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Abstract. We give another version of Huang’s proof that an induced subgraph of the n-dimensional
cube graph containing over half the vertices has maximal degree at least 4/n, which implies the Sen-
sitivity Conjecture. This argument uses Clifford algebras of positive definite signature in a natural
way. We also prove a weighted version of the result.
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1. Introduction

In [2], Huang proves a theorem about induced subgraphs of hypercube graphs, and uses
it to prove the Sensitivity Conjecture. The main result of that paper is as follows. Let
n > 1 be a integer, and let Q" be the n-dimensional (hyper)cube graph, with 2" vertices
given by {0, 1} and edges connecting points which differ at exactly one coordinate. For
a graph G, let A(G) denote the maximum degree of its vertices.

Theorem 1.1. Let H be a subgraph of O™ induced by a subset of (2"~ + 1) vertices.
Then A(H) > +/n.

Huang’s proof uses a sequence of matrices A,, which have size 2" x 2”. In this short
paper we observe that these matrices are the matrices of multiplication by a certain natural
element S in positive definite Clifford algebras. From this we are able to reformulate the
proof in terms of Clifford algebras.

We note that Karasev in [3] has related Huang’s matrices A, to exterior algebras;
these are special cases of Clifford algebras when the quadratic form is zero. By using
a nontrivial quadratic form for our Clifford algebras we are able to see a close connection
between the multiplicative structure of the Clifford algebras, and the combinatorics of the
cube graph and its subgraphs.

Our approach generalises to give a “weighted” version of the theorem as follows. Let
ai,...,a, be nonnegative real numbers. Each edge of Q" joins points whose coordinates
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differ in one place; for a vertex v denote by v (i) the unique vertex which differs from v
only in the ith place, so that the vertices adjacent to v in Q" are precisely v(1),...,v(n).
Let edges joining points whose coordinates differ in the ith place (i.e. vertices of the
form v and v(i)) have weight a;. Then for a vertex v of a subgraph H of Q”, its weighted
degree is the sum of the weights on adjacent edges. Denote by A,(H) the maximum
weighted degree of the vertices of H.

Theorem 1.2. Let H be a subgraph of Q" induced by a subset of (2"~! + 1) vertices,

and let the weights a1, . .., a, be any nonnegative real numbers. Then
Ag(H) > /a2 + -+ d2.
Setting a; = -+- = a, = 1 in Theorem 1.2 recovers Theorem 1.1.

A connection between Huang’s proof and Clifford algebras has also been given by
Tao [6].

After the first version of this paper was posted, the author was informed that essen-
tially identical observations (including Theorems 1.1 and 1.2) had independently been
made by T. Mrowka some weeks earlier, although they had not been published [5].

2. Clifford algebras

2.1. Background

We recall some well-known notions about Clifford algebras, which can be found in any
standard text or introductory article on the subject (e.g. [1, 4, 7]). Let V be a real vec-
tor space, equipped with a symmetric bilinear form B:V x V' — R, or equivalently,
a quadratic form Q: V — R, related by

Q) = B(v,v) and B(v,w) = %(Q(v +w) = Q(v) = Q(w)).

The Clifford algebra C1(V, Q) is the associative algebra freely generated by V, subject to
the relations

v2 = B(v,v) = Q(v) orequivalently vw + wv = 2B(v, w)

for all v, w € V. Alternatively, CI(V, Q) is given by the tensor algebra of 7/, modulo the
ideal generated by elements of the form v ® v — Q (v).

We are interested here in positive definite B and Q. If V has dimension n, and
e1,...,e, form an orthonormal basis of V' with respect to B, then the relations imply
thatforall 1 <i,j <n,

2 o = —e:e;
e; =1 and eje; = —eje;.

As a vector space, C1(V, Q) has dimension 2" and a basis is given by ¢;, ---¢;, , for each
sequence | <1i; < --- < iy < n.This includes the empty sequence, whose corresponding
basis element is the identity 1. In the positive definite case CI(V, Q) only depends on
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the dimension n and we write Cl(n) for CI(V, Q). It is known that Cl(n) is given as
a direct sum of one or two matrix algebras, over the real numbers, complex numbers or
quaternions, depending on n modulo 8.

The involution ¢: V — V given by ¢(v) = —v extends to an involution of Cl(n),
which we also denote ¢, such that foreach 1 <i; <--- < iy <n,

plei, -ei) = (—DFe; ey

2.2. Clifford algebras and cubes

We can identify the basis element e;, ---¢;, (Where 1 <i; <--- < iy < n) of Cl(n) with
the vertex of Q" with ones in positions iy, . .., i and zeroes elsewhere. Thus we write e,
for the basis element corresponding to the vertex v € {0, 1}". A general element x € Cl(n)
can be written uniquely as x = ZU Xyey, Where the sum is over vertices v € {0, 1}"
of Q™ and each x, € R.

Observe that multiplying a basis element e, by e;, for 1 <i < n sends e, t0 e,().
In other words, multiplication by e;, up to sign, permutes basis elements by translating
them along edges of Q" in the ith direction.

2.3. A Clifford element for counting degrees

Consider the element S = e; + --- + e, € Cl(n). Observe that $? = n.

For each vertex v then e, S is a signed sum of e,, over the vertices w adjacent to v
in Q", asis Se, (but in general with different signs). That is, e, S = Z?:l &iey(i), where
each g; = =£1.

Similarly, if x € Cl(n) is a sum of basis elements x = Zw <w €w, OVer some subset
W C {0, 1}, then the coefficient of e, in xS is given by a sum of +1s, one for each
vertex of W adjacent to v. Thus the coefficient of e, in xS is bounded above by the
degree of v in the subgraph of Q" induced by W. In this way, multiplication by S can be
used to bound degrees of vertices.

We therefore consider the map Mg:Cl(n) — Cl(n) given by multiplication on the
right by S,i.e. Mg(v) = vS. Observe that

(WVn+8)S =Vn(vn+S8) and (—/n+ 8)S = —Vn(—v/n+S)
s0 /n + S and —+/n + S are eigenvectors of Mg with eigenvalues /n and —./n, respec-

tively. For convenience write ¢+ = 4/n + S anda— = —/n + S.
Indeed then the principal left ideals Cl(n)o and Cl(n)a_ are contained in the /7 and
—\/n eigenspaces, respectively. Hence their intersection is zero, but as ¢y — o = 2./,

they span Cl(n). Hence they are the entire eigenspaces and we have
Cl(n) = Cl(n)ay @ Cl(n)a— = ker(Ms — /n) @ ker(Ms + /n).
Since aya— = a—a4 = 0, this is in fact a product of rings. Indeed we have

af =2vney and o = —2na-,
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so = ~ay and = =a_ are complementary orthogonal idempotents. One can check that

2Vn 21
the matrix of Mg with respect to the lexicographically ordered basis is the matrix A,
of [2].

The involution ¢ takes Cl(n)a 4 to Cl(n)a— and vice versa, hence both have dimension
271 as vector spaces.

More generally, if we take real numbers ay, ..., a,, we can define
S, =aje; + -+ apey.

Ifx =), cw €w,over some subset W C {0, 1}", then the coefficient of e, in x S is given
by a sum of *a; terms, one for each vertex of W adjacent to v. That is, the coefficient
of e, in xS is Zi gia;, where each ¢; = +1, and the sum is over 1 <i < n such that
v(i) € W. This coefficient is bounded above by the weighted degree of v in the subgraph
of Q" induced by w. We have S? = a? + --- + a2; multiplication Ms, by S, on the

right has eigenvectors
ar =+/a?+--+a2+ S,

with eigenvalues & /a? + --- + a2. If not all a; are zero, we obtain a direct sum of rings

Cl(n)ay @ Cl(n)a_ = ker(MSd —yJai+-+ a,%) @ ker(MSa +4ai+-+ a%).

3. Proofs of theorems

Let W C {0, 1}" be a set of 2"~! + 1 vertices of Q", and let H be the subgraph of Q"
induced by W. For a vertex v € W, denote by N (v) its neighbours in H, i.e. those vertices
in W adjacent to v. Thus |N(v)| is the degree of v in W, and in Theorem 1.1 we want to
show some |N(v)| > /7.

Let Cy C Cl(n) be the vector subspace spanned by ey, over all w € W. In other
words, Cg = @, ew Rew.

Proof of Theorem 1.1. As Cg has dimension 2"~ + 1, it has nontrivial intersection with
Cl(n)oy = ker(Ms — /n). Let 0 # x = Y, . Xwey lie in the intersection. Then one
has x(S — /n) = 0,s0 xS = /nx.

Now in x S, for any v € {0, 1}", the coefficient of e,, is given by a sum ZweN(U) EwXws
where each &y, = %1, whichis at most ), ¢ () | Xw | in absolute value. On the other hand,
in /n x the coefficient of e, is of course v/nxy. S0 \/nx, = ZweN(U) ewXyw and hence
Vnlxy| < ZweN(v) |xw |-

This implies that some vertex of H has degree at least 4/n. Indeed, let vy be a vertex
such that the coefficient x, is largest in absolute value, i.e. |xy,| > |x,| forall v € {0, 1}".
Then we have

Vilxwl £ Y Il =0 ) xuel = IN(o)||xul-
weN (vo) weN (vo)

Thus |N(vo)| > +/n, i.e. vo has degree at least 4/n, so A(H) > /n.
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Proof of Theorem 1.2. 1If all weights a; are zero, the result is immediate, so assume that

a? 4+ ---+ a2 > 0. We again have a nontrivial intersection of Cy with

Cl(n)as = ker(MSa — a4+ a%),

and we take 0 # x = ), . Xwey, in the intersection. We have

xS, = ,/a%+---+a%x,

and comparing coefficients of e, gives

n
Ja? o ax = Y e,

i=1

here each ¢; = %1 and the nonzero terms in this sum correspond precisely to the neigh-
bours of v in the vertex set W of H. Taking vo such that x,, is largest in absolute value
we then have

n
< Zailxvo(i)| < Xyl Z a;.

i=1 voG)eW

n
E €iaiXyo(i)

i=1

ai + -+ a2 |xy| =

Now >, (yew i is the weighted degree of the point vg in the vertex set W, and we have
shown it is at least va? + -+ + a2. "
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