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Abstract. Let X be a non-collapsing Ricci limit space and let x 2 X . We show that for any � > 0,
there is r > 0 such that every loop in Bt .x/ is contractible in B.1C�/t .x/, where t 2 .0; r�. In
particular, X is semi-locally simply connected.
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1. Introduction

Studying Gromov–Hausdorff limits of manifolds with uniform curvature lower bounds
has been very active and has applications in many different directions. With sectional cur-
vature lower bounds, the limit spaces are known as Alexandrov spaces, whose geometrical
and topological structures have been extensively studied. In particular, these limit spaces
are locally contractible [23]. For Ricci curvature lower bounds, Cheeger, Colding, and
Naber have developed a rich theory on the regularity and geometric structure of the Ricci
limit spaces. On the other hand, surprisingly little is known about the topology of these
spaces. In fact, it could be so complicated that even a non-collapsing Ricci limit space
may have locally infinite topological type [18]. About twenty years ago, Sormani and the
second author [27, 28] gave the first topological restriction, showing that the universal
cover of any Ricci limit space does exist, but were not able to show that the universal
cover is simply connected. Recall that a connected and locally path-connected topologi-
cal space has a simply connected universal cover if and only if space itself is semi-locally
simply connected. See [29, p. 84] for an example whose universal cover exists but is not
simply connected.

As the main result of this paper, we show that any non-collapsing Ricci limit space is
semi-locally simply connected.
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Main Theorem 1.1. Let .Mi ; pi / be a sequence of complete Riemannian n-manifolds
converging to .X; p/ in the Gromov–Hausdorff topology with

RicMi
� �.n � 1/; vol.B1.pi // � v > 0:

Then X is semi-locally simply connected.

Theorem 1.1 implies that any non-collapsed Ricci limit space has a simply connected
universal cover. Our proof does not depend on the results in [27, 28].

In fact, we show that X is essentially locally simply connected and have a local ver-
sion. To state the result precisely, we use the notion of module of 1-contractibility (see
[4, 25]).

Definition 1.2. Let X be a metric space. For x 2 X and t � 0, we define �.t; x/, module
of 1-contractibility at x, as

�.t; x/ D inf¹1; � � t j every loop in Bt .x/ is contractible in B�.x/º;

where Br .x/ is the open metric ball of radius r centered at x.

From the definition, it is clear that X is semi-locally simply connected if for any
x 2 X , there is T > 0 such that �.T; x/ <1; X is locally simply connected if for any
x 2 X , there is ti ! 0 such that �.ti ; x/ D ti .

We state the local version of Theorem 1.1 with an estimate on �.t; x/.

Theorem 1.3. Let .Mi ; pi / be a sequence of Riemannian n-manifolds (not necessarily
complete) converging to .X; p/ such that for all i :

(1) B2.pi / \ @Mi D ; and the closure of B2.pi / is compact,

(2) Ric � �.n � 1/ on B2.pi /, vol.B1.pi // � v > 0:

Then

lim
t!0

�.t; x/

t
D 1

holds for any x 2 B1.p/.

We explain some of the difficulties in studying semi-local simple connectedness. For
Alexandrov spaces, Perelman showed there is a homeomorphism from the tangent cone
at a point to a local neighborhood around this point [23] (also see [14]); together with the
fact that tangent cones are metric cones [6], this leads to the local contractibility. How-
ever, for Ricci limit spaces, we no longer have such a connection between tangent cones
and local topology. For non-collapsing Ricci limit spaces, Cheeger and Colding proved
the important result that tangent cones at any point are all metric cones [7], but a neigh-
borhood of a point could have infinite second Betti number [18]. Also, tangent cones at
a point may not be unique and may not be homeomorphic [8, 10]. Even at the fundamen-
tal group level, it is not clear how to connect the tangent cone to the neighborhood. From
the point of view of [27], since the universal cover always exists, it remains to rule out
a non-contractible loop that can be homotopic to loops lying in arbitrarily small metric
balls. Such a loop cannot be lifted to an open path in the universal cover, so one can not
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use deck transformations to study them. Also, such a loop may have infinite length. The
last option is to use the sequence. In order to pass local simply connectedness informa-
tion from the sequence to the limit space, one needs uniform control on the module of
1-contractibility for the sequence (see Theorem 2.7). However, a sequence of manifolds
with the conditions in Theorem 1.1 may not have uniform modules of 1-contractibility.
In fact, examples of Otsu show that the sequence may have shorter and shorter nontrivial
loops [21, p. 262, Remark (2)].

The most important step in our proof of Theorem 1.3 is limt!0 �.t; x/ D 0. After
proving that limt!0 �.t; x/ D 0 holds for all x, we can further improve the result to
limt!0 �.t; x/=t D 1, by using the structure of tangent cones, a modification of Sormani’s
uniform cut technique [26], and certain connection between the local fundamental group
of the limit space and that of the sequence (see Section 6).

We outline our approach to prove limt!0 �.t; x/ D 0 as follows. For a point x in the
limit space and a sequence of points xi on Mi , we classify the limit points into three
types based on the module of contractibility at, or around, xi . Roughly speaking, type I
points are those that modules of 1-contractibility are uniformly controlled in a uniform
neighborhood around all xi ; type II points are those that modules of 1-contractibility
are not uniformly controlled at xi ; type III points are the rest (see Definition 4.1 and
Lemma 2.2). When x is of type I, we can control �.t; x/ by constructing a sequence of
uniformly convergent homotopies (see Lemma 2.2 and Theorem 2.7); this is related to [4].

The proof of limt!0 �.t; x/ D 0 is an induction argument on the local volume around
the point x. As the base case, we start with points whose local volume is strictly larger
than the half volume of the same size ball in the corresponding space form, or for sim-
plicity, points with half volume lower bound. We show that �.t; xi / can be controlled by
a linear function in this case, where xi 2Mi converging to x; with this, we can deduce
that limt!0 �.t; x/ D 0 holds (see Theorem 3.1 and Proposition 3.6). For the next induc-
tion step, we consider x with quarter volume lower bound. If x is of type I, then we are
done. If x is of type II, we can use small loops around xi to construct a sequence of cov-
ering spaces of certain local balls B�.xi /. On this sequence of covers, we can lift small
loops as open paths. Moreover, these covers shall have half volume lower bound so that
the base case in the induction can be applied. Anderson’s results on small loops [3] and
Cheeger–Colding’s volume convergence for non-collapsing Ricci limit spaces [8, 9] are
essential in the above steps. The remaining type III case is the most technical situation.
The method of type I points fails due to the lack of local control on 1-contractibility.
Also, there are no small loops to construct local covers. The key observation is that, based
on results on type II and the definition of type III, for any point x 2 X , at least one of
¹�.t; xi /ºi and �.t; x/ is controlled, where xi 2Mi converging to x 2 X . This inspires
us to construct each small piece of the desired homotopy from the data of the sequenceMi

or from that of the limit space X , in a delicate way (see more explanations in Section 5).
With the result on type III points (Theorem 4.4), we can continue the induction argument
and eventually finish the proof of limt!0 �.t; x/ D 0.

As a by-product from the study of points with half volume lower bound, we have the
following.
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Corollary 1.4. Given n and L 2 .1=2; 1�, there is a constant C.n;L/ such that the
following holds. Let M be a complete non-compact n-manifold of Ric � 0. If M has
Euclidean volume growth of constant L > 1=2, that is,

lim sup
R!1

vol.BR.p//
vol.BnR.0//

D L >
1

2

for some p 2M , then for any x 2M , any r > 0, and any loop c in Br .x/, c must be
contractible in BCr .x/.

Li and Anderson independently showed that if M has Euclidean volume growth of
constant � L, then �1.M/ has order � 1=L (see [2, 16]); consequently, if L > 1=2, then
M is simply connected. Hence Corollary 1.4 can be viewed as a quantitative description
of the simple connectedness when L > 1=2. We mention that Corollary 1.4 holds for
non-collapsing Ricci limit spaces as well (see Theorem 7.5). The simple connectedness
of open non-collapsing Ricci limit spaces is previously known only when L is very close
to 1 (see [20]).

With Theorem 1.1, we can naturally generalize structure result of fundamental groups
of manifolds with Ricci curvature and volume bounded below to that of non-collapsing
Ricci limit spaces (see Section 7).

2. Convergence of spaces with controlled 1-contractibility

We study Gromov–Hausdorff convergence of spaces with uniformly controlled module of
1-contractibility. This is related to [4], where Hausdorff convergence and the contractibil-
ity of subsets are considered.

By Definition 1.2, �.t; x/ D L <1 means that for any � > 0 and any loop c con-
tained in Bt .x/, there is a homotopy between c and a trivial loop with the image of H
contained in BLC� .x/. Throughout the text, we always use a term involving � for this
situation (for example, a term like �2�i ).

In general, �.t; x/may not be a continuous function. On the other hand, we can always
bound �.t; x/ by a so called indicatrix, which is continuous [4].

Definition 2.1 ([4]). Let T 2 .0; 1/ and � W Œ0; T /! Œ0; 1� be a function. We say that �
is an indicatrix, if � is continuous, non-decreasing, and concave with �.0/ D 0.

We always assume that T 2 .0; 1/ in this paper unless otherwise noted.

Lemma 2.2. Let ¹�˛.t/º˛2A be a family of non-decreasing functions on Œ0; T / with

0 D �˛.0/ D lim
t!0

�˛.t/; 0 � �˛.t/ � 1 for all t 2 Œ0; T /

for every ˛ 2 A. Then the following two statements are equivalent:

(1) There is an indicatrix �.t/ on Œ0; T / such that �˛.t/ � �.t/ for all t 2 Œ0; T / and all
˛ 2 A.

(2) The family ¹�˛.t/º˛2A is equi-continuous at t D 0.
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Proof. It is clear that (1) implies (2).
Conversely, suppose that (2) holds. Consider g.t/ D sup˛2A �˛.t/, which satisfies

lim
t!0

g.t/ D g.0/ D 0

by assumption. By [4, Section 7], there is a concave and non-decreasing function �.t/
such that

g.t/ � �.t/

on Œ0; T /. It is clear that �.t/ is continuous on .0; T / because it is concave. Also, accord-
ing to (35) in [4], limt!0 �.t/ D 0 holds.

Definition 2.3. Let � > 0. Two loops c; c0 W Œ0; 1�! X are �-close if d.c.t/; c0.t// � �
for all t 2 Œ0; 1�.

The lemma below illustrates a relation between Gromov–Hausdorff closeness and
homotopies. The method is similar to [25, 31]. Because we need this construction and its
related estimates later, we include the proof for readers’ convenience.

Lemma 2.4. Given T 2 .0; 1/, there is �0 D T=20 such that the following holds: Let
.X; x/ and .Y; y/ be two length metric spaces with the conditions below:

(1) the closure of B2.p/ is compact, where p D x or y,

(2) dGH..X; x/; .Y; y// � � � �0,

(3) for any q 2 B1.x/ and any loop 
 contained in BT .q/, 
 is contractible in B1.q/.

Then:

(i) For any loop c inB1.y/ � Y , there is a loop c0 inX that is 5�-close to c. Moreover, if
c00 is another loop inX that is 5�0-close to c, then c00 is free homotopic to c0 inB2.x/.

(ii) Let ci .i D 1; 2/ be a loop in B1.y/ � Y and c0i be a loop in X that is 5�-close to ci .
If c1 and c2 are free homotopic in B1.y/ via a homotopy

H W S1 � Œ0; 1�! B1.y/;

then there is a continuous mapH 0 W S1 � Œ0; 1�! X such thatH 0 is a free homotopy
in B2.x/ between c01 and c02.

Proof. (i) Let c W Œ0; 1�! B1.y/ be a loop. Because c is uniform continuous, we can
choose a large integer N such that

diam.cjŒi=N;.iC1/=N�/ � �

for all i D 0;1; : : : ;N �1. For each i , we choose qi 2 B1.x/ such that d.c.i=N /; qi / � �.
Next we connect qi to qiC1 by a minimal geodesic for each i and close it up as a loop
by connecting qN�1 to q0 by a minimal geodesic. In this way, we result in a loop c0, as
a broken geodesic, in X . Note that

d.qi ; qiC1/� d.qi ; c.i=N //C d.c.i=N /;c..i C 1/=N //C d.c..i C 1/=N /;qiC1/� 3�:
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Re-parameterize c0 if necessary, we can assume that c0.i=N / D qi and

d.qi ; c
0.i=N C t // D tNd.qi ; qiC1/

for t 2 Œ0; 1=N �. Then

d.c.t/; c0.t// � d.c.t/; c.i=N //C d.c.i=N /; qi /C d.qi ; c
0.t// � 5�;

where i is chosen such that t 2 Œi=N; .i C 1/=N �. Thus c0 is 5�-close to c.
Let c00 be another loop that is 5�0-close to c. Then

d.c0.t/; c00.t// � 5� C 5�0 � 10�0

for all t 2 Œ0; 1�. Choose a large integer L such that

diam.c0jŒi=L;.iC1/=L�/ � �0; diam.c00jŒi=L;.iC1/=L�/ � �0

for all i D 0; 1; : : : ; L � 1. Let li be a minimal geodesic from c0.i=L/ to c00.i=L/. Since
the small loop c0jŒi=L;.iC1/=L� � liC1 � .c00jŒi=L;.iC1/=L�/�1 � l�1i is contained in the ball
B6�0

.c0.i=L// � BT .c
0.i=L//, it is contractible in B2.x/. We conclude that c0 is free

homotopic to c00 in B2.x/.
(ii) We first define H 0 on the boundary S1 � ¹0; 1º so that

H 0.t; 0/ D c01.t/; H 0.t; 1/ D c02.t/:

This implies for all t 2 Œ0; 1� and s D 0 or 1,

d.H.t; s/;H 0.t; s// � 5�:

We choose a finite triangular decomposition † of S1 � Œ0; 1� such that diam.H.�// � �
for any triangle� of†. LetK0 be the set of all vertices of† and letK1 be the 1-skeleton
of†. If v 2 K0 is in the boundary S1 � ¹0; 1º, we have already definedH 0.v/. If v 2 K0

is not in the boundary, we define H 0.v/ to be a point in X with

d.H.v/;H 0.v// � �:

If two vertices v and w of K0 is connected by an edge that is not part of the boundary,
then we connect H 0.v/ and H 0.w/ by a minimal geodesic in X . From this, we obtain
a continuous map, which we still callH 0,H 0 W K1 ! X . Let� be a triangle of† and let
@� be its boundary. By our construction, it is direct to check that if a triangle † does not
have any boundary point as its vertex, then1

diam.H 0.@�// � 5�;

where @� is the 1-skeleton of �; if † has one or more boundary points as vertices, then

diam.H 0.@�// � 15�:

1We always use extrinsic distance to measure diameter of a subset in this paper.
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In particular, H 0.@�/ is contained in B18�.H 0.v// with 15� < T , where v is a vertex
of �. By assumption H 0.@�/, as a loop, is contractible in B1.v0/, thus we can extend the
domain of the map H 0 from @� to �. Since the extension can be achieved over each �,
we result in the desired free homotopy.

Remark 2.5. In Lemma 2.4 (i), the existence of c0 does not require condition (3).

If the module of 1-contractibility of any point q 2 B1.x/ is bounded by an indicatrix
�.t/, then we can control the homotopy H 0 constructed in Lemma 2.4 so that H 0 is close
to H .

Lemma 2.6. Given an indicatrix � on Œ0; T /, there are �0 D T=20 and a function �.�/
with lim�!0 �.�/ D 0 such that the following holds: Let .X; x/ and .Y; y/ be two length
metric spaces with conditions (1) and (2) in Lemma 2.4 and (3’) below:

(3’) �.t; q/ � �.t/ for all t 2 Œ0; T / and all q 2 B1.x/.

Then for any � > 0, we can construct a free homotopy H 0 as in Lemma 2.4 (ii) satisfying
d.H.z/;H 0.z// � �.�/C � for all z 2 S1 � Œ0; 1�.

Proof. We continue to use the notations in the proof of Lemma 2.4 (ii). Note that by
assumption (3’), for any � > 0, there is a homotopy from H 0.@�/ to a trivial loop so that
the image of the homotopy is contained in B�.18�/C� .H 0.v//. Thus for all z 2 �,

d.H.z/;H 0.z// � d.H.z/;H.v//C d.H.v/;H 0.v//C d.H 0.v/;H 0.z//

� � C 5� C �.15�/C �

D �.�/C �;

where �.�/ D �.15�/C 6�.

With Lemma 2.6, we show that locally controlled module of 1-contractibility is pre-
served under Gromov–Hausdorff convergence.

Theorem 2.7. Let .Xi ; xi / be a sequence of length metric spaces with the conditions
below:

(1) the closure of B2.xi / is compact,

(2) there exists an indicatrix � on the interval Œ0; T / such that for all i and all q 2 B2.xi /,
�.t; q/ � �.t/ < 1=2 holds on Œ0; T /,

(3) .Xi ; xi /
GH
�! .Y; y/.

Then �.t; q/ � �.t/ for all t 2 Œ0; T / and all q 2 B3=2.y/.

We state the conclusion of above theorem for B3=2.y/ instead of B1.y/, because we
need some extra room for later use in Section 4.

The proof below is inspired by [4], where Hausdorff convergence and the contractibil-
ity of subsets, instead of loops, are considered. Besides these differences, compared with
[4, Section 15], our statement is localized; also the proof is much simplified and stream-
lined with the length metric space condition. Later in Section 5, we will present a different
proof of Theorem 2.7, whose strategy is more in line with our main construction.



J. Pan, G. Wei 4034

Proof of Theorem 2.7. Let � > 0. Let �0 and �.�/ as in Lemma 2.6. We choose a decreas-
ing sequence �i ! 0 such that �1 � �0=20, 10�i � 2�i , and �.2�i / � 2�i for all i . Pass-
ing to a subsequence, we can assume that

dGH.B2.xi /; B2.y// � �i ! 0

for all i .
Fix t 2 .0; T /. We fix an I large so that

t C 6�I < T; �.t C 6�I /C .3� C 4/2
�I < 1=2:

Let q 2 B3=2.y/ and let c be a loop in Bt .q/. We will construct a homotopy between
c and a trivial loop. For each j � I , pick qj 2 B3=2.xj / with d.qj ; q/ � �j . Let cj be
a loop in B3=2.xj / that is 5�j -close to c. It is clear that

d.cj .t/; cjC1.t// � d.cj .t/; c.t//C d.c.t/; cjC1.t// � 5�j C 5�jC1 � 10�j � 2
�j :

In particular, cj converges uniformly to c. Since the image of cI satisfies

im.cI / � BtC6�I .qI / � BT .qI /;

there is a homotopy
HI W D ! B�.tC6�I /C� �2�I .qI /

between cI and a trivial loop, where D is the closed unit disk. By Lemma 2.6, we can
construct a homotopy between cIC1 and a trivial loop

HI;IC1 W D ! B2.xIC1/ � XIC1

such that
d.HI .z/;HI;IC1.z// � �.2�I /C � � 2

�I
� .1C �/2�I

for all z 2 D. Also,

d.HI;IC1.z/; qIC1/ � d.HI;IC1.z/;HI .z//C d.HI .z/; qI /C d.qI ; qIC1/

� .1C �/2�I C �.t C 6�I /C �2
�I
C 2�I

� �.t C 6�I /C �2
�I
C .2C �/2�I :

Thus
im.HI;IC1/ � B�.tC6�I /C�2�IC.2C�/2�I .qIC1/:

In general, for j � I C 1, suppose that we have constructed a homotopyHI;j between
cj to a trivial loop with

im.HI;j / � B�.tC6�I /CıI;j
.qIC1/; d.HI;j .z/;HI;j�1.z// � .1C �/2

�.j�1/;

where

ıI;j D �2
�I
C

jX
kDI

.2C �/2�k � .3� C 4/ � 2�I :
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We apply Lemma 2.6 again to obtain

HI;jC1 W D ! B2.xjC1/ � XjC1

with d.HI;jC1.z/;HI;j .z// � .1C �/ � 2�j . It is direct to check that

im.HI;jC1/ � B�.tC6�I /CıI;jC1
.qIC1/:

This process gives us a sequence of homotopies ¹HI;j º1jDI . Since

d.HI;j .z/;HI;jC1.z// � 2
�j .1C �/

for all z 2 D and all j � I , we conclude that as j !1, HI;j converges uniformly to
a continuous map HI;1 W D ! Y , which is a homotopy between c and a trivial loop.
Moreover, we have

im.HI;1/ � B�.tC6�I /C.3�C4/�2�I .q/:

Noting that I can be arbitrarily large and the loop c is arbitrary in the ball Bt .q/, we see
�.t; q/ � �.t/.

Remark 2.8. From the proof of Lemma 2.4 and Theorem 2.7, we see two methods to
move homotopies. The first method works when the target space has local contractibility
(Lemma 2.4): we dissemble the homotopy into small pieces, then map the 1-skeleton to
the target space then obtain the homotopy via extensions. The second method works when
there is a sequence of spaces with uniformly controlled local contractibility converging to
the target space (Theorem 2.7): we transfer the homotopy along the sequence and pass it
to the target space by uniform convergence.

3. Half volume lower bound and 1-contractibility

In this section, we show that if the local volume is strictly larger than the half volume of
a same size ball in the corresponding space form, then the module of 1-contractibility is
controlled by a linear function. As one of applications, this control implies

lim
t!0

�.t; x/ D 0

holds for x in the limit space if x has a local half volume lower bound (see Proposi-
tion 3.6).

For � 2 R and r > 0, we denote the r-ball in the n-dimensional space form of curva-
ture � as Bnr .�/.

Theorem 3.1. Given n � 2, � � 0, and ! > 1=2, there exist positive constants �.n; �; !/
and C.n; �; !/ such that the following holds. Let .M; p/ be a Riemannian n-manifold
satisfying

(1) B2.p/ \ @M D ; and the closure of B2.p/ is compact,

(2) Ric � �.n � 1/� on B2.p/, vol.B1.p// � ! � vol.Bn1 .��//:

Then every loop in Br .p/ is contractible in BCr .p/, where r 2 Œ0; �/.
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Because of Otsu’s example [21], if the half volume lower bound is replaced by a pos-
itive lower bound, then the conclusion of Theorem 3.1 would fail.

One may compare Theorem 3.1 with Grove-Petersen’s result on sectional curvature:

Theorem 3.2 ([13]). Given n � 2; � � 0, v > 0, there exist positive constants �.n; �; v/
and C.n; �; v/ such that the following holds. Let .M; p/ be a complete n-manifold of

secM � ��; vol.B1.p// � v:

Then Br .p/ is contractible in BCr .p/, where r 2 Œ0; �/.

Lemma 3.3. Given n; � � 0, R 2 .0; 1/, and ! > 1=2, there exists a positive constant
�.n; �; !;R/ such that the following holds:

(1) Let .M; p/ be a Riemannian n-manifold with the conditions in Theorem 3.1. Then
every loop in B�.p/ is contractible in BR.p/.

(2) lim supR!0C
R

�.n;�;!;R/
<1.

Proof. (1) To find �.n; �; !;R/, we argue by contradiction. We would have a sequence
.Mi ; pi / of

RicMi
� �.n � 1/�; vol.B1.pi // � ! � vol.Bn1 .��//I

Moreover, each B�i
.pi / contains a loop 
i that is not contractible in BR.pi /. Note that

by relative volume comparison, we have

vol.BR.p// �
vol.B1.p//

vol.Bn1 .��//
� vol.BnR.��// � ! � vol.BnR.��//

for all R 2 .0; 1/. Passing to a subsequence, we assume .Mi ; pi /
GH
�! .X; p/. Without

lose of generality, we also assume that each 
i has length less than 4�i .
Let .Ui ; yi / be the universal covering space of .BR.pi /; pi / with covering group

Hi D �1.BR.pi /; pi /. Let �i be the subgroup generated by 
i . By [3], each �i is a finite
group with order � N.n; �; !;R/ (The statement in [3] is about compact manifolds; its
proof extends clearly to local balls). Since d.
iyi ; yi / � 4�i and 
i has order � N for
all i , it follows that

diam.�i � yi / D N � 4�i ! 0:

Then

2 � ! � vol.BnR=2.��// � #�i � vol.BR=2.pi //

D #�i � vol.BR=2.yi / \ Fi /

D

X

2�i

vol.
 � .BR=2.yi / \ Fi //

� vol.BR=2C4N�i
.yi //

� vol.BnR=2C4N�i
.��//! vol.BnR=2.��//;

where Fi is the Dirichlet domain centered at yi . This clearly leads to a contradiction since
2! > 1. We complete the proof of (1).
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(2) Suppose that there is Ri ! 0 with Ri=�i !1, where �i D �.n; �; !;Ri /. This
means that we can find a sequence of n-manifolds .Mi ; pi / with the conditions below:

(i) RicMi
� �.n � 1/�; vol.B1.pi // � ! � vol.Bn1 .��//,

(ii) for each i there is a loop in B2�i
.pi / but not contractible in BRi

.pi /.

We rescale the sequence .BRi
.pi /; pi / byR�1i . This rescaled sequence .R�1i BRi

.pi /; pi /

satisfies

(i’) Ric � �.n � 1/R�2i � ! 0, and the unit ball centered at pi has volume

R�ni vol.BRi
.pi // � R

�n
i � ! � vol.BnRi

.��//

D ! � vol.Bn1 .�R
�2
i �//! ! � vol.Bn1 .0//;

(ii’) for each i there is a loop 
i contained in the ball of radius 2�iR�1i .! 0/ and 
i is
not contractible in the concentric unit ball.

We apply the argument used in (1) once again and result in a contradiction.

Proof of Theorem 3.1. Let

L.n; �; !/ WD lim sup
R!0C

R

�.n; �; !;R/
<1

as in Lemma 3.3 (2). Choose a radius R0 > 0 such that R=�.n; �; !;R/ � 2L holds for
all R � R0. Then for any loop 
 contained in Br .p/, where r D R=.2L/ � R0=.2L/,
since r � �.n; �; !;R/, 
 must be contractible in BR.p/ D B2Lr .p/.

Corollary 1.4 follows directly from Theorem 3.1.

Proof of Corollary 1.4. By relative volume comparison,

vol.BR.x//
vol.BnR.0//

� L

holds for all x 2M and all R > 0. Together with Theorem 3.1, the result follows imme-
diately.

Corollary 3.4. Given n; � > 0 and ! 2 .1=2; 1�, there is �.n; �; !/ > 0 such that the
following holds: Let Mi (i D 1; 2) be a compact Riemannian n-manifold with

RicMi
� �.n � 1/; vol.B�.x// � ! � vol.Bn� .�1//

for all x 2Mi . If
dGH.M1;M2/ � �;

then �1.M1/ and �1.M2/ are isomorphic.

Proof. By Theorem 3.1, there are constants T; C > 0, depending on n, �, and !, such that
�.t; x/ � C � t for all t 2 Œ0; T / and all x 2Mi (i D 1; 2). The result follows immediately
from [27, Corollary 2.3].
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Now we use Theorem 3.1 to study non-collapsing Ricci limit space. Let X be a space
with the assumptions in Theorem 1.3. By [8], B2.p/ � X has Hausdorff dimension n.

Definition 3.5. Let x 2 B1.p/ � X , we define

!.x/ D lim
r!0

Hn.Br .x//

vol.Bnr .0//
;

where Hn is the n-dimensional Hausdorff measure in X .

By relative volume comparison, this limit always exists and belongs to .0; 1�. In fact,
it is clear that !.x/ has a uniform positive lower bound for all x 2 B1.p/.

Proposition 3.6. Let x 2 B1.p/ with !.x/ > 1=2. Then limt!0 �.t; x/ D 0.

Proof. For a fixed small � > 0 with

!0 WD
!.x/ � �

1C �
>
1

2
;

there are s0; d0 > 0 such thatˇ̌̌̌
Hn.Bs0.x//

vol.Bns0.�1//
� !.x/

ˇ̌̌̌
�
�

2
;

vol.Bn
s0Cd0

.�1//

vol.Bns0.�1//
< 1C �:

By volume convergence [8, 9], there is N > 0 such that for all i � N , we haveˇ̌̌̌
vol.Bs0.xi //
vol.Bns0.�1//

� !.x/

ˇ̌̌̌
� �:

Let y 2 B1.xi / with d D d.xi ; y/ � d0. When t < s0 C d and i � N , we have

!.x/ � � �
vol.Bs0.xi //
vol.Bns0.�1//

D
vol.Bs0.xi //

vol.Bn
s0Cd

.�1//
�

vol.Bn
s0Cd

.�1//

vol.Bns0.�1//

�
vol.Bs0Cd .y//

vol.Bn
s0Cd

.�1//
� .1C �/

�
vol.Bt .y//

vol.Bnt .�1//
� .1C �/:

Put t D s0, thus for all i � N and y 2 Bd0
.xi /,

vol.Bs0.y// � !
0
� vol.Bns0.�1//:

By Theorem 3.1, there are T; C > 0, depending on n; s0, and !0, such that for any i � N
and any y 2 Bd0

.xi /, �.t; y/ � Ct holds for t 2 Œ0; T /. By Theorem 2.7, in the limit we
have �.t; x/ � Ct for t 2 Œ0; T /.

Remark 3.7. By a similar volume estimate presented above, it is clear that if !.x/ > !0,
then there is r > 0 such that !.y/ > !0 for all y 2 Br .x/.
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4. Classification of points by 1-contractibility

We classify points in the limit space by the module of 1-contractibility from the sequence.

Definition 4.1. Let .Xi ; pi / be a sequence of length metric spaces converging to .X; p/.
Let x 2 X . We say that x is of

� type I if there is r > 0 such that the family of functions ¹�.q; t j q 2 Br .xi /; i 2 Nº
is equi-continuous at t D 0, where xi 2 Xi converging to x.

� type II if there is xi 2 Xi converging to x so that ¹�.xi ; t /ºi is not equi-continuous at
t D 0.

� type III if it is not of type I nor type II.

The following lemma assures that Definition 4.1 is well defined because it does not
depend on the choice of xi .

Lemma 4.2. Let xi ; x0i 2 Xi and x 2 X with

xi ! x; x0i ! x

as i !1. Then ¹�.t; xi /ºi is equi-continuous at t D 0 if and only if ¹�.t; x0i /º is equi-
continuous at t D 0.

Proof. Suppose that the family ¹�.t; xi /ºi is not equi-continuous at t D 0. Then there are
� > 0, a sequence tj ! 0, and a subsequence xi.j / such that �.tj ; xi.j // � � for all j . Let
di D d.xi ; x

0
i /! 0. We have

� � �.tj ; xi.j // � �.tj C di.j /; x
0
i.j //C di.j /:

Since tj C di.j / ! 0 as j !1, we see that the family ¹�.t; x0i /ºi is not equi-continuous
at t D 0 as well. This completes the proof.

By Definition 4.1, the set of type I points is open in X . Due to Otsu’s example, type II
points in general may exist under the assumption of Theorem 1.1. For a type III point
x and a sequence xi 2 Xi converging to x, by definition the family ¹�.t; xi / j i 2 Nº is
equi-continuous at t D 0. Since for any r > 0, the family ¹�.q; t/ j q 2 Br .xi /; i 2 Nº
is not equi-continuous at t D 0, this implies that the closure ofBr .x/must contain a point
of type II. Hence any type III point must be a limit point of the set of type II points.

Corollary 4.3. Let .Xi ; pi / be a sequence of length metric spaces with the conditions
below:

(1) the closure of B2.pi / is compact,

(2) .Xi ; pi /
GH
�! .Y; p/.

If x 2 B3=2.p/ is of type I, then limt!0 �.t; x/ D 0.

Proof. Since x is of type I, by Lemma 2.2 there is an indicatrix �.t/ on Œ0; T / such that
for all i and all y 2 Br .xi /, �.t; y/ � �.t/ holds on Œ0; T /. By Theorem 2.7, x satisfies
�.t; x/ � �.t/ on Œ0; T / and the result follows.
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Also, for X with the conditions in Theorem 1.3, by the proof of Proposition 3.6, any
point x 2 B3=2.p/ with !.x/ > 1=2 is of type I.

We will prove the theorem below on type III points in Section 5.

Theorem 4.4. Let .Xi ; pi / be a sequence of length metric spaces with the conditions
below:

(1) the closure of B2.pi / is compact,

(2) .Xi ; pi /
GH
�! .X; p/.

Suppose that limt!0 �.t; x/ D 0 holds for all points x of type II in B3=2.p/. Then it
holds for all points of type III in B1.p/. Consequently, limt!0 �.t; x/ D 0 holds for all
x 2 B1.p/.

Assuming that Theorem 4.4 is true, we can prove limt!0 �.t; x/ D 0 holds for all
x 2 B1.p/ in the context of Theorem 1.3 (see Theorem 4.5 below). Later in Section 6,
we will strengthen the conclusion to limt!0 �.t; x/=t D 1, which completes the proof of
Theorem 1.3.

If Theorem 4.4 is true, then the statement also holds if one replaceB3=2.p/ andB1.p/,
by balls Br .z/ and B2r=3.z/, respectively, where r 2 .0; 1/ and Br .z/ � B3=2.p/. This
follows directly from a rescale of the metric.

Theorem 4.5. Let ¹.Mi ; pi /ºi be a sequence of Riemannian n-manifolds converging to
.X; p/ in the Gromov–Hausdorff topology with the conditions below:

(1) B2.pi / \ @Mi D ; and the closure of B2.pi / is compact,

(2) Ric � �.n � 1/ on B2.pi /, and vol.B1.pi // � v > 0.

Then for any x 2 B1.p/, limt!0 �.t; x/ D 0 holds.

Proof of Theorem 4.5 by assuming Theorem 4.4. Let x be a point in B1.p/. We prove
limt!0 �.t; x/ D 0 by induction on !.x/. We saw in Corollary 3.6 that if !.x/ > 1=2,
then limt!0 �.t; x/ D 0. Assuming that limt!0 �.t; x/ D 0 holds when !.x/ > 2�k , we
will prove that it also holds when !.x/ > 2�.kC1/, where k 2 N.

We choose a small radius r > 0 so that

!.z/ > 2�.kC1/

for all z 2 Br .x/ � B3=2.p/ (Remark 3.7). Suppose that limt!0 �.t; x/ > 0, by Corol-
lary 4.3 and Theorem 4.4. Then there must be a type II point z 2 Br .x/ so that

lim
t!0

�.t; z/ > 0:

Let zi 2Mi converging to z. According to Definition 4.1, passing to a subsequence if
necessary, there is ti ! 0 and small � > 0 such that �.ti ; zi / � � for all i . In other words,
for each i there is a loop 
i contained in Bti .zi / that is not contractible in B�.zi /. Without
lose of generality, we can assume that 
i is based at zi and has length � 4ti . As we
did in the proof of Lemma 3.3 (1), we consider .Ui ; yi / as the universal covering space
of .B�.zi /; zi / with covering group Hi D �1.B�.zi /; zi /. Let �i WD h
i i. The sequence
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.Ui ; yi / may not be precompact in Gromov–Hausdorff topology (see [28, Example 3.2]),
so we will take a sequence of small balls around yi , which always has precompactness.
We consider the pseudo-group action of Hi on B�=2.yi / � Ui . Passing to a subsequence
if necessary, we obtain the equivariant Gromov–Hausdorff convergence below:

.B�=2.yi /; yi ; �i ;Hi /

�i

��

GH // .B�=2.y/; y;G;H/

�

��

.B�=2.zi /; zi /
GH // .B�=2.z/; z/,

where H acts isometrically and B�=2.z/ is isomorphic to B�=2.y/=H (see [11]). As seen
in Lemma 3.3, #�i � N for some N and diam.�i � yi /! 0. Consequently, G is a finite
group whose action fixes y. Let Fi be the fundamental domain centered at yi . For any
s 2 .0; �=4/, we estimate:

BsC4Nti .yi / �
X

2�i

vol.
 � .Bs.yi / \ Fi //

D #�i � vol.Bs.yi / \ Fi /

� 2 � vol.Bs.zi //:

By volume convergence [8, 9],

Hn.Bs.y// � 2 �H
n.Bs.z//:

Thus

!.y/ D lim
s!0

Hn.Bs.y//

vol.Bns .0//
� lim
s!0

2 �Hn.Bs.z//

vol.Bns .0//
D 2 � !.z/ > 2�k :

By the induction assumption, we deduce that limt!0 �.t; y/ D 0.
For any loop c in Bt .z/ based at z D �.y/, connecting z to a point in c by a minimal

geodesic if necessary, we can assume that c is based at z. We lift c to a curve c starting
at y [5, Chapter II Theorem 6.2]. Note that the orbit H � y is discrete. Let d > 0 the dis-
tance between y and its closet point in the orbitH � y. For t < d=4, the lift Nc is contained
in Bt .H � y/; hence it must be contained in Bt .y/ because Nc is a curve. Since y is the
only orbit point in Bt .y/, the lift c ends at y as well. Moreover, because c is contained
in Bt .y/, for any � > 0 there is a homotopy between c and a trivial loop with image
in B�.t;y/C� .y/. Projecting this homotopy down to B�.z/, we obtain a desired homo-
topy from c to a trivial loop with image in B�.t;y/C� .z/. Since � and loop c in Bt .z/ is
arbitrary, it follows that

lim sup
t!0

�.t; z/ � lim sup
t!0

�.t; y/ D 0:

This completes the proof.

For the rest of this section, we prove some lemmas on the type III points, which will
be used in the next section. We always assume the hypothesis of Theorem 4.4 without
mentioning, that is, we assume that limt!0 �.t; x/ D 0 holds for all type II points.
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For any L > 0, we define

�.L/ D
°
x 2 B1:2.p/

ˇ̌̌
lim sup
t!0

�.t; x/ > L
±
;

where B1:2.p/ means the closure of B1:2.p/. It follows from the hypothesis and Corol-
lary 4.3 that�.L/ is a subset of the set of type III points in B1:2.p/. If�.L/ is empty for
all L > 0, then the conclusion of Theorem 4.4 clearly holds. Hence we will assume that
�.L/ is non-empty for some L > 0.

Lemma 4.6. Let w be an accumulation point of �.L/. Then

lim sup
t!0

�.t; w/ � L:

In particular, w is of type III.

Proof. Let ¹zj ºj be a sequence in �.L/ converging to a point w. Suppose that

lw WD lim sup
t!0

�.t; w/ < L:

Let � > 0 with lw C 2� < L. Let ı 2 .0; �/ such that

�.t; w/ � lw C �

for all t 2 Œ0; ı�. For zj with dj D d.zj ; w/ � ı=2 and t � ı=2, we have

�.t; zj / � �.t C dj ; w/C dj � �.ı; w/C
ı

2
� lw C 2�:

This shows that for j large,

lim sup
t!0

�.t; zj / � lw C 2� < L:

A contradiction.
By Corollary 4.3 and the hypothesis on type II points, w must be type III.

Lemma 4.7. Let L > 0. Suppose that

dGH.B2.pi /; B2.p// D �i ! 0:

Then the family of functions

1[
iD1

¹�.t; zi /jzi 2 B3=2.pi / with d.zi ; z/ � �i for some z 2 �.L/º

is equi-continuous at t D 0. Consequently, there is an indicatrix ƒ.t/ on Œ0; T / such that
�.t; w/ � ƒ.t/ for all t 2 Œ0; T / and all �.t; w/ in the family.

Proof. Suppose the contrary. Then there are �0 > 0, tj ! 0, and zi.j / 2 B3=2.pi / such
that

�.tj ; zi.j // � �0;
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where each zi.j / is �i.j /-close to a point qj in �.L/. Passing to a subsequence if neces-
sary, we assume that qj converges to q 2 �.L/, the closure of �.L/. Since zi.j / ! q as
j !1, it follows that q is of type II, which is a contradiction to Lemma 4.6.

Lemma 4.8. Let � > 0. For a small r > 0, we consider an annulus of �.L/:

A.�.L/I r; 1:1/ D ¹y 2 B1:1.p/ j d.y;�.L// � rº:

Then there is T .r; �/ > 0 such that

�.T .r; �/; y/ < LC �

for all y 2 A.�.L/I r; 1/.

Proof. Since any y 2 A WD A.�.L/I r; 1:1/ is outside �.L/, clearly

lim sup
t!0

�.t; y/ � L:

Thus for any fixed y, there is Ty > 0 so that

�.Ty ; y/ < LC �:

To find a uniform T > 0 that works for all y 2 A, we argue by contradiction. Suppose
that there are sequences Tj ! 0 and yj 2 A satisfying

�.Tj ; yj / � LC �:

Passing to a subsequence if necessary, yj converges to a point w. Note that

dj C �.Tj C dj ; w/ � �.Tj ; yj / � LC �;

where dj D d.yj ; w/! 0. It follows that

lim sup
t!0

�.t; w/ � LC � > L:

In other words, w 2 �.L/, which contradicts the fact that all yj are at least distance r
away from �.L/ for all j .

5. Constructing homotopies

We first roughly explain our approach to prove Theorem 4.4. Lemma 4.7 says that for
points zi 2 Xi that is close to z 2 �.L/, we have uniform control on module of 1-contrac-
tibility of zi ; Lemma 4.8 says that for a limit point y away from �.L/, we have control
on �.t; y/. For a loop c contained in a small ball of x, using the method in Lemma 2.4, we
can construct a continuous map H W K11 ! X defined on a 1-skeleton of D extending c.
Ideally, for a triangle H.@�/ outside �.L/, we wish to extend H over this triangle right
away by Lemma 4.8; for a triangle inside �.L/, we wish to construct the homotopy from
the sequence by utilizing Lemma 4.7. In other words, part of the desired homotopy comes
from the limit space, while the other part comes from the sequence. When combining
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these two procedures together to construct the homotopy, we also need to be cautious to
assure that we end in a continuous map with controlled size. In practice, we will indeed
consider a sequence �.Lj / instead of a single �.L/, where Lj ! 0.

Regarding constructing the homotopy from the sequence, recall that the proof of
Theorem 2.7 has a similar fashion (also compare Lemma 4.7 with the conditions of Theo-
rem 2.7). We take a close look at whether the proof of Theorem 2.7 in Section 2 could be
useful here. The strategy illustrated above involves a step determining which procedure to
be applied for a triangle H.@�/ based on its position. Also, eventually the desired homo-
topy will be an extension of H W K11 ! X according to this strategy. On the other hand,
recall that in the proof of Theorem 2.7 in Section 2, we transferred a homotopy along the
sequence ¹Xj ºj�I and forced a uniform convergence, thus the proof does not involve any
image of 1-skeleton in the limit space.

Because the method in proving Theorem 2.7 in Section 2 is not compatible with
our strategy here, this motivates us to write a new proof of Theorem 2.7, which has
the advantage that we can keep the image of 1-skeletons in the limit space at each step.
In this alternative proof, we will construct the desired homotopy by defining it on finer
and finer skeletons of D. As indicated, this method also constitutes part of our proof of
Theorem 4.4.

We now establish a lemma on constructing a homotopy through refining skeletons.
This is similar to [24, 5.1].

Lemma 5.1. Let D be the closed unit disk and let .X; p/ be a metric space with the
closure ofB2.p/ being compact. Let†j be a sequence of finite triangular decompositions
of D with the conditions below:

(1) each †jC1 is a refinement of †j ,

(2) diam.�/ � j�1 for every triangle � of †j .

Suppose that we have a sequence of continuous mapsGj W K1j ! B1.p/, whereK1j is the
1-skeleton of †j , such that for all j � 1,

(3) GjC1jK1
j
D Gj ,

(4) for any z 2 K1jC1 �K
1
j , d.GjC1.z/; Gj .u// � 2�j holds for all u in the boundary

of �, where � is a triangle of †j containing z.

Then ¹Gj ºj converges to a continuous map G1 W D ! B2.p/.

Proof. Clearly we can define

G1 W

1[
kD1

K1k ! B1.p/

by setting G1.z/ D Gj .z/, where z 2 K1j . It suffices to show that G1 is uniform con-
tinuous. If true, then we can extend G1 continuously over D.

First notice that condition (4) implies that if u; v 2 @�, where � is a triangle of †j ,
then

d.Gj .u/;Gj .v// � 2
�jC1

I
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also, if z 2 � \ .
S1
kD1K

1
k
/, then

d.G1.z/; Gj .u// �

1X
kDj

2�k � 2�jC1:

Let � > 0. We choose a large integer J so that 2�JC1 � �=3. From the triangular
decomposition †J , we construct an open cover U of D as follows. For every triangle
� of †J , we choose a connected open neighborhood U� of � such that all vertices in
U� belong to @�. In this way, if y 2 U�, then there is u 2 @� so that u and y lies in
a common triangle of †J (this common triangle may not be �). Let U be the collec-
tion of all these U�, and let ı > 0 be a Lebesgue number of the open cover U. For any
y1; y2 2

S1
kD1K

1
k

, if d.y1; y2/ < ı, then there is a triangle� of†J so that y1; y2 2 U�.
Let ui 2 @� such that ui and yi lies in a common triangle of †J .i D 1; 2/. Then

d.G1.y1/; G1.y2//

� d.G1.y1/; GJ .u1//C d.GJ .u1/; GJ .u2//C d.GJ .u2/; G1.y2//

� 2�JC1 C 2�JC1 C 2�JC1 � �:

This completes the proof.

We can use the construction in proof of Lemma 2.4 (ii) to define an extension on the
1-skeleton, with the distance estimate below.

Lemma 5.2. Let .X; x/ and .Y; y/ be two length metric spaces. Let c.t/ and c0.t/ be two
loops in X and Y , respectively. Suppose that

(1) the closure of B2.p/ is compact, where p D x or y,

(2) dGH..X; x/; .Y; y// � �,

(3) c and c0 are 5�-close,

(4) c0 � Bt .y/,

(5) c is contractible in B�.x/ via a homotopy H .

Then there are a triangular decomposition † of D and a continuous map

H 0 W K1 ! Y;

where K1 is the 1-skeleton of D, so that

(E1) d.H 0.z/; y/ � �C 18� for all z 2 K1.

If condition (5) is replaced by

(5’) c is contractible in B�.c.0// via a homotopy H ,

then we have

(E2) d.H 0.z/;H 0.u// � �C diam.c/C 32� for all z 2 K1 � @D and u 2 @D.

Proof. We choose a triangular decomposition † of D so that diam.H.�// � � for every
simplex � of †. We follow the method in the proof of Lemma 2.4 (2) to construct H 0:
first define H 0 on @D by sending c.t/ to c0.t/, then define H 0 on 0-skeletons by mapping
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any vertex to a near by point, then on edges by minimal geodesics. Then from the proof
of Lemma 2.4 (2), we have

diam.H 0.@�// � 15�

for all triangle � of †. When z 2 @D, then clearly

d.H.z/;H 0.z// � 5�:

When z 2 K1 � @D, let� be a triangle containing z and let v be a vertex connected to z,
then

d.H.z/;H 0.z// � d.H.z/;H.v//C d.H.v/;H 0.v//C d.H 0.v/;H 0.z//

� � C � C 15� D 17�:

Also, for any z 2 K1 � @D, we have (E1):

d.H 0.z/; y/ � d.H 0.z/;H.z//C d.H.z/; x/C d.x; y/

� 17� C �C � D �C 18�:

If alternatively, c is contractible in B�.c.0// instead of B�.x/, then for any z 2 K1 � @D
and u 2 @D, we have (E2):

d.H 0.z/;H 0.u// � d.H 0.z/;H.z//C d.H.z/; c.0//C d.c.0/; c0.0//

C d.c0.0/;H 0.u//

� 17� C �C 5� C diam.c0/

� �C 22� C .diam.c/C 10�/

� �C diam.c/C 32�:

We use Lemmas 5.1 and 5.2 to present an alternative proof of Theorem 2.7.

Alternative proof of Theorem 2.7. Let � > 0. Let q 2 B3=2.y/ and c a loop in Bt .q/,
where t 2 .0; T /. Let �i ! 0 be a decreasing sequence with �1 � T=20, �iC1 � �i=20,
and �.20�i /C 20�i � 2�i for all i .

We fix a large integer I so that

t C 10�I < T; �.t C 10�I /C 18�I C .2C 2�/2
�I
�
1

2
:

Let cI be a loop inXI that is 5�I -close to c. By hypothesis, we know that cI is contractible
in B�.tC10�I /C�2�I .cI .0// via a free homotopy HI . Following the procedure and esti-
mates in Lemma 5.2, there is a triangular decomposition †1 of D and a continuous map,
which corresponds to H 0 as in Lemma 5.2,

G1 W K
1
1 ! Y

with the properties below:

(1A) diam.HI .�// � �I , diam.�/ � I�1, diam.G1.@�// � 15�I for any triangle �
of †1,

(1B) d.G1.z/; q/ � �.t C 10�I /C �2
�I C 18�I for any z 2 K11 (Lemma 5.2 (E1)).
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Next we apply the same procedure to every loop G1.@�/, where � is any triangle
of †1. Let c� be a loop in XIC1 that is 5�IC1-close to G1.@�/. Then

diam.c�/ � 10�IC1 C diam.G1.@�// � 10�IC1 C 15�I < 16�I :

By assumption, c� is contractible in B�.16�I /C�2�I�1.c�.0// with a homotopy H�. The
same procedure provides †2;�, a triangular decomposition of �, and a continuous map

G2;� W K
1
2;� ! Y

such that

(2A) diam.H�.�0// � �IC1, diam.�0/ � .I C 1/�1, diam.G1.@�0// � 15�IC1 for any
triangle �0 of †2;�,

(2B) G2;�j@�1
D G1j@�1

, and by Lemma 5.2 (E2),

d.G2;�.z/; G1.u// � �.16�I /C �2
�I�1

C diam.G1.@�//C 32�IC1

� �.16�I /C 17�I C �2
�I�1

� 2�I C �2�I�1 D 2�I .1C �=2/

for all z 2 K12;� and u 2 @�.

Since this can be done for each triangle� of†1, we obtain†2, a triangular decomposition
of D which refines †1, and a continuous map G2 W K12 ! Y such that

d.G2.z/; G1.u// � 2
�I .1C �=2/

holds for all z 2 K12 �K
1
1 and all u 2 @�, where � is a triangle of †1 containing z.

Repeating this process, we result in a sequence of triangular decomposition †j and
a sequence of continuous maps Gj W K1j ! Y such that

(jA) diam.�/ � .I C j � 1/�1, and each †jC1 is a refinement of †j ,

(jB) GjC1jK1
j
D Gj , and

d.GjC1.z/; Gj .u// � 2
�.ICj�1/.1C �=2/

for all z 2 K1jC1 �K
1
j and all u 2 @�, where � is a triangle of †j containing z.

By Lemma 5.1, Gj converges to a continuous map G1 W D ! Y , which realizes the
homotopy between c and a trivial loop. Moreover, by (1B) and (jB), we have

d.G1.z/; q/ � �.t C 10�I /C �2
�I
C 18�I C

1X
jD1

.1C �=2/2�.ICj�1/

< �.t C 10�I /C 20�I C .2C 2�/2
�I

for all z 2 D. In other words,

im.G1/ � B�.tC10�I /C20�IC.2C2�/2�I .q/:

Since I can be chosen arbitrarily large and loop c is also arbitrary in Bt .x/, we conclude
that �.t; q/ � �.t/.
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As indicated, when constructing the homotopy in proving Theorem 4.4, we will extend
some of the pieces directly in the limit space by using Lemma 4.8. To accommodate this
procedure, we modify Lemma 5.1 as below so that we can fill in some of the triangles at
every step.

Lemma 5.3. Let D be the closed unit disk and let .X; p/ be a metric space with the
closure of B2.p/ being compact. Let Lj ! 0 be a sequence of positive numbers. Let
.†1; G1;E1; F1/ be a quadruple defined as below:

(1A) †1, a finite triangular decomposition of D,

(1B) G1 W K
1
1 ! B1.p/, a continuous map defined on the 1-skeleton of †1,

(1C) E1, a collection of some triangles of †1,

(1D) F1 W E1 ! B1.p/, a continuous extension ofG1jE1
1

, where E11 means the 1-skeleton
of E1 such that for each triangle � in E1, there is a point u 2 @� so that

d.F1.z/; G1.u// � L1

holds for all z 2 �.

Suppose that we have inductively defined .†j ; Gj ;Ej ; Fj / for each j � 2:

(jA) †j , a finite triangular decomposition of Cj�1, where Cj�1 D D �
Sj�1

kD1
Ek such

that †j refines †j�1jCj�1
and diam.�/ � j�1 for any triangle � of †j ,

(jB) Gj W K
1
j ! B1.p/ such that Gj jK1

j�1
D Gj�1; also, for any triangle � of †j�1

in Cj�1,
d.Gj .z/; Gj�1.u// � 2

�j

holds for all z 2 � \ .K1j �K
1
j�1/ and all u 2 @�,

(jC) Ej , a collection of some triangles of †j ,

(jD) Fj W Ej ! B1.p/ a continuous extension of Gj jE1
j

such that for each triangle� in
Ej , there is u 2 @� so that

d.Fj .z/; Gj .u// � Lj

holds for all z 2 �.

Then there is a continuous map H W D ! B2.p/ that extends Gj and Fj for all j .

Proof. It is clear that at each step, ¹Gkº
j

kD1
and ¹Fkº

j

kD1
form a continuous map

Hj W

j[
kD1

.K1k [ Ek/! B1.p/:

We show that this sequence ¹Hj º naturally defines a uniform continuous map

H1 W

1[
jD1

.K1j [ Ej /! B1.p/:

If true, then H1 extends continuously over D.
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Let � > 0. Choose an integer J so that 2�J � �=16 andLj � �=8 for all j � J . FromSJ
kD1†k , a triangular decomposition of D, we construct an open cover U of D as we

did in the proof of Lemma 5.1. Let ı1 > 0 be a Lebesgue number of U. Let ı2 > 0 so that

d.HJ .y1/;HJ .y2// �
�

4

for all y1; y2 2
SJ
kD1.K

1
k
[ Ek/ with d.y1; y2/ � ı2. We put ı D min¹ı1; ı2º.

Let �J be any triangle of †J in CJ�1. We claim that

d.H1.y/; GJ .v// �
�

4

holds for any y 2 �J \ .
S1
kDJ .K

1
k
[ Ek// and any v 2 @�J . In fact, there are two cases

on how H1.y/ is defined.

Case 1: H1.y/ is defined as Gj .y/ for some j � J . Then by condition (jB), for any
v 2 @�J ,

d.H1.y/; GJ .v// D d.Gj .y/; GJ .v// �

1X
kDJ

2�k � 2�JC1 �
�

8
:

Case 2: H1.y/ is defined as Fj .y/ for some j � J . By condition (jD),

d.Fj .y/; Gj .u// � Lj

for some u 2 @�j , where �j is a triangle of †j containing y. If j D J , then clearly for
all v 2 @�J ,

d.H1.y/; GJ .v// D d.HJ .y/; GJ .v//C d.GJ .v/; GJ .u// � 2LJ �
�

4
I

if j > J , then by condition (jB), for any v 2 @�J , we have

d.H1.y/; GJ .v// � d.Hj .y/;Hj .u//C d.Gj .u/;GJ .v//

� Lj C

j�1X
kDJ

2�k �
�

8
C 2�JC1 �

�

4
:

This verifies the claim.
Let y1; y2 2

S1
jD1.K

1
j [ Ej / with d.y1; y2/ � ı. If both points y1 and y2 belong to

the set
SJ
kD1 Ek , then

d.H1.y1/;H1.y2// D d.HJ .y1/;HJ .y2// �
�

4

because ı � ı2. If both y1 and y2 belong to CJ D D �
SJ
kD1 Ek , since ı � ı1, there is

a triangle�J of†J with y1; y2 2 U�J
. Let vi 2 @�J so that vi and yi lies in a common

triangle of †J .i D 1; 2/. Then by the claim we have shown,

d.H1.y1/;H1.y2// � d.H1.y1/; GJ .v1//C d.GJ .v1/; GJ .v2//

C d.GJ .v2/;H1.y2//

�
�

4
Cmax¹2LJ ; 2�JC1º C

�

4
�
3�

4
:
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Finally, if y1 2
SJ
kD1 Ek while y2 2 CJ , then there is a point v on the segment from y1

to y2 so that v 2 CJ \ .
SJ
kD1 Ek/. Since d.y1; v/ � ı and d.y2; v/ � ı, we see that

d.H1.y1/;H1.y2// � d.H1.y1/;H1.v//C d.H1.v/;H1.y2// � �:

We complete the proof of uniform continuity.

We prove Theorem 4.4 by using Lemmas 4.7, 4.8, and 5.3.

Proof of Theorem 4.4. Let x be any type III point in B1.p/. Let

�i WD dGH.B2.pi /; B2.p//! 0

and let xi 2Mi be a sequence converging to x with d.xi ; x/ � �i . Since x is of type III,
by definition there is an indicatrix �.t/ on Œ0; T / such that �.t; xi / � �.t/ for all i and
all t 2 Œ0; T /. Shrinking T if necessary, we can assume that �.T / < 1=40. Suppose that
limt!0 �.t; x/ D 0 fails for this x. Then �.L/ is non-empty for some L > 0; we will
show that �.t; x/ � �.t/ for all Œ0; T /, which is a contradiction.

Let Lj ! 0 be a decreasing sequence. For each j , we define

�.Lj / D
°
w 2 B1:2.p/

ˇ̌̌
lim sup
t!0

�.t; w/ > Lj

±
:

By Lemma 4.7, for each j there is an indicatrix ƒj .t/ that bounds all �.t; z/, where
z 2 B1:2.pi / is �i -close to some point w of �.Lj /. Since limt!0ƒj .t/ D 0 for each j ,
we can choose sj > 0 with

ƒj .2sj /C 4sj � 2
�j :

We put Aj WD A.�.Lj /I sj ; 1:1/. By Lemma 4.8, for each j , there is Tj > 0 such that

�.Tj ; y/ � Lj C 2
�j

for all y 2 Aj . Replacing Tj by a smaller number if necessary, we can assume that

Tj < 2sj ; TjC1 �
Tj

20

for all j . We choose a subsequence i.j / so that

�i.j / D dGH.B2.pi.j //; B2.p// �
Tj

20
DW ıj :

Let � > 0. Fix t 2 .0; T / and a loop c contained in Bt .x/. We will construct a homo-
topy between c and a trivial loop with controlled image by using Lemma 5.3. Fix an
integer J � 1 so that

t C 6ıJ < T; �.t C 6ıJ /C �2
�J
C 18ıJ <

1

20
; .1C �/2�JC1 <

1

20
:

Let ci.J / be a loop in B1.xi.J // that is 5ıJ -close to c. Since ci.J / � BtC6ıJ
.xi.J //, ci.J /

is contractible in B�.tC6ıJ /C�2�J .xi.J //. By the construction in Lemma 5.2 (also see the
procedure in alternative proof of Theorem 2.7), there is a triangular decomposition †1
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of D and a continuous map G1 W K11 ! X such that

(1A) diam.�/ � J�1, diam.G1.@�// � 15ıJ < TJ for any triangle � of †1,

(1B) d.G1.z/; x/ � �.t C 6ıJ /C �2
�J C 18ıJ for any z 2 K11 (Lemma 5.2 (E1)).

In particular, im.G1/ belongs to B1=20.x/ � B1:1.p/. Note that if a triangle� has a point
u 2 @� so that G1.u/ 2 AJ , then by (1A), G1.@�/ is contractible in BLJC2�J .G1.u//.
In this case we can directly extend G1 continuously over �. With this in mind, we
consider:

(1C) E1 D ¹z 2 D j z 2 � with G1.@�/ \ AJ 6D ;º (as explained, over E1, the map
G1 extends to a continuous map F1 W E1 ! X ),

(1D) F1 W E1 ! X satisfies that for any � � E1, there is u 2 @�, such that

d.F1.z/; G1.u// � LJ C 2
�J
� LJ C 2

�J

holds for all z 2 �.

This completes the first step in constructing the desired homotopy.
Next we deal with the triangles outside E1. Let � be a triangle of † such that

G1.@�/ \ AJ D ;:

This implies d.z;�.L// < sJ for all z 2 G1.@�/. On B1.xi.JC1//, there is a loop c�
that is 5ıJC1-close G1.@�/. Then

diam.c�/ � 10ıJC1 C diam.G1.@�// � 10ıJC1 C 15ıJ < 16ıJ :

By our choice of E1, there is w 2 �.LJ / such that G1.@�/ � BsJ .w/. Let w0 be a point
in B1.xi.JC1// that is �i.JC1/-close to w. Then it is direct to check that

im.c�/ � B6ıJC1CsJ .w
0/ � B2sJ .w

0/:

Therefore, c� is contractible in BƒJ .2sJ /C2�J � .w
0/ � BƒJ .2sJ /C2�J �C2sJ

.c�.0//. By
the same construction we have applied before, we obtain a triangular decomposition†2;�
and a continuous map G2;� W K22 ! X such that

(2A) diam.�0/ � .J C 1/�1, diam.G2;�.@�0// � 15ıJC1 < TJC1 for any triangle �0

of †2;�,

(2B) G2;�j@� D G1j@�, and by Lemma 5.2 (E2),

d.G2;�.z/; G1.u// � ƒJ .2sJ /C 2
�J� C 2sJ C diam.G1.@�//C 32ıJC1

� ƒJ .2sJ /C 2
�J� C 2sJ C 16ıJ C 32ıJC1

� ƒJ .2sJ /C 4sJ C 2
�J�

� 2�J .1C �/

for all z 2 K12;� and u 2 @�.

Because we can apply the same argument to each triangle � in C1 D D � E1, we
result in †2, a triangular decomposition of C1 which refines †1, and a continuous map
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G2 W K
1
2 ! B1.x/ such that

d.G2.z/; G1.u// � 2
�J .1C �/

holds for all z 2 K12 �K
1
1 and all u 2 @�, where� is a triangle of†1 in C1 containing z.

Note that

d.G2.z/; x/ � d.G2.z/; G1.u//C d.G1.u/; x/ �
1

20
C .1C �/2�J �

1

10
:

Thus im.G2/ � B1:1.p/. Next we set

(2C) E2 D ¹z 2 D j z 2 �; a triangle of †2, with G2.@�/ \ AJC1 6D ;º.

By the same argument that implies (1D), we can extend G2 continuously over E2. This
produces:

(2D) F2 W E2 ! X such that for any � � E2, there is u 2 @� so that

d.F2.z/; G2.u// � LJC1 C 2
�.JC1/

holds for all z 2 �.

We repeat this procedure for each k � 2. This allows us to construct the quad-tuple
.†k ; Gk ;Ek ; Fk/ with

(kA) †k , a triangular decomposition of Ck�1 that refines †k�1jCk�1
, where

Ck�1 D D �

k�1[
jD1

Ej I

also, diam.�/ � .J C k � 1/�1 for any triangle � of †k ,

(kB) Gk W K
1
k
! X such that

GkjK1
k�1
D Gk�1I

also, for any triangle � of †k�1 in Ck�1,

d.Gk.z/; Gk�1.u// � 2
�.JCk�2/.1C �/

holds for all z 2 � \ .K1
k
�K1

k�1
/ and all u 2 @�.

With (kB), we can check that im.Gk/ does not exceed B1:1.p/:

d.Gk.z/; x/ �
1

20
C

kX
jD2

2�.JCj�2/.1C �/ �
1

10
:

Then we define the followings:

(kC) Ek D ¹z 2 D j z 2 �; a triangle of †k , with Gk.@�/ \ AJCk�1 6D ;º,

(kD) Fk W Ek ! X such that for any � � Ek , there is u 2 @� so that

d.Fk.z/; Gk.u// � LJCk�1 C 2
�.JCk�1/

holds for all z 2 �.
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Applying Lemma 5.3, we end in a continuous map H extending all Gk and Fk ;
H realizes the homotopy between c and a trivial loop. Moreover, by the above (1B),
(kB), and (kD), we see that for any z 2 D,

d.H.z/; x/ � �.t C 6ıJ /C �2
�J
C 18ıJ C

 
1X
kD2

2�.JCk�2/.1C �/

!
C .LJ C 2

�J /

� �.t C 6ıJ /C 18ıJ C LJ C .3� C 3/2
�J :

Since J can be arbitrarily large, it follows that �.t; x/ � �.t/. This completes the proof
of the theorem.

6. Proof of limt!0 �.t; x/=t D 1

Based on Theorem 4.5, we finish the proof of Theorem 1.3 in this section by using
Sormani’s uniform cut technique [26].

The uniform cut technique is based on Abresh–Gromoll’s excess estimate [1]. Even
though excess estimate has been extended to metric spaces with synthetic Ricci curvature
bounds (RCD spaces) [12, 19], which includes Ricci limit spaces, it is unclear to the
authors whether excess estimate holds on a covering space of a local incomplete ball in
the limit space. Therefore, we will go back to the sequence, find uniform cut points on the
manifolds, then pass them to the limit.

We assume dimension n � 3 in this section. When n D 2, then the limit space is an
Alexandrov space, which is locally contractible.

Our first goal is a localized version of uniform cut theorem with a parameter � (see
Lemma 6.3). This is similar to [32, Section 4], where the nonnegative Ricci curvature case
is considered. We include the complete proof for readers’ convenience.

We recall Abresh–Gromoll’s excess estimate [1]:

Theorem 6.1. Given n � 3, there is C.n/ such that the following holds. Let M n be
a manifold of Ric � �.n � 1/. Let x; y1; y2 2M with d D d.y1; y2/ � 1. Let 
 be a unit
speed minimal geodesic from y1 to y2. Suppose that

d.x; 
.d=2// � rd;

where r 2 .0; 1=4�. Suppose that the closure of BRi
.yi / (i D 1; 2) is compact, where

Ri D d.x; yi /C rd . Then
e.x/ � C.n/r

n
n�1 d;

where e.x/D d.x;y1/C d.x;y2/� d.y1; y2/ is the excess function associated to y1; y2.

Lemma 6.2. Let M n (n � 3) be a manifold of Ric � �.n � 1/. Let 
 be a unit speed
minimal geodesic in M with length d � 1. Let x 2M be a point with

d.x; 
.0// � .1=2C �/d; d.x; 
.d// � .1=2C �/d:

Suppose that the closure of B. 1
2C2 .�//d

.
.0// and B. 1
2C2 .�//d

.
.d// are compact.
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Then
d.x; 
.d=2// �  .�/d;

where

 .�/ D min
²
1

4
;
�

n�1
n

C1.n/

³
and C1.n/ is a constant depending on n.

Proof. Suppose that d.x; 
.d=2// <  .�/d , where  .�/ as given in the statement; we
will determine the constant C1.n/ in the end. Applying Theorem 6.1,

e.x/ � C.n/ �  .�/
n

n�1 d:

On the other hand,

e.x/ D d.
.0/; x/C d.
.d/; x/ � d � 2�d:

Thus
2� � C.n/d �  .�/

n
n�1 :

It follows that

 .�/ �

�
2�

C.n/

�n�1
n

D
�

n�1
n

C1.n/
;

where
C1.n/ D .C.n/=2/

n�1
n :

As a result, if we choose

 .�/ D min
²
1

4
;
�

n�1
n

2C1.n/

³
;

then
d.x; 
.d=2// �  .�/d

holds.

Lemma 6.3. Let .M n; p/ be a manifold of n � 3, Ric � �.n � 1/, and the closureB2.p/
being compact. Let x 2 B1.p/. Let � > 0 and let  .�/ be the constant in Lemma 6.2.
Suppose that 
 is a geodesic loop in �1.BR.x/; x/ of length d with the properties below,
where BR.x/ � B1.p/.

(1) If a loop 
 0 based at x is homotopic to 
 , then 
 0 has length � d .

(2) 
 is minimal on both Œ0; d=2� and Œd=2; d �.

If R > .1=2C 2 .�//d , then for any y 2 @B.1=2C�/d .x/, we have

d.y; 
.d=2// �  .�/d:

Proof. Suppose that d.y; 
.d=2// <  .�/d . Let � be a minimal geodesic from 
.d=2/

to y. Let .U; Qx/ be the universal cover of .BR.x/; x/, where Qx is a lift of x in U . We lift 
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to a minimal geodesic Q
 starting from Qx in U . Since im.�/ � BR.p/, we can also lift �
to a curve Q� from Q
.d=2/ to a point Qy. It is clear that

d. Qy; Q
.0// � d.y; x/ D .1=2C �/d; d. Qy; Q
.d// � d.y; x/ D .1=2C �/d:

By Lemma 6.2, we have
d. Qy; Q
.d=2// �  .�/d;

which is a contradiction since Q� has length <  .�/d .

Let x 2 B1.p/ as in Theorem 1.3 and let BR.x/ � B1.p/. From Theorem 4.5, BR.x/
is semi-locally simply connected. As a result, the universal cover of BR.x/ exists and
�1.BR.x/; x/ acts freely and isometrically on the universal cover. We denote this univer-
sal cover as .U; Qx/. If �1.BR.x/; x/ is not trivial, then we define the minimal length

d D min
g2�1.BR.x/;x/�¹eº

d.g Qx; Qx/

and a subset � by
� D ¹h 2 �1.BR.x/; x/ j d.h Qx; Qx/ D dº:

Let h 2 � and 
 a minimal geodesic from Qx to h Qx. It is not difficult to show that 
 , the
projection of 
 to BR.x/, is a geodesic loop and satisfies a halfway property [26], namely,

 is minimal on Œ0; d=2� a nd Œd=2; d �. Ideally, we want to find a sequence of geodesic
loops 
i converging to 
 so that each 
i satisfies the halfway property as well. However,
this may not be true because 
i may not be the geodesic loop of minimal length and may
not be a short generator. Also, Mi may contain shorter and shorter loops disappearing
in the limit. To overcome this, roughly speaking, we will consider all the geodesic loops
converging to some element of � , instead of a fixed element 
 2 � (see Lemma 6.5).

For Lemmas 6.4 and 6.5 below, we assume that x 2 B1.p/ as in Theorem 1.3. For
Br .x/�BR.x/�B1.p/, where d=2 < r <R, we set � D .R� r/=4. Lemma 6.4 below
can be viewed as a localized version of a proof in [31].

Lemma 6.4. For any i sufficiently large, there is a group homomorphism

ˆi W �1.BrC�.xi /; xi /! �1.BR.x/; x/:

Moreover, ˆi is onto G.r/, where G.r/ is the subgroup of �1.BR.x/; x/ generated by
loops based at x and contained in Br .x/.

Proof. Since limt!0 �.t; x/ D 0 for all y 2 B1.p/, by the compactness of BrC2�.x/, we
can choose T > 0 such that for all y 2 BrC2�.x/,

�.T; y/ �
1

5
.R � r/ < �I

in other words, any loop in BT .y/ is contractible in BrC3�.x/ � BR.x/. Set �0 D T=20
and N large so that

dGH.B2.pi /; B2.p// D �i � �0

for all i � N .
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Let ci be a loop based at xi with im.ci / � BrC�.xi /. Following the method in Lem-
ma 2.4 (i), we can construct a loop c based at x, as a broken geodesic loop, such that c is
5�i -close to ci and

im.c/ � BrC�C6�i
.x/ � BR.x/:

Also, by the proof of Lemma 2.4 (ii), if c0i , another loop based at xi contained inBrC�.xi /,
is homotopic to ci in BrC�.xi /, then the corresponding c0 is homotopic to c in BR.x/. It
is clear that this defines a group homomorphism

ˆi W �1.BrC�.xi /; xi /! �1.BR.x/; x/:

It remains to prove that ˆi is onto G.r/. Let Œc� be a generator of G.r/. Because the
ball BR.x/ is semi-locally simply connected, we can represent Œc� by a geodesic loop
c W Œ0; 1�! Br .x/ based at x. Let 0 D t0; t1; : : : ; tk D 1 be a partition of Œ0; 1� so that
cjŒtj ;tjC1� has length � �. Choose points zi;j in BrC�i

.x/ that is �i close to c.tj / (we
set zi;0 D zi;k D xi ) and then connect these points by minimal geodesics. With this, we
result in a broken geodesic loop ci in BrC�.x/. It is direct to check ˆi .Œci �/ D Œc� by our
construction and Lemma 2.4 (i).

Lemma 6.5. For each i , let �i D ˆ
�1
i .�/, the set of all the elements in �1.BrC�.x/; x/

mapped to � under ˆi . Let 
i be the unit speed geodesic loop of minimal length among
all the geodesic loops representing elements of �i . Suppose that 
i has length di . Then:

(1) di ! d ,

(2) 
i is minimal on Œ0; di=2� and Œdi=2; di �.

Proof. (1) Passing to a subsequence if necessary, geodesic loops 
i converge uniformly
to a limit geodesic loop 
1 based at x. By construction of ˆi and Lemma 2.4 (i),

ˆi Œ
i � D Œ
1� 2 �

for all i large. 
1 has length l.
1/ at most lim infi!1 di . Let 
 be a geodesic loop
based at x with length d and Œ
� D Œ
1�. Since 
 has the shortest length among all non-
contractible loops in �1.BR.x/; x/, we deduce that

d � l.
1/ � lim inf
i!1

di :

It remains to show that d � lim supi!1 di . We prove this by contradiction. Suppose
that there is ı > 0 such that

d C ı < lim sup
i!1

di :

Passing to a subsequence, we have d C ı < di for i large. Further shrinking ı if necessary,
we can assume that any element of �1.BR.x/; x/ outside � [ ¹eº has length at least d C ı
(we can assume so because �1.BR.x/; x/ acts on the universal cover U discretely). For

 we chosen above, we can follow Lemma 2.4 (1) to obtain a sequence of loops ˛i in Xi
that is 5�i -close to 
 , where

�i D dGH..BR.xi /; xi /; .BR.x/; x// � 2
�i
! 0:
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In particular, ˛i converges uniformly to 
 . Since 
 is contained in Bd=2.x/, we have ˛i
contained in Bd=2C6�i

.xi /. Also, due to our construction, it is clear that ˛i has length
l.˛i / � 3d . For each ˛i , we divide ˛i into Ni pieces ˛i jŒti;j ;ti;jC1� such that each piece
has length between ı=4 and ı=2. Note that Ni � 12d=ı. Passing to a subsequence, we
can assume that all Ni are equal. For each j D 0; : : : ; N � 1, let ˇi;j be a loop joining
a minimal geodesic from xi to ˛i .ti;j /, ˛i jŒti;j ;ti;jC1�, and a minimal geodesic from ˛i
back to xi . The loop ˇi;j has length

l.ˇi;j / � 2.d=2C 6�i /C ı=2 D d C ı=2C 12�i :

As i !1, each ˇi;j converges to a loop ǰ based on x with ǰ has length � d C ı=2.
By the choice of ı, each ˆi .Œˇi;j �/ D Œ ǰ � either is trivial or belongs to � . If all Œ ǰ � are
trivial, then

Œ
� D ˆi .Œ˛i �/ D

N�1Y
jD0

ˆ.Œˇi;j �/ D

N�1Y
jD0

Œ ǰ �

would be trivial too, a contradiction. Consequently, there must be some Œ ǰ � 2 � . For such
a Œ ǰ �, we have Œˇi;j � 2 �i , but for i large,

l.ˇi;j / � d C ı=2C 12�i < di D l.
i /:

This is a contradiction to our choice of 
i . This completes the proof of (1).
(2) Let �i be a minimal geodesic from x to 
i .di=2/. Suppose that �i has length

< di=2. Let ci;1 be the loop joining 
i jŒ0;di=2� and ��1i and let ci;2 be the loop joining �i
and 
i jŒdi=2;di �. It is clear that Œci;1�Œci;2� D Œ
i � in �1.BrC�.xi /; xi /. Since both c1 and
c2 have length strictly shorter than 
i , due to our choice of 
i , it follows that ˆi Œc1� and
ˆi Œc2� do not belong to � . Each ci;j consists of two geodesics, thus ci;j subconverges
c1;j with ˆi Œci;j � D Œc1;j �, where j D 1; 2. The loop c1;j has length

l.c1;j / � lim
i!1

di D d;

where j D 1; 2. However, Œc1;j � … � . Hence Œc1;j � D e, which contradicts with

Œc1;1�Œc1;2� D Œ
1� 6D e:

With these preparations, we are ready to prove Theorem 1.3: limt!0 �.t; x/=t D 1.
Suppose that Theorem 1.3 fails. Then we can use Lemmas 6.5 and 6.3 to find uniform cut
points on manifolds, then pass these uniform cut points from the manifolds to a tangent
cone of the limit space, which would end in a contradiction to the structure of tangent
cones. This argument is a modification of [26].

Proof of Theorem 1.3. Fix x 2 B1.p/. Suppose that there are ı > 0 and rj ! 0 such that
limj!1 �.rj ; x/=rj � 1C ı. Let Rj D .1C ı/rj . Then the following holds:

(1) each BRj
.x/ is not simply connected,

(2) elements in �j , the set of shortest nontrivial loops in �1.BRj
.x/; x/, are represented

by loops contained in Brj .x/.
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Choose � > 0 sufficiently small so that � <  .�/ < ı=4, where  .�/ is given in Lem-
ma 6.2. With this �,

Rj D .1C ı/rj > .1=2C 2 .�//dj ;

where dj is the length of elements in �j . For each fixed j , by Lemma 6.5, there is 
i;j of
length di;j with halfway property and di;j ! dj as i !1. Let mi;j D 
i;j .di;j =2/ be
the midpoint of 
i;j . Since Rj > .1=2C 2 .�//di;j for all i large, applying Lemma 6.3,
we have for all y 2 @B.1=2C�/di;j

.x/,

d.y;mi;j / �  .�/di;j :

Next we consider the convergence

.d�1j B1.x/; x/
GH
�! .CxX; v/;

whereCxX is a metric cone with vertex v sinceX is a non-collapsing Ricci limit space [7].
By a standard diagonal argument, we have a convergent subsequence

.d�1i.j /;jB1.xi.j //; xi.j //
GH
�! .CxX; v/:

With respect to the above convergence, mi.j /;j ! m 2 CxX with d.m; v/ D 1=2.
We claim that there are no rays starting from v and going throughm, which contradicts

the fact that CxX is a metric cone with vertex v. Let y be any point in @B1.v/ and let
yj in d�1

i.j /;j
B1.xi.j /;j / converges to y. Clearly d.yj ; x/ D 1C �j on d�1

i.j /;j
B1.xi.j //,

where �j ! 0. Let zj be the point where a minimal geodesic from mj to yj intersects
d�1
i.j /;j

@B.1=2C�/di.j /;j
.xi.j //. Then on d�1

i.j /;j
B1.xi.j //,

d.yj ; mi.j /;j / D d.yj ; zj /C d.zj ; mi.j /;j /

� .1C �j / � .1=2C �/C  .�/ D 1=2C �j C . .�/ � �/:

Let j !1, we see that

d.y;m/ � 1=2C . .�/ � �/ > 1=2

for all y 2 @B1.v/. This proves the claim and we end in the desired contradiction.

7. Fundamental groups of limit spaces

With the help of Theorem 1.1, we can generalize the structure results on fundamental
groups of manifolds with Ricci curvature and volume lower bounds, to that of non-
collapsing Ricci limit spaces. Some of the result in this section are known for the revised
fundamental groups [27] of Ricci limit spaces.

Let n 2 N, � 2 R, D; v > 0. Let M.n; �;D; v/ be the set of all limit spaces coming
from some sequence of compact n-manifolds Mi with

RicMi
� .n � 1/�; diam.Mi / � D; vol.Mi / � v:

Let M.n; �; v/ be the set of all pointed limit spaces coming from some sequence of
complete n-manifolds .Mi ; pi / with

RicMi
� .n � 1/�; vol.B1.pi // � v:
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Corollary 7.1. Let Mi be a sequence of compact n-manifolds of

RicMi
� .n � 1/�; diam.Mi / � D; vol.Mi / � v

converging to X 2M.n; �;D; v/. Then for any i large there is a surjective group homo-
morphism ˆi W �1.Mi /! �1.X/. In particular, ifMi is simply connected for all i large,
then X is simply connected as well.

Proof. The result follows from Lemma 6.4 (also see [27, Theorem 1.1]).

Remark 7.2. We would like to point out that there is a mistake in [27, Theorem 1.4].
The kernel of ˆi contains all small loops based at different points, so Anderson’s result
does not apply to bound the order of kerˆi . In fact, the kernel could be infinite. For
example, using Ostu’s construction [21], we have a sequence of Riemannian metrics on
.S3�RP 2/ # .S3�RP 2/ converging to S.S2�RP 2/ #S.S2�RP 2/with Ricci curva-
ture bounded from below, where S.S2 �RP 2/ is the spherical suspension of S2 �RP 2.
Here the kernel is a free product Z2 � Z2, which is an infinite group. In fact, by taking
more connected sums, the kernel may have exponential growth.

Theorem 7.3. Given n; �;D; v, there are only finitely many isomorphic classes of funda-
mental groups among spaces in M.n; �;D; v/.

Proof. Anderson’s original proof [3] applies through verbatim.

Even though there are only finitely many isomorphic classes of fundamental groups
among spaces in M.n; �;D; v/, the stability result is not true. Namely, there are spaces
in M.n; �;D; v/ which are arbitrarily Gromov–Hausdorff close but have different funda-
mental groups (see [21] or Remark 7.2 above).

Theorem 7.4. Given n;D; v, there are positive constants �.n;D; v/ and C.n;D; v/ such
that for anyX 2M.n; �;D; v/, �1.X/ contains a normal abelian subgroup generated by
at most n elements of index � C .

Proof. By Corollary 7.1, it suffices to prove the statement for manifolds. The manifold
result was proved in [15, Theorem 1.7]. Here we present a different proof by using a result
from [22].

Suppose the contrary, then we have a sequence of Riemannian manifolds M n
i with

RicMi
� �i�1; diam.Mi / � D; vol.Mi / � v;

but any abelian subgroup of �i WD �1.Mi ; xi / has index � 2i . Passing to a subsequence,
we obtain equivariant Gromov–Hausdorff convergence

.fM i ; Qxi ; �i /

�i

��

GH // .Y; y;G/

�

��

.Mi ; xi /
GH // .X; x/.
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By the compactness of X and Cheeger–Colding’s splitting theorem [7], Y splits isomet-
rically as Rk �K, where K is compact. Since Mi is non-collapsing, both X and Y
has Hausdorff dimension n, and G is a discrete group. By [11], there is a sequence of
subgroups Hi of �i such that

.fM i ; Qxi ;Hi /
GH
�! .Y; y;G0 D ¹eº/

and �i=Hi is isomorphic to G=G0 D G for all i large. By [22, Theorem 0.8] (also see
Lemma 2.16 and Theorem 2.17), Hi must be trivial for all i large. Thus �i is isomorphic
to G for all i large. We claim that G is virtually abelian. If the claim is true, then clearly
the desired contradiction follows.

Let
p W Isom.Rk �K/! Isom.Rk/

be the natural projection. By the generalized Bieberbach theorem [11], p.G/ contains
a subgroup Zr of finite index, where r � k. Consider the exact sequence

1! kerp \ p�1.Zr /! p�1.Zr /
p
! Zr ! 1:

Because kerp is a discrete subgroup of Isom.K/, which is compact, kerp is finite. By
[11, Lemma 4.4], p�1.Zr / contains an abelian subgroup generated by r element and of
finite index. The claim now follows from the fact that p�1.Zr / has finite index in G.

Theorem 7.5. LetX 2M.n; 0; v/. Suppose thatX has Euclidean volume growth of con-
stant � L. Then �1.X/ is finite of order � 1=L. If L > 1=2, then any loop in Br .x/ is
contractible in BCr .x/, where x 2 X and r > 0.

Proof. The proof goes the same as the one of [2] and our Theorem 3.1.

Theorem 7.6. Let � > 0 and let X 2M.n; �; v/. Then X is compact and �1.X/ is finite
of order � C.n; �; v/.

Again this was only known before assuming the universal cover is simply connected.
We give a complete proof for readers’ convenience.

Proof. Let eX be the universal cover of X and let Qx 2 X . Since relative volume compari-
son holds on eX , we know that

Hn.Br . Qx//

vol.Bnr .�//

is a non-increasing function in r . Together with the fact that the space form of constant
curvature � > 0 has diameter �=

p
�, we see that

diamX � diameX � �
p
�
:

Then

#�1.X/ �
Hn.eX/
Hn.X/

�

vol.Bn
�=
p
�
.�//

v
:
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Theorem 7.7. Given n; v > 0, there is a constant C.n; v/ such that the following holds.
Let X 2M.n; �; v/ be a Ricci limit space and let CxX be a tangent cone of X at x 2 X .
Then CxX is a metric cone C.Z/ with �1.Z/ having order � C.n; v/.

Proof. By [7], CxX is a metric cone C.Z/ with diam.Z/ � � . Hn�1.Z/ � v0 for some
v0 depending on .X; x/. Also, RicZ � n � 2 in the sense of [17, 30]; in particular, rela-
tive volume comparison holds on Z. Thus the result follows if Z is semi-locally simply
connected.

For a point .1; z/ 2 C.Z/, by Theorem 1.1, limt!0 �.t; .1; z// D 0. Choose a T small
so that �.T; .1; z// < 1=2. For any loop c in BT .z/ � BT ..1; z//, there is a homotopyH
contracts c so that im.H/ does not contain the vertex of C.Z/. We define a retraction

R W C.Z/ � ¹vertexº ! Z

by sending .t; z/ to z. Retracting im.H/ to Z via this map R, we conclude that c is
contractible in Z.
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