be proven in a somewhat
simpler way than Theorem 2.2. The difference is that if we follow the proofs of .1/).2/
and .1/).3/ in Theorem 2.2 under the assumptions of Corollary 4.2 then we do not need
to consider the family ¹Gmºm�0 and we can work directly with ¹Emºm�0. However, it
should be stressed that similar arguments to those below (showing that Theorem 4.6 fol-
lows from Theorem 4.3) do not allow one to deduce Theorem 2.2 from Corollary 4.2
in positive characteristic. This is caused by the use of coverings that usually do not pre-
serve liftability to W2.k/. Another problem is that such covers are sometimes necessarily
inseparable, in which case pullback does not preserve semistability.

Theorem 4.6. Let X be a smooth projective variety of dimension n � 2 defined over a
field of characteristic zero and let D be a normal crossing divisor on X . Let H be an
ample divisor on X and let .E; �/ be a slope H -semistable logarithmic Higgs sheaf with
�.E/Hn�2 D 0. If E is reflexive then it is locally free and

cm.E/ D

�
r
m

�
rm

c1.E/
m in Nm.X/ for all m � 1.

Moreover, each rank s factor .G; �G/ of a slope H -Jordan–Hölder filtration of .E; �/ is
locally free with

cm.G/ D

�
s
m

�
rm

c1.E/
m in Nm.X/ for all m � 1.

Proof. By a variant of the Bloch–Gieseker covering trick (see [17, Proposition 2.67])
there exists a smooth projective variety QX and a finite flat surjective covering f W QX ! X



Nearby cycles and semipositivity in positive characteristic 3861

together with a line bundle L such that f �.det E/�1 D L˝r and the pullback QD D
.f �D/red is a simple normal crossing divisor. Let us define a logarithmic Higgs sheaf
. QE; Q� W QE ! QE ˝ � QX .log QD// by . QE; Q�/ WD f �.E; �/ ˝ L: Note that QE is reflexive,
c1. QE/ D 0 and

�. QE/.f �H/n�2 D �.f �E/.f �H/n�2 D degf ��.E/Hn�2
D 0:

Hence QE is a slope f �H -semistable logarithmic Higgs sheaf with ch1. QE/.f �H/n�1 D 0
and ch2. QE/.f �H/n�2 D 0. By Theorem 4.3, QE is locally free and it has vanishing Chern
classes. Therefore by the flat descent E is also locally free and we have

0 D �m. QE/ D f
�.�m.E// for all m � 2.

Using the fact that f induces an injectionNm.X/!Nm. QX/, we get vanishing of�m.E/
for all m � 2. Hence by Lemma 1.11 we get rmcm.E/ D

�
r
m

�
c1.E/

m:

Now let .G; �G/ be a rank s factor of a slope H -Jordan–Hölder filtration of .E; �/.
Then f �.G; �G/˝ L is a succesive extension of some factors of a slope f �H -Jordan–
Hölder filtration of . QE; Q�/. In particular, it has a filtration whose quotients are locally free
slope f �H -stable logarithmic Higgs sheaves with vanishing numerical Chern classes. It
follows that G is locally free, c1.f �G/ D �sc1.L/ D s

r
c1.f

�E/ and

cm.G/ D

�
s
m

�
sm
c1.G/

m
D

�
s
m

�
rm

c1.E/
m for all m � 1.

4.3. Restriction theorem

The following theorem generalizes [24, Theorem 12] to the logarithmic case and to arbit-
rary .Y; B/.

Theorem 4.7. LetX be a smooth projective variety of dimension n defined over an algeb-
raically closed field k of characteristic p and let D be a normal crossing divisor on X .
LetH be an ample divisor onX and letE be a locally free OX -module of rank r � p with
�.E/Hn�2 D 0. Assume that a logarithmic Higgs sheaf .E; �/ is slope H -semistable.
Let f W .Y;B/! .X;D/ be a proper morphism of smooth log pairs that has a good lifting
to W2.k/ .see Definition 6.1/. Then the induced logarithmic Higgs sheaf

f �.E; �/ D .f �E; f �E
f ��
���! f �E ˝ f ��X .logD/

Idf �E ˝df
�������! f �E ˝�Y .logB//

is slope A-semistable for any ample divisor A on Y .

Proof. By Theorem 1.3 we can deform .E; �/ to a slope H -semistable system of Hodge
sheaves .E0; �0/. Moreover, by Theorem 2.2, E0 is locally free. If f �.E0; �0/ is semi-
stable then by openness of semistability, f �.E; �/ is also semistable. So without loss of
generality one can assume that .E; �/ is a system of Hodge sheaves. The rest of the proof
is the same as that of [24, Theorem 12], using Theorem 1.5 instead of [24, Theorem 5].
Here we also need to apply functoriality of the inverse Cartier transform in the logarithmic
case (see Theorem 6.4).
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Applying the above theorem to iterates of the Frobenius morphism we get the follow-
ing corollary:

Corollary 4.8. In the notation of the above theorem assume that .Y; B/ D .X; D/ and
f is the Frobenius morphism. Then E is strongly A-semistable for any ample divisor A
on X .

In the formulation of [24, Theorem 12] the author forgot to explicitly state the assump-
tion on existence of a compatible lifting ofC andX (even though it was used in the proof).
The next example shows that this assumption is really necessary.

Example 4.9. Here we give an example of a smooth projective surface that is liftable
to the Witt ring W.k/ and a slope semistable Higgs sheaf which is not semistable after
restricting to the normalization of some projective curve on this surface.

Let us consider a smooth complex projective surface X which is a quotient of the
product H �H of the upper half-planes by an irreducible, torsion free, cocompact lat-
tice G in PGL.2;R/ � PGL.2;R/. Then �X D L ˚M , where L2 D M 2 D 0, and
L and M are strictly nef (see [22, Lemma 4.5]).

Let us consider a Higgs bundle .E; �/, where E D L ˚ OX and � is given by the
canonical inclusion L ! �X . This Higgs bundle corresponds to the representation � W
�1.X/! PGL.2;C/ obtained by composing the inclusionG � PGL.2;R/� PGL.2;R/
with projection onto the first factor and embedding into the complexification. Then the
Higgs bundle .E 0; � 0/ WD Sym2.E; �/ ˝ .detE; det �/�1 corresponds to the composi-
tion of � with the adjoint representation PGL.2;C/! SL.3;C/. In particular, since this
representation is irreducible, the Higgs bundle .E 0; � 0/ is slope stable (with respect to
any polarization) and it has vanishing rational Chern classes. This can also be checked
directly from the definition of stability. More precisely, .E 0; � 0/ is a system of Hodge
sheaves E2;0 ˚E1;1 ˚E0;2 D L˚OX ˚L

�1 with � given by the canonical inclusions
E2;0 D L!E1;1˝�X D L˚M andE1;1 DOX !E0;2˝�X DOX ˚ .M ˝L

�1/

onto the first factor. This system has only two non-trivial saturated subsystems of Hodge
sheaves given by E0;2 D L�1 and E1;1 ˚ E0;2 D OX ˚ L

�1. In particular, .E 0; � 0/ is
slope H -stable if and only if LH > 0.

By openness of stability, the reduction of .E 0; � 0/ modulo almost all primes is stable.
Again this can be easily seen directly, because ampleness is an open condition andLH>0
implies an analogous inequality for the reductions. Note also that for almost all reductions,
Xs lifts to W.k.s//.

Now for a large number of primes (of positive density) the reduction of L is not nef
(see [22, Example 5.6]). For such s there exists an irreducible curve Cs with Ls :Cs < 0.
Let �s W NCs ! Cs be the normalization. Then ��s .E

0
s; �
0
s/ is not semistable because it has

degree zero and it contains a Higgs subbundle .��s L
�1
s ; 0/ of positive degree. This shows

that �s W NCs ! Xs cannot be compatibly lifted to W2.k.s//, even though both NCs and Xs
can be lifted to W.k.s//.

By the usual spreading-out technique, Theorem 4.7 implies the following corollary.
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Corollary 4.10. Let X be a smooth projective variety of dimension n defined over an
algebraically closed field k of characteristic zero. Let D be a normal crossing divisor
on X and let H be an ample divisor on X . Let E be a locally free OX -module with
�.E/Hn�2 D 0. If a logarithmic Higgs sheaf .E; �/ is slopeH -semistable then for every
smooth projective curve C not contained in D and a morphism f W C ! X the Higgs
bundle f �.E; �/ is semistable.

Remark 4.11. In the case of complex projective manifolds andDD 0 the above corollary
follows from Simpson’s correspondence. A rough sketch of proof is as follows. A slope
semistable Higgs bundle with vanishing rational Chern classes corresponds to a local
system on X . So for any morphism f W C ! X we get an induced local system on C .
This again corresponds to a slope semistable Higgs bundle on C . By functoriality of
Simpson’s correspondence this is the pullback of the original Higgs bundle. The general
case with �.E/Hn�2 D 0 can be reduced to the above by taking EndE and using [31,
Theorem 2] (or Theorem 4.3). More precisely, if �.E/Hn�2 D 0 then c1.EndE/ D 0

and �.EndE/Hn�2 D 0, so .EndE; �EndE / is semistable with vanishing rational Chern
classes. Then f �.EndE; �EndE / is semistable, which implies semistability of f �.E; �/.

5. Semistability and semipositivity

In this section we prove Theorem 0.2 and show some of its applications mentioned in the
introduction.

5.1. General results on semistability

Unless otherwise stated, in this subsection .X; D/ stands for a smooth log pair defined
over an algebraically closed field k of positive characteristic. We assume that the pair
.X;D/ is liftable to W2.k/ and we fix its lifting . QX; QD/.

Let C be a smooth projective curve and let � W C ! X be a separable morphism. Let
D0 be the sum of those irreducible components of D that do not contain �.C / and let
D0C D .�

�1.D0//red.

Definition 5.1. We say that � W C ! .X;D/ is strongly liftable to W2.k/ if there exists a
good lifting Q� W . QC ; QD0C /! . QX; QD0/ (see Definition 6.1) of � W .C;D0C /! .X;D0/ such
that for every irreducible component Y of D containing C , Q� factors through QC ! QY .

In the above definition we write � W C ! .X;D/ to keep in mind that being strongly
liftable to W2.k/ depends not only on � W C ! X but also on the choice of the normal
crossing divisor D (in fact, it also depends on the choice of lifting . QX; QD/ of .X;D/).

Theorem 5.2. Let .E; �/ be an object of MinHIG�.X;D/. Let C be a smooth projective
curve and let � W C ! .X;D/ be a morphism that is strongly liftable to W2.k/. Then the
induced Sym���TX .logD/-module ��E is semistable. In particular, ifG is a subsheaf of
the kernel of ��� W ��E ! ��E ˝ ���X .logD/ then �.G/ � �.��E/.
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Proof. The proof is by induction on the dimension of X . In dimension n D 1 the asser-
tion follows from Theorem 4.7, so let us assume that n � 2. As in the proof of The-
orem 3.11, there exists a decreasing Griffiths transverse filtration N � of E such that the
associated graded .E0; �0/ WD GrN .E; �/ is an object of MinHIG�.X; D/ with nilpo-
tent �0. Since Gr��N .��E; ���/ D .��E0; �

��0/, by openness of semistability, if the
Sym���TX .logD/-module ��E0 is semistable then the Sym���TX .logD/-module ��E
is semistable. So in the following we can assume that � is nilpotent.

If �.C / is not contained inD then ��.E; �/ is semistable by Theorem 4.7 (for this we
do not need nilpotence of � ). Since any Sym���TX .logD/-submodule of ��E defines a
Higgs subsheaf of ��.E; �/, this implies that ��E is semistable as a Sym���TX .logD/-
module.

If �.C / is contained inD then we choose an irreducible component Y ofD containing
�.C / and as before we set DY D .D � Y /jY . By definition of strong liftability, the mor-
phismC ! .Y;DY / is also strongly liftable toW2.k/. By Theorem 3.11,E 0 WDˆ0Y .E;�/
is an element of Min-L0

Y-Mod�Ynil . By Theorem 3.12 we know that E 0 has a filtration M�
whose associated graded E 00 D GrME 0 is an element of MinHIG�Y .Y; DY /. Hence by
the induction assumption the induced Sym���TY .logDY /-module ��E 00 is semistable.
Equivalently, ��E 00 is semistable as a ��L0Y -module.

But ��M� is a filtration of ��E 0 by ��L0Y -submodules and the associated graded is
equal to ��E 00 (here we use the fact that E 00 is locally free). So by openness of semista-
bility, ��E 0 is semistable as a ��L0Y -module. This is equivalent to saying that ��E is
semistable as a Sym���TX .logD/-module, which finishes the induction step.

The last part of the theorem follows from the fact that ker ��� with trivial action is a
Sym���TX .logD/-submodule of ��E.

Corollary 5.3. Let .E; �/ be an object of MinHIG0.X;D/. If E 0 is a locally split sub-
sheaf of E contained in the kernel of � then its dual .E 0/� is W2-nef.

Proof. If E 0 is a locally split subsheaf of E then for any smooth projective curve C and
any morphism � WC !X , ��E 0 is a subsheaf of ��E. Moreover, the image of ��.ker�/ in
��E is contained in ker��� , so ��E 0 � ker��� . So if � is separable and liftable toW2.k/,
then by the above theorem any subsheaf of ��E 0 has a non-positive degree. Passing to the
dual of ��E 0, we get the required assertion.

Standard spreading-out arguments show that Theorem 5.2 implies the following
result:

Theorem 5.4. Let .E; �/ be a locally free logarithmic Higgs sheaf on a smooth log pair
.X; D/ defined over an algebraically closed field of characteristic zero. Assume that it
has vanishing Chern classes in H 2�.X;Q/ and it is slope semistable with respect to
some ample polarization. Let � W C ! X be any morphism from some smooth projective
curve. Then the induced Sym���TX .logD/-module ��E is semistable. In particular, ifG
is a subsheaf of the kernel of ��� W ��E ! ��E ˝ ���X .logD/ then degG � 0.
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Remark 5.5. (1) For the first part of Theorem 5.4 one can replace the assumption that
E has vanishing Chern classes with the assumption that r icm.E/ D

�
r
m

�
.c1.E//

m for all
m � 2 in H 2�.X;Q/.

(2) In Theorem 5.4 the assertion holds if we replace the curve C by any smooth
polarized variety. This immediately follows from the fact that semistability on a general
complete intersection curve implies semistability on the original variety.

(3) A posteriori one can see that it is possible to obtain the proof of the above the-
orem without passing to positive characteristic. In case .E; �/ comes from a real graded-
polarized family of mixed Hodge structures it is possible to use Mochizuki’s version of
Simpson’s correspondence to adapt Brunebarbe’s proof [3, Theorem 4.5] to obtain the
above theorem. This strategy can also be generalized to deal with arbitrary systems of log-
arithmic Hodge bundles. The general case needs a logarithmic version of [31, Theorem 2]
(cf. Theorem 2.2), which again can be obtained using Mochizuki’s results. Passing to
non-zero � as in Theorem 5.2 can de done using Theorem 4.6.

Theorem 5.4 implies the following result generalizing [4, Theorem 1.2] from the poly-
stable to the semistable case:

Corollary 5.6. Let .E; �/ be a locally free logarithmic Higgs sheaf on a smooth log
pair .X;D/ defined over an algebraically closed field of characteristic zero. Assume that
it has vanishing Chern classes in H 2�.X;Q/ and it is slope semistable with respect to
some ample polarization. If E 0 is a locally split subsheaf of E contained in the kernel
of � then its dual .E 0/� is nef.

5.2. Geometric applications

In this subsection we give several geometric applications of Corollary 5.3 in more or less
increasing degree of generality showing how to adjust some arguments. We fix the fol-
lowing notation. LetX and Y be smooth projective varieties defined over an algebraically
closed field k of characteristic p and let f WX! Y be a surjective k-morphism of relative
dimension d . Moreover, i and j are arbitrary non-negative integers.

Corollary 5.7. Assume that f is smooth d < p and there exists a lifting Qf W QX ! QY of
f to W2.k/. Then .Rif dR

� OX ;rGM/, where rGM is the Gauss–Manin connection, is a
locally free semistable sheaf with an integrable connection and vanishing Chern classes.
In particular, Rjf�!X=Y is a W2-nef locally free sheaf on Y .

Proof. By [26, Theorem 4.17] we have a canonical isomorphism

C�1
QY
.GrFRif dR

� OX ; �/ ' .R
if dR
� OX ;rGM/;

where F � is the Hodge filtration and � is the associated graded (i.e., the cup product with
the Kodaira–Spencer mapping). If Y is projective then the above isomorphism implies
that both .Rif dR

� OX ;rGM/ and .GrFRif dR
� OX ; �/ are semistable as we have a periodic

Higgs–de Rham sequence of .GrFRif dR
� OX ; �/ (here we use [24, Proposition 1]). So
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Corollary 0.3 implies that the first non-zero piece of the Hodge filtration of Rif dR
� OX ,

i.e., Ri�df�!X=Y , is a W2-nef locally free sheaf on Y .

Remark 5.8. In the complex case the above corollary is precisely the result of Griffiths
(see [10, Corollary 7.8]), who showed that if f WX ! Y is a smooth morphism of smooth
projective varieties, then the direct image f�!X=Y of the relative canonical bundle is
locally free and nef.

Corollary 5.9. Let D be a divisor on X which is a union of divisors, each of which is
smooth over Y , and which have normal crossings relative to Y . Assume that f is smooth,
d < p and there exists a lifting Qf W QX ! QY of f to W2.k/ and a compatible lifting QD
of D. Then .Rif���X=Y .logD/; rGM/ is semistable with vanishing Chern classes. In
particular, Rjf�!X=Y .D/ is a W2-nef locally free sheaf on Y .

Proof. The proof is the same as that of Corollary 5.7 except that we need to reformulate
Katz’s [14, Theorem 3.2] using the inverse Cartier transform (cf. [26, Example 3.17 and
Remark 3.19]). In this way we get a canonical isomorphism

C�1
QY
.GrFRif���X=Y .logD/; �/ ' .Rif���X=Y .logD/;rGM/:

One can also get similar theorems in the case of “unipotent local monodromies”, e.g.,
for semistable reductions. Before stating the corresponding result let us recall the defin-
ition of a semistable reduction (see [13, Definition 1.1]). Let S be a scheme and let X
and Y be smooth S -schemes, f W X ! Y an S -morphism, B � Y a normal crossing
divisor relative to S , and D WD X �Y B . We say that f W X ! Y is semistable (or f has
a semistable reduction along B) if locally in the étale topology on X , f is a product of
S -morphisms of the following type:

(1) the projection �1 W AnS ! A1S , B D 0,

(2) h W AnS D Spec OS Œx1; : : : ; xn�! A1S D Spec OS Œy�, h�y D x1 : : : xn, B D V.y/.

Corollary 5.10. Let B be a normal crossing divisor on Y and assume that f has a
semistable reduction along B . Set D D f �1.B/. Assume that there exists a lifting Qf W
. QX; QD/! . QY ; QB/ of f to W2.k/ with Qf a semistable reduction along QB . Assume that
p > d C dimY . Then

.Rif��
�
X=Y .logD=B/;rGM/

is a semistable locally free OY -module with an integrable logarithmic connection on
.Y; B/. In particular, Rjf�!X=Y .D/ is a W2-nef locally free sheaf on .Y; B/.

Proof. Again the proof is the same as that of Corollary 5.7, except that now one needs to
use [13, Theorem 4.7] and check that the corresponding result describes an isomorphism

C�1
. QY ; QB/

.GrFRif���X=Y .logD=B/; �/ ' .Rif���X=Y .logD=B/;rGM/:

The assumptions of this theorem are satisfied due to [13, Corollary 2.4] and our assump-
tion p > d C dimY . We leave checking the cumbersome details to the interested reader.
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In characteristic zero, the above result is almost the same as [15, Theorem 5].

Remark 5.11. One can also combine Corollaries 5.9 and 5.10 using [13, §4.22]). It is
also possible to further generalize these results and deal with pushforwards of Fontaine
modules as in [26, Theorem 4.17] and the corresponding log versions.

6. Appendix: functoriality of the inverse Cartier transform

In this appendix we prove the functoriality of the inverse Cartier transform. In the non-
logarithmic case functoriality follows from [26, Theorem 3.22]. Unfortunately, although
it seems very likely that an analogue of this result holds in the logarithmic case, this part
of their paper was never generalized.

In the following, instead of dealing with a general theory that would demand a lot
of space and additional notation, we deal only with the simple cases used in the paper.
Instead of using the general framework of [29] that follows [26], we use an explicit
description of the Ogus–Vologodsky correspondence provided in [19] and [18, Appendix].

Let k be an algebraically closed field of positive characteristic and let f W .Y; B/!
.X;D/ be a k-morphisms of smooth log pairs over k.

Definition 6.1. We say that f has a good lifting to W2.k/ if f lifts to a morphism of
smooth log pairs Qf W . QY ; QB/! . QX; QD/ overW2.k/ such that locally in the étale topology
on QX , Qf admits compatible liftings of the Frobenius morphisms, i.e., we can cover QX with
images of étaleW2.k/-morphisms QU ! QX and QY with images of étaleW2.k/-morphisms
QV ! QY so that

(1) there exists QFU W QU ! QU lifting the Frobenius morphismFU , whereU D QU ˝W2.k/ k,
so that QF �1U . QD/ D p QD;

(2) there exists QFV W QV ! QV lifting the Frobenius morphism FV , where V D QV ˝W2.k/ k,
so that QF �1U . QB/ D p QB;

(3) there exists QfV W QV ! QU lifting Qf such that the diagram

QV
QfV //

QFV
��

QU

QFU
��

QV
QfV // QU

is commutative.

In this case we say that Qf is a good lifting of f to W2.k/.

Clearly, if Qf is an open embedding then it is a good lifting. Similarly, a composition of
good liftings is a good lifting. It is also easy to see that the standard Frobenius morphism
given by raising elements to the p-th power gives the following proposition:
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Proposition 6.2. Assume f lifts to a morphism of smooth log pairs Qf W . QY ; QB/! . QX; QD/

over S D SpecW2.k/ such that locally in the étale topology on QX , Qf is a composition of
products of S -morphisms of the following type:

(1) the projection �1 W AnS ! A1S , QB D 0, QD D 0,

(2) the embedding i1 W A1S ! AnS , QB D 0, QD D 0,

(3) h W AmS D Spec OS Œy1; : : : ; ym� ! AnS D Spec OS Œx1; : : : ; xn�, QB D V.
Qm
iD1 yi /,

QD D V.
Qn
jD1 xj / and for j D 1; : : : ; n we have

h�.xj / D

mY
iD1

y
aij
i ;

where aij are some non-negative integers.

Then Qf is a good lifting of f to W2.k/.

Remark 6.3. It is easy to see that any log-smooth lifting Qf of f to W2.k/ is a good
lifting. One can also see that almost every reduction of a morphism of smooth log pairs
from characteristic zero to positive characteristic gives rise to a good lifting. For example,
in the case QB D 0 and QD D 0 one can decompose any morphism of smooth schemes
over an algebraically closed field into a composition of a closed embedding and a smooth
morphism. A smooth closed subvariety of a smooth variety is locally in the étale topology
a product of maps of type 2, and a smooth morphism is locally in the étale topology a
product of maps of type 1.

Let HIGlf
�p�1.X; D/ be the full subcategory of HIG.X; D/ consisting of loc-

ally free logarithmic Higgs sheaves with nilpotent Higgs field of level � p � 1. Let
MIC�p�1.X;D/ be the full subcategory of MIC.X;D/ consisting of OX -modules with
an integrable logarithmic connection whose logarithmic p-curvature is nilpotent of level
� p � 1 and the residues are nilpotent of order � p.

Theorem 6.4.1 Let f W .Y; B/! .X;D/ be a morphism of smooth log pairs that has a
good lifting Qf W . QY ; QB/! . QX; QD/ to W2.k/. Then we have an isomorphism of functors

f � ı C�1
. QX; QD/

' C�1
. QY ; QB/

ı f � W HIGlf
�p�1.X;D/! MIC�p�1.Y; B/:

Proof. Step 1. Let us first assume that there exist global compatible logarithmic liftings
of the Frobenius morphism on X and Y , i.e.,

(1) there exists QFX W QX ! QX lifting the Frobenius morphism FX so that

QF �XO QX .�
QD/ D O QX .�p

QD/;

1After sending the preprint, the author was informed by K. Zuo that together with R. Sun
and J. Yang they checked compatibility of the inverse Cartier transform for double covers of P1.
Recently, a more general result was proven by M. Sheng [30].
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(2) there exists QFY W QY ! QY lifting the Frobenius morphism FY so that

QF �YO QY .�
QB/ D O QY .�p

QB/;

(3) the diagram

QY
Qf
//

QFY
��

QX

QFX
��

QY
Qf
// QX

is commutative.

The first condition implies that there exists a uniquely defined �X such that the diagram

QF �X�
1
QX
.log QD/

����

d QFX // �1
QX
.log QD/

F �X�
1
X .logD/

�X // �1X .logD/

p

OO

is commutative. The second condition gives �Y with a similar diagram for . QY ; QB/. The
third condition shows that we have a commutative diagram

QF �Y
Qf ��1

QX
.log QD/

QF �
Y
.d Qf / ((

Qf � QF �X�
1
QX
.log QD/

Qf �.d QFX / // Qf ��1
QX
.log QD/

d Qf

��

QF �Y�
1
QY
.log QB/

d QFY // �1
QY
.log QB/

Together with the previous two diagrams this shows that the diagram

F �Y f
��1X .logD/

F �
Y
.df / ((

f �F �X�
1
X .logD/

f �.�X / // f ��1X .logD/

df

��

F �Y�
1
Y .logB/

�Y // �1Y .logB/

is also commutative. Now let .E; �/ be an object of HIGlf
�p�1.X; D/ and let us write

f �.E; �/ D .f �E; �Y /. Then we set C�1
. QX; QD/

.E; �/ D .F �XE;r/, where

r WD rcan C .IdF �
X
E ˝ �X / ı .F

�
X �/

and rcan is the canonical connection on F �XE appearing in Cartier’s descent theorem (i.e.,
rcan is differentiation along the fibers of the Frobenius morphism). Similarly, we can
define C�1

. QY ; QB/
. Since f �.F �XE;rcan/ D .F

�
Y .f

�E/;rcan/, the above diagram shows that

f �C�1
. QX; QD/

.E; �/ D f �.F �XE;r/ D .F
�
Y f
�E;rcan C .IdF �

Y
f �E ˝ �Y / ı .F

�
Y �Y //

D C�1
. QY ; QB/

f �.E; �/:
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Step 2. Now let us assume that we have two pairs . QF 1X ; QF
1
Y / and . QF 2X ; QF

2
Y / of compatible

global logarithmic liftings of the Frobenius morphism on X and Y . There exists an OX -
linear map hX12 such that the following diagram is commutative:

O QX
. QF 2
X
/��. QF 1

X
/�
//

����

p QF�O QX

OX

d
��

�1X .logD/
hX
12 // F�OX

'p

OO

By abuse of notation we let hX12 W F
��X .logD/! OX be adjoint to hX12. Similarly, one

can define hY12 W F
��Y .logB/! OY . It is straightforward to check that we have a com-

mutative diagram

F �Y f
��1X .logD/

F �
Y
.df / ((

f �F �X�
1
X .logD/

f �.hX
12
/
// f �OX

F �Y�
1
Y .logB/

hY
12 // OY

Now let us define a map

�X12 W F
�E

F ��
���! F �E ˝ F �.�X .logD//

Id˝hX
12

�����! F �E:

Similarly we define �Y12 W F
�.f �E/! F �.f �E/. The above diagram shows that �Y12 D

f ��X12.

Step 3. Now we consider the general situation. Let .E; �/ be an object of
HIGlf

�p�1.X;D/. By assumption there exist étale coverings ¹ QU˛º˛2I of QX and ¹ QV˛º˛2I
of QY such that we have compatible logarithmic liftings . QFX;˛; QFY;˛/ of the Frobenius
morphisms FX;˛ W U˛ ! U˛ and FY;˛ W V˛ ! V˛ .

Let us recall the construction of .M;r/D C�1
. QX; QD/

.E; �/ 2MIC.X;D/ after [19] and
[18, Appendix]. Over each U˛ we define .M˛;r˛/ by using Step 1 and setting

.M˛;r˛/ WD C
�1

. QU˛ ; QD\ QU˛/
.E; �/:

Over U˛ˇ D U˛ �X Uˇ we can use two liftings QFX;˛jU˛ˇ and QFX;ˇ jU˛ˇ of the Frobenius
morphism F W U˛ˇ ! U˛ˇ to define �X

˛ˇ
W F �.EU˛ˇ /! F �.EU˛ˇ / as in Step 2. Then

we glue .M˛;r˛/ and .Mˇ ;rˇ / over U˛ˇ to a global object .M;r/ 2MIC.X;D/ using

gX˛ˇ WD exp.�X˛ˇ / D
p�1X
iD0

.�X
˛ˇ
/i

i Š
:

Here we use the fact that the categories of quasi-coherent sheaves in the Zariski and
étale toposes of X are equivalent (and we can replace a connection by an appropriate
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OX -linear map using Grothendieck’s description of connections). We can also define �Y;˛ ,
�Y
˛ˇ

and gY
˛ˇ

. We already know that

f �.M˛;r˛/ D f
�C�1

. QU˛ ; QD\ QU˛/
.EU˛ ; � jU˛ / D C

�1

. QV˛ ; QB\ QV˛/
.f �.E; �/jV˛ /

and �Y
˛ˇ
D f ��X

˛ˇ
. In particular, gY

˛ˇ
D f �gX

˛ˇ
, which shows that gluing maps agree and

f �C�1
. QX; QD/

.E; �/ D C�1
. QY ; QB/

f �.E; �/:

Remark 6.5. The above isomorphism of functors holds more generally without restrict-
ing to locally free logarithmic Higgs sheaves. We added this assumption only to ensure
that Tor1.f

�E; F�OBi / D 0 for all irreducible components Bi of B . This allows us to
conclude that the image is in MIC�p�1.Y; B/.
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