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Abstract. The present work describes the asymptotic local shape of a graph drawn uniformly at
random from all connected simple planar graphs with n labelled vertices. We establish a novel
uniform infinite planar graph (UIPG) as quenched limit in the local topology as n!1. We also
establish such limits for random 2-connected planar graphs and maps as their number of edges tends
to infinity. Our approach encompasses a new probabilistic view on the Tutte decomposition. This
allows us to follow the path along the decomposition of connectivity from planar maps to planar
graphs in a uniform way, basing each step on condensation phenomena for random walks under
subexponentiality and Gibbs partitions. Using large deviation results, we recover the asymptotic
formula by Giménez and Noy (2009) for the number of planar graphs.
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1. Introduction

1.1. Main results

A graph is planar if it may be drawn in the plane so that edges intersect only at endpoints.
The reader may consult the book [52] for details of graph embeddings on surfaces. We are
interested in properties of the graph Pn selected uniformly at random among all simple
connected planar graphs with vertices labelled from 1 to n. Here the term simple refers to
the absence of loops and multiple edges.

Properties of the random graph Pn have received considerable attention in recent lit-
erature [6, 12, 21, 22, 31, 57]. We refer the reader to the comprehensive survey [54] for a
detailed account. Our main theorem shows that Pn admits a local limit.

Theorem 1.1. The uniform n-vertex connected planar graph Pn rooted at a uniformly
selected vertex vn admits a distributional limit OP in the local topology. We call OP the uni-
form infinite planar graph (UIPG). The regular conditional law L..Pn; vn/ j Pn/ satisfies

L..Pn; vn/ j Pn/
p
�! L. OP/: (1.1)

Benedikt Stufler: Institute of Discrete Mathematics and Geometry, Vienna University of
Technology, Wiedner Hauptstr. 8–10, 1040 Wien, Austria; benedikt.stufler@tuwien.ac.at

Mathematics Subject Classification (2020): Primary 60J80, 05C80; Secondary 60C05

https://creativecommons.org/licenses/by/4.0/
mailto:benedikt.stufler@tuwien.ac.at


B. Stufler 2

The quenched convergence in (1.1) implies the annealed convergence Pn
d
�! OP. See

Section 2 for details on these forms of convergence. The root degree of OP follows the
asymptotic degree distribution of Pn established in [21] and [57]. We also prove a ver-
sion of this theorem (with a different limit object) where vn is chosen according to the
stationary distribution instead. By a celebrated result of [33, Thm. 1.1], this implies that
the limit OP is almost surely recurrent. Milestones in the proof of our main result include
local limits for 2-connected planar structures:

Theorem 1.2. Let vB
n denote a uniformly selected vertex of the uniform 2-connected

planar graph Bn with n edges. There is a uniform infinite planar graph OB with

L..Bn; v
B
n / j Bn/

p
�! L. OB/: (1.2)

We call OB the uniform infinite 2-connected planar graph (UI2PG).

In fact, we prove a more general vertex-weighted version (see Theorem 9.13). There
is a natural coupling where OP is obtained from OB by attaching i.i.d. Boltzmann distributed
connected vertex-marked planar graphs at non-root vertices of OB, and a Boltzmann dis-
tributed doubly vertex-marked connected planar graph at the root of OB. (See Section 4.1
for the definition of the Boltzmann distribution of a class of structures.)

Theorem 1.3. Let vV
n denote a uniformly selected corner of the random non-separable

planar map Vn with n edges. There is a uniform infinite planar map OV with

L..Vn; v
V
n / j Vn/

p
�! L. OV/: (1.3)

We call OV the uniform infinite 2-connected planar map (UI2PM).

Again, we actually prove a more general version with vertex weights (see The-
orem 9.11). The degree distribution of the non-separable case has been studied in [23].
The well-known uniform infinite planar map has received considerable attention in the
literature [9, 16, 50, 61] (see also [4, 40]). It may be obtained from OV by attaching i.i.d.
Boltzmann distributed planar maps at each non-root corner, and a Boltzmann distributed
doubly corner-rooted planar map at its root corner.

The methods we develop in this paper yield a novel probabilistic view on the Tutte
decomposition [70] of these objects (see Sections 6 and 7). We do not re-prove or build
upon local convergence of uniform 3-connected planar maps and graphs with n edges.
This highly relevant result was established in [2] using a different approach. As a fur-
ther major application we recover a celebrated result in enumerative combinatorics by
Giménez and Noy:

Theorem 1.4 ([31, Thm. 1]). The number pn of labelled simple planar graphs with n
vertices satisfies the asymptotic

pn � cG�
�n
C n�7=2nŠ; (1.4)

with the constants cG and �C admitting analytic expressions given in (8.8) and (8.10).
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See Section 8, in particular Subsection 8.1, for a detailed proof. Giménez and Noy
obtained this result (concluding a sequence of rougher estimates [6, 18, 30, 56]) by per-
forming analytic integration and employing results of [6] on the number of 2-connected
graphs. An approach employing “combinatorial integration” was given in [13]. We
re-prove (1.4) by different methods, without any integration step at all, deducing the
asymptotic number of connected graphs from the number of 2-connected graphs using
results for the big-jump domain [19, Cor. 2.1] and properties of subexponential probabil-
ity distributions [28]. We emphasize that the approach of Giménez and Noy additionally
yields singular expansions for the generating series involved, and our proof does not.
Hence the methods of [31] yield stronger results, and the methods employed here work
under weaker assumptions.

Theorem 1.1 has applications concerning subgraph count asymptotics. By a general
result of [41, Lem. 4.3] and using the asymptotic degree distribution of Pn established in
[21], one gets:

Corollary 1.5. For any finite connected graphH the number emb.H;Pn/ of occurrences
of H in Pn as a subgraph satisfies

emb.H;Pn/
n

p
�! EŒemb�.H �; OP/�: (1.5)

HereH � denotes any fixed vertex-rooted version ofH , and emb�.H �; OP/ counts the num-
ber of root-preserving embeddings of H � into OP.

The study of the number of pendant copies (or appearances) of a fixed graph in Pn
was initiated in [49], and a normal central limit theorem was established in [32, Sec. 4.3].
The difficulty of studying emb.H;Pn/ stems from the fact that it requires looking inside
the giant 2-connected component of Pn, whereas pendant copies lie with high probability
in the components attached to it. It is natural to conjecture convergence to a normal limit
law for the fluctuations of emb.H; Pn/ around nEŒemb�.H �; OP/� at the scale

p
n. Such

a result has recently been established for the number of triangles in random cubic planar
graphs [55], and for the number of double triangles in random planar maps [25]. In light
of [41], it would be interesting to know whether such a central limit theorem may be
established in a way that applies to general sequences of random graphs that are locally
convergent in some strengthened sense.

Apart from the asymptotic local shape of random planar graphs studied in the present
work, it is desirable to describe their asymptotic global shape. Several models of ran-
dom planar maps are known to admit the Brownian map as Gromov–Hausdorff scaling
limit [43, 51] as their size tends to infinity. One of the key techniques is that planar maps
admit bijective encodings in terms of well-labelled trees. These tree-like encodings facil-
itate the asymptotic enumeration of planar maps, and convergence of these well-labelled
trees towards a Brownian tree equipped with a label process facilitates the description of
the asymptotic global shape of random planar maps. However, no such direct encodings
are known for planar graphs, and this is one of the main difficulties in enumerating planar
graphs and studying their shape.
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1.2. Summary of the main theorem’s proof

A quenched local limit for the random planar map Mtn with n edges and weight t > 0 at
vertices was established in [66]. We pass this convergence down to a quenched limit for
the non-separable core V.Mtn/. For this, we employ a quenched version of an inductive
argument discovered in [64, Thm. 6.59]. The idea is that we have full information about
the components attached to the core. The neighbourhood of a uniformly selected corner
of Mtn gets patched together from a connected component containing it, a neighbour-
hood in the core, and neighbourhoods in components attached to the core neighbourhood.
Expressing this yields a recursive equation, which by an inductive argument allows us to
prove convergence of V.Mtn/. It is important to note that V.Mtn/ has a random size, hence
a priori properties of V.Mtn/ do not carry over automatically to properties of the uniform
non-separable planar map Vtn with n edges and weight t at vertices.

We reduce the study of the non-separable core to the study of non-serial networks
using a Gibbs partition result of [62]. We proceed to establish a novel fully recursive tree-
like combinatorial encoding for non-serial networks in terms of a complex construct that
we call NR-networks. This allows us to generate a non-serial network by starting with a
random network NR where one edge is marked as “terminal”. The process proceeds recur-
sively by substituting non-terminal edges by independent copies of NR until only terminal
edges are left. This allows us to apply recent results of [65] on subcritical branching pro-
cesses, yielding a local limit theorem for the number of edges in a giant NR-core NR.Mtn/ of
the V -core V.Mtn/, and implies that the network V.Mtn/ behaves like a network obtained
from the NR-core NR.Mtn/ by substituting all but a negligible number of edges by independ-
ent copies of the Boltzmann distributed NR-network NR. If we choose any fixed number of
corners independently and uniformly at random, the corresponding NR-components con-
taining them will follow size-biased distributions by the famous waiting time paradox.
This gives us full information on the NR-components in the vicinity of these components.
Since we substitute at edges, the resulting recursive equations for the probability that
neighbourhoods in V.Mtn/ have a fixed shape do not allow for the same inductive argu-
ment as before. The reason is that the event that a radius r neighbourhood in V.Mtn/ has
a fixed shape with k edges may correspond to configurations with more than k edges in
an r-neighbourhood in NR.Mtn/, since components of edges between vertices at distance
r from the centre do not always contribute to the r-neighbourhood in V.Mtn/. We solve
this problem by abstraction, working with a more general convergence-determining fam-
ily of events (instead of shapes of neighbourhoods we look at shapes of what we call
communities, see the proof of Lemma 9.8) that allows the induction step to work.

Having arrived at a quenched local limit for the NR-core, we again apply the Gibbs
partition result of [62] to deduce convergence of what we call the NO-core NO.Mtn/ and
what is a random sized map obtained from a 3-connected planar map by blowing up
edges into paths. As we have at hand a local limit theorem for the number of edges of
NO.Mtn/, we may transfer properties of NO.Mtn/ to other random sized NO-networks satisfying

a similar local limit theorem (but with possibly different constants). For example, we may
define similarly the NO-core NO.Vtn/ of Vtn. The quenched convergence of NO.Mtn/ transfers
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to quenched local convergence of NO.Vtn/. The arguments we used to pass convergence
from V.Mtn/ to NO.Mtn/ may be reversed to pass convergence from NO.Vtn/ to Vtn, yielding
a quenched local limit for Vtn.

Whitney’s theorem ensures that we may group NO-maps into pairs such that each pair
corresponds to a unique graph. We call such graphs O-graphs. NO-networks and O-graphs
form the link between planar maps and planar graphs in our proof. We could have pro-
ceeded further to work with 3-connected planar maps and graphs instead, but this is not
necessary for our arguments.

Networks that encode 2-connected planar graphs differ from the networks that encode
2-connected planar maps, since we do not allow multiple edges and do not care about
the order in parallel compositions. But guided by the fully recursive decomposition for
non-serial networks encoding maps, we establish a somewhat more technical novel fully
recursive decomposition for non-serial networks encoding graphs. The price we have to
pay is that this decomposition is no longer isomorphism-preserving. We stress this point
in §6.3.2. This is not an issue or downside for the present work, which concerns exclus-
ively labelled planar graphs. However, future applications to random unlabelled planar
graphs will require careful consideration and further study of how this step affects the
symmetries. The decomposition allows us to argue analogously as for planar maps (again
using repeated application of the authors’ results on Gibbs partitions [62] and subcritical
branching processes [65]). Hence quenched local convergence of the random 2-connected
planar graph Btn with n edges and weight t at vertices follows from the corresponding con-
vergence of a giant O-core O.Btn/, obtained via a transfer from the core NO.Mtn/.

If we condition the 2-connected core of the random planar graph Pn to have a fixed
number m of edges, we do not obtain the uniform distribution on the 2-connected planar
graphs with m edges. This effect does not go away as n tends to infinity. Instead, a result
of [32] shows that the 2-connected core has a vanishing total variational distance from a
mixture of .Btn/n�1 for the special case of vertex weight t D �B , the radius of conver-
gence of the generating series for 2-connected planar graphs. This allows us to deduce
quenched local convergence of the 2-connected core B.Pn/ of the random connected
planar graph Pn. A quenched extension of [64, Thm. 6.39] then yields quenched conver-
gence of Pn, completing the proof of Theorem 1.1.

1.3. Notation

All unspecified limits are as n!1. For any Polish space S we let M1.S/ denote the
collection of probability measures on the Borel � -algebra B.S/. We equip M1.S/ with
the weak convergence topology, making it a Polish space. Given an S -valued random
variable X defined on some probability space .�;F;P /, we let L.X/ 2M1.S/ denote
its law. If Y W �! T is a random variable with values in some Polish space T , we let
L.X j Y / denote the conditional law of X given Y .

For two sequences .Xn/n and .Yn/n of random variables with values in S we write

Xn
d
�Yn if their total variation distance dTV.Xn;Yn/DsupA2B.S/ jP .Xn2A/�P .Yn2A/j
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tends to zero. We say an event holds with high probability if its probability tends to 1
as n becomes large. Convergences in probability and in distribution are denoted by

p
�!

and
d
�!. For any sequence an > 0 we let op.an/ denote an unspecified random variable

Zn such that Zn=an
p
�! 0. Likewise Op.an/ is a random variable Zn such that Zn=an is

stochastically bounded.

2. Local convergence

2.1. The local topology

The local topology quantifies how similar two rooted graphs are in the vicinity of the
root vertices. We briefly recall the relevant notions and refer the reader to the elegant
presentation in [17] for details.

Let G denote the collection of (representatives of) vertex-rooted locally finite con-
nected simple graphs viewed up to root-preserving graph isomorphism. For any integer
k � 0 we may consider the subset Gk � G of graphs with radius at most k, equipped
with the discrete topology. The projection Uk W G ! Gk maps a rooted graph G� to the
k-neighbourhood Uk.G�/ of its root vertex. The local topology on G is the coarsest topo-
logy that makes these projections continuous. This projective limit topology is metrized
by

dloc.G
�;H �/ D

1

1C sup ¹k � 0 j Uk.G�/ D Uk.H �/º
; G�;H � 2 G;

making .G; dloc/ a Polish space. Analogously, the collection M of corner-rooted locally
finite planar maps may be endowed with a local metric. We will always implicitly mean
convergence in M when talking about local convergence of random maps, so that the limit
preserves the embedding. Distributional convergence of a sequence .G�n/n�0 of random
elements of G or M is equivalent to distributional convergence of each neighbourhood
Uk.G�n/, k � 0, as n tends to infinity.

Given a finite graph or a finite planar map G there are two natural ways to select a
random root vertex: either uniformly or with probability proportional to the vertex degree.
The latter is called the stationary distribution, and also corresponds to selecting a uniform
corner of a planar map.

2.2. Convergence of random probability measures

The set M1.G/ of probability measures on the Borel � -algebra of G is a Polish space
with respect to the weak convergence topology. Given a random finite connected simple
graph G, we may view the law of the rooted graph obtained via the uniform distribution
or stationary distribution on the vertex set of G as a random probability measure. That is,
it is a random element of the space M1.G/. Convergence in probability of such random
probability measures may be characterized as follows.
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Proposition 2.1. Let �;�1; �2; : : : be random Borel probability measures on G , defined
on a common probability space .�;F;P /. The following statements are equivalent.

(1) �n
p
�! �, that is, dP.�n; �/

p
�! 0 for the Prokhorov distance dP.

(2) E�n Œf �
p
�! E�Œf � for each bounded continuous function f W G ! R.

(3) Each subsequence .n0/ has a subsequence .n00/ with �n00.!/! �.!/ for almost all
! 2 �.

(4) �n.Uk.�/ D H �/
p
�! �.Uk.�/ D H

�/ for each k � 0 and every finite simple rooted
graph H �.

An analogous statement holds for random planar maps and random measures on M.

Proof. The equivalence of the first three conditions is a classical property of general ran-
dom measures, and the fourth condition is a special case of the second. It remains to show
that the fourth condition already implies one of the others.

Any open set in G is the countable union of pre-images U�1
k
.H �/ with k � 0

and H � 2 G a graph with radius at most k. Hence the indicator random variables
.1Uk.�/DH�/k;H� form a countable convergence-determining family by [8, Thm. 2.2]. Let-
ting .fi /i�1 denote a fixed ordering of this family, it follows that the metric

dl.�; �
0/ D

X
i�1

1

2i
jE� Œfi � � E�0 Œfi �j; �; �0 2M1.G/;

induces the weak convergence topology on M1.G/ [60, Ex. B.9].
Suppose that the fourth condition holds. It follows by a diagonalizing argument that

any subsequence .n0/ has a subsequence .n00/ such that almost all ! 2� have the property
that E�n00 .!/Œfi �!E�.!/Œfi � for all i � 1. Thus dl.�n00.!/;�.!//! 0 and consequently
�n00.!/! �.!/ for almost all ! 2 �.

For example, if �n is the uniform rooting of a random simple finite connected
graph, then �n.Uk.�/ D H �/ equals the percentage of vertices whose k-neighbourhood
equals H �. If �n is the stationary distribution, it equals the percentage of oriented edges
with the k-neighbourhood of the origin being equal to H �.

Proposition 2.2. Let Gn be a sequence of random finite simple connected graphs. Let
vn; v

.1/
n ; v

.2/
n denote i.i.d. random vertices of Gn, and let OG; OG.1/; OG.2/ be i.i.d. random

elements of G . The following statements are equivalent.

(1) L..Gn; vn/ j Gn/
p
�! L. OG/.

(2) ..Gn; v
.1/
n /; .Gn; v

.2/
n //

d
�! . OG.1/; OG.2//.

(3) For any integer k � 0 and any two graphs H �1 ; H
�
2 2 G with radius at most k,

P .Uk.Gn; v
.1/
n / D H �1 ; Uk.Gn; v

.2/
n / D H �2 /! P .Uk. OG/ D H �1 /P .Uk. OG/ D H

�
2 /.

An analogous statement holds for random planar maps and random measures on M.
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Proof. The equivalence of the first and second condition follows from general results by
[11, Lem. 2.3]. In detail, consider the bounded Lipschitz metric

dBL.�; �
0/ D sup

f

jE� Œf � � E�0 Œf �j; �; �0 2M1.G/;

with f ranging over all functions f W G ! Œ�1; 1� that are Lipschitz continuous with
Lipschitz constant 1. By [11, Lem. 2.3],

L..Gn; v
.1/
n /; .Gn; v

.2/
n //! L. OG/˝ L. OG/ (2.1)

in the weak convergence topology is equivalent to

dBL.L..Gn; vn/ j Gn/;L. OG//
p
�! 0: (2.2)

As dBL induces the weak convergence topology on M1.G/ by [11, Lem. 2.4], it follows
by Proposition 2.2 that (2.2) is equivalent to

L..Gn; vn/ j Gn/
p
�! L. OG/: (2.3)

Hence condition (1) and (2) of Proposition 2.2 are equivalent. Condition (3) is a special
case of (2). It remains to show that (3) already implies (2). Since Ui ı Uj D Ui for all
integers j � i � 0, it follows from (3) that

.Uk.Gn; v
.1/
n /; U`.Gn; v

.2/
n //

d
�! .Uk. OG

.1//; U`. OG
.2/// (2.4)

for all k; ` � 0. Hence

..Gn; v
.1/
n /; .Gn; v

.2/
n //

d
�! . OG.1/; OG.2//:

Using the language of statistical physics, we may call .Gn; vn/
d
�! OG the annealed

version of the limit, and L..Gn; vn/ j Gn/
p
�! L. OG/ the quenched version. See also [36,

Sec. 7] for similar terminology regarding fringe subtree count asymptotics. [41] used the
quenched version of convergence in the context of the local topology for applications
concerning subgraph counts.

The following observation is an easy exercise, which will be useful later on.

Proposition 2.3. Let .Gn; un/ be a sequence of random finite vertex-pointed connected
graphs. Let vn be chosen according to the stationary or uniform distribution on the vertex
set. Suppose that .Gn; vn/ has a distributional limit in the local topology. If the number

jGnj of vertices satisfies jGnj
d
�!1, then dGn.vn; un/

d
�!1.

Proof. Let v0n be drawn independently of vn and according to the same law. The conver-
gence of .Gn; vn/ implies that for any integer r � 1 the numbers of edges and vertices in

the neighbourhood Ur .Gn; vn/ are stochastically bounded. Since jGnj
d
�!1, this implies

that v0n lies outside of Ur .Gn; vn/ with high probability. As r � 1 was arbitrary, this
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yields dGn.vn; v
0
n/

d
�! 1. Now suppose that dGn.vn; un/ does not converge in distri-

bution to infinity. Then there is an " > 0, a constant r � 1, and a subsequence .n0/
such that along that subsequence P .dGn.vn0 ; un0/ � r/ � ". By the triangle inequal-

ity, it follows that P .dGn.vn0 ; v
0
n0/ � 2r/ � "

2, contradicting dGn.vn; v
0
n/

d
�! 1. Hence

dGn.vn; un/
d
�!1.

All statements for random graphs in the present section hold analogously for random
planar maps and random measures on the Borel � -algebra of M.

3. Condensation in simply generated trees

3.1. Trees and random walk

A detailed exposition of simply generated trees may be found in the comprehensive sur-
vey [36]. A planted plane tree is a rooted unlabelled tree T , where the offspring of any
vertex v is endowed with a linear order. We let dCT .v/ denote the outdegree of v. The
number of vertices of T is denoted by jT j. Given a weight sequence w D .!k/k�0 with
!0 > 0 and !k > 0 for at least one k � 2, we define the weight !.T / D

Q
v2T !dC

T
.v/

.
The corresponding generating series for the class Z of finite planted plane trees satisfies

Z.z/ D z�.Z.z//: (3.1)

with �.z/ WD
P
k�0 !kz

k . Letting �� denote the radius of �.z/, we define the parameter

� D lim
t%��

�0.t/t

�.t/
: (3.2)

For 0 < � � 1 we set � D �� . For � > 1 we let � denote the unique positive real number
with ��0.�/ D �.�/. We let � denote a random non-negative integer with probability
generating function EŒz� �D �.�z/=�.�/. The following result is given in [36, Secs. 3, 7]
and [15, Cor. 18.17].

Lemma 3.1. Suppose that � > 0. The simply generated tree Tn is distributed like a
�-Galton–Watson tree T conditioned on having n vertices. We have EŒ�� D min.1; �/ and
Z.z/ evaluated at its radius of convergence �Z D �=�.�/ <1 equals Z.�Z/ D � <1.
Moreover,

Œzn�Z.z/ D

�
�

�.�/

��n
�

n
P .�1 C � � � C �n D n � 1/; (3.3)

with .�i /i�1 denoting independent copies of �.

It follows from the results for the big-jump domain in random walk, established in
[19, Cor. 2.1] in a more general context, that if

P .� D n/ D f .n/n�1�˛ (3.4)
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for some constant ˛ > 1 and a slowly varying function f , then for each " > 0,

lim
n!1

sup
x�"CEŒ��

ˇ̌̌̌
P .�1 C � � � C �n D nx/

P .� D bn.x � EŒ��/c/
� 1

ˇ̌̌̌
D 0: (3.5)

Hence if EŒ�� < 1, then

1

n
P
� nX
iD1

�i D n � 1
�
� P .� D bn.1 � EŒ��/c/ �

f .n/

.n.1 � EŒ��//1C˛
: (3.6)

Thus in this setting, (3.3) simplifies to

Œzn�Z.z/ �

�
��

�.��/

��n
n�1�˛

��f .n/�
1 �

�0.��/��
�.��/

�1C˛ : (3.7)

3.2. Condensation

Setting � D min.˛; 2/, we let X denote the � -stable random variable with Laplace expo-
nent EŒexp.��X/� D exp.�� /. Let h be the density of X . In [36, Thm. 19.34] and [39,
Thm. 1] limits concerning the maximum degree �.Tn/ of the simply generated tree Tn in
the condensation regime were established. The following extension was recently given in
[65, Thm. 1.1].

Lemma 3.2. Suppose that EŒ�� < 1 and that (3.4) holds. Then there is a slowly varying
function g such that

P .�.Tn/ D `/ D
1

g.n/n1=�

�
h

�
.1 � EŒ��/n � `

g.n/n1=�

�
C o.1/

�
(3.8)

uniformly for all ` 2Z. If f converges to a constant, then g may be chosen to be constant.

A marked plane tree is a (planted) plane tree with a distinguished vertex. For EŒ�� < 1
we have EŒjTj� <1. This allows us to define the size-biased tree T� with distribution

P .T� D .T; v// D
P .T D T /

EŒjTj�
: (3.9)

We let Tı denote a random marked tree that is distributed like T� conditioned on having a
marked leaf.

The fringe subtree of a plane tree at a vertex is the subtree consisting of the vertex
and all its descendants. The simply generated tree Tn may be completely described by the
ordered list .Fi .Tn//1�i��.Tn/ of fringe subtrees dangling from the lexicographically first
vertex v� with maximum outdegree�.Tn/, and the marked tree F0.Tn/ obtained from Tn
by marking the vertex v� and cutting away all its descendants.

In [37], [36, Thm. 20.2], [1, Thm. 1.3], and [39, Cor. 2.7, Thm. 2] limits concerning
F0.Tn/ and the list .Fi .Tn//1�i��.Tn/ are proved. The following extension is given in
[65, Thm. 1.2].
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Lemma 3.3. Suppose that EŒ�� < 1 and that (3.4) holds. Setting C WD 2EŒjTj�, for any
sequence .tn/n�1 of integers with tn !1 we have�
F0.Tn/; .Fi .Tn//1�i��.Tn/�tn ;1P�.Tn/

iD�.Tn/�tn
jFi .Tn/j�Ctn

� d
� .Tı; .Ti /1�i��hni�tn ; 0/

for

�hni WD sup
°
d � 1

ˇ̌̌
jTıj C

dX
iD1

jTi j � n
±
:

The dependence of�hni on .Tı; .Ti /i�1/may be dealt with using the following corol-
lary from the proof of [65, Cor. 1.5]:

Lemma 3.4. Suppose that EŒ�� < 1 and that (3.4) holds. Let �Œn� denote an identically
distributed copy of �.Tn/ that is independent of Tı and .Ti /i�1. Let 0 < ı < 1 � EŒ��
and " > 0 be given. There are constants 0 < c < C , N0 > 0 and events .En/n�1 .each
consisting of a collection of finite sequences of finite trees, with the first tree carrying a
marked leaf / such that for all n > N0,

P
��
F0.Tn/; .Fi .Tn//1�i��.Tn/�ın

�
2 En

�
> 1 � ";

P
��

Tı; .Ti /1�i��Œn��ın
�
2 En

�
> 1 � "

and uniformly for all sequences S 2 En,

c <
P ..F0.Tn/; .Fi .Tn//1�i��.Tn/�ın/ D S/

P ..Tı; .Ti /1�i��Œn��ın/ D S/
< C:

We are also going to require knowledge on the vicinity of some fixed number k � 1
of uniformly and independently selected vertices of Tn. For k D 1 this question was
answered in [63] in a very general setting. In the specific setting of Lemmas 3.3 and 3.4,
we may study an idealized version QTn of Tn instead, where F0.Tn/ is replaced by Tı

and Fi .Tn/ is replaced by an independent copy of T for each 1 � i � �.Tn/. Here we
assume that Tı and the independent copies of T are independent of �.Tn/. We let QT�.k/n

denote the result of marking k uniformly and independently selected vertices of QTn, and
let T�;1; T�;2; : : : denote independent copies of T�.

Corollary 3.5. Suppose that EŒ�� < 1 and that condition (3.4) is satisfied. Then�
F0. QT

�.k/
n /; .Fi . QT

�.k/
n //1�i��.Tn/

� d
� .Tı; . QTi /1�i��.Tn//: (3.10)

Here QTi is defined by letting j1; : : : ; jk be a sequence of distinct integers between 1 and
�.Tn/, selected uniformly at random, and setting

QTi WD

´
Ti ; i … ¹j1; : : : ; jkº;

T�;r ; i D jr with 1 � r � k:
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Proof. It is clear that with high probability all k marked vertices are going to be part of
distinct fringe subtrees dangling from the vertex with maximal outdegree in QTn.

We set NTi D .Ti ; vj / when vj 2 Ti for some 1 � j � k, and NTi D Ti otherwise. For
any sequence .T1; : : : ; T`/ of planted plane trees among which precisely k selected trees
T`1 ; : : : ; T`k have a marked vertex, with ` WD �.Tn/ we have

P .. NTi /1�i�` D .T1; : : : ; T`/ j `/

P .. QTi /1�i�` D .T1; : : : ; T`/ j `/
D

kY
jD1

.` � j C 1/EŒjTj�P`
iD1 jTi j �

Pj�1
rD1 jT`r j

:

By the law of large numbers, it follows that . NTi /1�i�`
d
� . QTi /1�i�`.

4. Enriched tree encodings and sampling procedures

Combinatorial bijections may serve to reduce the study of complex random graphs to the
study of random structures that are more tractable by probabilistic methods. The notion of
enriched trees in the framework of combinatorial species additionally allows for a unified
view on a large class of (random) structures.

4.1. Combinatorial species of structures

A detailed account of combinatorial species may be found in the pioneering work [38]
and the comprehensive book [7]. The present section only aims to give a brief informal
recap.

Informally speaking, a weighted combinatorial species F is a collection of labelled
combinatorial structures (such as trees or graphs) which is closed under isomorphism.
Any structure is assigned a weight, which for our purposes will always be a non-negative
real number. The default case is where each structure receives weight 1, and we will
explicitly state whenever we deviate from this.

Each structure also has an underlying finite set (such as the corners of a map or the ver-
tices of a graph), and weight-preserving isomorphisms are obtained by relabelling along
bijections between underlying sets. We refer to the elements of the set as labels or atoms.

The collection of structures over some fixed set U is denoted by F ŒU �, and we use the
notation Fn for U D ¹1; : : : ; nº. The size jF j of an F-structure F is given by the number
of elements of its underlying set. We may form the exponential generating series F .z/

where the coefficient Œzn�F .z/ of zn is given by 1=nŠ times the sum of all weights of
structures from Fn. We require this number to be finite for all n.

There are special examples of species, such as the species SET with SETŒU � D ¹U º
for all finite sets U , yielding SET.z/ D exp.z/. The species SEQ of sequences sends a
set U to the collection of all linear orderings of U , yielding SEQ.z/ D 1=.1 � z/.

The radius of convergence of F .z/ is denoted by �F . The weight of an F-object F is
denoted by !.F /. Given a parameter 0 < t � �F with F .t/ <1, the Boltzmann distribu-
tion with parameter t selects an object F from

S
n�0Fn with probability !.F /t jF j=F .t/.
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Unless we explicitly state a parameter, we will always refer to the case t D �F as the
Boltzmann distribution of F .

An unlabelled F-object is given by an isomorphism class. We may form the collec-
tion QFn of all n-sized unlabelled F-objects. For asymmetric classes of structures (such as
corner-rooted planar maps or planted plane trees), where each structure over an n-sized
set has precisely nŠ different labellings, the notions of labelled and unlabelled structures
are equivalent.

Given weighted species F and G there are numerous ways to create new species such
as the sum F C G , the product F � G , and the substitution F .G /. There are also unary
operations such as the derivative F 0 and the pointing F �. It is also possible to restrict
a species, for example for any integer k � 0 the species F�k is the restriction of F to
all object of size at least k. We refer the reader to the cited sources for details on these
operations.

The species F and G are termed isomorphic, denoted by F ' G or F D G , if for any
finite setU there is a weight-preserving bijection F ŒU �! G ŒU �. This family of bijections
is required to be compatible with the relabelling bijections.

The concept of species may be generalized to k-type species (with k � 1 fixed) in a
straightforward way. Rather than sets one uses k-type sets, which are tuples .U1; : : : ; Uk/
of finite sets. Multivariate generating series F .z1; : : : ; zk/ and partial derivatives @F

@zi
are

defined in an analogous manner to the monotype case.

4.2. Enriched trees

The concept of enriched tree was introduced in [42]. Given a weighted class R an
R-enriched tree consists of a rooted unordered labelled tree T together with a function ˛
that assigns to vertex v 2 T with offspring set Mv an element ˛.v/ 2 RŒMv� as decora-
tion. In the algebra of species the class AR of R-enriched trees may be specified by the
decomposition

AR D X �R.AR/; (4.1)

because any such element consists of a root vertex (accounting for the factor X) together
with an R-structure whose labels may be identified with the enriched fringe subtrees
dangling from the root. There are two key facts that we are going to use in our proofs:

Lemma 4.1. Any class of structures satisfying a decomposition of the form F '

X �R.F / admits a canonical .weight-preserving/ isomorphism F ' AR.

In particular, if we want to sample a labelled structure from Fn with probability pro-
portional to its weight, we may sample an element from .AR/n in this way, and apply
the combinatorial bijection. Sampling a random enriched tree may be done by adorning a
simply generated plane tree with independent decorations:

Lemma 4.2. The following sampling procedure draws an n-sized enriched tree from
.AR/n with probability proportional to its weight.
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(1) Select a random simply generated plane tree Tn with weight sequence .Œzk �R.z//k�0.

(2) For each vertex v 2 Tn choose an R-structure ˇn.v/ from the set R
d
C

Tn
.v/

with prob-

ability proportional to its weight.

(3) Relabel this enriched plane tree .Tn; ˇn/ by choosing a bijection from its vertex set to
¹1; : : : ; nº uniformly at random.

We are going to refer to the way of choosing the random decorations in (2) as the
canonical way of decorating the plane tree Tn. The random decoration ˇn is also referred
to as the canonical decoration.

Lemma 4.1 is a special case of Joyal’s Implicit Species [38, Thm. 6]. The idea is to
unroll the isomorphism via a recursive procedure �: Suppose we are given an F-object
F 2 F ŒU � over some finite non-empty set U . Applying the bijection from the isomor-
phism to F yields a single atom a 2U (corresponding to the factor X), and an R-objectR
whose atoms correspond to some collectionM of F -objects. The underlying sets of struc-
tures in M partition the set U n ¹aº. If M D ; we stop and return �.F / as output a tree
consisting of a single root vertex with label a. Otherwise we apply the procedure � recur-
sively to each element from the collection M , resulting in a collection M 0 of enriched
trees. The output �.F / is then formed by an enriched tree with root labelled with the
atom a, with M being the collection of branches dangling from a, and the R-structure of
a formed by relabelling R canonically with the labels of the root vertices of the enriched
trees from M 0.

As for the second key fact, Lemma 4.2, such a sampling procedure was given in
[64, Lem. 6.1] and, in a less general setting, in [58, Prop. 3.6]. If the species R is
asymmetric, so is the species AR. In this case, we may actually work with unlabelled
AR-objects that correspond bijectively to pairs .T; ˇ/ of a planted plane tree T and a
function ˇ that assigns to each vertex v 2 T with outdegree dCT .v/ an unlabelled R-
object ˇ.v/ 2 QR

d
C

T
.v/

.

5. Giant components in random compound structures

5.1. Gibbs partitions

Let F and G be weighted species with G .0/D 0. For any integer n > 0 with Œzn�F .G .z//
> 0we may draw an element Sn from .F .G //n with probability proportional to its weight.
This random compound structure comes with a partition of the underlying set Œn�, which
is called a Gibbs partition. The term was coined in the comprehensive work [59].

The convergent case. If we remove one of the largest components of Sn and replace it
by a placeholder, we are left with an F 0.G /-object. We let S0n denote the corresponding
unlabelled object.

Suppose that 0 < �G < 1 and F 0.G .�G // < 1 (with �G denoting the radius of
convergence of G .z/) and that Œzn�F .G .z// > 0 for infinitely many n. We say F ı G
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has convergent type if S0n converges weakly to the Boltzmann distribution of F 0.G /. This
implies that the size �.Sn/ of the largest component of Sn equals n �Op.1/.

As shown in [62, Thm. 3.1], a sufficient condition for this behaviour is that we have
�F > G .�G / and the coefficients gn WD Œzn�G .z/ satisfy

gn

gnC1
! �G and

1

gn

X
iCjDn

gigj ! 2G .�G / <1: (5.1)

Condition (5.1) means that the size of a Boltzmann distributed G -object has a subexpo-
nential density [28]. This entails (see [14, Thm. 1], [26, Thm. C])

Œzn�F .G .z// � F 0.G .�G //Œz
n�G .z/: (5.2)

Condition (5.1) is satisfied when gn�nG varies regularly with an index smaller than �1.
Another sufficient condition was given in [62, Lem. 3.3]:

Lemma 5.1. Suppose that there is a power series �.z/D
P
k�0 !kz

k with non-negative
coefficients and positive radius of convergence such that

G .z/ D z�.G .z//;

and !0 > 0, !k > 0 for at least one k � 2, and gcd ¹k j !k > 0º D 1. Then (5.2) holds
and Sn is convergent.

The difference n � �.Sn/ admits a limit distribution if F ı G has convergent type.
We will also require the following bound. The proof is by the same arguments as for the
bound in [65, (3.16)].

Proposition 5.2. Suppose that �F > G .�G / and (5.1) holds. Let X denote the size of a
Boltzmann distributed G -object. Then there are constants C;c > 0 such that for all k � 0,

P .n ��.Sn/ D k/ � C
P .X D n � k/P .X D k/

P .X D n/
exp

�
�c

k

n � k

�
: (5.3)

Convergence in the superexponential case. Suppose that �G D 0 and �F > 0. Further-
more, suppose that Œz1�F .z/ > 0 and gn WD Œzn�G .z/ > 0 for sufficiently large integers n.
It follows from [64, Cor. 6.19, (6.30)] that if

n�1X
iD1

gign�i D o.gn/; (5.4)

then with high probability, Sn consists of a single G -object. In this case we say Sn is
superconvergent. A sufficient condition was given in [64, Lem. 6.17]:

Lemma 5.3. Suppose that G .z/Dz�.G .z// for a non-analytic series �.z/D
P
k�0!kz

k

such that !0 > 0, !k > 0 for at least one k � 2, and gcd ¹k j !k > 0º D 1. Then (5.4)
holds and Sn is superconvergent.
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5.2. Random product structures

Let F and G denote weighted species with fn WD Œzn�F .z/ > 0 and gn WD Œzn�G .z/ > 0
for all sufficiently large n. As before, we let �F and �G denote the radii of convergence of
the generating series F .z/ and G .z/. We may draw a random pair Sn with probability pro-
portional to its weight from all n-sized F G -objects, and look at its F- and G -components
F .Sn/ and G .Sn/. We describe two observations where it is unlikely for both components
to be large at the same time. Both are immediate consequences of standard properties of
random variables with subexponential densities [28].

Proposition 5.4. Suppose that the coefficients .gn/n�0 satisfy (5.1) with �G > 0. If fn D
o.gn/, then up to relabelling, the F-component F .Sn/ converges in distribution to a
Boltzmann distributed F-object with parameter �G . Moreover,

Œzn�F .z/G .z/ � F .�G /gn: (5.5)

Proof. Let X and Y denote the sizes of Boltzmann-distributed F-objects and G -objects

with parameter �G . In order to verify the first claim, it suffices to show that jF .Sn/j
d
�!X .

It is elementary that

.jF .Sn/j; jG .Sn/j/
d
D ..X; Y / j X C Y D n/: (5.6)

Condition (5.1) ensures that P .Y D n/ � P .Y D nC 1/. By [28, Thm. 4.23] it follows
that

P .X C Y D n/ � P .Y D n/: (5.7)

Hence for any constant k � 0 we get

P .X D k j X C Y D n/ D
P .X D k/P .Y D n � k/

P .X C Y D n/
! P .X D k/: (5.8)

This shows weak convergence of F .Sn/ (up to relabelling). Moreover, (5.5) follows dir-
ectly from (5.7).

The following proposition describes the asymptotic behaviour of random F G -struc-
ture where either the F-component or the G -component has macroscopic size, but not
both at the same time.

Proposition 5.5. Suppose that the coefficients .gn/n�0 satisfy (5.1) with � WD �G > 0,
and fn=gn ! � for some constant 0 < � <1. Then

Œzn�F .z/G .z/ � F .�/gn C G .�/fn: (5.9)

Moreover,

dTV.Sn; OSn/! 0 (5.10)

for a random object OSn constructed by the following procedure:

(1) Set p D F .�/=.F .�/C �G .�//, and flip a biased coin that shows head with prob-
ability p.
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(2) If it shows head, sample a Boltzmann-distributed F-object F with parameter �. If
jFj � n and gn�jFj > 0, let OSn be the F G -structure with F-component F and an
.n � jFj/-sized G -component drawn with probability proportional to its weight. If
jFj > n or gn�jFj D 0, we set OSn to some placeholder value ˘.

(3) If the coin flip shows tails, we sample a Boltzmann-distributed G -object G with para-
meter �. If jGj � n and fn�jFj > 0, we let OSn be the F G -structure with G -component
G and an .n � jGj/-sized F-component drawn with probability proportional to its
weight. If jGj > n or fn�jGj D 0, we set OSn to some placeholder value ˘.

Proof. We let X and Y denote the sizes of independent Boltzmann-distributed F-objects
and G -objects with parameter �. Condition (5.6) reduces the entire problem to comparing
the sizes

.Xn; Yn/ WD .jF .Sn/j; jG .Sn/j/
d
D ..X; Y / j X C Y D n/

with the sizes
. OXn; OYn/ WD .jF . OSn/j; jG . OSn/j/:

Note that

P .X D n/ � �
G .�/

F .�/
P .Y D n/:

By [28, Thm. 4.23] it follows that

P .X C Y D n/ � P .X D n/C P .Y D n/:

This verifies (5.9). Condition (5.1) ensures that P .Y D n/ � P .Y D nC 1/. Hence for
any constant k � 0 we get

P .X D k j X C Y D n/ D
P .X D k/P .Y D n � k/

P .X C Y D n/

� P .X D k/p � P . OXn D k/: (5.11)

Likewise, P .X D n/ � P .X D nC 1/ and

P .Y D k j X C Y D n/ D
P .Y D k/P .X D n � k/

P .X C Y D n/

� P .Y D k/.1 � p/ � P . OYn D k/: (5.12)

This entails that there is a sequence .tn/n of integers that tends to infinity sufficiently
slowly such that

P ..Xn; Yn/ D .k; n � k// D .1C o.1//P .. OXn; OYn/ D .k; n � k// (5.13)

uniformly for all integers k with 0� k� tn or n� tn� k� n. As P .tn� OXn� n� tn/! 0

and

P .tn � Xn � n � tn/ D O.1/
n�tnX
kDtn

P .X D k/P .X D n � k/

P .X D n/
! 0

by subexponentiality, this implies (5.10).
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6. Tree-like graph decompositions and convergent Gibbs partitions

Given a class G of simple graphs, we may form the subclass C of connected graphs in G .
Graphs in C must have at least one vertex. We let B denote the subclass of 2-connected
graphs in C . Here we consider the graph K2 consisting of two vertices joined by a single
edge to be 2-connected, so that 2-connected graphs must have at least two vertices. We
let F denote the subclass of 3-connected graphs in B. We require 3-connected graphs to
have at least four vertices.

Throughout this section we assume that G is stable under Tutte’s decomposition [70]
(see also [15, 29, 35, 45, 68, 70, 71]). That is, a simple graph lies in G if and only if all
3-connected components lie in F . Note that this implies that K2 belongs to G . We also
consider G D G .x; y/ and its subclasses as 2-sort species, with x counting vertices and y
edges.

6.1. Decomposition into connected components

A graph consists of a collection of connected components. Hence the species G and C are
related by the well-known decomposition

G D SET.C/: (6.1)

Since G is stable under Tutte’s decomposition, it is also stable under taking 2-connected
components in the block decomposition. Hence by [62, Thm. 4.1] and [64, Cor. 6.33]
the Gibbs partition obtained by taking a uniform random graph from G with n vertices
is convergent or superconvergent. This behaviour was established earlier for the class of
planar graphs, general minor-closed addable classes, and many related classes [46–48].

6.2. The block decomposition

If we root a connected graph at a vertex, then this marked vertex is contained in some set
of blocks, that is, maximal 2-connected subgraphs. The entire graph may be decomposed
into this collection of vertex-marked blocks and rooted graphs attached to the non-marked
vertices. This block decomposition [7, 34, 38] is expressed as follows:

x
@C

@x
D xSET

�
@B

@x

�
x
@C

@x
; y

��
: (6.2)

Hence Lemma 4.1 applies, implying that the class x @C
@x

may be identified with the
SET. @B

@x
/-enriched trees.

6.3. Tutte’s decomposition

6.3.1. The 3-decomposition for simple graphs. We recall the 3-decomposition grammar
of simple graphs following [29].
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A network is a graph with two distinguished unlabelled vertices �0 and �1, such that
adding the edge �0�1 (if absent) yields a 2-connected graph. Here we do not exclude the
case that the graph was already 2-connected without this edge. For ease of reference we
call �0 the south pole and �1 the north pole. We let N denote the class of all networks
whose 3-connected components in the Tutte decomposition lie in F , and that are not equal
to the trivial network consisting of �0 and �1 without an edge between them. (However,
N does contain the graph consisting of �0 and �1 joined by an edge.). Hence

N D .1C y/
2

x2
@B

@y
� 1: (6.3)

There are three types of networks in N , yielding

N D � CP CH (6.4)

for the following subclasses of N : Networks from � � N are series networks, obtained
by identifying the north pole of one network with the south pole of another, and labelling
this vertex and the remaining non-pole vertices. Any series network may be decomposed
uniquely into a sequence of non-series networks, yielding

� D .H CP / � SEQ�1.x.H CP //: (6.5)

Networks from P � N are parallel networks, obtained by identifying the south poles of
two networks with each other, as well as their north poles. We additionally declare the
network consisting of �0 and �1 joined by a single edge to be a parallel network. Hence
parallel networks with non-adjacent poles correspond in a unique way to an unordered
collection of at least two non-parallel networks. Parallel networks with adjacent poles
correspond to a possibly empty unordered collection of non-parallel networks. Hence

P D SET�2.H C �/C ySET.H C �/: (6.6)

Networks from H � N , called h-networks, are obtained as follows. The class F0;1 is
formed by taking a graph from F , removing an edge, and making its endpoints poles.
Thus

F0;1 D
2

x2
@F

@y
: (6.7)

The class H is obtained by taking networks from F0;1 and replacing their edges by arbit-
rary networks from N (in any possible way). Hence

H D F0;1.x;N /: (6.8)

This leads to

N D .1C y/SET.F0;1.x;N /C �/ � 1: (6.9)
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6.3.2. An enriched tree encoding. We want to obtain an enriched tree encoding for N .
The class � could be expressed by N by overcounting and subtracting:

� D
xN 2

1C xN
: (6.10)

Applied to (6.9), this yields a recursive equation for N involving subtraction operations.
However, we require a subtraction-free decomposition. For this reason, we take a different
path, and define

K WD H CP : (6.11)

Combining (6.4) and (6.5) yields

N DKSEQ.xK/ and xN D SEQ�1.xK/: (6.12)

By Lemmas 5.1 and 5.3, and condition (6.18) below, the corresponding Gibbs partition
obtained by taking a random N-object with n edges and weight x > 0 at vertices is con-
vergent or superconvergent. This reduces the study of N to the study of K .

We proceed to show that K admits an enriched tree encoding. Condtion (6.5) may be
rewritten by

� DKSEQ�1.xK/ and x� D SEQ�2.xK/: (6.13)

Combining (6.8) and (6.12) yields

H D F0;1.x;KSEQ.xK//: (6.14)

Combining (6.11), (6.6), (6.13), and (6.14) yields

K D F0;1.x;KSEQ.xK//

C SET�2
�
F0;1.x;KSEQ.xK//CKSEQ�1.xK/

�
C ySET

�
F0;1.x;KSEQ.xK//CKSEQ�1.xK/

�
: (6.15)

We may write this as

K D I.x;K/C yJ.x;K/; (6.16)

with I and J representing combinatorial species.
We are not done yet, but the final step is more delicate than it appears. Isomorphisms

or identities of combinatorial species are always required to be compatible with rela-
belling. This is what allows us to deduce equations for cycle index sums and ordinary
generating series from a single isomorphism between two combinatorial species. It is
clear that, for example, an unordered collection of at least two K-objects (that is, an
element of SET�2.K/), has no canonically distinguished K-object. Hence there is no
species D with an isomorphism SET�2.K/ D KD.K/. That being said, we may still
define a weighted species D that for all k � 1 has a single object of size k and weight
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1=.k C 1/. This way, the product KD.K/ of weighted species has the same exponen-
tial generating series as SET�2.K/. Moreover, for each finite set U , the objects from
.KD.K//ŒU � may be grouped into disjoint subsets such that each of these classes has
sum of weights 1 and corresponds bijectively to an element of SET�2.K/ŒU �. We denote
this fact by SET�2.K/�KD.K/. In the same way we may form a weighted species I�

and an analogous correspondence

I.x;K/ �KI�.x;K/: (6.17)

We stress that in order to study random unlabelled objects we cannot use this equation
directly. Instead we would have to put additional effort into understanding the identity
of cycle index sums derived from (6.16). Since the present work concerns exclusively
random labelled graphs, this will not be an issue at all, but we want to stress this point due
to ongoing research on random unlabelled planar graphs.

Equation (6.17) allows us to unwind (6.16), yielding by induction

K � yJ.x;K/CKI�.x;K/

D yJ.x;K/C .yJ.x;K/CKI�.x;K//I�.x;K/

D yJ.x;K/C yJ.x;K/I�.x;K/CKI�.x;K/2

D � � �

D yJ.x;K/
X
k�0

I�.x;K/k :

Thus

K � yR.x;K/ (6.18)

with

R.x; y/ D J.x; y/SEQ.I�.x; y//: (6.19)

Hence Lemma 4.1 yields a correspondence between the class K and the class of R-
enriched trees.

7. Tree-like planar map decompositions and convergent Gibbs partitions

We consider planar maps that are rooted at a corner, or equivalently at a half-edge. An
exception is made only for the map consisting of a single vertex and no edges. This map
has no corners to be rooted at, but we count it as corner-rooted nevertheless.

Throughout this section we let M denote a class of planar maps that is closed under
re-rooting and corners, and stable under Tutte’s decomposition. We write M DM.x; z/

with x marking non-root vertices and z marking corners.
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7.1. From connected to non-separable

A planar map is termed separable if its edge set may be partitioned into two disjoint
subsetsE1 andE2 such that there is precisely one vertex that is incident to both a member
of E1 and a member of E2. Note that the only non-separable map containing a loop is the
map consisting of a single vertex with a loop. The map consisting of a single vertex with
no edges is also non-separable.

In [69, Sec. 6] a corner-rooted map was described as consisting of a non-separable
map with arbitrary maps inserted at each corner. This may be expressed in combinatorial
language. Let V denote the subclass of all non-separable maps in M. Then

zM D zV.x; zM/; (7.1)

implying by Lemma 4.1 that the class zM is isomorphic to that of V -enriched trees.

7.2. From non-separable to 3-connected

7.2.1. The 3-decomposition for maps. Let D denote the class of all plane networks
obtained by taking a non-separable map from V with at least two vertices, removing the
root edge, and distinguishing its origin and destination as the south pole and north pole of
the network. This way we make the original root edge “invisible”. We additionally forbid
the network consisting of two poles and no edges between them. We write D D D.x; y/

with x marking non-pole vertices and y marking edges, and likewise for any subclass
of D . We let NF0;1 denote the subclass of D obtained in the same way from all maps in V

that are 3-connected (and in particular simple, as the definition of k-connectedness for
multigraphs additionally requires this). The classes V and D are related by

V.x; z/ D 1C z2 C z2xD.x; z2/ (7.2)

with 1 representing the map consisting of a single vertex, and z2 representing the map
with a single vertex and a loop edge. The class D has a known decomposition (see [15,
35, 45, 68, 70, 71]) into parallel networks NP , series networks N� , and h-networks NH :

D D N� C NP C NH ; (7.3)
N� D . NP C NH /SEQ�1.x. NP C NH //; (7.4)
NP D y C .y C NH C N�/D ; (7.5)
NH D NF0;1.x;D/: (7.6)

7.2.2. An enriched tree encoding. We proceed in much the same way as for the enriched
tree encoding of 2-connected graphs. Setting

NK D NH C NP ; (7.7)

we find from (7.3) and (7.4) that

D D NKSEQ.x NK/ and xD D SEQ�1.x NK/: (7.8)
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Lemmas 5.1 and 5.3, and equation (7.14) below, imply that the corresponding Gibbs par-
tition obtained by taking a random D-object with n edges and weight x > 0 at vertices is
convergent or superconvergent. This reduces the study of D to the study of NK .

We are going to show that NK admits an enriched tree encoding. Combining (7.4) and
(7.6)–(7.8) yields

NH D NF0;1.x; NKSEQ.x NK//; (7.9)
N� D NKSEQ�1.x NK/: (7.10)

Equations (7.7) and (7.5) yield

NK D N�D C NH .1CD/C y.1CD/: (7.11)

Substituting D , N� , and NH by their expressions in terms of NK ((7.8)–(7.10)) yields

NK D NK2SEQ�1.x NK/SEQ.x NK/C NF0;1.x; NKSEQ.x NK//.1C NKSEQ.x NK//

C y.1C NKSEQ.x NK//: (7.12)

We may write this as

NK D NK NI�.x; NK/C y NJ.x; NK/;

with NI� and NJ representing combinatorial species. We may unroll this identity using
induction, yielding

NK D y NJ.x; NK/SEQ. NI�.x; NK//: (7.13)

and hence

NK D y NR.x; NK/ (7.14)

for

NR D NJ.x; y/SEQ. NI�.x; y//: (7.15)

Hence the class NK may be identified with the NR-enriched trees by Lemma 4.1.

8. Asymptotic enumeration using random walks with negative drift

From now on we let M denote the class of all planar maps, and define the subclasses
considered in Section 7 accordingly. Likewise G denotes the class of all planar graphs
and the subclasses of Section 6 are defined accordingly. Hence by Whitney’s theorem,
given in [72],

F0;1 D
1

2
NF0;1 D

2

x2
@F

@y
: (8.1)
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Hence the complete grammar from the previous two sections may be summarized as fol-
lows:

GDSET.C/

x
@C

@x
DxSET

�
@B

@x

�
x
@C

@x
; y

��
zMDzV.x; zM/

ND.1Cy/
2

x2
@B

@y
�1 VD1Cz2Cz2xD.x; z2/

NDKSEQ.xK/ DD NKSEQ.x NK/

K�yR.x;K/ NKDy NR.x; NK/

RDJSEQ.I�/ NRD NJSEQ. NI�/

I�D
1

y
F0;1.x; ySEQ.xy// NI�DySEQ�1.xy/SEQ.xy/

C
1

y
SET�2.F0;1.x; ySEQ.xy//CySEQ�1.xy// C

1

y
NF0;1.x; ySEQ.xy//.1CySEQ.xy//

JDSET.F0;1.x; ySEQ.xy//CySEQ�1.xy// NJD1CySEQ.xy/

F0;1D
1

2
NF0;1D

2

x2
@F

@y

8.1. Planar graphs

In [6] it is proved that

Œxn�B.x; 1/ � cB�
�n
B n�7=2; (8.2)

with cB � 0:37042 � 10
�5 and �B � 0:03819. Setting �C .x/ WD exp. @B

@x
.x; 1// we have

�C WD lim
t%�B

�0C .x/x=�C .x/ D �B

@2B

@x2
.�B ; 1/: (8.3)

Any connected graph with n vertices has at least n � 1 edges. Using this it is elementary
that

�C <
@2B

@x@y
.�B ; 1/: (8.4)

The proof in [6] also gives a singular expansion

N .x; 1/ D D0 CD2X
2
CD3X

3
CO.X4/; X D

p
1 � x=�B ;
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with analytic expressions for the constantsD0 � 1:09417 andD2 ��0:13749.1 Together
with (6.3) this allows us to evaluate the upper bound in (8.4), yielding

�C < �B

�
1CD0

2
� 1

�
�
D2�B

4
� 0:041302 < 1: (8.5)

By (5.2) it follows that

Œxn��C .x/ � exp
�
@B

@x
.�B ; 1/

�
Œxn�

@B

@x
.x; 1/ � ��1B exp

�
@B

@x
.�B ; 1/

�
cB�

�n
B n�5=2:

(8.6)

Since �C < 1 and since the coefficients of �C .�Bx/ are regularly varying with index
�5=2, we may apply (3.7) to obtain

Œxn�C.x; 1/ � cC�
�n
C n�7=2 (8.7)

with

�C D �B=�C .�B/ (8.8)

and cC D cB.1 � �C /
�5=2. Condition (5.2) implies

Œxn�G .x; 1/ � cG�
�n
C n�7=2 (8.9)

with

cG D cC exp.C.�C ; 1//: (8.10)

Equations (8.7)–(8.10) were obtained in [31, Thm. 1] using analytic methods, which addi-
tionally yield singular expansions of all the generating series involved.

8.2. 3-connected planar networks

In [53] the expression

NF0;1.x; y/ D y

�
1

1C xy
C

1

1C y
� 1 �

.1C u/2.1C v/2

.1C uC v/3

�
(8.11)

is obtained, where u D u.x; y/ and v D .x; y/ are specified by the system

u D xy.1C v/2 and v D y.1C u//2: (8.12)

This system yields the asymptotic enumeration of 3-connected planar networks. We fol-
low the presentation in [20, Thm. 9.13]. Let t > 0 be a constant. Applying [20, Thm. 2.19]

1When verifying these approximations, note that the expression for D2 in [6] contains a small
typo: it lacks a factor t . See [31].
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yields square root singular expansions for y 7! u.t; y/ and y 7! v.t; y/. This leads to the
representation

.1Cu/2.1Cv/2

.1CuCv/3
D E0.t/CE2.t/Z

2
CE3.t/Z

3
CO.Z4/ with Z D

r
1�

y

�F .t/
:

(8.13)
Here E0.t/; E2.t/; E3.t/; �F .t/ denote non-zero constants that depend only on t and
admit explicit expressions. Specifically, if u0 is the positive solution of

t D
.1C u0/.3u0 � 1/

3

16u0
; (8.14)

then

�F .t/ D
1

.u0 C 1/.3u0 � 1/
; E0.t/ D

16.3u0 � 1/

27u0.u0 C 1/
;

E2.t/ D
16.3u20 C 1/.3u0 � 1/

81u20.u0 C 1/
2

:

(8.15)

Hence

NF0;1.t; y/ D F0.t/C F2.t/Z
2
C F3.t/Z

3
CO.Z4/ (8.16)

for some non-zero constants F0.t/; F2.t/; F3.t/; �F .t/ that depend only on t . Hence, by
transfer theorems in [27, Ch. 6],

Œyn� NF0;1.t; y/ � cF .t/�F .t/
�nn�5=2 (8.17)

with cF .t/ D F3.t/
3

4
p
�

.

8.3. Non-separable planar maps

The functions y 7! R.t; y/ and y 7! NR.t; y/ both have radius of convergence

�R.t/ D
�F .t/

1C t�F .t/
: (8.18)

Simplifying (7.15) yields

NR.t;y/D
.1 � ty/.1C QuC Qv/3

.1C Qu/2.1C Qv/2
with QuDu.t;

y

1 � ty
/; QvD v

�
t;

y

1 � ty

�
: (8.19)

Expansion (8.13) allows us also to deduce a singular expansion of NR.t; y/, yielding

Œyn� NR.t; y/ � c NR.t/�R.t/
�nn�5=2 (8.20)

for some constant c NR.t/ > 0. The �-parameter from (3.2) corresponding to NR.t; y/ is
given by

� NK.t/ WD
�R.t/

@ NR
@y
.t; �R.t//

NR.t; �R.t//
D �R.t/

@

@y
log. NR.t; y//

ˇ̌̌̌
yD�R.t/

: (8.21)
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Using expansion (8.13) it follows that

� NK.t/ D
E2

E0
.1C t�F .t// � t�F .t/ D

21u20 C 6u0 C 1

48u20
: (8.22)

The rational function r 7! .1Cr/.3r�1/3

16r
is strictly increasing on R>0 and assumes the

value 0 at r D 1=3. As t > 0, it follows from (8.14) that

u0 D u0.t/ > 1=3: (8.23)

The function s 7! 21s2C6sC1
48s2

is strictly decreasing on R>0, and assumes the value 1 at
s D 1=3. Hence

� NK.t/ < 1 (8.24)

for all t > 0. This allows us to apply (3.7), yielding

Œyn� NK.t; y/ � c NK.t/� NK.t/
�nn�5=2 (8.25)

with � NK.t/D �R.t/= NR.t;�R/ and c NK.t/D �R.t/c NR.t/.1� � NK.t//
�5=2. Condition (5.2)

implies

Œyn�D.t; y/ � cD.t/� NK.t/
�nn�5=2 (8.26)

with cD.t/ D c NK.t/=.1 � t
NK.t; � NK.t///. Hence we may deduce the known asymptotic

formula

Œz2n�V.t; z/ � cV .t/� NK.t/
�nn�5=2 (8.27)

with cV .t/ D tcD.t/� NK.t/.

8.4. Planar maps

By (8.27), the function z 7! V.t; z/ has radius of convergence �V .t/ D
p
� NK.t/. Hence

the �-parameter from (3.2) corresponding to V.t; z/ is given by

�M.t/ WD
�V .t/

@V
@y
.t; �V .t//

V.t; �V .t//
D
2� NK.t/.1C tD.t; � NK.t//C t� NK.t/

@D
@y
.t; � NK.t///

1C � NK.t/.1C tD.t; � NK.t///
:

(8.28)

We have NK.t; � NK.t// D �R.t/ by Lemma 3.1. Hence, in view of (8.18),

D.t; � NK.t// D
NK.t; � NK.t//

1 � t NK.t; � NK.t//
D

�R.t/

1 � t�R.t/
D �F .t/: (8.29)

Using � NK.t/ D �R.t/= NR.t; �R.t//, NK.t; � NK.t// D �R.t/, and (8.18), we obtain

� NK.t/
@D

@y
.t; � NK.t// D

� NK.t/
@ NK
@y
.t; � NK.t//

1 � t NK.t; � NK.t//
D �F .t/

@ NK
@y
.t; � NK.t//

NR.t; �R/
: (8.30)
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Differentiating NK.t; y/ D y NR.t; NK.t; y// yields

@ NK

@y
.t; y/ D

NR.t; NK.t; y//

1 � y @
NR

@y
.t; NK.t; y//

: (8.31)

Using the definition (8.21) of � NK.t/, one can simplify (8.30) to

� NK.t/
@D

@y
.t; � NK.t// D

�F .t/

1 � � NK.t/
: (8.32)

Using (8.29), we simplify (8.28) to

�M.t/ D
2� NK.t/.1C t�F .t/.1C 1=.1 � � NK.t////

1C � NK.t/.1C t�F .t//
: (8.33)

Note that by (8.19), (8.18) and (8.13),

� NK.t/ D
�R.t/

NR.t; �R.t//
D �F .t/

.1C u.1; �F .t///
2.1C v.�F .t///

2

.1C u.t; �F .t//C v.t; �F .t///3
D �F .t/E0.t/:

(8.34)

Plugging this into (8.33) yields an expression of �M.t/ in terms of t , �F .t/, E0.t/, and
� NK.t/. Equations (8.15) and (8.22) yield expressions of �F .t/, E0.t/, and � NK.t/ in terms
of u0. Hence we obtain an expression of �M.t/ in terms of t and u0. Using (8.14) we may
simplify this to an expression in terms of u0 alone:

�M.t/ D
2.1C 19u0 C 51u

2
0 C 225u

3
0/

.1C u0/.1C 3u0/3.1C 9u0/
: (8.35)

This rational expression is strictly decreasing in u0, and assumes the value 1 at 1=3. As
u0 D u0.t/ > 1=3 by (8.23), this implies

�M.t/ < 1: (8.36)

From (3.3) and (3.5), it follows that

Œzn�M.t; z/ � cM.t/n
�5=2�M.t/

�n (8.37)

for n 2 2N0 large, with �M.t/ D
�V .t/

V.t;�V .t//
and cM.t/ D

cV .t/� NK .t/

V.t;�V .t//.1��M.t//5=2
.

8.5. Planar networks

Simplifying (6.19) yields

R.t; y/ D
eF .t; y

1�ty /C
ty2

1�ty y.1 � ty/

1C y � ty � eF .t; y
1�ty /C

ty2

1�ty .1 � ty/

: (8.38)
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The �-parameter from (3.2) corresponding to R.t; y/ may be expressed by

�K.t/ WD
�R.t/

@R
@y
.t; �R.t//

R.t; �R.t//
D �R.t/

@

@y
log.R.t; y//

ˇ̌̌̌
yD�R.t/

: (8.39)

Setting

F.y/ WD F

�
t;

y

1 � ty

�
C

ty2

1 � ty
(8.40)

we obtain

@

@y
log.R.t; y// D F 0.y/C

1

y
�

t

1 � ty
�
1 � t C exp.F.y//.t � F 0.y/.1 � ty//
1C y.1 � t / � exp.F.y//.1 � ty/

:

(8.41)

Much as for planar maps, this allows us to express �K.t/ in terms of u0, and using (8.23)
we get

�K.t/ < 1: (8.42)

Expansion (8.13) implies a singular expansion of R.t; y/, yielding

Œyn�R.t; y/ � cR.t/�R.t/
�nn�5=2 (8.43)

for some constant cR.t/ > 0. By (3.7) it follows that

Œyn�K.t; y/ � cK.t/�K.t/
�nn�5=2 (8.44)

with �K.t/D �R.t/=R.t;�R/ and cK.t/D �R.t/cR.t/.1� �K.t//
�5=2. Hence by (5.2),

Œyn�N .t; y/ � cN .t/�K.t/
�nn�5=2 (8.45)

with cN .t/ D cK.t/=.1 � tK.t; �K.t///.

9. Quenched local convergence

9.1. Weighted non-separable maps

We write v.�/, e.�/, and c.�/ for the numbers of vertices, edges, and corners. Let t > 0

be a constant. We let Mtn denote a random planar map with n edges that is drawn with
probability proportional to tv.M/.

As corner-rooted planar maps are asymmetric, it follows from (7.1) and Section 4.2
that any planar map M with n corners corresponds bijectively to a pair .T; ˇ/ of a
(planted) plane tree T with 2n C 1 vertices and a function ˇ that assigns to each ver-
tex v 2 T a non-separable map with dCT .v/ corners. Here the decoration ˇ.o/ of the root
vertex o of T corresponds to the non-separable component ofM containing the root edge.
The non-root corners of ˇ.o/ correspond to the offspring vertices of o in T . The decorated
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fringe subtree at such an offspring vertex represents the map inserted at the correspond-
ing corner of ˇ.o/. Here corresponding means according to a fixed canonical ordering of
the non-root corners of ˇ.o/. We choose this ordering according to a breadth-first-search
exploration, so that the distance to the root corner is non-decreasing in the ordering.

The enriched tree .TM
n ; ˇ

M
n / corresponding to the random map Mtn admits an easy

description. By Lemma 4.2 and subsequent remarks on asymmetric species in Section 4.2,
the random plane tree TM

n is a simply generated tree with weight sequence .!M
k
/k�0 given

by

!M
k D Œz

k �V.t; z/; k � 0: (9.1)

Given TM
n , each decoration ˇM

n .v/, v 2 TM
n , is drawn with probability proportional to its

weight from all non-separable maps with dC
TM
n

.v/ corners, independently of the remaining

decorations. Here the weight of such a map V is tv.V /�1.
By inequality (8.36), the asymptotic expression (8.27), and Lemma 3.1 it follows that

TM
n is distributed like a �M-Galton–Watson tree TM conditioned on having 2nC 1 ver-

tices, with offspring distribution �M satisfying

EŒ�M� < 1 and P .�M
D 2n/ �

cV .t/

V.t; � NK.t//
n�5=2: (9.2)

This offspring distribution �M is a random even integer. Hence �M=2 satisfies condition
(3.4), but �M does not. However, it is easy to see that Lemma 3.2 may be extended to
this setting. The reason is that the proof of Lemma 3.2 given in [65, Thm. 1.1] uses the
well-known fact that �.TM

n / corresponds to the largest jump in an n-step random walk
with step-distribution �M conditioned on arriving at n � 1 after n steps. Hence the proof
of Lemma 3.2 may be adapted to this setting by rescaling by the factor 1

2
. Keeping in

mind that TM
n has 2n C 1 vertices, it follows that the largest non-separable component

V.Mtn/ (unique with high probability) satisfies

P .e.V.Mtn// D `/ D
1

gM.t/n2=3

�
h

�
.1 � EŒ�M�/n � `

gM.t/n2=3

�
C o.1/

�
(9.3)

uniformly for all ` 2 Z with gM.t/ > 0 a constant. A similar probabilistic approach to
the block sizes in random planar maps was used in [3], and the local limit theorem itself
is a celebrated result of [5]. Likewise, Lemma 3.3 also holds in this setting despite the
periodicity, as its proof given in [65, Thm. 1.2] may be adapted analogously.

The following quenched limit was shown recently in [66] using quenched limits
for extended fringe subtrees of re-rooted multi-type Galton–Watson trees from [67] and
applying the Bouttier–Di Francesco–Guitter bijection [10, Sec. 2]. An annealed version
may be deduced by applying planar duality to the earlier annealed convergence of face-
weighted random planar maps by Stephenson [61], who established local convergence of
such multi-type trees close to the fixed root.
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Lemma 9.1 ([66, Thm. 1]). Let cn denote a uniformly selected corner of Mtn. There is a
random infinite planar map OMt with

L..Mtn; cn/ j M
t
n/

p
�! L. OMt /: (9.4)

Recall that we may enumerate the corners of the non-separable core V.Mtn/ in a canon-
ical order, for example by using a breadth-first-search starting with the root corner. The
map Mtn consists of the core V.Mtn/ together with maps .Mi .Mtn//1�i�c.V.Mtn// attached
to its corners. The map M1.Mtn/ has an additional marked corner, corresponding to the
root corner of Mtn. For each 2 � i � �.TM

n / the map Mi .Mtn/ attached to the i th corner
is determined by the fringe subtree Fi .TM

n / and the restriction ˇM
n jFi .T

M
n /

to its vertex
set. The root corner of V.Mtn/ (corresponding to i D 1) differs, as there are two maps
attached to it: the map determined by .F1.TM

n /; ˇ
M
n jF1.T

M
n /
/, and the bi-corner-rooted

map determined by the marked plane tree F0.TM
n / and the restriction of ˇM

n to its non-
marked vertices.

We let Mt denote the random finite planar map corresponding to the tree TM with
canonical random decorations ˇM. That is, for each vertex v 2 TM the decoration ˇM.v/

is drawn with probability proportional to its weight from all non-separable maps with
dC

TM .v/ corners, independently of the remaining decorations. For each i � 2 let M.i/ be
an independent copy of the planar map Mt . Let TıM be defined for the offspring distribu-
tion �M analogously to Tı defined for � in Section 3.2. We define M.1/ as an independent
random map with a second marked corner, so that M.1/ corresponds to canonically dec-
orated versions of TıM and TM in the same way as M1.Mtn/ does to decorated versions
of F0.TM

n / and F1.TM
n /.

Consider the random planar map Mt
Œn�

constructed from the core V.Mtn/ by attaching
for each integer 1 � i � c.V.Mtn// the independent random map M.i/ instead of Mi .Mtn/
at the i th corner of V.Mtn/. Thus, Mt

Œn�
and Mtn are different models of random maps.

For example, the number of edges in Mt
Œn�

is n C Op.n2=3/ and does not have to equal
precisely n. Nevertheless, local convergence of Mtn is equivalent to local convergence
of Mt

Œn�
, with the same limit map in both cases:

Lemma 9.2. Let cŒn� denote a uniformly selected corner of Mt
Œn�

. Then

L..MtŒn�; cŒn�/ j M
t
Œn�/

p
�! L. OMt /: (9.5)

Proof. Keeping in mind that TM
n has 2nC 1 vertices, we set

�M
hni WD sup

°
d � 1

ˇ̌̌
c.M.1//C

dX
iD2

.1C c.M.i/// � 2n
±
:

By (our adaption of) Lemma 3.3 it follows that for any sequence .tn/n of integers with
tn !1 and tn D o.n/,

.Mi .M
t
n//1�i�c.V.Mtn//�tn

d
� .M.i//

1�i��M
hni
�tn

(9.6)
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and with high probability,

c.V.Mtn//X
iDc.V.Mtn//�tn

c.Mi .M
t
n// � 2EŒc.M

t /�tn: (9.7)

Let 0 < ı < 2.1 � EŒ�M�/ and " > 0 be given. In view of Lemma 3.4 there are constants
0 < c < C , N0 > 0 and collections .En/n�1 (each consisting of a set of finite sequences
of planar maps, with the first map having an additional marked corner) such that for all
n > N0,

P ..Mi .M
t
n//1�i�c.V.Mtn//�bınc 2 En/ > 1 � ";

P ..M.i//1�i�c.V.Mtn//�bınc 2 En/ > 1 � "
(9.8)

and uniformly for all sequences S 2 En,

c <
P ..Mi .Mtn//1�i�c.V.Mtn//�bınc D S/

P ..M.i//1�i�c.V.Mtn//�bınc D S/
< C: (9.9)

Note that knowing .Mi .Mtn//1�i�c.V.Mtn//�bınc implies knowing c.V.Mtn// � bınc and
hence c.V.Mtn//. Furthermore, conditionally on c.V.Mtn// the core V.Mtn/ assumes an
c.V.Mtn//-sized non-separable map with probability proportional to its weight. Let EM

n

denote the collection of all pairs .V; S/ such that S is a tuple in En and V is a non-
separable map whose number of corners agrees with the core size corresponding to S .
That is, the number of corners of V equals the dimension of S plus bınc. It follows
from (9.8) and (9.9) that

P
�
.V.Mtn/; .Mi .M

t
n//1�i�c.V.Mtn//�bınc/ 2 EM

n

�
> 1 � "; (9.10)

P ..V.Mtn/; .M.i//1�i�c.V.Mtn//�bınc/ 2 EM
n / > 1 � "; (9.11)

and uniformly for all .V; S/ 2 EM
n ,

c <
P ..V.Mtn/; .Mi .Mtn//1�i�c.V.Mtn//�bınc/ D .V; S//

P ..V.Mtn/; .M.i//1�i�c.V.Mtn//�bınc/ D .V; S//
< C: (9.12)

From (9.7) it follows that with high probability

c.V.Mtn//X
iDc.V.Mtn//�bıncC1

c.Mi .M
t
n// � 2EŒc.M

t /�bınc: (9.13)

LetOn;ı denote the subset of vertices in Mtn corresponding to the components Mi .Mtn/
for c.V.Mtn// � bınc � i � c.V.Mtn//. For each k � 0 we let Uk.Mtn; On;ı/ denote the
collection of vertices of Mtn with graph distance at most k fromOn;ı . Using only the local
convergence of Mtn and the fact that On;ı becomes small as ı!1 we are going to show
that for each k � 0 and each "0 > 0,

lim
ı#0

lim sup
n!1

P .jUk.M
t
n; On;ı/j > "

0n/ D 0: (9.14)
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The verification of (9.14) is by induction on k. For k D 0 the statement is clear,
because jU0.Mtn; On;ı/j D jOn;ı j and (9.13) entails that with high probability, jOn;ı j �
2EŒc.Mt /�ın. For the induction step, suppose that k � 1 and (9.14) holds for k � 1 but
fails for k. Then there is an "0 > 0, sequences "0

`
; ı` # 0, and a subsequence n` such that

P
�
jUk.M

t
n; On`;ı`/j > "

0n`; jUk�1.M
t
n; On`;ı`/j < "

0
`n`
�
> "0

for all ` � 1. This means that with probability bounded away from 0 there are at least
n`."

0 � "0
`
/ vertices in Uk.Mtn; On`;ı`/ n Uk�1.M

t
n; On`;ı`/, each connected by at least

one edge to a vertex from Uk�1.Mtn; On`;ı`/. Let �` be a sequence satisfying �` !1
and �`"0` ! 0. The subset of vertices from Uk�1.Mtn; On`;ı`/ with degree less than �`
is linked to at most "0

`
n`�` D o.n`/ vertices from Uk.Mtn; On`;ı`/ n Uk�1.M

t
n; On`;ı`/.

Hence at least ."0 � o.1//n` vertices from Uk.Mtn; On`;ı`/ n Uk�1.M
t
n; On`;ı`/ have a

neighbour from Uk�1.Mtn; On`;ı`/ with degree at least �`. This implies that with prob-
ability bounded away from 0 the uniform corner cn of Mtn has a neighbour with degree at
least �`. But this is impossible, since �` !1 and neighbourhoods of cn must remain
stochastically bounded by the local convergence in Lemma 9.1. This completes the induc-
tion, proving that (9.14) holds.

Let us write U c
k
.Mtn; On;ı/ for the collection of corners in Mtn that are incident to

vertices of Uk.Mtn; On;ı/. It follows from (9.14) and the local convergence in Lemma 9.1
that for any "0 > 0,

lim
ı#0

lim sup
n!1

P .jU ck .M
t
n; On;ı/j > "

0n/ D 0: (9.15)

Indeed, if (9.15) did not hold, we could use (9.14) to find an "0 > 0, a subsequence n`,
and a sequence ı` ! 0 such that for all ` � 1,

P
�
jU ck .M

t
n; On`;ı`/j > "

0n`; jUk.M
t
n; On`;ı`/j < ı`n`

�
� "0:

Let �` be a sequence such that �` !1 and ı`�` ! 0. Then with probability bounded
away from zero (as `!1/ at most ı`�`n` D o.n`/ corners from U c

k
.Mtn; On`;ı`/ are

incident to vertices with degree at most �`. Hence, again with probability bounded away
from zero at least "0n` � ı`�`n` D ."0 � o.1//n` corners are incident to vertices with
degree at least �`. But this is impossible since �` ! 1 and the degree of the vertex
incident to a uniformly selected corner in Mtn must remain stochastically bounded by
Lemma 9.1. This completes the verification of (9.15).

We now have all ingredients for proving the convergence in (9.5). Let " > 0 be given.
With foresight, we use (9.15) for "0 WD "=.2C 4EŒc.Mt /�/ to pick a ı > 0 that is small
enough so that for all large enough n,

P
�
jU ck .M

t
n; On;ı/j > "n=.2C 4EŒc.M

t /�/
�
< ": (9.16)

For this ı and " we may choose constants c;C > 0 and a collection EM
n such that (9.10)–

(9.12) hold for all sufficiently large n. Let EM
n .1/ � EM

n denote the subset of all families
.V; M1; M2; : : :/ with the property that at most "n=.2 C 4EŒc.Mt /�/ corners of V are
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incident to vertices with graph distance at most k from the last bınc corners of V (in the
canonical ordering of corners). From (9.10), (9.11) and (9.16) it follows that

P
�
.V.Mtn/; .Mi .M

t
n//1�i�c.V.Mtn//�bınc/ 2 EM

n .1/
�
> 1 � 2"; (9.17)

P
�
.V.Mtn/; .M.i//1�i�c.V.Mtn//�bınc/ 2 EM

n .1/
�
> 1 � 2": (9.18)

LetH be a corner-rooted planar map with radius k. We letNH .�/ denote the function that
takes a planar map as input and counts the number of corners with k-neighbourhood H .
By Lemma 9.1, if pH WD P .Uk. OMt / D H/ then

NH .Mtn/

2n

p
�! pH : (9.19)

We may write

NH .M
t
n/ D N

0
H .M

t
n/CN

00
H .M

t
n/ (9.20)

with N 0H .M
t
n/ counting only the corners whose k-neighbourhood is disjoint from the

vertices incident to the last bınc corners of V.Mtn/ (in the canonical ordering of
corners). Thus, N 0H .M

t
n/ is fully determined by .V.Mtn/; .Mi .Mtn//1�i�c.V.Mtn//�bınc/.

We may hence define the subset EM
n .2/ � EM

n .1/ of all sequences in EM
n .1/ for

which jN 0H .�/=.2n/ � pH j > 2". (Not all such sequences have to lie in EM
n .1/, but

we only consider those which do.) Note that if jN 0H .�/=.2n/ � pH j > 2" holds, then
jNH .�/=.2n/ � pH j > " or N 00H .�/=.2n/ > ". By inequality (9.12) it follows that

P
�
.V.Mtn/; .M.i//1�i�c.V.Mtn//�bınc/ 2 EM

n .2/
�

� c�1P
�
.V.Mtn/; .Mi .M

t
n//1�i�c.V.Mtn//�bınc/ 2 EM

n .2/
�

� c�1P .jNH .M
t
n/=.2n/ � pH j > "/

C c�1P
�
N 00H .M

t
n/=.2n/ > "; .V.M

t
n/; .Mi .M

t
n//1�i�c.V.Mtn//�bınc/ 2 EM

n .1/
�
:

(9.21)

From (9.19) it follows that

P .jNH .M
t
n/=.2n/ � pH j > "/! 0: (9.22)

Furthermore, we defined EM
n .1/ so that at most "n=.2C 4EŒc.Mt /�/ corners of the non-

separable core are incident to vertices with graph distance at most k from the last bınc
of its corners. Let I 0 denote the collection of indices of these corners, and set I WD I 0 \
¹1; : : : ; c.V.Mtn// � bıncº. This way, if .V.Mtn/; .Mi .Mtn//1�i�c.V.Mtn//�bınc/ 2 EM

n .1/,
then

jI j C bınc � "n=.2C 4EŒc.Mt /�/: (9.23)

Furthermore, if N 00H .M
t
n/=.2n/ > ", then

X
i2I

.1C c.Mi .M
t
n///C

c.V.Mtn//X
iDc.V.Mtn//�bıncC1

.1C c.Mi .M
t
n/// > 2n": (9.24)
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We know from inequality (9.13) that with high probability,

c.V.Mtn//X
iDc.V.Mtn//�bıncC1

.1C c.Mi .M
t
n/// � .1C 2EŒc.M

t /�/bınc � "n=2: (9.25)

By inequalities (9.12) and (9.23), and the law of large numbers,

P
�X
i2I

.1C c.Mi .M
t
n/// > "n=2; .V.M

t
n/; .Mi .M

t
n//1�i�c.V.Mtn//�bınc/ 2 EM

n .1/
�

� CP
�X
i2I

.1C c.M.i/// > "n=2
�
! 0: (9.26)

Combining this with inequality (9.24) gives

P
�
N 00H .M

t
n/=.2n/ > "; .V.M

t
n/; .Mi .M

t
n//1�i�c.V.Mtn//�bınc/ 2 EM

n .1/
�
! 0: (9.27)

Thus, the upper bound in (9.21) tends to zero as n!1, yielding

P
�
.V.Mtn/; .M.i//1�i�c.V.Mtn//�bınc/ 2 EM

n .2/
�
! 0: (9.28)

Arguing as for (9.24) and (9.23), it follows by the law of large numbers that

P
�
N 00H .M

t
Œn�/=.2n/ > "; .V.M

t
n/; .M.i//1�i�c.V.Mtn//�bınc/ 2 EM

n .1/
�

� P
�X
i2I

.1C c.M.i///C
c.V.Mtn//X

iDc.V.Mtn//�bıncC1

.1C c.M.i/// > 2n"
�
! 0: (9.29)

Combining (9.28) and (9.29), we obtain

P
�
jNH .M

t
Œn�/=.2n/ � pH j > 3"; .V.M

t
n/; .M.i//1�i�c.V.Mtn//�bınc/ 2 EM

n .1/
�
! 0:

(9.30)

By (9.18), it follows that

P
�
jNH .M

t
Œn�/=.2n/ � pH j > 3"

�
� 2"C o.1/: (9.31)

Since H , k, and " > 0 were arbitrary, it follows that

L..MtŒn�; cŒn�/ j M
t
Œn�/

p
�! L. OMt /: (9.32)

This completes the proof.

Using this convergence we deduce the following lemma, which is a quenched version
of a more general argument on random block-weighted planar maps with no tail assump-
tions [64, Thm. 6.59].
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Lemma 9.3. The maximal non-separable component V.Mtn/ admits a distributional
limit OVt in the local topology. If cn denotes a uniformly selected corner of V.Mtn/, then

L..V.Mtn/; cn/ j V.M
t
n//

p
�! L. OVt /: (9.33)

Proof. Select two corners v1; v2 of Mt
Œn�

uniformly at random. It will be notationally con-
venient to refer to v1 as a red corner, and v2 as a blue corner. If v1 or v2 corresponds to
a corner in a component Mi .MtŒn�/ or to the corner of V.Mtn/ where Mi .Mtn/ is attached,
then we let NMi .Mtn/ denote Mi .Mtn/ together with the location(s) and colour(s) of v1
and/or v2. Otherwise we just set NMi .Mtn/ D Mi .Mtn/. Note that this / these location(s)
may either be a corner of Mi .Mtn/ or an additional placeholder corner, referring to the
corner of V.Mtn/ where Mi .Mtn/ is attached.

Let T�;M be defined for the offspring distribution �M analogously to the definition
of T� for � in Section 3.2. Let M� denote the random bi-corner-rooted map corresponding
to a canonical decoration of the tree T�;M. Let M�1 and M�2 denote independent copies
of M�. We colour the marked corner of M�1 red, and the marked corner of M�2 blue. Note
that jT�;Mj D c.M�/C 1. If the marked vertex of T�;M coincides with its root-vertex, then
we view M� as marked at a placeholder location.

Let j1; j2 be a uniformly selected pair of distinct integers between 2 and�.TM
n /� tn.

Furthermore, for each i � 1 set QM.i/ D M�
k

if i D jk , k 2 ¹1; 2º, and QM.i/ D M.i/ other-
wise. It follows by Corollary 3.5 that

. NMi .M
t
Œn�//1�i��.TM

n /

d
� . QM.i//

1�i��.TM
n /
: (9.34)

Let r1 and r2 denote fixed non-negative integers. By Proposition 2.3 and Lemma 9.2
the neighbourhoods Ur1.M

t
Œn�
; v1/ and Ur2.M

t
Œn�
; v2/ are disjoint with high probability. Let

M1 and M2 be finite corner-rooted planar maps with radii r1 and r2. For k D 1; 2 let v0
k

be the corner of V.Mtn/ where the component containing vk is attached. If the distance
between vk and v0

k
is at least rk , then Urk .M

t
Œn�
; vk/ is fully contained in the component

containing vk . If the distance equals some h < rk , then Urk .M
t
Œn�
; vk/ may be patched

together from the rk-neighbourhood of vk in that component (with additional knowledge
of the location of v0

k
within that neighbourhood), the neighbourhood Urk�h.V.M

t
n/; v

0
k
/,

and neighbourhoods in the components attached to corners c 2 Urk�h.V.M
t
n/; v

0
k
/ n ¹v0

k
º

with distance less than rk � h from v0
k

. By (9.34) and the observations in the penultimate
paragraph, we know that jointly and asymptotically the component containing vk behaves
like M�, and the components attached to the corners c behave like independent copies of
a map M corresponding to a canonical decoration of TM. This allows us to write

P .Urk .M
t
Œn�; vk/ DMk/

D o.1/C Crk .Mk/C

rk�1X
hD0

ph
X
H

ch;HP .Urk�h.V.M
t
n/; v

0
k/ D H/: (9.35)
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Here Crk .Mk/ denotes the probability that jointly the distance between the root corner
and the marked corner in M� is at least rk , and that the rk-neighbourhood of the marked
corner in M� equals Mk . The constant ph > 0 denotes the probability that solely this
distance in M� equals h. The constant ch;H represents the sum of the product probabilities
for the finitely many ways of patchingMk together from a rooted rk-neighbourhood in M�

(conditioned on having distance h between the roots), and neighbourhoods in independent
M-distributed components attached to non-root corners c of the sum index map H . Note
that H ranges over specific submaps of Mk , and the case H DMk occurs only once and
for h D 0. Specifically,

c0;Mk D P .e.M�/ D 0/P .e.M/ D 0/s.Mk/�1 > 0; (9.36)

with s.Mk/ denoting the number of corners in Mk with distance less than rk from the
root corner. The case H D Mk and h D 0 is the only summand on the right-hand side
of (9.35) where jH j C .rk � h/ attains its maximum. As the left-hand side of (9.35)
converges by Lemma 9.1, it follows by induction on rk C jMkj that the probability
P .Urk .V.M

t
n/; v

0
k
/ D Mk/ converges to some constant prk ;Mk . (The base case rk D 0

is trivial.)
In order to deduce distributional convergence of the neighbourhood it remains to

verify
P
Mk

prk ;Mk D 1. Suppose that 1 �
P
Mk

prk ;Mk DW " > 0. Then for any s > 0,

P .c.Urk .V.M
t
n/; v

0
k// > s/ D 1 �

X
Mk ;c.Mk/�s

P .Urk .V.M
t
n/; v

0
k/ DMk/

! 1 �
X

Mk ;c.Mk/�s

prk ;Mk � ":

This implies that there is a sequence sn !1 with P .c.Urk .V.M
t
n/; v

0
k
// > sn/ � "=2

for all n. As the distance dMt
Œn�
.vk ; v

0
k
/ between the corners vk and v0

k
admits the limit

distribution .ph/h�0, this implies

P .c.Urk .M
t
Œn�/; vk/ > sn/ � P .dMt

Œn�
.vk ; v

0
k/ D 0/P .c.Urk .V.M

t
n/; v

0
k// > sn/

� p0"C o.1/:

As p0 > 0, this contradicts the distributional convergence of Urk .M
t
n; vk/. Consequently,

one has
P
Mk

prk ;Mk D 1.
Summing up, there is a random infinite graph OVt which is the distributional limit

of V.Mtn/ rooted according to the stationary distribution, and satisfies

P .Urk . OM
t / DMk/ D Crk .Mk/C

rk�1X
hD0

ph
X
H

ch;HP .Urk�h. OV
t / D H/: (9.37)
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Since with high probability Ur1.M
t
Œn�
; v1/ and Ur2.M

t
Œn�
; v2/ do not intersect, analogously

to (9.35) we obtain

P
�
Ur1.M

t
Œn�; v1/ DM1; Ur2.M

t
Œn�; v2/ DM2

�
D o.1/C Cr1.M1/Cr2.M2/

C Cr1.M1/

r2�1X
hD0

ph
X
H2

ch;H2P .Ur2�h.V.M
t
n/; v

0
2/ D H2/

C Cr2.M2/

r1�1X
hD0

ph
X
H1

ch;H1P .Ur1�h.V.M
t
n/; v

0
1/ D H1/

C

X
0�h1<r1
0�h2<r2

ph1ph2

�

X
H1;H2

ch1;H1ch2;H2P
�
Ur1�h1.V.M

t
n/; v

0
1/ D H1; Ur2�h2.V.M

t
n/; v

0
2/ D H2

�
:

(9.38)

By Lemma 9.1 and Proposition 2.2 the left-hand side satisfies

P
�
Ur1.M

t
Œn�; v1/ DM1; Ur2.M

t
Œn�; v2/ DM2

�
! P .Ur1. OM

t / DM1/P .Ur2. OM
t / DM2/: (9.39)

Using convergence of the marginals P .Urk�h.V.M
t
n/; v

0
k
/ D Hk/ and an inductive argu-

ment as before it follows that the joint probability

P
�
Ur1.V.M

t
n/; v

0
1/ DM1; Ur2.V.M

t
n/; v

0
2/ DM2

�
converges to some constant pr1;r2;M1;M2 . From (9.37) and (9.39) it follows thatX

0�h1<r1
0�h2<r2

ph1ph2

X
H1;H2

ch1;H1ch2;H2P .Ur1�h1. OV
t / D H1/P .Ur2�h2. OV

t / D H2/

D

X
0�h1<r1
0�h2<r2

ph1ph2

X
H1;H2

ch1;H1ch2;H2pr1;r2;M1;M2 :

Hence, again by induction (on r1C r2C c.M1/C c.M2/, with the base case being trivial),

pr1;r2;M1;M2 D P .Ur1. OV
t / DM1/P .Ur2. OV

t / DM2/: (9.40)

This verifies that if c.1/n and c.2/n are uniform independent corners of V.Mtn/, then

..V.Mtn/; c
.1/
n /; .V.Mtn/; c

.2/
n //

d
�! . OVt;.1/; OVt;.2//; (9.41)

with OVt;.1/; OVt;.2/ denoting independent copies of OVt . Hence by Proposition 2.2,

L..V.Mtn/; cn/ j V.M
t
n//

p
�! L. OVt /:
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9.2. NK-networks

Let Dtn and NKtn denote random D- and NK-networks with n edges, drawn with probability
proportional to their weight (given by tv.�/). The relation V.x;z/D 1C z2C z2xD.x;z2/

from (7.2) entails that, for n � 2, Vn may be sampled by converting the “invisible” root
edge of Dn�1 into a regular one.

The Gibbs partition D D NKSEQ.x NK/ from (7.8) represents the fact that any D-
network consists of a series composition of a positive number of NK-networks. The dis-
cussion in Section 6.3.2 entails that D D NKSEQ.x NK/ has convergent type. Hence,
identifying D-networks with sequences of NK-networks, we find that

Dtn
d
� . NK.1/; : : : ; NK.N /; NKtn�A; NK

0.1/; : : : ; NK0.N 0// (9.42)

with

A WD

NX
iD1

e. NK.i//C
N 0X
iD1

e. NK0.i//: (9.43)

Here N and N 0 denote independent identically distributed non-negative integers with
geometric distribution

P .N D k/ D NK.t; � NK/
k.1 � NK.t; � NK//; k � 0: (9.44)

The networks NK.i/ and NK0.i/, i � 1, denote independent copies of a random NK-network
NK with distribution given by

P . NK D NK/ D tv.
NK/�

e. NK/
NK
= NK.t; � NK/: (9.45)

Condition (9.42) tells us that a large D-network has with high probability a giant
NK-component. We let NK.Mtn/ denote the unique (with high probability) NK-core of the

D-network D.Mtn/ corresponding to the non-separable core V.Mtn/.

Corollary 9.4. Lemma 9.3 holds analogously for NK.Mtn/, when we treat the “invisible”
root edge of NK.Mtn/ as a real one.

Proof. Lemma 9.3 and the fourth characterization of quenched local convergence in Pro-
position 2.1 tell us that for any r � 0 the percentage of corners whose r-neighbourhoods
have a fixed shapeM in V.Mtn/ concentrates around the limit probability P .Ur . OVt /DM/.
The asymptotic (9.42) and Proposition 2.3 entail that all but a stochastically bounded
number of these corners have their M -shaped r-neighbourhood lying entirely in NK.Mtn/.
Again by Proposition 2.1, OVt is also the quenched local limit of NK.Mtn/.

Corollary 9.5. Uniformly for ` 2 Z,

P .e. NK.Mtn// D `/ D
1

gM.t/n2=3

�
h

�
.1 � EŒ�M�/n � `

gM.t/n2=3

�
C o.1/

�
: (9.46)
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Proof. As limx!1 h.x/ D 0, it suffices to show this for integers ` � 0. The density
function h is bounded and uniformly continuous. Hence for any k � 0, by (9.3) and (9.42),

gM.t/n
2=3P

�
e. NK.Mtn// D `; e. ND.Mtn// D `C k

�
D h

�
.1 � EŒ�M�/n � `

gM.t/n2=3

�
P .A D k/C o.1/;

with the o.1/ term being uniform in `. Hence for any sequence tn tending sufficiently
slowly to infinity,

gM.t/n
2=3

tnX
kD0

P
�
e. NK.Mtn// D `; e.D.Mtn// D `C k

�
D h

�
.1 � EŒ�M�/n � `

gM.t/n2=3

�
C o.1/; (9.47)

with a uniform o.1/ term. Condition (8.25) implies that

P .e. NK/ D n/ � c NK.t/n
�5=2: (9.48)

Using (9.3), Proposition 5.2, and the fact that h is bounded, it follows that there are con-
stants C; c > 0 such that

gM.t/n
2=3

X
tn�k�n

P
�
e. NK.Mtn// D `; e.D.Mtn// D `C k

�
� C

X
tn�k�n

�
h

�
.1�EŒ�M�/n�`�k

gM.t/n2=3

�
Co.1/

�
P .e. NK/ D `/P .e. NK/ D k/

P .e. NK/ D `Ck/
exp.�ck=`/

� O.1/
X

tn�k�n

P .e. NK/ D k/.1C k=`/5=2 exp.�ck=`/

� O.P .e. NK/ � tn//: (9.49)

Together with (9.47) this verifies claim (9.46).

9.3. NR-networks

Equation (7.14), that is, NK D y NR.x; NK/, tells us that a NK-network may be recursively
described as an NR-network where we insert an additional edge (corresponding to the
factor y) at a specified location, and substitute all other regular edges (if any) by NK-
networks.

It follows from (7.14) and the general results of Section 4.2 that any NK-network with
n edges corresponds bijectively to a pair .T; ˇ/ of a planted plane tree T with n vertices
and a function ˇ that assigns to each vertex v 2 T an NR-network with dCT .v/ regular
edges.

The bijection may be recursively described as follows: The decoration ˇ.o/ of the root
vertex o of T is a network with an “invisible” edge connecting the poles, dCT .o/ regular
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edges and an additional “terminal” edge that we label with o. The regular edges may
be enumerated in some canonical way (say in a breadth-first-search manner), so that each
corresponds bijectively to one of the dCT .o/ offspring vertices v of o. The decorated fringe
subtree rooted at such a vertex v corresponds bijectively to a network, and we replace the
edge of ˇ.o/ that corresponds to v by the “invisible” root edge of that network, hence
creating the final network by a glueing operation.

The enriched tree .T NKn ; ˇ
NK
n / corresponding to a random NK-network NKtn with n edges

(drawn with probability proportional to its weight tv.�/) is a canonically decorated simply
generated tree with weight sequence .! NK

k
/k�0 given by

!
NK
k D Œy

k � NR.t; y/: (9.50)

It follows from (8.24), (8.20), and Lemma 3.1 that T NKn is distributed like a Galton–
Watson tree T NK conditioned on having n vertices, with offspring distribution � NK satisfy-
ing

EŒ�
NK � < 1 and P .�

NK
D n/ �

c NR.t/

NR.t; �R.t//
n�5=2: (9.51)

By Lemma 3.2 it follows that the (unique with high probability) largest NR-component
NR. NKtn/ satisfies

P .e. NR. NKtn// D `/ D
1

g NK.t/n
2=3

�
h

�
.1 � EŒ�

NK �/n � `

g NK.t/n
2=3

�
C o.1/

�
(9.52)

uniformly for all ` 2 Z with g NK.t/ > 0 a constant.
We let NR.Mtn/ WD NR. NK.Mtn// denote the largest NR-component within the largest NK-

component of V.Mtn/. Note the subtlety of this definition. It is clear that with probability
tending to 1 the component NR.Mtn/ actually equals the largest NR-component within the
entire map Mtn. However, determining the speed of convergence would require additional
work. For this reason, getting a local limit theorem for the size e. NR.Mtn// requires a little
less effort than getting a local limit theorem for the size of the largest NR-component in Mtn.

A local limit theorem for the size of the largest 3-connected component of Mtn was
established in [32, Thm. 6.4], and we are going to argue analogously.

Corollary 9.6. Uniformly for all ` 2 Z,

P .e. NR.Mtn// D `/ D
1

Qg NK.t/n
2=3

�
h

�
.1 � EŒ�

NK �/.1 � EŒ�M�/n � `

Qg NK.t/n
2=3

�
C o.1/

�
(9.53)

with

Qg NK.t/ D
�
.gM.t/.1 � EŒ�

NK �//3=2 C g NK.t/
3=2.1 � EŒ�M�/

�2=3
: (9.54)
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Proof. Since limx!1 h.x/D 0 it suffices to show this for integers ` � 0. It follows from
the definition of NR.Mtn/ that

P .e. NR.Mtn// D `/ D
nX

ND1

P .e. NK.Mtn// D N/P .e. NR. NK
t
N // D `/: (9.55)

Recall that

NK.Mtn/ � D.Mtn/
d
D

1
2
�.TM

n / � 1 (9.56)

(and TM
n has 2nC 1 vertices). It follows from [65, (2.10)] that there is a constant "1 > 0

such that

P .�.TM
n / � "1n=logn/ D o.n�2=3/: (9.57)

By inequality (9.49), for any N; s � 1,

P .e. NK.Mtn// D N; e.D.Mtn// � N C s/ � O.1/n
�2=3s�3=2: (9.58)

By [65, (2.11), (2.12)] it follows that for any 0 < "2 < 1 � EŒ�M�,

P ."1n=logn � �.TM
n / � "2n/ D O.n

�2=3/: (9.59)

Condition (9.52) implies that P .e. NR. NKtN //D `/DO.N
�2=3/, hence using (9.57), (9.58)

and (9.59) we obtain

b"2ncX
ND1

P .e. NK.Mtn// D N/P .e. NR. NK
t
N // D `/

D

b"2ncX
ND1

P
�
e. NK.Mtn// D N; e.D.Mtn/

�
� N C n=log2 n/P .e. NR. NKtN // D `/

CO.1/n�2=3.n=log2 n/�3=2
b"2ncX
ND1

N�2=3

D o.n�2=3/:

Hence by Corollary 9.5 it follows that for each " > 0 we may select a constant M1 > 0

large enough such that the interval In with endpoints .1 � EŒ�M�/n˙M1n
2=3 satisfies

lim sup
n!1

sup
`2Z

n2=3
X
N…In

P .e. NK.Mtn// D N/P .e. NR. NK
t
N // D `/ � "; (9.60)

Using again (9.52), it follows that there is a constant M2 (depending only on ") such that
the interval Jn with endpoints .1 � EŒ�

NK �/.1 � EŒ�M�/n˙M2n
2=3 satisfies

lim sup
n!1

sup
`…Jn

n2=3P .e. NR.Mtn// D `/ � 2": (9.61)
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Hence it suffices to verify (9.53) uniformly for ` 2 Jn as n becomes large. We may
write N 2 In as N D .1�EŒ�M�/nC xNn

2=3 with jxN j �M1. Likewise, we may write
` 2 Jn as ` D .1 � EŒ�

NK �/.1 � EŒ�M�/nC y`n
2=3 with jy`j � M2. Conditions (9.46),

(9.52), and the fact that h is bounded and uniformly continuous imply that uniformly for
` 2 Jn,

n2=3
X
N2In

P .e. NK.Mtn// D N/P .e. NR. NK
t
N // D `/

D
1C o.1/

gM.t/g NK.t/.1 � EŒ�M�/2=3n2=3

X
N2In

h

�
�xN

gM.t/

�
h

�
.1 � EŒ�

NK �/xN � y`

g NK.t/.1 � EŒ�M�/2=3

�
:

Taking M1 large enough and using jy`j < M2, it follows that this expression lies in the
interval with endpoints

˙"Co.1/C
1

gM.t/g NK.t/.1�EŒ�M�/2=3

Z 1
�1

h

�
�z

gM.t/

�
h

�
.1�EŒ�

NK �/z�y`

g NK.t/.1�EŒ�M�/2=3

�
dz:

Setting a D gM.t/.1�EŒ�
NK �/ and b D g NK.t/.1�EŒ�M�/2=3, and making a linear vari-

able transform, we may rewrite the last summand by
R1
�1

1
a
h.� z

a
/ 1
b
h. z�y`

b
/ dz: Recall

that h is the density of a 3=2-stable random variableX with Laplace transform EŒe��X �D
e�
3=2

. Hence the integral is the density of a sum �aX1 � bX2 evaluated at the point y`,
with X1 and X2 denoting independent copies of X . By comparing Laplace transforms we

find �aX1 � bX2
d
D �cX with c D .a3=2 C b3=2/2=3. ThusZ 1

�1

1

a
h

�
�
z

a

�
1

b
h

�
z � y`

b

�
dz D

1

c
h

�
�
y`

c

�
D
1

c
h

�
.1 � EŒ�

NK �/.1 � EŒ�M�/n � `

cn2=3

�
:

The (regular and “invisible”) edges of the core NR. NKtn/ (that is, the canonically selected
largest NR-component of NKtn) may be enumerated from 0 to e. NR. NKtn// in a canonical way,
starting with the invisible edge. We give each edge an orientation according to a fair
independent coin flip. The map NKtn is constructed from the core NR. NKtn/ by replacing the
i th (oriented) edge by a network NKi . NKtn/ for all 0 � i � e. NR. NKtn//. Here replacing means
deleting the edge and identifying its start vertex with the south pole and its end vertex
with the north pole of the network.

The network NK0. NKtn/ inserted at the “invisible” edge of the core NR. NKtn/ carries a
second pair of poles that correspond to the poles of NKtn. For each 1 � i � e. NR. NKtn//
the network NKi . NKtn/ is fully described by the fringe subtree Fi .T

NK
n / and the restriction

ˇ
NK
n jFi .T

NK
n /

. The network NKi . NKtn/ (and its second pair of poles) is fully described by the

marked tree F0.T
NK
n / and the restriction of ˇ NKn to all unmarked vertices of F0.T

NK
n /.

We define T NK , T� NK and Tı NK for the offspring distribution � NK analogously to T, T�

and Tı defined for � in Section 3.2. For each integer i � 1 we let NK.i/ denote an independ-
ent copy of the network NKt corresponding to T NK with canonical random NR-decorations
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(as defined in Section 4.2). We let NK.0/ denote the network (with two sets of poles) cor-
responding to a canonical decoration of the random marked tree Tı NK .

We let NKt
Œn�

denote the network constructed from the core NR. NKtn/ by substituting for all
0 � i � e. NR. NKtn// the i th edge of NR. NKtn/ by NK.i/ instead of NKi . NKtn/. This way, NKt

Œn�
and

NKtn are different models. For example, the number of edges of NKt
Œn�

fluctuates around n,
but need not be precisely equal to n. We let NKt

hni
be constructed analogously from the core

NR.Mtn/ instead of NR. NKtn/. Since the core NR.Mtn/ is a mixture of NR. NKtn/, it follows that
NKt
hni

is a mixture of NKt
Œn�

.
We will show that local convergence of NK.Mtn/ is equivalent to local convergence

of NKt
hni

, with the same limit map in both cases. This is analogous to Lemma 9.2.

Lemma 9.7. Let chni denote a uniformly selected corner of NKt
hni

. Then

L.. NKt
hni; chni/ j

NKt
hni/

p
�! L. OVt /: (9.62)

Proof. We set

�
NK
hni WD sup

°
d � 0

ˇ̌̌
e. NK.0//C

dX
iD1

e. NK.i// � n
±
:

It follows from Lemma 3.3 that for any sequence .tn/n of integers with tn ! 1 and
tn D o.n/,

. NKi . NK
t
n//0�i�e. NR. NKtn//�tn

d
� . NK.i//

0�i��
NK
hni
�tn

(9.63)

and with probability tending to 1 as n becomes large,

e. NR. NKtn//X
iDe. NR. NKtn//�tn

e. NKi . NK
t
n// � 2EŒe. NK

t /�tn: (9.64)

Let 0 < ı < 1 � EŒ�
NK � and " > 0 be given. By Lemma 3.4 there are constants 0 <

c < C , N0 > 0 and collections .En/n�1 (each consisting of a set of finite sequences of
K-networks, with the first having an additional marked corner) such that for all n > N0,

P .. NKi . NK
t
n//0�i�e. NR. NKtn//�bınc

2 En/ > 1 � ";

P .. NK.i//0�i�e. NR. NKtn//�bınc
2 En/ > 1 � ";

(9.65)

and uniformly for all sequences S 2 En,

c <
P .. NKi . NKtn//0�i�e. NR. NKtn//�bınc

D S/

P .. NK.i//0�i�e. NR. NKtn//�bınc
D S/

< C: (9.66)

Note that knowledge of . NKi . NKtn//0�i�e. NR. NKtn//�bınc
implies knowledge of e. NR. NKtn//.

Moreover, conditionally on e. NR. NKtn// the core NR. NKtn/ admits an e. NR. NKtn//-sized NR-
network with probability proportional to its weight. Let E

NK
n denote the collection of all
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pairs .R; S/ such that S 2 En and R is an NR-network whose number of (visible) edges
agrees with the core size corresponding to S . That is, the number of edges of R equals
the dimension of S plus bınc � 1. It follows from (9.65) and (9.66) that

P
�
. NR. NKtn/; . NKi . NK

t
n//0�i�e. NR. NKtn//�bınc

/ 2 E
NK
n

�
> 1 � "; (9.67)

P
�
. NR. NKtn/; . NK.i//0�i�e. NR. NKtn//�bınc

/ 2 E
NK
n

�
> 1 � "; (9.68)

and uniformly for all .R; S/ 2 E
NK
n ,

c <
P .. NR. NKtn/; . NKi . NKtn//0�i�e. NR. NKtn//�bınc

/ D .R; S//

P .. NR. NKtn/; . NK.i//0�i�e. NR. NKtn//�bınc
/ D .R; S//

< C: (9.69)

From (9.7) it follows that with high probability,

e. NR. NKtn//X
iDe. NR. NKtn//�bıncC1

e. NKi . NK
t
n// � 2EŒe. NK

t /�bınc: (9.70)

The core NK.Mtn/ is a mixture of NKtn, with a random size e. NK.Mtn// that we determ-
ined in Corollary 9.46. Hence (9.67)–(9.70) imply the corresponding equalities and
inequalities¸ for NK.Mtn/.

Let On;ı denote the subset of vertices in NK.Mtn/ corresponding to the compon-
ents NKi . NK.Mtn// for e. NR. NMtn// � bınc C 1 � i � e. NR. NMtn//. For each k � 0 we let
Uk. NK.Mtn/; On;ı/ denote the collection of vertices of NK.Mtn/ with graph distance at
most k from On;ı .

Using only the local convergence of NK.Mtn/ from Corollary 9.4 and the fact that On;ı
becomes small as ı !1 we may argue as for (9.14) to deduce that for each k � 0 and
each "0 > 0,

lim
ı#0

lim sup
n!1

P .jUk. NK.Mtn/; On;ı/j > "
0n/ D 0: (9.71)

We write U c
k
. NK.Mtn/; On;ı/ for the collection of corners in NK.Mtn/ that are incident to

vertices of Uk. NK.Mtn/; On;ı/. Arguing as for (9.15), we obtain

lim
ı#0

lim sup
n!1

P .jU ck .
NK.Mtn/; On;ı/j > "

0n/ D 0: (9.72)

Having (9.72) as well as (9.67)–(9.70) at hand, the proof may be completed by copy-
ing almost word for word the corresponding part of the proof of Lemma 9.2.

Lemma 9.8. The NR-core NR.Mtn/ admits a distributional limit ONRt in the local topology. If
cn denotes a uniformly selected corner of NR.Mtn/, then

L.. NR.Mtn/; cn/ j NR.M
t
n//

p
�! L. ONRt /: (9.73)



B. Stufler 46

Proof. The corners of NKt
hni

(counting the “invisible” edge between the poles as a real
edge) correspond bijectively to the corners of the collection . NKi . NKthni//0�i�e. NR. NKt

hni
// D

. NK.i//0�i�e. NR.Mtn//
(treating the “invisible” edge between the poles of NK0.Mtn/, that cor-

respond to the poles of NKt
hni

, like a real edge). Let us select a corner v1 (which we colour
red) and a corner v2 (which we colour blue) of NKt

hni
uniformly and independently at

random. This may be done by uniformly selecting two independent edges, and flipping
fair coins for each to determine which of the corresponding half-edges to use. For each
0 � i � e. NR.Mtn// we set QNKi . NKthni/ D

NKi . NKthni/ if neither v1 nor v2 lies in this compon-

ent, and otherwise we let QNKi . NKthni/ be given by NKi . NKthni/ with an additional marked red
and/or blue corner corresponding to the location(s) of v1 and/or v2.

We let NK� denote the network with a marked corner obtained by taking the network
corresponding to a canonical decoration of T� NK and flipping a fair coin on which of the
two half-edges corresponding to the marked edge to distinguish. We let NK�1 and NK�2 denote
independent copies of NK� where we colour the corners red and blue, respectively. Let
j1; j2 denote a uniformly selected pair of distinct integers between 1 and e. NR.Mtn//. For
each i � 0 we set QNK.i/ D NK.i/ if i … ¹j1; j2º, and QNK.i/ D NK�

k
if i D jk for k 2 ¹1; 2º. By

Corollary 3.5 it follows that

. QNKi . NK
t
hni//0�i�e. NR.Mtn//

d
� . QNK.i//0�i�e. NR.Mtn//

: (9.74)

Let r � 1 be a constant. For each k 2 ¹1;2º let ek be the oriented edge of NR.Mtn/where
the component containing vk is inserted. (Recall that we substitute edges of NR.Mtn/ by
networks, and each edge of NR.Mtn/ was given a direction so that there is no ambiguity
which of the end vertices gets identified with which pole.)

If the distance between vk and (both endpoints of) ek is at least r , the neighbour-
hood Ur . NKthni/; vk/ is fully contained in the NR-component containing the corner vk . If the
distance ak from vk to the origin ek.1/ and the distance bk from vk to the destination
ek.2/ satisfy min.ak ; bk/ < r , then Ur . NKthni; vk/ may be assembled canonically from the
following parts:

(1) The r-neighbourhood of the corner vk in the component containing it, with additional
knowledge of the location of ek relative to that neighbourhood.

(2) The (connected) submapU.k/ of NR.Mtn/ (rooted at ek) induced by all edges of NR.Mtn/
whose components contain edges from Ur . NKthni/; vk/.

(3) Neighbourhood(s) of one or both poles (possibly with different radii) within the com-
ponents inserted at edges e ¤ ek in U.k/.

Let us define a semi-network analogously to a planar network, with the only different
requirement being that adding the “invisible” oriented root edge must make the semi-
network connected (instead of non-separable, as in the case of networks). The necessity
for this notion stems from the fact that in the case of min.ak ; bk/ < r , if a network K
gets inserted at an edge e ¤ ek of U.k/, then its contribution to (or intersection with)
the r-neighbourhood of vk in NKt

hni
may have two different shapes: Either it consists of
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a neighbourhood in K of only one of the poles (and the other is too far away), or it
consists of the union of neighbourhoods with possibly different radii of the south pole
and the north pole. These neighbourhoods may or may not overlap. Hence the need for
this terminology, to describe how the r-neighbourhood of vk in NK.Mtn/ gets assembled
by inserting semi-networks at edges of U.k/.

It follows from Proposition 2.3 and the local convergence of NKt
hni

ensured by
Lemma 9.7 that the neighbourhoods Ur . NKthni; v1/ and Ur . NKthni; v2/ are with high prob-
ability disjoint. Applying Proposition 2.3 repeatedly also entails that we may choose the
sequence .tn/n so that it converges sufficiently slowly to infinity so that with high prob-
ability neither of these neighbourhoods contains the “invisible” edge between the poles
of NR.Mtn/ or any of the last tn edges of NR.Mtn/ (with respect to the canonical ordering of
those edges). (If there existed a subsequence .n0/ along which the probability that v1 has
distance less than r from the “invisible” edge or some i th last edge of NR.Mtn/ is bounded
away from zero, then so is the probability that this happens jointly for v1 and v2 (as they

are i.i.d.), contradicting d NK.Mtn/
.v1; v2/

d
�!1.)

By (9.74) and the discussion of the previous paragraph it follows that jointly and
asymptotically the components containing v1 and v2 behave like independent copies
of NK�, and the components inserted at edges ¤ e1; e2 of U.1/ and U.2/ behave jointly
like independent copies of NK. It also follows that U.1/ \ U.2/ D ; with high probability.
(We are going to use this fact below when studying joint probabilities.)

We would like to establish an analogue of (9.35) and perform a similar proof by induc-
tion as we did in the proof of Lemma 9.3. That is, we would like to use convergence of the
r-neighbourhoods of v1 and v2 in NKt

hni
(ensured by Lemma 9.7) to deduce convergence of

the r-neighbourhoods of e1 and e2 in NR.Mtn/. However, there is a big problem with this
approach if we work directly with probabilities that neighbourhoods of fixed radii have
given shapes: The map Ur . NR.Mtn/; ek/ may have more edges than U.k/, hence breaking
the induction step.

For this reason, we are going to perform the induction with a different family of
convergence-determining events. For any planar maps R and H , any subset A of ver-
tices fromH , and any half-edge v ofR we let E.H;A;R;v/ denote the indicator variable
(and, by abuse of notation, also the corresponding event when R is random) that H may
be embedded as a submap of R with the root edge corresponding to v, so that R has no
additional edges that are incident to A. We are going to refer to the pair .H;A/ as a com-
munity, and to the subset A as the conservative members of the community. (The analogy
is that some community members are open to form new connections to others within and
outside of their community, whereas members of the subset A are more conservative.)

Let .M1;A1/ and .M2;A2/ be given finite communities, withM1 andM2 having radii
r1; r2 < r . In the event E.Mk ; Ak ; NKthni; vk/ there are finitely many possible shapes Hk
of the submap of the core NR.Mtn/ induced by edges whose components contain edges of
the embedding of Mk in NKt

hni
. (Here we consider Hk as rooted at the oriented edge cor-

responding to ek .) For example, if Hk consists of a single oriented edge, then the image
of Mk lies entirely in the component inserted at ek . The marked corner in that compon-
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ent corresponds to the root edge of Mk . Furthermore, the poles of this component may
not correspond to conservative members. As the component inserted at ek asymptotically
behaves like an independent copy of NK�, it follows that the limiting probability of this
subevent is a constant C.Mk ; Ak/ determined by the probability of some event for NK�.
If Hk consists of more than its root edge, then Mk gets assembled by substituting each
edge e ofHk by a semi-networkKe.k/. The semi-network inserted at the root edge ofHk
has a marked corner, which corresponds to the root corner of Mk . There may be multiple
(but only finitely many) choices for such families .Ke.k//e to assemble Mk in this way.
If we know the shape Hk then we know the subset Bk of vertices of Hk that correspond
to conservative members of Mk , and if we additionally know the family .Ke.k//e then
for each e we know the subset of non-pole vertices of the inserted network Ke that cor-
respond to conservative members. Hence, this subevent is characterized by requiring the
event E.Hk ; Bk ; NR.Mtn/; ek/ to take place, and additionally for each edge e of Hk the
corresponding component needs to have the semi-network Ke.k/ as sub-semi-network
and no further edges incident to conservative members of Ke.k/. We know that jointly
and asymptotically the component corresponding to the root edge of Hk behaves like an
independent copy of NK�, and the components corresponding to all other edges behave like
independent copies of NKt . Hence the probability of the entire subcase corresponding toHk
may be expressed by

o.1/C C.Hk ;Bk/P .E.Hk ; Bk ;
NR.Mtn/; ek//:

Here C.Hk ;Bk/ � 0 denotes a constant that corresponds to a sum (over all choices for the
family .Ke.k//e) of product probabilities for events of independent copies of NKt (and one
copy of NK�). As there are only finitely many choices for Hk , this allows us to write

P .E.Mk ; Ak ; NK
t
hni; vk// D o.1/C C.Mk ; Ak/

C

X
.Hk ;Bk/
e.Hk/�2

C.Hk ;Bk/P .E.Hk ; Bk ;
NR.Mtn/; ek//: (9.75)

Here the sum index .Hk ; Bk/ ranges over some finite set of communities, each having
the properties e.Hk/ � 2 and v.Hk/ � v.Mk/ and e.Hk/ � e.Mk/. There are at most
two cases where jointly v.Hk/ D v.Mk/ and e.Hk/ D e.Mk/, namely Hk D Mk and
Hk D Inv.Mk/, the map obtained by reversing the orientation of the root edge of Mk . (It
can happen that Mk D Inv.Mk/, entailing that these cases coincide.)

Note that both conditions v.Hk/ D v.Mk/ and e.Hk/ D e.Mk/ are necessary to nail
the cases of Hk down to Mk / Inv.Mk/. There are potentially many more cases of Hk
with e.Hk/ D e.Mk/, but all of them satisfy v.Hk/ < v.Mk/. For example, consider the
case where Mk is a path of length 4 with the root edge incident to and pointing away
from the middle vertex. We could assemble Mk by replacing the edges of a 4-cycle by
semi-networks – by replacing two of the square edges with a network consisting of two
poles joined by a single regular edge (plus the “invisible” edge that we discard when
substituting), and the other two by a semi-network where there is a single regular edge
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incident to one of the poles but not to the other. There are also potentially many more
cases for Hk with v.Hk/ D v.Mk/, but all of them satisfy e.Hk/ < e.Mk/, for example
when Mk consists of two vertices joined by three edges.

Let us focus on the special case Hk DMk . We may assume that Mk has at least two
edges. For Hk D Mk the semi-network Ke.k/ inserted at an edge e of Hk to form Mk

must have precisely one regular edge (plus the “invisible” edge that we discard when
substituting). Hence there are three possible choices for Ke.k/: either the regular edge
connects the two poles (we denote this by �S � �N ), or it is only incident to the south
pole (�S�) or only to the north pole (��N ).

(1) If e is an edge ofHk with both ends having degree at least 2, thenKe.k/ has to equal
�S ��N . If e is the root edge, then the edge ofKe.k/ has to be oriented to point from
the south pole to the north pole.

(2) If e points from e.1/ to e.2/ such that e.2/ has degree 1 (and hence e.1/ does not,
sinceMk was assumed to have at least two edges), thenKe.k/may be either �S ��N
or �S�. If e is the root edge, then the edge of Ke.k/ is oriented to point away from
the south pole.

(3) If e.1/ has degree 1 (and hence e.2/ does not), then Ke.k/ may be either �S � �N
or ��N . If e is the root edge, then the edge of Ke.k/ is oriented and needs to point
towards the north pole.

This entails that
C.Mk ;Bk/ D 0 for Bk ¤ Ak :

Indeed, if Bk is a strict subset of Ak , then at least one of the networks .Ke.k//e has
a conservative member. But the probability is zero that NKt or NK� has one of the three
described shapes with an additional conservative member that may not be incident to
further edges. It also follows that

C.Mk ;Ak/ > 0: (9.76)

Let Inv.ek/ denote the result of reversing the direction of ek . By symmetry,

C.Inv.Mk/;Bk/P .E.Inv.Mk/; Bk ; NR.M
t
n/; ek//

D C.Mk ;Bk/P .E.Mk ; Bk ; NR.M
t
n/; Inv.ek/// D C.Mk ;Bk/P .E.Mk ; Bk ; NR.M

t
n/; ek//:

This allows us to express (9.75) as

P .E.Mk ; Ak ; NK
t
hni; vk// D o.1/C

X
.Hk ;Bk/2C.Mk ;Ak/

C.Hk ;Bk/P .E.Hk ; Bk ;
NR.Mtn/; ek//

C C.Mk ; Ak/CD.Mk ;Ak/P .E.Mk ; Ak ; NR.M
t
n/; ek// (9.77)

with
D.Mk ;Ak/ D C.Mk ;Ak/.1C 1Mk¤Inv.Mk//:

and C.Mk ;Ak/ denoting a finite collection of communities .Hk ;Bk/, all with e.Hk/� 2,
and v.Hk/ < v.Mk/ or e.Hk/ < e.Mk/.



B. Stufler 50

The left-hand side of (9.77) converges by Corollary 9.4. As D.Mk ;Ak/ > 0 by (9.76),
it follows by induction on v.Mk/C e.Mk/ (with the base case being trivial) that there is
a constant pMk ;Ak � 0 with

lim
n!1

P .E.Mk ; Ak ; NR.M
t
n/; ek// D pMk ;Ak : (9.78)

Given a planar map M with a specified corner c, we define the edge neighbourhood
Er .M; c/ as the planar map (rooted at c) induced by all edges where at least one end-
point has distance at most r � 1 from c. Hence Er .M; c/may be obtained from Ur .M; c/

by removing all edges where both endpoints have distance r from c. It is clear that for
any sequence .Xn/n�1 of random corner-rooted maps, weak convergence of ErC1.Xn/
implies weak convergence of Ur .Xn/. Conversely, weak convergence of Ur .Xn/ implies
weak convergence of Er .Xn/.

Given a planar mapH , the eventEr .M;c/DH is equivalent to E.H;Ur�1.H/;M;c/.
Recalling that we assumed Mk to have radius rk , it follows from (9.78) that

lim
n!1

P .Erk .
NR.Mtn/; ek/ DMk/ D pMk ;Urk�1.Mk/

DW prk ;Mk : (9.79)

In order to deduce weak convergence of Erk . NR.M
t
n/; ek/, we need to show thatP

Mk
prk ;Mk D 1. To reach a contradiction, suppose that 1 �

P
Mk

prk ;Mk DW " > 0.
Then for any constant s > 0,

P .e.Erk . NR.M
t
n/; ek// > s/ D 1 �

X
Mk ;e.Mk/�s

P .Urk .Erk .
NR.Mtn/; ek// DMk/

! 1 �
X

Mk ;e.Mk/�s

prk ;Mk � ":

It follows that there is a sequence sn !1 with P .e.Erk . NR.M
t
n/; ek// > sn/ � "=2 for

all n. The component containing vk (inserted at ek) admits NK� as weak limit, hence the
probability that vk corresponds to ek converges to a constant p > 0. It follows that

P .e.Erk . NK
t
hni; vk// > sn/ � .p C o.1//P .e.Erk . NR.M

t
n/; ek// > sn/ D p"C o.1/:

But this contradicts the distributional convergence of Erk . NK
t
hni
; vk/ ensured by Corol-

lary 9.4. It follows that X
Mk

prk ;Mk D 1: (9.80)

As this holds for all rk , there is a random infinite graph ONRt (with a root corner Oe ONRt ) that
is the distributional limit of NR.Mtn/ rooted according to the stationary distribution. Recall
that OVt is the local limit of NKt

hni
, and let Oe OVt be its root corner. It follows from (9.77) that

P .E.Mk ; Ak ; OV
t ; Oet
ONK
// D

X
.Hk ;Bk/2C.Mk ;Ak/

C.Hk ;Bk/P .E.Hk ; Bk ;
ONRt ; Oe ONRt //

C C.Mk ; Ak/CD.Mk ;Ak/P .E.Mk ; Ak ;
ONRt ; Oe ONRt //: (9.81)
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As stated above, for any r � 1 the neighbourhoods Ur . NKthni; v1/ and Ur . NKthni; v2/
do not intersect with high probability. Hence jointly and asymptotically the components
inserted at e1 and e2 behave like independent copies of NK�, and the components inserted at
the remaining edges of U.1/ and U.2/ like independent copies of NKt . Hence, analogously
to (9.77), we obtain

P
�
E.M1; A1; NK.Mtn/; v1/ and E.M2; A2; NK.Mtn/; v2/

�
D o.1/C C.M1; A1/C.M2; A2/

C C.M1; A1/
� X
.H2;B2/2C.M2;A2/

C.H2;B2/P .E.H2; B2;
NR.Mtn/; e2//

CD.M2;A2/P .E.M2; A2; NR.M
t
n/; e2//

�
C C.M2; A2/

� X
.H1;B1/2C.M1;A1/

C.H1;B1/P .E.H1; B1;
NR.Mtn/; e1//

CD.M1;A1/P .E.M1; A1; NR.M
t
n/; e1//

�
C

X
.H1;B1/2C.M1;A1/
.H2;B2/2C.M2;A2/

C.H1;B1/C.H2;B2/P
�
E.H1; B1; NR.M

t
n/; e1/ and E.H2; B2; NR.M

t
n/; e2/

�
CD.M1;A1/D.M2;A2/P

�
E.M1; A1; NR.M

t
n/; e1/ and E.M2; A2; NR.M

t
n/; e2/

�
: (9.82)

Corollary 9.4 and Proposition 2.2 entail that the left-hand side satisfies

P
�
E.M1; A1; NK

t
hni; v1/ and E.M2; A2; NK

t
hni; v2/

�
! P .E.M1; A1; OV

t ; Oe OVt //P .E.M2; A2; OV
t ; Oe ONK//: (9.83)

Since the marginal probabilities P .E.Hk ;Bk ; NR.Mtn/;ek// and P .E.Mk ;Ak ; NR.Mtn/;ek//
converge, and since C.M1;A1/C.M2;A2/ > 0, it follows by induction on v.M1/C e.M1/C

v.M2/C e.M2/ (with the base case being trivial) that there is a constant pM1;A1;M2;A2 � 0
with

lim
n!1

P
�
E.M1; A1; NR.M

t
n/; e1/ and E.M2; A2; NR.M

t
n/; e2/

�
D pM1;A1;M2;A2 :

It follows from (9.81)–(9.83) thatX
.H1;B1/2C.M1;A1/
.H2;B2/2C.M2;A2/

C.H1;B1/C.H2;B2/pH1;B1;H2;B2 CD.M1;A1/D.M2;A2/pM1;A1;M2;A2

D

X
.H1;B1/2C.M1;A1/
.H2;B2/2C.M2;A2/

C.H1;B1/C.H2;B2/P .E.H1; B1;
ONRt ; Oe ONRt //P .E.H2; B2;

ONRt ; Oe ONRt //

CD.M1;A1/D.M2;A2/P .E.M1; A1;
ONRt ; Oe ONRt //P .E.M2; A2;

ONRt ; Oe ONRt //:

By induction on v.M1/C e.M1/C v.M2/C e.M2/ it follows that

pM1;A1;M2;A2 D P .E.M1; A1;
ONRt ; Oe ONRt //P .E.M2; A2;

ONRt ; Oe ONRt //:
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Thus, if c.1/n and c.2/n are uniform independent corners of NR.Mtn/, then

.. NR.Mtn/; c
.1/
n /; . NR.Mtn/; c

.2/
n //

d
�! . ONRt;.1/; ONRt;.2//; (9.84)

with ONRt;.1/; ONRt;.2/ denoting independent copies of ONRt . It follows by Proposition 2.2 that

L.. NR.Mtn/; cn/ j NR.M
t
n//

p
�! L. ONRt /:

9.4. NO-networks

We define the class of networks NO by

NO WD NF0;1.x; ySEQ.xy//; (9.85)

with x marking vertices (not counting the poles) and y marking regular edges (not count-
ing the “invisible” edge between the poles). That is, it is obtained from a 3-connected map
by declaring the oriented root edge “invisible”, its origin the south pole, its destination the
north pole, and substituting all remaining edges by paths of positive length.

We let NO� denote the class obtained by making a canonical choice of an edge (with
a canonical orientation) in NO, and declaring it invisible. We may think of the ends of this
edge as the second pair of poles of the network. That is, the species NO and NO� are related
by

NO D y NO�: (9.86)

Let us recall the decomposition of NR:

NR D NJSEQ. NI�/;
NI� D ySEQ�1.xy/SEQ.xy/C NO�.x; y/.1C ySEQ.xy//;
NJ D 1C ySEQ.xy/:

That is, an NR-network consists of a NJ-component and a possibly empty ordered sequence
of NI�-components. We are going to describe this decomposition in detail. A network from
the species NJ may have two different shapes:

(1) It may be the trivial network consisting of a south pole, a north pole, and only the
“invisible” edge between them. This accounts for the summand 1.

(2) It may consist of two poles joined by a single path of positive length (and, in parallel,
the “invisible” edge between the poles). This accounts for the summand ySEQ.xy/.

Recall that equation (7.14), that is, NK D y NR.x; NK/, may be interpreted as a recursive
description of NK-networks. It tells us that a NK-network consists of an NR-network where
we insert an additional edge (corresponding to the factor y) between the poles of its
NJ-component, and substitute all other regular edges (if any) by NK-networks. In particu-

lar, when we interpret NR.Mtn/ as a planar map, we have to replace the “invisible” edge
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between its poles by a regular edge, and add an additional edge between the poles of its
NJ-component.

An element from NI� is a network with a second pair of poles joined by a second
“invisible” edge. It may have the following shapes:

(1) It may be an NO�-network or the parallel composition of an NO�-network with a path
of positive length. These cases account for the summand NO�.x; y/.1C ySEQ.xy//.

(2) It may be constructed as follows: Take the parallel composition of a path of length
at least 2 with a path of positive length. Declare the first edge of the first path as
“invisible” and its ends as the second pair of poles. This accounts for the summand
ySEQ�1.xy/SEQ.xy/.

Finally, a network from

NR D NJSEQ. NI�/ D NJ C NJ NI� C NJ. NI�/2 C NJ. NI�/3 C � � �

may have the following shapes:

(1) It may consist of a NJ-network. This accounts for the summand NJ.

(2) It may be constructed as follows. Take an integer k � 1. Choose arbitrary NI�-networks
I1; : : : ; Ik and a NJ�-network J . We substitute the second pair of poles of I1 by I2,
then the second pair of poles of I2 by I3, and so on. Finally, we substitute the second
pair of poles of Ik by J . This accounts for the summand NJ. NI�/k .

We let NO.Mtn/ denote the largest NO-component in the decomposition of NR.Mtn/.

Lemma 9.9. (1) The NO-component NO.Mtn/ admits a distributional limit ONOt in the local
topology. If we let cn denote a uniformly selected corner of NO.Mtn/, then

L.. NO.Mtn/; cn/ j NO.M
t
n//

p
�! L. ONOt /: (9.87)

(2) Uniformly for all ` 2 Z,

P .e. NO.Mtn// D `/ D
1

Qg NK.t/n
2=3

�
h

�
.1 � EŒ�

NK �/.1 � EŒ�M�/n � `

Qg NK.t/n
2=3

�
C o.1/

�
:

(9.88)

Proof. The singular expansion (8.16) entails that

Œyn� NO�.t; y/ � c NO.t/�R.t/
�nn�5=2 (9.89)

for some constant c NO.t/ > 0. The constant

�R.t/ < 1=t (9.90)

is given in (8.18). The summand ySEQ�1.ty/SEQ.ty/ has radius of convergence strictly
larger than �R.t/. Using (5.5) it follows that

Œyn� NI�.t; y/ � c NO.t/.1C �R.t/=.1 � t�R.t///�R.t/
�nn�5=2: (9.91)
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Hence by (5.2),

Œyn�SEQ. NI�.t; y// � .1 � NI�.t; �R.t///
�2Œyn� NI�.t; y/: (9.92)

The factor NJ.t; y/ has radius of convergence strictly larger than �R.t/. By Proposition 5.4
it follows that the NJ-component NJ.Mtn/ of NR.Mtn/ converges to a random NJ.t; y/-object
following a Boltzmann distribution with parameter �R.t/. By Lemma 5.1 the SEQ. NI�/-
component SEQ. NI�/.Mtn/ of NR.Mtn/ has a giant component and the small fragments
converge (as in (9.42)) to a Boltzmann-distributed SEQ. NI�.t; y//2-object with parameter
�R.t/. The generating series ySEQ�1.ty/SEQ.ty/ has radius of convergence strictly lar-
ger than �R.t/. Hence the (canonically selected) maximal NI�-component NI�.Mtn/ belongs
to NO�.t; y/.1C ySEQ.ty//with probability tending exponentially fast to 1 as n becomes
large. It follows from Proposition 5.4 that the .1 C ySEQ.ty//-component of NI�.Mtn/
admits a Boltzmann limit distribution with parameter �R.t/. Summing up,

e. NR.Mtn// D e. NO.Mtn//COp.1/: (9.93)

The convergence (9.87) now follows from Lemma 9.8, by arguments entirely analogous
to those in the proof of Corollary 9.4.

It remains to verify the local limit theorem. To this end, it suffices to verify (9.88) for
all ` � 1. We set � WD .1 � EŒ�

NK �/.1 � EŒ�M�/. Let X1 denote the size of a Boltzmann
distributed NJ.t; y/-object with parameter �R.t/. Note that X1 has finite exponential
moments. Using Corollary 9.6 and the fact that h is bounded and uniformly continuous,
we see that for each constant k � 0,

Qg NK.t/n
2=3P

�
e.SEQ. NI�/.Mtn// D `; e. NR.Mtn// D `C k

�
D h

�
�n � `

Qg NK.t/n
2=3

�
P .X1 D k/C o.1/:

Here the o.1/-term is uniform in `. Hence for any sequence .tn/n of integers that tends to
infinity sufficiently slowly,

Qg NK.t/n
2=3

tnX
kD0

P
�
e.SEQ. NI�/.Mtn// D `; e. NR.Mtn// D `C k

�
D h

�
�n � `

Qg NK.t/n
2=3

�
C o.1/: (9.94)

Again, the o.1/-term is uniform in `. Let Y1 denote the size of a Boltzmann-distributed
SEQ. NI�/-object with parameter �R.t/. Note that by (9.91) and (9.92),

P .Y1 D n/ � c1n
�5=2
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for some constant c1 > 0. Using Corollary 9.6, (5.6) and (5.8), and the fact that h is
bounded, we see that

Qg NK.t/n
2=3

X
tn�k�n

P
�
e.SEQ. NI�/.Mtn// D `; e. NR.Mtn// D `C k

�
D

X
tn�k�n

�
h

�
�n � `

Qg NK.t/n
2=3

�
C o.1/

�
P .X1 D k/P .Y1 D `/

P .X1 C Y1 D `C k/

� O.1/
X

tn�k�n

P .X1 D k/

�
1C

k

`

�5=2
: (9.95)

This bound tends to zero uniformly for all `� 1, sinceX1 has finite exponential moments.
Combining (9.94) and (9.95) yields

P .e.SEQ. NI�/.Mtn// D `/ D
1

Qg NK.t/n
2=3

�
h

�
�n � `

Qg NK.t/n
2=3

�
C o.1/

�
: (9.96)

By arguments as in the proof of Corollary 9.5, it follows that

P .e. NI�.Mtn// D `/ D
1

Qg NK.t/n
2=3

�
h

�
�n � `

Qg NK.t/n
2=3

�
C o.1/

�
: (9.97)

Using identical arguments as for (9.94)–(9.96), it follows that

P .e. NO.Mtn// D `/ D
1

Qg NK.t/n
2=3

�
h

�
�n � `

Qg NK.t/n
2=3

�
C o.1/

�
:

9.5. Transfer between different mixtures

In the preceding arguments, we transferred properties of Mtn to different cores: V.Mtn/,
NK.Mtn/, NR.M

t
n/, and NO.Mtn/. It is an important subtlety of these arguments that each of

these cores has a random number of edges, for which we deduced a local limit theorem
with a 3=2-stable limit law. Conditioned on having a fixed number k of edges, each core is
drawn with probability proportional to its weight (defined by putting weight t at vertices)
from all k-edge elements of the corresponding class. That is, each core is a mixture of
random weighted objects.

9.5.1. An absolute continuity relation. Observe that we have a certain degree of freedom
in changing these mixtures. To this end, suppose that S is a space and let B.S/ denote its
Borel � -algebra. Let .Sn/n denote a sequence of S -valued random variables. Let Xn and
Yn denote random integers, each independent of .Sn/n. Suppose that there are constants
�X ; �Y ; gX ; gY > 0 such that

P .Xn D `/ D
1

gXn2=3

�
h

�
�Xn � `

gXn2=3

�
C o.1/

�
(9.98)
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and

P .Yn D `/ D
1

gY n2=3

�
h

�
�Y n � `

gY n2=3

�
C o.1/

�
(9.99)

uniformly for all ` 2 Z.

Lemma 9.10. Let sn D bn�Y =�Xc.

(1) For each " > 0 there are constants 0 < c < C and N0 > 0 such that for all n � N0
and all events E 2 B.S/,

cP .SXsn 2 E/ � " � P .SYn 2 E/ � CP .SXsn 2 E/C ": (9.100)

(2) If .SXn/n�1 is uniformly tight, then so is .SYn/n�1.

(3) If SXn 2 E holds with high probability, then so does SYn 2 E .

(4) When S D G or S DM .defined in Section 2/, quenched local convergence of SXn
to a deterministic law � implies quenched local convergence of SYn to �.

Proof. Using (9.98) and (9.99) (and the fact that the density function h is bounded,
uniformly continuous and positive) we deduce that for each constant M > 0 there are
constants 0 < cM < CM such that uniformly for all integers k D �Y n C xn

2=3 with
jxj �M ,

P .Xsn D k/

P .Yn D k/
D

gY h
�

x

gX .�Y =�X /2=3

�
C o.1/

gX
�
�Y
�X

�2=3
h
�
x
gY

�
C o.1/

2 ŒcM C o.1/; CM C o.1/�: (9.101)

This yields

P .SYn 2 E/ � P .jYn � �Y nj �Mn2=3/C
X

jk�n�Y j�Mn2=3

P .Yn D k/P .Sk 2 E/

� P .jYn � �Y nj �Mn2=3/

C .CM C o.1//
X

jk�n�Y j�Mn2=3

P .Xsn D k/P .Sk 2 E/

� o.1/C P .jYn � �Y nj �Mn2=3/C CMP .SXsn 2 E/;

with an o.1/-term that only depends on M and n. Likewise

P .SYn 2 E/ � o.1/ � P .jXsn � �Y nj �Mn2=3/C cMP .SXsn 2 E/:

Given " > 0, it follows from (9.98) and (9.99) that we may select M sufficiently large
such that

P .jYn � �Y j �Mn2=3/ � "=2 and P .jXsn � �X j �Mn2=3/ � "=2:

This proves (9.100).
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As for the second claim, suppose that .SXn/n�1 is uniformly tight. Let " > 0 be given.
Then there is a compact subsetK0 �X with P .SXn …K0/� "=C for all n. From (9.100)
it follows that there is a constant N0 with P .SYn … K0/ � 2" for all n � N0.

The third claim follows directly from (9.100).
As for the fourth, Proposition 2.1 implies that quenched local convergence corres-

ponds to convergence in probability of the percentage of vertices / corners with an (arbit-
rary but fixed) radius r � 1 neighbourhood having an (arbitrary but fixed) shapeM . Hence
if SXn converges in the quenched sense to a deterministic limit law �, then this percent-
age of specified points in SXn converges in probability to a constant pr;M given by the
corresponding �-probability. The third claim now implies that the same holds for SYn ,
yielding quenched convergence of SYn .

9.6. An application to random 2-connected planar maps

Let Vtn denote the random non-separable planar map with n edges drawn with probability
proportional to the weight tv.�/. Recall that in Lemma 9.3 we established a quenched local
limit OVt of the core V.Mtn/.

Theorem 9.11. If we let cn denote a uniformly selected corner of Vtn, then

L..Vtn; cn/ j V
t
n/

p
�! L. OVt /: (9.102)

We call OVt the uniform infinite non-separable planar map with weight t at vertices.

The limit OMt may be constructed from the uniform infinite non-separable map OVt by
inserting independent random planar maps (with explicit distributions) at each corner of
the uniform infinite non-separable planar map [64, Thm. 6.59]. The asymptotic degree
distribution of V1n was established in [23].

Proof of Theorem 9.11. By Lemma 9.9, the NO-core NO.Mtn/ admits a quenched limit ONOt in
the local topology, and

P .e. NO.Mtn// D `/ D
1

Qg NK.t/n
2=3

�
h

�
.1 � EŒ�

NK �/.1 � EŒ�M�/n � `

Qg NK.t/n
2=3

�
C o.1/

�
uniformly in ` 2 Z. We may define the cores NK.Vtn/, NR.V

t
n/ and NO.Vtn/ as for Mn, and

by analogous arguments it follows that

P .e. NO.Vtn// D `/ D
1

g.t/n2=3

�
h

�
.1 � EŒ�

NK �/n � `

g.t/n2=3

�
C o.1/

�
(9.103)

for some constant g.t/ > 0. By Lemma 9.10 it follows that ONOt is also the quenched local
limit of NO.Vtn/. The arguments in the proof of Lemma 9.9 that pass quenched local conver-
gence of a large random NR-structure down to its giant NO-core also entail, conversely, that
convergence of such an NO-core entails convergence of the NR-structure. Hence ONRt is also
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the quenched local limit of NR.Vtn/. Likewise, the arguments in the proofs of Lemmas 9.7
and 9.8 that pass convergence from a large random NK-structure down to its NR-core eas-
ily imply that convergence of the NR-core implies convergence of the NK-structure. Hence
NK.Vtn/ admits OVt as quenched local limit. The same holds for Corollary 9.4, showing that
OVt is the quenched local limit of Vtn.

9.7. K-networks

We let Ktn denote a random K-network, drawn with probability proportional to its weight
given by tv.�/. Equation (6.18), that is, K � yR.x;K/, and the discussion in Section 4.2
imply that R-enriched plane trees may be transformed into K-networks. The network
corresponding to such an enriched tree .T; ˇ/ with n vertices has n edges and gets con-
structed as follows. The R-structure ˇ.o/ corresponding to the root vertex o of T is a
network with dCT .o/ regular edges and an additional “terminal” edge. The regular edges
correspond bijectively to the fringe subtrees dangling from o. The total network gets con-
structed recursively by replacing each regular edge by the network corresponding to its
fringe subtree. The terminal edge corresponds to the factor y in K � yR.x;K/.

We let TK
n denote the simply generated tree with weight sequence .!K

k
/k�0 given by

!K
k D Œy

k �R.t; y/: (9.104)

For each vertex v of TK
n we draw a dC

TK
n

-sized R-structure ˇK
n .v/ with probability pro-

portional to its weight. Lemma 4.2 implies that the random K-structure corresponding to
the random enriched plane tree .TK

n ; ˇ
K
n / is distributed like Ktn.

Inequality (8.42), condition (8.43), and Lemma 3.1 imply that the simply generated
tree TK

n is distributed like a Galton–Watson tree TK conditioned on having n vertices,
with offspring distribution �K satisfying

EŒ�K � < 1 and P .�K
D n/ �

cR.t/

R.t; �R.t//
n�5=2: (9.105)

Lemma 3.2 entails that there is a constant gK.t/ > 0 such that the largest R-compon-
ent R.Ktn/ satisfies

P .e.R.Ktn// D `/ D
1

gK.t/n2=3

�
h

�
.1 � EŒ�K �/n � `

gK.t/n2=3

�
C o.1/

�
(9.106)

uniformly for all ` 2 Z.
Much as we defined the class NO of networks, we let

O WD F0;1.x; ySEQ.xy// (9.107)

denote the pendant of networks obtained by blowing up regular edges of F0;1-networks
into paths. Whitney’s theorem [72] yields a 1 W 2 correspondence between O-networks
and NO-networks, because up to reflection any 3-connected graph has a unique embedding
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into the 2-sphere (and any 3-connected map has at least four vertices and differs from its
mirror image). Thus

O D 1
2
NO: (9.108)

Recall that R admits the decomposition

R D JSEQ.I�/; yI� D O C SET�2.O CL/; J D SET.O CL/

with

L WD ySEQ�1.xy/: (9.109)

This means an R-network consists of a J-component and a possibly empty sequence of
I�-components. We explain this in detail:

The J-component is a network consisting of the parallel composition of a (possibly
empty) unordered collection of networks that are either O-networks or paths of length at
least 2 (corresponding to L). If the collection is empty, we interpret this as the network
consisting of two poles and no regular edges.

A yI�-network is either an O-network, or the parallel composition of an unordered
collection of at least two networks, each being either an O-network or a path of length
at least 2. An I�-network is a weighted network (weighted by both the fact that we have
weight t at vertices, and that we divided by y) that, in addition to the “invisible” edge
between the poles, has a second distinguished “invisible” edge.

A network from

R D JSEQ.I�/ D J C JI� C J.I�/2 C J.I�/3 C � � �

either is a J-network, or belongs to J.I�/k for some k � 1. That is, it is constructed
as follows. Take k I�-networks I1; : : : ; Ik and a J-network J . Substitute the second
“invisible” edge of I1 by I2, then the second “invisible” edge of I2 by I3, and so on.
Finally, substitute the second “invisible” edge of Ik by J .

We let O.Ktn/ denote the largest O-component in the decomposition of R.Ktn/.

Lemma 9.12. (1) Uniformly for all ` 2 Z,

P .e.O.Ktn// D `/ D
1

gK.t/n2=3

�
h

�
.1 � EŒ�K �/n � `

gK.t/n2=3

�
C o.1/

�
: (9.110)

(2) If cR
n denotes a uniformly selected corner of R.Ktn/, then

L..R.Ktn/; c
R
n / j R.K

t
n//

p
�! L. ONOt /: (9.111)

(3) There is a random infinite planar map OKt such that

L..Ktn; c
K
n / j K

t
n/

p
�! L. OKt / (9.112)



B. Stufler 60

with cK
n denoting a uniformly selected corner of Ktn. There is also a random infinite

planar graph OKu;t such that

L..Ktn; v
K
n / j K

t
n/

p
�! L. OKu;t / (9.113)

with vK
n denoting a uniformly selected vertex of Ktn.

Proof. We start with the first claim. Equation (9.108) and the singular expansion (8.16)
entail

Œyn�O.t; y/ � cO.t/�R.t/
�nn�5=2 (9.114)

for some constant cO.t/ > 0. Recall that �R.t/ < 1=t by (8.18), so

Œyn�.O.t; y/CL.t; y// D Œyn�O.t; y/.1C o.1//

with the o.1/ term tending exponentially fast to zero. By Proposition 5.4 it follows that

Œyn�J.t; y/ � cJ.t/Œy
n�O.t; y/; (9.115)

for cJ.t/ WD exp.O.t;�R.t//C t�R.t/
2=.1� �R.t///. It also follows that large J-objects

have a giant O-component with a stochastically bounded remainder that admits a limit
distribution. Likewise, Propositions 5.4 and 5.5 entail that

Œyn�I�.t; y/ � cI�.t/Œy
n�O.t; y/ (9.116)

for some constant cI�.t/ > 0. This yields

Œyn�SEQ.I�.t; y// � .1 � I�.t; �R.t///
�2cI�.t/Œy

n�O.t; y/: (9.117)

It also follows that large I�-objects have a giant 1
y

O.t; y/-component (corresponding
canonically to an O-structure), with a stochastically bounded remainder that admits a
limit distribution. By Proposition 5.5 and (9.106), R.Ktn/ has a giant O-component and a
stochastically bounded remainder admitting a limit distribution. In particular,

e.R.Ktn// D e.O.Ktn//COp.1/: (9.118)

We let J.Ktn/ denote the J-component of R.Ktn/, and set Xn D e.J.Ktn//. Likewise,
we let SEQ.I�/.Ktn/ be the SEQ.I�/-component and let Yn denote its size. For any
integer m � 0,

..Xn; Yn/ j e.R.Ktn// D m/
d
D ..X; Y / j X C Y D m/ (9.119)

with X and Y denoting the sizes of Boltzmann-distributed J.t; y/ and SEQ.I�.t; y//
objects with parameter �R.t/. It follows from [65, (2.10)] that there is a constant " > 0
such that

P .e.R.Ktn// � "n=logn/ D P .�.TK
n / � "n=logn/ D o.n�2=3/: (9.120)
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With foresight we set
tn WD bn

ı
c

for some constant ı satisfying 4=9 < ı < 1. Using (9.119) and (9.120) as well as the
asymptotics (9.115) and (9.117) we find

n2=3P .tn � Xn � e.R.Ktn// � tn/

D o.1/C n2=3
nX

rD"n=logn

P .e.R.Ktn// D r/
r�tnX
sDtn

P .X D s/P .Y D r � s/

P .X C Y D r/

D o.1/CO.n2=3/

nX
rD"n=logn

P .e.R.Ktn// D r/
r�tnX
sDtn

�
s
r � s

r

��5=2
D o.1/CO.n2=3/t�3=2n D o.1/:

This entails that P .e.O.Ktn// D `/ may be written as

o.n�2=3/C

nX
rD"n=logn

P .e.R.Ktn// D r/
P .X C Y D r/

�

tnX
sD0

.P .X D r � s/P .Y D s/AC P .X D s/P .Y D r � s/B/:

Here A denotes the probability that the size of the largest O-component found in the
decomposition of a pair of a random s-sized SEQ.I�.t; y//-structure and a random
.r � s/-sized J.t; y/-structure equals precisely `. The probability B is defined analog-
ously for a random .r � s/-sized SEQ.I�.t; y//-structure and a random s-sized J.t; y/-
structure.

We would like to replaceA and B by the corresponding probabilities that involve only
the .r � s/-sized components. To this end, let ı0 be a fixed constant satisfying ı < ı0 < 1.
Proposition 5.2 implies that the probability that the size of the largest O-component in an
r � s � ‚.n=logn/ sized random J.t; y/-structure is smaller than nı

0

decays faster than
any power of 1=n. The same holds for the largest I�.t; y/-structure in a random .r � s/-
sized SEQ.I�.t; y//-structure. As L.t; y/ has radius of convergence strictly larger than
�R.t/, the total variation distance between a randomm-sized yI�-structure and a random
m-sized

LC yI� D SET�1.O CL/ (9.121)

is exponentially small in m as m!1. This allows us to apply Proposition 5.2 again,
implying that the probability that the largest O-component within the largest I�.t; y/ in
a random .r � s/-sized SEQ.I�.t; y//-structure is less than nı

0

tends to zero faster than
any power of 1=n.

Summing up, we may assume that

` � nı
0

(9.122)
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and replace the constants A and B in the previous expression for P .e.O.Ktn// D `/ by
constants QA and QB , with QA the probability that the size of the largest O-component in a
random .r � s/-sized J.t; y/-structure is `, and QB analogously the probability that the
size of the largest O-component in a random .r � s/-sized SEQ.I�.t; y//-structure is `.

There exists a constant 0 < p < 1 such that uniformly for all r � "n=log n and all
0 � s � tn,

P .X D r � s/

P .X C Y D r/
� p and

P .Y D r � s/

P .X C Y D r/
� 1 � p:

Hence

n2=3P .e.O.Ktn// D `/

D o.1/C .p C o.1//n2=3
nX

rD"n=logn

P .e.R.Ktn// D r/
tnX
sD0

P .Y D s/ QA

C .1 � p C o.1//n2=3
nX

rD"n=logn

P .e.R.Ktn// D r/
tnX
sD0

P .X D s/ QB: (9.123)

Let .sn/n denote an arbitrary sequence of positive integers satisfying sn � tn and
sn!1. We are going to argue that in (9.123) only summands with 0� s � sn contribute,
regardless of how slowly sn tends to infinity. We start with the sum involving QA. Let Z
denote the size of a random Boltzmann-distributed O.t; y/-object. By Proposition 5.2 and
the fact that L.t; y/ has radius of convergence strictly larger than �R.t/ it follows that
uniformly for "n=logn � r � n and sn � s � tn,

QA � En C C
P .Z D `/P .Z D r � s � `/

P .Z D r � s/
exp

�
�
r � s � `

`

�
1`�r�s (9.124)

for some constant C > 0 and an error term En that depends only on n and tends to
zero faster than any power of 1=n. (Here is a detailed justification: En is bounded by
the probability that the largest O CL-component in the random .r � s/-sized J.t; y/ D

SET.O C L/ structure is an L-structure. Proposition 5.2 ensures that the size of this
structure is at least nı

0

with probability that tends to zero faster than any power of 1=n.
As L.t; y/ has radius of convergence strictly larger than �R.t/, the same holds for the
decay of En.)

Continuing the argument, we may consider the cases ` � .r � s/=2 and ` < .r � s/=2
separately to obtain

P .Z D `/P .Z D r � s � `/

P .Z D r � s/

D O.1/
�
P .Z D `/1`<.r�s/=2 C P .Z D r � s � `/1`�.r�s/=2

�
: (9.125)
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Using (9.106) and (9.122), we find that

n2=3
nX

rD"n=logn

P .e.R.Ktn// D r/
tnX
sDsn

P .Y D s/ QA

D o.1/CO.1/

tnX
sDsn

P .Y D s/

�

nX
rDmax."n=logn;`Cs/

�
.r � s � `/�5=2 C P .Z D `/ exp

�
�
r � s � `

`

��
D o.1/CO.1/P .sn � Y � tn/:

This bound clearly tends to zero. Hence we have tight control of the size of the compon-
ents; the next step is to control the deviation of ` from r � s. For any sequence .un/n of
positive integers that tends to infinity it follows by the same exact bounds that

n2=3
nX

rD"n=logn

P .e.R.Ktn// D r/
snX
sD0

P .Y D s/ QA1r�s�`�un D o.1/:

The Gibbs partition JD SET.OCL/ is convergent. Hence for any constant integer u� 0
the quantity QA (which depends on r � s and `) converges to a limiting probability au
(with

P
u�0 au D 1) uniformly for all r; s; ` with r � s D `C u. Moreover, the local limit

theorem in (9.106) entails that

P .e.R.Ktn// D `C x/ � P .e.R.Ktn// D `C x/

uniformly for all integers x with jxj D o.n2=3/ and all integers ` satisfying (9.122). Hence
we may choose the sequences .tn/n and .un/n to tend to infinity sufficiently slowly so that

n2=3
nX

rD"n=logn

snX
sD0

P .Y D s/ QA1r�s�`�un

D n2=3
snX
sD0

unX
uD0

P .e.R.Ktn// D `C uC s/P .Y D s/.au C o.1//

D n2=3P .e.R.Ktn// D `/:

Hence (9.123) simplifies to

n2=3P .e.O.Ktn// D `/ D o.1/C pn
2=3P .e.R.Ktn// D `/

C .1 � p C o.1//n2=3
nX

rD"n=logn

P .e.R.Ktn// D r/
tnX
sD0

P .X D s/ QB; (9.126)

with the o.1/ terms being uniform in n and all ` satisfying (9.122). We have also estab-
lished above that n2=3P .e.O.Ktn//D `/ tends to zero uniformly for all ` that do not satisfy
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(9.122), as is the case for the right-hand side of (9.110). Hence the restriction on ` is not
a real restriction at all.

The double sum involving QB may be treated using analogous arguments: First argue
as before that we may discard all summands for which sn � s � tn. Then expand QB and
discard the summands for which the largest I�-component in the .r � s/-sized compon-
ent is not close to r � s. Then use (9.121) and again the same arguments to discard all
summands for which the largest O-component within that largest I�-component is not
close to the size of the I�-component. It is clear how to carry out each of these tedious
but not difficult steps, hence we leave the details to the inclined reader.

Having taken care of the double sum involving QB , we see that (9.126) reduces to

P .e.O.Ktn// D `/ D o.n
�2=3/C P .e.R.Ktn// D `/: (9.127)

By (9.106) this readily implies (9.110).
Relation (9.110) and Lemma 9.9 state local limit theorems for the sizes of the cores

NO.Ktn/ and O.Ktn/. Equation (9.108) ensures that conditioned on having a common
fixed size, the cores follow the same conditional distribution. This allows us to apply
Lemma 9.10 to transfer the quenched local limit of NO.Ktn/ (stated in Lemma 9.9) to a
quenched local limit theorem for O.Ktn/. That is,

L..O.Ktn/; vn/ j O.K
t
n//

p
�! L. ONOt /; (9.128)

with vn denoting a uniformly selected corner of O.Ktn/. Condition (9.118) now allows us
to argue as in Corollary 9.4 to deduce the local limit (9.111).

It remains to show the statements directly concerning Ktn. We may copy the proof of
Lemma 9.7 almost word for word (replacing all occurrences of NK and NR by K and R) to
show that quenched local convergence of Ktn is equivalent to quenched local convergence
of a random K-network Kt

Œn�
that is constructed from the core R.Ktn/ by substituting

edges with independent random K-networks analogously to the way NKt
Œn�

was construc-
ted from the core NR. NKtn/ by substituting edges with independent random NK-networks.
Moreover, the proof of Lemma 9.8 may also be copied almost word for word to show
that an analogue of (9.74) holds, meaning that if we select two corners of Kt

Œn�
uniformly

and independently at random, then their components asymptotically behave like inde-
pendent copies of a size-biased version K� of Kt , and the edges corresponding to those
components are asymptotically uniform edges of R.Ktn/. The subsequent arguments in
the proof of Lemma 9.8 that pass convergence from a large random NK-structure down
to its NR-core also imply that conversely, convergence of the NR-core implies convergence
of the NK-structure. As we may copy the proof of Lemma 9.8 word for word (replacing
all occurrences of NK and NR by K and R), this means that the local convergence (9.111)
implies the local limit (9.112).

It remains to prove the local convergence (9.113) with respect to the uniform distri-
bution. We will use a transfer argument from [24], based on an extension of a formula in
[44, (2.3.1)]. Given an integer r � 1 and a finite rooted graph G, the limit (9.112) implies
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that the number Yn of half-edges in Ktn having r-neighbourhood isomorphic to G satisfies

Yn=.2n/
p
�! P .Ur . OK

t / D G/:

Letting d.G/ denote the root-degree of G, the number Xn of vertices in Ktn having r-
neighbourhood isomorphic to G is given by

Xn D Yn=d.G/:

By the limit (9.133) below it follows that

Xn=v.Ktn/ D Yn=.d.G/v.K
t
n//

d
�! 2P .Ur . OK

t / D G/=.d.G/q1/ DW pr;G :

We may deduce
P
G pr;G D 1 as in the proof of [24, Eq. (6)], hence verifying the existence

of a random infinite planar graph OKu;t with

L..Ktn; v
K
n / j K

t
n/

p
�! L. OKu;t /:

9.8. 2-connected planar graphs

Let Ntn denote a random N-network with n regular edges and weight t at non-pole ver-
tices. The convergent Gibbs partition

N .t; y/ DK.t; y/SEQ.tK.t; y//

expresses that any N-network consists of a series composition of a positive number of
K-networks. This is completely analogous to the fact that D-networks are series com-
positions of a positive number of N-networks. Hence (9.42)–(9.45) still hold if we replace
Dtn by Ntn and any occurrence of NK and NK by K and K . That is, identifying N-networks
with sequences of K-networks, we have

Ntn
d
�
�
K.1/; : : : ;K.F /;Ktn�E ;K

0.1/; : : : ;K0.F 0/
�

(9.129)

with a random integer

E WD

FX
iD1

e.K.i//C
F 0X
iD1

e.K0.i//:

Here we let F and F 0 denote i.i.d. geometric variables with distribution

P .F D k/ DK.t; �K/
k.1 �K.t; �K//; k � 0: (9.130)

The networks K.i/ and K0.i/, i � 1, denote independent copies of a Boltzmann-distributed
K.t; y/-network K with distribution given by

P .K D K/ D tv.K/�e.K/
K

=K.t; �K/: (9.131)
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The relation N D .1C y/ 2
x2

@B
@y
� 1 entails that the result Btn of conditioning Ntn on

having an edge between its poles is the random 2-connected planar graph with n edges and
weight t at vertices. The enumerative results of [6] entail that there is a number 0 < q1 < 1
such that

v.Btn/n
�1 p
�! q1: (9.132)

By (9.129), it readily follows that

v.Ktn/n
�1 p
�! q1: (9.133)

This concentration phenomenon is used in the proof of Lemma 9.12 in order to pass from
the stationary distribution to the uniform distribution. Hence Lemma 9.12 is now fully
verified and having it at hand, we deduce from (9.129) (by arguments as in the proof of
Corollary 9.4)

Theorem 9.13. Let vB
n denote a vertex selected according to the uniform distribu-

tion �B;t
n on the vertex set of Btn. Then

L..Btn; v
B
n / j B

t
n/

p
�! L. OKu;t /: (9.134)

Likewise, (9.112) implies such a limit when ve
n is chosen according to the stationary

distribution instead. We let OB denote the limit in the case t D 1.
Letting O.Btn/ denote the O-core of the largest K-component of the N-network Ntn

(from which we constructed Btn), we see by arguments as in the proof of Corollary 9.5
that (9.110) implies

P .e.O.Btn// D `/ D
1

gK.t/n2=3

�
h

�
.1 � EŒ�K �/n � `

gK.t/n2=3

�
C o.1/

�
(9.135)

uniformly for all ` 2 Z.

9.9. Bundles of 2-connected planar graphs

Equation (6.2) entails that planar graphs (with vertices as atoms) are W -enriched trees for
the class W given by

W.x/ D SET
�
@B

@x
.x; 1/

�
: (9.136)

That is, a W -object is an unordered collection (or bundle) of derived (that is, rooted at a
vertex without a label) 2-connected planar graphs that are glued together at their distin-
guished vertices. The resulting vertex becomes the root of the W -object. By the discussion
in Section 4.2, this entails that the random planar graph Pn may be generated as follows
(see also [58, Prop. 3.6]):

(1) Generate a simply generated tree TP
n with weight sequence .!P

k
/k�0 given by !P

k
D

Œxk �W.x/.
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(2) For each vertex v 2 TP
n let ˇP

n .v/ denote a uniformly selected W -structure with
dC

TP
n

.v/ labelled non-root vertices.

(3) Assemble Pn from the W -enriched tree .TP
n ; ˇ

P
n / by applying the correspondence

between rooted planar graphs and W -enriched trees, and forgetting about the root
vertex.

The last step means that we start with the W -object ˇP .o/ of the root o of TP
n and identify

its non-marked vertices in a canonical way with the offspring vertices of o. The graph is
then constructed recursively by identifying each non-marked vertex of ˇP .o/ with the
rooted graph corresponding to the enriched fringe subtree of .TP

n ; ˇ
P
n / at the correspond-

ing offspring of o.
Inequality (8.5), the asymptotic expression (8.6), and Lemma 3.1 entail that TP

n fol-
lows the distribution of a Galton–Watson tree TP conditioned on having n vertices, with
offspring law �P satisfying

EŒ�P � D �B

@2B

@x2
.�B ; 1/ < 1 and P .�P

D n/ � cP�
�n
B n�5=2 (9.137)

for some constant cP > 0. We let W.Pn/ denote the W -structure corresponding to the
lexicographically first vertex of TP

n with maximal outdegree. By Lemma 3.2, the unique
(with high probability) largest W -component W.Pn/ satisfies

P .v.W.Pn// D `/ D
1

gPn2=3

�
h

�
.1 � EŒ�P �/n � `

gPn2=3

�
C o.1/

�
(9.138)

uniformly for all ` 2 Z with gP > 0 a constant. The second largest W -component
has order Op.n2=3/: this follows for example from [36, Thm. 19.34]. The Gibbs par-
tition (9.136) is convergent, that is, W.Pn/ exhibits a giant B-component denoted
by B.W.Pn//, and the small fragments admit a limit distribution. Hence the B-core
B.Pn/ WD B.W.Pn// corresponds with high probability to the largest 2-connected block
of Pn.

Remark 9.14. As in the proof of Corollary 9.5, condition (9.138) implies that uniformly
for all ` 2 Z,

P .v.B.Pn// D `/ D
1

gPn2=3

�
h

�
.1 � EŒ�P �/n � `

gPn2=3

�
C o.1/

�
: (9.139)

A local limit law for the number of vertices Ln of the largest block in Pn was proven by

[32, Thm. 5.4]. Note that (9.139) is a slightly different statement. ClearlyLn
d
� v.B.Pn//,

but in order to deduce a local limit theorem for Ln we would additionally have to verify
that the probability of the event that simultaneously v.B.Pn// D ` and Ln > v.B.Pn//
is o.n�2=3/ uniformly in `. The proof is similar to arguments used in the proof of [65,
Thm. 1.1], specifically the step that shows that the bound in [65, (3.23)] tends to zero. We
leave the details to the reader, since this subtle difference between B.Pn/ and the largest
2-connected block is not relevant for the arguments in the present work.
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Note that conditioning the core B.Pn/ on having a certain number of edges does not
yield the uniform distribution on the 2-connected planar graphs with that number of edges.
This effect does not go away as n becomes large. In fact, letting En denote the number of
edges in the largest 2-connected block of Pn, it was shown by [32, Lem. 6.6] that

B.Pn/
d
� B�B

En
(9.140)

as n tends to infinity. That is, we have to introduce weight t D �B at vertices. Here we
assume En is independent of .B�B

k
/k�0. In [32, Thm. 6.5] it was shown that the num-

ber En has order ˛0n with an analytically given constant

˛0 � 2:17 (9.141)

and a fluctuation of order n2=3 that admits a local limit theorem of Airy type. Letting vn
denote a uniformly selected vertex of B.Pn/, we infer from (9.140) and Theorem 9.13
that

L..B.Pn/; vn/ j B.Pn//
p
�! L. OB/: (9.142)

As the Gibbs partition (9.136) is convergent, it follows from (9.142) that

L..W.Pn/; vn/ j B.Pn//
p
�! L. OB/: (9.143)

9.10. Connected planar graphs

A result of [64, Thm. 6.39] states that for block-weighted random graphs in a certain
condensation regime (encompassing Pn), annealed local convergence of the random con-
nected graph is equivalent to annealed local convergence of its 2-connected core. By
(9.142) the 2-connected core B.Pn/ of the uniform connected planar graph Pn with n
labelled vertices admits a distributional limit OB in the local topology. Hence Pn admits
an annealed local limit OP. As stated in [64, Thm. 6.39], the UIPG OP may be constructed
from the uniform infinite 2-connected planar graph OB by inserting an independent copy
of a Boltzmann-distributed rooted connected planar graph at each non-root vertex of the
uniform infinite random 2-connected graph OB, and a Boltzmann-distributed doubly rooted
connected planar graph at the root of OB.

We are now going to prove quenched convergence of Pn.

Proof of Theorem 1.1. Let Tı;P and T�;P be defined for the offspring distribution �P just
as Tı and T� were defined for � in Section 3.2. Let Pı and P� denote the random bi-rooted
planar graphs corresponding to canonical decorations of Tı;P and T�;P . Likewise, let P
denote the Boltzmann map corresponding to a canonical decoration of TP .

The graph Pn consists of its W -core W.Pn/ together with planar graphs
.Pi .Pn//0�i�v.W.Pn// attached to each of its vertices. We assume that the index i D 0

corresponds to the component attached to the root of W.Pn/. Let P.0/ denote an inde-
pendent copy of Pı, and for all i � 1 let P.i/ denote an independent copy of P.
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We let PŒn� denote the graph obtained from the core W.Pn/ by attaching for all 0 �
i � v.W.Pn// the graph P.i/ instead of Pi .Pn/ to the i th vertex of W.Pn/. We may copy
the proof of Lemma 9.2 almost word for word to show that quenched local convergence
of Pn is equivalent to quenched local convergence of PŒn�, and the limit graphs agree in
that case.

It remains to verify quenched local convergence of PŒn�. To this end, we select two
vertices v1 and v2 of PŒn� uniformly and independently at random. We refer to v1 as the
red vertex, and v2 as the blue vertex. The vertices of PŒn� correspond bijectively to the
vertices of .Pi .PŒn�//0�i�v.W.Pn// D .P.i//0�i�v.W.Pn//. (The edges of PŒn� correspond
bijectively to the edges of .Pi .PŒn�//0�i�v.W.Pn// plus the edges of W.Pn/.) For all 0 �
i � v.W.Pn// we let NPi .PŒn�/ denote the vertex-rooted connected planar graph Pi .PŒn�/
with the additional information if and where it contains a marked red or blue vertex. We
let P�1 and P�2 denote independent copies of a Boltzmann-distributed doubly vertex-rooted
planar graph. We colour the second root of P�1 red and the second root of P�2 blue. We let
j1 and j2 denote a pair of uniformly selected distinct integers between 1 and v.W.Pn//.
For each 0 � i � v.W.Pn// we set NP.i/D P.i/ if i ¤ j1 and i ¤ j2. If i D jk (for k D 1
or k D 2) we set NP.i/ D P�

k
. It follows by Corollary 3.5 that

. NPi .PŒn�//1�i�v.W.Pn//
d
� . NP.i//1�i�v.W.Pn//: (9.144)

We let r � 0 denote a fixed arbitrary integer. By Proposition 2.3 and the local conver-
gence (9.143) the neighbourhoods Ur .PŒn�; v1/ and Ur .PŒn�; v2/ are with high probability
disjoint.

For k 2 ¹1; 2º we let v0
k

denote the vertex of W.Pn/ corresponding to the com-
ponent containing vk . If dPŒn�.vk ; v

0
k
/ � r then Ur .PŒn�; vk/ is fully contained in the

P -component containing vk . If the distance equals some h < r , then Ur .PŒn�; vk/
is glued together from the r-neighbourhood of vk in that component (with addi-
tional information on the location of v0

k
within that neighbourhood), the neighbourhood

Ur�h.W.Pn/; v0k/, and neighbourhoods in the P -components corresponding to vertices
from Ur�h�1.W.Pn/; v0k/ n ¹v

0
k
º.

The asymptotic (9.144), the local convergence (9.143) and the observations made
in the penultimate paragraph entail that asymptotically and jointly the components cor-
responding to v01 and v02 behave like independent copies of P�, and the components
corresponding to vertices from Ur .W.Pn/; v01/ n ¹v

0
1º and Ur .W.Pn/; v02/ n ¹v

0
2º behave

like independent copies of P, and the neighbourhoods Ur .W.Pn/; v01/ and Ur .W.Pn/; v01/
behave like independent copies of the neighbourhood Ur . OB/. It follows that the pair of
neighbourhoods .Ur .Pn; v1/; Ur .Pn; v2// converges in distribution to a pair of independ-
ent copies of a certain random rooted graph with radius r . As this is true for arbitrary r ,
Proposition 2.2 shows that there exists an infinite random rooted planar graph OP with

L..Pn; vn/ j Pn/
p
�! L. OP/:

The number of edges e.Pn/ is known to satisfy a normal central limit theorem [32,
Thm. 4.1]. Arguing as in the proof of [24, Thm. 2.1], we find that the convergence of
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Theorem 1.1 also entails a local limit (following a different distribution) for Pn marked
according to the stationary distribution. We close the section with the following remark
on the small blocks in Pn.

Remark 9.15. The Gibbs partition (9.136) is convergent. This entails that the W -core
W.Pn/ consists of a giant 2-connected component and a remainder that asymptotically
behaves like a Boltzmann-distributed W -object, that is, a Poisson.B.�B ; 1// number of
independent copies of a Boltzmann-distributed 2-connected B.x; 1/-graph B. It follows
that the collection frag.Pn/ of all blocks with non-maximal size satisfies

frag.Pn/
d
� .B.i//1�i�Nn (9.145)

with .B.i//i�1 denoting independent copies of B, and N an independent random integer
with Poisson distribution

Nn
d
D Poisson.nB.�B ; 1//: (9.146)
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