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Abstract. We provide several applications of the minimal model program to the local and global
study of co-rank 1 foliations on threefolds. Locally, we prove a singular variant of Malgrange’s
theorem, a classification of terminal foliation singularities and the existence of separatrices for log
canonical singularities. Globally, we prove termination of flips, a connectedness theorem on log
canonical centres, a non-vanishing theorem and some hyperbolicity properties of foliations.
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Introduction

Our primary goal in this paper is to use techniques and ideas from the foliated Minimal
Model Program (MMP) to deduce some structural and dynamical results for foliation
singularities. Along the way we further develop the MMP and explore some applications
of these developments to global properties of foliations.

Local results

To every foliation singularity the MMP associates a numerical invariant, the discrepancy,
which measures how the canonical class of the foliation changes under blow ups.

Our local results explore to what extent this numerical invariant characterizes the
structural and dynamical behaviour of the foliation singularity. Here we are mostly inter-
ested in three classes of foliation singularities which are defined according to the beha-
viour of the discrepancy: terminal, canonical and log canonical (see Definition 1.4). Ter-
minal singularities can be viewed as the mildest class of singularities of the MMP whereas
log canonical are the most severe. Consider the following two quick illustrations of this
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principle: terminal foliations on smooth surfaces are smooth foliations, and simple singu-
larities (see Definition 1.8) are canonical; we refer the reader to Section 1.9 for a further
discussion on the relations and parallels between the classes of singularities of the MMP
and other classes of singularities.

The singularities of the MMP are birational generalizations of nice classes of foli-
ation singularities and are natural from the perspective of the geometry of foliations. For
example, canonical foliation singularities play a central role in the study of hyperbolicity
properties of surfaces by McQuillan [29, 30], and in the classification of foliations with
trivial canonical bundle [15, 26].

We remark that simple singularities (which are roughly analogous to the singularities
of smooth normal crossings pairs) are not preserved by the operations of the MMP, since
the underlying variety may become singular in the course of the MMP. In other words, if
one seeks to improve the global geometry of the foliation (by making KF more positive)
one loses some control on the local geometry of the foliation. In light of this, canonical
singularities should be viewed as a compromise. They are flexible enough to allow for
the operations of the MMP, but mild enough to have many of the desirable properties of
simple singularities.

A fundamental result in the study of singular foliations on smooth varieties is a the-
orem of Malgrange [27] asserting that the classical Frobenius integrability criterion holds
even in the presence of foliated singularities, provided that the codimension of the sin-
gular locus of the foliation is at least 3. We prove a version of Malgrange’s theorem on
singular threefolds.

Theorem 0.1 (= Theorem 5.1). Let .P 2 X/ be a germ of an isolated .analytically/
Q-factorial threefold singularity with a co-rank 1 foliation F . Suppose that F has an
isolated canonical singularity at P . Then F admits a holomorphic first integral.

The above statement is close to optimal (cf. [14, Examples 1.1–1.3]).
As a consequence, we obtain the following strong classification result.

Theorem 0.2 (= Theorem 5.20). Let .P 2 X/ be a germ of normal threefold with a
co-rank 1 foliation F with terminal singularities. Then F admits a holomorphic first
integral.

Moreover, up to a Z=nZ � Z=mZ-cover, F admits a holomorphic first integral
�W .P 2 X/ ! .0 2 C/, where ��1.0/ is a Du Val surface singularity and ��1.t/ is
smooth for t ¤ 0. In particular, X is terminal. Furthermore, .X;F / fits into the finite list
of families contained in Proposition 5.19.

We remark that in Theorem 0.2 we make no assumption on the singularities of the
underlying space other than normality.

We also remark that Theorems 0.1 and 0.2 should be viewed as analogues of the
classification of terminal and canonical singularities on threefolds. These classification
results have been crucial in understanding the global geometry of threefolds, as well as
the moduli space of surfaces, and we expect the above results to play a corresponding
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role in the study of the global geometry of foliations of threefolds and moduli of surface
foliations.

We next prove a result on the existence of separatrices of log canonical foliation sin-
gularities. Loosely speaking, a separatrix may be thought of as a local solution to the
differential equation defining the foliation; see Definition 1.11 for a precise definition. It
is an interesting and challenging problem to decide when a foliation singularity admits a
separatrix. The existence of a (converging) separatrix is an essential element in the study
of foliation singularities as it provides a way to “organize” the dynamics around the sin-
gularity. While separatrices do not necessarily exist for a general foliation singularity, we
prove their existence for log canonical singularities.

Theorem 0.3 (= Theorem 6.1). Let F be a germ of a log canonical foliation singularity
at .0 2 C3/. Then F admits a separatrix.

Our strategy of proof actually provides a more general version of this result allowing
the underlying analytic germ to be singular.

In [8] it is shown that non-dicritical foliation singularities always admit separatrices,
confirming a conjecture of R. Thom. Log canonical singularities are in general dicritical
and so [8] does not apply to prove existence of separatrices for this class of singularities.
Theorem 0.3 is also closely related to a local analogue of a conjecture of Brunella that has
been formulated in [12] and explored in [11].

We remark that results analogous to Theorems 0.1 and 0.3 have been shown in [14]
and [10], respectively, under differing assumptions on the singularities of the foliation
and variety. An advantage of our statements is that they hold for very natural classes of
singularities which appear on large classes of foliations.

Classically, the technique of inversion of adjunction has proven crucial for understand-
ing singularities by providing a precise relation between the singularities of a variety and
the singularities of a divisor in the variety. We prove a foliated analogue of this result
which should prove equally useful in the study of foliation singularities.

Theorem 0.4 (= Theorem 3.12). Let X be a Q-factorial threefold and let F be a co-
rank 1 foliation. Consider a prime divisor S and an effective Q-divisor � on X which
does not contain S in its support. Let �W S� ! S be the normalization and let G be the
restricted foliation to S� and write ��.KF C�/ D KG C‚. Suppose that

� if S is transverse to F , then .G ; ‚/ is log canonical;

� if S is F -invariant, then .S� ; ‚/ is log canonical.

Then .F ; �.S/S C�/ is log canonical in a neighbourhood of S .

Here, �.S/ D 0 if S is not F -invariant, whereas �.S/ D 1 otherwise.
We refer the reader to §3.3 for a discussion of this result and its relationship to the

adjunction formula for log canonical pairs (cf. §3.2).
We now take a moment to explain some of the key ideas of the proofs of the above

statements. Indeed, our central innovation is the systematic use of F-dlt modifications
to study foliation singularities; see Theorem 2.4 for a recollection on the definition and
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existence of F-dlt modifications, which was first proved in [13]. An F-dlt modification
(which is a foliated analogue of a classical dlt modification) is a special kind of partial
resolution which extracts divisors such that the global properties of the foliation restricted
to these divisors strongly reflect the local properties of the foliation singularity. In partic-
ular, for dicritical singularities, an F-dlt modification will always extract one exceptional
geometric valuation transverse to the foliation.

To prove Theorem 0.3 we extract, by way of an F-dlt modification, an exceptional
divisor which is transverse to the foliation (in other words, a dicritical component of
the singularity). Showing the existence of a separatrix is then reduced to producing a
global invariant algebraic divisor for the restricted foliation on this exceptional divisor.
An adjunction calculation shows that this restricted foliation has trivial first Chern class,
and so the existence of an invariant algebraic divisor is a consequence of the classification
of foliations with trivial first Chern class.

To prove Theorem 0.1 we provide a precise bound on the singularities of X (we show
thatX is klt) by controlling the geometry of the invariant divisors on an F-dlt modification.
We then show that the singularities ofX are mild enough to allow us to prove the existence
of a holomorphic Godbillon–Vey sequence associated to the foliation (§5.2), and we may
then conclude roughly along the lines of Malgrange’s original proof.

Global results

Until recently, the birational classification of foliated varieties had been understood only
for rank 1 foliations on surfaces [4, 30, 32, 33]. In [35] and [13] much of the minimal
model program for rank 2 foliations on threefolds was completed, including a cone and
contraction theorem, existence of flips and special termination. However, the termination
of flips was not proven. In this paper, we prove termination of flips, thereby completing
the statement of the MMP for F-dlt pairs. We refer the reader to Definition 1.13 for the
definition of F-dlt singularities, but we emphasize here that they are a very large and
natural class of foliated singularities; for example, they include pairs .X;F / such that X
is smooth and F has simple singularities.

Theorem 0.5 (= Theorem 2.1). Let X be a Q-factorial quasi-projective threefold. Let
.F ; �/ be an F-dlt pair. Then starting at .F ; �/ there is no infinite sequence of flips.

A direct consequence of termination and the work in [13] is the following non-van-
ishing theorem.

Theorem 0.6 (= Theorem 2.6). Let F be a co-rank 1 foliation on a normal projective
Q-factorial threefold X . Let � be a Q-divisor such that .F ; �/ is an F-dlt pair. Let
A;B � 0 be Q-divisors such that � D AC B and A is ample. Assume that KF C� is
pseudo-effective. Then KF C� �Q D � 0.

We then turn our attention to the study of the non-klt centres of foliations. One of our
central results in this direction is the proof of a foliated analogue of the connectedness of
non-klt centres.
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Theorem 0.7 (= Theorem 3.1). Let X be a projective Q-factorial threefold and let F be
a rank 2 foliation on X . Let .F ; �/ be an F -dlt pair on X . Assume that �.KF C�/ is
nef and big. Then Nklt.F ; �/ is connected.

One of the fundamental ideas of the foliated MMP is that the negativity of foliated log
pairs .F ; �/ with mild singularities is governed by the presence of rational curves (see,
for example, [35]). As a final application we prove a foliated version of the main result
of [36] which relates the hyperbolicity of a foliation to an analysis of the log canonical
singularities of a foliation. Given a foliated pair .F ; �/ and a log canonical centre S we
will denote by NS � S the locally closed subvariety obtained by removing from S the lc
centres of .F ; �/ strictly contained in S .

Theorem 0.8 (= Theorem 7.1, foliated Mori hyperbolicity). Let .F ; �/ be a foliated log
canonical pair on a normal projective threefold X . Assume that

� X is klt;

� there is no non-constant morphism f W A1 ! X n Nklt.F ; �/ tangent to F ; and

� for any stratum S of Nklt.F ; �/ there is no non-constant morphism f W A1 ! NS

tangent to F .

Then KF C� is nef.

Finally, we remark that the central idea in the proof of our connectedness and hyper-
bolicity results is a refinement of the technique of F-dlt modifications (see Theorem 7.2),
and a careful analysis of the properties of F-dlt modifications through adjunction.

1. Preliminaries

Notations and conventions

By variety, we will always mean an integral separated scheme over an algebraically closed
field k. Unless otherwise stated, it will be understood that k D C. Unless otherwise spe-
cified, we adopt the same notations and conventions as in [25].

A contraction is a projective morphism f WX ! Y of quasi-projective varieties with
f�OX D OZ . If X is normal, then so is Z and the fibres of f are connected. A proper
birational map f WX Ü Y of normal quasi-projective varieties is a birational contraction
if f �1 does not contract any divisor.

Given a Weil R-divisor D and a prime divisor E on a normal variety X , we will
denote by �ED the coefficient of E in D. If D is a Weil R-divisor on X then for any
c 2 R we define

D�c WD
X

�ED � c

�EDE;

where � is any ofD;�;�;>;<. We define the round down bDc ofD to be
P
b�EDcE,

where the sum is taken over all prime divisors E on X . The fractional part ¹Dº of D is
defined as ¹Dº WD D � bDc.
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The support Supp.D/ of an R-divisor D is the union of the prime divisors appearing
in D with non-zero coefficient, Supp.D/ WD

S
�ED¤0

E.

1.1. Recollection on foliations

We refer the reader to [4] for basic notions of foliation theory.
A foliation on a normal variety X is a coherent subsheaf F � TX such that

� F is saturated, i.e. TX=F is torsion free, and

� F is closed under Lie bracket.

The rank of F is its rank as a sheaf. Its co-rank is its co-rank as a subsheaf of TX .
Let X be a normal variety and let F be a rank r foliation on X . A canonical divisor

of F is a divisor KF such that

OX .�KF / Š det.F /:

We define the normal sheaf of F as NF WD .TX=F /
��. The conormal sheaf N �

F
of F

is the dual of NF . If F is a foliation of co-rank 1 then, by abuse of notation, we denote
by N �

F
a divisor associated to N �

F
.

We can associate to F a morphism

�W�
Œr�
X ! OX .KF /

defined by taking the double dual of the r-wedge product of the map�Œ1�X ! F �, induced
by the inclusion F � TX . This yields a map

�0W .�
Œr�
X ˝OX .�KF //

��
! OX

and we define the singular locus of F , denoted by sing.F /, to be the cosupport of the
image of �0.

Given a dominant rational map f WY Ü X and a foliation F on X we may pull back
F to a foliation on Y , denoted f �1F .

Remark 1.1. If qWX 0 ! X is a quasi-étale cover and F 0 D q�1F then KF 0 D q
�KF ,

and [15, Proposition 5.13] implies that F 0 is non-singular if and only if F is. In particular,
it is not always the case that sing.X/ � sing.F / (cf. Proposition 1.7).

1.2. Invariant subvarieties

LetX be a normal variety and let F be a rank r foliation onX . Let S �X be a subvariety.
Then S is said to be F -invariant, or invariant by F , if for any open subset U � X and
any section @ 2 H 0.U;F /, we have

@.IS\U / � IS\U ;

where IS\U denotes the ideal sheaf of S \U . IfD �X is a prime divisor then we define
�.D/ WD 1 if D is not F -invariant and �.D/ WD 0 if it is F -invariant.
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1.3. Foliation singularities

Frequently in birational geometry it is useful to consider pairs .X;�/whereX is a normal
variety and � is a Q-Weil divisor such that KX C � is Q-Cartier. We refer the reader
to [25, §2] for the relevant definitions and notations for singularities of pairs. We will use
the following non-standard definition.

Definition 1.2. A normal variety X is said to be potentially log canonical (resp. poten-
tially klt) if there exists an effective R-divisor D on X such that the log pair .X;D/ has
log canonical singularities (resp. klt singularities).

It is possible to define singularities for pairs also in the foliated world, in analogy with
the classical case of pairs.

Definition 1.3. A foliated pair .F ;�/ is a pair of a foliation and a Q-Weil (resp. R-Weil)
divisor such that KF C� is Q-Cartier (resp. R-Cartier).

Note also that we are typically interested only in the cases when � � 0, although it
simplifies some computations to allow � to have negative coefficients.

Given a birational morphism � W zX ! X and a foliated pair .F ; �/ on X let zF be
the pulled back foliation on zX and ��1� � be the strict transform. We can write

K zF C �
�1
� � D ��.KF C�/C

X
a.Ei ;F ; �/Ei :

Definition 1.4. We say that .F ;�/ is terminal, canonical, log terminal, or log canonical
if a.Ei ;F ; �/ > 0, � 0, > ��.Ei /, or � ��.Ei /, respectively, where �.D/ D 0 if D is
invariant and 1 otherwise and where � varies across all birational morphisms.

If .F ; �/ is log terminal and b�c D 0 we say that .F ; �/ is foliated klt.

Notice that these notions are well defined, i.e., �.E/ and a.E;F ; �/ are independent
of � . We say a.E;F ;�/ is the discrepancy of E (with respect to .F ;�/), or the foliated
discrepancy.

Observe that when F D TX , no exceptional divisor is invariant, i.e., �.E/D 1 for any
prime divisorE �X , and so this definition recovers the usual definitions of (log) terminal
and (log) canonical.

We remark that we will be using the above terminology (terminal, canonical, etc.) to
refer to both the singularities of the foliation and the singularities of the underlying variety.
If necessary, we will use the term foliation terminal, foliation canonical, etc. to emphasize
that we are talking about the singularities of the foliation rather than the variety.

Definition 1.5. Let .F ; �/ be a foliated log pair.

(1) We say thatW �X is a log canonical centre (lc centre) of .F ;�/ provided .F ;�/ is
log canonical at the generic point ofW and there exists some divisorE of discrepancy
��.E/ on some birational model over X whose centre on X is W .

(2) The non-klt locus Nklt.F ; �/ of .F ; �/ is the union of the centres of all divisorial
valuations E of discrepancy � ��.E/.
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(3) The non-lc locus Nlc.F ; �/ of .F ; �/ is the union of the centres of all divisorial
valuations E of discrepancy < ��.E/.

Remark 1.6. (1) If �.Ei / D 0 for all exceptional divisors Ei over a centre W � X , the
notions of log canonical and canonical centre coincide for W . In this case, we will refer
to canonical centres as log canonical centres.

(2) Any F -invariant divisor D is an lc centre of .F ; �/ since D shows up in � with
coefficient at most 0 D �.D/.

Moreover, a direct computation shows that any stratum of a simple singularity is an lc
centre.

We have the following nice characterization due to [30, Corollary I.2.2]:

Proposition 1.7. Let .0 2 X/ be a normal surface germ with a terminal foliation F of
rank 1. Then there exists a cyclic cover � W Y ! X such that Y is a smooth surface and
��1F is a smooth foliation. In particular, by Remark 1.1, 0 … sing.F /.

We emphasize that the above provides an example of a singular point where even if
0 2 sing.X/, then 0 … sing.F /.

We will also make use of the class of simple foliation singularities [7, Appendix:
About simple singularities].

Definition 1.8. We say that .p 2X/withX smooth is a simple singularity for F provided
in formal coordinates x1; : : : ; xn around p; N �

F
is generated by a 1-form which is in one

of the following two forms. Below, 1 � r � n.

(1) There are �i 2 C� such that

! D .x1 � � � xr /

� rX
iD1

�i
dxi

xi

�
(1.1)

and if
P
ai�i D 0 for some non-negative integers ai then ai D 0 for all i .

(2) There is an integer k � r such that

! D .x1 � � � xr /

� kX
iD1

pi
dxi

xi
C  .x

p1
1 � � � x

pk
k
/

rX
iD2

�i
dxi

xi

�
(1.2)

where pi are positive integers without a common factor,  .s/ is a series which is not
a unit, and �i 2 C, and if

P
ai�i D 0 for some non-negative integers ai then ai D 0

for all i .

By Cano [7], every foliation on a smooth threefold admits a resolution by blow ups
centred in the singular locus of the foliation such that the transformed foliation has only
simple singularities.

We recall the definition of non-dicritical foliation singularities [9, §2].
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Definition 1.9. Given a foliated pair .X;F / we say that F has dicritical singularities
if for some P 2 X there exists a germ of a surface .P 2 S/ such that the restricted
foliation F jS has infinitely many invariant curves passing through sing.F / \ S .

Otherwise, we say that F has non-dicritical singularities.

We remark that the above definition is equivalent on threefolds to the characterization
appearing in [13], thanks to the existence of resolution of singularities. Namely, F has
non-dicritical singularities if for any sequence � W .X 0;F 0/! .X;F / of blow ups and
any closed q 2 X , ��1.q/ is tangent to the foliation.

Remark 1.10. Observe that non-dicriticality implies that if W is F -invariant, then
��1.W / is F 0-invariant.

Definition 1.11. Given a germ .0 2 X/ with a foliation F such that 0 is a singular point
for F we call a (formal) hypersurface germ .0 2 S/ a . formal/ separatrix if it is invariant
under F .

Note that away from the singular locus of F a separatrix is in fact a leaf. Furthermore,
a singularity being non-dicritical implies that there are only finitely many separatrices
through a singular point. The converse of this statement is false.

Definition 1.12. Given a normal variety X , a co-rank 1 foliation F and a foliated pair
.F ; �/ we say that .F ; �/ is foliated log smooth provided that

(1) .X;�/ is log smooth;

(2) F has simple singularities; and

(3) if S is the support of the non-invariant components of � then for any p 2 X if
†1; : : : ; †k are the separatrices of F at p (formal or otherwise), then S [ †1 [
� � � [†k is normal crossings at p.

Given a normal variety X , a co-rank 1 foliation F , and a foliated pair .F ; �/,
a foliated log resolution is a high enough model � W .Y; G / ! .X; F / such that
.Y;��1� �C

P
i Ei / is foliated log smooth where theEi are all the �-exceptional divisors.

Such a resolution on threefolds is known to exist by [7].
We also recall the class of F-dlt singularities introduced in [13, Definition 3.6].

Definition 1.13. Let X be a normal variety and let F be a co-rank 1 foliation on X .
Suppose that KF C� is Q-Cartier.

We say .F ; �/ is foliated divisorial log terminal .F-dlt) if

� each irreducible component of � is transverse to F and has coefficient at most 1, and

� there exists a foliated log resolution .Y; G / of .F ; �/ which only extracts divisors E
of discrepancy > ��.E/.

In the case of surfaces, F-dlt singularities have a particularly simple characterization.

Lemma 1.14. Let X be a normal surface and let F be a co-rank 1 foliation on X . Sup-
pose that KF is Q-Cartier and F is F-dlt. Then for all P 2 X , either
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� F is terminal at P , or

� X is smooth at P and F has a simple singularity at P .

In particular, if KF is Cartier then X is smooth.

Proof. The dichotomy is a direct consequence of [13, Lemma 3.8]. The last claim follows
from Proposition 1.7 by observing that if .P 2 X/ is terminal for F and KF is Cartier
near P then X is smooth.

1.4. Pulling back 1-forms

In §5, we will need the following result.

Proposition 1.15. Let .P 2X/ be an isolated potentially klt singularity and let�W zX!X
be a resolution of singularities ofX . LetE be a prime�-exceptional divisor. Let ! 2�Œ1�X ,
let

z! WD drefl�.!/

and let z!E be the restriction of z! to E. Then z!E D 0.

Proof. This is a straightforward consequence of the existence of pull back for differential
forms on potentially klt varieties [23, Theorem 1.2].

1.5. Singularities of X vs. singularities of F

The following is [13, Theorem 11.3]. Because we will refer to it frequently we include it
here.

Theorem 1.16. Let .F ; �/ be a foliated pair on a quasi-projective threefold X . Assume
that either

� .F ; �/ is F-dlt, or

� .F ; �/ is canonical.

Then F has non-dicritical singularities. Furthermore, if .F ; �/ is F-dlt and KX is
Q-Cartier then X is klt.

We also have the following comparison of singularities result, which is a slight modi-
fication of [13, Lemma 3.16].

Lemma 1.17. Let X be a Q-factorial threefold and let F be a co-rank 1 foliation. Sup-
pose that .F ; �/ is F-dlt. Then .X;�/ is dlt.

Proof. Let � WX 0! X be a foliated log resolution of .F ;�/ which only extracts divisors
of foliation discrepancy > ��.E/. Observe that a foliated log resolution � WX 0 ! X of
.F ; �/ is a log resolution of .X; �/. By Theorem 1.16, F has non-dicritical singular-
ities, thus we may apply [35, Lemma 8.14] to conclude that � only extracts divisors of
discrepancy > �1 with respect to KX C�, as required.
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1.6. Extending separatrices

We recall the following extension of separatrices result.

Lemma 1.18. Let X be a normal quasi-projective threefold. Let F be a co-rank 1 foli-
ation on X with non-dicritical singularities. Let V � X be a subvariety tangent to F , let
q 2 V be any point and let Sq be a separatrix at q. Then there exists an analytic open
neighbourhood U of V in X and an analytic divisor S on U which contains Sq near q.

Proof. This is proven in [13, Lemma 3.5] (see also [35, §5.1]). We remark that it is a
slight extension of the techniques and ideas utilized in [8, §IV].

1.7. Special termination

We recall the following theorem [13, Theorem 7.1]:

Theorem 1.19 (Special Termination). Let X be a Q-factorial quasi-projective threefold.
Let .F ;�/ be an F-dlt pair. Suppose .Fi ;�i / is an infinite sequence of .KFi C�i /-flips.
Then after finitely many flips, the flipping and flipped locus is disjoint from the lc centres
of .Fi ; �i /. In particular, .Fi ; �i / is log terminal in a neighbourhood of each flipping
curve.

1.8. MMP with scaling

A version of the MMP with scaling was proven in [13, §10]; however, for our purposes
we will need the MMP with scaling in a slightly different form than presented there. Here
we briefly explain the necessary adjustments.

We recall the following lemma proven in [13, Lemma 3.27].

Lemma 1.20. Let X be a normal projective Q-factorial threefold and let F be a co-
rank 1 foliation on X . Let � D AC B be a Q-divisor such that .F ; �/ is an F-dlt pair,
A � 0 is an ample Q-divisor and B � 0. Let 'WX Ü X 0 be a sequence of steps of the
.KF C�/-MMP and let F 0 be the induced foliation on X 0. Then there exist Q-divisors
A0; C 0 � 0 on X 0 such that

(1) '�A �Q A0 C C 0;

(2) A0 is ample; and

(3) if �0 WD A0 C C 0 C '�B then �0 �Q '�� and .F 0; �0/ is F-dlt.

1.8.1. Running the MMP with scaling. LetX be a projective Q-factorial threefold and let
F be a co-rank 1 foliation onX . Let�DACB be a Q-divisor whereA� 0 is ample and
B � 0 such that .F ;�/ is an F-dlt pair. LetH be a divisor on X such thatKF C�CH

is nef. In practice we will often take H to be some sufficiently ample divisor on X .
Let � D inf ¹t > 0 W KF C � C tH is nefº. By [13, Lemma 9.2] there exists a

.KF C�/-negative extremal rayR such that .KF C�C �H/ �RD 0. Let �WX Ü X 0

be the contraction or flip associated to R.
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If � is a fibre type contraction, the MMP terminates and we may assume that � is a
divisorial contraction or a flip. Let F 0 be the strict transform of F , let �0 D ��� and let
H 0 D ��H . By Lemma 1.20 we may find ‚ �Q �0 such that .F 0; ‚/ is F-dlt and ‚ D
A0 CB 0 where A0 � 0 is ample and B 0 � 0. Thus we can again apply [13, Lemma 9.2] to
KF 0 C�

0C �H 0, and letting �0 D inf ¹t > 0 WKF 0 C�
0C tH 0 is nefºwe see that �0 � �

and there exists aKF 0 C�
0-negative extremal ray R0 with .KF 0 C�

0 C �0H 0/ �R0 D 0.
We are therefore free to continue this process.

Setting X0 WD X , F0 WD F , �0 WD � and H0 WD H we may produce a sequence
�i W Xi Ü XiC1 of divisorial contractions and flips for KFi C �i contracting an
extremal ray Ri and rational numbers �i such that KFi C �i C �iHi is nef and
.KFi C�i C �iHi / �Ri D 0, where Fi ; �i ;Hi are the strict transforms of F0; �0;H0.

Moreover, we have �i � �iC1 and Ri �Hi > 0 for all i . Assuming the relevant ter-
mination of flips we see that this MMP terminates in either a Mori fibre space or a model
where KFi C �i is nef. We call this process the MMP of .F ; �/ (or KF C �) with
scaling of H .

1.9. (Pre) simple vs. (log) canonical

We now briefly discuss some relations and parallels between the classes of singularities
defined by the MMP and some of the other classes of singularities described above.

Intuitively, for a given singularity, the smaller its discrepancy the more severe the
singularity is. So terminal singularities are, in this sense, the mildest kind of singularit-
ies appearing in the MMP. Indeed, terminal singularities on smooth surfaces are in fact
smooth foliated points, although this equivalence fails in higher dimensions, as we will
see in Theorem 5.20.

We observe that simple singularities are both non-dicritical and canonical, while
canonical singularities are in general not simple, as the following example shows.

Example 1.21. The foliation on C2 defined by the vector field x @
@x
C .x C y/ @

@y
has

canonical singularities (which may be verified since a single blow up resolves the sin-
gularities of the foliation to simple singularities, and this blow up has discrepancy D 0).
However, since both its eigenvalues are positive integers it is not a simple singularity.

We remark that the above example also shows that canonical singularities are not in
general F-dlt singularities. On the other hand, Theorem 1.16 shows that canonical and
F-dlt singularities are non-dicritical.

Consider a germ of a vector field @ on C2 and suppose that @ is singular at 0, and let
m be the maximal ideal at 0. We get an induced linear map @Wm=m2 ! m=m2, which is
non-nilpotent if and only if the foliation generated by @ is log canonical [31, Fact I.ii.4].
To our knowledge there is no similar criterion for characterizing log canonical foliations
of rank � 2.

We refer to [7, Definition 3] for the definition of presimple singularities. The differ-
ence between simple and presimple is (roughly) the additional non-resonance requirement
on the eigenvalues of the foliation. For instance, x @

@x
C y @

@y
defines a foliation on C2 with
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a presimple but not simple singularity. A single blow up of this foliation has discrepancy
�1 and resolves this foliation to a smooth foliation, which shows that the original foliation
has a log canonical but not canonical singularity.

With this example in mind it might be useful to view the relation between simple and
presimple singularities as analogous to the relation between canonical and log canonical
singularities. However, we do not know if every presimple singularity is log canonical. It
also does not seem to be the case that a canonical singularity is a log canonical singularity
which satisfies a particular resonance condition, in light of Example 1.21.

We observe that on a smooth threefold a log canonical singularity which is non-
dicritical is necessarily canonical. Indeed, by [7] and our assumption of non-dicriticality
we may find a resolution of singularities of F , say � WX 0 ! X , which only extracts
F 0-invariant divisors for F 0 WD ��1F . If E is any �-exceptional divisor then a.E;F /
���.E/ by log canonicity and so a.E;F /� 0 sinceE is invariant and we may conclude
that F has in fact canonical singularities.

We recall that the class of simple singularities is stable under blow ups contained in
strata of the singular locus; however, it is important to realize that a canonical singularity
may not remain canonical after a blow up in the singular locus. In fact, it is a subtle
problem to decide when the blow up of a canonical singularity remains canonical.

We emphasize that in contrast to (pre)simple singularities the notion of (log) canon-
ical singularities makes sense on singular varieties. Take for instance the foliation on C2

generated by the vector field @ D x @
@x
� y @

@y
. This defines a canonical foliation singular-

ity. If we let X D C2=.x; y/ � .�x;�y/ then X is singular and @ descends to a vector
field on X which still defines a canonical singularity.

2. Termination

Our goal in this section is to show the following:

Theorem 2.1 (Termination). Let X be a Q-factorial quasi-projective threefold and let
.F ; �/ be an F-dlt pair. Then starting at .F ; �/ there is no infinite sequence of flips.

Together with the existence of flips [13, Theorem 6.4] and divisorial contractions [13,
Theorem 6.7], this has the following immediate corollary (whose proof is identical to the
proof for the corresponding statement for varieties).

Corollary 2.2. Let X be a projective Q-factorial threefold and let .F ; �/ be an F-dlt
pair. Then there is a birational contraction f W X Ü Y .which may be factored as a
sequence of flips and divisorial contractions/ such that if G is the transformed foliation
on Y then either

(1) KG C f�� is nef, or

(2) there is a fibration g W Y ! Z such that �.KG C f��/ is g-ample and the fibres of
g are tangent to G .

We call such a contraction an .F ; �/-MMP or a .KF C�/-MMP.



C. Spicer, R. Svaldi 3982

We will also frequently need to run the relative MMP over a base variety. The relative
MMP can be deduced from the absolute MMP via standard arguments (see for instance
[25, §§3.6-7]).

Corollary 2.3. Let X be a Q-factorial quasi-projective threefold and let .F ; �/ be an
F-dlt pair. Let p W X ! S be a surjective projective morphism. Then there is a birational
contraction f W X Ü Y=S .which may be factored as a sequence of flips and divisorial
contractions/ such that if G is the transformed foliation and q W Y ! S is the structure
map then either

(1) KG C f�� is q-nef, or

(2) there is a fibration g W Y ! Z=S such that �.KG C f��/ is g-ample and the fibres
of g are tangent to G .

We call the contraction f WX Ü Y=S constructed in the above corollary an .F ; �/-
MMP or a .KF C�/-MMP over S . In case (1) of the above statement, we say that Y (or
.G ; f��/) is a minimal model ofX (or .F ;�/) over S ; in case (2), instead, we say that Y
(or .G ; f��/) is a Mori fibre space for X (or .F ; �/) over S .

Corollary 2.3 immediately implies the following extension of the existence of an F-dlt
modification to the relative setting (cf. [13, Theorem 8.1]).

Theorem 2.4 (Existence of F-dlt modifications). Let F be a co-rank 1 foliation on a
normal quasi-projective threefold X . Let .F ; �/ be a foliated pair. Then there exists
a birational morphism � W Y ! X which only extracts divisors E of foliation discrep-
ancy ��.E/ such that if we write KG C � C F D �

�.KF C �/, where � D ��1� �CP
i �.Ei /Ei and where Ei are the �-exceptional divisors, then F is an effective �-

exceptional R-divisor and .G ; �/ is F-dlt.
Furthermore, we may choose .Y;G / so that

(1) if W is an lc centre of .G ; �/ then W is contained in a codimension 1 lc centre of
.G ; �/;

(2) Y is Q-factorial; and

(3) Y is klt.

We call such a modification an F-dlt modification.

Proof. The proof is analogous to that of [13, Theorem 8.1]. In particular, it suffices to
consider a log resolution �1W Y1 ! X of .F ; �/ and then run the relative .KF1 C �/-
MMP overX , where F1 is the transform of F on Y1 and � WD ��11� �C

P
�.E/E, where

the sum is taken over the prime �1-exceptional divisors. The relative minimal model
produced by this MMP is the desired modification .G ; �/.

Remark 2.5. We use the notation of Theorem 2.4.

(1) The equality KG C � C F D ��.KF C �/ implies that Nklt.F ; �/ D
�.Nklt.G ; � C F // and Nlc.F ; �/ D �.Nlc.G ; � C F //. Moreover, as .G ; �/ is
F-dlt, we have Nlc.G ; � C F // D Supp.F /.
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(2) If the foliated log pair .F ; �/ is log canonical, then the previous part of the remark
implies that F D 0 and KG C � D ��.KF C �/. Moreover, property .1/ in the
statement of Theorem 2.4 implies that Nklt.G ; �/ is the union of all codimension 1
subvarieties contained in it. Hence, Nklt.G ; �/ D I [ Supp.b�c/, where I is the
union of the G -invariant divisors.

As a consequence of the existence of the MMP we have the following non-vanishing
theorem.

Theorem 2.6. Let F be a co-rank 1 foliation on a normal projective Q-factorial
threefold X . Let � be a Q-divisor such that .F ; �/ is an F-dlt pair. Let A;B � 0 be Q-
divisors such that � D ACB and A is ample. Assume that KF C� is pseudo-effective.
Then KF C� �Q D � 0.

Proof. We run the .KF C�/-MMP. By Corollary 2.3 and the assumption that KF C�

is pseudo-effective, this MMP terminates with a minimal model �WX Ü X 0. Let F 0 be
the transform of F . By Lemma 1.20 we may find an ample divisor A0 and B 0 � 0 such
that ��� �Q A0 C B 0 and .F 0; A0 C B 0/ is F-dlt.

Set�0 WDA0CB 0. Thus, we may apply [13, Theorem 9.4] to conclude thatKF 0 C�
0

is semi-ample and so there exists 0 � D �Q KF 0 C�
0. For all m sufficiently divisible

we have

H 0.X;O.m.KF C�/// D H
0.X 0;O.m.KF 0 C ���///

D H 0.X 0;O.m.KF 0 C�
0///;

and our result follows.

2.1. Singular Bott partial connections

We recall Bott’s partial connections. Let F be a smooth foliation on a complex mani-
fold X . We can define a partial connection on NF locally by

r W NF ! �1F ˝NF ; w 7!
X

!i ˝ q.Œ@i ; zw�/;

where zw is any local lift of w to TX and !i are local generators of �1
F

, @i are dual
generators of F and q W TX ! NF is the quotient map. One can check that these local
connections patch together to give a global connection.

Lemma 2.7. Let F be a rank r foliation on a complex analytic variety X . Let S � X be
a local complete intersection subvariety of dimension r . Assume that S is F -invariant.
Let Z D sing.X/ [ sing.F /. Assume that Z \ S has codimension at least 2 in S . Then
there is a connection

r W NS=X ! �
Œ1�
S ˝NS=X

where �Œ1�S D .�
1
S /
�� is the sheaf of reflexive differentials on S .
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Proof. Let Xı D X nZ and Sı D S n .Z \ S/. Notice that NF jSı D NSı=Xı and that
�1

F
jSı D �

1
Sı . Thus, if we restrict Bott’s partial connection on Xı to Sı we get a con-

nection
r
ı
W NSı=Xı ! �1Sı ˝NSı=Xı :

Let i W Sı ! S be the inclusion. Since NS=X is locally free we have an isomorphism
i�.�

1
Sı ˝ NSı=Xı/ D �

Œ1�
S ˝ NS=X by the push-pull formula [22, Exercise II.5.1 (d)].

Thus we get a map
i�r
ı
W NS=X ! �

Œ1�
S ˝NS=X

and since i�rı satisfies the Leibniz condition (since it does so away from a set of codi-
mension at least 2), it is the desired connection.

2.2. Proof of Theorem 2.1

Lemma 2.8. Let X be a normal complex analytic threefold and let .F ; �/ be a log
terminal co-rank 1 foliation on X . Let C � X be a compact curve tangent to F . Let S be
a germ of an invariant surface containing C . Suppose thatKX ,KF and S are Q-Cartier.
Then

S � C D 0:

Proof. Let H � X be a sufficiently ample divisor meeting C transversely and choose H
sufficiently general so that .F ; �C .1 � �/H/ is log terminal for all � > 0.

We may then find a Galois cover � W X 0! X ramified over H and sing.X/ such that
if we write S 0 D ��1.S/ and F 0 D ��1F then S 0 and KF 0 are both Cartier.

Write�0D��� andC 0D��1.C /. We claim that .F 0;�0/ is log terminal. Indeed, let
r be the ramification index along H . By foliated Riemann–Hurwitz we have KF 0 C�

0

D ��.KF C � C
r�1
r
H/. Since .F ; � C r�1

r
H/ is log terminal, the same is true of

.F 0; �0/ (see [25, Proposition 5.20] or [35, proof of Corollary 3.9]).
Since KF 0 is Cartier and .F 0;�0/ is log terminal, if we let Z D sing.X 0/[ sing.F 0/

we see that Z \ S 0 has codimension at least 2 in S 0 [30, Corollary I.2.2]. By construction
S 0 is Cartier and so we may apply Lemma 2.7 to produce a connection

r W NS 0=X 0 ! �
Œ1�
S 0 ˝NS 0=X 0 :

Let nW B ! C 0 be the normalization of an irreducible component of C 0. By [13,
Lemma 3.16] we see that .X 0; �0 C S 0/ is plt and so by (usual) adjunction [25, The-
orem 5.50], S 0 is klt. By [20, Theorem 4.3] there exists a non-zero morphism drefln W

n��
Œ1�
S 0 ! �1B , so we may pull back r to get a connection by composing

n�O.S 0/
n�r
���! n��

Œ1�
S 0 ˝ n

�O.S 0/
drefln˝id
�����! �1B ˝ n

�O.S 0/:

In particular, since n�O.S 0/ admits a holomorphic connection, it is flat, which implies
0 D S 0 � n.B/ D m.S � C/.
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Proof of Theorem 2.1. By Special Termination [13, Theorem 7.1], it suffices to show that
any sequence of log terminal flips terminates. Let

�W .Xi ;Fi ; �i / Ü .XiC1;FiC1; �iC1/

be one such flip and let C � Xi be an irreducible component of exc.�/. Let f WXi ! Z

denote the base of the flip.
Since C is tangent to the foliation, any divisor E dominating C on some model

of Xi is invariant, i.e., �.E/ D 0. Since .Fi ; �i / is log terminal we have a.E;Fi ; �i / >
�.E/ D 0, i.e., Fi is terminal at the generic point of C .

By [13, Lemma 3.14] by taking U to be a sufficiently small analytic neighbourhood of
z D f .C / we may find a unique Fi -invariant divisor on Xi;U WD f �1.U / containing C .
Call this divisor S .

Since Xi;U is klt and projective over U we may find a small Q-factorialization of
Xi;U , denoted gWXi;U ! Xi;U . Let Fi be the transformed foliation, write KFi

C�i D

g�.KFi C�i /, let S be the strict transform of S and let C be the strict transform of C .
Since g is small, we see that .Fi ; �i / is still log terminal.

Let P 2 C be a point and let T be a germ of a Fi -invariant divisor at P . We claim
that T D S (as germs). Indeed, suppose otherwise. Since S is Q-Cartier we know that
T \ S contains a 1-dimensional component †. Since † is the intersection of two invari-
ant divisors we see that † � sing.F / and † is tangent to the foliation, in particular Fi
is terminal at the generic point of †. This, however, contradicts Proposition 1.7, which
implies that terminal foliation singularities are non-singular in codimension 2.

By Lemma 2.8 we see that
S � C D 0:

On the other hand, by [13, Corollary 3.20] and the observation in the previous paragraph,
the collection of Fi -invariant divisors meeting C is exactly S itself and so

.KFi
C�i / � C D .KXi C�i C S/ � C :

Since KXi C�i D g
�.KXi C�i /, putting these equalities together yields

0 > .KXi C�i / � C D .KXi C�i / � C:

Thus, each KFi C�i -flip is in fact a KXi C�i -flip.
By [13, Lemma 3.16], .Xi ;�i / is log terminal and so our result follows by termination

for threefold log terminal flips (see for example [25, Theorem 6.17]).

To finish this section we present an example of a foliation flip; another example may
be found in [35, Example 9.1].

Example 2.9. Let bWY ! C2 be the blow up at the origin with exceptional curve C and
let pW zX ! Y be the total space of the line bundle OY .C /. Observe that zX contains a
single projective curve, which we will continue to denote by C . Let G be the foliation
on Y given by the transform of the foliation generated by @

@x1
on C2 (with coordinates

.x1; x2/) and let zG D p�1F . Set S D p�1.C / and let Di D p�1.b�1� ¹xi D 0º/.
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It is straightforward to check thatK zG �C D 0 and that zG is smooth at the generic point
of C . Moreover, S and D2 are zG -invariant whereas D1 is not.

Consider the map � WC2! C2 given by .x1; x2/ 7! .�x1; x2/ and observe that � lifts
to a map � W zX ! zX . Let X WD zX=h�i. Then � W zX ! X is ramified to order 2 along S
and D1. Observe moreover that � preserves zG and so it descends to a foliation F on X .
A foliated Riemann–Hurwitz computation shows that K zG D �

�KF CD1. In particular,
if we let † D �.C / we see that KF �† < 0 and so † is a KF -flipping curve.

Notice that † meets sing.F / in a single point which is a Z=2 quotient singularity.

3. Connectedness

3.1. Connectedness of the non-klt locus for foliated pairs

The aim of this section is to prove the following connectedness statement which consti-
tutes one of the pillars in the analysis of the birational structure of foliated singularities.
The analogous result in the non-foliated case has a long history and is rather classical;
recently, [2, 17] fully settled the Connectedness Principle in full generality for pairs.

Theorem 3.1. Let f W X ! Y be a contraction of normal quasi-projective varieties,
withX a Q-factorial threefold. Let F be a co-rank 1 foliation onX . Let .F ;�/ be a foli-
ated log pair with � D

P
aiDi . Assume that �.KF C�/ is f -nef and f -big and that

.F ;�0/ is F-dlt, where�0 WD
P
ai<�.Di /

aiDi C
P
aj��.Dj /

�.Dj /Dj . Then Nklt.F ;�/
is connected in a neighbourhood of every fibre of f .

Theorem 3.1 immediately implies the following more general result which makes no
assumptions on the singularities of the foliated log pair.

Theorem 3.2. Let f WX! Y be a contraction of normal quasi-projective varieties. Let F

be a co-rank 1 foliation onX . Let .F ;�/ be a foliated log pair. Assume that �.KF C�/

is f -nef and f -big. Then Nklt.F ;�/ is connected in a neighbourhood of every fibre of f .

Proof. It suffices to consider an F-dlt modification gWX 0!X ,KG C�X 0Dg
�.KF C�/

and apply Theorem 3.1 to the pair .G ; �X 0/ and the map f ı gWX 0 ! Y .

We will prove Theorem 3.1 in the course of this section by handling different cases
that fit together to provide an argument for it.

Before proving the theorem we indicate a quick application of Theorem 3.1 to the
geometry of (weak) Fano foliations (see also [1]).

We will denote by sing�.F / the union of all codimension 2 components of sing.F /.

Corollary 3.3. Let X be a smooth projective threefold and let F be a co-rank 1 foliation
on X . Assume that �KF is big and nef. Then either

(1) F has an algebraic leaf, or

(2) sing�.F / is connected.
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Proof. Observe that Nklt.F / D sing�.F / [ I [ Z where I is the union of all the F -
invariant divisors and Z is a finite collection of points.

We take an F-dlt modification�WX!X of F and let F be the induced foliation onX ,
which exists by Theorem 2.4. WriteKF C�D �

�KF . Then �.Nklt.F ;�//DNklt.F /
(see Remark 2.5). If F has no algebraic leaves then I D ;. Applying Theorem 3.1 we
conclude that Nklt.F ; �/ is connected and our result follows.

Remark 3.4. The statement corresponding to Theorem 3.1 for rank 1 foliations is an
essentially trivial consequence of the arguments in [3].

We now turn to the proof of Theorem 3.1.
We will work in the following setting. We denote by f WX ! Y a contraction of

normal quasi-projective varieties, with X a Q-factorial threefold. Recall that f being a
contraction means that f is surjective and projective with f�OX D OY .

We assume the existence of a co-rank 1 foliation F on X and of a foliated log pair
.F ; �/ with � D

P
aiDi . We will denote

H WD � .KF C�/;

�0 WD
X

ai<�.Di /

aiDi C
X

aj��.Dj /

�.Dj /Dj ;

�00 WD � ��0;

F WD Supp.��1/:

We remark that we allow � to have F -invariant components in its support, whereas
the support of �0 will contain no F -invariant components.

We start by addressing the birational case.

Lemma 3.5. With the notation above, assume that f is birational, �.X=Y / D 1 and
.F ;�0/ is F-dlt. Suppose moreover that every lc centre of .F ;�0/ is contained in a codi-
mension 1 lc centre of .F ; �0/. If �.KF C�/ is f -ample then Nklt.F ; �/ is connected
in a neighbourhood of any fibre of f .

Recall that, as observed in Remark 2.5, Nklt.F ; �/ D Nklt.F ; �0/ D Supp.F C I /,
where I is the sum of the F -invariant divisors.

Proof of Lemma 3.5. To reach a contradiction assume that Nklt.F ; �/ is disconnected
in a neighbourhood of some fibre of f . Observe that we may assume that �00 � 0 is f -
nef, otherwise exc.f / � Supp.�00/ and there is nothing to prove. Thus �.KF C�

0/ D

�.KF C�/C�
00 is f -ample. By [35, Lemma 8.10] we see that f only contracts curves

tangent to F .

Case 1: The morphism f is a divisorial contraction. Suppose that f contracts a
divisor E. Since �.X=Y / D 1 we see that E is irreducible. If E is invariant then it is
an lc centre and so there is nothing to prove. Thus we may assume that E is not invariant.
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If f .E/ is a point and if B is a component of Nklt.F ; �/ \ E then B is ample in E, in
particular Nklt.F ; �/ \E is connected.

Thus we may assume that f .E/ D C is a curve in Y . We may find t � 0 such that
�0 C tE D � CE, where Supp.�/ does not contain E. Since �E is f -ample, �.KF C

� C E/ is f -ample. By the foliated adjunction formula ([13, Lemma 3.18] and [35,
Lemma 8.9], or Lemma 3.10 below), we may write .KF C � C E/jE D KG C �E
where G is the restricted foliation, �E � 0 and Nklt.F ; �/ \ E � Nklt.G ; �E /, and
so by assumption Nklt.G ; �E / contains at least two components meeting a fibre of f .

Let †0 be an irreducible curve contracted by f . Since †0 is tangent to G , it is a
rational curve with KG �†0 � �2. Moreover, either

(1) †0 meets two distinct components of Nklt.G ; �E /, or

(2) the fibre containing †0 is a union of two rational curves meeting at a point and, up to
switching the two components of this fibre, we can assume that †0 meets at least one
connected component of Nklt.G ; �E /.

Hence, 0 > .KG C�
0/ �†0 � deg.K†0Cp1Cp2/ where, in scenario (1), p1; p2 are the

intersections of †0 with two distinct connected components of Nklt.F ; �0/ along †0,
while in scenario (2), p1 is the intersection of †0 with the other component of the fibre
and p2 is the intersection of †0 with Nklt.F ; �0/ (which may be seen by restricting
to a germ of an invariant surface containing †0 and applying adjunction). However,
deg.K†0Cp1Cp2/� 0, which provides a contradiction since�.KGC�E / isf jE -ample.

Case 2: The morphism f is a flipping contraction. We denote by

X //_______

f

��@
@@

@@
@@

@ XC

fC

}}||
||
||
||

Y

the flip of f and by † a curve in the exceptional locus. Then there exist two divisorial
components D1; D2 of Nklt.F ; �0/ which intersect †, and do not contain it. But then
on XC, the strict transforms DCi of the Di contain the exceptional locus of the map f C,
hence the curves contracted by f C must be contained in the intersection of the DCi and
so it is a non-klt centre.

Since † is tangent to F we may assume that .F ; �0/ is terminal along †, as other-
wise† would be an lc centre [13, Lemma 3.14]; on the other hand, the above observation
implies that F C, the birational transform of F on XC, is canonical along the exceptional
locus of f C. But this leads to a contradiction, because by the Negativity Lemma the dis-
crepancies of .F ; �0/ along the f C-exceptional locus must decrease since �.KF C�

0/

is f -ample (see, for example, [13, Lemma 2.7]).

Lemma 3.6. With the notation above, assume that f is birational and .F ; �0/ is F-dlt.
Assume moreover that every lc centre of .F ;�0/ is contained in a codimension 1 lc centre
of .F ;�0/. If �.KF C�/ is f -ample then Nklt.F ;�/ is connected in a neighbourhood
of any fibre of f .
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Proof. Let y 2 Y and let Xy denote the fibre of f over Y . Assume that Nklt.F ; �/ is
disconnected in a neighbourhood of Xy . As each lc centre of .F ; �0/ is contained in a
codimension 1 lc centre and Nklt.F ;�/ is disconnected in a neighbourhood of Xy , there
exist prime divisors E1; E2 on E such that

� E1; E2 intersect Xy , and

� E1; E2 belong to different connected components of Nklt.F ; �/ in a neighbourhood
of Xy ; in particular, E1 \E2 D ; in a neighbourhood of Xy .

As H is f -ample, there exists 0 < � � 1 such that G WD H � �.E1 C E2/ is f -ample.
Then

KF C�
0
CG �R;f ��.E1 CE2/ ��

00: (3.1)

We can then run the .KF C�
0 CG/-MMP with scaling of G over Y (see Section 1.8),

X D X0
s1 //___

f

++VVVV
VVVV

VVVV
VVVV

VVVV
VVV

X1
s2 //___

f1

((PP
PPP

PPP
PPP

PPP
P � � �

si //___ Xi
siC1 //___

fi
��

XiC1
siC2 //___

fiC1||yy
yy
yy
yy

� � �

Y

(3.2)

We quickly explain how to run such an MMP. As we are only interested in what happens
over a neighbourhood of y 2 Y , we can assume that each step of (3.2) is non-trivial
in a neighbourhood of Xi;y . As G is ample, there exists 0 < � � 1 such that G0 WD
G C �b�0c is also ample. Hence, choosing a suitable effective P �R;f G

0, by Bertini’s
theorem we see thatKF C .�

0 � �b�0c/C P is F-dlt. Hence, the MMP exists forKF C

.�0 � �b�0c/C P and a fortiori forKF C�
0 CG as well. Since each step of this MMP

is Gi positive, where Gi is the strict transform of G on Xi , each step of this MMP is
in fact a step of the .KF C �

0/-MMP. In particular, we may observe moreover that at
each step any lc centre of .Fi ; �0i / is contained in a codimension 1 lc centre of .Fi ; �0i /.
Indeed, by [13, Lemma 2.7] an lc centre cannot lie in exc.s�1i / and so ifW is an lc centre
of .Fi ; �0i / then, for j � i , each sj must be an isomorphism at the generic point of W .

Lemma 3.5 shows that the number of connected components of Nklt.Fi ; �i / in a
neighbourhood of Xi;y cannot decrease with i . Assume that at the i -th step Xi�1 Ü Xi
of (3.2) the strict transform of one of the Ej , say E1, gets contracted. Denoting by Ri�1
the generator of the extremal ray of NE.Xi�1=Y / contracted at this step and by E1;i�1
the strict transform of E1 on Xi�1, we have Ri�1 � E1;i�1 < 0. Lemma 3.5 implies that
E1;i�1 \ E2;i�1 D ; in a neighbourhood of Xi�1;y , as otherwise the number of con-
nected components would have decreased at some point of the MMP. This observation
implies that E2;i�1 �Ri�1 D 0. As ��.E1;i�1 CE2;i�1/ �Ri�1 < �00i�1 �Ri�1, we have
�00i�1 � Ri�1 > 0; thus, there exists a component D1 of �00i�1 that intersects E1;i�1 and
such that f .D1/ � f .E1;i�1/. But then on Xi ,

KFi C�
0
i CG

0
i �R;fi ��.E2;i CD1;i / � .�

00
i � �D1;i /

and we can repeat the argument just illustrated as E2;i \ D1;i D ; around Xi;y and
E2;i , D1;i belong to different connected components of Nklt.Fi ;�i / in a neighbourhood
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ofXi;y . By Corollary 2.3, the MMP in (3.2) terminates with a minimal model f 0WX 0! Y

of X over Y , since f is birational and henceKF C�
0 CG is relatively pseudo-effective

over Y . Hence the strict transform of ��.E1 C E2/ � �00 is f 0-nef. By the Negativity
Lemma [25, Lemma 3.39] it must contain the whole fibre X 0y , which leads to a contradic-
tion.

Proposition 3.7. With the above notation, assume that f is birational and .F ; �0/ is
F-dlt. If �.KF C�/ is f -big and f -nef then Nklt.F ; �/ is connected in a neighbour-
hood of any fibre of f .

Proof. First, observe that we may freely replace .F ; �0/ by a higher model such that
every lc centre of .F ; �0/ is contained in a codimension 1 lc centre. Indeed, by The-
orem 2.4 we may find a modification �W X ! X such that if we write KF C ‚ D

��.KF C �
0/ where F D ��1F then .F ; ‚/ is F-dlt, every lc centre is contained in

a codimension 1 lc centre and Nklt.F ; ‚/ � ��1.Nklt.F ; �0//. Thus, Nklt.F ; ‚/ is
connected in a neighbourhood of a fibre over Y if and only if Nklt.F ; �0/ is.

We next reduce the general case to the case of H ample, which then follows from
Lemma 3.6. As H D �.KF C�/ is f -big and f -nef there exists an effective R-divisor
B D

P
aiBi for which H � ıB is f -ample for any 0 < ı� 1. We can decompose B as

B D B1 C B2; where B1 WD
X

Bi�Nklt.F ;�/

aiBi ; B2 WD B � B1:

We claim that for ı sufficiently small,

Nklt.F ; �0/ D Nklt.F ; �0 C ıB2/: (3.3)

Indeed, let rZ WZ! X be a foliated log resolution of .F ;�0 C ıB2/. We denote by G the
strict transform of F on Z. Thus,

KG C r
�1
Z�.�

0
C ıB2/ D r

�
Z.KF C�

0
C ıB2/C

X
i

bi .ı/Ei

and Nklt.F ; �0 C ıB2/ D rZ.Nklt.G ; r�1Z�.�
0 C ıB2/ �

P
i bi .ı/Ei //. Each bi .ı/

depends linearly on ı and bi .0/ � ��.Ei /, since .F ; �0/ is F-dlt. Hence, if bi .ı/ �
��.Ei / for all ı > 0, then Ei is an lc centre for .F ; �0/.

For fixed sufficiently small ı > 0 satisfying (3.3), let � WY ! X be an F-dlt modific-
ation of .F ; �0 C ıB2/. By Theorem 2.4, writing

KG C � C C D �
�.KF C�

0
C ıB2/;

we find that

� � D ��1� �0 C E and E D
P
i �.Ei /Ei where we sum over the exceptional divisors

of � ;

� .G ; �/ is F-dlt;

� Nklt.G ; �/ D b�c;

� C � 0; and

� the support of C is contained in Nklt.G ; �/ and is �-exceptional.
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Moreover, the Q-factoriality of X implies that there exists an effective �-exceptional
divisorG � 0 such that �G is �-ample. SinceKF C�C ıB2 �R;X �.H � ıB C ıB1/,
we get

KG C � C C C ı�
�B1 C �

�.� ��0/C �G �R;X ��
�.H � ıB/C �G:

Let ‚ WD C C ı��B1 C ��.� ��0/C �G and observe that

��1.Nklt.F ; �// D ��1.Nklt.F ; �C ıB// D Nklt.G ; � C‚/:

For � > 0 sufficiently small we know that .� C‚/0 D � (in the notation at the beginning
of the section) and �.KG C � C ‚/ D �

�.H � ıB/ � �G is f -ample; this concludes
the proof.

Proof of Theorem 3.1. In view of Lemmas 3.5 and 3.6, we only have to handle the case
where f is a non-birational contraction. Hence, we assume that Nklt.F ;�/ is disconnec-
ted in a neighbourhood of some fibreXy , y 2 Y , of f with dimX > dimY and we derive
a contradiction.

Step 1. We first assume that H is f -ample. Then there exists 0 < � � 1 such that G D
H � �F is f -ample. We can then run the .KF C �

0/-MMP with scaling of G over Y
(see Section 1.8),

X D X0
s1 //___

f

++VVVV
VVVV

VVVV
VVVV

VVVV
VVV

X1
s2 //___

f1

((PP
PPP

PPP
PPP

PPP
P � � �

si //___ Xi
siC1 //___

fi
��

XiC1
siC2 //___

fiC1||yy
yy
yy
yy

� � �

Y

(3.4)

We denote Fi WD si�Fi�1; �i WD si��i�1; �
0
i WD si��

0
i�1; �

00
i WD si��

00
i�1; Fi WD

si�Fi�1; Ii WD si�Ii�1, Gi WD si�Gi�1, and fi is the structural map for Xi .

Claim 3.8. For any i , either Fi �Ri > 0 or �00i �Ri > 0.

Proof of Claim 3.8. By the definition of the MMP with scaling, at each step of (3.4) there
exists a positive real number �i such that KFi C�

0
i C �iGi is f -nef and moreover

.KFi C�
0
i C �iGi / �Ri D 0; (3.5)

.KFi C�
0
i / �Ri < 0: (3.6)

For any i , we have �i > 1: in fact, assuming �i � 1 we reach an immediate contradiction
since

KFi C�
0
i C �iGi D .1 � �i /.KFi C�

0
i / � �i�Fi � �i�

00
i

would then be non-pseudo-effective over Y , in view of dimXi > dimY . By (3.5),

..1 � �i /.KFi C�
0
i / �Ri D �i .�Fi C�

00
i / �Ri ;

and the condition �i > 1 together with (3.6) implies that .�Fi C �00i / � Ri > 0, which
proves the claim.
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Claim 3.9. For any i , Nklt.Fi ;�i / D Nklt.Fi ;�0i / D Supp.Fi C Ii / and the number of
connected components of Nklt.Fi ; �0i / is independent of i .

Proof of Claim 3.9. For any i , we have �i � �0i , hence Nklt.Fi ; �i / � Nklt.Fi ; �0i /.
On the other hand, as the support of �i � �0i is contained in �0i C Ii , it follows that
Nklt.Fi ; �i / � Nklt.Fi ; �0i /. Moreover, since .Fi ; �0i / is F-dlt, we get Nklt.Fi ; �0i / D
Supp.Fi C Ii /.

We now prove the second part of the statement. If siC1WXi ! XiC1 is a divisorial
contraction, let E be the prime divisor contracted by siC1. Since Fi � Ri > 0 or
�00i � Ri > 0 it follows that the image of the exceptional locus of siC1 is contained in
Nklt.FiC1; �0iC1/. But then Lemma 3.5 implies that the number of connected compon-
ents of Nklt.FiC1; �0iC1/ in a neighbourhood of XiC1;y must be the same as that of
Nklt.Fi ; �0i / around Xi;y , since siC1 is .KFi C�

0
i /-negative.

If siC1WXi Ü XiC1 is a flip, let z�i WXi ! Zi be the associated flipping contraction
and zCiC1WXiC1!Zi the other small map involved in the flip. By the first part of the proof,
we know that Nklt.Fi ; �0i / D Fi C Ii and Nklt.FiC1; �0iC1/ D FiC1 C IiC1. Hence,
on Zi , z�i .Nklt.Fi ; �0i / D zCi .Nklt.FiC1; �0iC1//, as siC1; z�i ; z

C

i are all small maps.
Hence it suffices to prove that the number of connected components of Nklt.Fi ;�0i / (resp.
Nklt.FiC1; �0iC1/) around Xi;y (resp. XiC1;y) is the same as that of z�i .Nklt.Fi ; �0i //
(resp. zCi .Nklt.FiC1; �0iC1//) around Zi;y . Lemma 3.5 implies that the number of con-
nected components of Nklt.Fi ; �0i / in a neighbourhood of Xi;y must be the same as that
of z�i .Nklt.Fi ; �0i // around Zi;y , since z�i is .KFi C �

0
i /-negative. On the other, by

Claim 3.8 either Fi � Ri > 0 or �00i � Ri > 0, which implies that the exceptional locus
of z�i is contained in either FiC1 or �00iC1. Since Fi D Supp.�00i / � Nklt.FiC1; �0iC1/,
we find that Nklt.FiC1; �0iC1/ is connected around every fibre of z�i , hence the num-
ber of connected components of Nklt.FiC1; �0iC1/ around XiC1;y is the same as that
of zCi .Nklt.FiC1; �0iC1// around Zi;y , which concludes the proof.

By Special Termination [13, Theorem 7.1] and Claim 3.8, the run of the MMP in (3.4)
must terminate, and since KF C�

0 is non-pseudo-effective over Y , the final step will be
a Mori fibre space

Xn
g

  A
AA

AA
AA

A

fn

��

Z

~~||
||
||
||

Y

By Claim 3.9 it suffices to prove that Nklt.Fn; �n/ is connected in a neighbourhood
ofXn;y . OnXn; Nklt.Fn;�n/D Supp.FnC In/. As In is Fn-invariant, every component
of In must be vertical over Z. As Fn � Rn > 0 or �00n � Rn > 0, there exists at least one
component of Fn which dominates Z and contains only one horizontal component. Let
z 2 Z be a point and observe that dim.g�1.z// � 2.
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If dim.g�1.z// D 2 for all z 2 Z, then since �.X=Z/ D 1, it follows that every
horizontal component of Fn is g-ample; hence, any two horizontal components of Fn
intersect along any fibre of g. If dim.g�1.z// D 1 for some (equivalently any) z then
since �.KFn C�n/ is g-ample we see that Fn contains at most one horizontal compon-
ent. Thus, Nklt.Fn; �n/ must be connected in a neighbourhood of Xn;y . But this gives a
contradiction.

Step 2. We reduce the general case to the case of f -ample H . Here it suffices to copy
the proof of Proposition 3.7 verbatim.

3.2. Adjunction for foliated pairs

The goal of this section is to illustrate adjunction theory for foliated threefolds. Let us
highlight the fact that in [13] a Q-factorial threefoldX is simply an analytic variety which
is (globally) Q-factorial. We will work in this set up throughout §3.2–3.3; the reader
should keep this observation in mind when encountering foliated adjunction throughout
the paper.

Let us recall the following adjunction for foliations with non-dicritical singularities.

Lemma 3.10 (Adjunction [13, Lemma 3.18]). Let X be a Q-factorial threefold, and let
F be a co-rank 1 foliation with non-dicritical singularities. Suppose that .F ; �.S/S C�/
is log canonical .resp. log terminal, resp. F-dlt/ for a prime divisor S and a Q-divisor
� � 0 on X which does not contain S in its support. Let �WS� ! S be the normalization
and let G be the restricted foliation to S� . Then there exists ‚ � 0 on S� such that

��.KF C �.S/S C�/ D KG C‚: (3.7)

Moreover,

� if �.S/ D 1, then .G ; ‚/ is log canonical .resp. log terminal, resp. F-dlt/;

� if �.S/ D 0, .F ; �/ is F-dlt, and S and sing.F / \ S are normal, then .S� ; ‚0 WD
b‚cred C ¹‚º/ is lc .resp. lt, resp. dlt/.

We wish to generalize this result to an adjunction formula which holds in full gener-
ality.

Lemma 3.11 (General Adjunction). Let X be a threefold and let F be a co-rank 1 foli-
ation on X . Suppose that .F ; �.S/S C�/ is a foliated log pair for a prime divisor S and
a Q-divisor � � 0 on X which does not contain S in its support. Let �WS� ! S be the
normalization and let G be the restricted foliation to S� . Then there exists ‚ � 0 on S�

such that
��.KF C �.S/S C�/ D KG C‚: (3.8)

In the hypotheses of Lemma 3.11, we will refer to ‚ as the different DiffS � of �
on S .
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Proof of Lemma 3.11. Let � W Y ! X be an F-dlt modification for .F ; �.S/S C�/ and
let S 0 be the strict transform of S on Y . Write

KFY C �.S
0/S 0 C�Y D �

�.KF C �.S/S C�/; (3.9)

Then the pair .FY ; �.S 0/S 0C�0Y / is F-dlt, where�0Y WD �
�1
� �C

P
�-exc �.E/E. Denot-

ing�00Y WD�Y ��
0
Y , we see immediately that the support of�00Y does not contain S 0 and

KFY C �.S
0/S 0C�0Y C�

00
Y D �

�.KF C �.S/S C�/. As .FY ; �.S 0/S 0C�0Y / is F-dlt,
Lemma 3.10 implies that there exists ‚1 such that

.KFY C �.S
0/S 0 C�0Y /jS 0� D KG C‚1:

Hence,

.KFY C �.S
0/S 0 C�Y /jS 0� D .KFY C �.S

0/S 0 C�0Y C�
00
Y /jS 0�

D KG C‚1 C�
00
Y jS 0� ;

so it suffices to take ‚ WD ‚1 C�00Y jS 0� .

The two equations (3.7), (3.8) represent the adjunction formula for foliations, where
(3.8) is a generalized version of the one proven in [13]. On the other hand, in the more
general framework of Lemma 3.11, it is not possible to control the singularities of the
restriction of the pair .F ; �/ to a codimension 1 log canonical centre.

3.3. Inversion of adjunction

We are now ready to prove inversion of adjunction for foliated pairs.

Theorem 3.12. Let X be a Q-factorial threefold and let F be a co-rank 1 foliation.
Consider a prime divisor S and an effective Q-divisor � on X which does not contain S
in its support. Let �W S� ! S be the normalization and let G be the restricted foliation
on S� and ‚ be the foliation different for .F ; �/ on S� . Suppose that

� if �.S/ D 1 then .G ; ‚/ is lc;

� if �.S/ D 0 then .S� ; ‚/ is lc.

Then .F ; �.S/S C�/ is log canonical in a neighbourhood of S .

Proof. Let � WY ! X be an F-dlt modification for the pair .F ; �.S/S C�/ and let S 0 be
the strict transform of S on Y . Write

KFY C �.S
0/S 0 C�Y D �

�.KF C �.S/S C�/: (3.10)

Then the pair .FY ; �.S 0/S 0 C �0Y / is F-dlt, where �0Y WD ��1� �C
P
�-exc �.E/E and

KFY C �.S
0/S 0 C �0Y is �-nef [13, proof of Theorem 8.1]. Denote �00Y WD �Y � �

0
Y .

Then ��00Y is �-nef, since by (3.10), ��00Y ��;R KFY C�
0
Y . When �.S 0/ D 1, we will

denote by G 0 the restriction of FY to the normalization �1WS 0� ! S 0 of S 0 and let „0 be
the different given by adjunction of .FY ; �.S 0/S 0 C�Y /.
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Step 1. We prove that .F ; �.S/S C �/ is log canonical in a neighbourhood of S if
and only if .FY ; �.S 0/S 0 C �Y / is log canonical in a neighbourhood of S 0. It follows
from Definition 1.5 that .F ; �.S/S C �/ is log canonical in a neighbourhood U of S
if and only if S \ Nlc.F ; �.S/S C �/ D ;, since Nlc.F ; �.S/S C �/ is closed. By
Remark 2.5, as .FY ; �.S 0/S 0 C�0Y / is F-dlt, Nlc.FY ; �.S 0/S 0 C�Y / D Supp.�00Y / and
Nlc.F ; �.S/S C �/ D �.Supp.�00Y //. By the Negativity Lemma [38, Lemma 1.3 and
Appendix A], since ��00Y is �-nef, it contains any fibre of � intersecting Supp.�00Y /;
thus, Nlc.F ; �.S/S C�/ \ S D ; if and only if Nlc.FY ; �.S 0/S 0 C�Y / \ S 0 D ;.

Step 2. We prove that if �.S 0/ D 1, then .G 0; „0/ is log canonical. Then we deduce that
.FY ;S

0C�Y / is log canonical in a neighbourhood of S 0. By Lemma 1.17, S 0 is normal.
Hence, S 0� D S 0 and G 0 D G jS 0 .

KG 0 C„
0
D .KFY C S

0
C�Y /jS 0 D �

�.KF C S C�/jS 0 :

Hence, considering the birational morphism  WS 0 ! S� , we have

KG 0 C„
0
D  �.KG C‚/:

As .G ; ‚/ is log canonical, the same holds for .G 0; „0/. As shown in Step 1, we need
to prove that Supp.�00Y / \ S

0 D ;. Seeking a contradiction, let E be a prime component
of Supp.�00Y / intersecting S 0, so that �E�Y > �.E/ and �E�0Y D �.E/. Let G be any
prime component of E \ S 0.

Claim 3.13. G is an lc centre of .FY ; �0Y /.

Proof of Claim 3.13. This fact is an immediate consequence of Lemma 1.17 and its proof
if �.E/ D 1, while if �.E/ D 0 then [13, Lemma 3.16] implies that Y has quotient sin-
gularities at the generic point of G at which point the conclusion follows from a local
computation on foliated surfaces, upon localizing at the generic point of G.

By [13, Lemma 3.8] and Claim 3.13, .FY ; �0Y / is log smooth at the generic point
of G: in particular, Y is smooth at the generic point of G and E meets S 0 generically
transversely alongG. Hence, takingKG 0 C‰

0D .KFY CS
0C�0Y /jS 0 ;we have�G‰0D

�.G/ D �.E/. As �E�00Y > 0, it follows that

KG 0 C„
0
D .KFY C S

0
C�0Y C�

00
Y /jS 0 D KG 0 C‰

0
C�00Y jS 0

and �G„0 > �.G/, which contradicts the fact that .G 0; „0/ is log canonical.

Step 3. We prove that if �.S 0/ D 0 and if .S� ; ‚/ is log canonical, then .S 0� ; „0/ is log
canonical; then we prove that .FY ; �Y / is log canonical in a neighbourhood of S 0. We
have

KS 0� C„
0
D ��1 .KFY C�Y / D .�1 ı �/

�.KF C�/:

Considering the birational morphism  WS 0� ! S� , we have

KS 0� C„
0
D  �.KS C‚/:
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As .S� ;‚/ is log canonical, the same holds for .S 0� ;„0/. We need to show Supp.�00Y /\S
0

D ;. Seeking a contradiction, let E be a prime component of Supp.�00Y / intersecting S 0,
so that �E�Y > �.E/ and �E�0Y D �.E/. Let G be any prime component of ��11 .E/.
Set KS 0� C ‰0 D ��1 .KFY C�

0
Y /. Then ‰0 � „0 and [13, Corollary 3.20] implies that

�G‰
0 � 1. As�E�00Y > 0 andKS 0� C„0D ��1 .KFY C S

0C�0Y C�
00
Y /DKS 0� C‰

0C

��1�
00
Y ; we have �G„0 > 1, which contradicts the fact that .S 0� ; „0/ is log canonical.

This is the adaptation to foliations of the classical statement of inversion of adjunction
for log pairs (cf. [25, Theorem 5.50]). Nonetheless, it is not the most general form of
inversion of adjunction that one could hope for. In fact, if we look at the statement of
Lemma 3.10, we see that the natural divisor to look at when �.S/ D 0 would be, in the
notation of the lemma, the divisor ‚0 rather than the foliated different ‚ – recall that
‚0 WD b‚cred C ¹‚º: As by definition ‚0 � ‚, it follows immediately that if .S; ‚/ is
log canonical, so is .S;‚0/, but it would be even more interesting to have a statement of
inversion of adjunction that only assumes .S;‚0/ is log canonical.

4. A vanishing result

In this section we prove a relative vanishing theorem for foliations.
We make the following easy observation whose proof is left to the reader.

Lemma 4.1. Let f WY !X be a morphism of varieties. Let � WX 0!X be surjective and
étale and let Y 0 D Y �X X 0. Let f 0W Y 0 ! X 0 and � W Y 0 ! Y be the projections. Let L
be a line bundle on Y . Suppose that Rif 0��

�L D 0. Then Rif�L D 0.

Lemma 4.2. Let f W Y ! X be a surjective birational projective morphism of normal
varieties of dimension at most 3 and let .F ; �/ be an F-dlt foliated pair on Y with
b�c D 0. Suppose that Y is Q-factorial and that every fibre of f is tangent to F .

Let P 2 X be a closed point. Then there exists an étale neighbourhood � WX 0 ! X

of P , a small Q-factorialization �WW ! Y 0 WD Y �X X
0 and a reduced divisor

P
Ti

on W such that writing �W D ��� and FW D �
�1F and f 0WW ! X 0 for the induced

map we have

(1)
P
Ti is nef over Y 0;

(2) .KFW C�W / � .KW C�W C
P
Ti / is f 0-nef; and

(3) .W;�W C .1 � �/
P
Ti / is klt for all � > 0.

Proof. First, since Y is Q-factorial we may apply [13, Theorem 11.3] to see that Y is klt.
as .F ; �/ is F-dlt we also know that F is non-dicritical by Theorem 1.16.

Let ¹S1; : : : ;SN º be the collection of all separatrices of F meeting f �1.P /, formal or
otherwise. Fix n� 0 sufficiently large. By [13, §§4, 5] there is an étale cover � WX 0! X

such that we may find divisors Ri on Y 0 such that Ri jY 0n D Si jY 0n where Si D ��Si ,
Y 0n is the n-th infinitesimal neighbourhood of ��1.f �1.P // and � WY 0! Y is the projec-
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tion, and such that ObY 0.S i / Š ObY 0.Ri / where bY 0 is the formal completion of Y 0 along
��1.f �1.P //. Let gWY 0 ! X 0 be the other projection.

Set .F 0 WD ��1F ;�0 WD ���/. Since .F ;�/ is F-dlt, so is .F 0;�0/, and we may find
an F-dlt modification � WZ! Y 0 such that� is small. Observe thatZ is Q-factorial and so
R0i WD �

�1
� Ri and Si

0
WD ��1� Si are Q-Cartier. Set G D ��1F ; we may writeKG C � D

��.KF 0 C�
0/. Moreover, .G ; �/ is necessarily terminal at the generic point of a curve

C � exc.�/: otherwise C would be an lc centre of .G ; �/ since it is tangent to G , which
by [13, Lemma 3.8] would imply that .F 0; �0/ is log smooth at �.C /, a contradiction.

Note that Si
0

are all the separatrices (formal or otherwise) which meet ��1.g�1.p//
andR0i still approximate all the Si

0
; in particular, they have the same intersection numbers

with all curves contained in ��1.g�1.p//.
Since Y is klt, the same is true of Z and so we may run the .KZ C ı

P
R0i /-MMP

over Y 0 for some ı > 0 sufficiently small. Denote this MMP by �WZ Ü W and set
Ti WD ��R

0
i and zSi D ��S

0

i . Set FW D ��G and �W D ��� . Observe that each step of
this MMP isKG C �-trivial and .FW ;�W / is F-dlt. We claim thatW has all the required
properties.

Item (1) holds since KY is Q-Cartier and so KZ (and hence KW ) is trivial over Y 0.
Thus KW C ı

P
Ti being nef over Y 0 implies that

P
Ti is nef over Y 0.

To prove (2), let C � ��1.P /. Note that by non-dicriticality of .F ; �/ and our
assumptions on f we see that C is tangent to FW . Moreover, if .FW ;�W / is canonical at
the generic point of C then .FW ; �W / is log smooth at a general point of C [13, Lemma
3.8]. So, up to relabelling the Si we may assume that C � zS1 and zS1 gives a strong sep-
aratrix at a general point of C if .FW ; �W / is canonical at the generic point of C and
.FW ; �W / has a saddle node at the general point of C ; see [4, p. 3] for a recollection on
saddle nodes and weak separatrices on surfaces, but which works equally in the current
setting.

By [13, Corollary 3.20] we may write

.KFW C�W /j zS1 D K zS1 C‚;
�
KW C�W C

X
zSi

�ˇ̌̌
zS1
D K zS1 C‚

0

where ‚ � ‚0 and the coefficient of C in both divisors is the same. It follows that�
.KFW C�W / �

�
KW C�W C

X
zSi

��
� C � 0

and since ¹T1; : : : ; TN º approximate the zS1 we have�
.KFW C�W / �

�
KW C�W C

X
Ti

��
� C � 0:

Since C was arbitrary we get the claimed nefness.
Next, observe that each step of the MMP �WZ Ü Y isKG C �-trivial so .FW ;�W /

is still F-dlt and hence FW is non-dicritical by Theorem 1.16 and all the log canon-
ical centres of .FW ; �W / are contained in Supp.

P
Ti /. Hence we may apply [13,

Lemma 3.16] to see that .W; �W C .1 � �/.
P
Ti // is klt for all � > 0. This gives

item (3).
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Theorem 4.3. In the set up as above, let .F ; �/ be an F-dlt pair and let L be a line
bundle such that L � .KF C�/ is f -nef and big. Suppose moreover that either

(1) L � .KF C�/ is f -ample, or

(2) � D AC B where A is f -ample and B � 0.

Then Rif�L D 0 for i > 0.

Proof. If � D AC B where A is f -ample then replacing � by � � ıA for ı > 0 small
we may assume that L � .KF C�/ is f -ample. Moreover, replacing if necessary � by
� � �b�c for some � > 0 sufficiently small we may assume that b�c D 0.

As in Lemma 4.2 we see that Y is klt and so it has rational singularities. By Lemma 4.1
and the fact that Y has rational singularities we see thatRif�LD 0 providedRif 0�L

0 D 0

where L0 D ����L with � and � as in Lemma 4.2 (and its proof).
Next, L0 � .KFW C�W / is f 0-big and nef and is strictly positive on any curve not

contracted by �. Thus by Lemma 4.2 (2),

L0 �
�
KW C�W C

X
Ti

�
D .L0 � .KFW C�W //C

�
.KFW C�W / �

�
KW C�W C

X
Ti

��
is f 0-big and nef and is strictly positive on any curve not contracted by �.

So for � > 0 sufficiently small since
P
Ti is �-nef, by Lemma 4.2 (1)

L0 �
�
KW C�W C .1 � �/

X
Ti

�
is f 0-big and nef.

Thus we may apply relative Kawamata–Viehweg vanishing to conclude that Rif 0�L
0

D 0 for i > 0.

5. Malgrange’s theorem

In this section we prove a version of Malgrange’s theorem on singular threefolds.
A weaker version of this statement was proven in [35]. Results in this direction were
achieved in [14] and some of our ideas have been inspired by their approach.

Let .P 2 X/ be a germ of a threefold and let F be a co-rank 1 foliation on X defined
by a holomorphic 1-form !. We say that f 2 OX;p is a first integral for F if df ^ ! D 0.

Theorem 5.1. Let .P 2 X/ be a germ of an isolated .analytically/ Q-factorial threefold
singularity with a co-rank 1 foliation F . Suppose that F has an isolated canonical sin-
gularity at P . Then F admits a holomorphic first integral.

It would be ideal to drop the Q-factoriality assumption in the theorem; we are able to
do this when F is terminal (see Corollary 5.15).

Theorem 5.1 has the following immediate consequence.
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Corollary 5.2. Let .P 2 X/ be a germ of an isolated threefold singularity with a co-
rank 1 foliation F . Suppose that X is Q-factorial and F is canonical. Then F has a
separatrix at P .

Proof. If F is smooth outside of P then this follows directly from Theorem 5.1. Other-
wise, letZ � sing.F / be a curve; thenZ is tangent to F . Observe that there is a germ of a
separatrix for allQ 2Z nP . By Theorem 1.16, F is non-dicritical and so by Lemma 1.18
we may extend SQ to a neighbourhood of Z, which in turn gives a separatrix at P .

Recall that in general, even for F non-dicritical, if P 2 X is a singular point then
there may be no separatrices at P . See [5] for results in this direction on surfaces.

5.1. Controlling the singularities of X and F

The goal of this subsection is to show that under the hypotheses of Theorem 5.1, X has
log terminal singularities.

We will need the following version of the classical Camacho–Sad formula for F-dlt
foliations. It follows as a special case of the Camacho–Sad formula for foliations on
varieties with quotient singularities proven in [16, Proposition 3.12]. We refer to [16,
Definition 3.10] for the definition of the Camacho–Sad index.

Lemma 5.3. Let X be a normal surface and F an F-dlt foliation. Let C be a compact
F -invariant curve. Then

C 2 D
X

p2sing.F /\C

CS.p;F ; C /:

Lemma 5.4. Let .P 2 X/ be a germ of an isolated threefold singularity and let F be
a co-rank 1 foliation with canonical singularities such that F is smooth away from P .
Suppose that KX is Q-Cartier. Then X is log terminal.

Proof. If F is terminal then the result follows from Theorem 1.16. So suppose that F

has canonical but not terminal singularities.
Let � W .X;F /! .X;F / be an F-dlt modification. LetE D

P
Ei D exc.�/. Since F

is canonical we have ��KF D KF . Moreover, we may assume that � is not the identity.
By Theorem 1.16, F is non-dicritical and so E is F -invariant. Let Z be a 1-dimensional
component of sing.F / \ E. By [13, Lemma 3.14] either F is terminal at the generic
point of Z, or X is smooth at the generic point of Z, and at a general point of Z, F

has simple singularities and there are two separatrices (possibly formal) containing Z.
However, Proposition 1.7 applied to a general hyperplane passing through Z and the
restricted foliation on this hyperplane implies that F cannot be terminal at the generic
point of Z.

Write KX C
P
Ei D ��.KX / C

P
aiEi . By [35, Lemma 8.9] we see that KF �

.KX C
P
Ei /D�

P
aiEi is �-nef away from finitely many curves, which implies by the

Negativity Lemma [38, Lemma 1.3] that
P
aiEi � 0; and since Supp.

P
Ei /D �

�1.P /,
we have either
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(1) ai > 0 for all i , or

(2) ai D 0 for all i .

By [13, Lemma 3.16], .X; .1 � �/
P
Ei / is klt and so if we are in case (1) then we see

immediately that X is klt.
So suppose for the sake of contradiction that we are in case (2), i.e., ai D 0 for all i

and so KX CE �Q 0.
We first claim that if Z � sing.F / \ E is a 1-dimensional component admitting two

separatrices contained in E then Z is not a saddle node. Indeed, suppose for the sake of
contradiction that there exists Z � Ei such that Z is a saddle node and Ei is the weak
separatrix of the saddle node; see [4, p. 3] for a recollection on saddle nodes and weak
separatrices on surfaces, but which works equally in the current setting. Write

KF jEi D KEi C‚;
�
KX C

X
Ej

�ˇ̌̌
Ei
D KEi C‚

0:

By Lemma 3.10 we know that ‚ � ‚0. Since Ei is the weak separatrix of a saddle node
along Z in appropriate (formal) local coordinates around a general point of Z we see
that F is generated by a 1-form ! of the form z.1 C �wk/dw C wkdz where Ei D
¹z D 0º, � 2 C and k � 2. The coefficient of Z in ‚ is the order of vanishing of !jEi
along Z, which is exactly k � 2. On the other hand, since .X;

P
Ej / is log canonical,

the coefficient of Z in ‚0 is at most 1. However, KF � .KX C
P
Ej / cannot then be

�-trivial, a contradiction.
A similar argument shows that each 1-dimensional component Z � sing.F / \ E

admits two separatrices, both contained in E. In particular, each 1-dimensional compon-
ent Z � sing.F / \E has two non-zero eigenvalues.

The rest of the argument proceeds essentially as in [30, proof of the first part of The-
orem IV.2.2]. We will explain this argument for the reader’s convenience. SinceKF �Q 0

and KX CE �Q 0 we see that N �
F
CE �Q 0.

Let H � X be a general ample divisor, let G be the restricted foliation on H and let
E \H D

S
Ci D C . Set S D sing.G / \ C and notice that Ci \ Cj � S for i ¤ j .

If H is general enough then .F ; H/ is F-dlt, and so also is G . Even better, if H is
general enough thenN �

F
jH DN

�
G

and soN �
G
C
P
Ci �Q 0. Observe that since G is F-dlt

we see that C is a nodal curve.
For q 2 S let @q be a vector field generating G near q.

Claim 5.5. The ratio �q of the eigenvalues of @q is a root of unity.

Proof of Claim 5.5. We may check this after taking a cover ramified along a general
ample divisor A, and so after taking the index 1 cover associated to KG on H n A we
may assume that KG is Cartier. By Lemma 1.14 it follows that H is smooth.

For any p 2 C n S let Up be a small open set such that G is defined by a 1-form
!p D dzp where ¹zp D 0º D C \ Up . For any q 2 S let Uq be a small open subset such
that G is defined by a 1-form !q D xqaqdyq C yqbqdxq where ¹xqyq D 0º D C \ Uq
and where aq.q/; bq.q/ ¤ 0.
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Let ¹.Upq; hpq/º; ¹.Upq; gpq/º 2 H 1.H;O�H / be the cocycles associated to OH .C /

and NG respectively where Upq D Up \ Uq .
If p; p0 2 C n S are such that Upp0 ¤ ; then dzp D hpp0dzp0 and so gpp0 D hpp0

when restricted to C . If p 2 C n S and q 2 S with Upq ¤ ; we have zp D hpq.xqyq/
and so dzp D hpqd.xqyq/ when restricted to C , which in turn gives dzp D hpqa�1q !q
or dzp D hpqb�1q !q depending on whether p 2 ¹xq D 0º or p 2 ¹yq D 0º. In particular,
after restricting to C we have gpq D hpqb�1q D hpqa

�1
q .

Since N �
G
C C �Q 0 we see that ¹.Upq; hpqgqp/º is a torsion cocycle, and hence for

some m, ¹.Upq; .hpqgqp/m/º is a trivial cocycle. Set Cp D Up \ C and Cpq D Upq \ C ,
and note that ¹.Cpq; .hpqgqp/m/º is still a trivial cocycle.

We may therefore find invertible functions fp on Cp such that fp=fq D .hpqgqp/m.
Without loss of generality we may assume that fp D 1 for p 2 C n S . From our previous
calculations we see that fq D amq D b

m
q for q 2 S (where we consider aq; bq as functions

restricted to C ). In particular, 1 D fq=fq D .aq.q/=bq.q//m D �mq as required.

Since C is contractible we see that C 2 < 0, which impliesX
i

C 2i < �
X
i;j

Ci � Cj D �2#S:

On the other hand, Lemma 5.3 gives us�X
Ci

�2
D

X
p2Z

CS
�
p;G ;

X
Ci

�
D

X
p2S

2C �p C
1

�p
;

which in turn yields X
C 2i D

X
�p C

1

�p
:

However, each �p is a root of unity and so the modulus of
P
p2S .�p C

1
�p
/ DP

p2S .�p C �p/ is bounded by 2#S . This is the sought after contradiction.

5.2. Holomorphic Godbillon–Vey sequences

We say that a 1-form ! is integrable provided ! ^ d! D 0.

Definition 5.6. LetM be a complex manifold of dimension� 2 and let ! be an integrable
holomorphic 1-form on M . A holomorphic Godbillon–Vey sequence for ! is a sequence
.!k/ of holomorphic 1-forms on M such that !0 D ! and the formal 1-form

� D dt C

1X
jD0

tj

j Š
!j

is integrable.

Lemma 5.7. Let .P 2 X/ be an analytic germ of an isolated Q-factorial klt singularity
with dimX � 3. Then

H 1.X n P;OXnP / D 0:
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Proof. Notice that since X is klt, it is also a rational singularity. Consider the long exact
sequence coming from the exponential exact sequence

H 1.X n P;Z/
a
�! H 1.X n P;OXnP /

b
�! H 1.X n P;O�XnP /:

By [18, Lemma 6.2] we know that im.a/ D 0, in particular b is injective.
On the other hand, we have an injection

H 1.X n P;O�XnP / D Pic.X n P /! Cl.P 2 X/

given byL 7! i�Lwhere i WX nP !X is the inclusion; indeed by [34], i�L is a coherent
reflexive sheaf on X . By assumption Cl.P 2 X/ is torsion and so the same is true of
H 1.X n P;O�

XnP
/. Since H 1.X n P;OXnP / is a C-vector space, it is a divisible group,

which implies that im.b/ D 0. Thus H 1.X n P;OXnP / D 0.

The following result is proven in [14, Lemma 2.1.1].

Lemma 5.8. LetM be a complex manifold of dimension � 3 and let ! be a holomorphic
1-form onM . Assume that the codimension of sing.!/ is at least 3 andH 1.M;OM /D 0.
Then ! admits a holomorphic Godbillon–Vey sequence.

Corollary 5.9. Let .P 2 X/ be a germ of an isolated analytically Q-factorial klt three-
fold singularity. Let ! be an integrable 1-form on X n P such that sing.!/ has codimen-
sion at least 3 in X n P . Then ! admits a holomorphic Godbillon–Vey sequence.

Proof. By Lemma 5.7 we have H 1.X n P;OXnP / D 0, in which case we may apply
Lemma 5.8 to conclude the proof.

5.3. A few technical lemmas

Lemma 5.10. Let .P 2 X/ be an analytic germ of a Q-factorial and klt singularity with
dimX � 3. Let � W .Q 2Y /! .P 2X/ be a quasi-étale morphism of germs. Then .Q 2Y /
is Q-factorial.

Proof. Let � W Y ! X be the Galois closure of � . Observe that � is quasi-étale and if Y
is Q-factorial then so is Y [25, Lemma 5.16]. Thus we may replace Y by Y and assume
that � is Galois with Galois group G.

Suppose for the sake of contradiction that Y is not Q-factorial. Since � is quasi-étale,
Y is klt and therefore it admits a small Q-factorialization f WY 0 ! Y such that

� G acts on Y 0;

� f is G-equivariant; and

� f is not the identity.

Indeed, such a Y 0 can be found by taking a G-equivariant resolution �WW ! X and
running a G-equivariant .KW C .1 � �/

P
Ei /-MMP over X where

P
Ei is the union

of the �-exceptional divisors and � > 0 is sufficiently small.
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LetX 0DY 0=G and observe that we have a birational morphism gWX 0!X . Moreover,
gWX 0 ! X is small, which contradicts X being Q-factorial.

Lemma 5.11. Let � WY !X be a finite morphism of complex varieties and let F be a co-
rank 1 foliation on X . Then F admits a holomorphic .resp. meromorphic/ first integral if
and only if ��1F does.

Proof. We may assume without loss of generality that � WY ! X is Galois, in which case
the claim is easy.

We say that f 2 CŒŒx1; : : : ; xn�� is a power if there exists g 2 CŒŒx1; : : : ; xn�� and an
integer m � 2 such that gm D f . Observe that if f is a first integral of ! and gm D f
then g is also a first integral of !. Let b� denote the formal completion of C at the origin.

Lemma 5.12. Consider C3 �C with coordinates .z1; z2; z3; t / and let�D dt C
P
t i!i

be a formal 1-form where !i 2 H 0.U; �1U / is a holomorphic 1-form on 0 2 U � C3.
Suppose that � is integrable. Let 0 2 D � U be a normal crossings divisor such that !i
is zero when restricted to D for all i . Let bX be the formal completion of U � C along
D � 0. Then � admits a first integral in H 0.bX;ObX /.
Remark 5.13. A priori, the formal Frobenius theorem only guarantees that � admits a
first integral in H 0.cC4;ObC4/, with cC4 the completion of C4 at the origin.

Proof. Following a change of coordinates and for ease of notation we will assume that
D D ¹z1z2z3 D 0º (the cases where D has one or two components are simpler).

Since !i vanishes when restricted to D, for j D 1; 2; 3 we may write

!i D f
i
j dzj C zj �

i
j

where f ij and � ij are holomorphic. It follows that we may write�D dt C Fjdzj C zj‚j
where Fj .z1; z2; z3; t / 2 H 0.Xj ;OXj /, ‚j D

P
H
j
i .z1; z2; z3; t /dzi 2 H

0.Xj ; �
1
Xj
/

and Xj is the formal completion of U �C along ¹t D zj D 0º.
We may then apply [14, Lemma 3.1.1] (or, more precisely, its proof) to find a first

integralGj 2H 0.Xj ;OXj / of�. Moreover, if we writeGj D
P
m;n t

mznj g
j
mn where gjmn

is a convergent power series in the variables ¹z1; z2; z3º n ¹zj º then we may choose Gj so
that gj00D 0. In particular, this implies that if � 2Aut.b�/, then � ıGj is still an element of
H 0.Xj ;OXj /. Indeed, if we write � ıGj D

P
mn t

mznj g
0
mn then g0mn D P.g

j

lp
/l�m;p�n

where P is some polynomial depending on �, in particular, g0mn is convergent provided
all the gj

lp
are. Without loss of generality we may also assume that Gj is not a power.

By considering G1; G2; G3 as elements in H 0.cC4;ObC4/, with cC4 the completion

of C4 at the origin, we may apply [28, Théorème de factorisation] to find �ij 2 Aut.b�/
such that Gi D �ij ı Gj . Thus, replacing Gj by �ij ı Gj if necessary, we may assume

that G1; G2; G3 all give the same element in H 0.cC4;ObC4/, call it G. However, since

Gi 2 H
0.Xi ;OXi /, this implies that G is in fact an element of H 0.bX;ObX / and we are

done.
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Lemma 5.14. Let X be a normal complex variety, let D � X be a compact subvariety
and let bX be the completion of X along D. Let F be a co-rank 1 formal foliation on bX
and suppose that D is tangent to F . Suppose that the following hold:

(1) for all p 2D there exists an open neighbourhood p 2Up �X andFp 2H 0.cUp;ObUp /
with Fp a first integral of F and where cUp is the formal completion of Up along D;

(2) for any p; q 2 D we have sing.X/ \ Up \ Uq D ;; and

(3) for any p; q 2 D, if Up \ Uq ¤ ; then FpjbUp\bUq is not a power.

Then we may produce a representation �W�1.D/! Aut.b�/ such that if � is trivial then
F admits a first integral F 2 H 0.bX;ObX /. Moreover, if the Fp can all be taken to be
convergent, then F may be taken to be convergent as well.

Proof. Without loss of generality we may assume that FpjD D 0 for all p.
If p ¤ q with Up \ Uq ¤ ;, choose some z 2 Up \ Uq \D. By considering Fp; Fq

as elements in the completion 1ObX;z we may apply [28, Théorème de factorisation] to find

a �p;q 2 Aut.b�/ such that Fp D �p;q ı Fq .
We may then produce a representation of �1.D/ along the lines of the classical

holonomy representation (see for instance [6, Chapter IV]). Let 
 2 �1.D/ be a path

 W Œ0; 1�! D. We may find a collection of points p0; : : : ; pn�1; pn D p0 2 D and a par-
tition 0 D t0 < t1 < � � � < tn D 1 of Œ0; 1� such that 
.Œti�1; ti �/ � Upi�1 . We may then
define our representation by setting �.
/ D �pn;pn�1 ı � � � ı �p1;p0 .

If �.
/D 1, then for 1� j � n� 1we may replace Fpj by .�pj ;pj�1 ı � � � ı �p1;p0/
�1

ı Fpj and so we may assume that Fpj D Fp0 for all j . Thus, if the image of � is ¹1º then
the Fp glue together to give a section F 2 H 0.bX;ObX /.

Our claim about convergence follows by observing that if the Fp are all convergent
then the �p;q may be taken to be convergent as well.

5.4. Proof of Theorem 5.1

First, by Lemma 5.4 we know that X is klt.
Next, by Lemma 5.10 we may replace X by a quasi-étale cyclic cover and so may

assume that N Œ��

F
is Cartier and hence F jXnP is defined by an integrable 1-form ! which

is non-vanishing on X n P . By Corollary 5.9, ! admits a holomorphic Godbillon–Vey
sequence .!k/.

Let LX be the link of X . By [37, Corollary 1.4], �1.LX / is finite; let zL! LX be the
universal cover. We may find a Galois étale morphism of complex spaces Y 0 ! X n P

corresponding to this cover and by [21, Proposition 3.13] this cover extends to a Galois
quasi-étale cover � WY !X . So by replacingX by Y we may assume that �1.LX /D ¹1º.

Let � W Y ! X be a log resolution of X and let E D
P
Ek be the sum of the �-

exceptional divisors. Let Y � WD Y n��1.P /Š X n P . By [20, Theorem 4.3] we see that
!i jXnP extends to a holomorphic 1-form z!i on Y .
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There exist maps

�1.LX / Š �1.Y
�/

a
�! �1.Y /

b
�! �1.E/

where a is a surjective and b is an isomorphism, since Y deformation retracts onto E.
This implies that �1.E/ is trivial.

Define

� D dt C

1X
kD0

tk

kŠ
z!k

and recall that by definition � is a non-singular integrable 1-form defined on 1Y �C, the
completion of Y � C along E � 0, and t is a local coordinate on C. Then � defines a
smooth foliation bG on 1Y �C. By construction, bG jbY�0 D ��1F jbY where bY is the formal
completion of Y along E.

Since F has non-dicritical singularities, E is ��1F invariant, which implies that
E � 0 is tangent to bG .

By Corollary 1.15, z!k vanishes when restricted to E. Thus we may apply Lemma
5.12 to � to find for all p 2 E a neighbourhood p 2 Up � Y and a first integral of �,
denoted Fp 2 H 0.2Up �C;O1Up�C

/ where 2Up �C is the completion of Up � C along

E � 0. Since bG is smooth, without loss of generality we may assume that Fp is not a
power on 2Up �C \ 2Uq �C for any p; q.

We may therefore apply Lemma 5.14 and since �1.E/ D ¹1º we produce a formal
first integral OF 2 H 0. 1Y �C;ObY�C /. Restricting OF to bY � 0 we see that z!0 admits a

first integral Of 2 H 0.bY ;ObY /. We now show that we can take this first integral to be
convergent.

Write Of �0D
P
aiEi . By [24, Chapter II] we may find a dominant proper generically

finite morphism W
�
�! Y such that the central fibre of Of ı � is reduced and � is ramified

only over foliation invariant divisors. Write zE D ��1.E/, let bW be the completion of W
along zE and Qf D Of ı � .

From the above construction we see that we may write Qf D Nf r such that for all p 2 zE,
Nf is not a power in ObW ;p . Thus we may apply [28, Théorème A] to find a �p 2 Aut.b�/

such that �p ı Nf is convergent on a neighbourhood Up of p. We may apply Lemma 5.14
by taking Fp D �p ı Nf to produce a representation �W�1.W /! Aut.b�/ which vanishes
when ��1��1F admits a convergent first integral.

By taking the Stein factorization of W ! X we produce a birational morphism
W ! X 0 contracting zE to a point and such that r WX 0 ! X is branched only over the
separatrices of F . We claim that X 0 is klt. Indeed, Kr�1F D r�KF and so r�1F has
canonical singularities. Let S be a separatrix of r�1F at r�1.P / (which exists since
r�1F admits a formal first integral). By [13, Lemma 3.16], .X 0; S/ is log canonical, and
since S is Q-Cartier it follows that X 0 is in fact klt.

Thus, passing to a higher quasi-étale cover if necessary we may assume that
�1.W / D 0. Hence ��1��1F admits a convergent first integral. By Lemma 5.11 this
implies that ��1F , and so F , admits a convergent first integral.
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5.5. Classification of terminal foliation singularities

We will need the following, which is a direct generalization of [35, Lemma 9.7].

Corollary 5.15. Let .P 2 X/ be a normal threefold germ and let F be a terminal
co-rank 1 foliation. Then F admits a holomorphic first integral. In particular, KX is
Q-Cartier.

Remark 5.16. A priori we only know that KF is Q-Cartier.

Proof of Corollary 5.15. After replacing .P 2 X/ by a finite cover we may assume that
KF is Cartier. Since F is terminal andKF is Cartier this implies that P 2 X is in fact an
isolated singularity. Moreover, perhaps shrinking aboutP we may assume that Cl.P 2X/
is generated by the classes of divisors D1; : : : ;DN on X .

By Theorem 2.4 we may take

�W .Y;G /! .X;F /;

an F-dlt modification of F . Since F is terminal we see that � is small, i.e., ��1.P / is a
union of curves. Observe that Y is Q-factorial. In particular, D0i WD �

�1
� Di is Q-Cartier

and so if P 2 U �X is a smaller germ then �W��1.U /! U is also an F-dlt modification
of F jU . Indeed, it suffices to show that ��1.U / is globally Q-factorial. IfD is any global
divisor on U then ��D �

P
aiDi by assumption and so D �

P
aiD

0
i and hence D is

Q-Cartier. Thus we may replace X by a smaller germ about P at any point, should we
need to do so.

We claim the following:

Claim 5.17. For all Q 2 ��1.P / � Y , Y is analytically Q-factorial about Q.

Claim 5.18. Y is simply connected.

Proof of Claim 5.18. Let T be a germ of a G -invariant surface containing ��1.P /. Since
G is terminal and ��1.P / is connected, T is irreducible. Let S D ��T ; by the proper
mapping theorem, S is a divisor on X .

Since F , and hence G , is terminal and Gorenstein (i.e., KF is Cartier), .X;F / and
.Y; G / are both smooth in codimension 2 and so KG jT D KT and KF jS D KS ; hence
��KS DKT . By [13, Lemma 3.16], T is a log terminal surface and so .P 2 S/ is a germ
of a log terminal singularity. Thus exc.T ! S/ D exc.�/ is a tree of rational curves and
therefore ��1.P / is simply connected. Notice that Y deformation retracts onto ��1.P /
and so Y is simply connected.

Assuming Claim 5.17 we complete the proof of Corollary 5.15 as follows. Observe
that ��1F is terminal and so for all q 2 ��1.P / by Theorem 5.1 there exists a holo-
morphic first integral Fq defined on a neighbourhood Uq of q so that FqjT D 0.

Let sWY 0! Y be an index 1 cover associated to T ramified only over T [25, Definition
2.52, Lemma 2.53], and let �0W Y 0 ! X 0 be the Stein factorization of Y 0 ! X . Notice
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that r WX 0! X is ramified only along invariant divisors soKr�1F D r
�KF , in particular

r�1F is still terminal. Replacing X by X 0 we may freely assume that T is Cartier.
In particular, for any q, up to taking a root, we may assume that .Fq D 0/ D T \ Uq ,

i.e., .Fq D 0/ is reduced. Thus for any q and q0 with Uq \ Uq0 ¤ ;, we find that Fq is
not a power on Uq \ Uq0 . Moreover, since Y is smooth in codimension 2, we see that
��1.P / \ sing.X/ consists of a finite collection of points, and so by shrinking the Uq if
necessary we may also assume that Uq \Uq0 \ sing.X/D ;. We may then apply Lemma
5.14 to produce a representation �W�1.Y /! Aut.b�/. Since �1.Y / is trivial we see that
� is trivial and so we get a global first integral on Y , which descends to X .

To show that KX is Q-Cartier, let �W .P 2 X/ ! .0 2 C/ be a holomorphic first
integral for F where 0 2 C is a (germ of a) curve. Let F D ��1.0/ and observe that
KF DKX=C.�mF / whereKX=C DKX � ��KC and wheremC 1 is the multiplicity of
the fibre over 0. By assumption, KF is Q-Cartier, ��KC is Cartier since C is a smooth
curve and F D 1

mC1
��0 is Q-Cartier and soKX is Q-Cartier as claimed, thus completing

the proof.

Proof of Claim 5.17. Let Q 2 ��1.P / � Y . We make the following preliminary obser-
vation. Let D be any divisor defined in an (analytic) neighbourhood U of Q and suppose
thatD \��1.P /DQ. Then, shrinking X to a smaller neighbourhood of P if necessary,
we may extendD to a divisor on all of Y . Indeed, for anyQ0 2 ��1.P / n .��1.P /\U/
we may find an open set VQ0 � Y such that VQ0 \D D ;. By compactness of ��1.P / n
.��1.P /\U/we may findQ1; : : : ;Qn such that��1.P /�U 0 WDU [VQ1 [ � � � [VQn .
By construction, D is an analytic divisor defined on all of U 0, by setting D \ VQi D ;.
We may then find an open subset W of P in X such that ��1.W / � U 0. Replacing X by
W we see that our observation follows.

So, let Q 2 ��1.P /; suppose for the sake of contradiction that Y is not analytically
Q-factorial about Q and let D be a local divisor defined on a neighbourhood V of Q
which is not Q-Cartier. A priori,D \��1.P /may be 1-dimensional and so it is not clear
if we can extend D to a divisor on all of Y .

Since Y is klt, there exists a small Q-factorialization about Q. Let f WZ ! .Q 2 Y /

be this Q-factorialization, let D0 be the strict transform of D and let f �1.Q/ D
S
i Ci

be a decomposition into irreducible components.
Observe that for all i we may find an irreducible effective Cartier divisor Si defined

on Z such that Si � Cj D ıij and Si \ f �1.Q/ is a single point.
By choosing ai 2 Q appropriately we may assume that D0 C

P
aiSi is numerically

trivial over Y . Since f is small we see that .D0C
P
aiSi /�KZ is nef and big over Y and

therefore by the relative basepoint free theorem [25, Theorem 3.24] for n > 0 sufficiently
divisible we have n.D0 C

P
aiSi / �f 0. In particular, if we let Ti D f�Si we see that

D C
P
aiTi is Q-Cartier near Q.

Since Ti \ ��1.P / is a point, by our observation at the beginning of this proof we
may extend Ti to a divisor on all of Y , in particular Ti is Q-Cartier. This in turn implies
that D is in fact Q-Cartier, proving our claim.
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We can now provide a classification of terminal foliation singularities.

Proposition 5.19. Let .P 2 X/ be a normal threefold germ and let F be a co-rank 1
foliation on .P 2 X/. Suppose KX and KF are Cartier and F is terminal. Then F

is given by the smoothing of a Du Val surface singularity, i.e., F admits a first integral
�W .P 2X/! .0 2C/ where ��1.0/ is a Du Val surface singularity and ��1.t/ is smooth
for t ¤ 0. In particular, X is terminal.

Moreover, one can write down a list of all such smoothings. In an appropriate choice
of coordinates we have

X D ¹ .x; y; z/C tg.x; y; z; t/ D 0º

and F is defined by the 1-form dt , i.e., the first integral is just .x; y; z; t/ 7! t and
 .x; y; z/ is one of the following [25, Theorem 4.20]:

(1)  .x; y; z/ D x2 C y2 C znC1 with n � 0;

(2)  .x; y; z/ D x2 C zy2 C zn�1 with n � 4;

(3)  .x; y; z/ D x2 C y3 C z4;

(4)  .x; y; z/ D x2 C y3 C yz3;

(5)  .x; y; z/ D x2 C y3 C z5;

(6)  .x; y; z/ D x.

Conversely, if g.x; y; z; t/ is such that X has at worst an isolated singularity at P and F

is defined by dt then F has a terminal singularity at P .

Theorem 5.20. Let .P 2 X/ be a threefold germ, let F be a co-rank 1 foliation on X
and suppose that F is terminal. Then P 2 X is a quotient of one of the foliations (1)–(6)
in the above list by G D Z=m � Z=n.

Proof. By Corollary 5.15 we see that KF and KX are both Q-Cartier so we may find a
Galois cover � W .X 0;F 0/! .X;F / with Galois group Z=n � Z=m such that KF 0 and
KX 0 are both Cartier. Indeed, LetX1!X andX2!X be the index 1 covers associated to
KF andKX , with Galois groups Z=m1 and Z=m2 respectively. IfX 0 is the normalization
of a component of X1 �X X2 dominating X then X 0 ! X is Galois and its Galois group
is a subgroup of Z=m1 � Z=m2 as required.

By Proposition 5.19, .X 0;F 0/ is one of the foliations (1)–(6) and we can conclude the
proof.

Corollary 5.21. Let .P 2 X/ be a germ of a normal threefold, let F be a co-rank 1
foliation on X and suppose that F is terminal. Then X and F admit a Q-smoothing, i.e.,
there exists a family of foliated threefold germs Xt and Ft such that .X0;F0/ D .X;F /
and for t ¤ 0, .Xt ;Ft / is a quotient of a smooth foliation on a smooth variety.

Proof. This is a direct consequence of the classification in Proposition 5.19. Indeed, in
each case we may explicitly construct a smoothing ofX and F by perturbing the defining
equations of X and F .
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5.6. Structure of terminal flips

We finish by providing a rough structural statement for terminal foliated flips.

Theorem 5.22. Let X be a Q-factorial threefold and let F be a co-rank 1 foliation on X
with terminal singularities. Let �WX ! Z be a KF -flipping contraction and let C D
Exc.�/. Then there exists an analytic open neighbourhood C � U and a holomorphic
first integral F WU ! C of F .

Proof. By Theorem 4.3 we have R1f�OX D 0, and so C is in fact a tree of rational
curves, in particular it is simply connected. For all p 2 C , by Theorem 5.1, we may find a
holomorphic first integral of F near p. However, since C is simply connected, by arguing
as in the proof of Corollary 5.15 we may produce a first integral in a neighbourhood
of C .

6. Existence of separatrices for log canonical foliation singularities

The goal of this section is to prove the following.

Theorem 6.1. Let .P 2 X/ be an isolated klt singularity. Let F be a germ of a log
canonical co-rank 1 foliation singularity on .P 2 X/. Then F admits a separatrix.

Recall that log canonical foliation singularities which are not canonical are always
dicritical, and in general dicritical singularities do not admit separatrices, as the following
classical example due to Jouanolou shows.

Example 6.2. The foliation on .0 2 C3/ defined by

.xmz � ymC1/dx C .ymx � zmC1/dy C .zmy � xmC1/dz

has no separatrices at the origin for m � 2. The blow up of this foliation at 0 has discrep-
ancy �m, and therefore is not log canonical for m � 2.

As the next example shows, a log canonical singularity may not admit a separatrix if
no assumption is made on the base space.

Example 6.3. Let A be an abelian surface that admits an automorphism � such thatX WD
A=h�i is a rational surface and A! X is étale in codimension 1. We may find a linear
foliation on A which admits no algebraic leaves and is � -invariant and so descends to a
foliation F without algebraic leaves on X .

Let .P 2 Y / be the cone over X with vertex P and let G be the cone over F . It is
easy to check that G is log canonical and admits no separatrices at P . However, .P 2 Y /
is log canonical and not klt.

We also have the following interesting corollary.
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Corollary 6.4. Let F be a germ of a foliation on .0 2 C3/ and let i W .0 2 S/! .0 2 C3/

be a germ of a surface transverse to F and such that i�1F is log canonical, e.g., a radial
singularity. Then F admits a separatrix.

Proof. This follows by combining Theorems 6.1 and 3.12.

We now proceed with the proof of Theorem 6.1. We will first need the following
generalization of Lemma 1.18.

Lemma 6.5. Let X be a complex threefold with a co-rank 1 foliation F with non-
dicritical singularities. Let D � X be a compact subvariety and let V � D be a closed
proper subvariety of D tangent to F with the following property:

.?/ For all p 2 V , if Sp is a separatrix of F at p then Sp \D � V .

Let q 2 V , let Uq be a neighbourhood of q and let Sq � Uq be a separatrix at q. Then
there exists an analytic open neighbourhood U of D and an invariant subvariety S � U
such that S \ Uq D Sq .

Proof. Let � W X ! X be a resolution of singularities of X and F and such that ��1.V /
is an invariant divisor.

Observe that condition .?/ still holds for ��1.V / and ��1.D/. Moreover, if q 2 V is
some point and ��1.Sq/ admits an extension S to a neighbourhood U of ��1.D/ then
since � is proper, �.S/ � �.U / is an extension of Sq to a neighbourhood of D.

Thus, without loss of generality we may assume that X is smooth, F has simple
singularities and V is a divisor.

Let q 2 V and let Sq be any separatrix at q. By Lemma 1.18 we may find a neighbour-
hood U 0 of V and an invariant divisor S 0 which agrees with Sq near q. LetD0 DD \U 0.
By .?/ we see that S 0 \ .D0 n V /D ;. Thus, shrinking U 0 if necessary, for all p 2D n V
there exists a neighbourhood Up of p such that Up \ S 0 D ;.

Taking U D U 0 [
S
p2DnV Up we see that S 0 extends to a subvariety of U and we are

done.

We recall the following classification result due to [30].

Theorem 6.6. Let X be a normal projective surface and let L be a rank 1 foliation
on X with canonical foliation singularities. Suppose c1.KL/ D 0. Then there exists a
birational morphism �WX ! X 0 contracting only rational curves tangent to L, and a
cyclic cover � W Y ! X 0, étale in codimension 1, such that one of the following holds
where G D ��1��L:

(1) � is an isomorphism, X D C � E=G where g.E/ D 1, C is a smooth projective
curve, G is a finite group acting on C � E and G is the foliation induced by the
G -invariant fibration C �E ! C ;

(2) � is an isomorphism and G is a linear foliation on the abelian surface Y ;

(3) � is an isomorphism, Y is a P1-bundle over an elliptic curve and G is transverse to
the bundle structure and leaves at least one section invariant;
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(4) up to blowing up Y at P 2 sing.L/, Y is a compactification of Gm � Ga and L

restricted to this open subset is generated by a Gm �Ga-invariant vector field;

(5) up to blowing up Y at P 2 sing.L/, Y is a compactification of Gm � Gm and L

restricted to this open subset is generated by a Gm �Gm-invariant vector field.

Proof. This follows directly from [30, Theorem IV.3.6] except for the claim in items
(1)–(3) that � is an isomorphism. In each of these cases ��L is terminal, because for all
P 2 X 0 there exists a cyclic cover (namely � ) such that ��1��L is smooth in a neigh-
bourhood of ��1.P / and so we may apply Proposition 1.7.

Since ��L is terminal and c1.KL/ D 0 this implies that � is an isomorphism.

Lemma 6.7. Let S be a surface and let L be a co-rank 1 foliation on S . Suppose that
c1.KL/ D 0 and L has canonical singularities.

(1) For all p 2 sing.L/ each separatrix at p is algebraic. In particular, the union of all
such separatrices is an algebraic subvariety of S .

(2) Either there exists a quasi-étale cover � W A! S where A is an abelian variety, or
there exists an algebraic curve V � S such that each component of V is L-invariant
and if p 2 sing.L/ \ V then each separatrix at p is contained in V .

Proof. To prove item (1) observe that in order to check if each separatrix at a singular
point is algebraic we may contract curves tangent to the foliation, as well as replace S by
a finite cover. Thus, it suffices to check the claim for each of the five types of foliation
listed in the statement of Theorem 6.6.

In cases (1)–(3) the foliation is smooth and so there is nothing to prove. Thus it
remains to consider cases (4) and (5).

We see that the vector field generating L on Gm � Ga or Gm � Gm, respectively, is
smooth. Hence sing.L/ is contained in the boundary of the compactification. Moreover,
since L is invariant under the action of Gm � Ga or Gm � Gm, every separatrix of p 2
sing.L/ must be contained in the boundary.

To prove item (2) of the lemma, again we may freely contract curves tangent to L and
replace by a finite cover. Thus we may assume that .S;L/ is one of the foliations listed
in Theorem 6.6. We argue depending on the case.

If we are in case (5) or (4) then sing.L/ is non-empty and so by item (1) proven above
we may take V to be the union of all separatrices passing through sing.L/.

If we are in case (1) then L is algebraically integrable and we may take V to be the
closure of a general leaf.

If we are in case (3) let† be the invariant section. We claim that L is smooth along†.
Indeed, on the one hand KL �† D K† C� where � � 0 is supported on sing.L/ \†.
On the other hand, by assumption KL � † D 0 and since † is an elliptic curve we have
K† D 0 and so � D 0. This gives sing.L/ \† D ; and so we may take V D †.

Otherwise S is an abelian variety and there is nothing more to prove.
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Lemma 6.8. Let .P 2 X/ be a germ of a normal threefold and let F be a co-rank 1
foliation on X . Suppose that F is log canonical but not canonical. Then there exists a
birational morphism � WY ! X and an irreducible �-exceptional divisor E0 such that

(1) E0 is a �-exceptional divisor transverse to G WD ��1F ;

(2) ��1.P / � E0;

(3) G has non-dicritical singularities;

(4) KG C E D ��KF where E D
P
i �.Ei /Ei where we sum over all �-exceptional

divisors;

(5) .G ; E/ is log canonical and .G ; .1 � �/E/ is F-dlt for all 1 > � > 0; and

(6) Y is Q-factorial and klt.

Proof. Let �W .X;F / ! .X;F / be an F-dlt modification of .X;F / and write KF CP
�.E 0i /E

0
i D ��KF where the E 0i are the �-exceptional divisors. Observe that X is

Q-factorial and klt and F has non-dicritical singularities.
Since F is not canonical, � extracts some divisor transverse to the foliation. We may

therefore assume, after relabelling, that �.E 00/D 1 andE 00 \�
�1.P /¤ ;. For 0 < ı� 1

we know that .F ;
P
�.E 0i /E

0
i � ıE

0
0 WD ‚/ is F-dlt and so by Corollary 2.3 we may run

a .KF C
P
�.E 0i /E

0
i � ıE

0
0/-MMP over X , say �WX Ü Y , and let � W .Y;G /! .X;F /

be the induced map.
Since the MMP preserves Q-factoriality and klt singularities and the output of the

MMP has non-dicritical singularities, we see that items (6) and (3) are satisfied. Item (4)
follows by construction and item (5) follows since the MMP preserves F-dlt singularities.

Since
KF C

X
�.E 0i /E

0
i � ıE

0
0 �� �ıE

0
0;

each ray R contracted by this MMP has positive intersection with the strict transform
of E 00, in particular E 00 is not contracted by this MMP. Set E0 D ��E

0
0. Since E 00 is

transverse to the foliation, so is E0, proving item (1). Moreover,

.KG C ��‚/ �
�
KG C ��

X
�.E 0i /E

0
i

�
D �ı��E

0
0 D �ıE0

is nef over X . By the Negativity Lemma [38, Lemma 1.3], for all x 2 X either ��1.x/
is disjoint from E0, or ��1.x/ is contained in E0. By our choice of E0 we have
E0 \ �

�1.P / ¤ ;, which proves item (2).

Lemma 6.9. Let .P 2X/ be a germ of a klt singularity with a co-rank 1 foliation F with
log canonical but not canonical singularities. Let � W .Y; G /! .X;F / be a birational
morphism as in Lemma 6.8 above. Suppose that dim.��1.P // D 2 and ��1.P / is the
only �-exceptional divisor transverse to G WD ��1F . Then there is a separatrix at P .

Proof. Let E0 be a divisor as in Lemma 6.8 containing ��1.P /. Since E0 is irreducible
this implies that ��1.P / D E0.
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We will find a closed subset V � E0 satisfying the hypotheses of Lemma 6.5 in order
to produce a G -invariant divisor in a neighbourhood of E0 whose push forward will be
the desired separatrix.

Let ¹Eiº denote the collection of �-exceptional divisors such thatKG CE0 D �
�KF

and .G ; E0/ is log canonical and Ei is G -invariant for i ¤ 0. Note that since Ei is invari-
ant, Ci WD �.Ei / is a curve tangent to F passing through P .

Since G is non-dicritical and E0 is the only �-exceptional divisor which is not G -
invariant it follows that F restricted to X n P is non-dicritical.

By foliation adjunction (Lemma 3.10), we know that

0 �Q n�.KG CE0/ D KG0 C�0

where �0 � 0 and nWEn0 ! E0 is the normalization.
Next, since X is klt we may write KY C E0 C B D ��KX C aE0 where a > 0 and

B is not necessarily effective, but is supported on the G -invariant �-exceptional divisors.
Write n�.KY CE0 C B/ D KEn

0
C‚0.

We claim that �E0jE0 is big. Let A be an ample divisor on Y . We may find a divisor
D � 0 on X such that D C ��A is Q-Cartier. We may then write ��.D C ��A/ D
tE0 C ACD

0 where t > 0, D0 � 0, ��D0 D D and E0 is not contained in the support
of D0. Since ��.D C ��A/jE0 � 0 we have �E0jE0 �

1
t
.ACD0/jE0 , which is big, as

required. It follows that�.KE0 C‚0/ is big. Observe that‚0 is not necessarily effective,
but if we write ‚0 D ‚C0 � ‚

�
0 where ‚C0 ; ‚

�
0 � 0 then ‚�0 is G0-invariant since it is

supported on n�1.B \E0/.
First we handle the case�0 ¤ 0. In this caseKG0 is not psef, hence G0 is algebraically

integrable, by [3, Main Theorem]. Take V to be the closure of a general leaf of G0. Observe
that G0 is non-dicritical since ��1F is, and so V is disjoint from the closure of any other
leaf of G0. Moreover, in this case En0 is a P1-fibration over a curve and V is a general
fibre in this fibration. In particular, notice that KEn

0
� V D �2.

We claim that n�1.n.V // D V . Indeed, if not then E0 would not be normal in a
neighbourhood of some point of n.V /. Let W � sing.E0/ be a 1-dimensional com-
ponent meeting n.V /. Observe that since V is general W is transverse to the foliation.
Since .G ; .1 � �/E0/ is F-dlt for all 1 > � > 0 it follows from [35, Lemma 3.11] that
.Y; .1� �/E0/ is dlt at the generic point of W . It follows by [25, Corollary 5.55] that in a
neighbourhood of a general point of W , E0 consists of two smooth components meeting
transversely.

Since V is general, it follows that in an (analytic) neighbourhood of V , n�1.W / con-
sists of two components transverse to G0. A straightforward calculation shows that the
coefficient of each of these components in �0 and in ‚0 is 1. Notice that V � ‚�0 D 0

and so .KEn
0
C ‚0/ � V � 0. However, V is a movable curve and this contradicts

�.KEn
0
C‚0/ being big.

Thus for all q 2 n.V /, if Sq is a separatrix of ��1F at q then Sq \E0 � n.V / and so
we may apply Lemma 6.5 to produce an extension T of Sq to a neighbourhood U of E0.
Shrinking U if necessary, we may assume that U D ��1.W / for some neighbourhoodW
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ofP . Also, since V was chosen to be general we may assume that T is not contained in the
union of the �-exceptional divisors. Since U ! W is proper we see that S D ��T � V
is a divisor and is invariant under F , and hence is the desired separatrix.

Now we handle the case�0 D 0. First observe that�0 D 0 implies that E0 is normal.
By foliation adjunction (Lemma 3.10), G0 is log canonical, and since G0 is non-dicritical
we see that G0 is in fact canonical.

First, suppose that there exists a quasi-étale cover r W Y !E0 such that Y is an abelian
variety. We claim that G0 is then algebraically integrable (in which case we are done by
arguing as above). If ‚�0 ¤ 0 then G0, and hence r�1G0, admits an invariant algebraic
curve and by Theorem 6.6 we see that G0 is algebraically integrable. So suppose for the
sake of contradiction that ‚�0 D 0. In this case,�KE0 is big and so �KY D �r�KE0 is
big, contradicting KY � 0.

Next, suppose that there is no such cover. We may apply Lemma 6.7 to produce
V �E0 such that each component of V is tangent to G0 and each separatrix of G0 meeting
V is contained in V . Thus, we may apply Lemma 6.5 to produce an invariant divisor T
in a neighbourhood of E0 and which contains V . We claim that T is not contained in
the union of the �-exceptional divisors. Supposing the claim we see that S D ��T is the
desired separatrix.

We now prove the claim. First if E0 is the only exceptional divisor there is nothing
to show. So suppose that there is some other �-exceptional divisor Ei . If Q 2 Ci n P
is a general point then there exists a separatrix of F at Q, say SQ (recall Ci D �.Ei /

is tangent to F ). To prove the existence of SQ first note that in a neighbourhood of Q
the variety X has quotient singularities (since klt singularities are quotient singularities
outside a subset of codimension � 3) and so (up to replacing X by a cover) we may
assume that X is smooth at Q. Since F is non-dicritical in a neighbourhood of Q we
may apply [8, Existence of Separatrix Theorem] to produce SQ.

Let S 0Q WD �
�1
� SQ. By Lemma 1.18 we may extend S 0Q to an invariant divisor in an

(analytic) open neighbourhood of
Pm
iD1Ei . Call this extension H ; by construction, H is

not contained in
Pm
iD0Ei . Let†DH \

Pm
iD1Ei ; it is a closed analytic subset of

P
Ei .

Let †0 D † \ E0 and let x 2 †0. We know that
Pm
iD1 Ei \ E0 � V by construction.

However, H \ E0 is a separatrix of G0 at x intersecting V : in fact, H \ E0 � V . Then,
in a neighbourhood of E0, we have H � T , in particular T is not contained in the union
of the �-exceptional divisors.

We are now ready to prove the main theorem of this section.

Proof of Theorem 6.1. Suppose first that F has canonical singularities. IfX is Q-factorial
then we may apply Corollary 5.2 to produce a separatrix. Otherwise, since X is klt, it
admits a small Q-factorialization�WX 0!X . Since F is non-dicritical��1.P / is tangent
to the foliation and is therefore contained in a germ of an invariant surface S . We may
then take ��S as the desired separatrix.

So we may assume that F is not canonical and let � W .Y;G /! .X;F / be a modific-
ation as in Lemma 6.8; let E0 be a divisor as in the statement of the lemma.
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There are two cases: ��1.P / can be of dimension 2 or 1. Notice moreover that if
there exists some �-exceptional divisor E transverse to G such that E is centred over a
curve in X then by choosing E D E0 in the proof of Lemma 6.8 we see that ��1.P / is
of dimension 1.

If ��1.P / is of dimension 2 we may assume that the only �-exceptional divisor trans-
verse to G is ��1.P /. We may then apply Lemma 6.9 to conclude the proof.

Otherwise C WD ��1.P / � E0 is a curve. Let G0 be the induced foliation on E0.
Suppose first that some component C0 � C is transverse to G0. Then we may apply
Lemma 6.5 with D D ��1.P / and V a general point in C0 to produce an invariant
divisor S in a neighbourhood of ��1.P /. In this case ��S will be the desired separatrix.

Now suppose that each component of C is invariant by G0. In this case, shrinking X if
necessary, we may assume that the union of all convergent separatrices meeting C is an
analytic subset of E0, say zC . In this case we may apply Lemma 6.5 with D D E0 and
V D zC to produce a separatrix S in a neighbourhood of E0. Again, ��S is the desired
separatrix.

Remark 6.10. In fact, the arguments above prove a slightly stronger claim which may
be of interest. In the set up as above, if we let C � sing.F / be a curve of singularities
passing through P then C is contained in a separatrix.

7. Foliations and hyperbolicity

The goal of this section is to prove the following foliated version of [36, Theorem 1.1].
Given a foliated pair .F ;�/ and an lc centre S we will denote by NS � S the locally closed
subvariety obtained by removing from S the lc centres of .F ; �/ strictly contained in S .

Theorem 7.1. Let .F ; �/ be a foliated log canonical pair on a normal projective vari-
ety X . Assume that

� X is potentially klt;

� there is no non-constant morphism f W A1 ! X n Nklt.F ; �/ tangent to F ; and

� for any stratum S of Nklt.F ;�/ there is no non-constant morphism f WA1! NS which
is tangent to F .

Then KF C� is nef.

The notions of potentially klt and potentially log canonical have been defined in Defin-
ition 1.2.

7.1. A special version of dlt modifications

We prove a refinement of Theorem 2.4, which will be useful in the proof of the main result
of this section.
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Theorem 7.2 (Existence of special F-dlt modifications). Let F be a co-rank 1 foliation on
a normal projective varietyX of dimension at most 3. Let .F ;�D

P
aiDi / be a foliated

pair. Set �0 WD
P
ai<�.Di /

aiDi C
P
aj��.Dj /

�.Dj /Dj . Then there exists a birational
morphism � W Y ! X which extracts divisors E of foliation discrepancy � ��.E/ such
that if we write KG C � D �

�.KF C�/ then .G ; � 0 WD ��1� �0 C
P
Ei �-exc. �.Ei /Ei /

is F-dlt.
Furthermore, we may choose .Y;G / so that

(1) if W is a non-klt centre of .G ; �/ then W is contained in a codimension 1 lc centre
of .G ; � 0/;

(2) Y is Q-factorial;

(3) Y is klt; and

(4) ��1Nklt.F ; �/ D Nklt.G ; �/ D Nklt.G ; � 0/.

Proof. For the proof of (1)–(3) we refer to [13, Theorem 8.1]. Let �Z WZ ! X be a
modification of .F ; �/ satisfying these three properties. Let .H ; ‚; ‚0/ be the triple
given by the birational transform of F on Z, and

KH C‚ D �
�
Z.KF C�/; ‚0 WD ��1Z��

0
C

X
Fi �Z -exc.

�.Fi /Fi :

With these definitions,

KH C‚
0<1
�R;X �‚

00; where ‚00 WD ‚ �‚0<1:

As KH C ‚
0<1 is big over X , there exists A ample over X and an effective divisor G

such that
KH C‚

0<1
�R;X ACG:

We can decompose G as
G D G1 CG2 CG3;

where G1 is the part of G supported on �Z-exceptional divisors or H -invariant divisors,
G2 is the part of G supported on those components that are not H -invariant but contain
an H -invariant lc centre for .H ;‚/, andG3 WD G �G1 �G2. For any 0 < �� 1 we can
write

�‚00 �R;XKH C‚
0<1
D .1 � �/.KH C‚

0<1/C �.KH C‚
0<1/

�R;X .1 � �/

�
KH C‚

0<1
C

�

1 � �
.ACG/

�
�R;X .1 � �/

�
KH C‚

0<1
C

�

1 � �
.ACG1 CG2 CG3/

�
;

so that

KH C‚
0<1
C

�

1 � �
.ACG2 CG3/ �R;X �

1

1 � �
‚00 �

�

1 � �
G1:
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Choosing an effective divisor L whose support coincides with the divisorial part of
exc.�Z/ such that A � L is ample, then

KH C‚
0<1
C

�

1 � �
.G2 CG3 C A � L/ �R;X �

1

1 � �
‚00 �

�

1 � �
.G1 C L/:

Choose a sufficiently general effective A0 �R A � L and define

G0 WD G2 CG3 C A
0; �0 WD

�

1 � �
; „�0 WD

1

1 � �
‚00 C

�

1 � �
.G1 C L/:

Hence, KH C‚
0<1 C �0G0 �R;X �„�0 .

Claim 7.3. For 0 < �0 � 1, there exists an F-dlt modification Nr W NZ ! Z of .H ; ‚0<1 C

�0G0/ such that for any Nr-exceptional prime divisor E, a.EIH ; ‚0/ D ��.E/.

Proof of Claim 7.3. Fix 0 < �0� 1. Let Qr W zZ!Z be an F-dlt modification in the sense of
Theorem 2.4 for .H ; ‚0<1 C �0G0/. Define QH to be the birational transform of H on zZ.
Writing

K QH C Qr
�1
� .‚0<1 C �0G0/C

X
aiEi D Qr

�.KH C‚
0<1
C �0G0/; ai � �.Ei /;

as Qr is an F-dlt modification, we see that . QH ; Qr�1� .‚0<1 C �0G0/C
P
�.Ei /Ei / is F-dlt.

LetEi be an Qr-exceptional prime divisor such that a.Ei IH ;‚0/ >��.Ei /; as‚0 �‚0<1,
also a.Ei IH ; ‚0<1/ > ��.Ei /. Since the discrepancy a.Ei IH ; ‚0<1 C �0G0/ is a linear
function of �0, we can choose 0 < �00 � �0 such that

K QH C Qr
�1
� .‚0<1 C �00G0/C

X
biEi D Qr

�.KH C‚
0<1
C �00G0/;

and bi < �.Ei / whenever a.Ei IH ; ‚0/ > ��.Ei /. Hence,

K QH C Qr
�1
� .‚0<1 C �00G0/C

X
�.Ei /Ei �R;Z P �N;

where P;N are effective Qr-exceptional divisors with disjoint supports, and the support of
P contains all the Ei with a.Ei IH ; ‚0/ > ��.Ei /. The pair . QH ; Qr�1� .‚0<1 C �00G0/CP
�.Ei /Ei / is dlt. By Corollary 2.3, we may run the .K QH C Qr

�1
� .‚0<1 C �00G0/ CP

�.Ei /Ei /-MMP over Z to obtain a model

zZ //_______

Qr

��?
??

??
??

? NZ

Nr

����
��
��
��

Z

such that K NH C Nr
�1
� .‚0<1 C �00G0/C

P
�.Fi /Fi is relatively nef, where NH denotes the

birational transform of H on NZ and the Fi are the strict transforms of the Ei on NZ. The
Negativity Lemma implies that

K NH C Nr
�1
� .‚0<1 C �00G0/C

X
�.Fi /Fi �R;Z � NN;

where NN is the strict transform of N on NZ. Thus, by construction, NZ is the model that
satisfies the statement of the claim for the chosen value of �00.
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Recall that onZ,KH C‚
0<1C �0G0 �R;X �„�0 . Thus, on NZ there exists an effective

divisor NF supported on the Fi such that NF �
P
�.Fi /Fi and

Nr�.KH C‚
0<1
C �0G0/ D K NH C Nr

�1
� .‚0<1 C �0G0/C NF �R;X �Nr

�„�0 :

Moreover, the support of NF C Nr�„�0 is the union of the divisorial part of the exceptional
locus of the morphism NZ ! X together with some NH -invariant components and

K NH C
N‚0 D Nr�.KH C‚

0/; N‚0 WD r�1� .‚0/C
X

�.Fi /Fi :

Running the .K NH C Nr
�1
� .‚0<1 C �0G0//-MMP over X

NZ //_______

�ZıNr ��?
??

??
??

? Y1

�

��~~
~~
~~
~

X

terminates with a model �1W Y1 ! X on which �. NF C Nr�„�0/ is nef. We denote by
HY1 ; ‚

0
Y1

the strict transforms of NH ; N‚0 on Y1. To conclude the proof, we take an F-dlt
modification rY WY ! Y1 of the pair .HY1 ;‚

0
Y1
/. The Negativity Lemma [38, Lemma 1.3]

and Claim 7.3 imply that Y is the desired model whose existence we claimed in the
statement of the theorem.

7.2. Mori hyperbolicity and non-klt locus

We recall the following hyperbolicity result for standard log pairs with dlt support which
will be used throughout this section.

Proposition 7.4 ([36, Prop. 5.2]). Let .X; � D
P
i biDi � 0/ be a normal, projective,

Q-factorial log pair such that .X; �0 D
P
bi<1

biDi C
P
bi�1

Di / is dlt. Suppose that
KX C� is nef when restricted to Supp.

P
bi�1

biDi /DNklt.�0/DNklt.�/. Then either

� KX C� is nef, or

� X n Nklt.�/ contains an algebraic curve whose normalization is A1.

In the case of a general foliated log pair, using dlt modifications we get the following
criterion, which will be fundamental in the proof of Theorem 7.1.

Corollary 7.5. Let X be a normal, projective, Q-factorial threefold. Let .F ; � DP
i biDi � 0/ be a foliated log pair such that .F ; �0 D

P
i jbi<�.Di /

biDi CP
i jbi��.Di /

�.Di /Di / is F-dlt. Assume that X n Nklt.F ; �/ does not contain algebraic
curves tangent to F whose normalization is A1. Then KF C� is nef if and only if it is
nef when restricted to Nklt.F ; �/.

Proof. If KF C� is nef, then a fortiori it is nef when restricted to any subvariety of X .
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We now assume that KF C� is nef when restricted to Nklt.�/. As .F ; �0/ is F-dlt,
it follows that

Nklt.F ; �/ D
[

�Di���.Di /

Di D Nklt.F ; �0/;

by definition of �0. Now, suppose that KF C� is not nef. Then there exists a negative
extremal ray R � NE.X/. Since KF C � is nef when restricted along Nklt.F ; �/, it
follows that R �Di � 0 for any Di with �Di� � �.Di /. Hence, R is a negative extremal
ray also forKF C�

0. As .F ;�0/ is an F-dlt pair, it is non-dicritical by Theorem 1.16; in
particular, [13, Lemma 3.30] implies that any curve C � X satisfying ŒC � 2 R is tangent
to F . Moreover, [13, Theorem 6.7] implies that there exists a contraction �WX!Y within
the category of projective varieties which only contracts curves in X whose numerical
class belongs to R. In particular, asKF C� is nef along Nklt.F ;�/, it follows that each
fibre of � intersects Nklt.F ;�/ in at most finitely many points. As X is Q-factorial, each
fibre of � intersecting Nklt.F ; �/ must have dimension at most 1: otherwise, if Xy , for
some y 2 Y , were a 2-dimensional fibre, no component of �0 could intersect Xy , as this
intersection would contain a .KF C �/-negative curve contained in Nklt.F ; �/, hence
there would be a rational curve C � X n Nklt.F ; �/, thus leading to a contradiction.

Let † � X be an irreducible curve contracted by �. We claim that † is a rational
curve. Indeed, † is tangent to F , thus we may find a germ of an invariant surface S
containing†. If† 6� sing.F /, then S is simply a leaf containing†, while if†� sing.F /,
then we may take S to be a strong separatrix at a general point of †. As .F ; �0/ is F-dlt,
we can apply Lemma 3.10 to write ��.KF C �

0/ D KS� C �
0
S� , where �W S� ! S is

the normalization of S , and .S� ;�0S� / is lc. If we take T to be the normalization of �.S/
then the strict transform of † on S� is a .KS� C�0S� /-negative curve contracted by the
morphism S� ! T and is therefore (by classical adjunction) necessarily a rational curve.

The Q-factoriality of X implies that either

(1) � is a Mori fibre space and all the fibres are 1-dimensional, or

(2) � is birational and the exceptional locus intersects Nklt.�/.

We claim that in both cases R1��OX D 0. In fact, in case (1), as all fibres are rational
curves, � must be a KX -negative contraction, while in case 2) the conclusion can be
reached by direct application of Theorem 4.3. Thus, Theorem 3.1 implies that Nklt.F ;�/
is connected in a neighbourhood of every fibre of �. In case (1), the generic fibre of � is
a smooth projective rational curve. Theorem 3.1 implies that the generic fibre intersects
Nklt.�/ in at most one point. This concludes the proof in case (1).

In case (2), the positive-dimensional fibres are chains of rational curves and by the
vanishing R1��OX D 0, the generic fibre has to be a tree of smooth rational curves. By
Theorem 3.1, Nklt.F ; �/ intersects this chain in at most one point. In particular, there
exists a complete rational curve C such that C \ .X n Nklt.F ; �// D f .A1/, where f
is a non-constant morphism, which provides the sought contradiction.

Proof of Theorem 7.1. We divide the proof into two cases.
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Case 1: .F ;�/ is F-dlt. IfKF C� is nef along Nklt.F ;�/ the conclusion follows from
Corollary 7.5. Hence, we can assume that there exists a positive-dimensional lc centre W
for .F ;�/ andKF C� is not nef alongW . By induction on dimension, we can consider
W to be minimal (with respect to inclusion) with that property, so that .KF C�/jW is nef
when restricted to the lc centres of .F ; �/ strictly contained in W . Clearly, dimW > 0

and [35, Theorem 4.5] implies that if dimW D 1, then W is tangent to F . As .F ; �/ is
F-dlt, one of the following conditions hold:

(a) W is a component of � of coefficient 1;

(b) W is an invariant divisor;

(c) W � sing.F /, dimW D 1, and F is canonical along W by [13, Lemma 3.12];

(d) dimW D 1 and W is tangent to F , W 6� sing.F /, but W � D, where D is a com-
ponent of � with �D� D 1.

Case 1 (a). If W is a component of � of coefficient 1, then we can apply the adjunction
formula along the normalization �WW � ! W :

��.KF C�/ D KG C‚;

where G is the restriction of F toW � and‚ is the different as defined in Lemma 3.10. The
adjunction formula guarantees that .G ;‚/ is F-dlt (see Lemma 3.10), and that ��1.Z/ D
Nklt.G ; ‚/, where Z is the union of all lc centres of .F ; �/ strictly contained in W .
This follows from [13, Lemma 3.8] as .X; �/ is log smooth in a neighbourhood of any
lc centre; in particular, W is normal at the general point of any codimension 2 lc centre
contained in it, and thus

Nklt.G ; ‚/ D ��1.Z/: (7.1)
Hence, the conclusion follows from the 2-dimensional case, that is, from Proposi-
tion 7.6. In fact, the proposition implies that there is a non-constant map f WA1 ! W �

with f .A1/ � W � n Nklt.G 0; ‚/, and by (7.1) composing with � we obtain a map
f 0WA1 ! W nZ.

Case 1 (b). If W is an invariant divisor, then we can apply the adjunction formula along
the normalization �WW � ! W :

��.KF C�/ D KW � C‚; (7.2)

where ‚ is the foliation different. Moreover, ��1.Z/ D Nklt.W � ; ‚/, where Z is the
union of all lc centres of .F ; �/ strictly contained in W [13, Lemma 3.16]. Hence,
by Proposition 7.4, there exists a non-constant map f WA1 ! W � n Nklt.W � ; ‚/. As
��1.Z/ D Nklt.W �/, � ı f produces the desired curve in W nZ.

Case 1 (c). If W is a curve contained in sing.F / and F is canonical along W , then by
[13, Lemma 3.14] there exist two possibly formal separatrices of F through W and we
can choose one of them, say S , to be the (convergent) strong separatrix [35, Corollary 5.6].
Hence, applying adjunction along S , it follows that

��.KF C�/ D KS� CW C‚;

where �WS�!S is the normalization of S andW C‚ is the different of .F ;�/ along S� .
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So by Lemma 3.10, if P is a non-klt centre of .S� ;W C‚/ then �.P / is an lc centre
of .F ; �/. Let nW V ! W be the normalization of W and by (classical) adjunction we
may write n�.KS� CW C‚/ D KV C‚V where b‚V c is supported on the pre-images
of the non-klt centres of .S� ; W C‚/ contained in W . Since .KS� CW C‚/ �W < 0

we have V Š P1 and b‚V c contains at most one point. Thus we see that the normalization
W nZ0 is P1 or A1 where Z0 are the strata of Nklt.F ; �/ contained in W .

Case 1 (d). Let FD be the foliation restricted toD and write .KF C�/jD DKFD C�D .
Again, the result follows directly from Proposition 7.6 and Lemma 3.10 (as in Case 1 (a)),
which together imply that the normalization of W nZ0 contains a copy of A1.

Case 2: .F ;�/ is log canonical. In this case we prove the theorem by reducing to Case 1.
By Theorem 7.2, we can take a dlt modification � WY ! X with

KFY C�Y D �
�.KF C�/

and ��1.Nklt.F ; �// D Nklt.FY ; �Y /. If KF C� is not nef, then the same must hold
for KFY C�Y .

We first discuss the case whereKF C� is nef along Nklt.F ;�/. Under this assump-
tion, Corollary 7.5 implies the existence of a non-constant map f WA1!Y nNklt.FY ;�Y /
whose image is tangent to F . This produces the desired contradiction. Hence, we may
assume that there is an lc centre WY � Y of .FY ; �Y / and a non-constant algebraic
morphism f WA1 ! WY such that

� f .A1/ � WY n ZY where ZY is the union of all lc centres strictly contained in WY ,
and

� .KFY C�Y / � C < 0, where C is the Zariski closure of f .A1/.

We define W WD �.WY /; this is an lc centre of .F ;�/. We wish to show the existence of
a non-constant morphism gWA1 ! W nZ, where Z is the union of all lc centres in W .

Let Z0 � Z be the union of all those lc centres Z0 inW such that ��1.Z0/ is a union
of lc centres. By the above we see that .� ı f /.A1/ � W nZ0.

Notice moreover that if Z0 is an lc centre such that ��1.Z0/ has pure codimension 1
then Z0 � Z0.

We argue by analysing cases depending on the dimension of W . If dimW D 0 there
is nothing to show, so suppose for the moment that dimW D 1.

Let T be a codimension 1 lc centre of .FY ; �Y / dominating W and which contains
f .A1/ and denote by � WT ! W the projection.

Suppose first that T is transverse to FY , write by adjunction .KFY C �Y /jT D

KG C‚ and let C be as above; notice that .G ; ‚/ is F-dlt. Set ‚0 to be the part of b‚c
supported on ��1.Z/ and set ‚1 to be those divisors D contained in ��1.Z/ with
�.D/ D 1 and D not contained in the support of b‚c.

Fix 0 < �; ı � 1 and run the .KG C ‚ � �‚0 C ı‚1/-MMP over W and denote
it by �W T ! S . Let H be the pushforward of G , let D D ��C , let � D ��‚ and let
� WS ! W denote the induced map. Then .H ; �/ is log canonical and by the Negativity
Lemma [38, Lemma 1.3], we see that ��1.Z/ � Supp.�/, and so the pre-image of an lc
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centre is a union of lc centres. Since .KH C �/ �D < 0 it follows from Proposition 7.6
that there exists a map A1! S nNklt.H ; �/ and we may push forward this map along �
to get a map A1 ! W nZ.

The case where T is invariant can be proven in a similar manner.
Now suppose that dimW D 2. Let WY denote the strict transform of W and let

� WWY ! W be the induced map.
Suppose first that W is transverse to the foliation and write .KFY C �Y /jWY D

KG C ‚. Let C � WY be a 1-dimensional lc centre and observe by foliated Riemann–
Hurwitz that if B � WY is a divisor such that �.B/ D C then B � WY is an lc centre of
.G ; ‚/. Let Q � W be the union of the 0-dimensional lc centres contained in W , set ‚0
to be the part of b‚c supported on ��1.Q/ and set ‚1 to be those divisors D contained
in ��1.Z/ with �.D/ D 1 and D not contained in the support of b‚c.

Again, we run the (KG C ‚ � �‚0 C ı‚1)-MMP over W for 0 < �; ı � 1. Let
�WWY ! S denote this MMP and let � WS ! W denote the induced map. Again, notice
that the pre-image of an lc centre under � is a union of lc centres and by applying Pro-
position 7.6 we may produce a map A1 ! S whose push forward along � gives a map
A1! W nZ. Again, the case whereWY is invariant can be handled in a similar manner.

In all cases, if KF C� is not nef we have produced a map A1 ! W nZ.

Proposition 7.6. Let .F ; �/ be a log canonical foliated pair on a normal projective
surface X . Assume that

� X is potentially log canonical;

� there is no non-constant morphism f W A1 ! X n Nklt.F ; �/; and

� for any stratum S of Nklt.F ; �/ there is no non-constant morphism f W A1 ! NS .

Then KF C� is nef.

Proof. Assume for the sake of contradiction that KF C� is not nef and .F ;�/ satisfies
all the hypotheses in the statement of the proposition. We divide the proof into two distinct
cases.

Case 1: .F ; �/ is F-dlt. By [13, Theorem 3.31], since KF C� is not nef, there exists a
rational curve C � X with .KF C�/ � C < 0 and C tangent to F . As C is F -invariant,
it cannot be contained in Supp.�/. Thus,

��.KF C�/ D KC� C�C� ;

where �W C � ! C is the normalization, and Supp.b�C�c/ � ��1.sing.F / [ b�c/.
Finally, observe that Nklt.F ; �/ and all its strata are supported on sing.F / [ b�c to
conclude that the normalization of C n Z0 is P1 or A1 where Z0 are all the strata of
Nklt.F ; �/ meeting C . This is the desired contradiction.

Case 2: .F ;�/ is log canonical. In this case we reduce the proof to Case 1. Let � WY !X

be an F-dlt modification for the pair .F ; �/,

KFY C � D f
�.KF C�/:
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Hence, also KFY C � is not nef and by Case 1 there is a rational curve C � Y tangent
to FY such that C � .KFY C �/ < 0; moreover, the normalization morphism C � ! Y

induces either a non-constant morphism f WA1 ! Y n Nklt.FY ; �/, or a non-constant
morphism f WA1 ! NS for some stratum S of Nklt.FY ; �/. The curve �.C / is tangent
to F , thus it is F -invariant, since FY has rank 1. If C \ .Y n Nklt.FY ; �// ¤ ;, it
follows from Theorem 7.2 and adjunction that � ı f WA1 ! X n Nklt.F ; �/ is a well-
defined morphism.

Hence we can assume that C is an lc centre of .FY ; �/ and that NC is a copy of A1

embedded in Y . But then again the adjunction formula and Theorem 7.2 imply that �. NC/
is also a copy of A1 embedded in X , thus proving the proposition.

8. Some questions

The proof of Theorem 6.1 and its generalizations and possible applications raise several
questions.

Question 8.1. Let .0 2X/ be a germ of a klt singularity and F a log canonical co-rank 1
foliation on X . Does F admit a separatrix at 0?

Question 8.2. Let F be a co-rank 1 foliation on a klt variety .X; �/ with c1.KF / D 0

and �.KX C�/ big.

(1) Does F admit an invariant divisor?

(2) Is sing.F / non-empty?

(3) For p 2 sing.F /, is every separatrix at p algebraic?

More generally, one may wonder if log canonical singularities of foliations of any
dimension admit separatrices. By examples of Gómez-Mont and Luengo [19] it is known
that a vector field on C3 does not always admit a separatrix, but the examples given there
are not log canonical.

Question 8.3. Let F be a foliation of any rank on Cm. Let 0 be a log canonical singu-
larity of F . Does F admit a separatrix at 0?

In the proof of existence of flips given in [13] the existence of separatrices played a
central role, and thus the methods given there do not immediately imply the existence of
log canonical flips. With Theorem 6.1 in mind we ask the following.

Question 8.4. Do log canonical foliation flips exist?

This extension seems to be important to apply the methods of the foliated MMP to
several classes of foliations of interest: Fano foliations, for instance, have worse than
canonical singularities.
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