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Abstract. We study the algebraic and geometric properties of stated skein algebras of surfaces
with punctured boundary. We prove that the skein algebra of the bigon is isomorphic to the quan-
tum group Oq2.SL.2// thus providing a topological interpretation for its structure morphisms. We
also show that its stated skein algebra lifts in a suitable sense the Reshetikhin–Turaev functor, and
in particular, we recover the dualR-matrix for Oq2.SL.2// in a topological way. We deduce that the
skein algebra of a surface with n boundary components is a comodule algebra over Oq2.SL.2//˝n

and prove that cutting along an ideal arc corresponds to Hochshild cohomology of bicomodules.
We give a topological interpretation of braided tensor product of stated skein algebras of sur-
faces as “gluing on a triangle”; then we recover topologically some bialgebras in the category
of Oq2.SL.2//-comodules, among which the “transmutation” of Oq2.SL.2//. We also provide an
operadic interpretation of stated skein algebras as an example of a “geometric non-symmetric mod-
ular operad”. In the last part of the paper, we define a reduced version of stated skein algebras and
prove that it allows to recover Bonahon–Wong’s quantum trace map and interpret skein algebras
in the classical limit when q ! 1 as regular functions over a suitable version of moduli spaces of
twisted bundles.
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1. Introduction

This paper is devoted to study the notion of stated skein algebra of surfaces introduced by
the second author in [22] in order to reinterpret in skein theoretical terms the construc-
tion of the quantum trace by Bonahon and Wong [5] as well as incorporating Muller’s
version of skein algebra [29]. Although the definition of the stated skein module applies
to 3-manifolds, this paper is entirely devoted to the case of surfaces: a forthcoming paper
will describe how this fits in the framework of an extended topological field theory in
dimensions 1; 2; 3. Indeed, the case of surfaces is sufficiently rich in algebraic and geo-
metrical terms to deserve a separate treatment, and we will now outline the results of this
paper.

1.1. Skein algebras

In this paper, we will mainly let R D ZŒq˙1=2� be the ring of Laurent polynomials in
a variable q1=2, but actually, most of the proofs and results hold for any commutative
ring with a distinguished invertible element (we shall comment on this along the paper).
Suppose S is the result of removing a finite number of points, called punctures, from
a compact oriented two-dimensional manifold with possibly non-empty boundary. The
ordinary skein algebra VS.S/, introduced by Przytycki [32] and Turaev [38], is defined to
be the R-module generated by isotopy classes of framed unoriented links in S � .0; 1/

modulo the Kauffman relations (see [19])

D q C q�1 ;

D .�q2 � q�2/ :

The product of two links ˛1 and ˛2 is the result of stacking ˛1 above ˛2. The skein
algebra has played an important role in low-dimensional topology and quantum topol-
ogy, and it serves as a bridge between classical topology and quantum topology. The
skein module has connections to the SL2.C/-character variety [7,33], the quantum group
of SL2.C/, the Witten–Reshetikhin–Turaev topological quantum field theory [4], the
quantum Teichmüller spaces [5, 13, 16, 23], and the quantum cluster algebra theory [29].

In the definition of the skein algebra VS.S/, the boundary @S does not play any role,
and we have VS.S/ D VS. VS/, where VS is the interior of S. In an attempt to introduce
excision into the study of the skein algebra, the second author [22] introduced the notion
of stated skein algebra, denoted in this paper by S.S/, whose definition involves tangles
properly embedded into S � .0; 1/. These tangles can have end points only on boundary
edges of S, which are connected components of the boundary homeomorphic to open
intervals. For details, see Section 2.

A key result about stated skein algebras is that they behave well under cutting along
an ideal arc. Here an ideal arc is a proper embedding cW .0; 1/ ,! S (so that its end points
are the punctures). Cutting S along c, one gets a 2-manifold S0 whose boundary contains
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Fig. 1. Cutting S along ideal arc c to get S0, which might be disconnected.

Fig. 2. Left: bigon. Right: splitting the bigon along the dashed ideal arc.

two open intervals a and b so that one can recover S from S0 by gluing a and b together;
see Figure 1.

Then [22, Theorem 1] (see the splitting theorem, Theorem 2.15) says that there is
a natural injection of algebras

�c W S.S/ ,! S.S0/; (1)

given by a simple state sum. The extension from VS.S/ to S.S/ is unique (or canonical) if
one wants the splitting theorem and a consistency requirement to hold.

The paper is a systematic study of the stated skein algebra S.S/. Let us now list the
main results of the paper.

1.2. Bigon and quantum SL2.C/ coordinate ring

The quantized enveloping algebra Uq2.sl2/ and its Hopf dual Oq2.SL.2//, known as
the quantum coordinate ring of the Lie group SL2.C/, play an important role in many
branches of mathematics; see [18, 26]. These algebras are usually defined by rather com-
plicated presentations which are hard to comprehend.

As a consequence of the splitting theorem, the quantum coordinate ring Oq2.SL.2//
can be described by simple geometric terms, namely, it is naturally isomorphic to the
stated skein algebra of the bigon B, which is the standard disk without two points on its
boundary; see Figure 2.

By splitting the bigon along an ideal arc c (which is the dashed arc in Figure 2), we
get a homomorphism � WD �c ,

�W S.B/! S.B/˝ S.B/;
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which turns out to be compatible with the product and makes S.B/ a bialgebra. Moreover,
we will define using topological terms the counit, antipode, and co-R-matrix which turns
S.B/ into a “dual quasitriangular” (see [26, Section 2.2]) a.k.a. “cobraided” (see [18,
Section VIII.5]) Hopf algebra, and will prove the following.

Theorem 1 (Theorems 3.4 and 3.5). The dual quasitriangular Hopf algebra S.B/ is
isomorphic in a natural way to the quantum coordinate ring Oq2.SL.2//.

This result allows to use skein theoretical techniques to study Oq2.SL.2//. We will
show that many complicated algebraic objects and facts concerning the quantum groups
Oq2.SL.2// and Uq2.sl2/ have simple transparent picture interpretations. For example,
the above mentioned co-R-matrix has a very simple geometric picture description; see
Theorem 3.5. Another example is given by the reconstruction of Kashiwara’s crystal
basis; see Proposition 3.10. One can even “import” in Oq2.SL.2// natural skein theoreti-
cal objects: in Subsection 3.8, we define and provide some properties of the Jones–Wenzl
idempotents in Oq2.SL.2//.

1.3. Lift of the Reshetikhin–Turaev invariant

Suppose T is a tangle diagram in the bigon whose boundary @T is in @B and the boundary
points are labeled by signs ˙. The Reshetikhin–Turaev operator invariant theory [35]
assigns to T a scalar Z.T / 2 Q.q1=2/; see Section 5. On the other hand, such a labeled
tangle T defines an element in our skein algebra S.B/. We have the following result
which shows that our “invariant”, which is T considered as an element of S.B/, is a lift
of the Reshetikhin–Turaev invariant.

Theorem 2 (Theorem 5.2). One has ".T / D Z.T /, where "W S.B/! QŒq˙1=2� is the
counit.

It would be interesting to understand this lift of the Reshetikhin–Turaev invariant in
terms of categorification.

1.4. Skein algebras as comodule over Oq2.SL.2//. Hochshild cohomology

One important consequence of the identification of the bigon algebra with Oq2.SL.2//
is that, for every boundary edge e of a surface S, the skein algebra S.S/ has a right
Oq2.SL.2//-comodule structure

�eW S.S/! S.S/˝ S.B/:

This map�e is the splitting homomorphism (1) applied to an ideal arc parallel to e which
cuts off an ideal bigon from S whose right edge is e; see Figure 3. Similarly, identifying
the left edge of B to e, we get a left Oq2.SL.2//-comodule structure on S.S/.

Using the comodule structure, one can refine the splitting theorem by identifying the
image of the splitting homomorphism as follows. Let us cut S along an ideal arc c to
get S0 as in Figure 1. Then S.S0/ has a right Oq2.SL.2//-module structure coming from
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Fig. 3. Geometric definition of the coaction: splitting the bigon along the dashed ideal arc.

edge a and a left Oq2.SL.2//-module structure coming from edge b. Thus S.S0/ is an
Oq2.SL.2//-bicomodule, and hence the Hochshild cohomology HH0.S.S0// is defined;
for details, see Section 4.

Theorem 3 (Theorem 4.8). Under the splitting homomorphism, the skein algebra S.S/

embeds isomorphically into the Hochshild cohomology HH0.S.S0//. In particular, when
c cuts S into two surfaces S1 and S2, the splitting homomorphism maps S.S/ isomor-
phically onto the cotensor product of S.S1/ and S.S2/.

1.5. Skein algebra S.S/ as module over Uq2.sl2/

Since the Hopf algebraUq2.sl2/ is the Hopf dual of Oq2.SL.2//, then after tensoring with
Q.q1=2/, each right Oq2.SL.2//-comodule is automatically a left Uq2.sl2/-module. Thus
each boundary edge e of S gives S.S/ a left Uq2.sl2/-module structure. Note that finite-
dimensional Uq2.sl2/-modules are well understood as they are quantum deformations of
modules over the Lie algebra sl2.C/.

Theorem 4 (Part of Theorem 4.6). Over the field Q.q1=2/, for every boundary edge,
the Uq2.sl2/-module S.S/ is integrable, i.e. it is the direct sum of finite-dimensional
irreducible Uq2.sl2/-modules.

Actually, Theorem 4.6 is much stronger: it provides an explicit decomposition and
contains much more information about the decompositions as it deals also with the de-
composition over Lusztig’s integral version of Uq2.sl2/.

Using this result, we also prove a dual version of Theorem 3 which, with the notation
of the theorem, shows that HH0.Q.q1=2/ ˝R S.S0// D Q.q1=2/ ˝R S.S/ (see Theo-
rem 4.10).

1.6. Braided tensor product

The co-R-matrix makes the category of Oq2.SL.2//-comodules a braided category, and
in general, given two algebras in that category (which are then Oq2.SL.2//-comodule
algebras), their tensor product can be endowed with the structure of an algebra by using
appropriately the braiding: this is the braided tensor product of the algebras; see [26].
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Fig. 4. Gluing S to two distinct edges of an ideal triangle to get S.

In Section 4.7, we generalize this notion to that of “self-braided tensor product” which
applies to a comodule algebra having two commuting comodule structures.

Suppose S is obtained by identifying two edges of a (possibly disconnected) surface
S with two distinct edges of an ideal triangle as in Figure 4. Then S.S/ has two natu-
ral commuting structures of Oq2.SL.2//-comodule algebra, and we have the following
theorem.

Theorem 5 (Theorem 4.17). As an Oq2.SL.2//-comodule algebra, S.S/ is canonically
isomorphic to the self-braided tensor product of S.S/. In particular, if SDS0 tS00 and
the two edges belong to S0 and S00 respectively, then S.S/ is canonically isomorphic to
the braided tensor product of S.S1/ and S.S2/.

Through this theorem, we easily compute the skein algebra of all “polygons”, “punc-
tured bigons”, and “punctured monogons” in Subsection 4.8. It is remarkable that the
skein algebras of the latter turn out to be bialgebra objects in the category of Oq2.SL.2//-
comodules and that their structure morphism have natural topological interpretation. In
particular, the punctured monogon yields the “transmutation” of Oq2.SL.2//.

1.7. Modular operad

The splitting homomorphism allows to put the theory of stated skein algebras of surfaces
in the framework of operad theory. We define the notion of geometric non-symmetric
modular operad in Section 6 and prove the following.

Theorem 6 (precise statement given by Theorem 6.1). The stated skein algebra of sur-
faces gives rise to a non-symmetric modular operad in a category of bimodules over
Uq2.sl2/.

To be more specific while leaving the details for Section 6, let us recall that, accord-
ing to Markl [28], a “non-symmetric modular operad in a monoidal category Cat” is
a monoidal functor NSOWMultiCyc! Cat, where MultiCyc is a suitable category of “multi-
cyclic sets”. In Section 6, we re-cast Markl’s definition by defining a category TopMultiCyc
whose objects are punctured surfaces S and whose morphisms are finite sets of ideal arcs
(describing a way of cutting the surfaces). From this point of view, we then show in
Theorem 6.1 that stated skein algebras provide a symmetric monoidal functor from this
category into a suitable category of modules and bimodules over copies of Uq2.sl2/, thus
providing a topological example of an NS modular operad.
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Fig. 5. A bad arc.

1.8. Reduced stated skein algebra, quantum torus, and quantum trace map

The stated skein algebra S.S/ has a quotient S.S/D S.S/=	bad, called the reduced stated
skein algebra, whose algebraic structure is much simpler as it can be embedded into the
so called quantum tori. Here 	bad is the ideal generated by elements, called bad arcs,
described in Figure 5 and is explained in Section 7.

We will show that the ordinary skein algebra VS.S/ still embeds into S.S/; hence we
can use S.S/ to study VS.S/. Most importantly, the splitting theorem still holds for S.S/.

Theorem 7 (Theorem 7.6). If S0 is the result of cutting S along an ideal arc c, then the
splitting homomorphism �c descends to an algebra embedding

N�c W S.S/ ,! S.S0/:

The non-trivial fact here is that N�c is injective. Except for a few simple surfaces, we can
always cut S along ideal arcs so that the result is a collection of ideal triangles T1; : : : ; Tk .
It follows that there is an embedding

‚W S.S/ ,!

kO
iD1

S.Ti /: (2)

The important thing with the reduced version is that, for an ideal triangle T , unlike
the full fledged S.T /, the reduced stated skein algebra S.T / is a quantum torus in three
variables.

Theorem 8 (Theorem 7.11). The reduced stated skein algebra S.T / of an ideal triangle
has presentation

S.T / D Rh˛˙1; ˇ˙1; ˙1i=.ˇ˛ D q˛ˇ; ˇ D qˇ; ˛ D q˛/:

Moreover, the reduced stated skein algebra of the bigon is naturally isomorphic to the
algebra RŒx˙1� of Laurent polynomial in one variable; see Proposition 7.10.

Consequently, the map ‚ of (2) embeds the reduced stated skein algebra S.S/ into
a quantum torus in 3k variables. Geometrically, the variables ˛; ˇ;  in Theorem 8 come
from the corner arcs of the ideal triangle. There is a similar quantum torus T 0.T / in three
variables corresponding to the edges of T , and a simple change of variables gives us an
embedding S.T / ,! T 0.T /. Combining with ‚ of (2), we get an algebra embedding

trq W S.S/
‚
,!

kO
iD1

S.Ti / ,!

kO
iD1

T 0.Ti /:
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There is a subalgebra Y of
Nk
iD1 T 0.Ti /, known as the Chekhov–Fock algebra asso-

ciated to the triangulation. The famous quantum trace map of Bonahon and Wong [5] is
an algebra homomorphismbtrq W yS.S/! Y, where yS.S/ is a coarser version of the stated
skein algebra which surjects onto S.S/; see Section 2.5.

Theorem 9 (see Theorem 7.12). The image of trq is in Y. Thus trq restricts to an algebra
embedding trq W S.S/ ,! Y, and the quantum trace map of Bonahon and Wong is the
composition

yS.S/ � S.S/
trq
,! Y:

The existence of the quantum trace map (for VS.S/) was conjectured by Chekhov and
Fock [10], and was established by Bonahon and Wong [5]. It is called the quantum trace
map since, when q D 1, it becomes a formula expressing the trace of a curve under the
holonomy representation of the hyperbolic metric in terms of the shear coordinates of
the Teichmüller space. The second author [23] gave another proof of the existence of the
quantum trace map based on the Muller skein algebra, which is actually a subspace of
the state skein algebra S.S/. The above approach using the reduced stated skein algebra
offers another proof, and also determines the kernel of the original quantum trace mapbtrq .

1.9. Classical limit

The last section explores the natural question of “what is the classical limit of S.S/?” In
the case of the standard skein algebra VS.S/, it is known [7, 33] (see also [9]) that, when
the quantum parameter q is �1 and the ground ring is C, then VS.S/ is isomorphic as an
algebra to the coordinate ring of the SL2.C/-character variety of S and that in general the
algebras at q and�q are isomorphic via the choice of a spin structure on S (see [2]). Note
that our stated skein algebra is not commutative when q D �1, though it is commutative
when q D 1.

We introduce the variety tw.S/ of “twisted SL2.C/-bundles” over S, which, roughly
speaking, are flat SL2.C/-bundles over the unit tangent bundle US of S with holonomy
�Id around the fibers of � W US ! S and are equipped with trivializations along the
edges of S, but which we reformulate in terms of groupoid representations. To deal with
the non-oriented nature of the arcs of the stated skein algebra, we have to use a trick
smoothing the arcs at their end points so that one can compose arcs.

Theorem 10 (Theorem 8.12). When q D 1 and the ground ring is C, the stated skein
algebra S.S/ is naturally isomorphic to the coordinate ring of tw.S/.

In classical terms, the splitting theorem becomes an instance of a van-Kampen like
theorem for groupoid representations.

Theorem 8.12 highlights a relation between S.S/ and the coordinate ring of the char-
acter variety of S. The study of quantizations of such rings has been performed with
different techniques (based on Hopf algebras and lattice gauge theory) by Alekseev–
Grosse–Schomerus [1], Buffenoir–Roche [6], Fock–Rosly [12] and, later, via skein the-
oretical approaches by Bullock–Frohman–Kania–Bartoszynska [8]. The relation of our



Stated skein algebras of surfaces 4071

work with these previous ones is still to be clarified, although it seems that one of the main
differences between our approach and some of the above cited ones is that we allow for
“observables with boundary” and, as explained in the preceding paragraph, this endows
the algebras we work with rich algebraic structures which in particular make computations
much easier.

1.10. Related results

While the authors were completing the present work, D. Ben-Zvi, A. Brochier, and D. Jor-
dan [3] constructed a theory of quantum character variety for general Hopf algebras,
based on completely different techniques. Part of the results of this paper could proba-
bly be recast in that theory, though we do not know the precise relation between the two
theories. The substantial difference of the techniques used makes these works comple-
mentary. K. Habiro informed us that his “quantum fundamental group theory” also gives
an alternative approach to the theory of quantum character variety.

When the authors presented their works at conferences, Korinman informed us that
he in joint work with A. Quesney obtained results similar to Theorem 3 and Theorem 10;
see their recent preprint [21].

2. Stated skein algebras

We will present the basics of the theory of stated skein algebras: definitions, bases of
skein algebras, the splitting homomorphism, filtrations, and gradings. New results involve
Proposition 2.7 describing the inversion homomorphism, and Proposition 2.17 giving the
exact value of the splitting homomorphism in the associated graded algebra.

2.1. Notation

Throughout the paper, let Z be the set of integers, N the set of non-negative integers, and
C the set of complex numbers. The ground ring R is a commutative ring with unit 1,
containing a distinguished invertible element q1=2. For a finite set X , we denote by jX j
the number of elements of X .

We will write x �D y if there is k 2 Z such that x D qky.

2.2. Punctured bordered surface

By a punctured bordered surface S, we mean a surface of the form SDS nP , where S

is a compact oriented surface with (possibly empty) boundary @S, and P is a finite non-
empty set such that every connected component of the boundary @S has at least one point
in P and every connected component of S has at least one point in P . We do not require
S to be connected. It is easy to see that S is uniquely determined by S. Throughout this
section, we fix a punctured bordered surface S.
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An ideal arc on S is an immersion aW Œ0; 1�! S such that a.0/; a.1/ 2 P and the
restriction of a onto .0; 1/ is an embedding into S. Isotopies of ideal arcs are considered
in the class of ideal arcs.

A connected component of @S is called a boundary edge of S (or simply an edge),
which is an ideal arc.

Remark 2.1. The fact that each connected component of @S is an open interval is not
a serious restriction as, for the purpose of the constructions of this paper, a point-less
boundary component is treated as a puncture so that, in the end, the only excluded surfaces
are closed ones without punctures. For these surfaces, the notion of stated skein algebra
coincides with that of the standard skein algebra, and so we discard it from the surfaces
of interest.

2.3. Ordinary skein algebra

Let M D S � .0; 1/. For a point .z; t/ 2 S � .0; 1/, its height is t . A vector at .z; t/
is called vertical if it is a positive vector of z � .0; 1/. A framing of a one-dimensional
submanifold ˛ of M D S � .0; 1/ is a continuous choice of a vector transverse to ˛ at
each point of ˛.

A framed link in S � .0; 1/ is a closed one-dimensional unoriented submanifold ˛
equipped with a framing. The empty set, by convention, is considered a framed link.

A link diagram on S determines an isotopy class of framed links in S � .0; 1/, where
the framing is vertical everywhere. Every isotopy class of framed links in S � .0; 1/ is
presented by a link diagram.

The skein module VS.S/, first introduced by Przytycki [32] and Turaev [37], is defined
as the R-module generated by the isotopy classes of framed unoriented links in S� .0; 1/

modulo the Kauffman relations

D q C q�1 ; (3)

D .�q2 � q�2/ :

We use the following convention about pictures in these identities, as well as in other
identities in this paper. Each shaded part is a part of S, with a link diagram on it. Rela-
tion (3) says that if link diagrams D1, D2, and D3 are identical everywhere except for
a small disk in which D1; D2; D3 are like in respectively the first, the second, and the
third shaded areas, then ŒD1� D qŒD2�C q�1ŒD3� in the skein module VS.S/. Here ŒDi �
is the isotopy class of links determined by Di . The other relation is interpreted similarly.

For two framed links ˛1 and ˛2, the product ˛1˛2 is defined as the result of stacking ˛1
above ˛2, that is, first isotope ˛1 and ˛2 so that ˛1 �S� .1=2; 1/ and ˛2 �S� .0; 1=2/.
Then ˛1˛2 D ˛1 [ ˛2. It is easy to see that this gives rise to a well-defined product and
hence an R-algebra structure on VS.S/.
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2.4. Tangles and order

In order to include the boundary of S into the picture, we will replace framed links by
more general objects called @M -tangles. Recall that M D S � .0; 1/, and its boundary is
@M D @S � .0; 1/.

In this paper, a @M -tangle is an unoriented, framed, compact, properly embedded
one-dimensional submanifold ˛ �M D S � .0; 1/ such that

� at every point of @˛ D ˛ \ @M , the framing is vertical and

� for any boundary edge b, the points of @b.˛/ WD @˛\ .b � .0;1// have distinct heights.

For a @M -tangle ˛, define a partial order on @˛ by x > y if there is a boundary edge
b such that x; y 2 b � .0; 1/ and x has greater height. If x > y and there is no z such that
x > z > y, then we say x and y are consecutive.

Isotopies of @M -tangles are considered in the class of @M -tangles. It should be noted
that isotopies of @M -tangles preserve the height order. The empty set, by convention, is
a @S-tangle which is isotopic only to itself.

As usual, @M -tangles are depicted by their diagrams on S as follows. Every @S-
tangle is isotopic to one with vertical framing. Suppose a vertically framed @M -tangle ˛
is in general position with respect to the standard projection � WS � .0; 1/! S, i.e. the
restriction �j˛W˛!S is an immersion with transverse double points as the only possible
singularities, and there are no double points on the boundary of S. Then D D �.˛/,
together with

� the over/underpassing information at every double point and

� the linear order on �.˛/ \ b for each boundary edge b induced from the height order

is called a @M -tangle diagram, or simply a tangle diagram on S. Isotopies of @M -tangle
diagrams are ambient isotopies in S.

Clearly, the @M -tangle diagram of a @M -tangle ˛ determines the isotopy class of ˛.
When there is no confusion, we identify a @M -tangle diagram with its isotopy class of
@M -tangles.

Let o be an orientation of @S, which on a boundary edge may or may not be equal to
the orientation inherited from S. A @M -tangle diagramD is o-ordered if, for each bound-
ary edge b, the order of @D on b is increasing when one goes along b in the direction of o.
It is clear that every @M -tangle, after an isotopy, can be presented by an o-ordered @M -
tangle diagram. If o is the orientation coming from S, the o-order is called the positive
order.

2.5. Stated skein algebra

A state on a finite set X is a map sWX ! ¹˙º. We write #s D jX j. A stated @M -tangle
(resp. a stated @M -tangle diagram) is a @M -tangle (resp. a @M -tangle diagram) equipped
with a state on its set of boundary points.

The stated skein algebra S.S/ is the R-module freely spanned by isotopy classes of
stated @M -tangles modulo the defining relations, which are the old skein relation (4) and
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the trivial loop relation (5), and the new boundary relations (6) and (7):

D q C q�1 ; (4)

D .�q2 � q�2/ ; (5)

D q�1=2 ; D 0; D 0; (6)

D q2 C q�1=2 : (7)

Here each shaded part is a part of S, with a stated @M -tangle diagram on it. Each arrowed
line is part of a boundary edge, the order on that part is indicated by the arrow, and the
points on that part are consecutive in the height order. The order of other end points away
from the picture can be arbitrary and are not determined by the arrows of the picture. On
the right-hand side of the first identity of (6), the arrow does not play any role; it is there
only because the left-hand side has an arrow.

Again, for two @M -tangles ˛1 and ˛2, the product ˛1˛2 is defined as the result of
stacking ˛1 above ˛2. The product makes S.S/ an R-algebra. In [22], it is proved that if
R is a domain, then S.S/ does not have non-trivial zero-divisors, a fact known earlier for
the case when S has no boundary [34].

If S1 and S2 are two punctured bordered surfaces, then there is a natural isomorphism

S.S1 tS2/ Š S.S1/˝R S.S2/:

Since the interior VS of S does not have boundary, we have S. VS/ D VS.S/.
The subalgebra SC.S/ spanned by @M -tangles whose states are all C is naturally

isomorphic to the skein algebra defined by Muller [29]; see [22, 24]. If, in the definition
of S.S/, we use only two relations (4) and (5), we get a coarser version OS.S/ which was
defined by Bonahon and Wong [5].

Remark 2.2. Relations (6) already appeared in [5]. Relation (7) appeared in [22] where
the stated skein algebra was introduced.

2.6. Consequences of defining relations

Define C ��0 for �; �0 2 ¹˙º by

CCC D C
�
� D 0; CC� D q

�1=2; C�C D �q
�5=2: (8)

In the next lemma, we have the values of all the trivial arcs.

Lemma 2.3 ([22, Lemma 2.3]). In S.S/, one has

�q�3 D D �q3 ;
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D C ��0 ;

D D �q3C �
0

� : (9)

The next lemma describes how a skein behaves when the order of two consecutive
boundary points is switched.

Lemma 2.4 (Height exchange move [22, Lemma 2.4]). (a) One has

D q�1 ; D q�1 ; D q ; (10)

q3=2 � q�3=2 D .q2 � q�2/ : (11)

(b) Consequently, if q D 1 or q D �1, then for all �; �0 2 ¹˙º,

D q : (12)

Remark 2.5. Because of relation (12), in general, S.S/ is not commutative when qD�1.
This should be contrasted with the case of the usual skein algebra VS.S/, which is commu-
tative and is canonically equal to the SL2.C/ character variety of �1.S/ if R D C and
q D �1 (assuming S is connected); see [7, 33].

2.7. Reflection anti-involution

Proposition 2.6 (Reflection anti-involution [22, Proposition 2.7]).Suppose RDZŒq˙1=2�.
There exists a unique Z-linear map �W S.S/! S.S/ such that

� �.q1=2/ D q�1=2,

� � is an anti-automorphism, i.e. for any x; y 2 S.S/,

�.x C y/ D �.x/C �.y/; �.xy/ D �.y/�.x/;

� if ˛ is a stated @M -tangle diagram, then �.˛/ is the result of switching all the
crossings of ˛ and reversing the linear order on each boundary edge.

Clearly, �2 D id. We call � the reflection anti-involution.

2.8. Inversion along an edge

Proposition 2.7. Let e be a boundary edge of a punctured bordered surface S, and let
f W ¹˙º ! R be a function such that f .C/f .�/ D �q�3.

There exists a unique R-linear homomorphism inve;f W S.S/! S.S/ such that if ˛
is a stated @S-tangle diagram with a state s and with positive order on e, then

inve;f .˛/ D
� Y
x2.˛\e/

f .s.x//
�
˛0; (13)



F. Costantino, T. T. Q. Lê 4076

where ˛0 is the same ˛ except that the height order of ˛0 on e is given by the negative
direction of e and the state of ˛0 on e is obtained from that of ˛ by switching � 2 ¹˙º
to �� at every boundary points in ˛ \ e.

If e0 is another boundary edge and f 0.C/f 0.�/ D �q�3, then

inve;f ı inve0;f 0 D inve0;f 0 ı inve;f : (14)

Proof. Let T be the set of isotopy classes of stated, positively ordered @S-tangle dia-
grams. Since T spans S.S/, the uniqueness of inve;f is clear.

Let QS be the R-module freely spanned by T , and let finve;f W S0 ! S.S/ be the R-
linear map defined by (13). To show that finve;f descends to a map inve;f WS.S/! S.S/,
one needs to prove finve;f is invariant under isotopy in M WD S � .0; 1/ and under the
moves generated by the defining relations (4)–(7). More precisely, we have to show thatfinve;f .˛/ D finve;f .˛/ for any ˛; ˛0 2 T whenever

(i) ˛ and ˛0 are isotopic as @M -tangles or

(ii) ˛ and ˛0 are respectively the left-hand side and the right-hand side of the defining
relations (4)–(7).

It is known that ˛ and ˛0 are isotopic as @M -tangles if and only if they are related by
a sequence of the 3 framed Reidemeister moves of [31, Section 1.2]. The invariance under
the 3 framed Reidemeister moves follows from the invariance under the defining relations
(4) and (5); see [19]. Clearly, finve;f is invariant under the moves generated by the defining
relations (4) and (5). There remains relations (6) and (7).

Let us consider (6). Using the definition, f .C/f .�/ D q�3, and then (9), we have

inve;f . / D f .C/f .�/ D �q�3 D �q�3.�q3/CC� D q
�1=2;

which proves the first identity of (6). The other two identities of (6) are trivial.
Let us consider (7). By definition and Lemma 2.4,

inve;f

� �
D f .C/f .�/ D .�q�3/

�
q

�
D �q�2 ; (15)

inve;f

�
q2 C q�1=2

�
D q2.�q�3/ C q�1=2

D �q�1
�
q�3 C q�3=2.q2 � q�2/

�
C q�1=2

D �q�4 C q�9=2 ; (16)

and the right-hand sides of (15) and (16) are equal due to (7).
Identity (14) follows immediately from the definitions.



Stated skein algebras of surfaces 4077

There are two important cases for us. Define

inve WD inve;C and inve WD inve; NC ;

where
C.C/ D NC.�/ D �q�5=2; C.�/ D NC.C/ D q�1=2:

Note that C.�/ D C��� and NC.�/ D C.��/ for � 2 ¹˙º. For a stated tangle diagram
˛ with a state s on the boundary edge e, define

Ce.˛/ D
Y
x2˛\e

C.s.x// D
Y
x2˛\e

C
�s.x/

s.x/
: (17)

If ˛ has positive order on e, then, with ˛0 defined as in Proposition 2.7, one has

inve.˛/ D Ce.˛/˛0:

Remark 2.8. Definition (13) works only for stated @S-tangle diagrams with positive
order on e. If the order is not positive, the formula will be different. In general, inve;f is
not an algebra homomorphism.

2.9. Basis of stated skein module

A @M -tangle diagram D is simple if it has neither double point nor trivial component.
Here a closed component of D is trivial if it bounds a disk in S, and an arc component
of ˛ is trivial if it can be homotoped relative to its boundary to a subset of a boundary
edge. By convention, the empty set is considered as a simple stated @M -tangle diagram
with 0 components.

Define an order on ¹˙º so that the sign � is less than the sign C. If X is a partially
ordered set, then a state sWX ! ¹˙º is increasing if s is an increasing function, i.e.
f .x/ � f .y/ whenever x � y.

Choose an orientation o of @S. Let B.SIo/ be the set of all isotopy classes of increas-
ingly stated, o-ordered simple @M -tangle diagrams. From the defining relations, it is easy
to show that the set B.SI o/ spans S.S/ over R.

Theorem 2.9 ([22, Theorem 2.8]). Suppose S is a punctured bordered surface and o is
an orientation of @S. Then B.SI o/ is an R-basis of S.S/.

Remark 2.10. Theorem 2.9 means that the coefficients given in the defining relations (6)
and (7) are consistent in the sense that they do not lead to any more relations among the
set B.SI o/.

The subset VB.SI o/ � B.SI o/ consisting of ˛ 2 B.SI o/ having no arcs is a basis of
the ordinary skein algebra VS.S/. Similarly, the subset BC.SI o/ � B.SI o/ consisting of
˛ 2 B.SI o/ having only positive states is a basis of the Muller skein algebra SC.S/; see
[22, 24, 29]. Hence we have the following.

Corollary 2.11. Both the ordinary skein algebra VS.S/ and the Muller skein algebra
SC.S/ are subalgebras of the stated skein algebra S.S/.
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2.10. Filtration and grading

Suppose a is either an ideal arc or a simple closed curve on S and ˛ is a simple @M -tangle
diagram on S. The geometric intersection index I.a; ˛/ is

I.a; ˛/ D minja \ ˛0j;

where the minimum is over all the simple @M -tangle diagrams ˛0 isotopic to ˛.
For a collection A D ¹a1; : : : ; akº, where each ai is either an ideal arc or a simple

closed curve, and n2N, let FA
n .S.S// be the R-submodule of S.S/ spanned by all stated

simple @M -diagrams ˛ such that
Pk
iD1 I.ai ; ˛/ � n. It is easy to see that the collection

¹FA
n .S.S//ºn2N forms a filtration of S.S/ compatible with the algebra structure, i.e. with

Fn D F
A
n .S.S//, one has

Fn � FnC1;
[
n2N

Fn D S.S/; FnFn0 � FnCn0 :

One can define the associated graded algebra

GrA.S.S// D

1M
nD0

GrA
n .S.S//

with GrA
n .S.S// D Fn=Fn�1 for all n � 1 and Gr0 D F0:

This type of filtration has been used extensively in the theory of the ordinary skein
algebra; see e.g. [14, 23, 24, 27].

The following is a consequence of Theorem 2.9.

Proposition 2.12 ([22, Proposition 2.12]). Let o be an orientation of the boundary of
a punctured bordered surface S, and let A D ¹a1; : : : ; akº be a collection of boundary
edges of S.

(a) The set
®
˛ 2 B.SI o/ j

Pk
iD1 I.˛; ai / � n

¯
is an R-basis of FA

n .S.S//.

(b) The set
®
˛ 2 B.SI o/ j

Pk
iD1 I.˛; ai / D n

¯
is an R-basis of GrA

n .S.S//.

Concerning the grading, for each non-negative integer m and a boundary edge e, let
Gem be the R-subspace of S.S/ spanned by stated @M -tangle diagrams ˛ with ıe.˛/ WDP
u2.˛\e/ s.u/ D m, where s is the state and we identifyC withC1 and � with �1.
From the defining relations, it is clear that S.S/D

L
m2ZG

e
m andGemG

e
m0 �G

e
mCm0 .

In other words, S.S/ is a graded algebra with the grading ¹Gemºm2Z.
Also, the following is a consequence of Theorem 2.9.

Proposition 2.13. Let S be a punctured bordered surface and o an orientation of @S.
The set ¹˛ 2 B.SI o/ j ıe.˛/ D mº is an R-basis of Gem.S.S//.

If o0 is another orientation of the boundary @S, the change from basis B.SI o/ to
B.SIo0/ might be complicated. For the associated space GrA.S.S//, the change of bases
is simpler.

Recall that ˛ �D ˛0 means ˛ D qm˛0 for some m 2 Z.
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Proposition 2.14. Suppose ˛ is stated tangle diagram on S and I.˛; e/ D k, where e is
a boundary edge. Let us alter ˛ to get ˛0 by changing the height order on e and the states
on e such that ıe.˛/ D ıe.˛0/. Then one has

˛
�
D ˛0 in Grek.S.S//: (18)

Proof. One can get ˛0 from ˛ by a sequence of moves, each is either (i) an exchange of the
heights of two consecutive vertices on e, or (ii) an exchange of states of two consecutive
vertices on b. We can assume that ˛0 is the result of doing a move of type (i) or type (ii).
In case of move (i), identities (10) and (11) prove (18). In case of move (ii), identity (7)
proves (18).

2.11. Splitting/Gluing punctured bordered surfaces

Suppose a and b are distinct boundary edges of a punctured bordered surface S0 which
may not be connected. Let S D S0=.a D b/ be the result of gluing a and b together in
such a way that S is orientable. The canonical projection prWS0!S induces a projectioneprWM D S0 � .0; 1/!M D S � .0; 1/. Let c D pr.a/D pr.b/. It is an interior ideal arc
of S.

Conversely if c is an ideal arc in the interior of S, then there exist S0; a; b as above
such that S D S0=.a D b/, with c being the common image of a and b. We say that S0

is the result of splitting S along c.
A @M -tangle ˛ �M D S � .0; 1/ is said to be vertically transverse to c if

� ˛ is transverse to c � .0; 1/,

� the points in @c˛ WD ˛ \ .c � .0; 1// have distinct heights and have vertical framing.

Suppose ˛ is a stated @M -tangle vertically transverse to c. Then Q̨ WD epr�1.˛/ is a @M 0-
tangle which is stated at every boundary point except for newly created boundary points,
which are points in epr�1.@c˛/. A lift of ˛ is a stated @M 0-tangle ˇ which is Q̨ equipped
with states on epr�1.@c˛/ such that if x; y 2 epr�1.@c˛/ with epr.x/ D epr.y/, then x and y
have the same state. If j@c˛j D k, then ˛ has 2k lifts.

Theorem 2.15 (Splitting theorem [22, Theorem 3.1]). Suppose c is an ideal arc in the
interior of a punctured bordered surface S and S0 is the result of splitting S along c.

(a) There is a unique R-algebra homomorphism �c W S.S/! S.S0/, called the splitting
homomorphism along c, such that if ˛ is a stated @M -tangle vertically transverse
to c, then

�c.˛/ D
X

ˇ; (19)

where the sum is over all lifts ˇ of ˛.

(b) In addition, �c is injective.

(c) If c1 and c2 are two non-intersecting ideal arcs in the interior of S, then

�c1
ı �c2

D �c2
ı �c1

:
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Remark 2.16. The coefficients of the right-hand sides of the defining relations (6) and (7)
were chosen so that one has the consistency (see Remark 2.10) and the splitting theorem.
It can be shown that if one requires the consistency and the splitting theorem, then the
coefficients are unique, up symmetries of a group isomorphic to Z=2 � Z=2.

2.12. Splitting homomorphism and filtration

Fix an orientation o of the boundary edges of @S. Let S0 be the result of splitting S along
an ideal arc c, with c being lifted to boundary edges a and b of S0. Choose an orientation
of c, and lift this orientation to a and b, which, together with o, gives an orientation o0

for S0. Assume D is a stated simple o-ordered @M -tangle diagram which is taut with
respect to c, i.e. jD \ cj D I.D; c/. For each i D 0; 1; : : : ; m WD jD \ cj, let . QD; si /
be the @M 0-tangle diagram where QD D pr�1.D/, and the states on both a and b are o0-
increasing and have exactly i minus signs. Then each . QD; si / is in the basis of the free
R-module Gr¹a;bº2m .S.S0// described in Proposition 2.12.

For non-negative integers n; i , the quantum binomial coefficient is defined by�
n

i

�
q

D

Qn
jDn�iC1.1 � q

j /Qi
jD1.1 � q

j /
:

Proposition 2.17. In Gr¹a;bº2m .S.S0//, one has

�c.D/ D

mX
iD0

�
m

i

�
q4

. QD; si /: (20)

Proof. For sWD \ c ! ¹˙º, let . QD; s/ be the stated o0-ordered S0-tangle diagram with
state s on a and b. By definition,

�.D/ D
X

sWD\c!¹˙º

. QD; s/ 2 S.S0/:

Taking into account the filtration, from (7) and (10), we see that, in Gr¹a;bº2m .S.S0//,

D q2

0@ 1A; D q2

0B@
1CA:

It follows that, in Gr¹a;bº2m .S.S0//, we have

D q4

0@ 1A: (21)

Suppose sWD \ c ! ¹˙º has i minus values. For k D 1; : : : ; i , let xk be the number
of plus states (of s) lying below the k-th minus state. By doing many switches, each
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changing a pair of consecutive .�;C/ to .C;�/, we can transform s into si . The number
of switches is x1 C � � � C xi . Hence, from (21), we see that

. QD; s/ D q4.x1C���Cxi /. QD; si /:

Taking the sum over all sWD \ c ! ¹˙º with i minus values, we get

�.D/ D

mX
iD0

� X
0�x1�����xi�m�i

q4.x1C���Cxi /
�
. QD; si / in Gr¹a;bº2m .S.S0//: (22)

By induction on i , one can easily prove thatX
0�x1�����xi�n

q4.x1C���Cxi / D

�
nC i

i

�
q4

;

from which and (22) we get (20).

2.13. The category of punctured bordered surfaces and the functor S

A morphism from one bordered punctured surface S to another one S0 is an isotopy class
of orientation-preserving embeddings from S to S0. Here we assume that the embeddings
map a boundary edge of S into (but not necessarily onto) a boundary edge of S0. Very
often, we identify an embedding f WS ,! S0 with its isotopy class.

Suppose f WS! S0 is an embedding representing a morphism from S to S0. Define
an R-linear homomorphism f�W S.S/! S.S0/ such that if ˛ is a stated tangle diagram
on S with positive order, then f�.˛/ is given by the stated tangle diagram f .˛/, also with
positive order. It is clear that f� is an R-linear homomorphism, and it does not change
under isotopy of f .

In general, f� is not an R-algebra homomorphism. However, if every edge of S0

contains the image of at most one edge of S, then f� is an R-algebra homomorphism.

Example 2.18. Let e be a boundary edge of S and S0 D S n ¹vº, where v 2 e. The
embedding �WS0 ,! S induces an R-linear homomorphism ��W S.S

0/! S.S/ which is
surjective but not injective in general.

Suppose e0 � e is one of the two boundary edges of S0 which is part of e. There is
a diffeomorphism gWS! S0 n ¹e0º which is unique up to isotopy. Thus we have a mor-
phism f WS! S0, which is the composition S

g
�! S0 n ¹e0º ,! S0. The morphism f

induces an injective (but not surjective) algebra morphism f�W S.S/ ,! S.S0/.

3. Hopf algebra structure of the bigon and Oq2.SL.2//

We will define using geometric terms a dual quasitriangular (a.k.a. cobraided) Hopf alge-
bra structure on the stated skein algebra S.B/ of the bigon B and then show that it
is naturally isomorphic to the dual quasitriangular Hopf algebra Oq2.SL.2//. We also
show simple pictures of the canonical basis of Oq2.SL.2// and discuss the Jones–Wenzl
idempotents in S.B/. In this section, R D ZŒq˙1=2� unless otherwise stated.
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Fig. 6. Monogon, bigon with its edges el and er , elements ˛C� and ˛E� E�. Note that, for ˛E� E�, the
height order is indicated by the arrows.

3.1. Monogon and bigon

Let D be the standard disk

D D ¹.x; y/ 2 R2 j x2 C y2 � 1º;

and v1 D .0;�1/ and v2 D .0; 1/ are two points on the circle @D. The punctured bordered
surface M D D n ¹v1º is called the monogon, and B D D n ¹v1; v2º is called the bigon.
Let el ; er be the two boundary edges of B as depicted in Figure 6. For E� D .�1; : : : ; �k/
and E�D .�1; : : : ; �k/ in ¹˙ºk , let ˛E� E� 2 S.B/ be the element presented by k parallel arcs
as in Figure 6, with .�1; : : : ;�k/ being the states on el in increasing order and .�1; : : : ;�k/
being the states on er in increasing order.

We have S.M/ D R. Moreover, one has

D : (23)

Here the circle enclosing x and two vertical lines attached to it stand for a stated @S-tangle
diagram. The proof follows by using the skein relation (4), then the loop relation (5), and
finally the arc relation (6) to reduce x to a scalar.

We study the algebra S.B/ in this section. Let rotWB ! B be the rotation (of the
plane containing B) by 180° about the center of B, which is a self-diffeomorphism of B

and induces an R-algebra involution

rot�W S.B/! S.B/: (24)

3.2. Coproduct

Suppose e is a boundary edge of a punctured bordered surface S. Let S0 be the result of
cutting out of S a bigon B whose right edge er is identified with e. Since S0 is canonically
isomorphic to S in the category of punctured bordered surfaces, we will identify S.S/

with S.S0/. The splitting homomorphism gives an injective algebra homomorphism

S.S0/ ,! S.S tB/ � S.S/˝R S.B/:

Since we identify S.S/ with S.S0/, this map becomes an R-algebra homomorphism

�eW S.S/ ,! S.S/˝R S.B/:
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Fig. 7. The coaction �e .

Suppose x 2 B.S;o/ is a basis element, where o is a given orientation of @S. Assume
the state of x on e is E�; then we have (Figure 7)

�e.x/ D
X
E�2Sx\e

xE� ˝ ˛E� E�; (25)

where Sx\e is the set of all states of x \ e and xE� is x with the state on e switched to E�.
In particular, when SDB and eD er , we get an R-algebra homomorphism�D�er

,

�W S.B/! S.B/˝R S.B/:

Theorem 2.15 (c) implies that � is coassociative, i.e.

.�˝ id/� D .id˝�/�:

Applying (25) to x D ˛�� with �; � 2 ¹˙º, we get

�.˛��/ D
X
�2¹˙º

˛�� ˝ ˛��: (26)

3.3. Presentation of S.B/

A presentation of the algebra S.B/was given in [22]. We give here a presentation of S.B/
in a form which is suitable for us. Recall that C.�/D C N�� for � 2 ¹˙º were defined by (8).
We form the following matrix:

C WD

�
CCC CC�
C�C C��

�
D

�
0 q�1=2

�q�5=2 0

�
:

Lemma 3.1. The R-algebra S.B/ is generated by ¹˛�;� j �;� 2 ¹˙ºº with the following
relations:

C D AtCA (27)

C D ACAt ; (28)

where At is the transpose of A and

A WD

�
˛CC ˛C�
˛�C ˛��

�
:
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Proof. Explicitly, relations (27) and (28) are respectively

C �� � 1 D
X
�2¹˙º

C. N�/˛��˛ N�� D C
C
� ˛C�˛�� C C

�
C˛��˛C� for all �; � 2 ¹˙º; (29)

C �� � 1 D
X
�2¹˙º

C. N�/˛��˛� N� D C
C
� ˛�C˛�� C C

�
C˛��˛�C for all �; � 2 ¹˙º: (30)

Let e be the only boundary edge of the monogon M. Because

S.M/ D R and R˝ S.B/ D S.B/;

the R-algebra map �eW S.M/! S.M/˝R S.B/ is an R-algebra map �eWR! S.B/.
As any R-linear map, we must have �e.c/ D c � 1, where 1 is the unit of S.B/. Apply
�e to the simple arc in the monogon whose end points are stated by � and �, and we get
a proof of (29) as follows:

C �� D
�e
��!

X
�;�02¹˙º

D

X
�2¹˙º

C. N�/˛��˛ N��:

Equation (30) is obtained from equation (29) by applying the map rot� of (24).
Using Theorem 2.9, one sees that the set

B D ¹˛hCC˛
k
�C˛

l
�� j h; k; l 2 Nº [ ¹˛hCC˛

k
C�˛

l
�� j h; k; l 2 N; k � 1º

is an R-basis of S.B/. In particular, S.B/ is generated by ˛�� with �; � 2 ¹˙º.
Using these relations, it is easy to check that any monomial in the ˛�� can be ex-

pressed as an R-linear combinations of B . The proposition follows.

3.4. Counit

The embedding �WB ,!M gives rise to an R-linear map ��WS.B/! S.M/DR. Define
"W S.B/! R as the composition " D �� ı inver

,

"W S.B/
inver
���! S.B/

��
���! S.M/ D R;

where inver
is defined in Section 2.8. Explicitly, if ˛ is a stated @B-tangle diagram as in

Figure 8, then
".˛/ D Cer

.˛/˛0; (31)

where ˛0 is described in Figure 8 and Cer
.˛/ is defined by (17).

Using (31) and the values of C.�/, one can check that

".˛��/ D ı�� WD

´
1 if � D �;

0 if � ¤ �:
(32)



Stated skein algebras of surfaces 4085

Fig. 8. How to obtain ˛0 and ˛00 from ˛ in the definition of counit and antipode. Height order is
indicated by the arrows on the boundary edges. Then ˛0 is the same ˛, but considered as a tangle
diagram in M with its states on the edge er switched from � to N� D ��. And ˛00 is obtained from
˛ by a rotation of 180°, and switching all the states � to N�.

Fig. 9. Elements x; y 2 S.B/. Each horizontal strand stands for several horizontal lines which are
tangled in the two small disks.

Proposition 3.2. The algebra S.B/ is a bialgebra with counit " and coproduct �.

Proof. We already saw that � is an algebra homomorphism and is associative. It remains
to show that " is an algebra homomorphism and

."˝ id/ ı�.x/ D x D .id˝ "/ ı�.x/: (33)

Let x; y 2 S.B/ be presented by tangle diagrams schematically depicted as in Figure 9.
The following shows that ".xy/ D ".x/".y/, i.e. " is an algebra homomorphism:

".xy/ D "

0B@
1CA D Cer

.x/Cer
.y/

D Cer
.x/Cer

.y/ D ".y/".x/:

Here we use equality (23) in the third identity.
As both � and " are algebra homomorphisms, one only needs to check (33) for the

generators x D ˛�� with �; � 2 ¹˙º. Using (26) and (32), we have

."˝ id/ ı�.˛��/ D ."˝ id/
X
�

˛�� ˝ ˛�� D ˛��;

which proves the first identity of (33). The other identity is proved similarly.
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3.5. Antipode

Define S WS.B/! S.B/ by S WD rot� ı .inver
ı .invel

/�1/, where inv and inv are defined
in Subsection 2.8. Explicitly, if ˛ is a stated @B-tangle diagram as in Figure 8, then

S.˛/ D
Cer

.˛/

Cel
.˛/

˛00; (34)

where ˛00 is described in Figure 8. In particular, we have

S.˛��/ D
C.�/

C.�/
˛ N� N� : (35)

Explicitly,
S.˛CC/ D ˛��; S.˛��/ D ˛CC;

S.˛C�/ D �q
2˛C�; S.˛�C/ D �q

�2˛�C:

Proposition 3.3. The map S is an antipode of the bialgebra S.B/, making S.B/ a Hopf
algebra.

Proof. From the definition (34), one sees that S is an anti-homomorphism, i.e.

S.xy/ D S.y/S.x/:

It remains to check the following property of an antipode:X
S.x0/x00 D ".x/1 D

X
x0S.x00/; (36)

where we use Sweedler’s notation for the coproduct �x D
P
x0 ˝ x00. Since S is an

anti-homomorphism and " is an algebra homomorphism, it is enough to check (36) for
generators x D ˛��. In that case, using (26), we have�.x/D �.˛��/D

P
� ˛�� ˝ ˛��,

and X
S.x0/x00 D

X
�2¹˙º

S.˛��/˛��

D

X
�2¹˙º

C.�/

C.�/
˛ N� N�˛�� by (35)

D
C N�� � 1

C.�/
by (29)

D ı�� � 1 D ".˛��/ � 1 by definition of C.�/ and (32);

which proves the first identity of (35). The second identity of (35) is proved similarly.

3.6. Quantum algebra Oq2.SL.2//

Let us recall the definition of the quantum coordinate ring Oq2.SL.2// of SL2.C/, which
is the Hopf dual of the quantum group Uq2.sl2/. See [26].
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Definition 1 (Oq2.SL.2//). The Hopf algebra Oq2.SL.2// is the R-algebra generated by
a; b; c; d with relations

ca D q2ac; db D q2bd; ba D q2ab; dc D q2cd; (37)

bc D cb; ad � q�2bc D 1 and da � q2cb D 1: (38)

Its coproduct structure is given by

�.a/ D a˝ aC b ˝ c; �.b/ D a˝ b C b ˝ d;

�.c/ D c ˝ aC d ˝ c; �.d/ D c ˝ b C d ˝ d:

Its counit is defined as ".a/ D ".d/ D 1, ".b/ D ".c/ D 0, and its antipode is defined by
S.a/ D d , S.d/ D a, S.b/ D �q2b, S.c/ D �q�2c.

Theorem 3.4. There exists a Hopf algebra isomorphism �W S.B/! Oq2.SL.2// given
on the generators by

�.˛C;C/ D a; �.˛C;�/ D b; �.˛�;C/ D c; �.˛�;�/ D d: (39)

Furthermore, under the identification of S.B/ with Oq2.SL.2// via the isomorphism �,
the involution rot�W S.B/! S.B/, given by the rotation of 180ı around the center of the
bigon (see (24)), becomes the R-algebra involution r WOq2.SL.2//! Oq2.SL.2// given
by r.a/ D a, r.b/ D c, r.c/ D b, r.d/ D d . Moreover, r is a co-algebra antimorphism,
i.e. .r ˝ r/ ı�op D � ı r .

Proof. By Lemma 3.1, the R-algebra S.B/ is generated by ˛˙˙ with relations (27) and
(28). Under the assignment � given on generators ˛˙˙ by (39), the matrix relations (27)
and (28) become respectively

ca D q2ac; db D q2bd; ad � q�2cb D 1; da � q2bc D 1; (40)

ba D q2ab; dc D q2cd; ad � q�2bc D 1; da � q2cb D 1: (41)

Each of these identities is a consequence of the relations in (37) and (38). Conversely, all
the relations in (37) and (38), except for bc D cb, are among identities (40) and (41). The
remaining relation bc D cb is obtained by taking the difference between the last identity
of (40) and the last identity of (41). Hence � is an R-algebra isomorphism.

To check that � is a Hopf algebra isomorphism, it is sufficient to check this on the level
of generators where it is straightforward. The last statement is a direct verification.

3.7. Geometric depiction of co-R-matrix, a lift of the co-R-matrix

The Hopf algebra Oq2.SL.2// is “dual quasitriangular” [26, Section 2.2] or “cobraided”
(see e.g. [18, Section VIII.5]), i.e. it has a co-R-matrix with the help of which one can
make the category of Oq2.SL.2//-modules a braided category. Formally, a co-R-matrix
is a bilinear form

�WOq2.SL.2//˝Oq2.SL.2//! R
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such that there exists another bilinear form N�WOq2.SL.2//˝ Oq2.SL.2//! R (the “in-
verse" of �) satisfying, for any x; y; z 2 U ,X

�.x0 ˝ y0/ N�.x00 ˝ y00/ D
X
N�.x0 ˝ y0/�.x00 ˝ y00/ D ".x/".y/;X

�.x00 ˝ y00/y0x0 D
X

�.x0 ˝ y0/x00y00; (42)

�.xy ˝ z/ D
X

�.x0 ˝ z0/�.y00 ˝ z00/".x00/".y0/; (43)

�.x ˝ yz/ D
X

�.x0 ˝ z0/�.x00 ˝ y00/".z00/".y0/: (44)

Here we use Sweedler’s notation for the coproduct. Relations (43) and (44) show that � is
totally determined by its values at a set of generators of the algebra Oq2.SL.2//, and the
values � at a set of generators are given by (see [18])

�

0BB@
a˝ a b ˝ b a˝ b b ˝ a

c ˝ c d ˝ d c ˝ d d ˝ c

a˝ c b ˝ d a˝ d b ˝ c

c ˝ a d ˝ b c ˝ b d ˝ a

1CCA D
0BB@
q 0 0 0

0 q 0 0

0 0 q�1 q � q�3

0 0 0 q�1

1CCA: (45)

Furthermore, it holds �.x ˝ 1/ D �.1˝ x/ D ".x/ for all x 2 Oq2.SL.2//.

Theorem 3.5. Under the identification of S.B/ and Oq2.SL.2// via the isomorphism �,
the co-R-matrix � and its inverse N� have the following geometric description:

�

�
˝

�
D "

� �
; (46)

N�

�
˝

�
D "

� �
:

Here a circle enclosing x and two lines adjacent to the circle stand for a stated @B-tangle
diagram, also denoted by x. The left-hand side of (46) stands for �.x ˝ y/.

Proof. Let �0 be the map defined by the right-hand side of (46): we will show that �0 D �.
For this, it is enough to show that �0 satisfies (43), (44), and the initial values identity (45),
all with � replaced by �0. We have, where a line labeled by, say x, stands for the stated
@B-tangle diagram x,

�0.xy ˝ z/ D "

 !
:

Splitting the bigon by the vertical middle ideal arc, then using the fact that ".u/D
P
".u0/".u00/

(in any Hopf algebra), where �.u/ D
P
u0 ˝ u00, we have

D

X
"

 !
"

 !
D

X
�.x0 ˝ z0/�.y00 ˝ z00/".x00/".y0/:

This proves (43) for �0. The proof of (44) is similar.
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Fig. 10. On the left the unit of T5. On the right an element of T5.

To check (45), we have to check 16 identities, all of which are easy. For example, the
most difficult one is the identity of the .3; 4/ entries:

�0.b ˝ c/ D "

 !
D q"

 !
C q�1"

 !
D q � q�3 by (32) and (9):

This proves (45) for the .3; 4/ entries. Identity (45) for other entries is similar.

Remark 3.6. The bilinear form �0WOq2.SL.2//˝Oq2.SL.2//! R defined by

�0.x ˝ y/ WD N�.y ˝ x/ D "

� �
(47)

gives a new co-R-matrix for Oq2.SL.2//, which is the mirror reflection of �.

3.8. The Jones–Wenzl idempotents as elements of the bigon algebra

In this subsection, we will work over the ring Rloc obtained by localizing R over the
multiplicative set generated by²

Œn� D
q2n � q�2n

q2 � q�2
; n � 1

³
:

Recall that the n-th Temperley–Lieb algebra Tn (see e.g. [39]) is the Rloc-algebra gen-
erated by non-stated simple .n; n/-tangle diagrams in B modulo isotopy (relative to the
boundary) and relation (5). The product is obtained by concatenating horizontally.

An Rloc-basis of Tn is given by simple .n; n/-tangle diagrams without closed compo-
nents; define "W Tn ! Rloc to be the dual of the element 1 with respect to this basis. The
n-th Jones–Wenzl idempotent is an element JWn 2 Tn defined by recursion as explained
in Figure 11.

The following is the key property of the JWn; see e.g. [39].

Proposition 3.7. One has ".JWn/ D 1. For all x 2 Tn, it holds JWn x D x JWn D

".x/ JWn. In particular, JW2
n D JWn.
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D C
Œn � 1�

Œn�

Fig. 11. The recursion relation for JWn 2 Tn. By definition, JW1 D 1 2 T1.

For a simple .n; n/-tangle diagram x 2 Tn and E�l ; E�r 2 ¹˙ºn, let x. E�l ; E�r / be the
stated @B-tangle diagram which is x with states E�l on el and states E�r on er , and the
height order on each of el and er is from bottom to top. By linearity, for y 2 Tn, we
define y. E�l ; E�r /. This is well-defined since (5) is part of the defining relations of stated
skein algebra. Thus, if y is trivial .n; n/-tangle diagram, then y.E�; E�/ is the element ˛E� E�
described in Figure 12.

Example 3.8. If all the components of E� are the same and all the components of E� are
the same, then JWn.E�; E�/ D ˛E� E�. Indeed, JWn is equal to a trivial .n; n/-tangle diagram,
plus the linear combination of diagrams each contains an arc whose end points are both
in el or in er ; such an arc is 0 by (6).

Proposition 3.9. For E�2 ¹˙ºn, let o. E�/ be obtained by reordering increasingly the states
of E�, and no. E�/ is the minimal number of exchanges needed to do so. Then

JW. E�l ; E�r / D q
2 no. E�l /C2 no. E�r / JW.o. E�l /; o. E�r //;

�.JW. E�l ; E�r // D

nX
jD0

�
n

j

�
q4

JW. E�l ; E�j /˝ JW.E�j ; E�r /;

where E�j is the increasing state containing j signsC and n � j signs �.

Proof. Observe that if one exchanges a sign � and a C which are not in the increasing
order along er , then by (7), one gets q2 times the reordered term and q1=2 times a term
killed by JWn. Since a similar argument (using Lemma 2.4) shows that each reorder-
ing along el multiplies JW by q2, the first statement follows. The second statement is
a consequence of the fact that JW2

n D JW in Tn and Proposition 2.17.

3.9. Kashiwara’s basis for Oq2.SL.2//

We will see that the celebrated Kashiwara canonical basis of Oq2.SL.2// (see [17]) is the
geometrically defined basis B.B; oC/ of Theorem 2.9, up to powers of q. Here oC is the
positive orientation of the boundary @B of the bigon B.

First recall B.B; oC/. For sequences E�; E� 2 ¹˙ºn, let ˇE�; E� be the stated @B-tangle
diagram consisting of n horizontal arcs and stated by E� on the left edge and E� on the right
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Fig. 12. Elements ˇE� E� (left) and ˇ0E� E� (right) with E� D .�;C;C/ and E� D .� �C/; the difference
is the direction of the left edge.

edge, with height order given by oC; see Figure 12. Then

B.B; oC/ D ¹ˇE�; E� j E�; E� are increasingº:

Let ˇ0E�; E� be the same ˇE�; E� with reverse height order on the left edge; see Figure 12. Define

Bcan WD ¹ˇ
0
E�; E� j ˇE�; E� 2 B.BI oC/º D ¹˛E�; E� j E� is decreasing; E� is increasingº:

Here ˛E�; E� is defined in Figure 6.
From Lemma 2.4 which deals with height exchange, one can easily show that

ˇ0E�; E� D q
h.E�/ˇE�; E�; h.E�/ WD

1

2
.nCn� C nC C n� � n

2
C � n

2
�/;

where nC (resp. n�) is the number of C (resp. �) in the sequence E�. It follows that Bcan

is also an R-basis of S.B/.

Proposition 3.10. Via the isomorphism of Theorem 3.4, the basis Bcan coincides with
the canonical basis defined by Kashiwara [17, Proposition 9.1.1]. Both bases Bcan and
B.BI oC/ are positive with respect to the product and to the coproduct, i.e. for B D Bcan

or B.BI oC/ and ˛; ˇ 2 B , one has

˛ˇ 2 NŒq˙1� � B; �.˛/ 2 NŒq˙1� � B ˝ B:

Proof. The first statement is an observation directly following Theorem 3.4: in [17, Prop-
osition 9.1.1], the basis is ¹clambn; l;m;n� 0º t ¹cldmbn; l;n� 0; m>0º. AsB.BIoC/
is equal to Bcan up to powers of q, one needs only to prove the second statement for Bcan.
For positivity of multiplication, it is sufficient to check it on pairs of generators: there
are then 16 cases. All of them are straightforward; we provide some instances among the
most complicated cases where the right-hand sides are in NŒq˙1� � Bcan:

˛C� � ˛�C D ˛�C � ˛C�; ˛C� � ˛�� D q
�2˛�� � ˛C�;

˛�� � ˛�C D q
2˛�C � ˛��; ˛C� � ˛CC D q

2˛CC � ˛C�;

˛CC � ˛�C D q
�2˛�C � ˛CC; ˛CC � ˛�C D q

�2˛�C � ˛CC:

Once positivity is known for multiplication, the statement for comultiplication can be
checked on generators where it is straightforward.

Remark 3.11. A direct proof of positivity using pictures is also easy and left to the reader.
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4. Comodule structures, co-tensor products, and braided tensor products

In this section, we show that, given any edge of S, the skein algebra S.S/ has a natural
structure of Oq2.SL.2//-comodule algebra. We show how to decompose this comodule
into finite-dimensional comodules. We then identify the image of the splitting homomor-
phism using the Hochshild cohomology and give a dual result using Hochshild homology.
When S is the result of gluing two surfaces S1 and S2 to two edges of an ideal trian-
gle, we show that the skein algebra S.S/ is canonically isomorphic to the braided tensor
product of S.S1/ and S.S2/. In this section, R D ZŒq˙1=2�.

4.1. Comodule

Suppose e is a boundary edge of a punctured bordered surface S. Recall that, by cutting
out of S a bigon B whose right edge is e and canonically identifying S n int.B/ with S,
we get an R-linear map

�eW S.S/! S.S/˝ S.B/I

see Figure 7. Similarly, cutting out of S a bigon B whose left edge is e and canonically
identifying S n int.B/ with S, we get an R-linear algebra homomorphism

e�W S.S/! S.B tS/ � S.B/˝ S.S/:

Proposition 4.1. (a) The map �eW S.S/! S.S/˝ S.B/ gives S.S/ a right comodule-
algebra structure over the Hopf algebra S.B/. Similarly, e� gives S.S/ a left co-
module-algebra structure over the Hopf algebra S.B/.

(b) It holds e� D fl ı .IdS.S/ ˝ rot�/ ı�e , where fl.x ˝ y/ D y ˝ x and rot�WS.B/!
S.B/ is the algebra involution defined by (24).

(c) If e1; e2 are two distinct boundary edges, the coactions on the two edges commute,
i.e.

.�e2
˝ id/ ı�e1

D .fl˝ id/ ı .�e1
˝ id/ ı�e2

:

Proof. (a) The associativity of �e follows from the commutativity of the splitting maps
of Theorem 2.15 (c). Applying .id ˝ "/ to equation (25) and using the value of ".˛E� E�/
from (32), we get that

.id˝ "/�e.x/ D x E� D x for all x 2 B.S; o/:

Hence �e gives S.S/ the structure of a right S.B/-comodule.
Recall that S.S/ is a comodule algebra over the bialgebra S.B/ (see e.g. [18, Propo-

sition III.7.2]) if and only if the map �eW S.S/! S.S/˝ S.B/ is an algebra homomor-
phism. The last fact follows easily from the definition of �e .

(b) Observe that .rot� ˝ rot�/ ı�op D � ı rot�.
(c) This is clear from the definition.
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By identifying S.B/ with Oq2.SL.2// using Theorem 3.4, the above proposition also
provides S.S/ with the structure of an Oq2.SL.2//-comodule. More generally, we will
use the following terminology.

Definition 2 (Surfaces with indexed boundary). A punctured bordered surface S has
indexed boundary if its boundary edges are partitioned into two ordered sets (the left
and right ones, with indices L and R respectively): eL1 ; : : : ; e

L
n ; e

R
1 ; : : : ; e

R
m.

If S has indexed boundary, then S.S/ is naturally endowed with a structure of

.Oq2.SL.2//˝n;Oq2.SL.2//˝m/-bicomodule

by the left coaction �LW S.S/! Oq2.SL.2//˝n ˝ S.S/ defined by

�L WD .Id˝n�1
Oq2 .SL.2// ˝ eL

n
�/ ı .Id˝n�2

Oq2 .SL.2// ˝ eL
n�1
�/ ı � � �

ı .IdOq2 .SL.2// ˝ eL
2
�/ ı eL

1
�

and the right coaction

�R WD .�eR
1
˝ Id˝m�1

Oq2 .SL.2/// ı .�e
R
2
˝ Id˝m�2

Oq2 .SL.2/// ı � � �

ı .�eR
m�1
˝ IdOq2 .SL.2/// ı�eR

1
:

Furthermore, notice that S.S/ is not only a bicomodule but a bicomodule algebra as
each of the above maps �eR

i
or eL

j
� are also morphisms of algebras.

4.2. Quantum group Uq2.sl2/

Recall that the quantized enveloping algebra Uq2.sl2/ is the Hopf algebra generated over
the field Q.q1=2/ by K˙1; E; F with relations

KE D q4EK; KF D q�4FK; ŒE; F � D
K �K�1

q2 � q�2
:

The coproduct and the antipode are given by

�.K/ D K ˝K; �.E/ D 1˝E CE ˝K; �.F / D K�1 ˝ F C F ˝ 1;

S.K/ D K�1; S.E/ D �EK�1; S.F / D �KF:

We emphasize thatUq2.sl2/ is defined over the field Q.q1=2/. There is an integral ver-
sion ULq2.sl2/, defined by Lusztig [25], which is the R-subalgebra of Uq2.sl2/ generated
by K˙1 and the divided powers

E.n/ WD
En

Œn�Š
; F .n/ WD

F n

Œn�Š
; where Œn�Š D

nY
iD1

q2i � q�2i

q2 � q�2
:

One has a non-degenerate Hopf pairing

h � ; � iWUq2.sl2/˝R Oq2.SL.2//! Q.q1=2/: (48)
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This is a Hopf duality since it satisfies (with Sweedler’s coproduct notation)

hx; y1y2i D
X
hx0; y1ihx

00; y2i; hx1x2; yi D
X
hx1; y

0
ihx2; y

00
i:

The values of the form on generators are given by�
K;

�
a b

c d

��
D

�
q2 0

0 q�2

�
;�

E;

�
a b

c d

��
D

�
0 1

0 0

�
;

�
F;

�
a b

c d

��
D

�
0 0

1 0

�
:

The following is a consequence of a well-known result of Lusztig, but for the sake of
completeness, we provide a proof here.

Lemma 4.2. The form (48) on ULq2.sl2/ is integral, i.e. it restricts to a map

U
L
q2.sl2/˝R Oq2.SL.2//! R D ZŒq˙1=2�:

Proof. It is enough to check that hE.n/; xi; hF .n/; xi 2R for n � 1 and x 2 Oq2.SL.2//.
Since �.E.n// D

Pn
iD0 q

2i.n�i/E.i/ ˝ E.n�i/Ki , it is sufficient to check the statement
for the evaluations of E.i/ and Kj on a; b; c; d where this is a straightforward computa-
tion. Similarly for F .n/.

Recall that the rotation by 180° of the bigon induces the involution r WOq2.SL.2//!
Oq2.SL.2//; see Theorem 3.4. Let r�WUq2.sl2/! Uq2.sl2/ be the adjoint of the map r .
We will show that r� is equal to the map � of Lusztig’s book [25, Chapter 19], which is
used in the study of canonical bases of quantum groups.

Let Uq2.sl2/-Mod (resp. Mod-Uq2.sl2/) be the monoidal category of left (resp. right)
Uq2.sl2/-modules.

Lemma 4.3 (Left and right modules). (a) The map r� is an algebra antimorphism invo-
lution and a coalgebra morphism, i.e. for x; y 2 Uq2.sl2/, one has

.r�/2.x/ D x; r�.xy/ D r�.y/r�.x/; �.r�.x// D .r� ˝ r�/ ı�.x/:

Explicitly, the value of r� on the generators is

r�.E/ D q2KF; r�.K/ D K; r�.F / D q�2EK�1: (49)

(b) The map r� induces monoidal functors

LRWUq2.sl2/-Mod! Mod-Uq2.sl2/; RLWMod-Uq2.sl2/! Uq2.sl2/-Mod

which are inverse to each other as follows: for each left (resp. right) module M ,
the module LR.M/ (resp. RL.M/) is the right (resp. left) module whose underlying
vector space is M and on which the action of x 2 Uq2.sl2/ is given by, with ˛ 2M ,

˛ � x WD r�.x/ � ˛ .resp. x � ˛ WD ˛ � r�.x//:
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Remark 4.4. Formula (49) shows that r� is equal to � of [25, Chapter 19].

Proof. (a) Since r is a algebra involution and a co-algebra antimorphism by Theorem 3.4
and the Hopf pairing is non-degenerate, its dual r� is an algebra antimorphism involution
and a coalgebra morphism.

It is sufficient to compute r� on the generators where one can verify the values
provided in the statement. For instance,

hr�.E/; ai D hE; ai D 0 D hq2KF; ai D hq2K ˝ F; a˝ aC c ˝ bi;

hr�.E/; bi D hE; ci D 0 D hq2KF; bi D hq2K ˝ F; a˝ b C b ˝ d i;

hr�.E/; ci D hE; bi D 1 D hq2KF; ci D hq2K ˝ F; c ˝ aC d ˝ ci;

hr�.E/; d i D hE; d i D 0 D hq2KF; d i D hq2K ˝ F; c ˝ b C d ˝ d i:

The verification for the pairings with a; b; c; d for r�.F / and r�.K/ are similar.
(b) LR and RL are functors as r�WUq2.sl2/! Uq2.sl2/ is an algebra antimorphism;

they are inverse to each other as r� is an involution. Monoidality is a consequence of the
fact that r� is a coalgebra morphism.

4.3. Module structure of S.S/

As usual, the Hopf duality implies that every right (resp. left) Oq2.SL.2//-comodule V
has a natural structure of a left (resp. right) Uq2.sl2/-module, via the following construc-
tion. For a 2 Uq2.sl2/ and v 2 V , one has

a � v WD
X
ha; b0iv0; where �r .v/ D

X
v0 ˝ b0:

To be precise, we have to replace V by V ˝R Q.q1=2/ since Uq2.sl2/ is defined
over Q.q1=2/. In particular, for an edge e of S, the right comodule structure e�WS.S/!
S.S/ ˝ S.B/ gives S.S/ ˝R Q.q1=2/ a left module structure over Uq2.sl2/, and we
want to understand this module structure.

Fix an orientation o of the boundary @S. Recall that B.SI o/ is an R-basis of S.S/.
For each edge e, let Be;d .SI o/ � B.SI o/ be the set of all ˛ 2 B.SI o/ such that
j˛ \ ej D d and all the states on ˛ \ e are signsC. LetBe.SIo/D

S1
dD0Be;d .SIo/. For

˛ 2 Be;d .SIo/ and E� 2 ¹˙ºd , let ˛.E�/ be the same ˛ except for the states of e \ ˛ which
are given by s.xi / D �i , where x1; : : : ; xd are the points of ˛ \ e listed in decreasing
order. In particular, let j̨ WD ˛.C;C; : : : ;C;�;�; : : : ;�/, where the number of � is j .
For example, ˛ D ˛0.

Lemma 4.5 (Module structures of S.S/ along an edge e). The left action of Uq2.sl2/ on
S.S/˝R Q.q1=2/, dual to e�, is

Kleft. j̨ / D q
2.d�2j /

j̨ ;

Eleft.˛0/ D 0 and Eleft. j̨ / D Œj �q2 j̨�1 mod F ed�1;

Fleft.˛d / D 0 and Fleft. j̨ / D Œd � j �q2 j̨C1 mod F ed�1;
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where F e
d�1
D F e

d�1
.S.S/˝R Q.q1=2// is the Q.q1=2/-span of elements ˇ 2 B.SI o/

with jˇ \ ej< d . The right action, dual to�e , is given by the left action of r�.K/, r�.E/,
r�.F / (see Lemma 4.2).

Proof. By (25), �.˛.E�// D
P
E"2¹˙ºd ˛.E"/˝ ˛E"E� , where ˛E"E� is defined in Figure 6. If we

define inductively �Œd� D .�˝ id˝.d�2// ı�Œd�1� for d � 3, with �Œ2� D �, then

�Œd�.K/ D K˝d ;

�Œd�.E/ D

dX
jD1

1˝.j�1/ ˝E ˝K˝.d�j /;

�Œd�.F / D

dX
jD1

.K�1/˝j ˝ F ˝ 1˝d�j�1:

Applying these to compute the Hopf pairing of K;E;F with ˛E"E� , we get

Kleft.˛.E�// D q
2
P
�i˛.E�/;

Eleft.˛.E�// D

dX
jD1

.ı�j ;�/q
2
Pd

kDjC1 �k˛.�1; : : : ; �j�1;C; �jC1; : : : ; �d /;

Fleft.˛.E�// D

dX
jD1

.ı�j ;C/q
�2

Pj�1

kD1
�k˛.�1; : : : ; �j�1;�; �jC1; : : : ; �d /:

Now the main claim is a direct computation using relation (7).

Let S have indexed boundary @S D ¹eL1 ; : : : ; e
L
m; e

R
1 ; : : : ; e

R
n º as explained in Sub-

section 4.1. The Hopf duality gives S.S/˝R Q.q1=2/ an algebra bimodule structure over
.Uq2.sl2/

˝n; Uq2.sl2/
˝m/. (Notice the inversion between left and right when passing to

modules.)
For each Em 2 Nm and En 2 Nn, let B Em;En.SI o/ be defined as

B Em;En.SI o/ D

 
m\
iD1

BeL
i
;mi
.SI o/

!
\

 
n\

jD1

BeR
j
;nj
.SI o/

!
:

Moreover, for each Ej � Em and Eh � En (component-wise) and each ˛ 2 B Em;En.SI o/, let
˛ Ej ;Eh 2B.SIo/ be the skein identical to ˛ but for its state which is increasing and contains
Ej (resp. Eh) signs � on the left (resp. right) edges.

Theorem 4.6. Suppose that S has indexed boundary @S D ¹eL1 ; : : : ; e
L
n ; e

R
1 ; : : : ; e

R
mº.

(a) For each Em2Nm, En2Nn, and each ˛ 2B Em;En.SIo/, the .Uq2.sl2/
˝n;Uq2.sl2/

˝m/-
bimodule generated by ˛ (namely, Uq2.sl2/

˝n � ˛ � Uq2.sl2/
˝m) is irreducible and

isomorphic to V Ln1
˝ � � � ˝ V Lnn

˝ V Rm1
˝ � � � ˝ V Rmm

, where V L
k

(resp. V R
k

) is the
irreducible left (resp. right) module on Uq2.sl2/ with highest weight k.
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(b) As .Uq2.sl2/
˝n; Uq2.sl2/

˝m/-bimodules, we have

S.S/˝R Q.q1=2/ D
M

Uq2.sl2/
˝n
� ˛ � Uq2.sl2/

˝m;

where the sum is taken over all Em 2 Nm, En 2 Nn, and all ˛ 2 B Em;En.SI o/. In partic-
ular, the bimodule S.S/ is a direct sum of finite-dimensional bimodules over�

Uq2.sl2/
˝n; Uq2.sl2/

˝m
�
:

(c) Furthermore, the bimodule structure restricts to that of a .ULq2.sl2/
˝n;U

L
q2.sl2/

˝m/-
bimodule (where ULq2.sl2/ is the integral version of Uq2.sl2/), and a decomposition
similar to the above one holds:

S.S/ D
M
C
Ej� Em;Eh�En

�
U
L
q2.sl2/

˝n
� ˛ Ej ;Eh � U

L
q2.sl2/

˝m
�
;

where the direct sum is taken over all Em 2 Nm, En 2 Nn, and all ˛ 2 B Em;En.SIo/, and
theC Ej ;Eh symbol stands for the non-direct sum.

Proof. (a) Fix mi , nj , and ˛ as in the statement, and let JW.˛/ be the skein obtained by
inserting a JWmi

near eLi and a JWnj
near eRj for all i; j . By Example 3.8, it is clear

that ˛ D JW.˛/ and, by Lemma 4.5, that it is a highest weight vector of weight q2mi for
the action of the i -th copy of Uq2.sl2/ for each i � m; similarly, it is a highest weight
vector of weight q2nj for the right action of the j -th copy of Uq2.sl2/. Furthermore, by
Lemma 4.5 and the fact that the m-th Jones–Wenzl projector kills the self-returns, the
orbit of ˛ is exactly the span of the vectors JW.˛ Ej ;Eh/ with Ej � Em and Eh � En.

(b) It is straightforward from (a) and from Theorem 2.9.
(c) If a left (resp. right)Uq2.sl2/-module weightM (over Q.q1=2/) has a basis formed

by weight vectors over which the action ofE.r/;F .r/; r � 1 has coefficients in R, thenM
restricts to a ULq2.sl2/-module; we claim that the basis B.SIo/ of S.S/ has this property.
Indeed, since the structure of module is induced by the right (resp. left) comodule structure
on each edge and the Hopf pairing between Uq2.sl2/ and Oq2.SL.2//, and since the
comodule structure is integral in the basis B.SIo/, it is sufficient to observe that the Hopf
pairing between Uq2.sl2/ and Oq2.SL.2//D S.B/ extends to an R-bilinear Hopf pairing
between UL

q2.sl2/ in the basis B.B; o/: this is the content of Lemma 4.2.
To prove that the direct sum decomposition still holds, let

B<Em;En.SI o/ WD ¹˛ 2 B.SI o/ j #.˛ \ e
L
i / � mi ; #.˛ \ eRj / � nj

8i � m; 8j � nº n B Em;En.SI o/:

To prove the claim, we will show that, for each ˛ 2 B Em;En.SI o/, the following holds:�
R � B<Em;En.SI o/

�
\

�
C
Ej� Em;Eh�En

�
U
L
q2.sl2/

˝n
� ˛ Ej ;Eh � U

L
q2.sl2/

˝m
��
D ¹0º:
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We start by remarking that if ˛ 2 B Em;En.SI o/, then ˛ D JW.˛/, and so, over Q.q1=2/, its
orbit is a direct summand of S.S/, and thus it has trivial intersection with the R-span of
B<Em;En.SI o/: �

R � B<Em;En.SI o/
�
\
�
Uq2.sl2/

˝n
� ˛ � Uq2.sl2/

˝m
�
D ¹0º:

Furthermore, by point (b), given Ej � Em; Eh � En, there exist c. Ej ; Eh/ 2 R n 0 and `. Ej ; Eh/ 2
R � B<Em;En.SI o/ such that c. Ej ; Eh/˛ Ej ;Eh C `. Ej ; Eh/ is in the orbit of ˛:

c. Ej ; Eh/˛ Ej ;Eh C `. Ej ; Eh/ 2 U
L
q2.sl2/

˝n
� ˛ � U

L
q2.sl2/

˝m:

Now suppose that, for some li 2 U
L
q2.sl2/

˝m and ri 2 U
L
q2.sl2/

˝n and some Eji ; Ehi , it
holds X

i

li � ˛ Eji ;
Ehi
� ri 2 R � B<Em;En.SI o/ n ¹0º:

Then, multiplying by
Q
i c.
Eji ; Ehi / (which gives a non-zero vector as S.S/ is free as an

R-module), we also get that
P
i li � ˛ � ri 2R �B<Em;En.SIo/ n ¹0º, which as already argued

is impossible.

Example 4.7. Let B be the bigon whose edges el and er are declared to be respectively of
type L and R. Then, by Theorem 3.4, S.B/ is the right and left module Uq2.sl2/-module
Oq2.SL.2//: the left action is induced by the right comodule structure coming from eRr
and the right action from eL

l
. If we let BR be the bigon where both el and er are declared

to be of type R (right), then S.BR/ is a left .Uq2.sl2//
˝2-module; the action of x ˝ y on

a skein b 2 S.BR/ is given by

.x ˝ y/ � b D x � b � r�.y/;

where r�.y/ is the algebra antimorphism provided in Lemma 4.3 and the left and right
actions are those on S.B/ described above.

4.4. Co-tensor product

Suppose U is a coalgebra over a ground ring R. Assume M is a left U -comodule with
coaction �M WM ! U ˝R M , and N a right U -comodule with coaction �N WN !
N ˝R U . Then the cotensor product N �U M is

N �U M WD ¹v 2 N ˝M j .�N ˝ idM /.v/ D .idN ˝�M /.v/º:

Cotensor product is a special case of the following notion of Hochshild cohomology.
Assume V is an R-module with a left U -coaction and a right U -coaction:

�r WV ! V ˝ U; l�WV ! U ˝ V:

The 0-th Hochshild cohomology of V is defined by

HH0.V / D ¹x 2 V j �r .x/ D fl.l�.x//;

where flWV ˝ U ! U ˝ V is the flip fl.x ˝ y/ D y ˝ x.
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Fig. 13. (a) The middle shaded part is the bigon, while the left and the right shaded parts are part
of S0. Gluing c1 D el gives the right coaction �r and gluing er D c2 gives the left coaction l�.
(b) Element xE� E� 2 S.S0/. The horizontal lines are part of x. Note the order of indices.

WithM andN as above, define a left U -coaction and a right U coaction onN ˝RM
by

�r WN ˝R M ! N ˝R M ˝R U; �r .n˝m/ D
X

n0 ˝m˝ u0

if �N .n/ D
X

n0 ˝ u0;

l�WN ˝R M ! U ˝R N ˝R M; l�.n˝m/ D
X

u00 ˝ n˝m00

if �M .m/ D
X

u00 ˝m00:

Then the cotensor product is N �U M D HH0.N ˝R M/.

4.5. Splitting as co-tensor product and Hochshild cohomology

Suppose c1; c2 are distinct boundary edges of a punctured bordered surface S0 and S D

S0=.c1 D c2/, with c � S being the common image of c1 and c2. The splitting homo-
morphism gives an embedding �c W S.S/ ,! S.S0/, and we will make precise the image
of �c .

Theorem 4.8. Suppose c1; c2 are distinct boundary edges of a punctured bordered sur-
face S0 and S D S0=.c1 D c2/. The splitting homomorphism �c W S.S/ ,! S.S0/ maps
S.S/ isomorphically onto the Hochshild cohomology HH0.S.S0//, which is an S.B/-bi-
module via the left coaction l� WD c2

� and the right coaction�r WD�c1
(Figure 13 (a)).

In particular, if c1 is a boundary edge of S01 and c2 is a boundary edge of S02 which
is disjoint from S01, and S D .S01 tS02/=.c1 D c2/, then �c maps S.S/ isomorphically
onto the cotensor product of S.S01/ and S.S02/ over S.B/.

Proof. Let us identify S.S/ with its image under �c . From the splitting formula (19),
it is easy to see that S.S/ � HH0.S.S0//. Let us prove the converse inclusion. Assume
0 ¤ v 2 HH0.S.S0//. By definition, this means

�r .v/ � fl.l�.v// D 0:

Choose an orientation o of @S and an orientation of c. Then o and the orientation of
c1 and c2 induced from c give an orientation o0 of @S0. Recall that B.S0I o0/ is a free R-
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basis of S.S0/. Let QB.S0I o0/ be the set of all isotopy classes x of o0-ordered @M 0-tangle
diagrams which are increasingly stated on every boundary edge except for c1 and c2. If E�
is a state of x \ c1 and E� is a state of x \ c2, let xE� E� be the stated o0-ordered @M 0-tangle
diagram whose states on x \ c1 and x \ c2 are respectively E� and E�. See Figure 13 (b).
If E� and E� are increasing, then xE� E� 2 B.S0; o0/ is a basis element. For each i D 1; 2, let
Sx\ci

and S"x\ci
be respectively the set of all states and the set of all increasing states of

x \ ci . Then

B.S0; o0/ D ¹xE� E� j x 2 QB.S
0; o0/; E� 2 S"x\c1

; E� 2 S"x\c2
º:

Using the above R-basis B.S0I o0/ of S.S0/, we can present v 2 S.S0/ in the form

v D
X

x2X.v/

X
E�2S
"
x\c1

X
E�2S
"
x\c2

coef.v; xE� E�/xE� E�; (50)

where X � QB.S0I o0/ is a minimal finite set so that, for each x 2 X , there are E�; E� such
that the coefficient coef.v; xE� E�/ is non-zero.

Let m.v/ D max¹jx \ c1j; jx \ c2j; x 2 X.v/º. We show by induction on m.v/ that
v 2 S.S/. For i D 1; 2 let Xi .v/ D ¹x 2 X.v/; jx \ ci j D mº. If x 2 X1.v/ \ X2.v/,
then jx \ c1j D jx \ c2j D m.v/, and there is an element Nx 2 B.S; o/ such that x has
coefficient non-zero in the result of splitting Nx along c. From the definition of the splitting
map, we have

coef.�. Nx/; xE�E� / D 1; (51)

where E� D .C/m is the state consisting of m plus signs. Let

v0 D v �
X

x2X1.v/\X2.v/

coef.v; xE�E� /�. Nx/:

If m.v0/ < m.v/, then we are done by induction. Assume that m.v0/ D m.v/. One of
X1.v

0/; X2.v
0/ is not empty, and without loss of generality, assume X2.v0/ ¤ ;. For-

mula (50) for v0 has the form

v0 D
X

x2X.v0/

X
E�2S
"
x\c1

X
E�2S
"
x\c2

coef.v0; xE� E�/xE� E�; (52)

and because of (51), we can assume that there is no x�� on the right-hand side of (52).
Let pc2

m W S.S
0/! S.S0/ be the projection onto the homogeneous part Gc2

m .S.S
0//,

and let per
m W S.B/! S.B/ be the projection onto the homogeneous part Ger

m .S.B//; see
the end of Section 2.10. Explicitly, for x 2 X.v0/, we have

pc2
m .xE� E�/ D

´
0 if E� ¤ E�;

xE� E� if E� D �;

per
m .˛E� E�/ D

´
0 if E� ¤ �;

˛E�E� if E� D E�:
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From formula (25) for the coaction, we have, for x 2 X.v0/ and .E�; E�/ ¤ .E�; E�/,

xE� E�
�r
��!

X
E�2Sx\c1

xE� E� ˝ ˛E� E�
p

c2
m ˝p

er
m

������! 0;

xE� E�
l�
��!

X
E�2Sx\c2

˛E� E� ˝ xE� E�
fl
�!

X
E�

xE� E� ˝ ˛E� E�
p

c2
m ˝p

er
m

������!

´
0 if x … X2.v0/;

xE� E� ˝ ˛E�E� if x 2 X2.v0/:

It follows that

0 D .pc2
m ˝ p

er
m /
�
fl.l�.v0// ��r .v0/

�
D

X
x2X2.v0/

X
E�2S
"
x\c1

X
E�2S
"
x\c2

coef.v0; xE� E�/xE� E� ˝ ˛E�E� :

As the right-hand side is a linear combination of elements of a basis, all the coefficients v
are 0. This means X2.v0/ D ;, a contradiction. Thus m.v0/ < m.v/, and we are done.

Remark 4.9. Theorem 4.8 holds also if we change the base ring to any commutative ring
with a distinguished invertible element.

Using the above result together with Theorem 4.6, we can deduce a similar result
for Uq2.sl2/-modules. Recall that, for a bi-module V over a Q.q1=2/-algebra U , the
0-homology group is

HH0.V / D V=Q.q1=2/-spanha � v � v � a j a 2 U; v 2 V i:

Theorem 4.10. Suppose c1; c2 are distinct boundary edges of a punctured bordered sur-
face S0 and S D S0=.c1 D c2/, with c being the common image of c1 and c2. Then the
composition

S.S/˝R Q.q1=2/
�c
�! S.S0/˝R Q.q1=2/! HH0.S.S0/˝R Q.q1=2// (53)

is an isomorphism of Q.q1=2/-vector spaces. Here S.S0/˝R Q.q1=2/ is a Uq2.sl2/-bi-
module via the dual actions of�c1

and c2
�. In particular, if S0 DS1 tS2 with c1 �S1

and c2 � S2, then the map in (53) is an isomorphism between S.S/ ˝R Q.q1=2/ and
.S.S1/˝R Q.q1=2//˝Uq2 .sl2/ .S.S2/˝R Q.q1=2//.

Proof. The decomposition of S.S0/˝R Q.q1=2/ given by part (b) of Theorem 4.6 shows
that it is sufficient to prove that if V Rm2

(resp. V Lm1
) is the irreducible m2 C 1-dimensional

(resp. m1 C 1-dimensional) right (resp. left) Uq2.sl2/-module, then the composition of
natural map

HH0.V Lm1
˝ V Rm2

/ ,! V Lm1
˝ V Rm2

� HH0.V Lm1
˝ V Rm2

/

is an isomorphism of vector spaces. We will see that this follows from the fact that every
finite-dimensional Uq2.sl2/-module V is equivalent to its dual V �.
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First observe that, since the pairing between Oq2.SL.2// and Uq2.sl2/ is non-degen-
erate, HH0.V Lm1

˝ V Rm2
/ can be equivalently defined as

HH0.V Lm1
˝ V Rm2

/ D ¹v ˝ w 2 V Lm1
˝ V Rm2

j x � v ˝ w D v ˝ w � x 8x 2 Uq2.sl2/º:

Then, using the isomorphism between V Rm2
and .V Lm2

/�, we have

HH0.V Lm1
˝ V Rm2

/ D HomUq2 .sl2/.V
L
m2
; V Lm1

/ D ım1;m2
Q.q1=2/

by Schur’s lemma.
Now let us take the dual of the above equation and get

.HH0.V Lm1
˝ V Rm2

//� ,! .V Rm2
/� ˝ .V Lm1

/� � .HH0.V Lm1
˝ V Rm2

//�;

where the first arrow maps an element of .HH0.V Lm1
˝V Rm2

//� to some f 2 .V Lm1
˝V Rm2

/�

such that f .x � v ˝ w/ D f .v ˝ w � x/ for all x 2 Uq2.sl2/ and v ˝ w 2 V Lm1
˝ V Rm2

.
Using again the isomorphism between .V Rm2

/� and V Lm2
, the image of .HH0.V Lm1

˝V Rm2
//�

in V Lm2
˝ .V Lm1

/� is HomUq2 .sl2/.V
L
m1
; V Lm2

/ D ım1;m2
Q.q1=2/ by Schur’s lemma.

To conclude, observe that if m1 D m2, then the image of the inclusion

HH0.V Lm1
˝ V Rm1

/ ,! V Lm1
˝ V Rm1

' V Lm1
˝ .V Lm1

/� D Hom.V Lm1
; V Lm1

/

is given by the multiples of the identity map. But the kernel of the projection V Lm1
˝

V Rm1
� HH0.V Lm1

˝ V Rm1
/ is the subvector space of Hom.V Lm1

; V Lm1
/ spanned by the

matrices of the form xM �Mx, where x represents the action of an element of Uq2.sl2/

and M 2 Hom.V Lm1
; V Lm1

/; thus it is contained in the set of matrices with zero trace, and
so the projection of HH0.V Lm1

˝ V Rm1
/ in HH0.V Lm1

˝ V Rm1
/ is non-zero.

Remark 4.11. By the splitting theorem and Proposition 4.10, S.S/ is both a submodule
and a quotient module of S.S0/.

Example 4.12. Clearly, if, in Theorem 4.10, c1 D eRi and c2 D eLj belong to two distinct
connected components of S0, then one can restate the HH0 simply as a tensor product
over a copy of Uq2.sl2/ acting on the left on the skein algebra of one component and on
the right on the other.

In particular, if S is obtained by gluing a bigon B along its right edge to a left edge
of S0, then S.S/D S.S0/˝Uq2 .sl2/ S.B/ is isomorphic to S.S0/ as it can be seen directly
by Theorem 2.15.

If BR is the bigon whose edges are both declared to be of type R (right), then S.BR/

is a left module over Uq2.sl2/
˝2 (see Example 4.7). Then gluing BR to S0 along one

edge of type L shows that

S.S/ D S.S0/˝Uq2 .sl2/ S.B
R/:

The resulting surface S is still homeomorphic to S0, but the edge on which the gluing
has been performed has been transformed from an edge of type L to one of type R. This
corresponds to applying Lemma 4.3 to the module structure coming from that edge.
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Remark 4.13. If c01; c
0
2 are two other edges of @S0 (and then of @S), (53) is an isomor-

phism of Uq2.sl2/-modules for the structure associated to c01 and c02. Furthermore, the
theorem can be applied independently to glue also c01 and c02, and the final isomorphism
between S.S0=.c1 D c2; c

0
1 D c

0
2//˝Q.q1=2/ and HH0.S.S0/˝Q.q1=2// (with respect

to the Uq2.sl2/
˝2-bimodule structure) does not depend on the order in which the gluing

was performed.

4.6. Braided tensor product

Let U be a dual quasitriangular Hopf algebra. Assume A is an algebra admitting two right
U -comodule-algebra structures �1WA! A˝ U and �2WA! A˝ U which commute,
i.e.

.�1 ˝ IdU / ı�2 D .IdA ˝ fl/ ı .�2 ˝ IdU / ı�1; (54)

where flW U ˝ U ! U ˝ U is the flip operator. Denote the common operator of (54)
by �12.

Observe that, since�1 and�2 commute, A can be endowed with a right U -comodule
structure �W D �1 ��2WA! A˝ U defined by

�.x/ D
X

x0 ˝ u1u2 if �12.x/ D
X

x0 ˝ u1 ˝ u2:

However, �WA! A˝ U is not an algebra homomorphism, i.e. A is not a right U -
comodule algebra with respect to �, even though it is a right U -comodule algebra with
respect to each of �1 and �2. So we define a new product. For x; y 2 A, let

x � y D
X

x0y0�.u˝ v/ if �2.x/ D
X

x0 ˝ u; �1.y/ D
X

y0 ˝ v: (55)

It is easy to check that � gives A a new associative product, and we call A with this new
product the self-braided product of �1 and �2 and denote it˝A.

Lemma 4.14. With respect to the product � and the right U -comodule given by � D
�1 ��2, the algebra A is a right U -comodule algebra.

Proof. We have to show that, for x; y 2 A, one has

�.x � y/ D �.x/ ��.y/: (56)

Let us now write �12.x/ and �12.y/ as

�12.x/ D
X

x0 ˝ u1 ˝ u 2 A˝ U ˝ U;

�12.y/ D
X

y0 ˝ v ˝ v2 2 A˝ U ˝ U:

Using the commutativity of �1 and �2 and a simple calculation, we obtain

�.x � y/ D
X

�.u00 ˝ v00/x0y0 ˝ u1v
0u0v2; (57)

�.x/ ��.y/ D
X

�.u0 ˝ v0/x0y0 ˝ u1u
00v00v2; (58)
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�. � � � / D D D

D D D

D D D D �. � / ��. � /

Fig. 14. The proof of the compatibility of� and �. The diagrams are to be read from bottom to top,
the thick (resp. thin) strands areA-colored (resp. U -colored), the crossings are flips, the white (resp.
gray) solid dots represent�1 (resp.�2), the rectangle represents the co-R-matrix �, the black (resp.
white) triangle is the product (resp. coproduct) of U , the thick trivalent vertex is the initial product
in A. The equalities follow in order from: compatibility of�i with the product of A,�1 commutes
with of �2, coassociativity of �i , associativity of the product in U , equation (42), coassociativity
of �i , �1 commutes with of �2,associativity of the product in U .

where �.u/ D
P
u0 ˝ u00; �.v/ D v0 ˝ v00 are coproducts in U . The right-hand sides of

(57) and (58) are equal thanks to (42). This proves (56). For those who are familiar with
graphical calculations in Hopf algebras, we provide a graphical proof in Figure 14.

Example 4.15 (Braided tensor product). The first example of the above structure is the
well-known braided tensor product of two right comodule algebras, which we describe in
details for the reader’s convenience. Suppose A1; A2 are right comodule algebras over
a dual quasitriangular Hopf algebra U . The tensor product A D A1 ˝R A2 has two
commuting right U -comodule structures. Namely, �1 D .IdA1

˝ fl/ ı .�A1
˝ IdA2

/ and
�2 D IdA1

˝�A2
.

By the above construction, A has the structure of a right U -comodule algebra, with
the coaction � D �1 � �2 and the product �. Explicitly, for x 2 A1 and y 2 A2, the
coaction is

�.x ˝ y/ D
X

.x0 ˝ y0/˝ uv if �A1
.x/ D

X
x0 ˝ u; �A2

.y/ D
X

y0 ˝ v:
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Let us now describe the product �. Identify A1 with A1 ˝ ¹1º and A2 with ¹1º ˝ A2
(as subsets of A1 ˝R A2/. Then the new product (55) is given by

x � y D

8̂̂<̂
:̂
xy if x; y 2 A1 or x; y 2 A2;

x ˝ y if x 2 A1; y 2 A2;P
�.u˝ v/.y0 ˝ x0/ if x 2 A2; y 2 A1;

(59)

where �A2
.x/ D

P
x0 ˝ u, �A1

.y/ D
P
y0˝ and � is the co-R-matrix.

The algebra A1 ˝R A2 with this new product is called the braided tensor product of
A1 and A2, and is denoted by A1 ˝U A2. For details, see [26].

Example 4.16 (Transmutation). Assume that U is a dual quasitriangular Hopf algebra,
and let A D U . Then �2W D �WA! A˝ U gives A a right U -comodule algebra struc-
ture. To get another right U -comodule structure, one converts the standard left comodule
structure to a right one by

�1.x/ WD
X

x0 ˝ S.u/ if �.x/ D
X

u˝ x0:

However, �1 is not compatible with the algebra structure of A. One can twist the
product of A using the co-R-matrix � of U to make both �1 and �2 right comodule
algebras as follows. Define a new product on A using the common value of (42), i.e.

x ˇ y D
X

�.x0 ˝ y0/x00y00 if �.x/ D
X

x0 ˝ x00; �.y/ D
X

y0 ˝ y00:

It is easy to check that this gives A a new product, with which both �1 and �2 give A
right U -comodule algebra structures. Besides, �1 and �2 commute.

Our construction now gives A a right U -comodule algebra structure whose coaction
� D �1 ��2 and whose product � are given by

�.x/ D
X

x00 ˝ S.x0/x000 if .�˝ IdU / ı�.x/ D
X

x0 ˝ x00 ˝ x000; (60)

x � y D
X

x00y00�.S.x0x000/˝ S.y0// if �.y/ D
X

y0 ˝ y00:

It turns out that the coaction (60) is exactly the right coadjoint action (see [26, Example
1.6.14]), and the product � is exactly the covariantized product of [26, Example 1.6.14].
The algebra A, with this new product � and the original coproduct � is known as the
transmutation of A and is a braided group in the braided category of U -comodules;
see [26].

4.7. Attaching an ideal triangle is a braided tensor product

Suppose e; e1; e2 are oriented edges of an ideal triangle P3 as depicted in Figure 15.
Let S be a (possibly disconnected) punctured bordered surface, with two boundary

edges a1; a2 � @S. Define S D .S tP3/=.e1 D a1; e2 D a2/; see Figure 15. (A special
case is when S D S1 tS2 and a1 � S0, a2 � S00.) For i D 1; 2, the algebra S.S/ has
a right comodule algebra structure �i W D �ai

W S.S/ ! S.S/ ˝ Oq2.SL.2//. The two
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Fig. 15. Left: ideal triangle P3. Middle: gluing S and P3 by a1 D e1 and a2 D e2 to get S. Right:
tangle diagram x 2 S.S/ and its image f .x/ 2 S.S/.

coactions �1 and �2 commute; see Lemma 4.1. Hence we can define the self-braided
tensor product ˝S.S/ of �1 and �2, which gives S.S/ a new right comodule algebra
structure over Oq2.SL.2//. On the other hand, �eW S.S/ ! S.S/ ˝ Oq2.SL.2// gives
S.S/ a right comodule algebra structure over Oq2.SL.2//.

Theorem 4.17. The right Oq2.SL.2//-comodule algebra S.S/ is naturally isomorphic
to the self-braided tensor product ˝S.S/, defined with the co-R-matrix �0 of (47). In
particular, when SDS1 tS2 and a1 �S1; a2 �S2, the right comodule algebra S.S/

over Oq2.SL.2// is naturally isomorphic to the braided tensor product S.S1/˝ S.S2/.

Remark 4.18. Although we work over R D ZŒq˙1=2�, the statement and the proof work
for any commutative ring with a distinguished invertible element.

Proof. Let oC be the positive orientation of the boundaries of S and S. In the proof, all
tangle diagrams will have positive height order.

For a stated @S-tangle diagram x, let f .x/ be the stated @S-tangle diagram obtained
from x by extending the strands ending on a1 t a2 until they end on e, with order on e
given by its positive direction; see Figure 15. We require that f .x/ has no crossing inside
P3, and this makes f .x/ unique up to isotopy. Since f clearly preserves the defining
relations of a stated skein algebra, we can extend it to an R-linear map f WS.S/! S.S/.

Recall that˝S.S/ is the same S.S/ with a new product � given by (55).

Lemma 4.19. The map f W ˝S.S/! S.S/ is an algebra homomorphism.

Proof. Let x; y be stated @S-tangle diagrams.

Fig. 16. xy; f .xy/, and f .x/f .y/.
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We present xy; f .xy/; f .x/f .y/ schematically as in Figure 16. By splitting along
the dashed line in the picture of f .x/f .y/ and using the counit property which says
u D

P
u0".u00/, we get, with �2.x/ D

P
x0 ˝ u and �1.y/ D

P
y0 ˝ v,

f .x/f .y/ D
X

˝ "

� �

D

X
f .x0y0/�0.u˝ v/ using co-R-matrix �0 of (47)

D f .x � y/ by (55):

Thus f is an algebra homomorphism.

It remains to show that f is an R-linear isomorphism. For l 2 N, let Fl .S.S// D
F a1;a2
l

.S.S// andFl .S.S//DF a1;a2
l

.S.S// be the filtrations defined in Subsection 2.10.
In other words, Fl .S.S// is the R-submodule spanned by stated tangle diagrams ˛ such
that I.˛;a1/C I.˛;a2/� l , and similarly for Fl .S.S//. Denote by Gr� the corresponding
graded R-modules. It is clear that f preserves the filtrations Fl . It is enough to show that
Gr.f / is a bijection.

Let Bm;n be the set of isotopy classes of simple @S-tangle diagrams ˛ such that
I.˛; a1/ D m; I.˛; a2/ D n and ˛ is increasingly stated on each boundary edge, except
for a1 and a2 where it is not stated. Then

Grl .S.S// D
M

mCnDl
x2Bm;n

V.x/; Grl .S.S// D
M

mCnDl
x2Bm;n

W.x/:

Here V.x/ is the R-submodule of Grl .S.S// spanned by ˛ 2 B.SI oC/ such that ˛ D x
if we forget the states on a1 [ a2, and W.x/ is the R-submodule of Grl .S.S// spanned
by z 2 B.SIoC/ such that z \SD x. It is enough to show that Gr.f / is an isomorphism
from V.x/ to W.x/ for x 2 Bm;n.

Note that both V.x/ and W.x/ are free R-modules and have rank .mC 1/.nC 1/.
Indeed, there aremC 1 increasing states on x \ a1 and nC 1 increasing states on x \ a2,
and these can be chosen independently; thus rkR.V .x// D .m C 1/.n C 1/. For what
concerns W.x/, observe that if z 2 B.SI oC/ such that z \S D x, then z \P3 consists
of k arcs (for some k 2 Œ0;min.m; n/�) connecting e1 and e2, m � k arcs connecting e1
and e, and finally n� k arcs connecting e2 and e; furthermore, z \ e is increasingly stated
so that there are exactly .mC n � 2k C 1/ such z. Thus we have

rkR.W.x// D

min.m;n/X
kD0

.mC n � 2k C 1/ D .mC 1/.nC 1/:

The reordering relation (7) implies the relation in Figure 17, which converts arcs connect-
ing e1 and e2 to arcs with one end in e. This shows that Gr.f /WV.x/!W.x/ is surjective.
Since both V.x/ and W.x/ are free R-modules having the same rank, we conclude that
Gr.f /WV.x/! W.x/ is an isomorphism. This completes the proof of the theorem.
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Fig. 17

4.8. Examples: Polygons, punctured bigons, and punctured monogons

Example 4.20 (Polygon). The polygon Pnis the standard disk with n punctures on its
boundary removed. Note that the triangle P3 is the result of attaching an ideal triangle to
two bigons. By Theorem 4.17, we have

S.P3/ Š Oq2.SL.2//˝Oq2 .SL.2// Oq2.SL.2//;

where each copy of Oq2.SL.2// is a right Oq2.SL.2//-comodule algebra via the coprod-
uct. Consequently, S.P3/ Š Oq2.SL.2//˝R Oq2.SL.2// as R-modules, and its algebra
structure is described by (59). From here, one can get a presentation of S.P3/. In [22],
a presentation of S.P3/ was obtained by brute force calculation.

The n-gon Pn is the result of attaching an ideal triangle to the disjoint union of Pn�1
and the bigon. By induction, we obtain the following corollary.

Corollary 4.21. One has

S.Pn/ Š Oq2.SL.2//˝ � � � ˝Oq2.SL.2//;

where there are .n � 1/ copies of Oq2.SL.2//.

Example 4.22 (Punctured bigons). Let Bn be the bigon B with n interior punctures
removed. For example, B0 D B. Like in the case of B, we will show that S.Bn/ has
a natural structure of a Hopf algebra where all the operations can be defined geometrically.
Recall that we denote by el and er the left and right boundary edges of B.

Let �WBn ,! B2n be the inclusion identifying Bn with the complement of n closed
disjoint arcs, each connecting two punctures of the 2n-punctures of B2n; see Figure 18.
Let �W S.Bn/! S.Bn/˝ S.Bn/ be the map induced by � and then splitting along the
vertical arc connecting the two boundary ideal vertices of B2n and identifying the two
halves with Bn.

Fig. 18. The embedding of the 4-punctured bigon B4 into B8 and the splitting homomorphism.
The composition gives the coproduct.
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Let also "W S.Bn/! R be the map obtained by including Bn in B0 D B and then
applying "W S.B/! R.

Finally, define S WS.Bn/! S.Bn/ as the R-linear map whose value on a stated tangle
˛ in Bn � .�1; 1/ is obtained by first switching all the states � to �� and all the framing
vectors v to�v, then rotating ˛ by 180° around the axis passing through the two boundary
ideal vertices, and finally multiplying the result by .

p
�1q/.ıel

.˛/�ıer .˛// (where ıe.˛/
was defined in Subsection 2.10 as the sum of the states on ˛ \ e). It is easily checked that
all the defining relations (4)–(7) are preserved so that S is well-defined.

Proposition 4.23. For each n � 0, the skein algebra S.Bn/, endowed with �; "; S , is
a Hopf algebra.

Proof. From the definition of the splitting homomorphism, it is clear that � is an algebra
homomorphism. The coassociativity of� is a direct consequence of the fact that applying
twice � induces the same morphism as the identification of Bn with the complement of n
disjoint arcs in B3n, each containing 3 punctures as depicted here:

The map " is a morphism of algebras by its definition; to verify that ."˝ Id/ ı� D Id,
observe that if, in Figure 18, we fill the left punctures, then we obtain the initial Bn.

That S is an antimorphism is a consequence of the fact the revolution by 180° about
the axis connecting the two boundary vertices reverses the height order in Bn � .�1; 1/.

We are left to prove that

.S ˝ Id/ ı� D .Id˝ S/ ı� D "; (61)

and since S is an antimorphism, it is enough to check this identity on a set of generators.
From relation (7), we get that the set of horizontal arcs, with all possible states, gener-
ates S.Bn/. If ˛�� is a horizontal arc with state � on the left and state � on the right, then
the definition gives

S.˛��/ D ˛�� and S.˛��/ D �q
2�˛��

so that, on B0 D B, S coincides with the antipode defined in (35). Now identity (61) for
˛�� follows from the same identity for the antipode in S.B/ D Oq2.SL.2//.

Remark 4.24. (a) Since Bn is the result of attaching 2n ideal triangles to nC 1 bigons,
Theorem 4.17 can be used to show that as R-algebras S.Bn/ Š Oq2.SL.2//˝.nC1/

where the tensor product is over R and the algebra structure of Oq2.SL.2//˝.nC1/ is
the unique one determined by
(i) the subset Ai D 1˝.i�1/ ˝R Oq2.SL.2//˝R 1˝.nC1�i/ � Oq2.SL.2//˝.nC1/ is

isomorphic to Oq2.SL.2// as R-algebras for each i D 1; : : : ; nC 1, and
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�W ,! '

Fig. 19. The inclusion �WM4 ,!M8 and the decomposition of M8 in a triangle and two copies of
M4 used to fix the isomorphism S.M8/ D S.M4/˝ S.M4/.

(ii) for a 2 Ai and b 2 Aj with i < j , one has ab D a˝ b and

ba D
X
N�0.b0 ˝ a0/�0.b000 ˝ a000/a00b00;

where �0 is the co-R-matrix defined by (47) and N�0 is its inverse.

(b) For the case n D 1, Proposition 4.23 and a presentation of S.B1/ were also indepen-
dently obtained in [20] via a direct calculation.

Example 4.25 (Punctured monogons). Let Mn be the monogon M with n punctures in
its interior removed; see Figure 19. Let �W S.Mn/! S.Mn/˝ S.B/ be the right S.B/-
comodule algebra structure induced by the only boundary edge of Mn.

Similarly, S.Bn/ has two commuting right comodule-algebra structures over S.B/

induced by el and er ; let �1 be the one induced el and �2 the one induced by er .
Like in the bigon case, let �WMn ,! M2n be the inclusion identifying Mn with the

complement of n disjoint arcs, each connecting two punctures of M2n. Observe that
M2n is the result of attaching an ideal triangle to two copies of Mn; see Figure 19. By
Theorem 4.17, we have an isomorphism of algebras S.M2n/ D S.Mn/ ˝ S.Mn/. Let
�W S.Mn/ ,! S.M2n/ D S.Mn/ ˝ S.Mn/ be the map induced by �� and this isomor-
phism.

Proposition 4.26. (a) For each n � 0, the algebra S.Mn/ endowed with the map � and
the map "W S.Mn/! S.M0/ D R induced by inclusion is a bialgebra object in the
category of Oq2.SL.2//-comodules (i.e. its product, coproduct, unit, and counit are
morphisms of Oq2.SL.2//-comodules).

(b) The Oq2.SL.2// comodule algebra S.Mn/ is isomorphic to the self-braided ten-
sor product ˝S.Bn�1/. In particular, S.M1/ is isomorphic as a Hopf algebra to
BSLq.2/, the “transmutation” of Oq2.SL.2//, or “braided version” or “covariant
version” of Oq2.SL.2// (see [26, Examples 4.3.4 and 10.3.3]).

Proof. (a) The inclusion � induces an injective algebra homomorphism

��W S.Mn/ ,! S.M2n/ D S.Mn/˝ S.Mn/:

As in the case of bigons, the coassociativity follows from the fact that applying twice �
induces the same morphism as the identification of Mn with the complement of n disjoint
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x y

D �q5=2

x y

� C

C q1=2

x y
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Fig. 20. Re-expressing�.˛.x;y// as a braided tensor product. The equality is a consequence of (7).

arcs in M3n each containing 3 punctures as depicted here:

,! ,! :

The map " is a morphism of comodule algebras by definition; to verify that ."˝ Id/ ı�D
Id, observe that if, in Figure 19, we fill the left punctures, then we obtain the initial Mn.
The last fact to verify is that � is a morphism of comodules, i.e. denoting �W S.Mn/!

S.Mn/˝ S.B/ the right comodule structure, that

.�˝ Id/ ı� D .Id˝ Id˝m/.Id˝ fl˝ Id/ ı .�˝�/ ı�;

where mW S.B/˝ S.B/! S.B/ is the multiplication and fl is the flip. Since � is a mor-
phism of algebras, it is sufficient to check this on generators of Mn. For this, we refer to
Figure 20, where we depict the case n D 1, but the proof is similar for other n. Letting
˛.x; y/ 2 B.Mn; o/ be the generator represented by a horizontal arc whose states are
y; x 2 ¹˙º depicted in the figure, the equality in the figure shows that we have

�.˛.x; y// D q1=2˛.C; y/˝ ˛.x;�/ � q5=2˛.�; y/˝ ˛.x;C/:

Also, from the definition of �, one computes �.˛.x; y// D
P
";� ˛.�; "/ ˝ .˛�x˛�y/,

where ˛xy denote the standard generators of S.B/. Now the verification is a straightfor-
ward computation.

(b) As Mn is obtained by attaching an ideal triangle to Bn�1, the claim follows
from Theorem 4.17. The isomorphism of S.M1/ with BSLq.2/ then follows from Exam-
ple 4.16. Let us make explicit the isomorphism.

Let T WS.B/! S.M1/ be the R-linear isomorphism obtained on a skein a by embed-
ding rot�.inv�1el

.a// (see Subsection 2.8) in the monogon through the embedding depicted
in Figure 21 (a) and finally extending the strands of rot�.inv�1el

.a// until they hit the
boundary of M1 (i.e. by applying the map f defined in the proof of Theorem 4.17).
We claim that, pulling back through T the coaction of S.M1/, we get the right adjoint
coaction on Oq2.SL.2// D S.B/, and pulling back the product � on S.M1/, we get the
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�

0BBBBBB@

1CCCCCCA D ˝

(a) (b)

Fig. 21. (a) The R-linear map T embeds B into M1 as shown, after applying the map inv�1el
and

rotating by � . (b) The right coaction of S.B/ on S.M1/ is obtained by cutting on the dotted arc; in
the figure, a skein x D T .a/ is cut in three parts by the dotted arc, the mid one is T .a.2//, while the
rightmost and leftmost are respectively S.a.1// and a.3/ so that their product in the bigon cut out
by the dotted curve is S.a.1//a.3/. This shows that the pullback of � is the adjoint coaction.

product � on BSLq.2/ defined in Example 4.16:

�coad
D .T �1 ˝ Id/ ı� ı T and � D T �1 ı . � � � / ı .T ˝ T /:

Using the definitions of T , of the antipode on S.B/, (34), and of �, one verifies
directly that .T �1 ˝ Id/ ı� ı T .x/ D x00 ˝ S.x0/x000 for any x 2 Oq2.SL.2// D S.B/

(Figure 21 (b)). Then, since � and � are compatible, it is sufficient to check that the
pullback of � equals � on the generators of Oq2.SL.2//; this is a straightforward compu-
tation. A graphical explanation is as follows. Observe that if x D T .a/; y D T .b/, then
x � y D .T .a � b//.1/"..T .a � b//.2// (this holds in general comodule algebras) so that
we have

D � "

0BBBBB@

1CCCCCA
and that the right-hand side equals

T .a.2/ � b.2//�
0.S.a.1//a.3/ ˝ S.b.1///".b.3// D T .a.2/ � b.2//�

0.S.a.1//a.3/ ˝ S.b.1///;

where �0 was defined in (47). This proves that � D T �1 ı . � � � / ı .T ˝ T /.

5. A lift of the Reshetikhin–Turaev operator invariant

In this section, we show that a Reshetikhin–Turaev operator invariant of tangles can be
lifted to an invariant with values in Oq2.SL.2//. In this section, R D ZŒq˙1=2�.

5.1. Category of non-directed ribbon graphs

We will present the category of non-directed ribbon graphs [39], also known as framed
tangles [31], in the form convenient for us.
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Fig. 22. Left: square S D Œ0; 1�� .0; 1/, with edges el and er . Middle: tensor product ˇ˝ ˇ0. Right:
composition ˇ ı ˇ0, which can be defined only when j@rˇj D j@lˇ0j.

Fig. 23. Five elementary tangles.

The bigon is canonically isomorphic (in the category of punctured bordered surface) to
the square S D Œ0; 1� � .0; 1/. Under the isomorphism, el and er are mapped respectively
to ¹0º � .0; 1/ and ¹1º � .0; 1/, and abusing notation, we also denote ¹0º � .0; 1/ and
¹1º � .0; 1/ respectively el and er . We identify S with S � ¹0º in M WD S � .�1; 1/. We
have @M D @S � .�1; 1/ D .el [ er / � .�1; 1/.

Recall that, in the definition of a @M -tangle, we require the boundary points over any
boundary edge have distinct heights (see Subsection 2.4). If we change this requirement
to “all boundary points are in @S” (in particular, they all have the same height), we get
the notion of a @S -tangle. Formally, a @S -tangle is a framed compact one-dimensional
unoriented manifold ˇ properly embedded inM D S � .�1; 1/ such that @ˇ has height 0,
i.e. @ˇ � @S D el [ er , and the framing at every boundary point of ˇ is vertical. Let
@rˇ D ˇ \ er and @lˇ D ˇ \ el . Two @S -tangles are @S -isotopic if they are isotopic in
the class of @S -tangles. If j@rˇj D k and j@lˇj D l , then our notion of a @S -tangle is the
notion of a non-directed ribbon .k; l/-graph without coupons in [39].

After an isotopy, we can bring ˇ to a generic position (with respect to the projection
from S � .�1; 1/ onto S ) and make the framing vertical everywhere. The projection of ˇ
together with the over/under information at every crossing is called a @S -tangle diagram
of ˇ. The isotopy class of ˇ is totally determined by any of its diagrams.

The non-directed ribbon graph category is the category whose set of objects is N,
and a morphism from k to l is an isotopy class of @S -tangle ˇ such that j@rˇj D k and
j@lˇj D l , with the usual composition (Figure 22). If the tangles are oriented, then one
would get the usual ribbon tangle category.

If ˇ; ˇ0 are two @S -tangles, define their tensor product ˇ ˝ ˇ0 as the result of putting
ˇ above ˇ0 as in Figure 22. Under the tensor product and the composition, morphisms of
the non-directed ribbon tangle category are generated by the five elementary @S -tangles
depicted in Figure 23.

From the ribbon category of finite-dimensional modules over the quantum group
Uq2.sl2/, we get the Reshetikhin–Turaev operator invariant of @S -tangles; see [39]. Let
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us describe this operator invariant in a special case. Let V be the free R-module with
basis gC; g�. The above mentioned operator invariant is the unique functor Z from the
non-directed ribbon tangle category to the category of R-modules preserving the tensor
product such that Z.n/ D V ˝n and the values of the elementary tangles are given by

Z
� �

WV ˝2 ! R; gC ˝ g� ! q�1=2; g� ˝ gC ! �q
�5=2;

gC ˝ gC ! 0; g� ˝ g� ! 0;

(62)

Z
� �

WR! V ˝2; 1! �q5=2.gC ˝ g�/C q
1=2.g� ˝ gC/; (63)

Z
� �

WV ˝2 ! V ˝2; Z
� �

D qidC q�1
�
Z
� �

ıZ
� ��

; (64)

Z
� �

WV ˝2 ! V ˝2; Z
� �

D q�1idC q
�
Z
� �

ıZ
� ��

I (65)

see [11]. Here our g˙ are related to the basis vectors g1=2 in [11] by

gC D �
p
�1q�3=2g1=2; g� D g�1=2:

Thus if ˇ is a @S -tangle with j@lˇj D l and j@rˇj D k, then Z.ˇ/ is an R-linear map
V ˝k ! V ˝l which depends only on the isotopy class of ˇ.

For E� D .�1; : : : ; �l / 2 ¹˙ºl and E�D .�1; : : : ; �k/ 2 ¹˙ºk , we can define the matrix
entry E�Z.ˇ/ E� 2 R such that

Z.ˇ/.g�1
˝ � � � ˝ g�k

/ D
X
E�2¹˙ºl

.E�Z.ˇ/ E�/g�1
˝ � � � ˝ g�l

:

Remark 5.1. In fact, V and all its tensor powers are modules over the quantum group
Uq2.sl2/, and all the operators Z.ˇ/ are Uq2.sl2/-morphisms. But we do not need the
structure of Uq2.sl2/-modules here. When k D l D 0, we haveZ.ˇ/ 2 R, which is equal
to the Kauffman bracket polynomial of ˇ.

5.2. From @M -tangles to @S -tangles

Suppose  is a @M -tangle. We can @M -isotope  so that its diagram D has the height
order on el and er determined by the arrows in Figure 24. This diagram determines
a unique class of @S -tangle, denoted by N . Note that the arrows of er , el are irrelevant
for N . It is easy to see that the map  ! N is a bijection from the set of @M -isotopy
classes of @M -tangles to the set of @S -isotopy classes of @S -tangles.

Fig. 24. Direction of boundary edges, used to determine the height order.
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Suppose j \ el j D l , j \ er j D k and

E� D .�1; : : : ; �l / 2 ¹˙º
l ; E� D .�1; : : : ; �k/ 2 ¹˙º

k :

Let E� E� be the stated @M -tangle whose underlying tangle is  and whose states on  \ el
(resp. on  \ er ) from top to bottom by the height order are �1; : : : ; �l (resp. �1; : : : ; �k).

Theorem 5.2. Assume the above notation. Consider E� E� as an element of S.B/. Then

".E� E�/ D E�Z. N/ E�: (66)

Thus we see that the tangle invariant of E� E� with values in S.B/ is stronger than the
Reshetikhin–Turaev operator invariant.

Proof. Suppose 1; 2 are @M -tangles. Since 12 D N1 ˝ N2, if (66) is true for  D 1
and  D 2, it is true for  D 12.

Now suppose 1; 2 are obtained by splitting a @M -tangle ˇ along an ideal edge. By
the splitting formula (26) and the definition of �,

�.E�ˇ E�/ D
X
E�

E�.1/E� E�.2/ E�:

Applying "˝ id to the above, we get

E�ˇ E� D
X
E�

".E�.1/E�/E�.2/ E�:

Applying " to the above, we get

".E�ˇ E�/ D
X
E�

".E�.1/E�/".E�.2/ E�/;

which shows that if (66) holds for  D 1 and  D 2, then it holds for ˇ D 1 ı 2.
Thus it is enough to check (66) for the elementary tangles, for which (66) follows

from the explicit formulas (62)–(65).

5.3. A 1C 1-TQFT

Let Cob1;1 be the symmetric monoidal category whose

� objects are numbered disjoint unions of open unoriented segments,

� morphisms are diffeomorphism classes of punctured bordered surfaces S with in-
dexed boundary. Explicitly, if @S D eL1 ; : : : ; e

L
m; e

R
1 ; : : : ; e

R
n , then

S 2 Mor.eL1 t � � � t e
L
m; e

R
1 t � � � t e

R
n /

and the composition of morphisms is given by the gluing of marked surfaces explained
above (associativity of compositions is ensured by the fact that we consider diffeo-
morphism classes of surfaces). In particular, the identity morphism of e1 t � � � t en is
a disjoint union of n copies of B.

� Its tensor product is the disjoint union, where the components of .e1 t � � � t en/ t
.e01 t � � � t e

0
m/ are ordered as e1 t � � � t en t e01 D enC1 t � � � t e

0
m D emCn.
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In order to define the target category of our TQFT functor, let us fix some notation. Given
a finite set C , we will then denote by Uq2.sl2/

˝C the algebra obtained as the tensor
product

N
c2C Uq2.sl2/, where each copy of Uq2.sl2/ in the tensor product is indexed

by a distinct element of C .

Definition 3 (Uq2.sl2/-finBim). Let Uq2.sl2/-finBim be the category whose objects are
pairs .C; ŒM �/ where C is a finite set, M is a right module over Uq2.sl2/

˝C which is
a direct sum of finite-dimensional modules, and ŒM � is its isomorphism class. A morphism
from .C; ŒM �/ to .C 0; ŒM 0�/ in Uq2.sl2/-finBim is the isomorphism class of a bimodule B
over .Uq2.sl2/

˝C ; Uq2.sl2/
˝C 0/ which is a direct sum of finite-dimensional bimod-

ules and such that ŒM ˝Uq2 .sl2/
˝C B� D ŒM 0�. The composition of ŒB�W .C; ŒM �/ !

.C 0; ŒM 0�/ and ŒB 0�W .C 0; ŒM 0�/! .C 00; ŒM 00�/ is ŒB ˝Uq2 .sl2/
˝C 0 B 0� (the composition

is associative as we consider bimodules up to isomorphisms). The monoidal structure on
Uq2.sl2/-finBim is given by .C; ŒM �/ ˝ .C 0; ŒM 0�/ WD .C [ C 0; ŒM ˝R M 0�/, and its
symmetry is given by exchanging .C; ŒM �/ and .C 0; ŒM 0�/.

Then let SWCob1;1 ! Uq2.sl2/-finBim be defined as

S.e1 t � � � t en/ D .C D ¹e1; : : : ; enº; ŒQ.q
1=2/˝R S.B/˝C �/;

and for a punctured bordered surface S whose boundary is a union of

C D ¹eL1 ; : : : ; e
L
n º and C 0 D ¹eR1 ; : : : ; e

R
mº;

let S.S/ be the isomorphism class of the .Uq2.sl2/
˝C ; Uq2.sl2/

˝C 0/-bimodule

Q.q1=2/˝R S.S/:

Theorem 5.3 (Skein algebra as a TQFT). The functor S is a symmetric monoidal functor
into Uq2.sl2/-finBim.

Proof. By Theorem 4.6 (b), it holds Q.q1=2/˝R S.B/ D
L
i�0 V

L
i ˝ V

R
i , where V Li

(resp. V Ri ) is the irreducible i C 1-dimensional left (resp. right) module over Uq2.sl2/.
Then, arguing exactly as in the proof of Theorem 4.10, one sees that, for each j � 0, it
holds

ŒV Rj ˝Uq2 .sl2/ .Q.q
1=2/˝R S.B//� D ŒV Rj �:

Then Q.q1=2/˝R S.B/ represents the identity morphism .¹eº; ŒM �/! .¹eº; ŒM �/ (for
any edge e) if restricted to finite-dimensional rightUq2.sl2/-modules (which are all direct
sums of V Rj ’s). Let S0 and S00 be two bordered punctured surfaces with boundaries
indexed so that @LS0 D ¹e1; : : : ; enº D @

RS00, and let S be the surface obtained by gluing
S0 and S00 by identifying the corresponding edges of @LS0 and @RS00 via an orientation
reversing diffeomorphism. Then S.S0/ (resp. S.S00/) is a right (resp. left) module over
Uq2.sl2/

@LS0 (resp. over Uq2.sl2/
@RS00D@LS0 ). To conclude, a repeated application of

Theorem 4.10 shows that the following holds up to isomorphism:

S.S/ D S.S0/˝Uq2 .sl2/
˝@LS0 S.S/:
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Remark 5.4. The previous construction can be improved by passing to the setting of 2-
categories in order to consider objects no longer up to isomorphisms. This requires to
consider marked surfaces and bimodules and will be dealt with in another work.

6. A non-symmetric modular operad

In this section, we show that stated skein algebras provide an example of “non-symmetric
geometric modular operad”. Such objects were defined by Markl [28] as a generalization
of “modular operads” initially defined by Geztler and Kapranov [15]. Given a monoidal
category C , Markl defined an NS modular operad in C as a monoidal functor

NSOWMultiCyc! C;

where MultiCyc is a suitable category of “multicyclic sets”. Here we rephrase Markl’s def-
inition in the case of a suitable category of punctured bordered surfaces TopMultiCyc; then
we define an NS geometric modular operad as a monoidal functor NSOWTopMultiCyc!C .
Finally, we re-interpret skein algebras as an example of an NS geometric modular operad
with values in Uq2.sl2/-finBim (see Definition 3).

6.1. The category of topological multicyclic sets TopMultiCyc

In this section, all surfaces will be oriented and all homeomorphisms will preserve the
orientation.

A cutting system in a bordered punctured surface S is a finite linearly ordered set ˛
of pairwise disjoint ideal oriented arcs ˛1; : : : ; ˛k � S (see Subsection 2.2); a homeo-
morphism of cutting systems ˛ and ˇ in S is a homeomorphism �WS! S such that
�.˛/ D ˇ so that it preserves the ordering and the orientations of the arcs. Cutting along
all the arcs of a cutting system ˛ produces a bordered punctured surface cut˛.S/ whose
homeomorphism class depends only on the homeomorphism class of ˛. We will say that
a cutting system ˛ is disconnecting if each arc in ˛ disconnects S.

If the connected components of S are linearly ordered, then one can order the con-
nected components of cut˛.S/ as follows. Since cut˛.S/D cut˛k

.cut˛k�1
.� � � cut˛1

.S///,
it is sufficient to define how to do it for of the cut along a single ideal arc ˛. If ˛ does not
disconnect, then there is a natural bijection between the components of S and cut˛.S/
which induces the ordering on those of the latter surface. If ˛ disconnects S, since both ˛
and S are oriented, there is a well-defined notion of the connected component of cut˛.S/
“lying at the left” and “at the right of ˛”; we then order them so that left precedes right
and they are in the same position in the global ordering of the components of S as the
component they come from.

Definition 4 (TopMultiCyc;TopForest). Let TopMultiCyc be the category whose objects are
homeomorphism classes of punctured bordered surface whose connected components are
linearly ordered, and where a morphism S0 ! S is a homeomorphism class of a cutting
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system ˛ in S such that cut˛.S/ is homeomorphic to S0. The category TopForest is the
subcategory whose objects are disjoint unions of polygons (see Example 4.20) and whose
morphisms are those represented by disconnecting cutting systems.

If �WS0! cut˛.S/ and WS! cutˇ .S00/ are homeomorphisms, then the composition
of the morphisms associated to ˛ and ˇ is the homeomorphism class of  .˛/ t ˇ � S00

where the numbering of the arcs of  .˛/ is lower than those of ˇ. The identity morphism
is represented by the class of the empty cutting system, and it is straightforward to check
that the composition is associative so that the above are indeed categories.

Both TopMultiCyc and TopForest are symmetric monoidal categories. Indeed, the ten-
sor product of S0 DS01 t � � � tS0

k
and SDS1 t � � � tSh (where S0i ;Sj are connected

for all i; j and the linear order of the components is increasing from left to right) is defined
as

S0 ˝S WD S01 t � � � tS0k tS1 t � � � tSh:

On the level of morphisms, if ˛ �S1 and ˇ �S2 are two cutting systems, then ˛˝ ˇ D
˛ t ˇ, where the linear order of the arcs of ˛ is lower than that of the arcs in ˇ. The sym-
metry is given by exchanging the components, so with the above notation, s.S0 ˝S/ D

S˝S0 and s.˛ ˝ ˇ/ D ˇ ˝ ˛.
The following definition is a reformulation of Markl’s [28, Definition 4.1] in the

context of punctured bordered surfaces.

Definition 5 (NS modular operads). Let C be a symmetric monoidal category. An NS
(non-symmetric) geometric modular operad in C is a symmetric monoidal functor

OW TopMultiCyc! C:

An NS cyclic operad in C is a symmetric monoidal functor OW TopForest! C .

6.2. NS geometric modular operads from skein algebras

Recall that if B is the bigon with one edge of type “left” and one of type “right”, then
S.B/DOq2.SL.2// as a .Uq2.sl2/;Uq2.sl2//-bimodule. Let also BR be the bigon whose
edges are declared to be both of type R (right edges) then S.BR/ is the left module
over Uq2.sl2/

˝2 whose underlying space is Oq2.SL.2// and on which the action of
x ˝ y 2 Uq2.sl2/

˝2 is given by x ˝ y � b D x � b � r�.y/ (see Example 4.7).

Theorem 6.1 (Skein algebras as non-symmetric operads). There is a geometric NS-mod-
ular operad NSO in Uq2.sl2/-finBim defined on an object S of TopMultiCyc as

NSO.S/ D .Edges.S/; ŒQ.q1=2/˝R S.S/�/;

where S is the surface whose edges are all indexed to be of type L (left) and where
we see Q.q1=2/ ˝R S.S/ as a right module over Uq2.sl2/

˝Edges.S/ as explained in
Subsection 4.3.
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If �WS0 ! S is a morphism associated to a cutting system ˛, then let

NSO.�/ D ŒQ.q1=2/˝ S.B/˝Edges.S/
˝ S.BR/˝˛�;

where S.BR/˝˛ is the skein algebra of a disjoint union of one copy of Br per arc ˛i 2 ˛
whose boundary edges correspond to the edges of @S0 lying respectively at the left and
at the right of ˛i .

Proof. First of all, observe that the functor is well-defined as all surfaces are seen up to
orientation-preserving diffeomorphism and all modules and bimodules in Uq2.sl2/-finBim
are seen up to isomorphism. Then we observe that the skein algebra of a disjoint union of
n bigons

Q.q1=2/˝R S

� nG
jD1

Bj

�
D Q.q1=2/˝R S.B/˝n D Q.q1=2/˝R Oq2.SL.2//˝n

is the identity of .¹1; 2; : : : ; nº; ŒM �/ (where i is the left edge of the i -th bigon) for any
right module M which is a direct sum of finite-dimensional modules over Uq2.sl2/

˝n.
Indeed, M is a direct sum of modules of the form W ˝ V Rj where V Rj is the j C 1-
dimensional irrep of Uq2.sl2/ and W is a right module over Uq2.sl2/

˝n�1 which is
itself a tensor product of finite-dimensional modules. As proved in Theorem 4.6, S.B/ D
Oq2.SL.2// D

L
i V

L
i ˝ V

R
i so that, by the same arguments as in the proof of Theo-

rem 4.10, it holdsh
W ˝ V Rj ˝Uq2 .sl2/n

�M
i

V Li ˝ V
R
i

�i
D

M
i

ŒW ˝ .V Rj ˝Uq2 .sl2/ V
L
i /˝ V

R
i �

D ŒW ˝ V Rj �:

This shows that tensoring overUq2.sl2/with a single copy of Q.q1=2/˝R S.B/ provides
the identity morphism; by Remark 4.13, repeating this along all the boundary edges, one
gets that tensoring with Q.q1=2/˝R Oq2.SL.2//˝n is the identity of .¹1; 2; : : : ; nº; ŒM �/

for any M decomposing into a direct sum of finite-dimensional modules.
Now we prove that if i; j are two distinct boundary edges of a (possibly disconnected)

surface S0, then
ŒS.S0/˝Uq2 .sl2/¹i;jº S.B

R/� D ŒS.S/�; (67)

where S.BR/ is seen as left module over Uq2.sl2/
¹i;j º and S is the surface obtained

by gluing the edges i; j by an orientation reversing homeomorphism. Indeed, by Re-
mark 4.13 and Example 4.12, to glue BR along i and j , one can first glue S0 and
BR along i , thus obtaining the surface S0 whose edge i has been changed to type R
(see Example 4.12) and then operating a self-gluing along i and j on this surface. By
Theorem 4.10, the overall result is Q.q1=2/ ˝R S.S/. Then, if ˛ is a cutting system
given by c arcs, by Remark 4.13, applying c times (67), we get that tensoring with
Q.q1=2/˝R S.BR/˝˛ is performing the gluing inverting the cut associated to the cutting
system ˛.



F. Costantino, T. T. Q. Lê 4120

Fig. 25. (a) a bad arc (b) the splitting of a bad arc.

7. Reduced skein algebra

We show that the stated skein algebra S.S/ has a nice quotient S.S/, called the reduced
stated skein algebra, which can be embedded in a quantum torus. This quotient is still
big enough to contain the ordinary skein algebra and the Muller skein algebra. Unlike the
case of the full fledged version S.S/, when S is an ideal triangle, the reduced version
S.S/ is a quantum torus. The construction of the quantum trace map follows immediately
from the splitting theorem for the reduced stated skein algebra.

Throughout, we fix a punctured bordered surface S D S n P , and we will denote
S D S.S/. Although in this section we work over R D ZŒq˙1=2�, the statements and
proofs of all the theorems work for any commutative ring with a distinguished invertible
element.

7.1. Definition

A non-trivial arc ˛ � S, which is the closed interval Œ0; 1� properly embedded in S not
homotopic relative to its end points to a subset of the boundary @S is called a corner arc
if it is as that depicted in Figure 25 (a), i.e. it cuts off from S a triangle with one ideal
vertex. Such an ideal vertex is said to be surrounded by the corner arc ˛.

A bad arc is a stated corner arc whose states are as in Figure 25, i.e. they are �
followed by C if we go along the arc counterclockwise around a surrounded vertex. The
reduced stated skein algebra S.S/ is defined to be the quotient of S.S/ by the 2-sided
ideal 	bad generated by bad arcs.

7.2. Basis

Let oC be the orientation of @S induced by that of S, i.e. every boundary edge has positive
orientation. ThenB WDB.SIoC/ is an R-basis of S.S/. LetB DB.S/�B be the subset
consisting of all elements in B which contain no bad arc.

Theorem 7.1. The set B is a free R-basis of the R-module S.S/.

Proof. Let A � S be the R-span of B , and let A0 � S be the R-span of B n B . One has
S D A˚ A0. Let us prove that the ideal 	bad is equal to A0.
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Fig. 26. If the outer arc is bad, then all inner arcs are bad, too.

Fig. 27. (a) The product ˛ˇ, here ˛ (the unique stated arc, in gray) is a bad arc, (b) an element
 2 B which has a bad innermost arc (the unique stated arc, in gray).

Fig. 28. Moving end point with negative state (left) and positive state (right).

Proof that A0 � 	bad. Let  2 .B n B/, i.e.  contains a bad arc. We have to show that
 2 	bad. If an arc in  (at some corner) is bad, then the positive orientation and increasing
states imply that all the arcs closer to the vertex of that corner are bad; see Figure 26. Thus
we assume that  has a bad arc which is an inner most arc; see Figure 27 (b).

We have the relations in Figure 28, which are part of Lemma 2.4. The first relation
allows us to move the end of the red arc with state � (in  ) up until we get the diagram
in Figure 27 (a), which is of the form ˛ˇ, where ˛ is a bad arc. The result is that  �D ˛ˇ.
Thus  2 	bad.

Proof that 	bad �A0. We have to show that ˛ˇ;ˇ˛ 2A0 for any bad arc ˛ and any ˇ 2B .

� The product ˛ˇ: in this case, ˛ˇ is presented as in Figure 27 (a). We already saw that
˛ˇ

�
D  , where  is as in Figure 27 (b). Since  2 A0, we see that ˛ˇ 2 A0.

� The product ˇ˛: in this case, ˇ˛ is presented as in Figure 29 (a). Using the second
relation in Figure 28, we get that ˇ˛ �D  , where  is as in Figure 29 (b). Since  2A0,
we see that ˛ˇ 2 A0.

Thus 	bad DA0. Hence as R-modules, S.S/D S=J ŠA, which has B as an R-basis.
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Fig. 29. (a) Product ˇ˛, where ˛ is a bad arc (in red), (b) the diagram  .

Remark 7.2. Positive order is used substantially in the proof. For other orientation of @S,
the set similar to B might not be the basis of S.S/.

Corollary 7.3. The ordinary skein algebra VS.S/ and the Muller skein algebra SC.S/

embed naturally into the reduced skein algebra S.S/.

Proof. Clearly, the standard basis of the ordinary skein algebra and the standard basis of
the Muller skein algebra (where all the states areC) are subsets of the basisB of S.S/.

7.3. Corner elements

Proposition 7.4. Let u be a stated corner arc with both states positive, and let v be the
same arc with both states negative. Then uv D vu D 1 in S.S/.

Proof. In S.S/, we have

vu D D q2 C q�1=2 D q�1=2 D 1;

where the second identity follows from (7) and the last follows from (9). Similarly,

uv D D q�2 � q�5=2 D q�5=2 D 1;

where the second identity follows from (7) and the last follows from (9).

7.4. Filtration

For a finite collection A of ideal arcs or simple closed loops, let FA
n .S.S// be the R-sub-

module of S.S/ spanned by stated tangle diagrams ˛ such that
P
a2A I.a; ˛/ � n. Then

.FA
n .S.S///

1
nD0 is a filtration of S.S/ compatible with the algebra structure. Denote by

GrA.S.S// the associated graded algebra:

GrA.S.S// D

1M
nD0

GrA
n .S.S//; where GrA

n .S.S// D F
A
n .S.S//=F

A
n�1.S.S//:
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From Theorem 7.1, we have the following analog of Proposition 2.12.

Proposition 7.5. Suppose A is a collection of boundary edges of S.

(a) The set ¹˛ 2 B j
P
a2A I.˛; a/ � nº is an R-basis of FA

n .S.S//.

(b) The set ¹˛ 2 B j
P
a2A I.˛; a/ D nº is an R-basis of GrA

n .S.S//.

7.5. Splitting theorem

Theorem 7.6. Suppose S0 is the result of splitting S along an interior ideal arc a. The
splitting algebra embedding �aW S.S/ ,! S.S0/ descends to an algebra embedding

N�aW S.S/! S.S0/:

Besides, if a and b are two disjoint ideal arcs in the interior of S, then

N�a ı N�b D N�b ı N�a: (68)

Proof. Suppose ˛�S is a bad arc. The geometric intersection I.˛;a/ is 0 or 1. In the first
case, �a.˛/D ˛ is also a bad arc in S0. In the second case, the splitting of ˛, given in Fig-
ure 25 (b), has a bad arc for both values of � 2 ¹˙º. It follows that �a.	bad/� 	bad. Hence
�a descends to an algebra homomorphism N�aW S.S/! S.S0/, and we also have (68).

It remains to show that N�a is injective. Let 0 ¤ x 2 S.S/. We have to show that
N�a.x/¤ 0. Since B.S/ is an R-basis, there is a non-empty finite set S � B.S/ such that

x D
X
˛2S

c˛˛; 0 ¤ c˛ 2 R:

Let k D max˛2S I.˛; a/. Then S 0 WD ¹˛ 2 S j I.˛; a/ D kº is non-empty.
Let prWS0 ! S be the projection, and let a0; a00 � S0 be the boundary edges which

are pr�1.a/. To simplify the notation, we write FA
n and GrA

n for respectively FA
n .S.S

0//

and GrA
n .S.S

0//. From the formula of the splitting homomorphism, for every ˛ 2 S ,

N�a.˛/ 2 F
a0

k \ F
a00

k � F
¹a0;a00º
2k :

Let P W F ¹a
0;a00º

2k
� Gr¹a

0;a00º
2k be the canonical projection. Clearly, if ˛ 2 S n S 0, then

P.˛/ D 0. We consider Case 1 and Case 2 below.

Fig. 30. The split surface S0, with orientations o0 on @S0. The top left, top right, bottom left, and
bottom right corners are marked respectively TL, TR, BL, BR.
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Case 1: there exists ˇ 2 S such that P. N�a.ˇ// ¤ 0. Choose an orientation of a such that
the induced orientation on a00 is positive. Then the induced orientation on a0 is negative;
see Figure 30. Let o0 be the orientation of @S0 which is positive everywhere except for the
edge a0 where it is negative. For ˛ 2 S 0, its lift Q̨ D pr�1.˛/ is a partially stated tangle
diagram: it is stated everywhere except for end points on a0 \ a00, and the end points on
each of a0 and a00 are ordered by o0. Let Q̨C be the same Q̨ except that the order on a0 (and
hence on all edges) is given by the positive orientation.

For 0 � j � k, let sj . Q̨ / (resp. sj . Q̨C// be the stated tangle diagram which is Q̨
(resp. Q̨C) where the states on each of a0 and a00 are increasing and having exactly j
minus signs. Then sj . Q̨C/ is either equal to 0 in S.S0/ or belongs to the basis set B.S0/.

By Proposition 2.17 and then Proposition 2.14, we have, for some f .˛; j / 2 Z,

P. N�a.˛// D

kX
jD0

�
k

j

�
q4

sj . Q̨ / D

kX
jD0

�
k

j

�
q4

qf .˛;j /sj . Q̨
C/: (69)

Since P. N�a.ˇ//¤ 0, there is l such that sl . Q̌C/¤ 0 in S.S0/ and hence sl . Q̌C/ 2 B.S0/.
Using (69), we have

P. N�a..x// D
X
˛2S 0

kX
jD0

�
k

j

�
q4

qf .˛;j /c˛sj . Q̨
C/: (70)

As ˛ 2 S 0 can be recovered from Q̨ , if ˛ ¤ ˇ, then the two partially stated diagrams
Q̨ and Q̌ are not isotopic. It follows that sl . Q̌C/ ¤ sj . Q̨

C/ for all j and all ˛ ¤ ˇ. It
is also clear that sj . Q�C/ ¤ sl . Q�C/ for j ¤ l . Hence the right-hand side of (70) is not 0
since the basis element sl . Q̌C/ has non-zero coefficient, and all other elements sj . Q̨C/ are
either 0 or a basis element different from sl . Q̌

C/. Thus P. N�a..x//¤ 0, and consequently,
N�a.x/ ¤ 0. This completes the proof in Case 1.

Case 2: for all ˛ 2 S , we have P. N�a.˛//D 0. Identity (69) shows that sj . Q̨C/D 0 for all
0 � j � k and all ˛ 2 S 0. Incident with a0, there are two corners, the top left corner and
the bottom left corner. Similarly, incident with a00, there are the top right corner and the
bottom right corner; see Figure 30. A corner arc of Q̨ at one of these four corners has one
end stated and one end not stated, and it is called a negative (resp. positive) corner arc if
this only state is negative (resp. positive).

For ˛ 2 S 0 and � 2 ¹˙º, let TL�.˛/ be the number of top left corner arcs whose only
state is �. Define TR˙.˛/;BL˙.˛/;BR˙ .˛/ similarly.

Lemma 7.7. Suppose ˛ 2 S 0. One of the following two mutually exclusive cases happens:

(i) TL�.˛/ > 0 and BLC.˛/ > 0 or

(ii) BR�.˛/ > 0 and BRC.˛/ > 0.

Proof. Since s0. Q̨C/ is 0 in S.S0/, it has a bad arc. This implies either TL�.˛/ > 0 or
BR�.˛/ > 0.
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Assume TL�.˛/ > 0. Since ˛ does not have a bad arc, we conclude that TRC.˛/D 0.
Then, from sk. Q̨

C/D 0, we see that BRC.˛/ > 0. Again, since ˛ does not have a bad arc,
we conclude that BR�.˛/ D 0. Thus we have case (i) but not case (ii).

Assume BR�.˛/ > 0. Since ˛ does not have a bad arc, we conclude that BLC.˛/D 0.
Then, from s0. Q̨

C/D 0, we see that TRC.˛/ > 0. Again, since ˛ does not have a bad arc,
we conclude that BL�.˛/ D 0. Thus we have case (ii) but not case (i).

The cases of Lemma 7.7 partition S 0 into

S 0L D ¹˛ 2 S
0
j TL�.˛/BLC.˛/ > 0º; S 0R D ¹˛ 2 S

0
j BR�.˛/BRC.˛/ > 0º:

Lemma 7.8. If ˛ 2 S 0L, then N�a.˛/ D 0 in Gra
0

k . Similarly, if ˛ 2 S 0R, then N�a.˛/ D 0

in Gra
00

k .

Proof. Suppose ˛ 2S 0L. For E�D .�1; : : : ;�k/, the stated tangle diagram . Q̨ ; E�/ is defined to
be Q̨ with states on both a0 and a00 are sequence E� listed from top to bottom. By definition,

N�a.˛/ D
X
E�2¹˙ºk

. Q̨ ; E�/: (71)

Let . Q̨C; E�/L be Q̨C whose state on a00 is given by E� but whose state on a0 is given by
a permutation of E� such that the states are increasing on a0. By Proposition 2.14,

. Q̨ ; E�/
�
D . Q̨C; E�/L in Gra

0

k : (72)

If E� has at least one negative sign, then . Q̨C; E�/L has a bad arc in the bottom left corner
(because BLC.˛/ > 0) and hence is equal to 0 in S.S0/. If E� has at least one positive
sign, then . Q̨C; E�/L has a bad arc in the top left corner (because TL�.˛/ > 0) and hence
is equal to 0 in S.S0/. Thus we always have . Q̨C; E�/L D 0 in S.S0/. From (72) and (71),
we conclude that N�a.˛/ D 0 in Gra

0

k .
The other case follows from the above case by noticing that if one rotates Figure 30

by 180°, then the top left corner becomes the bottom right corner.

As ; ¤ S 0 D S 0L t S
0
R, one of S 0L and S 0R is non-empty. Without loss of generality,

we can assume that S 0L is not empty.
Let d D min¹TL�.˛/ j ˛ 2 S 0Lº and S 00 D ¹˛ 2 S 0L j TL�.˛/ D dº. Then S 00 ¤ ;.

Let PCW S.S0/! S.S0/ be the R-linear map defined on basis elements  2 B.S0/ by

PC./ D

´
 if I.; a0/ D d; I.; a00/ D k; all states on a0 areC;

0 otherwise:

For ˛ 2 S 00, let QQ̨ be the stated tangle diagram obtained from Q̨C by first removing
the d negative top left corner arcs, then providing states on a0 and a00 so that all states on
a0 are C and the states on a00 are increasing and having exactly d negative signs. Since
BR�.˛/ D 0, we see that QQ̨ is an element of the basis B.S0/. As ˛ can be recovered
from QQ̨ , the map ˛ ! QQ̨ from S 00 to B.S0/ is injective.

Let u be a top left corner arc whose both states areC.
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Lemma 7.9. For ˛ 2 S , one has

PC. N�a.˛/u
d / D

´
q�.k�d/.k�d�1/=2 QQ̨ if ˛ 2 S 00;

0 if ˛ … S 00:
(73)

Proof. One has S D .S 0R t S
0
L/ t .S n S

0/. If ˛ 2 .S n S 0/, then I.˛; a/ < k, and hence
PC. N�a.˛// D 0. If ˛ 2 S 0R, then by Lemma 7.8, one has N�a.˛/ D 0 in Gra

00

k which
means N�a.˛/ is a linear combination of elements  2 B with I.; a00/ < k. It follows
that PC. N�a.˛// D 0.

It remains to consider the case ˛ 2 S 0L D S
00 t .S 0L n S

00/. From (71),

PC.�a.˛/u
d / D

X
E�2¹˙ºk

PC.. Q̨ ; E�/u
d /: (74)

Recall that, for ˇ 2 B.S0/, one defines ıa0.ˇ/ as the sum of all the states of ˇ \ a0. From
the definition, if ıa0.ˇ/ ¤ k � d , then PC.ˇ/ D 0. If E� has m negative signs, where
m > d , then

ıa0.. Q̨ ; E�/u
d / D k � 2mC d < k � d;

and hence PC.. Q̨ ; E�/ud / D 0. Thus we can assume that, in the sum in (74), the number
of negative signs in E� is at most d .

Assume that TL�.˛/Dm. Note that them negative top left corner arcs of Q̨ are below
any other components of Q̨ . Hence the number of the first m components of E� must be
negative since otherwise one of the m top left corner arcs is bad and . Q̨ ; E�/ D 0 in S.S0/.
We conclude that if TL�.˛/ > d (that is, if ˛ 2 S 0L n S

00), then

PC.�a.˛/u
d / D 0:

Moreover, if TL�.˛/ D d (that is, ˛ 2 S 00), then

PC.�a.˛/u
d / D PC.. Q̨ ; E�d /u

d /;

where E�d 2 ¹˙ºk is the sequence whose first d components are � and all other compo-
nents are C. The d negative top left corner arcs of . Q̨ ; E�d / are all v, the corner edge with
negative states on both ends. Hence we have . Q̨ ; E�/ D QQ̨ 0vd , where QQ̨ 0 is the same as QQ̨
except that the order on a0 is negative. Using the height exchange move between positive
states (see equation (10)) and relation vu D 1, we get that

PC.. Q̨ ; E�d /u
d / D q�.k�d/.k�d�1/=2 QQ̨ ;

which proves (73) and completes the proof of the lemma.

Let us continue the proof of the theorem for Case 2. From Lemma 7.9, we have

PC. N�a.x/u
d / D

X
˛2S 00

c˛q
�.k�d/.k�d�1/=2 QQ̨ ;

which is non-zero since ¹ QQ̨ º are distinct elements of the basis B.S0/. The theorem is
proved.
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7.6. The bigon

The elements ˛�� 2 S.B/ are defined in Section 3.

Proposition 7.10. Let B be the bigon. There is an algebra isomorphism S.B/ŠRŒx˙1�

given by ˛CC ! x, ˛�� ! x�1, ˛C� ! 0, ˛�C ! 0.

Proof. A presentation of the algebra S.B/ Š Oq2.SL.2// is given by Theorem 3.4, with
generators a D ˛CC, b D ˛��, c D ˛�C, d D ˛�� and relations (37) and (38). The only
bad arcs in B are ˛�C D c and ˛C� D b. Thus S.B/D S.B/=	bad has a presentation like
that of Oq2.SL.2//, with additional relations b D c D 0. From the quantum determinant
relation in (38), we get ad D 1 in S.B/.

On the other hand, it is easy to check that the relations b D c D 0 and ad D 1 imply
all other relations in (37) and (38). Hence

S.B/ Š Rha; b; c; d i=.ad D 1; b D c D 0/ Š RŒa˙1�:

7.7. The triangle

Let P3 be the ideal triangle, with boundary edges a; b; c as in Figure 31. Let ˛; ˇ; 
be the corner arcs which are opposite respectively to a, b, and c. For �; � 2 ¹˙º and
� 2 ¹˛; ˇ; º, let �.��/ be the arc � with states � and � on the end points such that �
follows � along � counterclockwise (with respect to the vertex surrounded by �).

For an anti-symmetric n � n matrix A D .aij /ni;jD1, the quantum torus associated to
A is the algebra with presentation

Rhx˙1i ; i D 1; : : : ; ni=.xixj D q
aij xjxi /:

For basic properties of quantum tori, see for example [23, Section 2].
To the triangle P3, we associate the quantum torus T with presentation

T WD Rh˛˙1; ˇ˙1; ˙1i=.q˛ˇ D ˇ˛; qˇ D ˇ; q˛ D ˛/:

The cyclic group Z=3 D h� j �3 D 1i acts by algebra automorphisms on each of the
algebras S.P3/, S.P3/, and T as follows. In short, � is rotation by 2�=3 counterclockwise
about the center of the triangle. This rotation induces the algebra automorphism � of

Fig. 31. Edges a; b; c opposite to corner arcs ˛; ˇ;  .
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S.P3/; it also induces the algebra automorphism � of S.P3/. On T , � is given by

�.˛/ D ˇ; �.ˇ/ D ; �./ D ˛:

Theorem 7.11. The reduced skein algebra S.P3/ of the ideal triangle is isomorphic to
the quantum torus T . The isomorphism is Z=3-equivariant and given by

˛.CC/! ˛; ˛.C�/! q�1=2ˇ�1; ˛.�C/! 0; ˛.��/! ˛�1: (75)

Proof. By [22, Theorem 4.6], the algebra S.P3/ is generated by

X D ¹˛.�; �0/; ˇ.�; �0/; .�; �0/ j �; �0 2 ¹˙ºº

subject to the following relations and their images under � and �2:

ˇ.�; �/˛.�0; �0/ D q˛.�; �0/ˇ.�; �0/ � q2C ��0.�
0; �/;

˛.�; �/˛.C; �0/ D q2˛.C; �/˛.�; �0/ � q5=2C ��0 ;

˛.�;�/˛.�0;C/ D q2˛.�;C/˛.�0;�/ � q5=2C ��0 ;

˛.�; �/ˇ.�0;C/ D q2˛.C; �/ˇ.�0;�/ � q5=2.�; �0/;

˛.�;�/.C; �0/ D q2˛.�;C/.�; �0/C q�1=2ˇ.�0; �/:

As the only bad arcs are ˛.�;C/; ˇ.�;C/; .�;C/, the quotient S.P3/ is obtained by
adding the relations ˛.�;C/ D ˇ.�;C/ D .�;C/ D 0, and from this presentation,
one can check that the map given by (75) and its images under the action of Z=3 is an
isomorphism.

Here is an alternative, more geometric proof. First, in S.P3/, we have

˛.CC/˛.��/ D 1; ˇ.CC/˛.CC/ D q˛.CC/ˇ.CC/;

and all its images under Z=3. In fact, the first identity follows from Proposition 7.4,
and the second follows from the height exchange identity (10). It follows that the Z=3-
equivariant map f WT ! S.P3/ given by

f .˛/ D ˛.CC/; f .˛�1/ D ˛.��/; and images under Z=3;

gives a well-defined algebra homomorphism, as all the defining relations of T are pre-
served under f . In S.P3/, we have

˛.C�/ D q�1=2ˇ.CC/.��/;

which follows from the identity in Figure 17 (where the left-hand arc is stated to become
˛.C�/). Thus all elements in the generator set X are in the image of f . This shows that
f is surjective.

Let us show f is injective. The set ¹˛kˇmn j k; m; n; 2 Zº is an R-basis of T .
Assume that there is a finite set S � Z3 such that

f
� X
.k;m;n/2S

ck;m;n˛
kˇmn

�
D 0; ck;m;n 2 R: (76)
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Multiplying identity (76) on the left by f .˛k
0

ˇm
0

n
0

/ with large k0; m0; n0 and using
the q-commutations between ˛; ˇ;  , we can assume that k; m; n > 0 in (76). For each
.k; m; n/ 2 N3, let z.k; m; n/ be the stated simple tangle diagram consisting of k arcs
parallel to ˛, m arcs parallel to ˇ, and n arcs parallel to  , with all state positive. Note
that z.k; m; n/ 2 B.P3/. Clearly, the map zWN3 ! B.P3/ is injective. As the diagram
of f .˛kˇmn/ can be obtained from z.k;m;n/ by a sequence of height change moves of
positively stated end points, the first identity of (10) shows that

f .˛kˇmn/ D qg.k;m;n/z.k;m; n/

for some g.k;m; n/ 2 Z. From (70), we getX
.k;m;n/2S

ck;m;nq
g.k;m;n/z.k;m; n/ D 0:

As z.k;m; n/ are distinct elements of the basis B.P3/, this forces all ck;m;n D 0. Hence
f is injective.

7.8. The quantum trace map

Assume that S is triangulable, i.e. S is not one of the following: a monogon, a bigon,
a sphere with one or two punctures. A triangulation E of S is a collection consisting of
all boundary edges and several ideal arcs in the interior of S such that

(i) no two arcs in E intersect and no two are isotopic, and

(ii) if a is an ideal arc not intersecting any ideal arc in E , then a is isotopic to one in E .

It is known that if S is triangulable, then by splitting S along all interior ideal arcs
in E , we get a collection F .E/ of ideal triangles. By the splitting theorem, we get an
algebra embedding of S.S/ into a quantum torus

‚W S.S/!
O
F .E/

T :

In addition to the quantum torus T , we associate the quantum torus T 0 to the standard
ideal triangle P3:

T 0 WD Rha˙1; b˙1; c˙1i=.qab D ba; qbc D cb; qca D ac/:

One should think of a; b; c as the edges opposite to ˛; ˇ;  ; see Figure 31.
The cyclic group Z=3 D h� j �3 D 1i acts by algebra automorphisms on T 0 by

�.a/ D b; �.b/ D c; �.c/ D a:

There is a Z=3-equivariant algebra embedding T ,! T 0, defined by

˛ ! q1=2bc; ˇ ,! q1=2ca;  ! q1=2ab:
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Consider the composition trq given by

trq W S.S/
‚
,!

O
F .E/

T ,!
O
F .E/

T 0:

On the collection of all edges of all the triangles in F .E/, define the equivalence
relation such that a0 Š a00 if a0 and a00 are glued together in the triangulation. Then the
set of equivalence classes is canonically isomorphic to E . Let Y.E/ be the subalgebra ofN

F .E/ T 0 generated by all a0 ˝ a00 with a Š a0 and all boundary edges (each boundary
edge is equivalent only to itself). It is easy to see that the image of trq is in Y.E/. Thus trq
restricts to

trq W S.S/! Y.E/:

The algebra Y.E/ is a quantum torus, known as the Chekhov–Fock algebra associated to
a triangulation E of S; see [5, 13, 22]. The quantum trace map of Bonahon and Wong is
an algebra homomorphismbtrq W yS.S/! Y.E/, where yS.S/ is the coarser version of S.S/
defined using only (4) and (5); see Subsection 2.5.

Theorem 7.12. If E is a triangulation of S, then the algebra embedding trq W S.S/ ,!
Y.E/ is a refinement of the the quantum trace map of Bonahon and Wong in the sense
thatbtrq is the composition yS.S/ � S.S/

trq
,! Y.

Proof. In [22], an algebra homomorphism ~E W S.S/! Y.E/ is defined as the composi-
tion

S.S/ ,!
O
F .E/

S.P3/ ,!
O
F .E/

T 0;

where the map from S.P3/ to T 0 is exactly the composition S.P3/! S.P3/! T 0. It
follows that ~E is the composition S.S/ � S.S/

trq
,! Y. In [22], it is proved that btrq is

the composition
yS.S/ � S.S/

~E
�! Y:

Hencebtrq is also the composition yS.S/ � S.S/
trq
,! Y.

Besides giving another proof of the existence of the quantum trace map, Theorem 7.12
shows that the kernel ofbtrq is the ideal generated by relations (6), (7), and the ideal 	bad.

7.9. Comodule structure for S.S/

The Hopf algebra structure of S.B/ descends to a Hopf algebra of S.B/. We identify
S.B/ � RŒx˙1� using the isomorphism of Proposition 7.10. Then �.x/ D x ˝ x and
".x/ D 1.

Arguing exactly as in Subsection 4.1, one sees that, for each surface S and each edge
e of S, the algebra S.S/ has both a left and a right RŒx˙1�-comodule algebra structure
(which is equivalent to a Z-valued grading counting the number ofC and � states of each
skein along e).
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Proposition 7.13. (a) The map�eWS.S/! S.S/˝ S.B/ gives S.S/ a right comodule-
algebra structure over the Hopf algebra RŒx˙1�. Similarly, e� gives S.S/ a left
comodule-algebra structure over the Hopf algebra RŒx˙1�.

(b) If e1; e2 are two distinct boundary edges, the coactions on the two edges commute,
i.e. for instance

.�e2
˝ id/ ı�e1

D .�e1
˝ id/ ı�e2

:

In the reduced setting, though, Theorem 4.8 does no longer hold: indeed, with the
notation in there, if ˇ 2 B.S/ is a basis element intersecting a cutting edge exactly
once, then its image �.ˇ/ under the cutting morphism is �.ˇ/ D ˇ0CC C ˇ

0
��, where

ˇ0CC; ˇ
0
�� 2 B.S

0/ are identical except for their states on ˇ0 \ .c1 [ c2/. But it is not
difficult to check that ˇ0CC is balanced:

�c1
.ˇ0CC/ D ˇ

0
CC ˝ ˛CC C ˇ

0
C� ˝ ˛�C D ˇ

0
CC ˝ ˛CC D c2

�.ˇ0CC/

because the class of ˛�C D ˛C� D 0 2 S.B/, still ˇ0CC is not in the image of � .

8. The classical case: Twisted bundles

In this section, we will suppose that S is a connected, oriented surface with a non-empty
set of boundary edges and let o be the positive orientation of @S, i.e. that induced by the
orientation of S. We will prove that if q1=2 D 1, then S.S/ is isomorphic to the algebra
of regular functions on the affine variety of “twisted bundles” on S. A similar result for
the case when @S D ; is well known (see for instance [36]).

Fix an arbitrary Riemannian metric, and let US be the unit tangent bundle over
S, with the canonical projection � WUS ! S. A point in US is a pair .p; v/, where
p 2 S, v 2 TpS, kvk D 1. For each immersion ˛W Œ0; 1�! S, its canonical lift is the
path .˛.t/; P̨ .t/=k P̨ .t/k/ in US. In particular, since each edge e of @S is oriented by o,
it has a canonical lift Qe � @US; we will denote f@S WDSe�@S Qe. If we let �e be the edge
oriented in the opposite way, then we get a different lift, which we will denote .�e/�. Let
�f@S DSe�@S.�e/

� and˙f@S D f@S [ �f@S.
For a point x 2 S, the fiber O D ��1.x/ is a circle, and we will orient it according to

the orientation of S. It is clear that the free homotopy class of O does not depend on x.
For each boundary edge e, choose a point x 2 e. Let v 2 Tx.e/ be the unit tangent

vector with orientation o. Then both .x; v/ and .x;�v/ are in ��1.x/, and the half circle
of ��1.x/ going from .x; v/ to .x;�v/ in the positive direction is denoted by

p
Oe . The

exact position of x on e will not be important in what follows.

Definition 6 (Fundamental groupoids). Let X be a path connected topological space and
¹Eiºi2I disjoint contractible subspaces of X . The fundamental groupoid �1.X; ¹Eiºi2I /
is the groupoid (i.e. a category with invertible morphisms) whose objects are ¹Ei ; i 2 I º
and whose morphisms are the homotopy classes of oriented paths in X with end points
in
S
i2I Ei . A morphism of groupoids is a functor of the corresponding categories.
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Recall that a group is a groupoid with only one object.

Lemma 8.1 (Extension of morphisms). With the above notation, let E � X be a con-
tractible subspace disjoint from

S
i2I Ei . Then, given a morphism �W�1.X;¹Eiºi2I /!G

for some group G, an oriented path  connecting some Ei to E, and an arbitrary g 2 G,
there is a unique extension �0W�1.X; ¹Eiºi2I [ ¹Eº/! G of � such that �0./ D g and
�0.˛/ D �.˛/ for all ˛ 2 Mor.Ei ; Ej / for some i; j .

Proof. We sketch a proof. Let ˇ be a homotopy class of an oriented path connecting
E to some Ej ; write ˇ D .ˇ ı / ı �1. Observe that ˇ ı  2 Mor.Ei ; Ej /; thus � is
defined on it; hence define �0.ˇ/ D �.ˇ ı / � g�1. Similarly, if ˇ is a path connecting
Ej to E, define �0.ˇ/ D g � �.�1 ı ˇ/. Finally, if ˇ is an endomorphism of E, define
�0.ˇ/ D g � �. ı ˇ ı �1/ � g�1. We leave it to the reader to verify that this is indeed
a functor with the required properties.

We shall be interested in two particular groupoids: �1.S; @S/ and �1.US;f@S/. Note
that � W .US;f@S/! .S; @S/ induces a surjective morphism �� of groupoids.

Definition 7 (Flat twisted SL2.C/-bundle). A flat twisted SL2.C/-bundle (“twisted bun-
dle” in what follows to keep notation short) on S is a morphism �W �1.USI f@S/ !
SL2.C/ such that �.O/ D �Id.

By Lemma 8.1, we extend � to a morphism (with the same notation)

�W�1.USI˙f@S/! SL2.C/

such that, for every boundary edge e,

�.
p

Oe/ D

�
0 �1

1 0

�
: (77)

Since S is not a closed surface, its fundamental group �1.S/ is a free group.

Lemma 8.2. Suppose that @S ¤ ;. Then the set tw.S/ of twisted bundles on S is the
affine algebraic variety SL2.C/nCk , where

n D �1C #¹e � @Sº and k D rank.�1.S//:

In particular, the algebra �.S/ of its regular functions is generated by the matrix entries
of each of the copies of SL2.C/.

Proof. Since US is trivial, the fundamental groupoids �1.SI @S/ and �1.US;f@S/ are
isomorphic. More explicitly, we claim that there are non-canonical injective morphisms
of fundamental groupoids s�W �1.SI @S/! �1.US;f@S/. To build one, pick any non-
zero vector field on S which is positively tangent to the edges of @S: it exists because
we are not prescribing its behavior near the (non-compact) cusps. This trivializes US as
S � S1; let sWS! S � ¹1º be a section of � WUS! S.
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The above isomorphism allows to provide an isomorphism from the set of twisted
bundles to morphisms from �1.SI @S/! SL2.C/. Indeed, to each twisted bundle

�W�1.USIf@S/! SL2.C/;

we associate �0W�1.SI @S/! SL2.C/ defined as �0 D � ı s�. Reciprocally, given

�0W�1.SI @S/! SL2.C/;

we extend it to �W�1.USIf@S/! SL2.C/ by setting �.O/ D �Id and �j�1.S�¹1º/ D �
0.

To conclude, we now argue that the set of morphisms �0W�1.SI @S/! SL2.C/ is in
bijection with SL2.C/nCk . Indeed, fix a set of immersed smooth paths ˛1; : : : ; ˛n � S

connecting a fixed edge e0 � @S to each other edge of @S as well as a set of paths
whose end points are in e0 representing generators g1; : : : ; gk of �1.SI e0/ (which is
free because @S ¤ ;/. Since the fundamental group of S is free, the list of values
.�0.˛1/; : : : ; �

0.˛n/; �
0.g1/; : : : ; �

0.gk// 2 SL2.C/nCk provides the sought non-canonical
bijection.

Example 8.3. Let Pn be the n-polygon with vertices numbered in the orientation sense
from 0 to n � 1; then tw.Pn/ D SL2.C/n�1, where the n � 1 matrices are given by the
holonomies of the diagonals connecting the edge v0v1 to each other edge. Then �.Pn/D
O.SL2/˝n�1, and in particular, �.B/DO.SL2/ and �.P3/DO.SL2/˝O.SL2/ (where
by “equal” we mean “non-canonically isomorphic to”).

Remark 8.4. The notion of flat twisted SL2.C/-bundle is closely related to the one
considered in [36].

8.1. Trace functions for non-oriented curves

We will identify the states of a stated tangles with vectors in C2 as follows:

C WD

�
1

0

�
; � WD

�
0

1

�
:

If Ex; Ey 2 C2, let det.Exj Ey/ denote the determinant of the matrix whose first column is Ex
and whose second column is Ey.

We will say an immersion aW Œ0; 1�!S is in good position if a.0/; a.1/ 2 @S and the
tangent vectors Pa.0/; Pa.1/ are positively tangent to @S.

An immersion ˛W Œ0; 1�! S is transversal if ˛.0/; ˛.1/ 2 @S and ˛ is transversal
to @S at 0 and 1. One can bring such a transversal ˛ to an arc a in good position by an
isotopy (relative 0 and 1) in a small neighborhood of ˛.0/ and ˛.1/. The canonical lift of
a will be denoted by Ǫ and is called the good lift of ˛. Note that the homotopy class of Ǫ
is uniquely determined by ˛, and we will consider Ǫ as an element of �1.USIf@S/. Note
that the good lift of the inverse path ˛�1, defined by ˛�1.t/D ˛.1� t /, is not the inverse
of Ǫ since, before lifting, one has to isotope ˛�1 to a good position.

A stated transversal immersion is one whose end points are stated ¹˙º.
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Definition 8 (Trace). Let � be a twisted bundle on S.

� Assume ˛W Œ0; 1� ! S is a stated transversal immersion with state " at ˛.0/ and �
at ˛.1/. Define the trace of ˛ by

tr.˛/ WD det.�j�. Ǫ / � "/:

� Assume ˇW Œ0; 1�! S is an immersed closed curve (i.e. ˇ.0/ D ˇ.1/ and ˇ has the
same tangent at 0 and 1). Define the trace of ˇ by

tr.ˇ/ D tr.�.ě0//;
where ˇ0 is any smooth closed curve isotopic to ˇ such that ˇ0.0/ 2 @S.

In the first case, if ˛0 is homotopic to ˛ through stated transversal immersions and has
the same states as ˛, then tr.˛0/ D tr.˛/ (indeed, the homotopy lifts to a homotopy of Ǫ
and b̨0). In the second case, it is easy to see that tr.ˇ/ does not depend on the choice of ˇ0,
as the images under � of any two such ˇ0 are conjugate in SL2.C/ and hence have the
same trace.

Example 8.5. Let ˛W Œ0; 1�! S be a stated transversal immersion with state " at ˛.0/
and � at ˛.1/. If

�. Ǫ / D

�
a b

c d

�
;

then

tr.˛/ D det.�; �.˛/ � "/ D
�n" C �

C c d

� �a �b

:

We remark that the matrix on the right, expressing the values of the traces for an immersed
transverse stated arc ˛ is �.

p
O
�1
/�. Ǫ / (see equation (77)).

Remark 8.6. The notion of trace here is similar to the one introduced in [30], where trace
is defined only for oriented arcs. The novelty here is the good lift, which is used to define
traces for unoriented arcs and the use of twisted bundles as representations of fundamental
groupoids.

When ˛ is stated, we provide ˛�1 with states so that the state of ˛�1.t/ is equal to the
state of ˛.1 � t / for t D 0; 1.

Lemma 8.7. Suppose � is a twisted bundle on S.

(a) Let ˛ be a stated transversal immersion. One has

�.b̨�1/ D ��. Ǫ /�1:
As a consequence, tr.˛/ D tr.˛�1/.

(b) Let ˇW Œ0; 1�! S be an immersed closed curve such that ˇ.0/ 2 @S. Then

�. Q̌/�1 D �.ě�1/:
As a consequence, if  is any immersed closed curve, then tr./ D tr.�1/.
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Fig. 32. On the left, the unoriented horizontal arc can be lifted to US in two different ways (dotted),
depending on the choice of an orientation; their composition is homotopic inUS to O. On the right,
we exhibit a smooth oriented curve ˇ (solid) and a curve ˇ0 (dotted) which is regularly homotopic
to ˇ�1. The composition of the two is a nullhomotopic 8-shaped loop in US.

Proof. (a) A direct inspection shows that the homotopy class of the closed simple loop in
US given by the concatenation b̨�1 ı Ǫ is O (see the left-hand side of Figure 32). The
first equality follows as by definition � is a functor such that �.O/ D �Id.

To prove that tr.˛/ D tr.˛�1/, we compute the traces using the notation and content
of Example 8.5: if

�.b̨�1/ D ��. Ǫ /�1 D
�
�d b

c �a

�
;

then

tr.˛/ D det.�0; �.˛/ � "0/ D
�0n"0 C �

C c �a

� d �b

:

But, since the state at ˛�1.0/ is � and that at ˛�1.1/ is ", we get the claim in this case by
directly comparing with the transpose of the matrix of values provided in Example 8.5.

(b) Observe that if ˇ is the black curve depicted in the right-hand side of Figure 32,
then ˇ�1 is regularly homotopic to the dotted curve ˇ0 in the same picture. By construc-
tion, P̌0.0/ D P̌.0/, and ˇ0 ı ˇ is regularly homotopic to an eight-shaped immersed curve
in a disk. Then ě�1 is homotopic to ě0 in US, and it holds

�.ě0 ı Q̌/ D Id; thus �.ě�1/ D �. Q̌/�1:
The last statement now follows because �. Q̌/ 2 SL2.C/ so that tr.�. Q̌//D tr.�. Q̌/�1/.

Suppose ˛ D
S
˛i , where each ˛i is either a stated transversal non-oriented arc or

a non-oriented immersed closed curved. Define

tr.˛/ WD
Y
i

tr.˛i /:

Lemma 8.8. If q1=2 D 1, the map trW S.B/! �.B/ sending a stated skein to its trace is
an isomorphism of algebras. The same holds for trW S.Pn/! �.Pn/ for every n � 2.

Proof. Applying Theorem 3.4 at q1=2 D 1, we get an explicit algebra isomorphism

�W S.B/! O.SL2/I
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by Example 8.3, we know that �.B/ is isomorphic to O.SL2/. Furthermore, by Exam-
ple 8.5, the map tr is an algebra isomorphism. One argues similarly for Pn: applying
Corollary 4.21 at q1=2 D 1, we get an explicit algebra isomorphism

�W S.Pn/! O.SL2/˝n�1I

by the proof of Corollary 4.21, a system of algebra generators of S.Pn/ is easily seen to be
the arcs connecting the edge e0 to each other edge and stated arbitrarily. By Example 8.5,
the map tr on these generators provides a system of generators of O.SL2/˝n�1 which by
Example 8.3 is isomorphic to �.Pn/.

8.2. Splitting theorem for trace functions

In all this subsection, let c � S be an ideal arc oriented arbitrarily, let S0 be the result of
cutting S along c, and let prWS0!S be the projection and eprWUS0!US the projection
induced on the unit tangent bundles. Let pr�1.c/ D c1 [ c2 � @S

0 so that c1 has the
positive orientation and c2 the negative one with respect to the orientation induced by that
of S0 on the boundary. For each ci , let eci � US0 be its canonical lift and .�ci /� the
canonical lift of �ci . Similarly, let Qc be the canonical lift of c in US, and let .�c/� be
the canonical lift of �c.

Lemma 8.9. Each Œ˛� 2 �1.USIf@S/ can be written as a composition

Œ˛k � ı Œ˛k�1� ı � � � ı Œ˛1�

of homotopy classes of immersed paths ˛i W Œ0; 1�! US such that ˛i .¹0; 1º/ � f@S [ Qc
and ˛i \ ��1.c/ D @˛i \ Qc. Such a decomposition is unique up to insertion/deletions
of compositions Œ˛0� ı Œ˛0�1� for Œ˛0� 2 �1.USI Qc/ and replacement of Œ j̨ � by Œ˛000j � ı
Œ˛00j � ı Œ˛

0
j � for some Œ˛0j �; Œ˛

000
j � 2 �1.USIf@S[ Qc/ and Œ˛00j � 2 �1.USI Qc/ such that Œ j̨ �D

Œ˛000j � ı Œ˛
00
j � ı Œ˛

0
j � (or reciprocally).

Proof. Observe that ��1.c/ � US is homeomorphic to an annulus A D R � S1 so
that Qc D R � ¹1º. Represent the class Œ˛� by a smooth curve ˛W Œ0; 1� ! US so that
it is transverse to A; then homotope it so that it intersects A exactly along Qc: this pro-
vides an instance of the claimed splitting. If ˛0W .Œ0; 1�; ¹0; 1º/! .US;f@S/ is another
smooth representative of the same class intersecting A exactly along Qc, let h.t; s/W Œ0; 1� �
Œ0; 1�! US be a smooth homotopy between ˛ and ˛0 which is transverse to A. Then
h�1.A/ is a disjoint union of arcs and circles embedded in Œ0; 1� � Œ0; 1� with boundary in
Œ0; 1�� ¹0; 1º containing a finite number of maxima and minima with respect to the height
function given by the second coordinate s. Pick a finite number of heights s0 D 0 < s1 <
� � � < sn D 1 so that each strip Œ0; 1� � Œsi ; siC1� contains at most one maximum or min-
imum of the diagram of h�1.A/. Each immersed path ˛si .t/ WD h.t; si /W Œ0; 1� ! US

intersects A transversally a finite number of times, and we can then modify h locally
around h�1.A/\ .Œ0; 1� � ¹siº/ without inserting new maxima and minima so that ˛si .t/
intersects A only along Qc. Then the homotopies hjŒsi ;siC1� transform the immersed path
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˛si into ˛siC1
by the moves described in the thesis: passing through a minimum replaces

a smooth curve ˛ with a composition ˛0 ı ˛00 ı ˛000, where all of ˛; ˛0; ˛00; ˛000 intersect A
only along Qc and in their boundary; passing through a maximum has the converse effect.
Finally, a strip containing no maxima and minima corresponds to a finite number of moves
consisting in rewriting ˛ ı ˛0 with ˛ ıˇ ıˇ�1 ı ˛0, where ˇ 2�1.USI Qc/ is the homotopy
class represented by the restriction of h to a “vertical arc” of h�1.A/ \ Œ0; 1� � Œsi ; siC1�
(i.e. an arc joining Œ0; 1� � ¹siº and Œ0; 1� � ¹siC1º).

If �0W�1.US0Ie@S0/! SL2.C/ is a twisted bundle, then by Lemma 8.1, we can extend
it to a twisted bundle �00W�1.US0Ie@S0 [ .�c2/�/! SL2.C/ by setting

�00.
p

Oc2
/ D

�
0 �1

1 0

�
;

where
p

Oc2
is the path connecting ec2 and .�c2/� by following in the positive direction

the fiber ��1.x/ for some x 2 c2.

Proposition 8.10. There is a surjective map i�W tw.S0/ ! tw.S/ defined as follows.
Given ˛ 2 �1.USI f@S/, decompose it as ˛ D ˛k ı ˛k�1 ı � � � ı ˛1, where each ˛i 2
�1.USIf@S [ Qc/ intersects ��1.c/ at most in its end points and exactly along Qc (such
a decomposition exists by Lemma 8.9). Then, for each �0 2 tw.S0/, let

i�.�0/.˛/ D �00.˛0k/�
00.˛0k�1/ � � � �

00.˛01/;

where ˛0i D epr�1.˛i / is the lift of ˛i to �1.US0Ie@S0 [ .�c2/�/. Passing to the algebras
�.S/ and �.S0/ of regular functions on the algebraic varieties tw.S/ and tw.S0/, i�

induces an injective algebra morphism i W�.S/ ,! �.S0/ which we will call the “cutting
morphism” associated to c.

Proof. By Lemma 8.9, to check that i� is well-defined, it is sufficient to check that, for
each ˛, the choice of the decomposition does not affect the result of i�.�0/.˛/. But this is
evident if we make an exchange ˛2 ı ˛1$ ˛2 ı ˛

0 ı ˛0�1 ı ˛1 or ˛$ ˛0 ı ˛00 ı ˛000 as in
the statement of Lemma 8.9 because �0 is a functor.

To prove surjectivity, observe that, by Lemma 8.1, we can extend any morphism

�W�1.USIf@S/! SL2.C/

to �W�1.USIf@S [ Qc [ .�c/�/! SL2.C/ setting in particular

�.
p

Oc/ D

�
0 �1

1 0

�
:

Then, if ˛0 2 �1.US0Ie@S0 [ .�c2/�/, define �0W �1.US0Ie@S0 [ .�c2/�/ ! SL2.C/
by �0.˛0/ D �.epr�.˛0//, where epr�W�1.US0Ie@S0 [ .�c2/�/! �1.USIf@S[ .�c/�/ is
the morphism induced by the continuous map eprWUS0 ! US. Then, letting �0 be the
restriction of �0 to �1.US0Ie@S0/, we have that, by construction, � D i�.�0/. Surjectivity
of i� implies the injectivity of i .
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Fig. 33. On the left-hand side, the curve ˛ (horizontal, solid) intersects once c (vertical, solid). The
dotted curve is regularly homotopic to ˛ and is cut by c into ˛2 ı

p
O�1 and ˛1, where ˛i are in

good position in S0. On the right-hand side, ˛ intersects twice c with opposite orientations. The
dotted curve is regularly homotopic to ˛ and is cut by c in ˛3,

p
O�1 ı ˛2 ı

p
O�1 and ˛1, where

˛i are in good position in US0.

The following proposition tells us that the trace functions behave exactly as the skeins
under cutting along an ideal arc (see Theorem 2.15). Suppose ˛ is a stated transverse
smooth simple curve intersecting transversally c. Then ˛0 WD pr�1.˛/ is a transverse
smooth simple curve which is stated at every boundary point except for newly created
boundary points, which are points in pr�1.c/ \ ˛0 D .c1 [ c2/ \ ˛

0. A lift in S0 of ˛
is a stated transverse smooth simple curve ˇ in S0 which is ˛0 equipped with states on
pr�1.c \ ˛/ such that if x; y 2 pr�1.c \ ˛/ with pr.x/ D pr.y/, then x and y have the
same state. If jc \ ˛j D k, then ˛ has 2k lifts in S0.

Proposition 8.11 (Cutting trace functions). Let ˛ be a stated transverse smooth simple
curve intersecting transversally c. Then

i.tr.˛// D
X

tr.ˇ/; (78)

where the sum is taken on all the lifts in S0 of ˛ (i.e. as in Theorem 2.15). Furthermore,
if c0 � S is another ideal arc disjoint from c and i 0 is the associated cutting morphism, it
holds i 0 ı i D i ı i 0.

Proof. Since, by Proposition 8.10, we already know that i is a well-defined injective
algebra morphism, it is sufficient to check the statement for a system of stated transverse
smooth curves ¹i 2 I º which generate �.S/ as an algebra. By the proof of Lemma 8.2,
we can choose a finite system of such i such that ji \ cj � 2 for all i . Let ˛ 2 ¹i ; i 2 I º
be represented by a smooth immersion ˛W Œ0; 1� ! S intersecting transversally c with
states st.˛.0//D ", st.˛.1//D �; if j˛ \ cj D 0, the statement is true. If j˛ \ cj D 1, then
˛ D ˛2 ı ˛1, where ˛i are transverse smooth simple curves with ˛1.1/ D ˛2.0/ 2 c and
are partially stated by st.˛1.0// D ", st.˛2.1// D �. Furthermore, up to switching ˛ to
˛�1, we can suppose . P̨1.1/; Pc/ form a positive basis of S.

Let then Ai (resp. A) be the 2 � 2 matrix expressing the values of tr.˛i / (resp. tr.˛/)
with states in ¹˙º as in Example 8.5; then, as remarked in the example, we have Ai D
�.
p

Oc/
�1�.b̨i / (resp. A D �.

p
Oc/

�1�. Ǫ /) so that equation (78) can be rewritten in
this case as A D A2 � A1.
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Now, since the orientation induced by pr�1.c/ is negative on c2, then in US, the
good lift Ǫ of ˛ is homotopic to epr. b̨2/ ı pOc

�1
ı epr. b̨1/, where ˛i are depicted in the

left-hand side of Figure 33; therefore,

A D �.
p

Oc/
�1�. Ǫ / D �.

p
Oc/

�1�. b̨2/ ı �.pOc/
�1
ı �. b̨1/

D A2 � A1;

and the claim is proved.
Suppose now that j˛ \ cj D 2, where ˛ is a stated smooth immersion transverse to c;

by the proof of Lemma 8.2, we can suppose that the sign of the intersections of ˛ and c
is opposite, and we can split ˛ as ˛3 ı ˛2 ı ˛1, where ˛i are transverse smooth immer-
sions with ˛1.1/ D ˛2.0/; ˛2.1/ D ˛3.0/ and partially stated so that st.˛1.0// D " and
st.˛3.1// D �. Furthermore, up to switching ˛ and ˛�1, we can suppose that . P̨1.1/; Pc/
form a positive basis of S.

As above, let Ai D �.Oc/
�1 � �.b̨i / and A D �.Oc/

�1 � �. Ǫ /, and equation (78) is
equivalent toADA3 �A2 �A1. Then again, as shown in the right-hand side of Figure 33, ˛
is regularly homotopic in US to epr. b̨3/ ıpOc

�1
ı epr. b̨2/ ıpOc

�1
ı epr. b̨1/. Therefore,

we have

A D �.Oc/
�1
� �. Ǫ / D �.Oc/

�1
� �. b̨3/ � �.Oc/

�1
� �. b̨2/ � �.Oc/

�1
� �. b̨1/

D A3 � A2 � A1;

and the thesis follows.

8.3. The classical limit of stated skein algebras

Theorem 8.12. Suppose q1=2 D 1. The map sending a skein to its trace induces an
algebra isomorphism trW S.S/! �.S/.

Proof. We first claim that relations (4), (5), (6), (7) with q1=2 D 1 are satisfied by the
trace functions. By Lemma 8.8, the claim is true for bigons. But by Proposition 8.10,
cutting induces an injective algebra map; thus, to verify local relations, we can verify
them in a bigon containing the disk where the relations are depicted: this proves the claim
in general.

The algebra isomorphism is proved as follows: pick an ideal triangulation of S,
and apply to each edge of the triangulation Proposition 8.11 on the side of �.S/ and
Theorem 2.15 on S.S/. We get the following diagram of algebra morphisms of which
the horizontal lines are injective and which is commutative by Proposition 8.11 and
Theorem 2.15:

S.S/
,!
�����!

N
i S.Ti /

tr

??y ??ytr

�.S/
,!
�����!

N
i �.Ti /:

Since, by Lemma 8.8, the right vertical arrow is an isomorphism, we conclude.
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