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Abstract. The monodromy conjecture is an umbrella term for several conjectured relationships
between poles of zeta functions, monodromy eigenvalues and roots of Bernstein–Sato polynomials
in arithmetic geometry and singularity theory. Even the weakest of these relations – the Denef–
Loeser conjecture on topological zeta functions – is open for surface singularities.

We prove it for a wide class of multidimensional singularities that are non-degenerate with
respect to their Newton polyhedra, including all such singularities of functions of four variables.

A crucial difference from the known case of three variables is the existence of degenerate singu-
larities arbitrarily close to a non-degenerate one. Thus, even aiming at the study of non-degenerate
singularities, we have to go beyond this setting.

We develop new tools to deal with such multidimensional phenomena, and conjecture how the
proof for non-degenerate singularities of arbitrarily many variables might look like.
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1. Introduction

Over the fields R and C it is well-known that the poles of the local zeta function associ-
ated to a polynomial f are contained in the set of roots of the Bernstein–Sato polynomial
and their integer shifts. By a celebrated theorem of Kashiwara and Malgrange, this implies
that for any such pole s0 2 Q the complex number exp.2�is0/ 2 C is an eigenvalue of the
monodromies of the complex hypersurface defined by f . Igusa predicted a similar beau-
tiful relationship between the poles of p-adic integrals and the complex monodromies.
This is now called the monodromy conjecture (see the papers of Denef [7], Nicaise [24]
and Denef and Loeser [11] for excellent reviews on this subject). Later in [9], Denef
and Loeser introduced the local topological zeta function Ztop;f .s/ associated to f and
proposed a weaker version of the monodromy conjecture. However, even this weaker ver-
sion, proposed thirty years ago, is proved so far without any restrictions in dimension 2
only [20].

For other important contributions to this Denef–Loeser conjecture, see for example
[21] by Loeser, where he studies the monodromy conjecture for non-degenerate singular-
ities satisfying some non-resonance conditions. The result holds for isolated singularities.
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In [18], the second author and Van Proeyen restrict to non-degenerate surface singulari-
ties and then prove the monodromy conjecture without further conditions. In [2, 3], Artal
Bartolo–Cassou-Noguès–Luengo–Melle Hernández prove the monodromy conjecture for
some particular classes of singularities for which they establish an explicit formula for the
topological zeta function. It was also proved for hyperplane arrangements by Budur, Mus-
tata and Teitler [6]. In [30, 32], Veys obtained various results in dimension 3. Moreover,
the case of homogeneous and isolated quasihomogeneous singularities was proved by
Blanco–Budur–van der Veer [4] and Rodrigues–Veys [27]. Other important contributions
to the Denef–Loeser conjecture and related results include [5, 15, 19, 23, 31].

Generalizing the Igusa zeta function to an ideal and using the notion of Verdier mon-
odromy, one can similarly formulate the monodromy conjecture for ideals. At the level of
ideals, the conjecture has only been proven in full generality for ideals in two variables
[28]. Very recently Mustaţă [22] showed that the monodromy conjecture for polynomials
implies the monodromy conjecture for ideals.

The aim of the present paper is to explore to what extent the results of [18] hold true
in higher dimensions, and what we are missing to step one dimension higher for non-
degenerate singularities.

A crucial difference that we observe in dimension 4 is the existence of degenerate
singularities arbitrarily close to a non-isolated non-degenerate singularity. So, even aiming
at the study of non-degenerate singularities, we have to go beyond the setting of Newton
polyhedra and toric resolutions at some point.

This is in contrast to all preceding results on non-isolated singularities: in the three-
dimensional setting of [18], all singularities close to a non-degenerate one are non-degen-
erate, and, in the setting of [3], all singularities close to a quasi-ordinary one are quasi-
ordinary.

The paper consists of three parts. In Sections 3–5, we study configurations of facets of
the Newton polyhedron that do not ensure the existence of the corresponding pole of the
topological zeta function. In Sections 6–7, we study configurations of faces that, on the
contrary, always non-trivially contribute to the multiplicity of the expected monodromy
eigenvalue. Finally, in the last section, we use these results to prove the monodromy con-
jecture for singularities of non-degenerate functions of four variables.

Theorem 1.1. The Denef–Loeser monodromy conjecture .and moreover its polyhedral

version from [13]/ holds true for all non-degenerate hypersurface singularities of four

variables.

Our proof of this theorem admits the following conjectural generalization to arbitrary
dimension. Let f W .Cn; 0/! .C; 0/ be a germ of a holomorphic function non-degenerate
with respect to its Newton polyhedron �C.f /.

Definition 1.2. (1) A bounded facet F of the Newton polyhedron �C.f / produces the

number s0 if the affine span of F is given by an equation a1v1 C � � � C anvn D q with
coprime coefficients ai such that s0 D �.a1 C � � � C an/=q.
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(2) A bounded face F of �C.f / is said to produce the number s0 if every bounded facet
of �C.f / containing F produces s0.

We say that a polytope P is inscribed into a polytope Q if dimP D dimQ, P � Q

and vertP � vertQ (where vert denotes the set of vertices).

Conjecture 1.3. Let F be the set of all faces of the Newton polyhedron �C.f / � Rn,

producing the number s0, and let V be the set of all of their vertices having at least one

coordinate equal to 1.

(1) Assume there exists a function b W V ! ¹1; : : : ; nº, assigning to every vertex v 2 V

the index of one of its unit coordinates, such that every simplex � inscribed into a

face from F has some vertex v 2 V for which the other vertices, vert� n ¹vº, belong

to the b.v/-th coordinate hyperplane. Then s0 is not a pole of the topological zeta

function of f .

(2) If such a function b does not exist, then exp.2�is0/ is an eigenvalue of the monodromy

of f at some point near the origin .and moreover a nearby tropical monodromy

eigenvalue of the polyhedron �C.f / in the sense of [13]/.

Both of these statements belong to polyhedral geometry, and together they imply
the monodromy conjecture for non-degenerate singularities in arbitrary dimension. When
proving Theorem 1.1, we actually prove both parts of this conjecture for n D 4 in Sec-
tions 5 and 8 respectively.

A key step in proving the first part would be to combinatorially classify faces that can
appear in the aforementioned family F . We call them B-faces.

Definition 1.4. (1) A lattice simplex in Rn with the standard coordinate system v1; : : : ;vn

is called a B1-simplex with respect to the i -th coordinate if one of its vertices lies in
the plane vi D 1 and the others in the plane vi D 0.

(2) A lattice polytope in Rn is called a B-polytope if every lattice simplex that it contains
is a B1-simplex.

For n D 4, B-faces are classified in Lemma 5.18: besides B1-pyramids that are well
known from the 3-dimensional case, we detect another combinatorial type, which we
call B2-faces. As soon as the classification is done in any dimension, we believe that the
general technique from Section 4 can be extended to arbitrary dimension, though this is
still non-trivial, because the fact that the family F from the conjecture entirely consists
of B-faces does not ensure the existence of the function b: see e.g. the phenomenon of
B-borders (Definition 5.1) in dimension 4. As to the second part of the conjecture, one
step in its proof for n D 4 is already done for arbitrary dimension (see Section 6).

The structure of the paper is as follows. In Section 2 we recall the exact statement of
the monodromy conjecture and the notion of non-degenerate singularity.

In Section 3, as a generalization of the notion of B1-facets in [18], we introduce
B1-facets of the Newton polyhedron �C.f / (Definition 3.10) and discover so called
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B2-facets (Definition 3.9) that behave similarly, although do not exist in the lower-dimen-
sional setting.

In Section 4, we show that many configurations of B1- and B2-facets alone never
ensure the existence of the corresponding pole of the topological zeta function (Theorem
4.3). In the course of the proof we introduce an important notion of a critical face of
the Newton polyhedron (Definition 4.27). Its role in the proof indicates that it might be
possible to find a similarly important notion of a critical stratum of the exceptional divisor
in the context of arbitrary singularities and their non-toric resolutions.

In Section 5, we apply the tools from the preceding two sections to completely classify
configurations of facets of 4-dimensional Newton polyhedra that never ensure the exis-
tence of the corresponding pole of the topological zeta function (Theorem 5.2). Besides
the previously found configurations, we discover so called B2-borders (Definition 5.1).

In Section 6, following the strategy of [18], we prove that the candidate poles of
Ztop;f .s/ contributed by certain non-B1-facets of �C.f / always yield monodromy eigen-
values. Most notably, we obtain Theorem 6.4.

Its proof relies upon the new notion of a hypermodular function (Definition 6.8),
which is inspired by supermodular functions in convex geometry and analysis, and may
be of independent interest.

As a corollary, we can confirm the monodromy conjecture of Denef–Loeser for many
non-degenerate hypersurfaces in higher dimensions (see e.g. Theorem 6.6).

In Section 7 we prove that singularities adjacent to a Newton non-degenerate singular-
ity along a coordinate line are themselves Newton non-degenerate (see Proposition 7.2).

However, we notice that starting from dimension 4, not all singularities adjacent to
Newton non-degenerate singularities are non-degenerate themselves (see Example 7.5).
In particular, even in dimension 4 it is not possible to prove the Denef–Loeser conjecture
for Newton non-degenerate singularities within the framework of non-degenerate singu-
larities.

To this end, the first author introduced in [13] the notion of tropical nearby mon-
odromy eigenvalues and the corresponding monodromy conjecture, which implies the
Denef–Loeser conjecture and (in contrast to the latter) turns into a purely combinatorial
statement on the Newton polyhedron for non-degenerate singularities. This tool helps to
study monodromy eigenvalues of singularities that are adjacent to a singularity with a
given resolution.

In particular, it allows us to prove in Section 8 the monodromy conjecture for non-
degenerate functions of four variables: if the sought monodromy eigenvalue is not a
tropical monodromy eigenvalue outside the origin, this imposes lots of restrictions on the
combinatorial structure of the Newton polyhedron, and a detailed study of this structure
shows that the sought monodromy eigenvalue is a root of the monodromy zeta function at
the origin.

Remark 1.5. Note that the order of this reasoning is opposite to the one usually seen in
the literature: first try to find the sought monodromy eigenvalue at the origin, then in the
case of trouble switch to nearby singularities. We proceed in the following order:
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(1) try to find the sought monodromy eigenvalue outside the origin;

(2) notice that we can fail only if the Newton polyhedron has certain combinatorial prop-
erties allowing one to triangulate it naturally (in a sense);

(3) if this occurs, then the resulting natural triangulation allows one to find the sought
monodromy eigenvalue at the origin.

One could speculate that it is reasonable to expect the same in the general (non-toric)
setting: the absence of the sought monodromy eigenvalue outside the origin ensures the
existence of a certain geometric/deformation-theoretic structure on the resolution space
of the singularity, whose combinatorial counterpart is the aforementioned triangulation,
and which likewise allows finding the sought monodromy eigenvalue at the origin.

2. The monodromy conjecture for the topological zeta function

In this section, we recall the monodromy conjecture for the topological zeta function and
related results.

2.1. The conjecture

Let f W .Cn; 0/ ! .C; 0/ be a germ of a non-trivial analytic function. We assume that
f is defined on an open neighborhood X of the origin 0 2 Cn. Let � W Y ! X be an
embedded resolution of the complex hypersurface f �1.0/ � X and Ej .j 2 J / the irre-
ducible components of the normal crossing divisor ��1.f �1.0// � Y . For j 2 J we
denote by Nj (resp. �j � 1) the multiplicity of the divisor associated to f ı � (resp.
��.dx1 ^ � � � ^ dxn/) along Ej � Y . For a non-empty subset I � J we set

EI D
\

i2I

Ei ; Eı
I D EI n

[

j …I

Ej :

In [9] Denef and Loeser defined the local topological zeta function Ztop;f .s/ 2 C.s/

associated to f (at the origin) by

Ztop;f .s/ D
X

I 6D;

�.Eı
I \ ��1.0//

Y

i2I

1

Nis C �i

;

where �.�/ denotes the topological Euler characteristic. More precisely, they introduced
Ztop;f .s/ by p-adic integrals and showed by algebraic methods that it does not depend on
the choice of the embedded resolution � W Y ! X . Later in [10] and [11], they redefined
Ztop;f .s/ by using the motivic zeta function of f and re-proved this independence from �

more elegantly. For a point x 2 f �1.0/ \ X let Fx � X n f �1.0/ be the Milnor fiber

of f at x and ĵ;x WH j .FxI C/
��!H j .FxI C/ .j 2 ZC WD ¹m 2 Z jm� 0º/ the Milnor

monodromies associated to it. Then the monodromy conjecture of Denef–Loeser for the
local topological zeta function Ztop;f .s/ is stated as follows.
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Monodromy Conjecture (Denef–Loeser [9, Conjecture 3.3.2]): Assume that s0 2 C is
a pole of Ztop;f .s/. Then exp.2�is0/ 2 C is an eigenvalue of the monodromy ĵ;x W
H j .FxI C/

��!H j .FxI C/ for some point x 2 f �1.0/\X in a neighborhood of 0 2 Cn

and some j � 0.
In [9] the authors also formulated an even stronger conjecture concerning the

Bernstein–Sato polynomial bf .s/ of f : they conjectured that the poles of Ztop;f .s/ are
roots of bf .s/.

From now on, we assume that f is a non-trivial polynomial on Cn such that f .0/D 0

and recall the results of Denef–Loeser [9, Section 5] and Varchenko [29]. For f .x/ D
P

v2Z
n
C
cvx

v 2 CŒx1; : : : ; xn�, its support suppf � Zn
C is the subset

suppf D ¹v 2 Zn
C j cv 6D 0º � Zn

C:

We denote by �C.f / � Rn
C the convex hull of

S

v2supp f .vC Rn
C/ in Rn

C. It is called the
Newton polyhedron of f at the origin 0 2 Cn. The polynomial f such that f .0/ D 0 is
called convenient if �C.f / intersects the positive part of any coordinate axis of Rn.

Definition 2.1 (Kouchnirenko [17]). The polynomial f is non-degenerate .at the origin

0 2 Cn) if for any compact face � � �C.f / the complex hypersurface

¹x 2 .C�/n j f� .x/ D 0º

in .C�/n is smooth, where we set

f� .x/ D
X

v2�\Zn
C

cvx
v 2 CŒx1; : : : ; xn�:

It is well-known that generic polynomials having a fixed Newton polyhedron are non-
degenerate (see for example [26, Chapter V, Section 2]).

2.2. The topological zeta function and Newton polyhedra

In what follows, we assume that the reader is familiar with basic facts and notions of
integer lattice geometry; see Appendix for some digest. For u D .u1; : : : ; un/ 2 Rn

C we
set

N.u/ D min
v2�C.f /

hu; vi; �.u/ D juj D
n

X

iD1

ui

and
F.u/ D ¹v 2 �C.f / j hu; vi D N.u/º � �C.f /:

We call F.u/ the supporting face of the vector u 2 Rn
C on �C.f /. To a face � � �C.f /

one can associate a dual cone

�ı D ¹u 2 Rn
C j F.u/ D �º � Rn

C:
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Note that �ı is an .n � dim �/-dimensional rational polyhedral convex cone in Rn
C. The

subdivision of Rn
C into the cones �ı (� � �C.f /) satisfies the axiom of fans (for the

definition, see [14, 25]) and is called the dual fan of �C.f /. Let � D RCa.1/C � � � C
RCa.l/ .a.i/ 2 Zn

C/ be a rational simplicial cone in Rn
C, where the lattice vectors a.i/

are linearly independent over R and primitive. Let aff.�/ ' Rl be the affine span of �
in Rn and s.�/ � � the l-dimensional lattice simplex whose vertices are a.1/; : : : ; a.l/
and the origin 0 2 � � Rn

C. We denote by mult.�/ 2 Z>0 the l-dimensional normalized

volume VolZ.s.�// of s.�/, i.e. lŠ times the usual volume of s.�/ with respect to the
affine lattice aff.�/\ Zn ' Zl in aff.�/. By using the integer mult.�/ we set

J�.s/ D mult.�/
Ql

iD1¹N.a.i//s C �.a.i//º
2 C.s/:

For a face � � �C.f / we choose a decomposition �ı D
Sr

iD1 �i of the dual cone �ı

into rational simplicial cones �i of dimension l D dim �ı such that dim.�i \ �j / < l

.i 6D j / and set

J� .s/ D
r

X

iD1

J�i
.s/ 2 C.s/:

By the following result of Denef–Loeser [9], the rational function J� .s/ does not depend
on the choice of the decomposition of �ı. Let us set

1 D

0

B

B

B

B

@

1

1
:::

1

1

C

C

C

C

A

2 Rn
C:

Lemma 2.2 (see the proof of [9, Lemme 5.1.1]). We have an equality

J� .s/ D
Z

�ı

exp.�hu;P is � hu; 1i/ du;

where P is a point in � and du is the l-dimensional volume form on the affine span

aff.�ı/ ' Rl for which the volume of the parallelepiped spanned by a basis of the affine

lattice aff.�ı/ \ Zn ' Zl is equal to 1.

It is also well-known that one can decompose �ı into rational simplicial cones without
adding new edges. Then we have the following formula for Ztop;f .s/.

Theorem 2.3 (Denef–Loeser [9, Théorème 5.3 (ii)]). Assume that f .x/ 2 CŒx1; : : : ; xn�

is non-degenerate. Then

Ztop;f .s/ D
X




J
 .s/C s

s C 1

X

�

.�1/dim � VolZ.�/ � J� .s/;

where in the sum
P


 .resp.
P

� / the face 
 � �C.f / .resp. � � �C.f // ranges through

the vertices of �C.f / .resp. the compact ones such that dim � � 1/ and VolZ.�/ 2 Z>0 is
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the .dim �/-dimensional normalized volume of � with respect to the affine lattice aff.�/ \
Zn ' Zdim � in aff.�/ ' Rdim � .

Recall that a face � of �C.f / is called a facet if dim� D n� 1. For a facet � � �C.f /

let a.�/ D .a.�/1; : : : ; a.�/n/ 2 �ı \ Zn
C be its primitive conormal vector and set

N.�/ D min
v2�C.f /

ha.�/; vi; �.�/ D ja.�/j D
n

X

iD1

a.�/i D ha.�/; 1i:

We call N.�/ the lattice distance from � to 0 2 Rn. It follows from Theorem 2.3 that any
pole s0 6D �1 of Ztop;f .s/ is contained in the finite set

²

� �.�/

N.�/

ˇ

ˇ

ˇ

ˇ

� � �C.f / is a facet not lying in a coordinate hyperplane

³

� Q:

Its elements are called candidate poles of Ztop;f .s/.
If � is a simplicial facet, the normalized volume VolZ.�/ is equal to the multiplicity

of the cone spanned by the vertices, divided by N.�/.

2.3. The monodromy zeta function and Newton polyhedra

Finally, we recall the result of Varchenko [29]. For a polynomial f .x/ 2 CŒx1; : : : ; xn�

such that f .0/ D 0, its monodromy zeta function �f;0.t/ 2 C.t/ at the origin 0 2 Cn is
defined by

�f;0.t/ D
Y

j 2ZC

¹det.id � t ĵ;0/º.�1/j 2 C.t/:

Similarly one can also define �f;x.t/ 2 C.t/ for any point x 2 f �1.0/. Then by consid-
ering the decomposition of the nearby cycle perverse sheaf  f .CCn/Œn � 1� with respect
to the monodromy eigenvalues of f and the concentrations of its components at generic
points x 2 f �1.0/ (see e.g. [12,16]), in order to prove the monodromy conjecture, it suf-
fices to show that for any pole s0 2 C of Ztop;f .s/ the complex number exp.2�is0/ is
a root or a pole of �f;x.t/ for some point x 2 f �1.0/ in a neighborhood of 0 2 Cn (see
Denef [8, Lemma 4.6]).

For a subset S � ¹1; : : : ; nº we define a coordinate subspace RS ' RjS j of Rn by

RS D ¹v D .v1; : : : ; vn/ 2 Rn j vi D 0 for any i … Sº

and set
RS

C D RS \ Rn
C ' R

jS j
C :

For a compact face � � �C.f / we take the minimal coordinate subspace RS of Rn con-
taining � and set s� D jS j. If � satisfies the condition dim � D s� � 1 we set

�� .t/ D .1 � tN.�//VolZ.�/ 2 CŒt �;

whereN.�/ 2 Z>0 is the lattice distance (for the definition, see Appendix) from the affine
hyperplane aff.�/ ' Rdim � in RS to 0 2 RS . Let a.�/ 2 �ı \ ZS

C be the primitive conor-
mal vector of � � RS whose value on � is equal to N.�/ > 0.
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Lemma 2.4. Let � � �C.f /, S and a.�/ be as above and let ˛ 2 Q. For ˇ 2 Q we define

a hyperplane L.ˇ/ in RS by

L.ˇ/ D ¹v 2 RS j ha.�/; vi D ˇ �N.�/º:

Then the complex number � D exp.2�i˛/ is a root of the polynomial �� .t/ if and only if

the hyperplane L.˛/ � RS is rational, i.e. L.˛/ \ ZS 6D ;.

Proof. Note that 0 2 L.0/, � � L.1/ D aff.�/ and the hyperplanes L.ˇ/ (ˇ 2 Q) are
parallel to each other. The lattice distance N.�/ > 0 is equal to the number of (mutually
parallel) “rational” hyperplanesL.ˇ/ (ˇ 2 Q, 0 < ˇ < 1) between L.0/ and L.1/ plus 1.
Then the assertion immediately follows from this geometric interpretation of N.�/.

Theorem 2.5 (Varchenko [29]). Assume that f .x/ 2 CŒx1; : : : ; xn� is non-degenerate.

Then

�f;0.t/ D
Y

�

¹�� .t/º.�1/dim �

;

where in the product the face � ranges through the compact faces of �C.f / satisfying

dim � D s� � 1.

Definition 2.6. We say that a face � of �C.f / is a V-face (or a Varchenko face) if it is
compact and dim � D s� � 1.

Definition 2.7. (1) We say that a candidate pole s0 2 C of Ztop;f .s/ is contributed by a

facet � � �C.f / or that � contributes s0 if s0 D ��.�/=N.�/.
(2) Let � be a V-face in �C.f /. We say that � contributes to .the multiplicity of / t0 2 C

if t0 is a root of the polynomial �� .t/.

3. Candidate poles of the topological zeta function and B-facets

In this section, we develop new tools (Lemmas 3.3 and 3.6) to detect configurations of
facets contributing fake poles of Ztop;f .s/ – so that once a candidate pole is contributed
only by facets from this configuration, then it is definitely fake.

As a first example, we define B1-pyramid facets (Definition 3.1) of the Newton poly-
hedron�C.f /. Our definition is a straightforward generalization of that of Lemahieu–Van
Proeyen [18]. However, starting from dimension n D 4, there exist many other combina-
torial types of facets and configurations that may contribute fake poles. In particular, we
introduce so called B2-facets (Definition 3.9) and detect some non-contributing config-
urations of B1- and B2-facets (see Propositions 3.7, 3.8 and 3.11). The proofs of these
facts are intended to motivate general constructions in the next section, where we prove a
more general Theorem 4.3.

From now on, we introduce the following convention on figures in this paper: when-
ever we depict some configuration of cones in Rn, we draw its projectivization, resulting
in an .n � 1/-dimensional figure.
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3.1. B1-faces

For a subset S � ¹1; : : : ; nº let �S W Rn
C ! RSc

C ' R
n�jS j
C be the natural projection. We

say that a polyhedron � in Rn
C is non-compact for S � ¹1; : : : ; nº if the Minkowski sum

� C RS
C is contained in � .

Definition 3.1 (cf. Lemahieu–Van Proeyen [18]). Let � be a polyhedron in Rn
C.

(1) We say that � is a B1-pyramid of compact type for the variable vi if � is a compact
pyramid over the base 
 D � \ ¹vi D 0º and its unique vertex P � � such that P … 

has height 1 over the hyperplane ¹vi D 0º � Rn

C.

(2) We say that � is a B1-pyramid of non-compact type if there exists a non-empty subset
S � ¹1; : : : ; nº such that � is non-compact for S and �S .�/ � RSc

C ' R
n�jS j
C is a

B1-pyramid of compact type for some variable vi .i … S/.
(3) We say that � is a B1-pyramid if it is a B1-pyramid of compact or non-compact type.

(4) We say that a face � of the Newton polyhedron �C.f / is a B1-face if it is a B1-
pyramid. In particular, B1-faces of dimension n � 1 and 1 will be called B1-facets

and B1-segments respectively.

We shall see later in this section that B1-facets alone tend not to contribute poles to
the topological zeta function.

Remark 3.2. The fact that B1-facets might not give rise to eigenvalues of monodromy
was already discovered by Loeser (see [21, Remark 6.3]). The condition he requires on
the facets rules out among others all B1-facets. Let us recall this condition.

For two distinct facets � and � 0 of �C.f / let ˇ.�; � 0/ 2 Z be the greatest common
divisor of the 2 � 2 minors of the matrix .a.�/; a.� 0// 2 M.n; 2I Z/. Recall that a.�/ 2
�ı \ Zn is the primitive conormal vector of � , and ˇ.�; � 0/ 2 Z is equal to the lattice area
of the triangle spanned by a.�/ and a.� 0/.

If N.�/ 6D 0 (e.g. if � is compact) we set

�.�; � 0/ D �.� 0/ � �.�/

N.�/
N.� 0/ 2 Q; �.�; � 0/ D �.�; � 0/

ˇ.�; � 0/
2 Q:

In [21] the author considered only compact facets � of �C.f / which satisfy the following
technical condition:

“For any facet � 0 � �C.f / such that � 0 6D � and � 0 \ � 6D ; we have �.�; � 0/ … Z.”

He showed that if f is non-degenerate, the candidate pole of Ztop;f .s/ associated to
such a compact facet � is a root of the local Bernstein–Sato polynomial of f . Now let
� � �C.f / be a facet containing a B1-pyramid of compact type for the variable vi and
set 
 D � \ ¹vi D 0º. Let �0 ��C.f / be the unique (non-compact) facet such that 
 � �0,
�0 6D � and �0 � ¹vi D 0º. Then we can easily show that ˇ.�;�0/D 1. Indeed, by a rotation
of Rn which preserves the hyperplane ¹vi D 0º ' Rn�1, we can reduce the problem to the
case nD 2. Moreover, since �.�0/D 1,N.�0/D 0 and �.�;�0/D 1we obtain�.�;�0/D 1;
that is, such a facet � does not satisfy the above-mentioned condition of [21].
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The atypical behavior of candidate poles of Ztop;f .s/ associated to B1-facets essen-
tially arises from the following simple computation (cf. Lemma 2.2). For a subcone C of
the dual cone �ı to a k-dimensional face � of the Newton polyhedron �C.f /, define the
contribution of C to the topological �-functionZtop;f as

Z

C

exp.�N.u/s � hu; 1i/ du.n/

for k D 0 (see Lemma 2.2 for the details) and otherwise

.�1/k VolZ.�/
s

s C 1

Z

C

exp.�N.u/s � hu; 1i/ du.n�k/;

where N.�/ is the support function of the Newton polyhedron, and du.m/ is them-dimen-
sional lattice volume form. This definition is chosen so that the topological �-function of
f equals the sum of the contributions of the dual cones to all bounded faces of �C.f /.

Lemma 3.3. Assume that a B1-face � of �C.f / is the convex hull of its base 
 in the

coordinate hyperplane ¹vn D 0º and its apex P D .�; : : : ; �; 1/. Furthermore, assume

that C � 
ı is the convex hull of a rational polyhedral subcone C 0 � �ı and the n-th

coordinate axis On D RC.0; : : : ; 0; 1/ � Rn
C. Then the sum of the contributions from the

cones C � 
ı and C 0 � �ı to Ztop;f .s/ is equal to

Z

C

exp.�hu;P is � hu; 1i/ du1 � � �dun

if � is a B1-segment, and is 0 otherwise.

Proof. In the second case, the contributions fromC andC 0 are equal up to sign and cancel
each other. Indeed, if we decomposeC 0 into simplicial cones�0

i �C 0 and take the convex
hulls�i � C of them and the coordinate axis On D RC � .0; : : : ; 0; 1/, then by using the
condition P D .�; : : : ; �; 1/ we can easily show that mult.�i / D mult.�0

i /. In the first
case, we may assume that C 0 is simplicial and mult.C / D mult.C 0/. Let a.i/ 2 C 0 \ Zn

C

.1 � i � n� 1/ be the primitive vectors on the edges of the .n� 1/-dimensional cone C 0.
Then the sum of the contributions is equal to

mult.C /
Qn�1

iD1¹N.a.i//s C �.a.i//º
� s

s C 1

mult.C /
Qn�1

iD1¹N.a.i//s C �.a.i//º

D mult.C /

¹hen; P is C hen; 1iº �
Qn�1

iD1¹ha.i/; P is C ha.i/; 1iº
;

where en D .0; : : : ; 0; 1/. The right hand side is equal to the sought integral by the proof
of Lemma 2.2.

3.2. Critical edges

We now introduce our main tool to prove that a given number is not a pole of the topolog-
ical zeta function.
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Lemma 3.4. Assume that s0 ¤ �1. Then for the points P in the summit of a .possibly

non-compact/ B1-facet of �C.f / the equation hu;P is0 C hu; 1i D 0 is non-trivial; so it

defines a hyperplane LP in Rn.

Proof. If it is trivial, then P D �1=s0. Since s0 ¤ �1, none of the coordinates of P is
equal to 1, so it is not in the summit.

Definition 3.5. We say that a closed set C � Rn is an n-dimensional polyhedral cone if
it is a union of finitely many n-dimensional closed convex polyhedral cones. A ray R on
the boundary @C of an n-dimensional polyhedral cone C in Rn is called an edge of C
if, in an arbitrarily small neighborhood of a point of rel:intR D R n ¹0º, the cone C is
not affinely isomorphic to a product R2 � C 0 for some subset C 0 � Rn�2. Moreover, for
s0 2 R and a point P 2 Rn we say that a ray R in Rn is critical with respect to the pair
.s0; P / if for its generator u 2 R we have hu;P is0 C hu; 1i D 0, i.e. u ? .s0P C 1/.

Lemma 3.6. Let C � Rn be an n-dimensional polyhedral cone in Rn. Assume that for

s0 2 R and a point P 2 Rn no edge of C is critical with respect to .s0; P /. Then the

integral Z

C

exp.�hu;P is � hu; 1i/ du1 � � �dun (3.1)

is a rational function of s holomorphic at s D s0 2 C.

Proof. Subdivide C into simplicial cones. This subdivision is combinatorially stable
under small perturbation of each ray R within its ambient face of C . Since no edge
in this ambient face is critical with respect to .s0; P /, the same is true for almost all
rays in the face. We can thus perturb the rays in the subdivision in their ambient faces
so that all of them become non-critical with respect to .s0; P /. Then by integrating
exp.�hu; P is � hu; 1i/ over each of the simplicial cones in the resulting subdivision,
we obtain a rational function holomorphic at s D s0 2 C (see Lemma 2.2).

3.3. Some non-contributing configurations of B1-facets

We first show that a candidate pole contributed by a unique facet is always fake, once this
facet is B1. Then we discuss what happens in other cases (when the same candidate pole
is contributed by several B1-facets or by a non-B1-facet).

The following result is not used in what follows and, on the contrary, is a special
case of the subsequent Theorem 4.3. Nevertheless, we prefer to give it an independent
proof, keeping things as simple and explicit as possible. This proof is a good illustration
of a more general construction (of so called sprouts) used later on to prove Theorem 5.2
leading to the monodromy conjecture in dimension 4.

Proposition 3.7. Assume that f is non-degenerate and let � � �C.f / be a B1-facet.

Assume also that the candidate pole

s0 D � �.�/

N.�/
6D �1

of Ztop;f .s/ is contributed only by � . Then s0 is fake, i.e. not an actual pole of Ztop;f .s/.
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Proof. Since the proof for B1-pyramids of non-compact type is similar, we prove the
assertion only for B1-pyramids of compact type. Without loss of generality we may
assume that � is a compact pyramid over the base 
 D � \ ¹vn D 0º and its unique vertex
P � � such that P … 
 has height 1 over the hyperplane ¹vn D 0º � Rn. Let A1; : : : ; Am

.m � n � 1/ be the vertices of the .n � 2/-dimensional polytope 
 . For 1 � i � m we
denote the dual coneAı

i ofAi ��C.f / byCAi
. Similarly we setCP DP ı. Let a.�/2 Zn

C

be the primitive vector on the ray �ı. Then we have

a.�/ 2 Int.CP [ CA1
[ � � � [ CAm

/:

Note that CP [ CA1
[ � � � [ CAm

is an n-dimensional polyhedral cone in the sense of
Definition 3.5. In order to construct a nice n-dimensional polyhedral subcone � of CP [
CA1

[ � � � [ CAm
such that a.�/ 2 Int �, we shall introduce a new dummy vector b 2

IntCP \ Zn
C satisfying the condition

� �.b/

N.b/
6D s0 (3.2)

in the following way. First, by our assumption s0 6D �1 and Lemma 3.4, for the apex
P D .�; �; : : : ; �; 1/ 2 Zn

C of the B1-pyramid � the equation hu; P is0 C hu; 1i D 0 is
non-trivial. It thus defines a hyperplane LP in Rn. Then by taking a primitive vector
b 2 IntCP \ Zn

C such that b … LP we get the desired condition N.b/s0 C �.b/ 6D 0.
Let �0 � �C.f / be the unique facet such that 
 � �0, �0 6D � and �0 � ¹vn D 0º. Then
the primitive vector a.�0/ 2 Zn

C on the ray �ı
0 is given by a.�0/ D .0; 0; : : : ; 0; 1/. For

1� i �m let �i � � be the edge of � connecting the two pointsP andAi and Fi �CP the
corresponding facet of the cone CP containing �ı D RCa.�/ � CP . All the facets of CP

containing �ı are obtained in this way. Since the point Ai � �i is a vertex of �0, its dual
cone CAi

D Aı
i contains not only Fi but also the ray �ı

0 D RCa.�0/. For 1 � i � m set

F
]
i D RCa.�0/C Fi ; F [

i D RCb C Fi :

In Figure 1 we present the transversal hyperplane sections of the cones Fi , F
]
i and F [

i .

Then by our construction, � D
Sm

iD1.F
]
i [ F [

i / is an n-dimensional polyhedral cone
in Rn and satisfies the desired condition a.�/ 2 Int �.

By Lemma 3.3 and the argument in [18, Case 1 of the proof of Proposition 14],
the contribution to Ztop;f from the dual cones CP ; CA1

; : : : ; CAm
; F1; : : : ; Fm of

P; A1; : : : ; Am, PA1; : : : ; PAm respectively is equal to Ztop;f modulo functions holo-
morphic at s0. We thus obtain

Ztop;f .s/ �
Z

�

exp.�hu;P is � hu; 1i/ du1 � � �dun

modulo functions holomorphic at s0. By our assumption and condition (3.2) no edge of
the polyhedral cone � is critical with respect to .s0; P / in the sense of Definition 3.5.
Then by Lemma 3.6 the rational function

Z

�

exp.�hu;P is � hu; 1i/ du1 � � �dun

of s is holomorphic at s0. This implies that also Ztop;f .s/ is holomorphic there.
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Rn

a.�0/

Fi
a.�/

F
]
i

F [
i

F1

CP

@CP

b

Fig. 1. The proof of Proposition 3.7.

We now discuss what happens when the same candidate pole is contributed by several
B1-facets.

If two B1-facets for different variables are adjacent (i.e. have a common .n � 2/-
dimensional face) and contribute the same candidate pole, this may happen to be an actual
pole of the topological �-function. This is always so for n D 3 (see [18]), but may fail
starting from n D 4 (see B2-borders in Theorem 5.2).

On the contrary, two adjacent B1-faces for the same variable cannot alone yield an
actual pole (similarly to [18, Proposition 14] for n D 3). The following result is a higher-
dimensional analogue of the one in the proof of [18, Proposition 14].

Proposition 3.8. Assume that f is non-degenerate and let �1; : : : ; �k � �C.f / be B1-

facets such that

s0 WD � �.�1/

N.�1/
D � � � D � �.�k/

N.�k/
6D �1

and their common candidate pole s0 2 Q of Ztop;f .s/ is contributed only by them. Assume

also that if �i and �j .i 6D j / have a common facet then they areB1-pyramids for the same

variable. Then s0 is fake, i.e. not an actual pole of Ztop;f .s/.

Proof. If �i and �j (i 6D j ) do not have a common facet, then by the proof of Proposition
3.7 after a suitable subdivision of the dual fan of �C.f / into rational simplicial cones
we can calculate their contributions to Ztop;f .s/ separately. So we may assume that the
B1-facets �1; : : : ; �k have the common apex P 2 �1 \ � � � \ �k . For simplicity, we shall
only treat the case where k D 2, �1 (resp. �2) is a compact B1-pyramid over the base

1 D �1 \ ¹vn D 0º (resp. 
2 D �2 \ ¹vn D 0º) and �1 \ �2 is the (unique) common facet
of �1 and �2; the proofs for the other cases are similar.
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Let �0 � �C.f / be the unique facet of �C.f / such that 
1; 
2 � �0, �0 6D �i (i D 1;2)
and �0 � ¹vn D 0º. We denote by P the common apex of �1 and �2. Since �1 \ �2 is a
common facet of �1 and �2, there exists a 2-dimensional face of the dual cone CP of P �
�C.f / containing both �ı

1 D RCa.�1/ and �ı
2 D RCa.�2/. As in the proof of Proposition

3.7, let F1; : : : ; Fm be the facets of CP containing the ray �ı
1 or �ı

2 and subdivide F1 [
� � � [ Fm � @CP into rational simplicial cones without adding new edges. Let�1; : : : ;�r

be the .n � 1/-dimensional simplicial cones thus obtained in F1 [ � � � [ Fm � @CP and
containing �ı

1 or �ı
2 . As in the proof of Proposition 3.7, we take a new primitive vector

b 2 IntCP \ Zn
C such that

� �.b/

N.b/
6D s0: (3.3)

For 1 � i � r set
�

]
i D RCa.�0/C�i ; �[

i D RCb C�i :

Then

� WD
r

[

iD1

.�
]
i [�[

i /

is an n-dimensional polyhedral cone in Rn such that

a.�1/; a.�2/ 2 Int �:

By Lemma 3.3 (or the argument in [18, Case 1 of the proof of Proposition 14]) we obtain
an equality

Ztop;f .s/ �
Z

�

exp.�hu;P is � hu; 1i/ du1 � � �dun

modulo functions holomorphic at s0. By our assumption and the condition (3.3) no edge
of the polyhedral cone � is critical with respect to .s0; P / in the sense of Definition 3.5.
Then by Lemma 3.6 the rational function

Z

�

exp.�hu;P is � hu; 1i/ du1 � � �dun

of s is holomorphic at s0.

3.4. B2-facets

We now discuss what happens when a candidate pole is contributed by a non-B1-facet.
Such an s0 is always allowed to be a genuine pole for n D 3, because exp.2�is0/ is
always a nearby monodromy eigenvalue (see [18]). However, this is not the case starting
from n D 4 for some non-B1-facets. In this subsection, we introduce one such example.

Definition 3.9. For all n � 4 we define B2-facets � � �C.f / to be non-B1 compact
facets whose projection to a certain .n � 2/-dimensional coordinate plane coincides with
the standard .n � 2/-dimensional simplex.
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In particular, for nD 4, a facet � of �C.f / is aB2-facet if and only if, up to reordering
the coordinates, it has the vertices A;B;P;Q;X; Y of the form

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

A D .1; 0;�;�/;
B D .1; 0;�;�/;
P D .0; 1;�;�/;
Q D .0; 1;�;�/;
X D .0; 0;�;�/;
Y D .0; 0;�;�/;

as in Figure 2 below (it can be degenerate so that X D Y ).

�1

�2

�3�

A B

YX

P Q
1

1

x2

x1

x3; x4

R4

Fig. 2. A B2-facet in dimension 4.

Note that the facet � splits into two B1-pyramids for different variables whose inter-
section does not contain any 1-dimensional V-face. For example we have the decomposi-
tion � D AXPQ [QXABY .

Definition 3.10. A facet � of �C.f / is called a B-facet if it is a B1-facet or a B2-facet.

Proposition 3.11. In the case n � 4 assume that f is non-degenerate and let � � �C.f /

be a B2-facet. Assume also that the candidate pole

s0 D � �.�/

N.�/
6D �1

of Ztop;f .s/ is contributed only by � . Then s0 is fake.

Proof. We prove the assertion only for n D 4. The proof for the general case n � 4 is
similar. In the notation of Figure 2, we define facets �1; �2; �3 of � by �1 D XAP , �2 D
PABQ, �3 D YQB respectively. As in [18, proof of Proposition 14] let �i � �C.f /

.1 � i � 3/ be the unique facet such that �i � �i and �i 6D � . Moreover, for i D 1; 2 let
�i � �C.f / be the unique facet such that �i � ¹vi D 0º ' R3, � \ ¹vi D 0º � �i and
�i 6D � . Since the dimension of the B2-facet � is 3, the three segments PQ, AB and XY
are parallel. This implies that their dual cones are on the same hyperplaneH ' R3 in R4.
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Having the four facets � , �1, �2, �1 containing the vertex P we define a 4-dimensional
simplicial cone�P � R4 by

�P D RCa.�/C RCa.�1/C RCa.�2/C RCa.�1/:

Similarly we define 4-dimensional simplicial cones �A; �X ; �Q; �B ; �Y � R4 for the
vertices A;X;Q;B; Y and set

�P D �P [�A [�X ; �Q D �Q [�B [�Y :

Then by the above-mentioned property of H , �P \H (resp. �Q \H ) is a facet of �P

(resp. �Q) and �P \H D �Q \H D �P \ �Q. The dual ray �ı of � is contained in
�P \H D �Q \H D �P \ �Q, but it is an edge of neither �P nor �Q. Moreover,
� WD �P [ �Q is a 4-dimensional polyhedral cone such that a.�/ 2 Int �. By Lemmas
2.2 and 3.3 and the argument in [18, Case 1 of the proof of Proposition 14], the contri-
bution to Ztop;f from the dual cones of P;A;X;PA; PX and Q;B; Y;QB;QY is equal
to Ztop;f modulo functions holomorphic at s0. For example, the sum of the contributions
to Ztop;f from the dual cones of �1 D XAP (resp. �3 D YQB) and XA (resp. YB) is
zero. The same is true for the dual cones of the three faces �2 D PABQ, PQ and AB .
Here we use the fact that the normalized area of the quadrilateral face �2 D PABQ of
� is equal to the sum of the lengths of the segments PQ and AB (see Lemma 4.22 for
higher-dimensional cases).

Moreover, by Lemma 2.2 it suffices to consider the contribution of the subcones
�P ; �A; �X ; �P \ �A; �P \ �X and �Q; �B ; �Y ; �Q \ �B ; �Q \ �Y . Then by
applying Lemma 3.3 to the pair of cones�A �Aı and�P \�A � .PA/ı (resp.�X �Xı

and �P \�X � .PX/ı) etc., we obtain

Ztop;f .s/

�
Z

�P

exp.�hu;P is � hu; 1i/ du1 � � �du4 C
Z

�Q

exp.�hu;Qis � hu; 1i/ du1 � � �du4

modulo functions holomorphic at s0. By Lemma 3.6 the rational function
Z

�P

exp.�hu;P is � hu; 1i/ du1 � � �du4

of s is holomorphic at s0. The same is true for the integral over �Q. Hence Ztop;f .s/ is
holomorphic at s0.

4. Fake poles of the topological zeta function in arbitrary dimension

In view of the observations from the preceding section, the following result does not look
unexpected. From now on, by faces we mean faces of the Newton polyhedron �C.f /,
unless explicitly stated otherwise.
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Definition 4.1. (1) A one-element set ¹iº � ¹1; : : : ; nº is called a base direction for a

B1-facet � if the i -th coordinate equals 1 for one vertex of � , and equals 0 for the
other vertices.

(2) An .n � 2/-element set I � ¹1; : : : ; nº is called a base direction for a B2-facet if its
projection to the I -th coordinate plane is the standard .n � 2/-dimensional simplex.

Note that a B1-facet may have more than one base direction.

Definition 4.2. A collection of B-facets is said to be consistent if their base directions
can be chosen so that

a pair of B-facets in the collection have a common facet

H) the intersection of their base directions is non-empty.

Theorem 4.3. Assume that f is non-degenerate and does not have a Morse singularity

at 0 2 Cn. Let �1; : : : ; �k � �C.f / be B-facets such that

s0 D � �.�1/

N.�1/
D � � � D � �.�k/

N.�k/
6D �1

and their common candidate pole s0 2 Q of Ztop;f .s/ is contributed only by them. If we

can choose their base directions to be consistent, then s0 is fake, i.e. not an actual pole of

Ztop;f .s/.

We allow ourselves to exclude Morse singularities from consideration, because the
monodromy conjecture for Morse singularities is clear.

This section is devoted to the proof of Theorem 4.3.
In the course of the proof we introduce some new tools that will be used in the next

section, which is devoted to a sharper version of Theorem 4.3, completely classifying
configurations of B-faces contributing fake poles for n D 4. This classification is a key
point in the proof of the monodromy conjecture for n D 4.

4.1. Contributions

Definition 4.4. Let S � Rn
C be a polyhedral set, that is, a disjoint union of the relative

interiors of some (finitely many) closed convex polyhedral cones in Rn
C. Then we define

its contributionZ.S/.s/ 2 C.s/ .to the topological zeta function Ztop;f/ by
Z

S

exp.�N.u/s � hu; 1i/ duR
n
C

C s

s C 1

X

�

.�1/dim � VolZ.�/
Z

S\�ı
exp.�N.u/s � hu; 1i/ du�ı ;

where � ranges through all positive-dimensional compact faces of �C.f /, N.�/ is the
support function of �C.f /, and duC is the lattice volume form on a rational polyhedral
cone C (so that no components of dimension smaller than dimC in S \ C affect the
integral with respect to duC ).
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Remark 4.5. (1) As a function of S , the contribution to the topological zeta function is
an additive measure.

(2) By Lemma 2.2, the contributionZ.Rn
C/ of the open positive quadrant Rn

C equals the
topological zeta function of a generic f with the given Newton polyhedron �C.f /.

(3) We do not assume the argument S to be closed or open, because Z.S/ changes sig-
nificantly when passing to the closure or the interior of S , and indeed we shall need
sets S that are neither closed nor open.

4.2. The main theorem: the plan of the proof

(I) Very loosely, the proof of Theorem 4.3 will consist in constructing a particular subdi-
vision of Rn

C into pieces �i such that Z.�i / has no pole at s0. The boldest hope would be
to choose �i so that the key Lemma 3.6 is directly applicable to every �i , i.e.:

– Every �i is contained in the dual cone to some vertex P of the Newton polyhedron;

– No edge of �i is critical with respect to .s0; P / in the sense of Lemma 3.6.

(II) Unfortunately, in general Step (I) is not realistic as written, because some of the
edges of the dual cone P ı will be critical, and they also have to be edges for some �i .
These critical edges are exactly the ones dual to the contributing facets �i of the Newton
polyhedron.

Fortunately, all such facets �i are B-facets under the assumptions of Theorem 4.3.
This will help us to surround every such critical edge �ı

i by a conic neighborhood � 0
i

(called a sprout) such that Lemma 3.6 is still applicable to it:

– The contributionZ.� 0
i / can be written as the integral from Lemma 3.6 for some appro-

priate vertex Pi (despite the fact that � 0
i is not contained in any individual cone of the

form P ı anymore!).

– No edge of � 0
i is critical with respect to .s0; Pi /.

(III) Unfortunately, upon choosing neighborhoods in Step (II), we face the next (and the
last) obstacle: the complement to

S

i �
0
i in any cone P ı may have new critical edges in

the boundary of P ı (different from the edges of P ı itself). This happens because some
cones (called critical cones) in the dual fan†0 entirely (!) consist of critical rays, so every
0-dimensional intersection of a face of � 0

i with such a critical cone C will create a new
critical edge of the complement of � 0

i in any cone containing C .

Example 4.6. Recall that here and in what follows, we draw the projectivization of the
fan †0 rather than the fan itself. On the left of Figure 3 below, the critical 1-dimensional
cone �ı

1 , whose dual facet �1 is a B1-pyramid with apex P , is surrounded by a conical
neighborhood � 0

1 (shown in bold). Since the dashed segment is a critical 2-dimensional
cone, its intersection point with the boundary of � 0

1 is a critical ray that is not an edge
of � 0

1, but is a critical ray of the complement to � 0
1 in the 3-dimensional cone P ı.

Fortunately, choosing the neighborhoods � 0
i wisely, we can ensure that no new crit-

ical edge of the complement of an individual � 0
i is an edge of the complement to the
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�ı
1 �ı

2

P ı

Oi

�ı
1 �ı

2

P ı

Oi

� 0
1 � 0

1

� 0
2

Fig. 3. Good neighborhoods of critical cones.

whole
S

i �
0
i (see the right of Figure 3). For instance, this is done in detail in the proof of

Proposition 3.8 for the case of only two facets contributing the pole s0.
In the general setting, this will be done by using the geometry of so called delimiter

planes and will allow us to literally apply Step (I) of our plan to the complement of
S

i �
0
i .

Warning: the resulting cones � 0
i will not form a fan in the sense that � 0

i \ � 0
j may not be a

face of � 0
i and � 0

j .
We introduce all the aforementioned objects in the subsequent subsections.

4.3. Intersections of B-facets

Lemma 4.7. Assume that f is non-degenerate and does not have a Morse singularity

at 0 2 Cn. If two B-facets of the Newton polyhedron �C.f / have a common .n � 2/-

dimensional face, then it is a B1-pyramid.

The proof of this lemma requires the following observation.

Lemma 4.8. If a homogeneous polynomial g of degree 2 on C4 is non-degenerate with

respect to its Newton polyhedron and suppg contains the points .1; 1; 0; 0/ and .0; 0; 1; 1/,

then g is non-degenerate as a quadratic form.

Upon publishing the first preprint version of this paper, this lemma was beautifully
generalized to arbitrary dimension in [33].

Proof of Lemma 4.8. The non-degeneracy of g as a quadratic form is equivalent to the
smoothness of the hypersurface V D ¹g D 0º of P 3 defined by g. Indeed, the kernel of
the symmetric matrix associated to the quadratic form corresponds to the singular locus of
V � P 3. Recall that P 3 is naturally a toric variety on which the complex torus T D .C�/3

acts with 15 orbits. First of all, by the non-degeneracy of g with respect to its Newton
polyhedron, the hypersurface V D ¹g D 0º of P 3 is smooth on T � P 3. So we have
only to analyze it at other points x in P 3 n T . We shall do it step by step, considering
x in each of the other 14 T -orbits in P 3. We denote the Newton polytope of g by Q �
¹v1 C v2 C v3 C v4 D 2º.

(1) Assume that x D .1 W 0 W 0 W 0/. If the point .2; 0; 0; 0/ is in suppg, then g.x/ ¤ 0.
Otherwise, we have dg.x/¤ 0, because .1; 1; 0; 0/ 2 suppg and hence .@g=@x2/.x/¤ 0.
This implies that the hypersurface V D ¹g D 0º of P 3 is smooth at x 2 V .
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(2) Assume that x is in one of the other three 0-dimensional T -orbits in P 3. Then the
reasoning is as in (1).

(3) Assume that x D .s W t W 0 W 0/ (s; t 6D 0). Then, since the face F D Q \
Œ.2; 0; 0; 0/; .0; 2; 0; 0/� ofQ is non-empty (containing at least .1; 1; 0; 0/) and the restric-
tion gF of g to the face F � Q defines a smooth hypersurface in the 1-dimensional
T -orbit in P 3 associated to Œ.2; 0; 0; 0/; .0; 2; 0; 0/� (by the non-degeneracy of g), the
hypersurface V D ¹g D 0º of P 3 is smooth at x.

(4) Assume that x D .0 W 0 W s W t/ (s; t 6D 0) or x is in one of the four 2-dimensional
T -orbits in P 3. Then the reasoning is as in (3).

(5) Assume that x D .s W 0 W t W 0/ (s; t 6D 0). If suppg \ Œ.2; 0; 0; 0/; .0; 0; 2; 0/� is not
empty, then the reasoning is as in (3). Otherwise, we have g.x/ D 0. Assume that we also
have dg.x/D 0. Then in particular .@g=@x2/.x/ D .@g=@x4/.x/ D 0. From these identi-
ties, we see that the restrictions gA, gB of g to the segments A D Œ.1; 1; 0; 0/; .0; 1; 1; 0/�

and B D Œ.1; 0; 0; 1/; .0; 0; 1; 1/� vanish at x, thus they are multiples of the same linear
function. So the restriction gP of g to the parallelogramP D conv.A[B/ is a product of
two linear functions. This implies that gP defines a singular hypersurface in .C�/4. This
would contradict the non-degeneracy of g with respect to its Newton polyhedron.

(6) Assume that x is in one of the other three 1-dimensional T -orbits in P 3. Then the
reasoning is as in (5).

Lemma 4.9. Assume that n D 4, and two B2-facets of �C.f / have a common quadri-

lateral face. Then f has a Morse singularity at 0 2 C4.

Proof. Projectivizing the ambient space of �C.f /, we see the positive octant as a tetra-
hedron, and the two B2-facets in it as two polytopes from Figure 4 with a common
quadrilateral face. This is only possible if the common quadrilateral is a parallelogram,
whose edges are parallel to two opposite edges of the tetrahedron, and whose vertices are
contained in the four other edges, as shown in the picture.

Fig. 4. B2-facets with a common quadrilateral face.

Thus, reordering coordinates if necessary, we can assume that the vertices are of the
form .�; �; 0; 0/; .0; �; �; 0/; .0; 0; �; �/ .�; 0; 0; �/, and all the stars are equal to 1 by
the definition of B2-facets. By Lemma 4.8, the quadratic part of f is non-degenerate, and
hence f has a Morse singularity at 0 2 C4.

Proof of Lemma 4.7. Assume that an .n � 2/-dimensional non-B1-pyramid F is con-
tained in two B-facets F1 and F2. First, note that F is not a V-face, otherwise one of F1

and F2 were contained in the boundary of Rn
C, which cannot happen for a B-facet.
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Second, note that neither F1 nor F2 can be a B1-facet, because every .n � 2/-dimen-
sional face of a B1-facet is either a V-face or a B1-pyramid.

Finally, the only .n � 2/-dimensional non-B1 non-V-face of a B2-facet Fi is combi-
natorially isomorphic to the product of a segment and an .n � 3/-simplex (let us call it
the front face of the B2-facet). So the only exception from the statement of the lemma
could come from two B2-facets with different base directions and the common front face.
However, for n > 4 this is impossible, because two products of a segment and an .n� 3/-
simplex cannot be non-trivially combinatorially isomorphic, and for nD 4 this is excluded
by Lemma 4.9.

4.4. Bases and apices

Definition 4.10. The star of a cone C in the dual fan of �C.f / is the set of all cones
containing C .

For each B1-face � contributing the candidate pole s0 we can choose its apex and
preferred base to be its vertex P and a number i 2 ¹1; : : : ; nº respectively, such that the
i -th coordinate of P equals 1 and the i -th coordinates of the other vertices of � are 0.
Note that we may have several options for this choice.

We now fix once and for all the choice of apices P� and preferred bases b�

– for all B1-facets � contributing the candidate pole s0, and

– for all B1-facets � of B2-facets contributing the candidate pole s0 (by a B1-facet of a
facet � we mean a codimension 2 face of the Newton polyhedron that belongs to � and
is a B1-pyramid).

Moreover, in the setting of Theorem 4.3, we can choose the apices and the preferred
bases consistently, so that the preferred base of every aforementioned face � belongs to
the base direction of every B-facet containing � . This in particular ensures that

– any two B1-facets intersecting in a codimension 2 B1-face have the same apex and
preferred base, and

– if a codimension 2 B1-face � 0 is at the same time a facet of a B1-facet � and of a B2-
facet (so that we have chosen the preferred base and apex for it), then � 0 and � have the
same apex and preferred base.

Definition 4.11. Let L be the 2-dimensional coordinate plane along which the projection
of a B2-facet � equals the standard simplex, and let l � Rn be the 1-dimensional vector
space parallel to the intersection of L with the affine span of � .

The dual hyperplane to l will be denoted byD� D D�ı and called the delimiter of � .

In particular, if n D 4, then, in the notation of Figure 2, the delimiter is the 3-dimen-
sional plane normal to the three parallel segments. Furthermore, the hyperplaneH in the
proof of Proposition 3.11 is nothing but the delimiter of � .

Remark 4.12. Most B2-facets have a unique V-edge normal to the delimiter. However,
we allow this edge to degenerate into a vertex (such B2-facets are said to be degenerate).
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However, various attributes of this V-edge make natural sense even for degenerate B2-
facets. For instance, “the length of the V-edge of �” and “the dual cone of the V-edge of
�” refer to 0 andD� \ V ı respectively for a degenerateB2-facet � with a vertex V instead
of the V-edge. In what follows, this small abuse of terminology never causes confusion.

Remark 4.13. Every B2-facet (including the degenerate ones) has three distinguished
facets (i.e. .n � 2/-dimensional faces): exactly one non-simplicial non-V-facet and two
B1-facets.

For instance, in the 4-dimensional setting of Figure 2, they are denoted by �2; �1 and
�3 respectively.

Definition 4.14. (1) We shall say that a vertex P of a B2-facet � and a number i 2
¹1; : : : ; nº are an apex and a preferred base of � on the side of a face F � � , if P and
i are the apex and the preferred base of a B1-facet � of � such that � \ F ¤ ;. If �
has a unique preferred base on the side of F (that is, if � is uniquely defined by the
condition � \ F ¤ ;), this preferred base will be denoted by bF

� D bF
�ı .

(2) Similarly, if a cone C in the star of �ı does not intersect the delimiter D� , then the
apex and the preferred base of the B2-facet � on the side of C are defined as the apex
and the preferred base of the B1-facet of � whose dual cone is not separated from C

by the delimiter.

(3) For conformity, we shall say that a vertex P of a B1-facet � and a number i are its
apex and preferred base on the side of a face F � � (or a cone C in the star of �ı) if
P and i are the apex and the preferred base of � (independently of F and C ).

Example 4.15. For instance, let n D 4, consider the B2-facet � in Figure 2, and assume
that (in the notation of this figure) the preferred base and apex for the B1-triangle �1 are
2 and P , while those for �3 are 1 and B . Then

– P is the apex of � on the side of �1 and all of its faces,

– B is the apex of � on the side of �3 and all of its faces,

– both B and P are apices of � on the side of its other 7 faces.

Further, the delimiter D� is the hyperplane normal to the segment XY . It divides the
dual space into two half-spaces, containing the dual cones to the triangles �1 and �3;
let us call them left and right respectively. If a cone C is in the left (respectively right)
half-space, then P (respectively B) is the apex of � on the side of C .

Lemma 4.16. If a face F is contained in a B-facet � and not contained in a coordinate

hyperplane, then every apex of � on the side of F is contained in F .

4.5. Sprouts and cancellation of contributions

Let C be a (not necessarily convex) polyhedral cone in the star of �ı, where � is a B-
facet. In the case of a B2-facet, we additionally assume that C does not intersect the
delimiter D� . Let P and i be the apex and the preferred base of � on the side of C . Note
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that they uniquely determine each other, and that we have chosen them once and for all in
the preceding subsection. Recall that the standard basis in Rn is denoted by e1; : : : ; en.

Definition 4.17. The union of C \ rel:intP ı and all 2-dimensional cones, generated by
ei and a point of C \ @P ı, is denoted by SC;� and is called the sprout of C . The vertex
P is denoted by RC;� and is called the root of C .

For example, if � is a B1-facet, then the cone � in the proof of Proposition 3.7 is a
sprout of some cone.

Remark 4.18. By the definition, if C is a closed n-dimensional polyhedral cone (in the
sense of Definition 3.5), containing �ı in its interior, then so is the sprout. On the other
hand, convexity of C does not imply convexity of the sprout: see Figure 5.

Example 4.19. Figure 5 gives the simplest example of a cone C and its sprout in the star
of the ray �ı.

�ı

P ı

Oi

C

�ı

Rı
C;�

Oi

SC;�

�ı

P ı

Oi

C

�ı

Rı
C;�

Oi

SC;�

Fig. 5. The sprout of the cone C (the case of compact � on the left and non-compact � on the right).

Lemma 4.20. The contribution of a sprout is simple:

Z.SC;� / D
Z

SC;�

exp.�hu;RC;� is � hu; 1i/ du:

Proof. The contribution of C \ rel:intP ı equals the integral of exp.�hu; P is � hu; 1i/
by definition. Triangulating the set C \ @P ı and, for every simplicial cone T of this
triangulation, applying Lemma 3.3 to the contribution of the cone generated by T and ei ,
we conclude that the rest of SC;� also contributes the integral of exp.�hu;P is � hu; 1i/.

Let � be a B2-facet, and assume without loss of generality that the projection of �
along the .en�1; en/-coordinate plane is the .n� 2/-dimensional standard simplex S with
vertices 0; e1; : : : ; en�2. The preimage of the facet .e1 : : : en�2/ of this simplex under this
projection intersects � in its unique non-simplicial non-V-facet �0. Choose a ray r in the
(relatively open) dual cone to �0.

Definition 4.21. The .n � 1/-dimensional (relatively open) cone Sr;� generated by
r; e1; : : : ; en�2 is called the delimiter sprout of r .
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Lemma 4.22. The contribution of the delimiter sprout Z.Sr;� / is equal to 0 .indepen-

dently of the choice of the ray r/.

Proof. For a subset I � ¹1; : : : ; n � 2º, introduce the following notation:

– CI is the cone generated by �ı and ei .i 2 I /,
– zCI is the cone spanned by CI and r ,

– �I is the preimage of the simplex with vertices ei ; i 2 I , under the projection � ! S .

– Q�I is the preimage of the simplex with vertices 0 and ei ; i 2 I , under the projection
� ! S .

Then the contribution of the delimiter sprout splits into those of the cones CI for I �
¹1; : : : ; n � 2º and the cones zCI for I ¨ ¹1; : : : ; n � 2º.

In order to evaluate them, denote by gi the lattice length of the segment �i and notice
that the lattice volume of �I equals

P

i2I gi . Then the sum of the contributions

Z. zCI /.s/ D .�1/n�jI j�2 s

s C 1

�

X

i…I

gi

�

J zCI
.s/

of the cones zCI over I ¨ ¹1; : : : ; n � 2º is equal to 0, because the functions J zCI
.s/ for

all such I are equal to each other by definition (cf. a similar calculation in Lemma 3.3).
In the same way we can show that the corresponding sum for the cones CI over

I � ¹1; : : : ; n � 2º is 0, because the lattice volume of Q�I equals the lattice volume of
�I plus the lattice length of the segment Q�;, and all JCI

.s/ are equal to each other as
well (more specifically, they are p times smaller than J zCI

.s/, where p is the coefficient
from the decomposition of the primitive generator of the ray r into the linear combination
p � .e1 C � � � C en�2/C q � .the primitive generator of �ı/).

Lemma 4.23. The edges of a sprout or a delimiter sprout SC;� are either edges of the

cone .@C / \ �ı for some face � � � , or coordinate rays.

This directly follows from the definition of a sprout.

4.6. Critical cones

We now introduce and study the key notion of critical faces for a candidate pole s0 ¤ �1
of the zeta functionZtop;f .s/. Similarly to Lemma 3.4, we have the following lemma.

Lemma 4.24. For s0 ¤ �1, any vertex P of a B-facet, and any hyperplane ¹vi D 0º
which is either the base for thisB-facet, or containsP , the equation hu;P is0 C hu;1i D 0

is not satisfied by the coordinate vector u D ei . In particular, this equation is non-trivial

and thus defines a hyperplane LP in Rn.

Proof. hei ; P is0 C hei ; 1i equals 1 or 1C s0 in this setting.

Starting from the following definition, the things depend on the choice of preferred
bases and apices of B-faces, which we have fixed in Section 4.4 for the rest of the paper.
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Definition 4.25. For a face F , we define the critical set KF � F ı to be the closure of
S

P .rel:intF ı \LP /, where in the union
S

P the vertex P � �C.f / ranges through the
apices on the side of F for B-facets containing F (see Definition 4.14).

Lemma 4.26. (1) If a face F is contained in a coordinate plane, then KF is a finite

union of hyperplanes in F ı.

(2) If a face F is not contained in a coordinate plane, then KF is given by one equation,

¹u 2 F ı j hu;Qis0 C hu; 1i D 0º, where Q is an arbitrary point of F . In particular,

eitherKF is a hyperplane in F ı, or KF D F ı.

Proof. (1) If F is in the coordinate plane vi D 0, then ei 2 F ı. If F is in a B-facet �
contributing to s0, then either F is in the preferred base of � (so that vi D 0 may be
chosen to be this preferred base), or F contains the apex P 2 � on its side (so that P is
in vi D 0). In both cases, the set LP does not contain ei 2 F ı by Lemma 4.24, so no LP

can contain the whole F ı.
(2) If F is not in a coordinate plane, then any P in the definition of the critical set is

contained in F by Lemma 4.16, so KF is given by the equation hu; P is0 C hu; 1i D 0.
The set defined by this equation in F ı does not change if we substitute P with any other
point Q 2 F , because hQ � P; ui D 0 for u 2 F ı.

Definition 4.27. We say that a face F � �C.f / and its dual cone F ı 2 †0 are critical

.for the candidate pole s0/ if KF D F ı.

Lemma 4.28. A critical face is not contained in a coordinate plane.

This follows from Lemma 4.26 (1).

Proposition 4.29. Assume that a candidate pole s0 6D �1 is contributed only byB-facets.

In this case, for a face F the following conditions are equivalent:

(1) The face F is critical, that is, F is contained in a B-facet contributing s0, and, for its

apex P on the side of F , the plane LP contains the cone F ı.

(2) Every facet containing F is a B-facet contributing s0, and, for every apex P of it on

the side of F , the plane LP contains the cone F ı.

(3) Every facet containing F contributes the candidate pole s0 of the topological �-

function.

The second condition will be mostly used in practice, and the third one is especially
simple (and relates the first two).

Proof. (1))(3) By Lemma 4.28 the critical face F is not contained in a coordinate
hyperplane. Then by Lemma 4.26 (2), the equation of KF in F ı is given by

hu;Qis0 C hu; 1i D 0;

where Q is an arbitrary point of F . Since F is critical, i.e. KF D F ı, the equation
holds for any u 2 F ı. In particular, for every facet � containing F , its conormal vec-



A. Esterov, A. Lemahieu, K. Takeuchi 3900

tor a.�/ 2 �ı � F ı satisfies the condition

ha.�/;Qis0 C ha.�/; 1i D 0:

Thus � contributes the candidate pole s0.
(3))(2) By the assumptions of the proposition, every facet � containing F is a B-

facet. In particular, F is not contained in a coordinate hyperplane. By Lemma 4.16, every
apex P 2 � (of every facet � containing F ) on the side of F is contained in F . Then by
the condition (3), for the conormal vector a.�/ 2 �ı � F ı we have

ha.�/; P is0 C ha.�/; 1i D 0:

Since such conormal vectors a.�/ generate the cone F ı, for any u 2 F ı we have

hu;P is0 C hu; 1i D 0:

(2))(1) This is evident.

Corollary 4.30. A face of a critical cone in the dual fan †0 is a critical cone. Equiva-

lently, a face containing a critical face is critical itself.

Note that, however, for non-critical facesF�G, it is not in general true thatKG �KF .
It is now a crucial observation that, under the assumptions of Theorem 4.3, every

critical face F is a B2-facet or B1-pyramid (by Lemma 4.7 and Proposition 4.29). In the
latter case, using the assumption of Theorem 4.3 we can choose apices of B1-facets and
B-facets of B2-facets as in Section 4.4, so that all B-facets containing F have the same
preferred base bF and the same apex PF on the side of F .

4.7. A tubular neighborhood of the critical subfan

We are now ready to prove Theorem 4.3. When referring to B-facets or critical faces in
the course of the proof, we always mean only the faces contributing the candidate pole
s0 ¤ �1, for which we are proving Theorem 4.3 (thus all the choices and objects that we
introduce for the proof completely depend on the choice of s0). Recall that up to now

– we have chosen once and for all a preferred base of every B1-facet and every B1-facet
of every B2-facet in the Newton polyhedron �C.f /,

– depending on this choice, we have called some cones critical in the dual fan †0,

– we have defined the delimiter hyperplaneD� for every cone � , dual to a B2-facet (see
Definition 4.11).

Choose once and for all an affine structure on the projectivization PRn
C. For every

cone C and fan†, denote their projectivizations by PC and P† respectively. In this sub-
section, we refer to cones and their projectivizations interchangeably whenever it causes
no confusion.

According to Corollary 4.30, the set of projectivized critical cones in the dual fan †0

is a polyhedral complex †c , closed with respect to taking faces and intersections. We
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shall construct a generic piecewise linear tubular neighborhood of †c in PRn
C, whose

boundary is transversal to the projectivized critical sets of non-critical cones.
In differential geometry, the standard way to construct a stratified tubular neighbor-

hood starts with fixing a metric. We shall mimick the same approach in our PL setting.
Recall that two polyhedra in Rn are said to be transversal in U � Rn if they have no

common points in U , or their union is not contained in an affine hyperplane. More gener-
ally, two piecewise linear sets in Rn are said to be transversal in U � Rn if they can be
subdivided into relatively open polyhedra so that the polyhedra from the two subdivisions
are pairwise transversal in U .

Recall that the corner locus of a continuous piecewise linear function is the (piece-
wise linear) set of all points at which the function is not smooth, and that for convex PL
functions it has the natural structure of a polyhedral complex (defined by the projections
of the faces of the subgraph of the function). When discussing the transversality to the
corner locus, we always mean transversality in the sense of this polyhedral structure.

To every polyhedral complex M in PRn
C, assign its tangent bundle TM : define the

tangent plane TxM at a point x 2M as the maximal vector space L (lying in the .n� 1/-
dimensional vector space V , underlying the ambient affine space of PRn

C) such that for
every Qx 2 M sufficiently close to x the affine plane Qx C L is contained in M in a small
neighborhood of Qx. The tangent bundle TM is the (finite) set of all tangent spaces to M .

We shall say that h W V ! R is a piecewise linear norm, transversal to a collection of

subspaces V1; : : : ; VM � V , if

(1) h.w/ D maxN
iD1 hi .w/, where h1; : : : ; hN are linear functions,

(2) h.w/ > 0 for w ¤ 0,

(3) for every pair of subsets I � ¹1; : : : ;N º and J � ¹1; : : : ;M º and every cone � 2†0,
the projections of the spaces HI WD ¹w j hi .w/ D hk.w/ for i; k 2 I º and

T

j 2J Vj

along the vector space parallel to P� are transversal outside 0.

ForN � n, condition (2) is satisfied for all tuples of linear functions h1; : : : ; hN from
a non-empty open cone in the space of all tuples. In this cone, condition (3) is satisfied
for almost all tuples of linear functions hi .

Thanks to this, we can choose once and for all a norm h transversal to the following
collection of subspaces:

– the tangent bundle of the critical set, TPK� 0 , for every non-critical cone � 0 2 †0;

– the tangent bundle of the delimiter set, TP .D� 00 \ � 0/, for every non-critical cone
� 0 2 †0 and its edge � 00 dual to a B2-facet;

– the tangent bundle TPRn
C.

For every projectivized closed cone � 2 †c , consider the convex piecewise linear (in
the sense of the selected affine structure) “distance function” d� W PRn

C ! RC in the
sense of the norm h, i.e. d� .u/ D minu02� h.u � u0/. Properties (2) and (3) of the norm
h above translate into the following properties of the distance function d� (in order to see
how the property (3) of h translates into the properties (2)–(3) of the corner locus of d� ,
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notice that the affine spans of the polyhedral cells of the corner locus of h are among the
planesHI from its property (3)):

(1) d� vanishes on � and is strictly positive outside of it.

(2) For every non-critical cone � 0 2 †0, the corner locus of d� is transversal to the pro-
jectivized critical set PK� 0 in the complement to � .

(3) For every non-critical cone � 0 2 †0 and its edge � 00 dual to a B2-facet, the corner
locus of d� is transversal to the projectivized delimiter P .D� 00 \ � 0/ and the critical
set P .D� 00 \K� 0/ in the complement to � .

In the sense of this distance, we shall consider the "-neighborhoods B� ."/ D ¹u j
d� .u/ < "º and their boundaries S� ."/, which are all piecewise-linear sets.

Associating positive numbers "� to all � 2 †c , introduce the following sets:

– the open neighborhoodU D
S

�2†c
B� ."�/ of the critical complex †c ;

– for every � 2 †c , the set U� D B� ."� / n
S

� 0¨� B� 0."� 0/;

– for every � 2 †c dual to a B2-facet, the delimiter disk

DD� D U� \ PD� :

Note that, by Lemmas 4.9 and 4.28, the cones � 0 ¤ � in DD� are not critical.

Lemma 4.31. One can choose the numbers "� so that

(1) for every non-critical projectivized cone � 0 2 P†0, no vertex of the boundary

of U� \ � 0 or of the boundary of DD� \ � 0 is contained in the critical set

PK� 0 \ rel:int� 0;

(2) U� is contained in the star of �;

(3) U� \ Uı D ; unless � D ı, and NU� \ NUı D ; unless � � ı or vice versa;

(4) DD� divides U� into two connected components.

Proof. Properties (2)–(4) are satisfied if the tuple ."� / is chosen rapidly decreasing (i.e.
"� � "ı � 1 for all ı � �), and even without genericity assumptions (2)–(3) on the
distance function d� .

If the tuple is moreover chosen generically (i.e. avoiding finitely many hyperplanes in
the space of all such tuples), then it satisfies (1) as well by the properties (2)–(3) of the
corner locus of d� , because the vertices of U� \ � 0 belong to � 0 \ ..n C 1 � dim � 0/-
dimensional skeleton of the corner locus of d� /, and the same for delimiter disks.

Definition 4.32. Under the assumptions of Theorem 4.3, the vertex function

v W U n .delimiter disks/ ! .vertices of �C.f //

is defined on every U� as follows:

– if � 2†c is dual to a non-B2 critical face F , then we define v.�/ on U� as the apex PF ;

– if � 2 †c is dual to a B2-facet � , then we define v.�/ on each of the two components of
U� nDD� as the apex of � on the side of this component.
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Example 4.33. If � is dual to the B2-facet � from Figure 2, then U� is split with the
delimiter hyperplane (perpendicular to the segment XY ) into two components, “left” and
“right”. Then, in the setting of Example 4.15, the vertex function v equals P on the left
component and B on the right one.

Note that the vertex function is locally constant on its domain. We now use this obser-
vation to consistently substitute every piece of the neighborhood U by an appropriate
sprout. Recall that we refer to cones and their projectivizations interchangeably, and,
in particular, SW;� for the projectivization W of a cone C is another notation for the
sprout SC;� .

If � 2 †c is dual to a face F that is not a B2-facet, then the vertex function v equals
a constant P on it, so we define V�;0 as the sprout SU� ;� (see Definition 4.17) for any B-
facet � � F . Note that neither the sprout V�;0 WD SU� ;� nor its root R�;0 WD RU� ;� D P

depend on the choice of � .
If � 2 †c is dual to a B2-facet � with the apices P˙1, then we define V�;˙1 as the

sprout S¹vDP˙1º\U� ;� and the root R�;˙1 as R¹vDP˙1º\U� ;� D P˙1. Also, choosing a
ray r in the dual cone � 0 of the non-simplicial non-V-facet of � outside of K� 0 , we define
V�;0 as Sr;� (see Lemma 4.22), leaving R�;0 undefined.

Define the sprouting SP � Rn of a vertex P as the union of all V�;� .� D 0;˙1/ such
that R�;� D P .

Lemma 4.34. (1) The contribution Z.SP /.s/ of the sprouting SP to the zeta function

Ztop;f .s/ is equal to
Z

SP

exp.�hu;P is � hu; 1i/ du

modulo a function that has no pole at s0.

(2) No edge of the boundary of SP is critical for .s0; P /.

Proof. Part (1) follows from Lemmas 4.20 and 4.22. To deduce (2), it is enough (by
Lemma 4.23) to show that every vertex of .@U� / \ � 0 and .@DD� / \ � 0 for every pro-
jectivized cone � 0 � � is either not in PK� 0 , or not a projectivized edge of @SP . For
non-critical � 0, this follows from Lemma 4.31 (1), and every critical � 0 is either in the
projectivized interior of SP , or disjoint from its closure, or intersects its boundary at
an interior point of its facet DD� 0 (thus no vertex in � 0 can be a projectivized edge
of @SP ).

Proof of Theorem 4.3. By the preceding lemma and Lemma 3.6, the contribution of every
SP to the topological zeta function of f has no pole at s0. By Lemma 4.22, the same is
true for V�;0 for every B2-facet � . Since

V D
[

�; �D0;˙1

V�;�

contains all the critical cones in its interior, for every cone � 0 2†0 the set � 0 n V has edges
of two types: edges of .@V /\ � 0 or non-critical 1-dimensional cones of†0. The edges of
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the first kind are not in the critical set of any cone by Lemma 4.34 (2), and for the second
kind the same holds by definition. Thus the contribution of � 0 n V to the topological zeta
function has no pole at s0 as well by Lemma 3.6. We have subdivided Rn

C into these pieces:

– SP for some vertices P ,

– V�ı;0 for some B2-facets � ,

– � 0 n V for some non-critical cones � 0,

so that none of them contributes the pole s0.

5. Fake poles of the topological zeta function in dimension 4

Throughout this section we work in dimension n D 4. In the first subsection, we classify
all non-contributing configurations of B-faces. The proof of the classification theorem
occupies the subsequent two subsections and makes use of the tools introduced in the
preceding two sections. In the last subsection, we show that every non-B-facet contains a
non-B-simplex and discuss a possible general definition of B-facets in arbitrary dimen-
sion. Both of the above mentioned results will be used in the last section to prove the
monodromy conjecture for all non-degenerate singularities of functions of four variables.

5.1. The main theorem

We shall prove that if a candidate pole of the topological zeta function Ztop;f .s/ is con-
tributed only by B-facets, then it is fake, with one exception:

Definition 5.1. (1) A border is a triangular face of �C.f / such that, up to a reorder-
ing of coordinates, its vertices are of the form A D .1; 1; �; �/, B D .0; 0; �; �/ and
D D .0; 0;�;�/, and the two facets containing it are B-facets with vertex A and bases in
the coordinate hyperplanes ¹v1 D 0º and ¹v2 D 0º respectively.

In this definition we admit “infinite triangles” obtained by letting some of the starred
coordinates tend to infinity. Namely, the notion of the border includes the Minkowski sum
of the segmentAD with the aforementioned coordinates and the 4th coordinate ray, as well
as the Minkowski sum of the point A D .1; 1;�;�/ and the 3rd and 4th coordinate rays.

(2) The border ABD is a B-border unless (up to reorderingB andD and the last two
coordinates) we have A D .1; 1; 0; a/, B D .0; 0; 0; b/ and D D .0; 0; 1; d/. In the latter
case (implying, in particular, that the edge BD is itself a B-edge in the coordinate plane
O34) the border ABD is said to be a B2-border (see Figure 6). The vertex A is called the
apex of the border, and the first two coordinates are called its bases.

In this definition we admit “infinite triangles” obtained by letting b tend to infinity,
i.e. the Minkowski sum of the segment AD with the aforementioned coordinates and the
4th coordinate ray.

Let f be a non-degenerate polynomial on C4 with Newton polyhedron �C.f / � R4

and dual fan †0.
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A

B

D

A

B D

Fig. 6. A B2-border and a B-border.

Theorem 5.2. Assume that f is non-degenerate and does not have a Morse singularity

at 0 2 C4. Let a candidate pole s0 ¤ �1 of the topological zeta functionZtop;f .s/ be con-

tributed only by B-facets, and no two of them contain the same B-border .although they

may contain the same B2-border/. Then s0 is fake, i.e. not an actual pole of Ztop;f .s/.

The rest of this subsection is devoted to the proof of this theorem.
The first difference with the setting of Theorem 4.3 is that we have to prove that B2-

borders do not contribute candidate poles. For this purpose, we shall extend the notion
of a sprout (Definition 4.17) to them. Let C be a (not necessarily convex) cone in the
star of �ı, where � is a border with bases i and j and apex P , adjacent to two B-facets
contributing the pole s0.

Note that we may assume throughout the rest of this section that � is compact: indeed,
if two B-facets sharing a common non-compact B2-border contribute the same pole s0,
then s0 D �2.

Definition 5.3. The cone C is said to be border-convex if every 3-dimensional plane
through ei and ej intersects C in a convex cone.

Definition 5.4. The union of C \ rel:intP ı and all 3-dimensional cones, generated by
the coordinate vectors ei ; ej and u 2 C \ @P ı, is denoted by SC;� and is called the border

sprout of C . The vertex P is denoted by RC;� and is called the root of C .

The definition implies the following.

Lemma 5.5. The edges of a border sprout of a cone C are either edges of .@C /\ �ı for

some faces � of � outside of coordinate planes, or coordinate rays.

Lemma 5.6. Let C be a border-convex cone in the star of the dual cone to aB2-border � ,

and assume that both of its adjacentB-facets contribute the same candidate pole s0 ¤ �1.

Then the contributionZ.SC;� / of the border sprout is equal to

Z

SC;�

exp.�hu;RC;� is � hu; 1i/ du

modulo a function that has no pole at s0.

Remark 5.7. Most borders do not have this property.

Proof of Lemma 5.6. Let � D ABD be a B2-border with coordinates A D .1; 1; 0; a/,
B D .0; 0; 0; b/ and D D .0; 0; 1; d/. The fact that the adjacent B-facets �1 and �2 con-
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tribute the same candidate pole means that the line s �AC 1 intersects the vector spans of
�1 �A and �2 �A at the same point s0 �AC 1 (note that the dimension of the intersection
of these two 3-dimensional linear subspaces is 2). Thus this point is a linear combination
of the vectorsD � B and A � B:

D � B D ˇ.s0 � AC 1/C ˛ � .A� B/:

Solving this system of equations for ˛; ˇ and s0, we find

s0 D .a C d � 2b � 1/=b; ˛ D �s0 � 1; ˇ D 1:

At the same time, for the future reference, we interpret the latter equalities as the compu-
tation of the ratio of D � B and s0 � AC 1 as linear functions on the dual space .R4/�

restricted to the hyperplanes .A �D/? and .A� B/?:

.D � B/j.A�B/?

.s0 � AC 1/j.A�B/?

D ˇD 1;
.D � B/j.A�D/?

.s0 �AC 1/j.A�D/?

D ˇ=.1� ˛/D 1=.2C s0/: (�)

We now first prove the lemma for a very special choice of the cone C .
Choose primitive vectors uA, uB and uD in the interior of the cones ABDı, ABı and

ADı respectively. Recall that the standard basis is denoted by e1; e2; e3; e4. Denote by
NABD the union of the relatively open simplicial cones huA; uB ; e1; e2i, huA; uD ; e1; e2i
and huA; e1; e2i.

Then the statement of the lemma is valid for C D NABD . To prove this, split
Z.NABD/.s/ �

R

NABD
exp.�shu;Ai � hu; 1i/ du into

Z.huA; uB ; e1; e2i/CZ.huA; uD; e1; e2i/CZ.huA; e1; e2i/

�
Z

huA;uB ;e1;e2i

exp.�shu;Ai � hu; 1i/ du�
Z

huA;uD ;e1;e2i

exp.�shu;Ai � hu; 1i/ du;

and apply Lemma 2.2 to each of the five terms. The result consists of the five respective
terms

jdet.e1; e2; uA; uD/j
.s �AC 1/juA

� .s �AC 1/juD

C jdet.e1; e2; uA; uB/j
.s �AC 1/juA

� .s �AC 1/juB

� s � je1 ^ e2 ^uAj
.sC 1/ � .s �AC 1/juA

� jdet.e1; e2; uA; uD/j
.s C 1/2 � .s �AC 1/juA

� .s � AC 1/juD

� jdet.e1; e2; uA; uB /j
.s C 1/2 � .s � AC 1/juA

� .s � AC 1/juB

;

(��)

where j � j in the third term stands for the lattice length. Collecting similar terms and taking
into account the identities det.e1; e2; uA; x/ D .e1 ^ e2 ^ uA/ � x and uA � .D � B/ D 0

(which in coordinates uA D .u1;u2;u3;u4/ reads u3 D u4 � .b � d/), we can rewrite .��/
as the uninteresting factor s�u4

.sC1/2�.s�AC1/juA

times

.s C 2/
ˇ

ˇ.D � B/juD

ˇ

ˇ

.s � AC 1/juD

C
.s C 2/

ˇ

ˇ.D � B/juB

ˇ

ˇ

.s �AC 1/juB

� .s C 1/: .?/
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Since uB and uD are chosen to be support vectors of the edges AB and AD respec-
tively, we have uB � A D uB � B < uB � D and uD � A D uD � D < uD � B , so j.D �
B/juB

j D .D � B/juB
and j.D � B/juD

j D �.D � B/juD
. Applying this and .�/, we

conclude that .?/ for s D s0 equals �.s0 C 2/=.s0 C 2/C .s0 C 2/� .s0 C 1/ D 0.
As a result, the sought difference Z.NABD/.s/ �

R

NABD
exp.�shu; Ai � hu; 1i/ du

equals the product of the uninteresting factor that has a simple pole at s0 and the rational
(actually linear) function .?/ that has a root at s0. Thus the product is holomorphic at s0,
and we have proved the lemma for C D NABD .

Now, for an arbitrary border-convex C , the border sprout SC;� can be represented as
the union (with disjoint interiors) ofNABD and the sprouts of the form SC .k/;�k

; k D 1; 2,
for certain cones C .k/. Thus the statement of the lemma is valid for it, applying the pre-
ceding computation to NABD and Lemma 4.20 to SC .k/;�k

.

We now comment on how one might arrive at considering the cone NABD in this
proof. We do not know how to prove the lemma directly for an arbitrary sprout S of the
border � , but we already know similar identities for (non-border) sprouts Si of the two
adjacent B-facets �i � � . So it is a natural idea to try to simplify the problem, subtract-
ing from S non-overlapping sprouts Si , trying to choose them so that the difference is as
small and simple as possible. Now it is an easy exercise of spatial thinking to see that the
smallest and simplest difference has the form NABD.

5.2. Very critical cones

In contrast to the setting of Theorem 4.3, we cannot in general choose preferred bases and
apices of B1-faces consistently, so we now choose them arbitrarily once and for all in this
section. Recall that we fix the choice of apices P� and preferred bases b� for all B1-facets
� and for all B1-facets of B2-facets � , and then use them to define preferred bases and
apices of B2-facets on the side of a given face or cone; see Subsection 4.4 for details.

As a result, in contrast to the setting of Theorem 4.3, different B1-facets, containing
a given critical face, may have different preferred bases. Such critical faces are said to be
very critical. They are studied in this subsection.

Definition 5.8. The preferred base bF D bF ı � ¹1; 2; 3; 4º of a critical face F � �C.f /

and its dual cone F ı 2 †0 is the set of preferred bases on the side of F for all B-facets
containing F . We say that the face F and its dual cone F ı 2 †0 are very critical if
jbF j � 2.

Example 5.9. The projectivized pictures of the Newton polyhedron �C.f / on Figure 7
below give some examples of (2-dimensional) very critical faces (hatched), provided that
all the facets on the pictures are B-facets contributing the same candidate pole s0. The
apices of B1-faces are bold points, and the apices of the B2-facet are the end points of the
bold segment.

This subsection is devoted to the study of very critical faces depending on their dimen-
sion. First of all, by Lemma 4.24 there is no critical vertex, and a facet � is critical if and
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Fig. 7. Very critical faces.

only if the candidate pole s0 is contributed by � (and thus � is aB-facet in the assumptions
of Theorem 5.2). A 2-dimensional face F � �C.f / is critical if and only if it separates
two B-facets �1 and �2, contributing s0. This critical face F is very critical if moreover
we have bF

�1
¤ bF

�2
.

Definition 5.10. Let F be a 2-dimensional very critical face separating two B-facets �1

and �2. Then we define the F -delimiter DF D DF ı � R4 to be the vector subspace in
R4 generated by the bF

�1
-th and bF

�2
-th coordinate lines in R4 and a ray R � rel:intF ı.

The delimiter is said to be generic if, for every non-critical face G � F , the critical
set DF \KG is nowhere dense in DF \ rel:intGı.

Lemma 5.11. Under the assumptions of Theorem 5.2, any 2-dimensional very critical

face F is a triangle. If it is a border, then the delimiter DF is the affine span of the

dual cone of the V-edge of F . Otherwise the affine span aff.F ı/ is transversal to DF . In

particular, in both cases DF is a hyperplane in R4.

Proof. The face F is a triangle by Lemma 4.7. Assume that aff.F ı/ is not transversal
to the delimiter. Then for the coordinate plane H D ¹vbF

�1

D vbF
�2

D 0º � R4 we have

dim.aff.F / \H/ � 1. This implies that aff.F / is not transversal to H , and hence their
intersection is a V-edge in both �1 and �2. Then F is a border.

Corollary 5.12. If F is a non-border very critical face, then the rays R � rel:intF ı in

Definition 5.10 parameterize a 1-dimensional family of F -delimiters. Among them, all but

finitely many delimiters are generic.

An edge F � �C.f / is critical if and only if all the facets containing it are B-facets �
contributing the candidate pole s0. Since dimF ı D 3 in this case, for any apex P of such
a � on the side of F , the critical hyperplaneLP coincides with aff.F ı/.

Proposition 5.13. Under the assumption of Theorem 5.2, no edge of �C.f / is very crit-

ical.

Proof. Assume that an edge P1P2 is very critical. Then, by Proposition 4.29 (2), there
exist B-facets �1 and �2 containing it with apices Q1 and Q2 on the side of P1P2, and
their critical hyperplanesLQi

W hu;Qiis0 C hu;1i D 0 both coincide with the hyperplane
hu; P1 � P2i D 0 generated by the dual cone .P1P2/

ı. Moreover, since P1P2 is not in a
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coordinate plane, we haveP1 DQ1 andP2 DQ2 or vice versa. Thus the vectorsP1s0 C 1

and P2s0 C 1 are parallel.
On the other hand, it cannot happen that one of the pointsP1 andP2 is in the apex of �1

and in the base of �2, and the other one is in the apex of �2 and in the base of �1. Otherwise,
reordering coordinates if necessary, we would have P1 D .1; 0; �; �/, P2 D .0; 1; �; �/,
P1s0 C 1 D .1C s0; 1;�;�/, P2s0 C 1 D .1; 1C s0;�;�/. Since the last two vectors are
parallel and s0 ¤ 0, we have s0 D �2, P1s0 C 1 D �.P2s0 C 1/ and hence P1 CP2 D 1.
Thus, up to reordering the coordinates and Pi ’s, we have P1 D .1; 0; 0; 0/ (i.e. f has no
singularity at the origin) orP1 D .1; 0; 1; 0/ and P2 D .0; 1; 0; 1/ and hence f has a Morse
singularity at the origin by Lemma 4.8.

If one of Pi ’s is in the apex of all B-facets �j containing P1P2, and one of �j ’s is
B2, then the other facet containing its quadrilateral face F also contains P1P2, and thus
is also B2 (it cannot be B1, because it has a quadrilateral face F outside the coordinate
hyperplanes). Then we would have two B2-facets with a common quadrilateral face F
(see Lemma 4.7 for a contradiction).

Thus all the �j ’s are B1-facets. As we have seen above, one of P1 and P2 is equal to
the common apex of all �j ’s, and the other one is in the bases of all �j ’s. Then, among �j ’s,
we can find at least two pairs ofB1-facets with a common apex, a common triangular face
and different bases.

These two pairs surround two borders, and since there are no B-borders by the
assumptions of Theorem 5.2, they are B2-borders. Two B2-borders with a common
apex A, intersecting in a common edge AC in the interior of R4

C, by their definition have
C D .0; 0; 1; 1/ and A D .1; 1; 0; 0/, which by Lemma 4.8 implies that the singularity f
is Morse non-degenerate.

5.3. A tubular neighborhood of the critical subfan revisited

We are now ready to prove Theorem 5.2. When referring to B-facets or critical faces in
the course of the proof, we always imply only the faces contributing the candidate pole
s0 ¤ �1, for which we are proving Theorem 5.2 (thus all the choices and objects that we
introduce for the proof completely depend on the choice of s0). Recall that up to now

– we have chosen once and for all a preferred base of every B1-facet and every B1-facet
of a B2-facet in the Newton polyhedron �C.f /,

– depending on this choice, we have called some cones critical in the dual fan †0 (see
Definitions 4.27 and 5.8 respectively),

– we have chosen once and for all a generic delimiter hyperplaneD� for every 2-dimen-
sional very critical cone � , dual to a non-border (see Definition 5.10), and we have
defined the delimiter hyperplaneD� for every 1-dimensional very critical cone � , dual
to a B2-facet (see Definition 4.11).

Definition 5.14. These two kinds of faces and their dual cones will be called delimited.
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Recall that, similarly to Section 4.7, we choose once and for all an affine structure on
the projectivization PRn

C and refer to cones and their projectivizations interchangeably
whenever it causes no confusion.

According to Corollary 4.30, the set of projectivized critical cones in the dual fan †0

is a closed polyhedral complex †c . We shall construct a generic piecewise linear tubu-
lar neighborhood of †c , whose boundary is transversal to the critical sets of non-critical
cones and delimiters of very critical cones.

For every projectivized closed cone � 2 †c , choose a convex piecewise linear (with
respect to the selected affine structure) “distance function” d� W PRn

C ! RC, satisfying
the following properties:

(1) d� vanishes on � and is strictly positive outside of it.

(2) For every non-critical cone � 0 2 †0, the corner locus of d� is transversal to the pro-
jectivized critical set PK� 0 in the complement to � .

(3) For every non-critical cone � 0 and every delimited face � 00 � � 0, the corner locus
of d� is transversal to the projectivized delimiter PD� 00 \ � 0 and to the critical set
PD� 00 \K� 0 in the complement to � .

Such a distance function can be constructed from a suitably generic piecewise-linear
norm in the same way as in Section 4. For this distance, we shall consider the "-neighbor-
hoodsB� ."/D ¹u j d� .u/ < "º and their boundariesS� ."/, which are all piecewise-linear
sets.

Associating positive numbers "� to all � 2 †c , introduce the following sets:

– the open neighborhoodU D
S

�2†c
B� ."�/ of the critical complex †c ;

– for every � 2 †c , the set U� D B� ."� / n
S

� 0¨� B� 0."� 0/;

– for every delimited � 2 †c , the delimiter disk DD� D U� \ PD� .

Lemma 5.15. One can choose the numbers "� so that

(1) for every projectivized non-critical cone � 0 2 P†0, no vertex of the boundary

of U� \ � 0 or of the boundary of DD� \ � 0 is contained in the critical set

PK� 0 \ rel:int� 0;

(2) U� is contained in the star of � and is border-convex .Definition 5.3/ if � is dual to

a border;

(3) U� \ Uı D ; unless � D ı, and NU� \ NUı D ; unless � � ı or vice versa;

(4) DD� divides U� into two connected components.

Proof. All of these properties are satisfied if the tuple ."� / is chosen generically (i.e.
avoiding finitely many hyperplanes in the space of all such tuples) and rapidly decreasing
(i.e. "� � "ı � 1 for all ı � �).

Definition 5.16 (cf. Definition 4.32). The vertex function

v W U n .delimiter disks/ ! .vertices of �C.f //
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is defined on every U� as follows:

(1) If a projectivized cone � 2 †c is dual to a non-delimited face F � �C.f /, then all
facets containing F are B-facets, and their apices on the side of F are all equal to the
same vertex P . Then we define v.�/ on U� as P .

(2) If � 2 †c is dual to a delimited triangle F , separating two B-facets �1 and �2, then
we define v.�/ on each of the two components of U� nDD� as the apex of the corre-
sponding facet �i on the side of this component.

(3) If � 2 †c is dual to a B2-facet � , then we define v.�/ on each of the two components
of U� nDD� as the apex of � on the side of this component.

Note that the vertex function is locally constant on its domain (thanks to Proposition
5.13). We now use this observation to consistently substitute every piece of the neighbor-
hood U by an appropriate sprout. Recall that we refer to cones and their projectivizations
interchangeably, and, in particular, SW;� for the projectivizationW of a cone C is another
notation for the sprout SC;� .

If � 2 †c is neither delimited nor dual to a border, then the vertex function v equals
a constant P on � , so we define V�;0 as the sprout SU� ;� (see Definition 4.17) for any
B-facet � containing the dual face of � . Note that neither the sprout V�;0 WD SU� ;� nor its
root R�;0 WD RU� ;� D P depend on the choice of � .

If � 2 †c is dual to a border, then the vertex function v equals a constant P on � ,
and we define V�;0 as the border sprout SU� ;� (see Definition 5.4) and the root R�;0 as
RU� ;� D P .

If � 2 †c is dual to a very critical triangle, separating two B-facets �˙1 with vertices
P˙1 on the side of � , then we define V�;˙1 as the sprout S¹vDP˙1º\U� ;�˙1

and the root
R�;˙1 as RU� ;�˙1

D P˙1.
If � 2 †c is dual to a B2-facet � with apices P˙1, then we define V�;˙1 as the sprout

S¹vDP˙1º\U� ;� and the root R�;˙1 as R¹vDP˙1º\U� ;� D P˙1. Also, choosing a ray r in
the dual cone � 0 to the quadrilateral non-V-face of � outside ofK� 0 , we define V�;0 as the
delimeter sprout Sr;� (see Lemma 4.22), leaving R�;0 undefined.

Thanks to Proposition 5.13, we have no other cases to consider. Now define the sprout-

ing SP of a vertex P as the union of all the sprouts V�;� .� D 0;˙1/ such that R�;� D P .
We have introduced the same system of notation as in Section 4.7, giving it a meaning

in a more general setting (most notably, admitting B2-borders). With this wider meaning
of notation at hand, the proof of Theorem 5.2 almost literally repeats the one for Theorem
4.3 (we repeat it for the convenience of the reader).

Lemma 5.17. (1) The contribution of SP equals

Z

SP

exp.�hu;P is � hu; 1i/ du

modulo a function that has no pole at s0.

(2) No edge of the boundary of SP is critical for .s0; P /.
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Proof. Part (1) follows from Lemmas 4.20 and 5.6. To deduce (2), it is enough (by Lemma
4.23) to show that every vertex of .@U� / \ � 0 and .@DD� / \ � 0 for every projectivized
cone � 0 � � is either not in PK� 0 , or not a projectivized edge of @SP . For non-critical
� 0, this follows from Lemma 4.31 (1), and every critical � 0 is either in the projectivized
interior of SP , or disjoint from its closure, or intersects its boundary at an interior point
of its facet DD� 0 (thus no vertex in � 0 can be a projectivized edge of @SP ).

Proof of Theorem 5.2. By the preceding lemma and Lemma 3.6, the contribution of every
SP to the topological �-function of f has no pole at s0. By Lemma 4.22, the same is true
for V�;0 for every B2-facet � . Since

V D
[

�; �D0;˙1

V�;�

contains all the critical cones in its interior, for every cone � 0 2 †0 the set � 0 n V has
edges of two types: edges of .@V / \ � 0 or non-critical 1-dimensional cones of †0. The
edges of the first kind are not in the critical set of any cone by Lemma 4.34 (2), and for
the second kind the same holds by definition. Thus the contribution of � 0 n V to the topo-
logical zeta function has no pole at s0 as well by Lemma 3.6. We have subdivided Rn

C

into these pieces:

– SP for some vertices P ,

– V�ı;0 for some B2-facets � ,

– � 0 n V for some non-critical cones � 0,

so that none of them contributes the pole s0.

5.4. Generalizing the notion of B-facets

We have seen that a B1- or B2-facet alone never contributes its candidate pole. In Sec-
tion 8 we shall prove a somewhat complementary fact:

For n D 4, all other facets do contribute their .nearby/ monodromy eigenvalues. .�/

(See Section 8 for a precise statement.) This dichotomy is central for the proof of the
monodromy conjecture for non-degenerate singularities.

However, for n > 4, in order to keep .�/ true, we should exclude from our consider-
ation B-facets in a certain more general sense than the one assumed in Definition 3.10.
What is the proper general notion of a B-facet in arbitrary dimension? A possible answer
given in Definition 1.4 (2) is based on the following lemma that we need in order to
prove .�/.

Lemma 5.18. For n D 4, if a compact facet � � �C.f / is not a B-facet, then it splits

into lattice simplices .with no new vertices/ so that one of the simplices is not of type B1.

Equivalently: if any four affinely independent vertices of a compact facet � � �C.f /

form a B1-simplex, then � is a B-facet.
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Proof. The facet � contains a face F not contained in a coordinate hyperplane. Note the
following facts about every such F :

(1): F has at most four vertices. Otherwise it contains a triangle whose sides are not in
coordinate hyperplanes, and the union of this triangle and any vertex of � n F gives a
non-B1-simplex in � .

(2): If F is a quadrilateral, then some pair of its opposite edges are contained in coordi-
nate hyperplanes, say, ¹v1 D 0º and ¹v2 D 0º, otherwise we get the same contradiction as
in (1). In this case, if a vertex of F at the hyperplane ¹v1 D 0º has v2 > 1, then this vertex,
the two vertices of F \ ¹v2 D 0º and any other vertex of � n F form a non-B1-simplex
in � . Thus both vertices of F in the hyperplane ¹v1 D 0º have v2 D 1 and vice versa. Thus
� is a B2-facet.

(3): If F is a triangle, then at least one of its edges is contained in a coordinate hyperplane,
otherwise we get the same contradiction as in (1).

(3.1): If the triangle F has exactly one edge in a coordinate hyperplane, say, ¹v1 D 0º,
then the coordinate v1 of the other vertex of F equals 1, otherwise F together with any
vertex from � n F form a non-B1-simplex in � . Also in this case, all other vertices of �
should be in the hyperplane ¹v1 D 0º, because otherwise a vertex together with F form a
non-B1-simplex in � . Thus � is a B1-pyramid for v1.

(3.2): If the triangle F has all three edges in coordinate hyperplanes, then denote by V the
set of vertices of � outside F . Note that every point of V is in a coordinate hyperplane,
otherwise it would form a non-B1-simplex together with F .

(3.2.1): If V is contained in a coordinate hyperplaneL, containing one of the edges of F ,
then � has one vertex v outside L. So, depending on the distance from v to L, the facet �
either contains a non-B1-simplex, or is itself a B1-pyramid with base L.

(3.2.2): If V has a point in each of the three coordinate 2-planes containing the vertices
of F , then we may assume these three points are outside the common coordinate edge
(say, v1 D v2 D v3 D 0) of the three 2-planes (otherwise we would arrive at (3.2.1)).
Since two vertices of a Newton diagram in a 2-plane cannot have the same coordinate,
either the vertex of F or a point of V in the .v1v2/-plane has v3 ¤ 1. This point, two
similar points with respective non-unit coordinates in the other 2-planes, and one of the
remaining vertices of � form a non-B1-simplex.

(3.2.3): If V has a point in a coordinate 2-plane (say, v1 D v2 D 0) containing a vertex
of F , and a point in the coordinate 3-plane (say, v3 D 0) containing the opposite edge of
F , then we can assume these two points do not belong to smaller coordinate planes (oth-
erwise we would arrive at (3.2.1)). Since two vertices of a Newton diagram in a 2-plane
cannot have the same coordinate, either the vertex of F or a point of V in v1 D v2 D 0

has v3 ¤ 1. This point, together with two vertices of F and one point of V in v3 D 0,
form a non-B1-simplex.
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(3.2.4): It remains to consider the case when V has a point in each of at least two coor-
dinate 3-planes (say, v1 D 0 and v2 D 0) containing the edges of F , and each of these
two points is not contained in a smaller coordinate plane (otherwise we would arrive at
(3.2.1–3)). Then the two above-mentioned points of V and the two vertices of F outside
of v1 D v2 D 0 form a non-B1-simplex (they cannot form a quadrilateral, otherwise we
would arrive at (2)).

(3.3): The only remaining case is that F is a triangle, exactly two of whose faces are in
coordinate hyperplanes. Since its third edge is not in a coordinate hyperplane, it should be
an edge of another 2-dimensional face G of � not contained in a coordinate hyperplane.

(3.3.1): If G is also a triangle, exactly two of whose faces are in coordinate hyperplanes,
then the convex hull of F [G has a triangular face F 0 whose edges are in three different
coordinate hyperplanes. So this case can be handled in the same way as (3.2) (although
F 0 is not necessarily a face of � , we can still consider the set V of all vertices of � outside
F 0 and proceed as in (3.2)).

(3.3.2): Otherwise, G is of one of the types (2) or (3.1), and thus � is B1 or B2 as shown
in the corresponding paragraphs.

6. Eigenvalues of monodromy and corners

In the first subsection, we formulate the main result of this section: certain configurations
of V-faces (so called corners) always contribute a non-zero multiplicity of the expected
sign to the corresponding monodromy eigenvalue. As a corollary, we prove the mon-
odromy conjecture for a large class of Newton-non-degenerate singularities in arbitrary
dimension.

The rest of the section is devoted to the proof of the main result. In particular, in the
second subsection we introduce the notion of a hypermodular function, which may be of
independent interest for convex geometry and analysis.

6.1. Motivation and results

Let f .x1; : : : ; xn/ be a polynomial on Cn such that f .0/ D 0. For lattice simplices �
contained in compact facets of �C.f / we define their V-faces and polynomials �� .t/ D
.1 � tN.�//VolZ.�/ 2 CŒt � in the same way as for faces of �C.f /.

Let us first observe the following fact.

Proposition 6.1. Let � � �C.f / be a compact facet such that 
 D � \ ¹vi D 0º is one of

its facets. Then F�;
 .t/ WD �� .t/=�
.t/ 2 C.t/ is a polynomial of t . If we assume moreover

that � is not a B1-pyramid for the variable vi , then the complex number

� D exp

�

�2�i �.�/
N.�/

�

is a root of that polynomial.
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Proof. By Lemma 9.4 we can easily prove that F�;
 D ��=�
 2 C.t/ is a polynomial.
Let us prove the remaining assertion. If � is not a pyramid over 
 D � \ ¹vi D 0º, then
we have VolZ.�/ > VolZ.
/ and the assertion is obvious. So it suffices to consider the
case where � is a pyramid over 
 D � \ ¹vi D 0º but its unique vertex P � � such that
P … 
 has height h � 2 over the hyperplane ¹vi D 0º � Rn. In this case, we define two
hyperplanesH� and L� in Rn by

H� D ¹v 2 Rn j ha.�/; vi D N.�/º;
L� D ¹v 2 Rn j ha.�/; vi D ha.�/; 1i D �.�/º:

Note that P 2 � �H� andL� is the hyperplane passing through the point .1; : : : ; 1/ 2 Rn
C

and parallel to H� ; that is, H� is the affine span aff.�/ ' Rn�1. Moreover the affine
subspace L� \ ¹vi D 0º � Rn is parallel to the affine span H� \ ¹vi D 0º � Rn of

 D � \ ¹vi D 0º. By Lemma 2.4, this implies that � D exp.�2�i�.�/=N.�// 2 C is a
root of �
.t/ if and only if L� \ ¹vi D 0º is rational, i.e. L� \ ¹vi D 0º \ Zn 6D ;. On
the other hand, it is easy to see that the affine subspaceH� \ ¹vi D h� 1º � Rn is a par-
allel translation of L� \ ¹vi D 0º by a lattice vector. Hence if L� \ ¹vi D 0º is rational,
then H� \ ¹vi D h � 1º \ Zn 6D ; and the lattice height of the pyramid � over its base

 D � \ ¹vi D 0º is h � 2, i.e. VolZ.�/ � 2VolZ.
/. It follows that the polynomial F�;


is divisible by t � �. This completes the proof.

Motivated by this proposition, we introduce the following definitions.

Definition 6.2. Let � be a k-dimensional lattice V-simplex contained in a compact facet
of �C.f /.

(1) We say that � has a (possibly empty) corner �0 � � of codimension r if dim � �
dim �0 D k � dim �0 D r and any face � of � containing �0 is a V-face.

(2) If � has a (possibly empty) corner �0 � � of codimension r , then we set

F�;�0
.t/ D

Y

� W �0����; � 6D;

¹�� .t/º.�1/k�dim � 2 C.t/:

Remark 6.3. Every .n � 1/-dimensional lattice simplex � contained in a compact facet
of �C.f / has a unique corner of maximal codimension, which we will denote by C� . We
will also write briefly F� .t/ for F�;C�

.t/.

In the next subsection we will prove the following result.

Theorem 6.4. (1) Let � be a k-dimensional lattice V-simplex contained in a compact

facet of �C.f /. Assume that for some r � 1 it has a non-empty corner �0 of codi-

mension r . Then F�;�0
.t/ 2 C.t/ is a polynomial of t .

(2) If k D n � 1 and � is not a B1-pyramid, then the complex number

� D exp

�

�2�i �.�/
N.�/

�

is a root of the polynomial F� .t/.
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We can generalize Theorem 6.4 slightly to allow also simplices with empty corners
as follows. If an .n � 1/-dimensional lattice simplex � contained in a compact facet of
�C.f / has an empty corner �0 D ;, then we have the expression � D A1 � � �An such that
for any 1 � i � n the vertex Ai is in the positive part of the i -th coordinate axis of Rn.

Proposition 6.5. Let � be an .n� 1/-dimensional lattice simplex contained in a compact

facet of �C.f /. Assume that it has an empty corner �0 D ;. Then the function

F� .t/ � .1 � t/.�1/n 2 C.t/

is a polynomial. If moreover � is not a B1-simplex, then the complex number

� D exp

�

�2�i �.�/
N.�/

�

is a root of that polynomial.

Proof. By the embedding Rn ,! Rn � R, v 7! .v; 0/, we regard � as a lattice simplex in
Rn � R and set Q.0; 1/ 2 Rn � R. Let � 0 be the convex hull of ¹Qº [ � in Rn � R. It is
easy to see that

F� 0;Q.t/ D F� .t/ � .1 � t/.�1/n

;

from which the first assertion immediately follows by Theorem 6.4. Since N.� 0/ D N.�/

and �.� 0/ D �.�/CN.�/, the second assertion also follows from Theorem 6.4.

Together with Theorem 4.3, following the strategy of Lemahieu–Van Proeyen [18] we
can now confirm the monodromy conjecture for non-degenerate hypersurfaces in many
cases also for n � 4. Let �1; : : : ; �k � �C.f / be the compact facets of �C.f /. Then we
say that the Newton polytope of f has a good pavement by lattice simplices if for any
1 � i � k there exists a decomposition �i D

Sni

j D1 �ij of �i into (n � 1)-dimensional
lattice simplices �ij for which the following conditions are satisfied:

(i) For any 1 � i � k and 1 � j � ni the lattice simplex �ij has no V-face or it has a
(non-empty) corner which is contained in any V-face of �ij .

(ii) If �ij 6D �i 0j 0 then they have no common V-face. Moreover, any V-face of �C.f / is
decomposed into those of the lattice simplices �ij .

(iii) For any 1 � i � k the facet �i is a B-facet or there exists a lattice simplex �ij in it
which is not a B1-pyramid.

Theorem 6.6. Assume that f is non-degenerate and the Newton polytope of f has a good

pavement by lattice simplices. Let s0 be a pole of Ztop;f .s/ which is contributed only by

compact facets of �C.f /, and those of them that are B-facets are consistent in the sense

of Definition 4.2. Then exp.2�is0/ is an eigenvalue of the monodromy of f at 0 2 Cn.

Proof. If s0 D �1 the assertion is trivial. Otherwise, by Theorem 4.3 the pole s0 6D �1 is
contributed also by a non-B-facet �i of �C.f /. Moreover by Theorem 2.5 and conditions
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(i)–(ii) we have

�f;0.t/ D
°

k
Y

iD1

ni
Y

j D1

F�ij
.t/

±.�1/n�1

:

Then exp.2�is0/ is an eigenvalue of the monodromy of f at 0 2 Cn by Theorem 6.4
applied to condition (iii).

Example 6.7. We consider the hypersurface

H W f .x1; x2; x3; x4; x5/

D x8
1 C x6

2 C x10
3 C x12

4 C x9
5 C x2

1x
3
3 C x1x2x4 C x1x2x

3
5 C x2

2x3 D 0;

which is non-degenerate at the origin in C5. We denote the vertices of �C.f / by

A D .8; 0; 0; 0; 0/; B D .0; 6; 0; 0; 0/; C D .0; 0; 10; 0; 0/; D D .0; 0; 0; 12; 0/;

E D .0; 0; 0; 0; 9/; F D .2; 0; 3; 0; 0/; G D .1; 1; 0; 1; 0/; H D .1; 1; 0; 0; 3/;

I D .0; 2; 1; 0; 0/:

The Newton polyhedron �C.f / has 10 compact facets

�1 D EFGHI; �2 D CEFGI; �3 D CDEFG; �4 D BEGHI; �5 D CDEGI;

�6 D BDEGI; �7 D ABGHI; �8 D AEFGH; �9 D ADEFG; �10 D AFGHI:

Then we find that

�f;0.t/ D
10
Y

iD1

F�i
.t/FCDE .t/FAEF .t/FBEI .t/FCEI;CI .t/FCEF;CF .t/:

It follows immediately by Theorem 6.4 that the monodromy conjecture holds for H at
the origin. Notice that we did not take FCEI .t/ D �CEI .t/�C .t/=.�CE .t/�CI .t// nor
FCEF .t/ D �CEF .t/�C .t/=.�CE .t/�CF .t// as we already have the contributions of the
V-faces CE and C in FCDE .t/ D �CDE .t/�C .t/�D.t/�E .t/=.�CD.t/�CE .t/�DE .t//.

6.2. Hypermodular functions

For the proof of Theorem 6.4 we shall introduce some new notions and their basic prop-
erties. Let S be a finite set and denote its power set by 2S ; elements of 2S are subsets
I � S of S . Then for a function � W 2S ! Z we define �#; �" W 2S ! Z by

�#.I / D
X

J �I

�.J /; �".I / D
X

J �I

.�1/jI j�jJ j�.J /:

We call �# (resp. �") the antiderivative (resp. derivative) of �. Then we can easily check
that �"# D �#" D �.

Definition 6.8. (1) We say that the function � is hypermodular if �".I / � 0 for any
subset I � S .

(2) The function � is called strictly hypermodular if it is hypermodular and �".S/ > 0.
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Lemma 6.9. The product of two hypermodular functions �; W 2S ! Z is hypermodular.

Moreover, it is strictly hypermodular if and only if there exist I; J � S such that I [ J

D S and both �".I / and  ".J / are strictly positive.

Proof. For any subset R � S of S we have

.� /".R/ D .�"# "#/".R/ D
X

I[J �U �R

.�1/jRj�jU j�".I / ".J /

D
X

I[J DR

�".I / ".J /:

Hence the assertion follows immediately.

6.3. Reduction to the case k D n � 1 and r D n � 1

We can obviously suppose that k D n� 1 as the computations are made in the coordinate
hyperplane containing � . We now explain how to reduce the proof of Theorem 6.4 to the
case r D n � 1. For simplicity assume that the corner 
 � � of the simplex � � @�C.f /

is defined by 
 D � \ ¹v1 D � � � D vr D 0º. We set

� D exp

�

�2�i �.�/
N.�/

�

2 C:

As in the proof of Proposition 6.1 we define two parallel affine hyperplanes H� and L�

in Rn by

H� D ¹v 2 Rn j ha.�/; vi D N.�/º;
L� D ¹v 2 Rn j ha.�/; vi D ha.�/; 1i D �.�/º:

LetW D ¹v1 D � � � D vr D 0º ' Rn�r � Rn be the linear subspace of Rn spanned by 
 .
Similarly, for a face � of � containing 
 let W� ' Rdim �C1 � Rn be the linear subspace
of Rn spanned by � . Then by Lemma 2.4, �� .�/ D 0 if and only if the affine hyperplane

L� \W� of W� is rational, i.e. L� \W� \ Zn 6D ;. Let ˆ0 W W ��! W be a unimodular
transformation such that ˆ0.
/ � W \ ¹vn D cº for some c 2 Z>0. Then we can easily

extend ˆ0 to a unimodular transformation ˆ W Rn ��! Rn of Rn which preserves W� for
any � � � containing 
 and the point 1 D .1; : : : ; 1/ 2 Rn. We can choose ˆ so that the
heights of � and ˆ.�/ over each coordinate hyperplane in Rn containingW are the same.

Indeed, for the invertible matrix A0 2 GLn�r .Z/ representing ˆ0 W W ��! W it suffices

to define ˆ W Rn ��! Rn by taking an invertible matrix A 2 GLn.Z/ of the form

A D
�

Ir 0

� A0

�

2 GLn.Z/

such that A1 D 1, where Ir 2 GLr .Z/ stands for the identity matrix. By this construction
of ˆ, � is a B1-pyramid if and only if ˆ.�/ is. Set � 0 D ˆ.�/ and define two parallel
affine hyperplanes H� 0 and L� 0 in Rn similarly to the case of � so that ˆ.H� / D H� 0 .
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Since ˆ.L� / is parallel to ˆ.H� / D H� 0 and passes through ˆ.1/ D 1 2 Rn, we also
have ˆ.L� / D L� 0 . Since the unimodular transformation ˆ preserves lattice distances,
we thus obtain N.�/ D N.� 0/, �.�/ D �.� 0/ and

� D exp

�

�2�i �.�
0/

N.� 0/

�

:

Moreover, for any � � � containing 
 we have N.�/ D N.ˆ.�// and hence �� .t/ �
�ˆ.�/.t/. Then we obtain F� .t/ D F� 0.t/, where we slightly generalize Definition 6.2
in an obvious way to define F� 0.t/. Hence, to prove Theorem 6.4 we may assume that
the corner 
 of � is contained in W \ ¹vn D cº for some c 2 Z>0. Let � W Rn ! RrC1,
v 7! .v1; : : : ; vr ; vn/, be the projection. Then by the definition of normalized volumes, for
any face � of � containing the corner 
 �W \ ¹vn D cº we have VolZ.�/D VolZ.�.�// �
VolZ.
/ and hence �� .t/ D ¹��.�/.t/ºVolZ.
/. We thus obtain F� .t/ D ¹F�.�/.t/ºVolZ.
/.
Moreover,N.�/ D N.�.�// and �.�/ D �.�.�//. This implies that we have only to con-
sider the case r D n � 1.

6.4. The proof for r D n � 1

We have reduced our proof to the case where r D n � 1, a vertex Q of our simplex � D
QA1 � � �An�1 has the formQ D .0; : : : ; 0; c/ for some c 2 Z>0 and its edges are given by

���!
QA1 D

0

B

B

B

B

B

B

@

a1

0
:::

0

b1

1

C

C

C

C

C

C

A

;
���!
QA2 D

0

B

B

B

B

B

B

@

0

a2

:::

0

b2

1

C

C

C

C

C

C

A

; : : : ;
�����!
QAn�1 D

0

B

B

B

B

B

B

@

0

0
:::

an�1

bn�1

1

C

C

C

C

C

C

A

;

where a1; : : : ; an�1 2 Z>0 and b1; : : : ; bn�1 2 Z. We set

D D
n�1
Y

iD1

ai ; Ki D bi

ai

�D .1 � i � n � 1/

andK D
Pn�1

iD1Ki . Note that bi ;Ki < 0. Moreover, for I � S D ¹1; : : : ;n� 1º we denote
by �I � � the face of � whose vertices are Q and Ai .i 2 I / and set

DI D
Y

i2I

ai ; gcdI D GCD.D;Ki .i 2 I // > 0:

Lemma 6.10. The jI j-dimensional normalized volume VolZ.�I / is given by

VolZ.�I / D gcdI � DI

D

and we have

N.�I / D D

gcdI

� c D DI

VolZ.�I /
� c:
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In particular,

N.�/ D D

gcdS

� c:

Proof. We only treat the case I D S and �I D � ; the general case can be treated simi-
larly. First, note that the primitive conormal vector a.�/ 2 Zn of the .n� 1/-dimensional
simplex � is equal to

1

gcdS

0

B

B

B

B

B

B

@

�K1

�K2

:::

�Kn�1

D

1

C

C

C

C

C

C

A

:

From this, the assertion for N.�/ immediately follows. Let z� � Rn be the n-dimensional
simplex obtained by taking the convex hull of � and the point

R D .0; : : : ; 0; c C 1/:

Then by the above formula for a.�/, the lattice height of z� over its base � (i.e. the lattice
distance from R to aff.�/) is equal to D

gcdS
. Since the n-dimensional normalized volume

of z� is D, we also get the remaining assertion VolZ.�/ D gcdS .

For I � S D ¹1; : : : ; n � 1º we set

�I .t/ D ¹1� tN.�I /ºVolZ.�I / 2 CŒt �;

so that
F� .t/ D

Y

I�S

¹�I .t/º.�1/n�1�jI j
:

Lemma 6.11. The complex number

� D exp

�

�2�i �.�/
N.�/

�

is a root of the polynomial �I .t/ if and only if gcdI jK .

Proof. By the formula for a.�/ in the proof of Lemma 6.10, we obtain

�.�/ D D �K

gcdS

and
�.�/N.�I /

N.�/
D D �K

gcdI

: (6.1)

Note that � is a root of �I .t/ if and only if �.�/N.�I /=N.�/ is an integer. Then the asser-
tion follows immediately from (6.1) and the fact that gcdI jD.
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By this lemma the multiplicity of t � � in the rational function F� .t/ is equal to

X

I W gcdI jK

.�1/n�1�jI j gcdI � DI

D
:

Similarly we obtain the following result.

Lemma 6.12. For any m 2 Z the complex number exp.2�im=N.�// is a root of the

polynomial �I .t/ if and only if gcdI j .m � gcdS /.

Proposition 6.13. The function F� .t/ is a polynomial in t .

Proof. By Lemma 6.12 it suffices to show that for anym 2 Z the alternating sum

Gm D
X

I W gcdI j.m�gcdS /

.�1/n�1�jI j gcdI � DI

D

is non-negative. Fixm 2 Z and for a prime number p denote its multiplicities in the prime
decompositions of ai ; bi andm by ˛.p/i ; ˇ.p/i and ı.p/ respectively. We set


.p/ D ı.p/C min
1�i�n�1

¹ˇ.p/i � ˛.p/i ; 0º

and define a function �p W 2S ! Z by

�p.I / D
´

pmini2I ¹ˇ.p/i �˛.p/i ;0ºC
P

i2I ˛.p/i if mini2I ¹ˇ.p/i � ˛.p/i ; 0º � 
.p/;

0 otherwise:

Then it is easy to see that for the function � D
Q

p prime �p W 2S ! Z we have

�".S/ D Gm:

Indeed, this follows immediately from the fact that for I � S the multiplicity of p in gcdI

is equal to
min
i2I

¹ˇ.p/i � ˛.p/i ; 0º C
X

1�i�n�1

˛.p/i :

By Lemma 6.9 we have only to prove that for any prime number p the function �p W
2S ! Z is hypermodular. For this purpose, we reorder the pairs .ai ; bi / .1 � i � n � 1/

so tha have

ˇ.p/1 � ˛.p/1 � ˇ.p/2 � ˛.p/2 � � � � � ˇ.p/n�1 � ˛.p/n�1:

Fix a subset I D ¹i1; i2; : : :º � S D ¹1; : : : ; n � 1º .i1 < i2 < � � � /. We will show the
non-negativity of the alternating sum

�"
p .I / D

X

J �I

.�1/jI j�jJ j�p.J /: (6.2)
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We define q � 0 to be maximal such that ˇ.p/iq � ˛.p/iq < 0 (resp. ˇ.p/iq � ˛.p/iq �

.p/) in the case 
.p/ � 0 (resp. 
.p/ < 0). First let us consider the case 
.p/ � 0.
Then for 1 � l � q the part of the alternating sum (6.2) over the subsets J � I such that
min J D il is equal to

.�1/l�1pˇ.p/il

Y

j >l

.p
˛.p/ij � 1/:

Indeed, for instance the term in this alternating sum which corresponds to J D
¹il ; ilC1; : : :º � I D ¹i1; i2; : : :º is equal to

.�1/l�1p
ˇ.p/il

�˛.p/il
C

P

j �l ˛.p/ij D .�1/l�1pˇ.p/il

Y

j >l

p
˛.p/ij :

Moreover, the remaining part of (6.2) is equal to

.�1/q
Y

j >q

.p
˛.p/ij � 1/:

We thus obtain

�"
p .I / D pˇ.p/i1

Y

j >1

.p
˛.p/ij � 1/� pˇ.p/i2

Y

j >2

.p
˛.p/ij � 1/

C � � � C .�1/q�1pˇ.p/iq

Y

j >q

.p
˛.p/ij � 1/C .�1/q

Y

j >q

.p
˛.p/ij � 1/:

Note that for any 1 � j � q we have ˇ.p/ij � ˛.p/ij < 0 and obtain

p
ˇ.p/ij �1 .p

˛.p/ij � 1/ � p
˛.p/ij � 1 � p

ˇ.p/ij : (6.3)

Thus, subdividing the terms in the above expression of �"
p .I / into pairs, we get the desired

non-negativity �"
p .I / � 0. Finally, let us consider the case 
.p/ < 0. We then have

�"
p .I / D pˇ.p/i1

Y

j >1

.p
˛.p/ij � 1/� pˇ.p/i2

Y

j >2

.p
˛.p/ij � 1/

C � � � C .�1/q�1pˇ.p/iq

Y

j >q

.p
˛.p/ij � 1/:

Then by using the inequality (6.3) we can prove the non-negativity �"
p .I / � 0 as in the

case 
.p/ � 0. This completes the proof.

Proposition 6.14. Assume that � is not a B1-simplex. Then the complex number

� D exp

�

�2�i �.�/
N.�/

�

is a root of the polynomial F� .t/.
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Proof. By Lemma 6.11 it suffices to show that the alternating sum

G D
X

I W gcdI jK

.�1/n�1�jI j gcdI � DI

D

is positive. For a prime number p denote its multiplicities in the prime decompositions of
ai ; bi andK by ˛.p/i ; ˇ.p/i and �.p/ respectively. We set

�.p/ D �.p/ �
n�1
X

iD1

˛.p/i

and define a function  p W 2S ! Z by

 p.I / D
´

pmini2I ¹ˇ.p/i �˛.p/i ;0ºC
P

i2I ˛.p/i if mini2I ¹ˇ.p/i � ˛.p/i ; 0º � �.p/;

0 otherwise:

Then it is easy to see that for the function  D
Q

p prime  p W 2S ! Z we have

 ".S/ D G:

Now set Sp D ¹1� i � n� 1 j ˛.p/i D 0º and Ip D S nSp D ¹1� i � n� 1 j ˛.p/i >0º.
By our assumption we have ai > 1 for any 1 � i � n � 1 and hence

S

p prime Ip D S . By

Lemma 6.9, in order to show that  ".S/ > 0 it suffices to prove that for any prime p
we have  "

p .Ip/ > 0. As in the proof of Proposition 6.13 we reorder the pairs .ai ; bi /

.1 � i � n � 1/ so that

ˇ.p/1 � ˛.p/1 � ˇ.p/2 � ˛.p/2 � � � � � ˇ.p/n�1 � ˛.p/n�1

and ˛.p/i � ˛.p/iC1 whenever ˇ.p/i � ˛.p/i D ˇ.p/iC1 � ˛.p/iC1. Moreover, we set
Ip D ¹i1; i2; : : :º .i1 < i2 < � � � /. We let q � 0 be maximal such that ˇ.p/iq � ˛.p/iq < 0
(resp. ˇ.p/iq � ˛.p/iq � �.p/) in the case �.p/ � 0 (resp. �.p/ < 0). Then we have the

same expressions of  "
p .Ip/ > 0 as in the proof of Proposition 6.13. In the case �.p/ � 0

we have

 "
p .Ip/ D pˇ.p/i1

Y

j >1

.p
˛.p/ij � 1/� pˇ.p/i2

Y

j >2

.p
˛.p/ij � 1/

C � � � C .�1/q�1pˇ.p/iq

Y

j >q

.p
˛.p/ij � 1/C .�1/q

Y

j >q

.p
˛.p/ij � 1/: (6.4)

In the case �.p/ < 0 we have

 "
p .Ip/ D pˇ.p/i1

Y

j >1

.p
˛.p/ij � 1/� pˇ.p/i2

Y

j >2

.p
˛.p/ij � 1/

C � � � C .�1/q�1pˇ.p/iq

Y

j >q

.p
˛.p/ij � 1/: (6.5)
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By the definitions of Ip D ¹i1; i2; : : :º � S and q � 0 we have i 2 Ip for any i � iq.
Eventually we find that ij D j for any j � q. First let us consider the case Ip D ;. Then

 p.Ip/ D
´

p0 D 1 if �.p/ � 0;

0 if �.p/ < 0:

For �.p/ � 0 we thus obtain  "
p .Ip/ > 0. But in the case �.p/ < 0 the condition Ip D ;

implies q D 0, which cannot occur by the following lemma.

Lemma 6.15. The case Ip D ; and �.p/ < 0 cannot occur.

Proof. Assume that Ip D ; and �.p/ < 0. By the definition of �.p/ we have

multp.K/ D multp.D � p�.p//: (6.6)

Moreover, for any i 2 S D S n Ip we have

multp.Ki / � multp.D/ > multp.D � p�.p//;

where we have used the condition �.p/ < 0 in the second inequality. We thus obtain

multp.K/ D multp
�

X

i2S

Ki

�

> multp.D � p�.p//;

which contradicts (6.6).

By this lemma, it remains to treat the case Ip 6D ;, which we assume from now on.
Note that inequality (6.3) becomes an equality only when p D 2, ˇ.p/ij �1

D ˇ.p/ij D 0

and ˛.p/ij D 1. By Lemma 6.15 this means that the sums (6.4) and (6.5) may be zero
only in the following two cases:

Case 1: p D 2, �.p/ � 0, q D 2mC 1 form � 0 and .˛.p/1; ˇ.p/1/D .a; 0/ for a > 0,
.˛.p/2; ˇ.p/2/ D � � � D .˛.p/q ; ˇ.p/q/ D .1; 0/.

Case 2: p D 2, �.p/ < 0, q D 2m for m � 1 and .˛.p/1; ˇ.p/1/ D .a; 0/ for a > 0,
.˛.p/2; ˇ.p/2/ D � � � D .˛.p/q ; ˇ.p/q/ D .1; 0/.

Indeed, in the case �.p/ � 0 and q D 2m for m � 0, if q < jIpj then the last term

.�1/q
Q

j >q.p
˛.p/ij � 1/ of the alternating sum (6.4) is positive. Even if q D jIpj we

still have the positivity

.�1/q
Y

j >q

.p
˛.p/ij � 1/ D  p.;/ D 1 > 0:

Let us show that none of the above two cases can occur.

Case 1: Set ˛.p/ D
P

i2S ˛.p/i . Then 2˛.p/ jD and 2˛.p/ jKi for any i 2 S2. Thus

K � 2˛.p/�a � odd C .q � 1/ � 2˛.p/�1 � odd C
X

j >q

2
˛.p/Cˇ.p/ij

�˛.p/ij

� 2˛.p/�a � odd C .q � 1/ � 2˛.p/�1 � odd � 2˛.p/�a � odd mod 2˛.p/;
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where we have also used the fact that ˇ.p/ij � ˛.p/ij � 0 for any j > q. We conclude
that 2˛.p/ does not divideK , which contradicts our assumption �.p/ � 0.

Case 2: Since q � 2 we have �1 D ˇ.p/i2 � ˛.p/i2 � �.p/. Then from �.p/ < 0 we
obtain �.p/ D �1. As in Case 1, by using the fact that q � 1 is odd and �.p/ D �1, if
a D 1 we obtain

K �
X

j >q

2
˛.p/Cˇ.p/ij

�˛.p/ij � 0 mod 2˛.p/,

that is, 2˛.p/ jK , which contradicts our assumption �.p/ < 0. If a > 1 we obtain

K � 2˛.p/�a � odd mod 2˛.p/�1,

which also contradicts �.p/ D �1. This completes the proof.

7. On non-convenient Newton polyhedra

When dealing with a singularity .f; 0/ with non-convenient Newton polyhedron �C.f /,
it happens already in dimensions 2 and 3 that one has to search for the monodromy eigen-
value at some point of the hypersurface f �1.0/ close to the origin.

Definition 7.1 (cf. [13]). Let f W .Cn; 0/ ! .C; 0/ be a germ of a holomorphic function.
For all sufficiently small x0 2 Cn, the nearby singularity germ

fx0
W .Cn; x0/ ! .C; 0/; fx0

.x/ D f .x0 C x/;

is well defined. We shall refer to the roots and poles of the monodromy �-function of the
latter germ as nearby monodromy eigenvalues of f .

7.1. Nearby singularities at coordinate lines

Notice that the Newton polyhedron at a generic point of a k-dimensional coordinate plane
is the product of the projection of the Newton polyhedron along that coordinate plane
by Rk

C. In this subsection, we prove the following generalization of [18, Lemma 9].

Proposition 7.2. Assume that f is non-degenerate at 0 2 Cn. Then except for finitely

many c 2 C the polynomial fc.x/ D f .x1; x2; : : : ; xn�1; xn C c/ is non-degenerate at

0 2 Cn.

Proof. Let � W Rn ! Rn�1 be the projection along the last variable. Then except for
finitely many c 2 C the Newton polyhedron �C.fc/ is equal to �.�C.f // � RC. Let � 0

be a face of �C.f / which is non-compact for the variable vn and denote by � � Rn�1 its
image under the projection � W Rn ! Rn�1. Assume that � is compact. Here we shall treat
only the case where � 0 is a facet and hence dim � D n � 2; the other cases can be treated
similarly. By a unimodular transformation of Rn D Rn�1 � R induced by that of its first
factor Rn�1. we regard � 0 as a lattice polytope in its affine span aff.� 0/ ' Rn�1, and the
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� 0-part f� 0 of f as a Laurent polynomial on T 0 D .C�/n�1
x1;:::;xn�1

, where the last variable
xn of f� 0 corresponds to the last one xn�1 of the Laurent polynomial. We denote the
latter also by f� 0 . Then by our assumption for any compact face � of � 0 the hypersurface
¹f� D 0º � T 0 is smooth. Moreover, the �-part of the polynomial f .x1; : : : ;xn�1;xn C c/

is naturally identified with the Laurent polynomial f� 0.x1; : : : ; xn�2; c/. Therefore, in
order to prove the assertion, by our previous description of �C.fc/ it suffices to show that
except for finitely many c 2 C the hypersurface

Wc D ¹.x1; : : : ; xn�2/ j f� 0.x1; : : : ; xn�2; c/ D 0º

in T 0 \ ¹xn�1 D cº ' .C�/n�2 is smooth. Let h W T 0 D .C�/n�1 ! C be defined by
h.x1; : : : ; xn�1/ D xn�1. Then the set of c 2 C for which Wc � .C�/n�2 is not smooth
is contained in the discriminant variety of hj¹f� 0D0º W ¹f� 0 D 0º ! C. For " > 0 let
B.0I "/� D ¹c 2 C j 0 < jcj < "º. Then there exists a sufficiently small 0 < " � 1

such that the hypersurface Wc � .C�/n�2 is smooth for any c 2 B.0I "/�. Indeed, let
� D � 0 \ ¹vn � lº � � 0 (l � 0) be the truncation of � 0. Let †0 be the dual fan of the
.n � 1/-dimensional polytope � in Rn�1, and † its smooth subdivision. We denote by
X† the toric variety associated to† (see [14,25] etc.). ThenX† is a smooth compactifica-
tion of T 0 D .C�/n�1. Recall that T 0 D .C�/n�1 acts naturally on X† and the T 0-orbits
in it are parameterized by the cones in the smooth fan †. For a cone C 2 † denote
by TC ' .C�/n�1�dim C � X† the T 0-orbit associated to C . By our assumption above, if
C 2† corresponds to a compact face � of � 0 then the hypersurfaceW D ¹f� 0 D 0º �X†

intersects TC � X† transversally. We denote the meromorphic extension of h W T 0 D
.C�/n�1 ! C to X† also by h. Note that h has no point of indeterminacy on the whole
X† (because it is a monomial). Then as jcj ! 0 the level set h�1.c/ � X† of h tends to
the union of the T 0-orbits which correspond to the compact faces of � 0. More precisely, if
a cone C 2 † corresponds to a compact face of � 0 then there exists an affine chart Cn�1

y

of X† on which

TC D ¹y D .y1; : : : ; yn�1/ j yi D 0 .1 � i � dimC/; yi 6D 0 .dimC C 1 � i � n� 1/º

and h.y/D y
m1

1 y
m2

2 � � �ymk

k
(mi 2 Z>0) for some k � 1. By this explicit description of h

we see that for 0 < jcj � 1 the hypersurface h�1.c/ intersectsW transversally. It follows
that

Wc D W \ h�1.c/ \ T 0 � h�1.c/ \ T 0 ' .C�/n�2

is smooth for 0 < jcj � 1. This completes the proof.

Note also that at almost all points on a coordinate axis contained in the hypersurface,
the compact part of the Newton polyhedron there coincides with the compact part of the
projection of �C.f / along that coordinate axis. Then the monodromy zeta function can
be computed by the same Varchenko formula in one dimension less, since by Proposition
7.2 generic nearby singularity germs are still non-degenerate.

Example 7.3. (1) If f .x1; x2/ D x
a1

1 x
a2

2 g.x1; x2/ with g not divisible by xi , then we
have the nearby eigenvalue ai

p
1 on the i -th axis.
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(2) If f .x1; x2; x3/ D x
a1

1 x
a2

2 x
a3

3 g.x1; x2; x3/ with g not divisible by xi , then we
have the nearby eigenvalue ai

p
1 at every point of the i -th coordinate plane except for the

points of the coordinate lines and, most notably, of the surface g D 0.

7.2. Nearby singularities outside coordinate lines

The following example shows that from dimension 4 on, one might not always find the
eigenvalue of monodromy corresponding to a pole of the topological zeta function at a
point on a coordinate axis or even a generic point on a coordinate plane (a subtle shadow
of this difference between generic and not so generic points of a coordinate plane can be
seen already in dimension 3; see Example 7.3).

Example 7.4. Consider the polynomial f .x1; x2; x3; x4/ D x6
3 C x4

2x
5
3 C x2

1x
13
2 x

2
3 C

x13
2 x

2
3x

2
4 , which is non-degenerate at the origin. One finds that �1=3 is a pole ofZtop;f .s/,

contributed by the only compact facet of �C.f /. For the zeta function of monodromy at
the origin one finds

�f;0.t/ D 1 � t6

1 � t24
;

and so e�2i�=3 is not a zero or pole of this function. One can check that there does not
exist a point b D .c1; c2; c3; c4/ in ¹f D 0º such that the compact part of the Newton
polyhedron �C.g/ of g.x1; x2; x3; x4/ D f .x1 � c1; x2 � c2; x3 � c3; x4 � c4/ is a pro-
jection of �C.f / along the minimal coordinate plane containing b, and e�2i�=3 is a zero
or pole of �f;b.t/. However, e�2i�=3 is an eigenvalue of monodromy at the points of the
curve C D ¹.c; 0; 0;�ic/; c 2 C�º � ¹f D 0º. Note that these are exactly the points
where �C.g/ is strictly smaller than the projection of �C.f /, due to a cancellation of two
monomials in f .

In this particular example, one can check that the singularity is still non-degenerate at
the points of the curve C where we found the eigenvalue of monodromy. However, this
will not always be the case, as shown in the next example.

Example 7.5. We consider

g.x1; x2; x3; x4/ D x6
3 C x4

2x
5
3 C x2

1x
13
2 x

2
3 C x13

2 x
2
3x

2
4 C 2x100

1 x7
2x

4
3x

100
4

C x200
1 x14

2 x
2
3x

200
4 ;

which up to terms of higher order equals the polynomial f considered in Example 7.4.
The polynomial g is non-degenerate at the origin, and its Newton polyhedron at the origin
has one compact facet, spanned by the vertices A.0; 13; 2; 2/; B.2; 13; 2; 0/; C.0; 4; 5; 0/
andD.0; 0; 6; 0/. It contributes the candidate pole �1=3, which is a pole ofZtop;g.s/. For
the zeta function of monodromy at the origin one finds

�g;0.t/ D 1 � t6

1 � t24
:
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In Example 7.4 we found the monodromy eigenvalue e�2�i=3 at the points .c; 0; 0;˙ic/,
c 2 C. In the translated local coordinates at .c; 0; 0;˙ic/, the principal part of g will be

x6
3 C x4

2x
5
3 C 2c200x7

2x
4
3 C c400x14

2 x
2
3 C 2cx1x

13
2 x

2
3 � 2icx13

2 x
2
3x4;

having a degenerate edge x6
3 C 2c200x7

2x
4
3 C c400x14

2 x
2
3 .

This example shows we have to quit the non-degenerate setting to prove the mon-
odromy conjecture for non-degenerate singularities in dimension 4 and higher. It also
shows that the Newton polyhedron of a singularity at an adjacent singular point may
depend not only on the Newton polyhedron of the initial singularity, but also on higher
order terms.

This obstacle motivated the first author to introduce the notion of tropical monodromy
eigenvalues (see [13]). The main result in [13] makes it possible to find some of the nearby
monodromy eigenvalues outside the coordinate axes, given only the Newton polyhedron
of a non-degenerate singularity at the origin. We recall this result and restrict to dimen-
sion 4 from now on.

Assume that f .x/ 2 CŒx1; : : : ; x4� is non-degenerate at the origin 0 2 C4. Pick some
pole s0 of the topological zeta function and denote the corresponding candidate eigenvalue
of the Milnor monodromy by t0 D exp.2�is0/.

We suppose that there is a V-vertexA contained in an unbounded face, contributing to
the eigenvalue t0. With no loss in generality, assume that A is on the coordinate axis O1.

Let I � ¹1; : : : ; 4º, I ¤ ; and I ¤ ¹1; : : : ; 4º. We will denote by �I D �¹xi ºi2I
the

projection map

R4 ! R4�jI j; .x1; x2; x3; x4/ 7! . Ox1; Ox2; Ox3; Ox4/;

where Oxi means that xi is removed if and only if i 2 I . When I D ¹xi º is a singleton, we
will also write �xi

.

Theorem 7.6 ([13, Cor. 6.15]). Let �I W Z4 ! Z2 be the projection map. Let N be the

projection of the Newton polyhedron �C.f / under �I . Let a compact edgeE of the poly-

gon N be the projection of a 2-dimensional compact face F of �C.f /. Denote the lattice

distance from E to the origin by d , and some root of the polynomial td � 1 by t 00. If E is

not a segment of lattice length 1 such that exactly one of its end points is a V-vertex of N

contributing to the eigenvalue t 00 and such that another end point has a unique preimage

in F , then t 00 is a monodromy eigenvalue of the germ of f at a non-zero point of ¹f D 0º.

More specifically, if I D ¹x1; x2º, then there exists a curve CE;N;t 0
0

through the origin

in the coordinate plane x3 D x4 D 0 .and outside the axes O1 and O2/ such that t 00 is a

monodromy eigenvalue of the germ of f at a generic point of CE;N;t 0
0
.

Remark 7.7. (1) If the face F contains a V-vertex on a coordinate axis out of I contribut-
ing to t 00, then the condition in Theorem 7.6 is fulfilled.

(2) The nearby monodromy eigenvalues provided by this theorem are called tropical,
because the proof of their existence in [13] is based on the calculus of so called tropical
characteristic classes.
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For instance, this theorem allows one to find the “complicated” nearby monodromy
eigenvalue in Example 7.5.

8. The monodromy conjecture for n D 4

Assume that f .x/ 2 CŒx1; : : : ; x4� is non-degenerate at 0 2 C4. Pick some pole s0 of the
topological zeta function and denote the corresponding candidate eigenvalue of the Mil-
nor monodromy by t0 D exp.2�is0/. Our aim is to prove that, once Theorem 5.2 does not
guarantee that s0 is fake, t0 is a root or pole of the monodromy �-function of a singularity
of f at some point near the origin.

For the rest of the paper, we may assume the compactness of every B-border, adja-
cent to two B-facets contributing the pole s0. Indeed, towards a contradiction, if at least
one such border � were non-compact, then we would have one of the following (up to
reordering the coordinates):

– if � is the Minkowski sum of the point .1; 1;�;�/ and the 3rd and 4th coordinate rays,
then s0 D �1;

– if � is the Minkowski sum of the segment from .1; 1; �; �/ to .0; 0; �; �/ and the 4th
coordinate ray, then its projection along the 4th coordinate is a segment from .1; 1; �/
to .0; 0; �/, adjacent to two B-faces contributing s0 in the Newton polyhedron of
f .x1; x2; x3; x4 C "/ for a small constant " ¤ 0. Then [18] ensures that in this case
exp.2�is0/ is a monodromy eigenvalue of the singularity of f at .0; 0; 0; "/.

In the second subsection we will see how [13] allows us to isolate many cases of
the combinatorial structure of the Newton polyhedron �C.f /, which ensure that t0 is a
nearby monodromy eigenvalue outside the origin.

In the third subsection, we continue this work in the presence of a triangulation of
�C.f / (which can be constructed only if �C.f / does not fall within the scope of the
second subsection). In the fourth subsection, we subdivide the V-pieces of this triangu-
lation into groups such that each of them “contributes” a non-negative multiplicity to t0
as an eigenvalue of the monodromy �-function at the origin, in the sense of the following
definition.

Definition 8.1. Recall that a V-face F is said to contribute to the eigenvalue t0 if
t
N.F /
0 D 1. The number .�1/codimF �1 VolZ.F / for a contributing F and 0 for a non-

contributing F is called the contribution of F . The sum of the contributions of all faces
from some set S of faces is called the contribution of S .

Finally, in the last subsection, we show that once one of the aforementioned groups
violates the assumptions of Theorem 5.2, its contribution is strictly positive. This proves
the monodromy conjecture for non-degenerate singularities of four variables.

The aforementioned subdivision of facets into groups is based on the fact that every
V-simplex F has a unique minimal corner (possibly equal to F ), and the following notion.
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Definition 8.2. For any triangulation of the union of the compact faces of �C.f /, the
family of a V-simplex F of this triangulation is the set of all faces of F , containing its
minimal corner (note that all of them are V-faces by definition of the corner). A family is
said to be trivial if it consists of one element. The dimension of the maximal simplex in a
family is also referred to as the dimension of the family.

Example 8.3. We illustrate the notion of family of a V-simplex by an example in dimen-
sion 3. Let P D .0; 0; a/;Q D .0; b; c/; R D .d; 0; e/ with a; b; c; d and e non-zero and
let S be a vertex outside the coordinate planes such that PQS and PRS are different
V-triangles containing P . Then the minimal corner of PQS is PQ and the family of
PQS is ¹PQS;PQº. The minimal corner of PRS is PR. Hence the family of PRS is
¹PRS;PRº.

Recall that, by Theorem 6.4, the contribution of every family to every eigenvalue is
non-negative or non-positive, depending on the dimension of the family.

Before implementing our general plan, we devote the first subsection to a sandbox
3-dimensional version of this story (first, in order to illustrate a significantly more com-
plicated 4-dimensional case beforehand, and, secondly, because we shall need this 3-
dimensional statement anyway). Although the 3-dimensional result is essentially covered
by [18], the logic of our reasoning is different, and this difference becomes important in
higher dimensions. Indeed, the result in [13] makes us approach the monodromy conjec-
ture for non-isolated singularities by first searching for the monodromy eigenvalue outside
the origin and then, if necessary, at the origin (having already excluded many combinato-
rial possibilities for the structure of the Newton polytope).

8.1. 2- and 3-dimensional cases

We intentionally formulate things in a more complicated way than we could for two or
three variables, in order to keep all the wording consistent with the 4-dimensional case.

Theorem 8.4. For every non-degenerate f 2 CŒx; y�, if a family F has positive contri-

bution to the candidate eigenvalue t0, then t0 is a nearby monodromy eigenvalue for f .

Proof. Note that positive contribution implies that the family F is 1-dimensional (not
0-dimensional).

Step 1: Looking for the monodromy eigenvalue outside the origin (cf. Example 7.3). If
�C.f / has a V-vertex that contributes to the eigenvalue t0 and is not contained in a com-
pact V-edge, then t0 is obviously a nearby monodromy eigenvalue of f at a point of a
coordinate axis.

Step 2: Splitting �C.f / into families otherwise. Define the register of �C.f / as the set
of families of all V-edges. Neglecting the cases covered by Step 1, we notice that every
V-simplex enters exactly one family in the register.

All families in the register have non-negative contribution, and the family F has pos-
itive contribution, thus the total contribution to the eigenvalue t0 is positive.



On the monodromy conjecture for non-degenerate hypersurfaces 3931

Theorem 8.5. For every non-degenerate f 2 CŒx; y; z� and a triangulation of the com-

pact faces of its Newton polyhedron, if a family F of this triangulation has positive

contribution to the candidate eigenvalue t0, then t0 is a nearby monodromy eigenvalue

for f , unless all compact V-simplices containing F are contained in the same .larger/

family whose contribution is 0.

Proof. Step 1: Looking for the monodromy eigenvalue outside the origin. If �C.f / has
a V-edgeG, whose family has non-zero contribution to the eigenvalue t0, and which is not
contained in a compact V-triangle, then such a face is contained in a non-compact face,
parallel to a coordinate axis (say, O1) and not contained in a coordinate plane. Then G
is also a V-edge of the projection of �C.f / along O1, satisfying the assumption of the
preceding theorem (recall Proposition 7.2), so t0 is a nearby monodromy eigenvalue of f
at a point of axis O1.

Step 2: Splitting �C.f / into families otherwise. Define the register of �C.f / as the set
of

– families of all V-triangles,

– for all V-edges outside the aforementioned families, the families of these V-edges;

– (families of) all V-vertices outside the aforementioned families.

Every V-simplex enters exactly one family on the register. In particular, assume
towards a contradiction that a V-vertex A is contained in several families. If one of them
contains the others, then the others are not on the register; otherwiseA is contained in two
1-dimensional families, but then none of them is on the register.

Neglecting the cases covered by Step 1, there are no families of V-edges that are not
contained in V-triangles and have non-zero contribution. Thus the register contains only
even-dimensional families and families having zero contribution.

By Theorem 6.4 the contribution of every even-dimensional family to the multiplicity
of t0 is non-negative. Thus all families on the register have non-negative contribution.

Moreover, at least one of them has positive contribution: if F is a 2-dimensional fam-
ily, then it is on the register with positive contribution. If F is 0-dimensional, and all
compact faces containing F are contained in a larger family, then the larger family is on
the register with non-zero (i.e. positive) contribution. If F is 0-dimensional otherwise,
then it is on the register with positive contribution.

8.2. Dimension 4: Looking for the eigenvalue t0 outside the origin

We suppose that there is a V-vertex A contributing to the eigenvalue t0, and we assume
that A is on the coordinate axis O1.

In this subsection we start to exploit Proposition 7.2 and Theorem 7.6 as much as pos-
sible to derive properties of the combinatorial structure of the Newton polyhedron locally
around A.



A. Esterov, A. Lemahieu, K. Takeuchi 3932

Definition 8.6. The link LA is the subdivision of the triangle TA defined by

x1 D 0; x2 C x3 C x4 D "; x2; x3; x4 � 0;

into the isomorphic images of faces of �C.f / intersected with the hyperplane x2 C
x3 C x4 D " under the projection �x1

, for " > 0 small enough. (The link does not depend
on the choice of " > 0 in the sense that the links for all " > 0 small enough are affinely
isomorphic to each other.)

The image of a face F � �C.f / containing A in the link LA is referred to as the link

of F in LA.

For example, the link of a vertex of a Newton polyhedron is shown in bold in Figure 8.

x2

x1

x3

�x2

N2

A

x2

x1

x3

�x2

N2

A

Fig. 8. Links of Newton polyhedra.

The following fact seems to be common knowledge, but we give a proof as we have
not found an exact reference, and the fact is not entirely tautological.

Proposition 8.7. The union of the relative interiors of the links of bounded faces in LA is

closed and contractible.

Proof. We denote A.a; 0; 0; 0/. By taking a slice of the Newton polyhedron �C.f / with
the hyperplane x1 D a � �, it is sufficient to prove that the union of the compact faces C

of every Newton polyhedronN is contractible.
Let N� be the Minkowski sum of N and a ball of radius �. The union C� of its com-

pact faces (i.e. the set of those boundary points that do not belong to a ray of boundary
points) is a topological disk, because the homeomorphism with the standard simplex is
provided by the Gauss–Bonnet map (sending every boundary point to its unit exterior
normal vector). Now the family of sets C� is a family of vanishing neighborhoods of C ,
so the contractibility of all C� implies the contractibility of C .

Recall that a ray r 2 Rn is said to belong to the recession cone of a set S � Rn if the
Minkowski sum of r and S equals S .

Definition 8.8. A face of �C.f / is called an at least I -face (resp. at most I -face), where
I � ¹1; 2; 3; 4º, if its recession cone contains the positive coordinate axesOi ; i 2 I (resp.
its recession cone does not contain any coordinate axis Oi with i … I ), and is called an
(exactly) I -face if it is an at least and at most I -face. This terminology passes to the
corresponding pieces of the link LA.
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For example, in Figure 8, unbounded facets of the Newton polyhedron are grey, and a
2-piece of the link, corresponding to an unbounded 1-facet, is shown in bold dashes.

Definition 8.9. Let vi be the vertex of the triangle TA opposite to its edge xi D 0. Let l be
a line separating vi from the other vertices of the pieces of LA (i.e. passing close enough
to vi ). Then the subdivision of the segment l \ TA into its intersections with the pieces of
LA is independent of the choice of l (up to a projective transformation) and is called the
link of the vertex vi in the link LA.

Remark 8.10. Let vi be the vertex of the triangle TA opposite to its edge xi D 0. Denote
by Ni the projection �xi

�C.f / along Oi . Notice that for almost every c 2 C, the poly-
nomial f .x1; : : : ; xi�1; xi � c; xiC1; : : : ; xn/ has Ni as Newton polyhedron and is non-
degenerate by Proposition 7.2.

(1) If the vertex vi as a piece of the subdivision LA corresponds to a bounded edge of
�C.f /, then no pieces of the link LA correspond to at least i -faces. In this case the
point �xi

.A/ is not a vertex of Ni .

(2) Otherwise, the pieces of the link LA, containing vi , are exactly the pieces corre-
sponding to at least i -faces. Then the point �xi

.A/ is a vertex Ai , whose link is
(projectively) isomorphic to a subdivision of the link of vi in LA.

See Figure 8 for 3-dimensional examples of both cases. The preceding proposition
extends to I -faces as follows. We shall refer to the links of I -faces in the link LA as
I -pieces of the link LA.

Corollary 8.11. The union of the relative interiors for all exactly I -pieces of the link LA

is contractible, and the union of the relative interiors for all at most I -pieces of the link

LA is closed.

We get the first result about the combinatorial configuration locally at the V-vertexA.

Lemma 8.12. If A contributes to the monodromy eigenvalue t0, and t0 is not a nearby

eigenvalue outside the origin, then there are two possibilities: either

– A is contained in a unique facet outside the coordinate planes, and this facet is an

¹i; j º-facet, or

– A is contained in no I -faces for jI j>1, and in at most one i -facet for every i 2 ¹2;3;4º.

Proof. We discuss only faces containing A and only pieces of the link LA.
(0) If there is an ¹i; j; kº-facet, then t0 is a nearby monodromy eigenvalue at every

point of the ¹i; j; kº-coordinate hyperplane.
(1) If there is more than one 2-dimensional at least i -piece in the link, then, by

Remark 8.10, the (family of the) vertex �xi
.A/ of the polyhedronNi satisfies the assump-

tion of Theorem 8.5 (for any triangulation of compact faces of Ni ).
(2) Assume there is an ¹i; j º-piece in the link such that at least one of its edges is not

contained in the boundary of TA and is disjoint from its vertices. Then the 2-dimensional
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face F � �C.f / corresponding to this edge satisfies the assumptions of Theorem 7.6 by
Remark 7.7.

(3) Assume there is an ¹i; j º-piece in the link such that none of its edges satisfies
the condition requested in (2). If it is the unique 2-dimensional piece in the link LA, then
we arrive at situation (0); otherwise we arrive at situation (1) (possibly with j instead
of i ).

8.3. Dimension 4: Triangulating

In this subsection we continue exploiting Proposition 7.2 to get further information on the
combinatorial structure of the link LA. We shall investigate in particular the cases when
t0 is a monodromy eigenvalue of the singularity of f at some point of the i -th coordinate
axis (although not at the origin). The Newton polyhedron of such a singularity equals
RC � Ni (see Remark 8.10 for notation), so we could apply the 3-dimensional Theo-
rem 8.5 to its analysis. However, for that theorem, we need triangulations of the bounded
faces of the polyhedraNi .

The preceding Lemma 8.12 will play a crucial role. Indeed, under its assumption,
every triangulation T of the compact faces of the Newton polyhedron �C.f / “naturally”
(see Remark 8.13) induces a triangulation of the link LA of a V-vertex A, contributing to
the eigenvalue t0:

(1) Assuming A D .�; 0; 0; 0/, take the isomorphic images of simplices of T intersected
with the hyperplane x2 C x3 C x4 D " under the projection �x1

for small ".

(2) Subdivide every i -piece (Definition 8.8) of the link LA by several segments from the
vertex vi , so that the resulting pieces together with the ones from (1) form a triangu-
lation of TA.

This triangulation will be denoted by QLA. (If the link LA contains a unique 2-dimen-
sional piece corresponding to an ¹i; j º-facet, we triangulate it trivially.)

Remark 8.13. (1) The triangulation QLA is natural in the sense that, in the notation of
Remark 8.10, it agrees with the corresponding triangulations of the projection polyhe-
dra Ni . More specifically, every compact face of Ni is the projection of one compact face
of �C.f /, so the triangulation T of �C.f / induces a triangulation Ti of the compact
faces of Ni . Assume that the link LA contains an i -piece. Then the Ti -triangulated link
of Ai inNi is affinely isomorphic to the triangulated link of vi in QLA. This is an important
refinement of Remark 8.10, as we shall see later in Lemma 8.16.

(2) No triangulation of the link LA may be natural in the above sense in the presence
of ¹i; j º-pieces with edges outside the boundary of TA. So we really have to work under
the assumptions of Lemma 8.12 in this subsection. In particular, we have no natural notion
of a link triangulation QLA associated to T for a V-vertex A that does not contribute to the
eigenvalue t0.

In what follows, we refer to the simplices in the triangulation T as V-simplices or just
V-faces, because we shall not be interested in faces of �C.f / in the usual sense anymore.
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We will now continue to study how the combinatorics of �C.f / ensures the exis-
tence of a nearby monodromy eigenvalue t0 outside the origin, but, this time, taking into
account the chosen triangulation T .

We will choose once and for all a triangulation T and corresponding link triangula-
tions QLA according to the following lemma.

Lemma 8.14. If s0 is a pole of the topological zeta function, then there exists a triangu-

lation T .with no new vertices/ of the Newton polyhedron �C.f / such that either it has

a non-B-simplex .see Definition 3.10/ contributing to the eigenvalue t0 D exp 2�is0, or

a B-border, whose V-edge contributes to the eigenvalue t0.

Proof. Since �C.f / does not satisfy the assumptions of Theorem 5.2 for s0, it contains
either a B-border contributing to the eigenvalue t0, or a non-B-facet, contributing the
pole s0. In the first case, the V-edge of the border contributes to the sought eigenvalue
(see the proof of Lemma 8.31). In the second case, triangulate the contributing non-B-
facet by the use of Lemma 5.18 (so that one of the resulting non-B-simplices contributes
to the sought eigenvalue) and extend this triangulation arbitrarily to the whole �C.f /.

The absence of the nearby monodromy eigenvalue t0 outside the origin imposes lots of
restrictions on combinatorics of the Newton polyhedron �C.f / and the triangulation T .
Let us use these restrictions to make some crucial conclusions about the combinatorics of
the triangulated links of the V-vertices.

Definition 8.15. The vertex vi of the triangle TA opposite to the edge xi D 0 is said to
be the i -th corner of the link LA, if the link triangulation QLA contains a piece of the form
viBC , where B and C are points on the two edges of TA containing vi . Its star is the set
of four pieces, viBC; viB; viC; vi .

Lemma 8.16. If A contributes to the eigenvalue t0 and t0 is not a nearby eigenvalue out-

side the origin, then for every i 2 ¹2; 3; 4º, either the edge of �C.f / corresponding to

the vertex vi 2 TA is bounded and is not a corner of a V-facet, or the link LA has the

i -th corner .which may correspond to an i -edge or to a bounded V-face of �C.f //. In

particular, there are six alternatives for the vertex A in this situation:

– The vertex A is a corner of a V-facet.

– The vertex A is a corner of a V-edge and is contained in a unique facet which is an

¹i; j º-facet.

– The vertex A is contained in a V-edge that is not a corner of a V-facet, and the link LA

has two corners.

– The vertex A is contained in two V-edges that are not corners of V-facets, and the link

LA has one corner.

– The vertex LA is contained in three V-edges that are not corners of V-facets.

– The link LA has three corners.
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Proof. If we exclude the first two cases from our consideration, then, by Lemma 8.12,
there is at most one 2-dimensional i -piece in the link LA for i 2 ¹2; 3; 4º. However, it still
could contain more than one 2-dimensional i -piece of the triangulated link QLA. Once we
exclude this possibility, we prove the lemma.

So assume towards a contradiction that the unique i -piece of the link LA (correspond-
ing to an i -facet � 3 A) contains

(a) no .i; j /-pieces and

(b) at least two i -pieces of the triangulated link QLA (corresponding to compact triangles
�k 3 A in the boundary of �).

From this, we shall conclude that Theorem 8.5 is applicable to the family F D ¹Aiº in
the polyhedron Ni with the triangulation Ti (in the notation of Remarks 8.10 and 8.13),
because this family cannot fall within the “unless” case that we exclude in the statement
of Theorem 8.5. Once we prove this, Theorem 8.5 ensures that t0 is a nearby eigenvalue
on the i -th coordinate axis outside the origin, which contradicts our assumption.

It remains to deduce from (a) and (b) above that the family F does not fall within the
case that we exclude in the statement of Theorem 8.5. Indeed, (a) implies that all faces
of Ni which contain the vertex Ai and are not contained in a coordinate plane, are com-
pact. And (b) ensures that such faces contain at least two triangles with vertex Ai in the
triangulation Ti : these are the projections of �k along the i -th coordinate axis.

Thus all pieces of the triangulation Ti containingAi cannot belong to the same family
(because every family contains at most one triangle).

We will need the following combinatorial observation, applicable to the conclusion of
Lemma 8.16. Let QL be a triangulation of a triangle T .

Definition 8.17. A triangle of QL is said to be interior if none of its edges is contained in
the edges of T , and no one of its vertices is a vertex of T . An interior triangle of QL is said
to be inscribed if its three vertices are in the interior of the three edges of T . A vertex of
T is called a corner of the triangulation QL if it is a vertex of only one of the triangles in
the triangulation.

Lemma 8.18. (1) If the triangulation QL of a triangle T has three corners, then either it

has an inscribed triangle, or it has at least three interior triangles.

(2) If the triangulation QL has a corner, and no edge of the triangulation connects a vertex

of T to its opposite edge, then T has an interior triangle.

Informally speaking, this means that, in the setting of Lemma 8.16, the link looks sim-
ilarly to one of the six examples in Figure 9. The pieces of the link that may correspond

Fig. 9. Examples of links of vertices in the setting of Lemma 8.16.
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to i -facets for some i are shown in grey; the white area may be subdivided into pieces in
a more complicated way than shown in the picture.

Proof of Lemma 8.18. The proof of part (1) proceeds by induction on the number of tri-
angles in the triangulation. If any corner triangle can be glued with its (unique) adjacent
triangle into a larger triangle, then glue and apply the induction hypothesis. Otherwise
each of the three corner triangles is adjacent to some interior triangle Ti . If Ti D Tj , then
its vertices are in the interior of the three edges of T , and otherwise Ti are three different
interior triangles.

Part (2) is proved in the same way.

From Proposition 7.2 we can also deduce the following result.

Lemma 8.19. If a V-triangleF � �C.f / is not contained in a V-facet, and its family .see

Definition 8.2/ contributes to the eigenvalue t0, then t0 is a nearby monodromy eigenvalue

outside the origin.

Proof. Under these assumptions, if F is in the i -th coordinate hyperplane, then �xi
F is

a facet of Ni D �xi
�C.f /, whose family contributes to t0, so t0 is a nearby monodromy

eigenvalue at a point of the i -th coordinate hyperplane by Theorem 8.5.

8.4. Monodromy conjecture for non-degenerate singularities of four variables

We now prove the monodromy conjecture for non-degenerate singularities of four vari-
ables, similarly to Theorem 8.5. Recall our setting.

Let f 2 CŒx1; x2; x3; x4� be non-degenerate at the origin. Let s0 be a pole of the
topological zeta function of f and set t0 D exp.2�is0/. Analogously to the proof of The-
orem 8.5, we choose once and for all a triangulation T of the Newton polyhedron �C.f /

in accordance with Lemma 8.14, and we will define the register of �C.f / as a disjoint
union of certain groups of families. It will be practical to work with what we call extended
families.

Definition 8.20. The extended family of a V-simplex F is the set of all V-faces from the
family of F and, in the case of dimF D 3, also the V-vertex of F whenever it is a maxi-
mal (under inclusion) V-face of F . In this case, F has no other V-faces except for, maybe,
the facet of F opposite to the V-vertex (notice that if A and PQ are V-faces in a facet
APQR, then APQ is also a V-face).

Remark 8.21. A V-vertex A is in the extended family of a V-tetrahedron � if and only if
the image of � in the triangulated link QLA is an interior triangle or coincides with TA.

Definition 8.22. The register R of �C.f / (depending on the chosen triangulation) is the
set of the following extended families:

– extended families of all 3-dimensional V-simplices;

– extended families of all 2-dimensional V-simplices that do not enter the aforementioned
extended families;
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– extended families of all 1-dimensional V-simplices that do not enter the aforementioned
extended families.

Remark 8.23. Notice that every positive-dimensional V-simplex enters exactly one
extended family of the register. This is obvious for simplices of dimensions 2 and 3,
and a V-edge E may enter families of two different V-triangles, but in this case, by the
subsequent Lemma 8.24, both of these triangles are themselves in families of V-tetrahedra
�1 and �2, so their own families are not in the register. Thus the extended family of E is
itself in the register for �1 ¤ �2 (becauseE is not a corner of any tetrahedron in this case),
and E is in the extended family of �1 D �2 otherwise.

Lemma 8.24. If a bounded .n � 3/-dimensional V-face � of a Newton polyhedron in Rn

is contained in two bounded .n � 2/-dimensional V-faces �1 and �2, then each of these

faces is contained in a bounded V-facet.

Proof. This is obvious for n D 3, and the general case reduces to n D 3 by taking the
projection of the Newton polyhedron along the affine span of �.

We will now prove the monodromy conjecture for non-degenerate singularities of four
variables, modulo several lemmas in the next subsection regarding certain exotic families.

Theorem 8.25. Let f 2 CŒx1; x2; x3; x4� be non-degenerate at the origin. Let s0 ¤ �1
be a pole of the topological zeta function of f and set t0 D exp.2�is0/. If t0 is not a

.tropical/ nearby monodromy eigenvalue outside the origin, then t0 is a root of the mon-

odromy zeta function of f at the origin, and hence a monodromy eigenvalue.

Proof. Let T be a triangulation of the Newton polyhedron �C.f /, according to
Lemma 8.14, and let us induce from T the corresponding link triangulations QLv for every
V-vertex v, contributing to the eigenvalue t0 (see the beginning of the preceding subsec-
tion).

For every V-vertex v, denote by r.v/ the number of extended families containing v in
the register R.

By Remark 8.23, we represent the multiplicity of the candidate root t0 D exp.2�is0/
of the monodromy zeta function as

X

F

.contribution of F to the multiplicity of t0/C
X

v

.r.v/ � 1/; .�/

where F runs over the register, and v runs over V-vertices, contributing to t0.
We will prove that every term in every sum of .�/ is non-negative, and moreover at

least one term in .�/ is strictly positive.
In our setting we have:
1. The contribution of every extended family F 2 R to the multiplicity of t0 is non-

negative. For 3-dimensional extended families, this follows from Theorem 6.4 and Lemma
8.28 in the next subsection. Note that there are no 2-dimensional families contributing to
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t0 by Lemma 8.19. As s0 ¤ �1, the contribution of every 1-dimensional family to t0 is
also non-negative (see for example [18, proof of Proposition 5]).

2. For every V-vertex A contributing to the eigenvalue t0, we have r.A/ � 1. This is
because, by Lemmas 8.16 and 8.18 (1), the vertex A is contained in one of the following:

– a V-tetrahedron for which A is a corner;

– a V-edge whose extended family is in the register;

– a V-tetrahedron whose image in the triangulated link QLA is interior, and whose extended
family thus contains A.

3. The contribution of at least one odd-dimensional extended family F 2 R is posi-
tive, or r.v/ > 1 for some V-vertex v. To see this, consider the following possible cases:

– If Lemma 8.14 provides a B-borderAA1A2 contained in two V-tetrahedra, whose can-
didate pole of the topological zeta function equals s0, then we have two subcases for
its V-edge A1A2:

– Assume for everyAi the following: if it is a V-vertex contributing to t0, then the edge
AAi is in a coordinate plane. Under this assumption, the contribution of the family
of the V-edge A1A2 of this border is positive by Lemma 8.31 below.

– Assume that some Ai (say, A1) fails the preceding assumption. Then, in the triangu-
lated link QLA1

, exactly one interior segment contains the vertex v corresponding to
the V-edge A1A2: this segment corresponds to the border triangle AA1A2 and does
not split the link by our assumption. Now we have again two subcases:

– QLA1
has exactly two corners. Then Lemma 8.18 (2) applies to QLA1

and provides
an interior triangle. The V-vertex A1 is then contained in the extended families of
the V-edge A1A2 and the V-tetrahedron, corresponding to the interior triangle, so
r.A1/ > 1 (both of these families are on the register, since A1A2 is not a corner).

– QLA1
has at most one corner. Then A1 is contained by Lemma 8.16 in the extended

families of two V-edges which are not corners, hence on the register, so r.A1/ > 1.

– If Lemma 8.14 provides a contributing V-tetrahedron whose extended family coincides
with the usual family, then the contribution of this family is positive by Theorem 6.4.

– If Lemma 8.14 provides a V-tetrahedron F for which the candidate pole is s0, and
whose extended family consists of the family of F and one additional contributing
V-vertex A, then by Lemma 8.16 we have two subcases for the triangulated link QLA:

– One of the vertices of QLA corresponds to a V-edge whose extended family contains
A and is contained in the register. In this case r.A/ � 2, because A is also in the
extended family of F .

– There are three corners in QLA. This case subdivides into the following subcases by
Lemma 8.18 (1):

– There are three interior triangles in QLA. Then r.A/ > 2 > 1.

– There is an inscribed triangle in QLA, and it is not the image of F . Then r.A/ > 1.
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– There is an inscribed triangle in QLA, and it is the image of F . Then Lemma 8.26
or 8.29 from the next subsection applies to F , so its extended family has a positive
contribution to the multiplicity of t0.

We conclude that t0 is a root of the monodromy zeta function and, in particular, a mon-
odromy eigenvalue of the singularity f at the origin.

8.5. Exotic families

In the course of the proof of the monodromy conjecture for nD 4, we encountered certain
exotic families of V-faces, whose contributions to the multiplicity of the corresponding
monodromy eigenvalue ought to be non-zero. Their contributions are estimated in this
subsection.

For the most part (Lemmas 8.26–8.29), we will study the extended family of a facet
� D ABCD if it does not coincide with the family of � (i.e. consists of a V-vertex A � �

and possibly its opposite triangular face whenever it is a V-face), and often moreover
assume that � defines an inscribed triangle (Definition 8.17) in the link of A.

Lemma 8.26. Let � D ABCD be a 3-dimensional lattice simplex in a compact facet

of �C.f / such that v D A.0; 0; 0; ˛/ is its only proper V-face contributing to t0 D
e�2�i�.�/=N.�/. If B.ˇ1; ˇ2; ˇ3; ˇ4/; C.
1; 
2; 
3; 
4/ and D.ı1; ı2; ı3; ı4/ with ˇ2 D

3 D ı1 D 0, then VolZ.�/ ¤ 1.

Proof. Assuming to the contrary that VolZ.�/ D 1, the vector product of AB;AC;AD is
a primitive vector .a; b; c; d /, normal to � :

aff.�/ W ax1 C bx2 C cx3 C dx4 D N; with

a D 
2ı3.˛ � ˇ4/C ı2ˇ3.˛ � 
4/ � ˇ3
2.˛ � ı4/;

b D ı3ˇ1.˛ � 
4/C ˇ3
1.˛ � ı4/ � 
1ı3.˛ � ˇ4/;

c D ˇ1
2.˛ � ı4/C 
1ı2.˛ � ˇ4/ � ı2ˇ1.˛ � 
4/;

d D ˇ1
2ı3 C 
1ı2ˇ3

N D ˛d:

Since A contributes to t0, we have d j .a C b C c C d/. Let k 2 Z be such that a C b C
c C d D .�k C 1/d and let M be the matrix

0

B

B

@

ˇ1 0 ˇ3 ˇ4 � ˛


1 
2 0 
4 � ˛

0 ı2 ı3 ı4 � ˛

1 1 1 k

1

C

C

A

:

Then M t .a; b; c; d / D t0. By Lemma 9.5 it follows that d divides the minors M i
4,

1 � i � 4, which are

M 1
4 D 
1ı2 C 
2ı3 � 
1ı3;



On the monodromy conjecture for non-degenerate hypersurfaces 3941

M 2
4 D ı3ˇ1 C ı2ˇ3 � ı2ˇ1;

M 3
4 D ˇ1
2 C ˇ3
1 � ˇ3
2;

M 4
4 D d:

As A is a maximal (under inclusion) proper V-face of � , none of the numbers ˇ1; ˇ3;


1; 
2; ı2; ı3 equals 0, and then obviouslyM 1
4 ;M

2
4 ; and M 3

4 are strictly less than d . As

M 1
4


1ı3

C M 2
4

ı2ˇ1

C M 3
4

ˇ3
2

D
�

ı2

ı3

C ı3

ı2

�

C
�


2


1

C 
1


2

�

C
�

ˇ3

ˇ1

C ˇ1

ˇ3

�

� 3 > 0;

it follows that at least one of the minors M 1
4 ;M

2
4 ; or M 3

4 is strictly positive, which con-
tradicts the fact that d divides the minorsM i

4 , 1 � i � 4.

Lemma 8.27. Let � D APQR with A.2; 0; 0; 0/, P.0; 0; p2; p3/, Q.0; q1; 0; q3/,

R.0; r1; r2; 0/ be a 3-dimensional lattice simplex in a compact facet of �C.f / contribut-

ing to t0 D e�2�i�.�/=N.�/ ¤ 1. Assume that v D A and � D PQR are the only proper

V-faces in � contributing to t0. Then .VolZ.�/;VolZ.�// ¤ .1; 2/.

Proof. Suppose that VolZ.�/ D 2 and VolZ.�/ D 1. Let

aff.�/ W ax1 C bx2 C cx3 C dx4 D N.�/ D 2a

be the equation of aff.�/ with GCD.a; b; c; d / D 1. One has N.�/
GCD.b;c;d/

D N.�/ and as �
contributes to t0, we have

�.�/

N.�/
N.�/ D aC b C c C d

N.�/
N.�/ 2 Z:

This implies that GCD.b; c; d / divides a. As GCD.a; b; c; d / D 1, we get GCD.b; c; d /
D 1. Since the V-face v D A contributes to t0, we also have a j .b C c C d/. Then by
N.�/ D 2a, we obtain t0 D 1 (which is excluded) or t0 D �1. We study what happens
when t0 D �1. This implies that 2a j .bC c C d/. As VolZ.�/D 2, by Proposition 9.2 (2)
the even integers 2a; 2b; 2c and 2d are the 3 � 3 minors of the matrix

0

@

PA

QA

RA

1

A D

0

@

�2 0 p2 p3

�2 q1 0 q3

�2 r1 r2 0

1

A ;

and hence the expressions for a; b; c and d become

a D q1r2p3 C r1p2q3

2
; b D r2p3 C p2q3 � q3r2;

c D p3q1 C q3r1 � r1p3; d D q1r2 C r1p2 � p2q1:

For the integer k D .bC c C d/=a the vector .�k; 1; 1; 1/ is a rational linear combination

of
��!
AP ;

��!
AQ and

�!
AR, because .�k;1;1;1/ � .a;b;c;d /D 0, and

��!
AP ;

��!
AQ and

�!
AR generate

the orthogonal complement to .a; b; c; d /.
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Let H ' R3 be the affine hyperplane in R4 containing � and consider the lattice
L WD H \ Z4 ' Z3 in it. For the integer k D .b C c C d/=a, we have .�k; 1; 1; 1/ 2 L.
Since the normalized volume of � is 2, the sublatticeK ofL generated by the three vectors
��!
AP ;

��!
AQ and

�!
AR is of index 2 in L, i.e. ŒL W K� D 2.

This means there exist integers x; y; z such that

0

B

B

@

�2 �2 �2
0 q1 r1
p2 0 r2
p3 q3 0

1

C

C

A

0

@

x

y

z

1

A D

0

B

B

@

�2k
2

2

2

1

C

C

A

: (8.1)

We define

M D

0

@

0 q1 r1
p2 0 r2
p3 q3 0

1

A :

Then by Cramer’s rule we find that

x D 2.r2q1 C r1q3 � r2q3/

det.M/
; y D 2.r2p3 C r1p2 � r1p3/

det.M/
;

z D 2.q1p3 C p2q3 � p2q1/

det.M/
:

Now we study the possible signs of x;y and z. If p2 � p3 and q1 � q3, then y;x > 0.
If p2 �p3 and q1 � q3, then y;z > 0. Ifp2 �p3 and r1 � r2, then z;y > 0 and so on. Thus
we find that at least two of the integers x;y and z are always positive. By permuting them,
we may assume that x; y > 0. As none of p2; p3; q1; q3; r1; r2 is equal to 0, the equation
p3xC q3y D 2 obtained by (8.1) implies that p3 D q3 D 1 and x D y D 1. Consequently,

a D q1r2 C r1p2

2
; b D p2; c D q1; d D q1r2 C r1p2 � p2q1

and det.M/ D q1r2 C r1p2. As we have supposed that 2a j .b C c C d/, we have

.q1r2 C r1p2/ j .p2 C q1 C q1r2 C r1p2 � p2q1/ ” det.M/j.p2 C q1 � p2q1/

and z is an even integer. Hence, again by (8.1) and since x D y D 1, we find that p2 and
q1 should be even. Then

GCD.b; c; d / D GCD.p2; q1; q1r2 C r1p2 � p2q1/ � 2;

which contradicts GCD.b; c; d / D 1.

Recall that, for a V-face � , we define

�� .t/ D .1 � tN.�//VolZ.�/ 2 CŒt �:
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Lemma 8.28. (1) Let � D APQR be a 3-dimensional lattice simplex in a compact facet

of �C.f / such that v D A.˛; 0; 0; 0/ and � D PQR are V-faces. Then

�� .t/ � .1 � t/

�v.t/ � �� .t/

is a polynomial.

(2) If VolZ.�/ D VolZ.�/, then 1 is the only common root of the polynomials in the

denominator.

Proof. If VolZ.�/ > VolZ.�/ then the assertion is obvious. So suppose that VolZ.�/ D
VolZ.�/. Let

aff.�/ W ax1 C bx2 C cx3 C dx4 D N.�/

be the equation of aff.�/ with GCD.a; b; c; d / D 1. Since

N.v/ D ˛ D N.�/

a
; N.�/ D N.�/

GCD.b; c; d /

and GCD.a; b; c; d / D 1, the equivalent (by Proposition 9.2 and Lemma 9.4) conditions

VolZ.�/ D VolZ.�/ ” GCD.N.v/;N.�// D 1

imply that N.�/ D a � GCD.b; c; d /, N.�/ D a and N.v/ D ˛ D GCD.b; c; d /. Hence

�� .t/

�v.t/ � �� .t/
D .1 � ta�˛/VolZ.�/

.1 � t˛/ � .1 � ta/VolZ.�/
:

The only common zero of �v.t/ and �� .t/ is 1, because GCD.a; ˛/ D 1. Thus the denom-
inator divides the numerator.

Lemma 8.29. Let � D APQR with A.˛; 0; 0; 0/, P.0; 0; p2; p3/, Q.0; q1; 0; q3/,

R.0; r1; r2; 0/ be a 3-dimensional lattice simplex in a compact facet of �C.f /. Assume

that v D A and � D PQR are its proper V-faces contributing to t0 D e�2�i�.�/=N.�/ 6D 1.

Then for the polynomial

F.t/ D �� .t/ � .1 � t/
�v.t/ � �� .t/

2 CŒt �

.see Lemma 8.28/ we have F.t0/ D 0.

Example 8.30. The only V-facet of the function f .x1; x2; x3; x4/ D x2
1 C x3

2x
3
3 C

x3
2x

3
4 C x3

3x
3
4 has the extended family as in Lemma 8.29 and contributes the pole

s0 D �3=4. One easily checks that the multiplicity of the corresponding monodromy
eigenvalue t0 D e�8�i=3 equals 18� 9C 1 D 10 ¤ 0.

Proof of Lemma 8.29. Writing F.t/ by the definition as

F.t/ D .1 � tN.�//VolZ.�/ � .1 � t/
.1 � tN.v//1 � .1 � tN.�//VolZ.�/

;

the statement is obvious if VolZ.�/ > VolZ.�/ C 1. Since VolZ.�/ divides VolZ.�/ by
Proposition 9.2, the only exceptions from the first inequality would be the cases
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(1) VolZ.�/ D VolZ.�/ or

(2) VolZ.�/ D 2 and VolZ.�/ D 1.

In the first case the sought statement follows from Lemma 8.28 (2). Suppose now that
VolZ.�/ D 2 and VolZ.�/ D 1. Let

aff.�/ W ax1 C bx2 C cx3 C dx4 D N.�/ D a � ˛

with GCD.a;b; c;d /D 1. If the V-face � does not contribute to t0, then clearly F.t0/D 0.
If it does, then

N.�/
a C b C c C d

N.�/
2 Z:

As N.�/ D N.�/=GCD.b; c; d /, this would imply that

a C b C c C d

GCD.b; c; d /
2 Z:

As GCD.a; b; c; d / D 1, one gets GCD.b; c; d / D 1 and hence N.�/ D N.�/. As

VolZ.�/ D ˛ � det.M/

N.�/
D 2 and VolZ.�/ D det.M/

N.�/
D 1;

where

M D

0

@

0 q1 r1
p2 0 r2
p3 q3 0

1

A ;

we find ˛ D 2. This case is excluded by Lemma 8.27.

It now remains to study the contributions of B-borders (Definition 5.1), generalizing
the proof of [18, Theorem 15].

Lemma 8.31. Assume that f .x/ 2 CŒx1; : : : ; x4� is non-degenerate at 0 2 C4. Let �1

and �2 be compact B-facets in �C.f / intersecting in a B-border AA1A2 with a V-edge

A1A2, and contributing the same candidate pole s0 ¤ 1.

Assume additionally for every Ai the following: if it is a V-vertex, contributing to the

eigenvalue t0 D exp.�2�is0/, then the edge AAi is in a coordinate plane.

Then the contribution of the family of the V-edge A1A2 of this border to the multiplic-

ity of the corresponding eigenvalue t0 D exp.�2�is0/ is positive, i.e. for the polynomial

F.t/ D �A1A2
.t/ � .1 � t/

�A1
.t/ � �A2

.t/
2 CŒt �

we have F.t0/ D 0.

Proof. Without loss of generality, we can assume that both �1 and �2 are compact simpli-
cial B1-facets: indeed, if �i is a B2-facet, then it contains a B1-tetrahedron with the same
B-border, and we can consider this B1-tetrahedron instead of �i .
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We rename �1 D ABCD and �2 D ABCE so that A D .1; 1; ˛3; ˛4/, B D
.0; 0; ˇ3; ˇ4/, C D .0; 0; 
3; 
4/, D D .0; ı2; ı3; ı4/ and E D ."1; 0; "3; "4/. By com-
puting the equation of the affine space passing through A;B; C and D, we compute the
candidate pole s0 contributed by �1 and �2:

s0 D .
4 � ˇ4/.˛3 � ˇ3 � 1/C .ˇ3 � 
3/.˛4 � ˇ4 � 1/
ˇ3.
4 � ˇ4/C ˇ4.ˇ3 � 
3/

:

As the lattice index of the V-segment BC is equal to the absolute value of

ˇ3.
4 � ˇ4/C ˇ4.ˇ3 � 
3/

GCD.
4 � ˇ4; ˇ3 � 
3/
;

the V-face BC contributes to t0. If neither B nor C contributes to the eigenvalue t0, then
the statement is obvious by projecting along BC .

So first suppose that B is a contributing V-vertex and C is not. Say ˇ3 D 0. Then, by
the additional assumption in the statement of the lemma, we have AD .1; 1; 0; ˛4/, so the
affine space passing through the facet ABCD has equation

x1 Œ
3.ı4 � ˇ4/ � ı3.
4 � ˇ4/ � ı2
3.˛4 � ˇ4/�C x2Œı3.
4 � ˇ4/ � 
3.ı4 � ˇ4/�

C x3 Œı2.ˇ4 � 
4/�C x4.
3ı2/ D ˇ4
3ı2:

The corresponding candidate pole is then


3.˛4 � ˇ4/C 
4 � ˇ4 � 
3

ˇ4
3

:

As B also contributes to t0, one sees that 
3 divides ˇ4 � 
4. Note that VolZ.BC / D 
3

and 
3 > 1 (otherwise we have a B2-border).
We now suppose that both B and C are contributing V-vertices to t0. Then, by the

additional assumption in the statement of the lemma, we have A D .1; 1; 0; 0/, so as
before one gets VolZ.BC / > 1. As C contributes to t0, one would have a cancelation if
VolZ.BC / D 2. Now

s0 D �
3ˇ4 � ˇ4 � 
3

ˇ4
3

and so ˇ4 should divide 
3. We have VolZ.BC / D GCD.ˇ4; 
3/ D 
3, because B con-
tributes to t0. If VolZ.BC /D 2, then 
3 D 2 and ˇ4 D 2 (otherwise we have aB2-border),
so t0 D 1.

9. Appendix: some elements of lattice geometry

We recall some basic notions and facts about the geometry of Zn that we use throughout
the paper. A latticed space is a real affine space A with an integer lattice L � A such that
dimL D dimA. For instance:

– Rn is always considered a latticed space with lattice Zn;
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– a rational affine subspace A � Rn is always considered a latticed space with lattice
A\ Zn;

– the quotient space of Rn along its rational affine subspaceA (i.e. Rn=.A� a/ for a 2A)
is always considered a latticed space whose lattice is the image of Zn under the quotient
map.

A lattice polytope in a latticed space A is a polytope all of whose vertices belong to
the lattice.

The lattice volume form on a latticed space A with lattice L is the volume form such
that the volume of A=L equals .dimA/Š, or equivalently the minimal positive volume
form such that the volume of every lattice polytope in A is an integer.

A segment in a latticed space A is said to be primitive if its end points are the only
lattice points that it contains. The lattice distance between two lattice points a and b is
the number of primitive segments into which the lattice points subdivide the segment ab.
In coordinates, the lattice distance between a; b 2 Zn is the GCD of the coordinates of
the difference b � a.

The lattice distance from a lattice affine subspaceA � Rn to the origin can be defined
in one of the following equivalent ways:

(I) It is the lattice distance between 0 and the image of A under the projection p of Rn

along A; in particular, if A is a hypersurface given by a1v1 C � � � C anvn D q with
coprime integer coefficients ai and q, then the lattice distance from A to 0 equals jqj.

(II) It is the maximum of the lattice distances between the points of A and 0.

Remark 9.1. By the definition, the lattice distance from 0 to any point of A divides the
distance from 0 to A. As a consequence, the distance from any affine subspace A0 � A

divides the distance from 0 to A.

The lattice distance from a lattice polytope P in Rn to a lattice point a is defined as
the lattice distance from the affine hull of the shifted polytope P � a to the origin.

Metric computations with lattice length and distances naturally translate into the lat-
tice setting. For instance, the following statements directly follow from their well known
metric versions:

Proposition 9.2. (1) The lattice volume of a lattice pyramid in Rn equals the lattice vol-

ume of its base times the lattice distance from the base to the apex.

(2) The lattice volume of an .n � 1/-dimensional simplex in Zn generated by vectors

v1 : : : ; vn�1 is equal to the lattice length of the vector product v1 ^ � � � ^ vn�1.

Denote the lattice distance from a lattice polytope P 2 Rn to the origin by N.P /.

Remark 9.3. (1) If � is the projection of Rn along an affine subspace of the affine hull
of the polytope P , then N.P / D N.�.P // by the definition of the lattice distance.

(2) If j is the embedding Rn ! Rn ˚ Rm, then N.P / D N.j.P //.
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Lemma 9.4. (1) For a lattice polytope � � Rn and its face 
 , we have N.
/ jN.�/.
(2) For lattice polytopes 
 � Rk and 
 0 � Rn�k and their affine hull � � Rk ˚ Rn�k ,

we have N.�/ D LCM.N.
/;N.
 0//.

(3) If 
 0 is a point in the setting of .2/, then the lattice distance from 
 0 to 
 equals

GCD.N.
/;N.
 0//.

Proof. Part (1) rephrases Remark 9.1. Parts (2) and (3) are obvious if 
 and 
 0 are points
and kD n� k D 1. The general case reduces to this one by Remark 9.3 for the projections
of Rk and Rn�k along the affine hulls of 
 and 
 0.

Besides these geometric observations, in the study of exotic families, we use the fol-
lowing observation from integer linear algebra. Let us first fix notation. For an n � n

matrix A and I; J � ¹1; : : : ; nº with the same cardinality, we write AI
J for the minor of

A obtained by removing the rows with index in I and the columns with index in J . When
I D ¹xi º is a singleton, we will also write Axi

J and idem for J .

Lemma 9.5. Let A 2 Mn.Z/. Let P D .P1; : : : ;Pn/
t be a primitive vector of size n such

that AP D 0. Then Pn divides the minors Ai
n for 1 � i � n.

Proof. We proceed by induction on n. One easily verifies the statement when n D 2. We
now take a matrix A 2 Mn.Z/ with n > 2. By elementary row operations over Z, we
transform A into a matrix B with first column .k; 0; : : : ; 0/t with k 2 Z. Then we still
have BP D 0. We set d D GCD.P2; : : : ; Pn/. As P is a primitive vector, we deduce
that d divides k. By the induction hypothesis, Pn=d divides the minors B¹1;iº

¹1;nº
for all

i 2 ¹2; : : : ; nº. Hence Pn divides kB¹1;iº

¹1;nº
D B i

n for all i 2 ¹2; : : : ; nº. As B1
n D 0, we find

that Pn divides B i
n for all i 2 ¹1; : : : ; nº and so Pn also divides the original minors Ai

n

for all i 2 ¹1; : : : ; nº.
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