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1. Introduction

LetG be a finite abelian group andADG_ DHom.G;C�/ the group of characters ofG.
Fix an integer n � 2. Consider the Z-module Bn.G/ generated by symbols

Œa1; : : : ; an�; ai 2 A;

such that a1; : : : ; an generate A, i.e.,
P
i Zai D A; and subject to relations:

(S) for all permutations � 2 Sn and all a1; : : : ; an 2 A we have

Œa�.1/; : : : ; a�.n/� D Œa1; : : : ; an�;

(B) for all 2 � k � n, all a1; : : : ; ak 2 A, and all b1; : : : ; bn�k 2 A such thatX
i

Zai C
X
j

Zbj D A

we have

Œa1; : : : ; ak ; b1; : : : ; bn�k �

D

X
1�i�k; ai¤ai0 ;8i

0<i

Œa1 � ai ; : : : ; ai .on i -th place/; : : : ; ak � ai ; b1; : : : ; bn�k �:
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We have

B1.G/ D

´
Z�.N/ if G D Z=NZ; N � 1;

0 otherwise.

For example, for n D 4 and k D 3 and a1 D a2 D a and a3 D a0 ¤ a and b1 D b, the
relation translates to

Œa; a; a0; b� D Œa; 0; a0 � a; b�C Œa � a0; a � a0; a0; b�: (1.1)

When n D 2 there is only one possibility for k, namely, k D 2.

Example 1. The group B2.G/ is generated by symbols Œa1; a2� such that

a1; a2 2 Z=NZ; gcd.a1; a2; N / D 1;

and subject to relations

� Œa1; a2� D Œa2; a1�,

� Œa1; a2� D Œa1; a2 � a1�C Œa1 � a2; a2�, where a1 ¤ a2,

� Œa; a� D Œa; 0� for all a 2 Z=NZ with gcd.a;N / D 1.

For p � 5 a prime, the Q-rank of B2.Z=pZ/ equals

p2 C 23

24
: (1.2)

For us, this was the first sign that automorphic forms play a role in this theory. We will
discuss the connection to modular symbols in Section 11.

Remark 2. The group B2.Z=pZ/ can have torsion: e.g., for p D 37, there is `-torsion
for ` D 3 and 19.

For n � 3, the system of relations in Bn.G/ is highly overdetermined. Neverthe-
less, computer experiments show that nontrivial solutions exist: e.g., for G D Z=27Z or
Z=43Z, the Q-rank of B4.G/ equals 1.

Let X be a smooth irreducible projective algebraic variety of dimension n � 2, over a
fixed algebraically closed field of characteristic zero (e.g., C), equipped with a birational,
generically free action of G. After G-equivariant resolution of singularities, we may
assume that the action of G is regular. To such an X we associate an element of Bn.G/

as follows: Let
XG D

a
˛2A

F˛ (1.3)

be the G-fixed point locus; it is a disjoint union of closed smooth irreducible subvarieties
of X . Put

dim.F˛/ D n˛ � n � 1:

On each irreducible component F˛ we fix a point x˛ 2 F˛ and consider the action ofG in
its tangent space Tx˛X inX ; it decomposes into eigenspaces of characters a1;˛; : : : ; an;˛ ,
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defined up to permutation of indices (here we identify algebraic characters of G with
C�-valued characters). By the assumption that the action of G is generically free, we
have X

i

Zai;˛ D A:

This does not depend on the choice of x˛ 2 F˛ . The dimension dim.F˛/ equals the num-
ber of zeros among the ai;˛ . Thus we have a symbol, for each ˛,

Œa1;˛; : : : ; an;˛� 2 Bn.G/:

Put
ˇ.X/ WD

X
˛

Œa1;˛; : : : ; an;˛�: (1.4)

One of our main results is that expression (1.4), considered as an element in Bn.G/, is
invariant under G-equivariant blowups.

Theorem 3. The class ˇ.X/ 2 Bn.G/ is a G-equivariant birational invariant.

Now we introduce another Z-module Mn.G/, generated by symbols

ha1; : : : ; ani;

such that a1; : : : ; an generate A, and subject to relations which are almost identical to
those for Bn.G/:

(S) for all � 2 Sn and all a1; : : : ; an 2 A we have

ha�.1/; : : : ; a�.n/i D ha1; : : : ; ani;

(M) for all 2 � k � n, all a1; : : : ; ak 2 A and all b1; : : : ; bn�k 2 A such thatX
i

Zai C
X
j

Zbj D A;

we have

ha1; : : : ; ak ; b1; : : : ; bn�ki

D

X
1�i�k

ha1 � ai ; : : : ; ai .on i -th place/; : : : ; ak � ai ; b1; : : : ; bn�ki:

Note that we eliminated the constraint ai ¤ ai 0 for i 0 < i from the sum. Clearly,

M1.G/ D

´
Z�.N/ if G D Z=NZ; N � 1;

0 otherwise.

For nD 4 and k D 3 and a1 D a2 D a and a3 D a0 ¤ a and b1 D b relation (M) translates
to

ha; a; a0; bi D ha; 0; a0 � a; bi C h0; a; a0 � a; bi C ha � a0; a � a0; a0; bi: (1.5)
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The right side equals

2ha; 0; a0 � a; bi C ha � a0; a � a0; a0; bi;

by symmetry relations. Notice the difference between (1.5) and (1.1).
In Section 6, we show that relation (M) follows from the subcase k D 2.
These groups carry naturally defined, commuting, linear operators

T`;r WMn.G/!Mn.G/

for all primes ` coprime to the order ofG and all 1� r � n. We call these Hecke operators.
One can consider their spectrum for

Mn.G/˝ NQ or Mn.G/˝ NFp;

where p is any prime not dividing #G, the order of the group G. We expect that the
joint spectrum of T`;r is related to automorphic forms and present evidence for this in
Sections 9 and 11.

Consider the map � W Bn.G/!Mn.G/ defined on symbols as follows:

(�0) Œa1; : : : ; an� 7! ha1; : : : ; ani if all a1; : : : ; an ¤ 0,

(�1) Œ0; a2; : : : ; an� 7! 2h0; a2; : : : ; ani if all a2; : : : ; an ¤ 0,

(�2) Œ0; 0; a3; : : : ; an� 7! 0 for all a3; : : : ; an,

and extended by Z-linearity.

Theorem 4. The map � is a well-defined homomorphism, which is a surjection modulo
2-torsion.

Note that
h0; 0; a3; : : : ; ani D 0 2Mn.G/;

which follows from the relations by putting k D 2, a1 D a2 D 0, and bi D aiC2 for all
i D 1; : : : ; n � 2.

We expect that � is an isomorphism modulo torsion (see Conjectures 8 and 9).1

Our notation Bn.G/ and Mn.G/ stands for

birational vs. motivic/modular.

This paper consists of two parts: in Part I, we present proofs of Theorems 3 and 4.
We recast the definition of Mn.G/ in terms of scissor type relations on lattices with
cones. We introduce a certain quotient M�n .G/ of Mn.G/ and define multiplication and
co-multiplication on these groups. We formulate a series of conjectures reducing the struc-
ture of Mn.G/˝Q to certain primitive pieces. We define Hecke operators on Mn.G/,
which are compatible with the hypothetical decomposition. We present results of com-
puter experiments with equations for new invariants.

1This has been established in [6, Theorem 1.2].
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In Part II, we introduce various generalizations of Bn.G/ and Mn.G/, not necessar-
ily related to each other, reflecting a certain divergence of birational and automorphic
sides. Our considerations led us to a new question (see Question 20 in Section 9), and a
potentially new viewpoint on the Langlands program, based on higher-dimensional gen-
eralizations of modular symbols. We identify M�n .G/ with cohomology of an arithmetic
group, with coefficients in a 1-dimensional representation. We also explore, in the case
nD 2, the relation between our groups of symbols and classical Manin symbols for mod-
ular forms of weight 2.

During the preparation of this paper we discovered the work of Borisov–Gunnels [2],
who studied constructions related to the modular picture in the case n D 2 and raised the
question of generalizations to n � 3 in [3, Remark 7.15].

Part I

2. Invariance under blowups

We use notation and conventions from the Introduction. Let X be a smooth irreducible
projective n-dimensional variety equipped with a generically free regular action of a finite
abelian group G, and W � X a closed smooth irreducible G-stable subvariety with

0 � dim.W / � n � 2:

Let � W QX D BlW .X/! X be the blowup of X in W . By the G-equivariant Weak Fac-
torization theorem, smooth projectiveG-birational models ofX are connected by iterated
blowups of such type.

In order to prove Theorem 3, it suffices to show that

ˇ. QX/ D ˇ.X/ 2 Bn.G/:

Choose an irreducible component Z � W G . It suffices to consider the structure of the
fixed locus of exceptional divisors in the neighborhood of Z. Let F D F.Z/ � XG be
the unique irreducible component containingZ; it equals one of the F˛ in (1.3). Let z 2Z
be a point and

TzX D T1 ˚ T2 ˚R1 ˚R2

the decomposition of the tangent bundle at z, where Ti stand for trivial representations,
and R1, R2 have only nontrivial characters, with

TzX
G
D TzF D T1 ˚ T2; TzW D T2 ˚R1:

Let
d1 WD dim.T1/; d2 D dim.T2/; d3 D dim.R1/; d4 D dim.R2/:

The spectrum of the action of G in Tz takes the form

0; : : : ; 0„ ƒ‚ …
d1

j 0; : : : ; 0„ ƒ‚ …
d2

j b1; : : : ; bd3 j a
1; : : : ; a1„ ƒ‚ …

�1

; : : : ; am; : : : ; am„ ƒ‚ …
�m

;
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where bj 2 A n 0, and a1; : : : ; am 2 A n 0 are pairwise distinct, with

�1 C � � � C �m D d4; �i � 1; m � 0:

We have

� d2 D dim.Z/,

� d1 C d2 C d3 C d4 D n,

� 1 � d3 C d4, since codim.XG/ � 1,

� 2 � d1 C d4, since codim.W / � 2.

We consider several cases, with corresponding geometric configurations:

(I) d1 D 0;d4 � 2. Geometrically, this means thatW contains a componentZ ofXG .
Blowing upW we obtain new contributions to formula (1.4). The new fixed locus, withm
irreducible components, consists of subvarieties of the exceptional divisor, a projective
bundle over W . These subvarieties, in turn, are total spaces of projective bundles over Z,
with fibers

P �i�1; i D 1; : : : ; m:

The corresponding contribution to ˇ. QX/ is given by

mX
iD1

Œ 0; : : :„ƒ‚…
d2

; b1; : : : ; bd3 ; a
1
� ai ; : : :„ ƒ‚ …
�1

; : : : ; ai ; 0; : : :„ƒ‚…
�i�1

; : : : ; am � ai ; : : :„ ƒ‚ …
�m

�:

Putting
a1; : : : ; ak D a

1; : : :„ƒ‚…
�1

; : : : ; am; : : :„ƒ‚…
�m

and
b1; : : : ; bn�k D b1; : : : ; bd3 ; 0; : : :„ƒ‚…

d2

we find that the formula matches relation (B) when the sequence Na D a1; : : : ; ak does not
contain zeros.

(II) d1; d4 � 1. Geometrically, this means that the tangent spaces of the fixed locus
andW do not span the whole tangent space and, nearZ, the componentF is not contained
inW . In the blowup, we will have a component of the fixed locus which is birational to F
and new components which are projective bundles

P �1�1; : : : ;P �m�1

over Z. We need to show that the contribution of these m terms vanishes in Bn.G/. Let

Nb D b1; : : : ; bn�k D b1; : : : ; bd3 ; 0; : : :„ƒ‚…
d2

:
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The new components contribute

mX
iD1

Œ�ai ; : : :„ ƒ‚ …
d1

; a1 � ai ; : : :„ ƒ‚ …
�1

; : : : ; ai ; 0; : : :„ƒ‚…
�i�1

; : : : ; am � ai ; : : :„ ƒ‚ …
�m

; Nb�:

We claim that this sum vanishes in Bn.G/. Indeed, consider relation (B) for the sequences

Na D a1; : : : ; ak D 0; : : :„ƒ‚…
d1

; a1; : : :„ƒ‚…
�1

; : : : ; am; : : :„ƒ‚…
�m

;

and Nb. The left side of (B) equals

Œ Na; Nb� D Œa1; : : : ; ak ; Nb� D Œ 0; : : :„ƒ‚…
d1

; a1; : : :„ƒ‚…
�1

; : : : ; am; : : :„ƒ‚…
�m

; Nb�:

The right side is the sum ofmC 1 terms. The first summand, corresponding to ai D a1D 0
coincides with the left side. The remaining terms are the same as above.

(III) d1 � 2; d3 � 1; d4 D 0. In this case, no new contributors to formula (1.4) arise.

This concludes the proof of Theorem 3.

Remark 5. There is a refinement of Bn.G/, connecting it to the Burnside group of vari-
eties considered in [5]. Let K be an algebraically closed field of characteristic zero. Let

Birn�1;m.K/; 0 � m � n � 1;

be the set of equivalence classes of .n � 1/-dimensional irreducible varieties over K,
modulo K-birational equivalence, which are K-birational to products W � Am, and not
to W 0 �AmC1 for any W 0. Let

Bn.G;K/ WD

n�1M
mD0

M
ŒY �2Birn�1;m.K/

BmC1.G/

with

B1.G/ D

´L
a2.Z=NZ/� Z if G D Z=NZ; N � 2;

0 if G is not cyclic:

Let X be an irreducible K-variety with a generically free action of G. As in Section 1,
we may assume that G acts regularly; let XG D

F
˛ F˛ be the decomposition of the fixed

point locus into irreducible, disjoint components. The spectrum for the G-action in the
tangent space to X at any point x˛ 2 F˛ is given by

a1; : : : ; an�dim.F˛/; 0; : : :„ƒ‚…
dim.F˛/

; ai ¤ 0:

Define ˇK.X/ 2 Bn.G; K/ by taking into account the birational types of fixed loci
under G, as follows: write

Y˛ WD F˛ �An�1�dim.F˛/
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and let m˛ 2 Z>0 be the maximal integer such that Y˛ � Z˛ �Am˛ ; clearly,

m˛ � n � 1 � dim.F˛/:

Then ˇK.X/ D
P
˛ ˇ˛.X/, where

ˇ˛.X/ D Œa1; : : : ; an�dim.F˛/; 0; : : :„ƒ‚…
m˛C1�nCdim.F˛/

� 2 copy of Bm˛C1.G/;

labeled by the birational type of Y˛ .
The invariance under blowups follows from the fact that all .n� 1/-dimensional bira-

tional types arising as labels in each particular subcase of the proof of Theorem 3 coincide
with each other.

Remark 6. In a similar vein, one could introduce birational invariants for actions of
algebraic tori, but we have not explored this direction.

3. Comparison

In this section we study the map

� W Bn.G/!Mn.G/ (3.1)

defined in Section 1. The proof that this is a well-defined homomorphism is a long chain
of essentially trivial steps.

First we record several corollaries of defining relations for Mn.G/:

(1) h0; 0; : : :i D 0,

(2) ha; a; : : :i D 2ha; 0; : : :i,

(3) ha; a; 0; : : :i D 0,

(4) ha; a; a0; a0; : : :i D 0,

(5) ha; a; a; : : :i D 0,

(6) ha;�a; : : :i D 0;

here : : : stands for arbitrary sequences of elements in A such that the set of all elements
of the symbol spans the whole A.

In the proofs below we freely use the symmetry relation (S).
(1) We use (M) for k D 2 and a1 D a2 D 0:

h0; 0; : : :i D h0; 0; : : :i C h0; 0; : : :i:

(2) We use (M) for k D 2; a1 D a2 D a.
(3) We use (2) and (1):

ha; a; 0; : : :i
.2/
D 2ha; 0; 0; : : :i C h0; 0; : : :i

.1/
D 0:
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(4) We use again (2) and (1):

ha; a; a0; a0; : : :i
.2/
D 4ha; 0; a0; 0; : : :i

.1/
D 0:

(5) We use (M) for k D 3 and a1 D a2 D a3 D a, and then (1):

ha; a; a; : : :i D 3ha; 0; 0; : : :i
.1/
D 0;

(6) We use (M) for k D 2; a1 D a; a2 D 0:

ha; 0; : : :i D ha;�a; : : :i C ha; 0; : : :i:

We proceed to the proof of Theorem 4. The main point is to check the following
compatibility equation:

�.Œa1; : : : ; ak ; b1; : : : ; bn�k �/

D

X
i; ai¤ai0 for i<i 0

�.Œa1 � ai ; : : : ; ai ; : : : ; ak � ai ; b1; : : : ; bn�k �/: (3.2)

For convenience, we sometimes write

Œa1; : : : ; ak j b1; : : : ; bn�k � D Œa1; : : : ; ak ; b1; : : : ; bn�k � 2 Bn.G/;

and similarly for the symbol in Mn.G/, indicating the position of the separation of a
and b variables in subsequent relations.

There are three cases, distinguished by the number of zeros in the sequence

Nb WD b1; : : : ; bn�k W

(C0) Nb does not contain zeros.

(C1) Nb contains exactly one zero.

(C2) Nb contains at least two zeros.

Case (C2) is obvious, by relation (1), since all terms vanish, by the definition .�2/ (in
Section 1).

Case (C1) splits into subcases:

(C10) The sequence
Na WD a1; : : : ; ak

contains no zeros,

(C11) Na contains at least one zero.

In case (C11), the left hand side maps to 0, by .�2/:

�.Œ0; : : : j 0; : : :�/ D 0:

The terms of the right hand side in relation (B) are of two types, corresponding to ai D 0
or ai D a ¤ 0. If ai D 0, then the term has the form

Œ0; : : : j 0; : : :�;
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mapping to zero, by .�2/. The underlined 0 indicates that ai is left in its place in rela-
tion (B). If ai D a ¤ 0, then the corresponding term on the right hand side of (B) has the
form

Œ�a; : : : ; a; : : : j 0; : : :�;

mapping to
c � h�a; : : : ; a; : : : 0; : : :i;

where c D 0 or 2, and the symbol in Mn.G/ equals 0, by (6).
Case (C10) splits into two cases:

(C10¤) all terms in Na are pairwise distinct,

(C10D) there exist at least two equal terms in Na.

In case (C10¤), on the left and on the right hand side of the relation (B), all symbols
contain exactly one zero. Thus, they are mapped to similar symbols in Mn.G/, but mul-
tiplied by 2, by .�1/. Since every element in Na occurs only once, the expressions on the
right side of (B) and (M) consist of matching terms.

In case (C10D), the left hand side of (B) equals

Œa; a; : : : j 0; : : :� 2 Bn.G/:

Its image under � equals

2ha; a; : : : ; 0; : : :i 2Mn.G/;

which vanishes, by (3). We claim that all terms on the right side of (B) map to zero as
well. Indeed, they are of the form either

Œa; 0; : : : j 0; : : :� or Œa � a0; a � a0; : : : ; a0; : : : j 0; : : :�; a0 ¤ a:

The image of this symbol is proportional to

ha; 0; : : : ; 0; : : :i or ha � a0; a � a0; : : : ; a0; : : : ; 0; : : :i;

vanishing by (1) or (3), respectively.
Case (C0) splits into three cases:

(C00) Na does not contain zeros,

(C01) Na contains exactly one zero,

(C02) Na contains at least two zeros.

Recall that Nb does not contain zeros in case (C0). We start with (C02). The left hand side
in (B) has the form

Œ0; 0; : : : j : : :�;

hence maps to 0, by .�2/. We check that all terms on the right hand side of (B) map to 0
as well. These symbols have the form

Œ0; 0; : : : j : : :� or Œ�a;�a; : : : ; a; : : : j : : :�; a ¤ 0;
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mapping to elements in Mn.G/ which are proportional to either

h0; 0; : : :i or h�a;�a; : : : ; a; : : : i;

vanishing by (1) or (6), respectively.
Case (C01) splits into two cases:

(C01¤) all terms in Na are pairwise distinct,

(C01D) there exist at least two equal terms in Na.

In case (C01D), the left side in (B) has the form

Œ0; a; a; : : : j : : :� for a ¤ 0;

mapping to 0, by relation (3). The right side contains terms of the form

Œ0; a; a; : : : j : : :� or Œ�a; a; 0; : : : j : : :�;

or
Œ�a0; a � a0; a � a0; : : : ; a0; : : : j : : :�; a0 ¤ a; 0:

Their images under � are proportional to

h0; a; a; : : :i; h�a;�a; 0; : : :i; or h�a0; a � a0; a � a0; : : : ; a0; : : :i;

which vanish by (3), (6), and (6), respectively.
Consider case (C01¤). The left side of (B) has the form

Œ0; a2; : : : ; ak j : : :� for ai ¤ 0; i � 2; pairwise distinct; bj ¤ 0:

Its image under � equals, by .�1/,

2h0; a2; : : : ; ak ; : : :i:

The right side of (B) is the sum

Œ0; a2; : : : ; ak j : : :�C Œ�a2; a2; : : : ; ak � a2 j : : :�C Œ�a3; a2 � a3; a3; : : : j : : :�C � � �

where the first summand maps, by .�1/, to

2h0; a2; : : : ; ak ; : : :i

and all the other terms map to 0, by relation (6). This proves (C01¤).
We are left with case (C00), i.e., all elements of the sequences Na and Nb are nonzero.

We have two cases:

(C00¤) all terms in Na are pairwise distinct,

(C00D) at least two terms in Na are equal.

In case (C00¤), the left and right sides of (B) do not contain symbols with zeros, hence
we use .�0/, and (B) is mapped precisely to the corresponding relation (M).

Case (C00D) splits into three subcases:
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(C00D 2) Na has only one pair of equal terms, i.e.,

Na D a; a; a3; : : : ; ak ;

where a3; : : : ; ak are pairwise distinct and different from a,

(C00D 2; 2) Na has the form
Na D a; a; a0; a0; a5; : : : ; ak ;

where a ¤ a0 and a5; : : : ; ak are pairwise distinct and different from a; a0,

(C00D 3) Na has the form
Na D a; a; a; : : : :

We start with (C00D 3). The left side is mapped to 0, by relation (5). The right side has
terms of the form

Œa; 0; 0; : : : j : : :� or Œa � a0; a � a0; a � a0; : : : ; a0; : : : j : : :�; a ¤ a0:

They are mapped to terms proportional to

ha; 0; 0; : : :i or ha � a0; a � a0; a � a0; : : :i;

vanishing by (1) or (5), respectively.
We consider (C00D 2; 2). The left side is mapped to ha; a; a0; a0; : : :i, which vanishes

by relation (4). The right side has terms of three shapes,

Œa; 0; a0 � a; a0 � a; : : : j : : :� or Œa � a0; a � a0; a0; 0; : : : j : : :�; a ¤ a0;

or

Œa � a00; a � a00; a0 � a00; a0 � a00; : : : ; a00; : : : j : : :�; a; a0; a00 pairwise distinct:

Their images are proportional to

ha; 0; a0 � a; a0 � a; : : :i or ha � a0; a � a0; a0; 0; : : :i; a ¤ a0;

or

ha � a00; a � a00; a0 � a00; a0 � a00; : : : ; a00; : : :i; a; a0; a00 pairwise distinct;

which vanish by (3), (3), and (4), respectively.
In the last case (C00D 2), relation (B) has the form

Œa; a; a3; : : : ; ak j : : :� D Œa; 0; a3 � a; : : : ; ak � a j : : :�

C Œa � a3; a � a3; a3; : : : ; ak � a3 j : : :�C Œa � a4; a � a4; a3 � a4; a4; : : : j : : :�C � � � :

The left side maps to ha; a; a3; : : :i and the right side to

2ha; 0; a3 � a; : : : ; ak � a j : : :i C ha � a3; a � a3; a3; : : : ; ak � a3 j : : :i C � � � :

Here the first summand is obtained by .�1/ and the other summands by .�0/. We see
that, modulo relation (S), the image of the right hand side of (B) coincides with the right
hand side of (M) in Mn.G/.

This concludes the proof of Theorem 4.
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Proposition 7. The homomorphism

� W B2.G/!M2.G/ (3.3)

is injective, with cokernel annihilated by .Z=2Z/�.N/ if G ' Z=NZ is a cyclic group,
and is an isomorphism otherwise.

Proof. Write the generators and relations for B2.G/ and M2.G/:

� Generators:

– (“nondegenerate”) symbols Œa1; a2� (resp. ha1; a2i), where a1; a2 2 A n 0 are such
that Za1 C Za2 D A, and

– (“degenerate”) symbols Œa; 0� (resp. ha; 0i), where a 2 A n 0 is such that Za D A.

� Relations:
(1) Œa1; a2� D Œa2; a1� (resp. ha1; a2i D ha2; a1i) for a1; a2 2 A n 0,

(2) Œa1; a2� D Œa1; a2 � a1� C Œa1 � a2; a2� (and correspondingly ha1; a2i D
ha1; a2 � a1i C ha1 � a2; a2i) for a1; a2 2 A n 0 and a1 ¤ a2,

(3) Œa; a� D Œa; 0� (resp. ha; ai D 2ha; 0i) for a ¤ 0.

The first two relations are identical and deal only with nondegenerate symbols Œa1; a2�
(resp. ha1; a2i), when both a1; a2 are nonzero. In the case of B2.G/, relation (3) just iden-
tifies the degenerate symbol Œa;0� via the nondegenerate symbol Œa;a�, whereas in the case
of M2.G/ it adds one half of the nondegenerate symbol ha; ai. Obviously, if we add to
any abelian group an extra generator which is one half of any given element of this group,
then the new group contains the initial one, and the quotient is annihilated by Z=2Z.
The statement of the proposition immediately follows, as the Euler function �.N / is the
number of degenerate elements Œa; 0� when G ' A ' Z=NZ.

Conjecture 8. For n � 3 the homomorphism

� W Bn.G/!Mn.G/ (3.4)

is an isomorphism modulo torsion.

This statement reduces to the following: For any integer N � 2,

Œ0; 0; 1� 2 B3.Z=NZ/

is a torsion element. Indeed, if this were the case, then any symbol Œ0; 0; : : :� would van-
ish modulo torsion, and then one could repeat the steps in the proof of Theorem 4 and
construct an inverse morphism from Mn.G/˝Q to Bn.G/˝Q.

Computer experiments for N � 23 support the following:
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Conjecture 9. For N � 2, the element Œ0; 0; 1� 2B3.Z=NZ/ has order 1, i.e., Œ0; 0; 1�D
0 2 B3.Z=NZ/ if N is composite or N D 2; 3; 5, and is annihilated by

p2 � 1

24
if N D p � 7 is a prime.2

4. On generators and relations in Mn.G/

In this section, G is a finite abelian group, with character group A D Hom.G; C�/,
and n � 2 is an integer. We give a geometric reformulation of generators and relations
of Mn.G/.

We start with the following data:

� a (torsion-free) lattice L ' Zn of rank n,

� an element � 2 L˝ A such that the induced homomorphism L_ ! A is a surjection,

� a basic simplicial cone, i.e., a strictly convex cone ƒ � LR spanned by a basis of L. It
is isomorphic to the standard octant Rn�0 for L D Zn � Rn.

For every equivalence class of triples .L; �;ƒ/; up to isomorphism, we define a sym-
bol

 .L; �;ƒ/ 2Mn.G/

as follows: choose a basis e1; : : : ; en of L, spanning ƒ, express

� D

nX
iD1

ei ˝ ai ; (4.1)

and put
 .L; �;ƒ/ D ha1; : : : ; ani 2Mn.G/:

The ambiguity in the choices is reflected in the action of the symmetric group Sn on
the basis elements, hence accounted for by condition (S). Relation (M) has the following
geometric meaning. Let e1; : : : ; en be an ordered basis of L spanning ƒ:

ƒ WD R�0e1 C � � � CR�0en: (4.2)

Fix an integer 2 � k � n. Then

ƒ D ƒ1 [ � � � [ƒk ; (4.3)

where
ƒi WD R�0e1 C � � � CR�0.e1 C � � � C ek/„ ƒ‚ …

i -th place

C � � � CR�0en;

2This has been established in [6].



Equivariant birational geometry 167

i.e., we replace the i -th generator ei by e1 C � � � C ek ; this is the set of maximal cones
in the stellar subdivision of the face spanned by e1; : : : ; ek . The cones ƒi are also basic
simplicial and their interiors are disjoint. Decompose

� D e1 ˝ a1 C � � � C ek ˝ ak C ekC1 ˝ b1 C � � � C en ˝ bn�k

as in (4.1), i.e., akCi D bi for all i D 1; : : : ; n� k. Then, in the basis ofƒi , � decomposes
as

e1 ˝ .a1 � ai /C � � � C .e1 C � � � C ek/˝ ai C � � � ek ˝ .ak � ai /C

n�kX
jD1

ekCj ˝ bj :

We see that relation (M) can be expressed as the identity

 .L; �;ƒ/ D
kX
iD1

 .L; �;ƒi /; (4.4)

which we can view as an analog of scissor relations. Our next result is that this relation
follows from the special subcase k D 2. This is a corollary of a general result concerning
simplicial subdivisions of basic simplicial cones. Namely, consider the Z-module FL;Z

generated by symbols Œƒ�, where ƒ is a basic simplicial cone, modulo relations .Rk/,
k � 2:

.Rk/ Œƒ� D Œƒ1�C � � � C Œƒk �;

where ƒ and ƒi are as above, with e1; : : : ; en an arbitrary basis of ƒ.

Lemma 10. Relations .Rk/ for k � 3 follow from relations .R2/.

Proof. We proceed by induction, assuming the claim for k � 1. We want to prove the
claim for k � 3, i.e.,

Œƒ1�C � � � C Œƒk � D Œƒ�:

By induction,
Œƒk � D Œƒ

0
1�C � � � C Œƒ

0
k�1�;

where ƒ0i are the cones

R�0e1 C � � � CR�0.e1 C � � � C ek�1/„ ƒ‚ …
i -th place

C � � � CR�0.e1 C � � � C ek/„ ƒ‚ …
k-th place

C � � � CR�0en:

Indeed, this is relation .Rk�1/ in the basis

e1; : : : ; ek�1; e1 C � � � C ek ; ekC1; : : : ; en:

Therefore,

Œƒ1�C � � � C Œƒk � D .Œƒ1�C Œƒ
0
1�/C � � � C .Œƒk�1�C Œƒ

0
k�1�/:
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For every i D 1; : : : ; k � 1, we have relation .R2/,

Œƒi �C Œƒ
0
i � D Œƒ

00
i �;

in an appropriate basis, where

ƒ00i WD R�0e1 C � � � CR�0.e1 C � � � C ek�1/„ ƒ‚ …
i -th place

C � � � CR�0en:

Finally, .Rk�1/ in the basis e1; : : : ; en says that

Œƒ001�C � � � C Œƒ
00
k�1� D Œƒ�;

which proves the claim.

Now we can consider an a priori different group generated by symbols Œƒ�, where ƒ
is any full-dimensional strictly convex rational polyhedral cone, subject to relations

Œƒ� D Œƒ�1 C � � � C Œƒk �;

where ƒ is the union of cones ƒi with disjoint interiors (here k can be any integer � 2).
The toric analog of Weak Factorization implies that the natural homomorphism from FL;Z

to this group is an isomorphism. In these terms, Lemma 10 says that it suffices to consider
blowups with centers in codimension 2.

In consequence, Mn.G/ admits an alternative description: as the group generated by
symbols

 .L; �;ƒ/;

depending only on the isomorphism classes of triples, where L and � are as above, andƒ
is a finitely generated convex rational polyhedral cone, of full dimension, subject to the
relations (4.4) whenever there is a decomposition

ƒ D ƒ1 [ � � � [ƒk

as above. This clearly extends to nonconvex cones.
We introduce a variant of the previous constructions: instead of

� 2 L˝ A D Hom.L_; A/

we can consider
�� 2 Hom.L; A/;

again assuming that �� is surjective. In a similar fashion, we can introduce the
group M�n.G/, which we call the co-vector version of (the vector version) Mn.G/. This
group is generated by symbols

ha1; : : : ; ani
�;

subject to relations
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.S�/ for all � 2 Sn and all a1; : : : ; an 2 A we have

ha�.1/; : : : ; a�.n/i
�
D ha1; : : : ; ani

�;

.M�/ for all 2 � k � n, all a1; : : : ; ak 2 A and all b1; : : : ; bn�k 2 A such thatX
i

Zai C
X
j

Zbj D A

we have

ha1; : : : ; ak ; b1; : : : ; bn�ki
�

D

X
1�i�k

D
a1; : : : ;

kX
jD1

aj .on i -th place/; : : : ; ak ; b1; : : : ; bn�k
E�
:

As above, the relations for k D 2 imply all others.
It is not hard to show that the Q-ranks of Mn.G/ and M�n.G/ are the same. Indeed,

by a Möbius-type inversion formula, one can reduce the question to the extended versions
of the groups Mn.G/ and M�n.G/ omitting the condition that the map

� W L_ ! A; resp. �� W L! A;

is surjective. Then the finite Fourier transform (after a choice of an identification G ' A)
identifies the two complex vector spaces consisting of homomorphisms from the two
extended groups to C.

5. Multiplication and co-multiplication

In this section, we work with the vector version; the co-vector version is analogous.
We consider Mn.G/ in both variables n � 1 and G. We define multiplication and
co-multiplication maps and study their properties. An important role will be played
by M�n .G/; which is defined only for nontrivial groups G, as the quotient of Mn.G/

by the relation
h�a1; : : : ; ani D �ha1; : : : ; ani: (5.1)

We denote by
ha1; : : : ; ani

�
2M�n .G/

the image of ha1; : : : ; ani under the natural projection

�� WMn.G/!M�n .G/: (5.2)

We consider short exact sequences of finite abelian groups

0! G0 ! G ! G00 ! 0
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and the corresponding short exact sequences of character groups

0! A00 ! A! A0 ! 0:

Let
n D n0 C n00; n0; n00 � 1:

We define a Z-bilinear “multiplication” map

r WMn0.G
0/˝Mn00.G

00/!Mn0Cn00.G/;

which on generators is given by the formula

ha01; : : : ; a
0
n0i ˝ ha

00
1; : : : ; a

00
n00i 7!

X
ha1; : : : ; an0 ; a

00
1; : : : ; a

00
n00i; (5.3)

where the sum runs over all lifts ai 2 A of a0i 2 A
0, and the elements a00i are understood

as elements of A, via the embedding A00 ,! A.
The compatibility with defining relations (S) and (M) is obvious. The condition that

the elements in each summand on the right span A follows from the corresponding con-
dition on the left for the groups A0; A00. Note that r descends to a Z-bilinear map of the
corresponding quotient groups

r
�
WM�n0.G

0/˝M�n00.G
00/!M�n0Cn00.G/;

where both G0 and G00 are nontrivial.
Next we define a “co-multiplication” map

� WMn0Cn00.G/!Mn0.G
0/˝M�n00.G

00/;

where G00 is nontrivial, and which on generators is given by the formula

ha1; : : : ; ani 7!
X
haI 0 mod A00i ˝ haI 00i�: (5.4)

Here we put

haI 0 mod A00i D hai1 mod A00; : : : ; ain0 mod A00i; I 0 WD ¹i1; : : : ; in0º;

and similarly for haI 00i, using the symmetry relation (S). The sum is over all subdivisions

¹1; : : : ; nº D I 0 t I 00 with #I 0 D n0; #I 00 D n00;

such that

� for all j 2 I 00, we have aj 2 A00 � A, and, in the first term on the right, the elements
ai , i 2 I 0, are replaced by their images in A0 D A=A00;

� (generation condition) the elements aj , j 2 I 00; span A00.

Note that, given the generation condition in each term of the right side of the formula,
the expression haI 0 mod A00i� is a symbol, since the condition

P
Zai D A implies thatP

i2I 0.ai mod A00/ D A0. Therefore, the generation condition for the first term is auto-
matic.
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Proposition 11. The map � extends to a well-defined Z-linear homomorphism.

Proof. By Lemma 10, it suffices to check the 2-term relations (R2). We need to show that
the image of the relation

ha1; a2; : : :i D ha1 � a2; a2; : : :i C ha1; a2 � a1; : : :i

on the left is a relation on the right, and that the terms on the right satisfy the generation
condition (the linear combinations of elements span the corresponding group). The only
interesting part is when the first two arguments are distributed over the different factors
in (5.4), so that

ha1; a2; : : :i 7! ı
gen
a12A00

� ha2 mod A00; : : :i ˝ ha1; : : :i�

C ı
gen
a22A00

� ha2 mod A00; : : :i ˝ ha2; : : :i�; (5.5)

where, for a 2 A,

ı
gen
a2A00 WD

´
1 if a 2 A00 and ZaC

P
j2J 00 Zaj D A

00;

0 otherwise.

There are four cases:

(1) a1 2 A00, a2 2 A00,

(2) a1 2 A00, a2 … A00,

(3) a1 … A00, a2 2 A00,

(4) a1 … A00, a2 … A00.

We fix disjoint subsets

J 0 WD I 0 \ ¹3; : : : ; nº; J 00 WD I 00 \ ¹3; : : : ; nº

of cardinality n0 � 1, respectively n00 � 1. For each symbol on the left of (5.4) there are at
most two nonzero terms on the right (depending on the generation condition) correspond-
ing to the cases a1 2 I 0; a2 2 I 00 or a1 2 I 00; a2 2 I 0.

In case (1), we have

ha1; a2; : : :i 7! ı
gen
a12A00

� h0; : : :i ˝ ha1; : : :i
�
C ı

gen
a22A00

� h0; : : :i ˝ ha2; : : :i
�

and

ha1 � a2; a2; : : :i C ha1; a2 � a1; : : :i

7! ı
gen
a1�a22A00

� h0; : : :i ˝ ha1 � a2; : : :i
�

C ı
gen
a22A00

� h0; : : :i ˝ ha2; : : :i
�
C ı

gen
a12A00

� h0; : : :i ˝ ha1; : : :i
�

C ı
gen
a2�a12A00

� h0; : : :i ˝ ha2 � a1; : : :i
�:
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The first and the last term on the right cancel by relation (5.1), and the sum of the second
and the third terms is the image of ha1; a2; : : :i.

In case (2), we have

ha1; a2; : : :i 7! ı
gen
a12A00

� ha2 mod A00; : : :i ˝ ha1; : : :i�

and

ha1 � a2; a2; : : :i C ha1; a2 � a1; : : :i

7! ı
gen
a12A00

� ha2 � a1 mod A00; : : :i ˝ ha1 � a2; : : :i�:

The right sides of both expressions coincide, since a2 D a2 � a1 mod A00.
Case (3) is similar to case (2).
In case (4), we have ha1; a2; : : :i 7! 0 and

ha1 � a2; a2; : : :i C ha1; a2 � a1; : : :i

7! ı
gen
a1�a22A00

� ha2 mod A00; : : :i ˝ ha1 � a2; : : :i�

C ı
gen
a2�a12A00

� ha1 mod A00; : : :i ˝ ha2 � a1; : : :i�;

and the terms on the right cancel by (5.1).

An easy check shows that � descends to a Z-linear homomorphism

�� WM�n0Cn00.G/!M�n0.G
0/˝M�n00.G

00/: (5.6)

These constructions give rise to a natural complex: denote by G� a flag of subgroups

0 D G�0 ¨ G�1 ¨ � � � ¨ G�r D G;

and let r be its length. Consider the diagram of homomorphisms

M�n .G/�
M

n1Cn2Dn
G� of length 2

M�n1.gr1.G�//˝M�n2.gr2.G�//

�
M

n1Cn2Cn3Dn
G� of length 3

M�n1.gr1.G�//˝M�n2.gr2.G�//˝M�n3.gr3.G�//� � � �

where the right arrows are the natural simplicial extensions of the co-multiplication ��

(given by alternating sums) and the left arrows are the corresponding extensions of the
multiplication maps. We obtain two complexes

C�;�.G; n/; C�� .G; n/;

with differentials d�� and dr� of degreeC1 and �1, respectively.
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Theorem 12. Let G be a finite cyclic group. Then the cohomology of both complexes

C�;�.G; n/; C�� .G; n/;

after tensoring by Q, is concentrated in degree 0.

Proof. The assumption that G is cyclic will only be used at the last step of the proof. Let
M�n .G/ be the Q-vector space generated by symbols

ha1; : : : ; ani
�

satisfying the symmetry condition (S) such that a1; : : : ; an generate A, and aj ¤ 0 for
all j . There is a natural map of Q-vector spaces

M�n .G/!M�n .G/˝Q;

given by
ha1; : : : ; ani

�
7! ha1; : : : ; ani

�: (5.7)

Consider the co-multiplication

�� WM�n0Cn00.G/!M�n0.G
0/˝M�n00.G

00/;

defined by
ha1; : : : ; ani

�
7!

X
haI 0 mod A00i� ˝ haI 00i�; (5.8)

where I 0; I 00 ¨ I are nonempty subsets such that

� I 0 t I 00 D ¹1; : : : ; nº;

� I 00 D ¹i j ai 2 A
00 with

P
i2I 00 Zai D A

00º:

Similarly, we have a multiplication map

r
�
WM�n0.G

0/˝M�n00.G
00/!M�n0Cn00.G

0/

defined by formulas similar to (5.3). We obtain two complexes, as above:

C�;�.G; n/; C�� .G; n/;

with the corresponding differentials dr� and d�� . We have natural surjective homo-
morphisms of complexes

C�;�.G; n/� C�;�.G; n/˝Q; C�� .G; n/� C�� .G; n/˝Q;

induced by the maps
ha1; : : : ; ani i

�
7! ha1; : : : ; ani i

�:

Clearly, these maps are compatible with the respective differentials; here we use the fact
that the symbol ha1; : : : ; ani i

� vanishes, modulo torsion, if at least one aj is zero.
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Consider the following statements:

(1) H>0.C�;�.G; n// D 0.

(2) The operator
�� D d�� ı dr� C dr� ı d��

is invertible in degree > 0.

(3) The operator
�� D d�� ı dr� C dr� ı d��

is invertible in degree > 0.

(4) H>0.C�;�.G; n// D 0, H>0.C�� .G; n// D 0.

We have a sequence of implications

.1/) .2/) .3/) .4/:

Indeed:

� .1/ and .2/ are equivalent, because dr� and d�� are adjoint with respect to a positive-
definite quadratic form, given by the identity matrix in the natural basis.

� .2/).3/, since we have a surjective homomorphism of complexes.

� .3/).4/, since the Laplacian�� is an endomorphism of both complexes

C�;�.G; n/˝Q; C�� .G; n/˝Q;

which is homotopic to zero for both complexes. The invertibility of this endomorphism
in degrees > 0 implies invertibility in cohomology, in degrees > 0, and hence implies
vanishing of cohomology in those degrees.

Hence it suffices to prove statement (1). For this, we will construct a homotopy

h W C�j .G; n/! C�j�1.G; n/; j D 1; 2; : : : ;

such that
��h WD h ı d�� C d�� ı h (5.9)

is invertible in degrees > 0.
Recall that

C�j .G; n/; j � 0;

is a direct sum of terms labeled by flags of subgroups

0 D G�0 ¨ G�1 ¨ � � � ¨ Gr D G; r D j C 1:

Passing to characters, we obtain a chain of surjective homomorphisms

0 D A�0
¤

� A�1
¤

� � � �
¤

� A�r D A:
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We define h as follows:

M�n1.A�1/˝M�n2.Ker.A�2� A�1//˝ � � � !M�n1Cn2.A�2/˝ � � �

acting as the identity on the omitted factors, and as

ha1; : : : ; an1i
�
˝ hb1; : : : ; bn2i

�
7! h .a1/; : : : ;  .an1/; b1; : : : ; bn2i

�;

on the first two terms, where  WA�1!A�2 is a section of the natural surjection, defined
below.

We now use the assumption that G, and hence all A�j , are cyclic. Write

G D Z=NZ D
Y
i

Z=pkii Z;

and identify
Z=pkii Z D ¹0; : : : ; pi � 1º

ki ;

by regarding the sequence of digits in base pi . In this setup, there is a natural lift

 W A�1 ! A�2

by adding zeros to the corresponding sequences of digits, for all pi . Note that the differen-
tial d�� is given by removing digits in this presentation. The operator (see (5.9))��h � Id
acting on C j;�.G; n/ for j � 1 is nilpotent, since it strictly increases the number of zeros
in our collection of digit sequences. Therefore,��h is invertible in degrees � 1.

Remark 13. For noncyclic G, the structure of cohomology of C�;� is more complicated.
Let G D .Z=pZ/2. In this case, the complex is

M�2 .G/!
M

pC1 copies

M�1 .Z=pZ/˝M�1 .Z=pZ/:

We claim that this map fails to be surjective for p � 3. Indeed, it suffices to produce a
nontrivial functional on the right side, vanishing on the image of the differential d�� . We
can describe

Coker.d��/˝Q

as the space of Q-valued functions f on pairs of linearly independent vectors
a1; a2 2 .Z=pZ/2 such that

� f .a1; a2/ D �f .�a1; a2/ D �f .a1;�a2/ D f .a1; a2 C �a1/ for all � 2 Z=pZ,

� f .a1; a2/C f .a2; a1/ D 0.

The first property describes functionals on C 1;�.G; 2/ and the second condition means
that f is in Ker.d��/. Here we do not use the defining relation (M) for M2.G/. Solutions
of this system of functional equations are given by maps

f .a1; a2/ D g.a1 ^ a2/;
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where g is any map

g W .Z=pZ/� D
V2
.Z=pZ/2 n 0! Q;

which is odd, i.e., g.��/ D �g.�/ for all �. Hence

H 1.C�;�.G; 2//˝Q 'M�1 .Z=pZ/˝Q D Q.p�1/=2:

We define

M�n;prim.G/ WD Ker
�

M�n .G/!
M

n0Cn00Dn
n0;n00�1
0¨G0¨G

M�n0.G
0/˝M�n00.G=G

0/

�
I (5.10)

this is the cohomology of the complex C�;�.G; n/ in degree 0, with differential d�. We
define

M�n;coprim.G/ WD Coker
�

M�n .G/ 
M

n0Cn00Dn
n0;n00�1
0¨G0¨G

M�n0.G
0/˝M�n00.G=G

0/

�
I (5.11)

this is the cohomology of the complex C�� .G; n/ in degree 0, with differential dr . The-
orem 12 implies that, for G cyclic, we have

dim.M�n;prim.G/˝Q/ D dim.M�n;coprim.G/˝Q/ (5.12)

and

dim.M�n .G/ ˝ Q/ D
X
r

X
n1C���CnrDn
G� of length r

rY
iD1

dim.M�ni ;prim.gri .G�// ˝ Q/: (5.13)

Using r�, we can obtain a homomorphism of vector spaces

M�n1;prim.gr1.G�//˝ � � � ˝M�nr ;prim.grr .G�//˝Q!M�n .G/˝Q:

Similarly, using ��, we obtain a homomorphism of Q-vector spaces

M�n1;coprim.gr1.G�//˝ � � � ˝M�nr ;coprim.grr .G�//˝Q M�n .G/˝Q:

In view of the numerical identities (5.12) and (5.13) it is tempting to guess that the above
maps are isomorphisms of Q-vector spaces.

Now consider the diagram of homomorphisms

Mn.G/!
M

n1Cn2Dn
G� of length 2

Mn1.gr1.G�//˝M�n2.gr2.G�//

!

M
n1Cn2Cn3Dn

G� of length 3

Mn1.gr1.G�//˝M�n2.gr2.G�//˝M�n3.gr3.G�//! � � �

where
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� G� is a flag of subgroups of type

0 D G�0 � G�1 ¨ � � � ¨ G�r D G; r � 1;

with strict inclusions, except in the first step;

� in each term, the leftmost factor is the full group, and not the quotient by the rela-
tion (5.1).

Here the differential uses both maps� and��. Again, this is a complex, which we denote
by C�.G; n/; notice that here we do not have a dual differential in the other direction.

Theorem 14. Let G be a finite cyclic group. Then the cohomology of the complex
C�.G; n/, after tensoring by Q, is concentrated in degree 0.

Proof. The proof is similar to the one given for Theorem 12. The key observation is that
for finite cyclic groups, the projection �� defined in (5.2) admits a section

� WM�n .G/!Mn.G/; (5.14)

which on symbols is given by the formula

ha1; : : : ; ani
�
7!

X
"1;:::;"n

.�1/"1���"nh"1a1; : : : ; "nani; (5.15)

where "i 2 ¹C1;�1º, and the sum is over all possibilities.
For n D 1, this is clearly compatible. To check the defining relations in general, it

suffices to consider the case n D 2. For

a; b 2 Z=NZ; gcd.a; b;N / D 1;

(5.15) translates to

ha; bi� 7! ha; bi C h�a;�bi � h�a; bi � ha;�bi: (5.16)

We need to verify that the relation

ha; bi� D ha; b � ai� C ha � b; bi�

is mapped to a relation in M2.Z=NZ/. We write out the relations for each term in (5.16):

ha; bi C h�a;�bi � h�a; bi � ha;�bi

‹
D ha; b � ai C h�a; a � bi � h�a; b � ai � ha; a � bi

C ha � b; bi C hb � a;�bi � hb � a; bi � ha � b;�bi:

The first terms on each line (and the second terms, considered separately) give a relation
in M2.Z=NZ/. It suffices to check

�h�a; bi � ha;�bi
‹
D �h�a; b � ai � ha; a � bi � hb � a; bi � ha � b;�bi:
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Replacing a 7! �a, we have to show that

ha; bi C h�a;�bi
‹
D ha; b C ai C h�a;�a � bi C hb C a; bi C h�a � b;�bi:

Using the relations

ha; b C ai D ha; bi C h�b; b C ai; h�a;�b � ai D h�a;�bi C hb;�b � ai;

we are reduced to showing

ı.aC b; b/ WD haC b; bi C h�.aC b/; bi C haC b;�bi C h�.aC b/;�bi

‹
D 0 2M2.Z=NZ/;

i.e.,
ı.a; b/

‹
D 0 2M2.Z=NZ/:

Note that

ı.aC b; b/ D ı.aC b; a/; ı.a; b/ D ı.�a; b/ D ı.b; a/:

It follows that ı is invariant under the matrices�
1 �1

0 1

�
;

�
0 1

1 0

�
;

which generate SL2.Z=NZ/, so that ı.a; b/ is constant. Considering the average and
applying the defining relation to each term we obtain

S WD
X
a;b

ı.a; b/ D 2S ; thus S D 0.

To prove Theorem 14 we need to show that

Mn.Z=NZ/!
M

NDN 0N 00

Mn0.Z=N
0Z/˝M�n00.Z=N

00Z/; n D n0 C n00;

is surjective, where the sum is over all exact sequences

0! Z=N 00Z! Z=NZ! Z=N 0Z! 0; N D N 0N 00; N � 2;

of finite cyclic groups. We now use the inverse (after tensoring by Q), as discussed above:

Qr WMn0.Z=N
0Z/˝M�n00.Z=N

00Z/!Mn.Z=NZ/; n D n0 C n00;

which on generators is given by

ha01; : : : ; a
0
n0i ˝ hb1; : : : ; bn00i

�
7!

X
all lifts

"1;:::;"n00

.�1/"1���"n00 ha1; : : : an0 ; "1b1; : : : ; "n00bn00i;

where the sum is over all lifts ai to Z=NZ of a0i 2 Z=N 0Z and all possibilities for
"j 2 ¹C1;�1º (see the definition of �, (5.14)). This is compatible with the defining equa-
tions.
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We now define

Mn;prim.G/ D Ker
�

Mn.G/!
M

n0Cn00Dn
n0;n00�1
0�G0¨G

Mn0.G
0/˝M�n00.G=G

0/

�
I (5.17)

this is the cohomology of the complex in degree 0; note that the inclusion G0 could be
trivial. We have

M1.G/ DM1;prim.G/

for all G; when G D 1 D Z=1Z we have

M1.1/ D Z; Mn.1/ DMn;prim.1/ D 0 for n � 2:

Theorem 14 implies that there is a noncanonical isomorphism

Mn.G/˝Q

'

M
r

M
n1C���CnrDn
G� of length r

Mn1;prim.gr1.G�//˝ � � � ˝M�nr ;prim.grr .G�//˝Q:

Computer experiments (see Section 8) suggest that, for all N � 1:

� M2;prim.Z=NZ/˝Q DM�2;prim.Z=NZ/˝Q, and this is equal to the dimension of
the space of cusp forms of weight 2 for �1.N / – we will discuss this in Section 11;

� M3;prim.Z=NZ/ ˝ Q D M�3;prim.Z=NZ/ ˝ Q; and this is equal to the number of
certain cuspidal automorphic representations for a congruence subgroup of GL3.Z/,
generated by a vector invariant under a congruence subgroup,

� Mn;prim.Z=NZ/˝Q DM�n;prim.Z=NZ/˝Q D 0 for n � 4.

Theorems 12 and 14 allow us to compute Q-ranks of Mn.Z=NZ/ using

� the Euler function:

dim.M1;prim.Z=NZ/˝Q/ D �.N /; N � 1;

dim.M�1;prim.Z=NZ/˝Q/ D

´
0; N D 2;

�.N /=2; N � 3:

� the well-known dimensions of the spaces of cusp forms for �1.N /, which are given by
closed formulas in N , e.g.,

N . . . 11 12 13 14 15 16 17 18 19 20 . . . 180 181

0 1 0 2 1 1 2 5 2 7 3 . . . 705 1276

� the somewhat mysterious dimensions in the case n D 3, e.g.

N 43 51 52 59 63 67 68 72 73 75 . . . 239 240

1 1 1 1 2 2 1 1 8 4 . . . 3 22
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Example 15. Theorem 14 implies that

dim.Mn.Z=3
n�1Z/˝Q/ D 1; n � 1;

coming from the term

M1;prim.Z=1Z/˝M�1;prim.Z=3Z/˝ � � � ˝M�1;prim.Z=3Z/„ ƒ‚ …
n�1 times

:

Directly, we see that the co-multiplications �;�� give homomorphisms

Hom.M.�/
n1
.G/;Q/˝ Hom.M.�/

n2
.G/;Q/! Hom.M.�/

n .G/;Q/:

Using explicit nonzero elements

.h0i 7! 1/ 2 Hom.M1.Z=1Z/;Q/;

.h˙1 mod 3i� 7! ˙1/ 2 Hom.M�1 .Z=3Z/;Q/;

we obtain an explicit functional on Mn.Z=3n�1Z/ which maps

h1 mod 3n�1; 3 mod 3n�1; : : : ; 3n�1 mod 3n�1i 7! 1;

hence is nonzero. In particular, we have

dim.Mn.Z=3
n�1Z/˝Q/ � 1:

Similarly, one can show that

dim.Mn.Z=2
n�1Z/˝ F2/ � 1;

Thus we obtain explicit nontrivial invariants for equivariant birational actions of
G D Z=3n�1Z on n-dimensional varieties. Surprisingly, experiments show that
the nontrivial invariant in Hom.Mn.Z=2n�1Z/; F2/ lifts to the trivial element in
Hom.Bn.Z=2n�1Z/;F2/ for n D 2; 3; 4; 5.

Experiments suggest that

dim.Mn.Z=NZ/˝Q/ D 0 for all N < 3n�1; (5.18)

dim.Mn.Z=NZ/˝ F2/ D 0 for all N < 2n�1: (5.19)

Moreover,

dim.Bn.Z=NZ/˝ F2/ D 0 for all N <

´
2n � 1; n D 2; 3;

2n�1; n � 4:
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6. Hecke operators

In this section, we define analogs of Hecke operators on Mn.G/. Fix a prime ` not divid-
ing #G, and an integer 1 � r � n � 1. Put

T`;r . .L; �;ƒ// WD
X

L�L0�L˝R;L0=L'.Z=`Z/r
 .L0; �;ƒ/; (6.1)

where � is now interpreted as an element of L0 ˝ A, via the inclusion L˝ A � L0 ˝ A;
the surjectivity property for � 2 L0 ˝ A follows from the surjectivity of � 2 L˝ A and
the assumption on coprimality of ` and the order of G.

Proposition 16. The Hecke operators T`;r are well-defined on Mn.G/, and commute
with each other.

Proof. Follows from the additivity of (4.4) and (6.1).

Example 17. We consider the case n D 2 and G D Z=NZ ' A. Then Mn.G/ is gener-
ated by

ha1; a2i; a1; a2 2 Z=NZ; gcd.a1; a2; N / D 1;

such that

� ha1; a2i D ha2; a1i,

� ha1; a2i D ha1; a2 � a1i C ha1 � a2; a2i for all a1; a2.

We write down an example of a Hecke operator on M2.G/. For each ` coprime to N
we have only one Hecke operator T` D T`;1.

Assume that N is odd and ` D 2. Let

L D Z2; � D .1; 0/˝ a1 C .0; 1/˝ a2; ƒ D R2�0;

the standard octant. There are three overlattices of L of index 2, corresponding to the three
elements of P1.F2/:

� L00 WD Z �
�
1
2
; 0
�
C Z � .0; 1/;

� L01 WD Z �
�
1
2
; 1
2

�
C Z � .0; 1/ D Z �

�
1
2
; 1
2

�
C Z � .1; 0/;

� L01 WD Z �
�
0; 1
2

�
C Z � .1; 0/.

The corresponding cones in the first and third cases are basic simplicial, whereas in the
second case the cone is not basic and can be decomposed in the union of two basic sim-
plicial cones with respect to L01:

ƒ D ƒ1 [ƒ2;

ƒ1 D R�0 � .1; 0/CR�0 � .1; 1/; ƒ2 D R�0 � .1; 1/CR�0 � .0; 1/:

Therefore,

T2.ha1; a2i/ D h2a1; a2i C .ha1 � a2; 2a2i C h2a1; a2 � a1i/C ha1; 2a2i:
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The middle term follows from the equalities

e1˝ a1C e2˝ a2De1˝ .a1� a2/C
e1C e2

2
˝ 2a2D

e1C e2

2
˝ 2a1C e2˝ .a2� a1/:

We leave it as an exercise to write down a similar formula for the action of T3 on M2.G/

and T2 on M3.G/.

To define Hecke operators T �
`;r

in the co-vector version, we consider sublattices L0�L
of index `r such that the quotient is isomorphic to .Z=`Z/r . In particular, T �2 D T

�
2;1 on

M�2 .G/ is given by

T �2 .Œa1; a2�
�/ D Œ2a1; a2�

�
C Œ2a1; a1 C a2�

�
C Œa1 C a2; 2a2�

�
C Œa1; 2a2�

�;

and T �2;1 on M3.G/ by

T �2;1.Œa1; a2; a3�
�/ D Œ2a1; a2; a3�

�
C Œa1; 2a2; a3�

�
C Œa1; a2; 2a3�

�

C Œ2a1; a1C a2; a3�
�
C Œa1C a2; 2a2; a3�

�
C Œa1; 2a2; a2C a3�

�

C Œa1; a2C a3; 2a3�
�
C Œ2a1; a2; a1C a3�

�
C Œa1C a3; a2; a3�

�

C Œ2a1; a1C a2; a1C a3�
�
C Œa1C a2; 2a2; a2C a3�

�

C Œa1C a3; a2C a3; 2a3�
�
C Œa1C a2; a2C a3; a1C a3�

�:

Remark 18. The homomorphisms � and r are compatible with the action of Hecke
operators; in particular, the groups Mn;prim.G/

� defined in (5.11) are preserved by Hecke
operators.

7. Variants

Consider an irreducible algebraic representation �� W GLn.Q/! Aut.V�/ with highest
weight

� D .�1 � � � � � �n/; �i 2 Z:

The representation �� defines a functor from the groupoid of n-dimensional Q-vector
spaces to the category VectQ of all Q-vector spaces, which we denote by the same letter.
In particular, for any lattice L of rank n we can speak of

��.L˝Q/ 2 VectQ:

For example, if �� is them-th symmetric power Symm.V / of the standard representation,
i.e., � D .0; : : : ; 0;m/, then

��.L˝Q/ D Symm.L˝Q/:

Consider the Q-vector space Mn.G; ��/ generated by symbols

 .L; �;ƒ; v/;
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for isomorphism classes of quadruples, where L; �;ƒ are as in Section 6 and

v 2 ��.L˝Q/;

subject to relations

�  .L; �;ƒ; v1 C v2/ D  .L; �;ƒ; v1/C  .L; �;ƒ; v2/,
�  .L; �;ƒ; v/ D

Pk
iD1  .L; �;ƒi ; v/ for any decomposition ƒ D ƒ1 [ � � � [ƒk .

Here, one can assume that the subconesƒi are basic simplicial and that the decomposition
is standard, as in Section 6, or simply that ƒi are finitely generated rational subcones of
full dimension, with disjoint interiors. The action of Hecke operators on Mn.G; ��/ is
defined as in (6.1).

The co-vector version of this construction is straightforward.

Remark 19. We expect that for nD 2,G D Z=NZ, and �� given by them-th symmetric
power, the Q-vector spaces Mn.G; ��/, endowed with the action of the Hecke operators
T`;r , are related to modular forms of weight mC 2 for the congruence subgroup �1.N /.

8. Experiments

Here we present results of numerical experiments, performed using a fast linear algebra
solver [7]. We computed the dimensions of Bn.Z=NZ/ and Mn.Z=NZ/ over Q and
various finite fields. The size of the (very sparse) matrices grows as � N n. For example,
for n D 5 and N D 81, the part of the constraints corresponding to k D 2 in (B) or (M)
gives � 3 � 108 equations in � 3 � 107 variables, with � 109 nonzero coefficients. This
overdetermined system has a unique (up to scalar) nontrivial solution in Q. The calcula-
tion took about four hours.

Numerically, we found:

� For p a prime,

dim.B2.Z=pZ/˝Q/ D
p2 � 1

24
C 1 D

p2 C 23

24
;

while the difference

�2;`.Z=pZ/ WD dim.B2.Z=pZ/˝ F`/ �
p2 C 23

24

varies significantly; there are frequent jumps when ` j .p ˙ 1/, e.g.,

�2;31.Z=61Z/ D 1:

� For p a prime,

�3;Q.Z=pZ/ WD dim.B3.Z=pZ/˝Q/ �
.p � 5/.p � 7/

24
D 0

for all primes up to 41, but

�3;Q.Z=pZ/ D 1 for p D 43; 59; : : : :
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� The difference

�3;`.Z=pZ/ WD dim.B3.Z=pZ/˝ F`/ �
.p � 5/.p � 7/

24

also jumps for many ` j .p ˙ 1/.

� For all primes p up to 41 we have dim.B4.Z=pZ/˝Q/ D 0, but

dim.B4.Z=pZ/˝Q/ D 1 for p D 43; 59; : : : :

Next we present a more systematic table of dimensions. All dimensions, for
Q-coefficients, are compatible with the conjectures in Section 5. The items in bold indic-
ate the smallest N for which the rank is positive.

� dim.Bn.Z=NZ/˝Q/ D dim.Mn.Z=NZ/˝Q/ for n D 2; 3:

N 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

n D 2 0 1 1 2 2 3 3 5 4 6 7 8 7 13 10 13 12

n D 3 0 0 0 0 0 0 0 1 0 1 2 2 1 5 3 5 5

N 19 20 21 22 23 24 25 26 27 28 29 . . . 180 181

n D 2 16 17 23 16 23 23 30 22 34 31 36 . . . 989 1366

n D 3 7 7 11 7 12 13 16 12 21 17 22 . . . 1740 1276

� dim.Bn.Z=NZ/˝Q/ D dim.Mn.Z=NZ/˝Q/ for n D 4:

N 27 28 29 30 31 32 33 34 35 36 . . . 105 106 107

n=4 1 0 0 0 0 0 2 0 0 3 . . . 114 0 3

� dim.M�4;prim.Z=NZ/˝Q/ D 0 for N � 242.

� dim.Bn.Z=NZ/˝Q/ D dim.Mn.Z=NZ/˝Q/ for n D 5:

N � � � � 80 81 82

n=5 0 1 0

� dim.Bn.Z=NZ/˝ F2/ and dim.Mn.Z=NZ/˝ F2/ for n D 2; 3; 4; 5:

N 2 3 4 5 6 7 8 . . . 16 . . . 32

B2 0 1 1 2 3 4 4 . . . 13 . . . 44

M2 1 2 3 5 5 8 8 . . . 21 . . . 60

B3 0 0 0 0 0 1 1 . . . 8 . . . 43

M3 0 0 1 1 3 2 5 . . . 21 . . . 87

B4 0 0 0 0 0 0 0 . . . 1 . . . 12

M4 0 0 0 0 0 0 1 . . . 9 . . . 55

B5 0 0 0 0 0 0 0 . . . 0 . . . 1
M5 0 0 0 0 0 0 0 . . . 1 . . . 13
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Equations (B) in Section 1 are labeled by pairs of positive integers n; k, where n is
the dimension and 2 � k � n. Computer experiments show a remarkable property of our
equations: for given n and k, the highly overdetermined subsystem of linear equations
(B) or (M) (and assuming implicitly (S), the symmetry property) has a very large space of
solutions, usually much larger than the whole system for given n, which is the conjunc-
tion of subsystems for k D 2; : : : ; n (or just the subsystem for k D 2, see Lemma 10 in
Section 4). We have no explanation for this striking fact. There are no obvious actions of
Hecke operators on the solution spaces n; k individually, for k > 2, and it is very surpris-
ing that the highly overdetermined systems admit any nontrivial solution at all.

� Q-ranks of partial systems Bn;k and Mn;k for k � 3, and for some primes and com-
posite numbers N :

N 2 3 5 7 11 13 17 19 23 9 12 27 36

B3;3 1 2 4 6 12 15 22 27 35 11 36 87 468

M3;3 0 1 3 3 7 10 15 18 24 9 40 78 480

B4;3 0 0 0 0 0 0 0 0 0 0 1 5 63

M4;3 0 0 0 0 1 2 5 7 12 1 5 24 121

B4;4 0 3 6 9 17 20 29 35 45 42 101 620 2515

M4;4 0 3 2 3 7 8 13 17 23 45 123 649 2716

B5;3 0 0 0 0 0 0 0 0 0 0 0 0 1
M5;3 0 0 0 0 0 0 0 0 0 0 0 1 7

B5;4 0 0 0 0 0 0 0 0 0 3 4 55 267

M5;4 0 0 0 0 1 2 5 7 12 5 12 122 ?

B5;5 1 3 9 12 22 26 37 44 56 30 161 572 ?

M5;5 0 1 3 3 7 8 13 17 23 17 212 ? ?

Part II

9. Algebraic versions of automorphic forms

A generalization of constructions in Section 7 takes place in the following context. Let G
be a connected reductive group over Q. There is a notion of admissible Harish-Chandra
modules E for G.R/: these are C-vector spaces of countable dimension, endowed with an
action of the maximal compact subgroup K � G.R/ and a compatible action of the com-
plexified Lie algebra gC D Lie.G/˝C. The action of K decomposes E into a countable
sum of finite-dimensional representations of K, each appearing with finite multiplicity.
We assume that the center z � U.g/ acts by scalars, called the central character of E .
The group G.R/ acts on the Schwartz completion of �.E/. Let �.E/0 be the continuous
dual space, which is a subspace of the algebraic dual space E_. The congruence sub-
groups of G.Q/ have finite-dimensional invariants in �.E/0. One can view the theory of
automorphic forms as the study of these finite-dimensional spaces of invariants, together
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with the action of a Hecke algebra. Note that in the last step we consider �.E/0 only as a
G.Q/-module, and not as a G.R/-module.

Almost all automorphic forms are unrelated to motives or Galois representations; the
part relevant for number theory (called algebraic automorphic forms) is specified by a
certain integrality constraint on the central character.

Returning to the considerations above, we see that we can imitate the theory of auto-
morphic forms, with representations of G.Q/ in �.E/0, by taking a different class of
representations of G.Q/, defined over Q. Assume that G D GLn, over Q. Let

Fn D hXƒi˝Q D FL;Z ˝Q for L D Zn; (9.1)

be the Q-vector space generated by characteristic functions Xƒ of convex finitely gen-
erated rational polyhedral cones ƒ � Rn, modulo functions with support of dimension
� n � 1. Note that

Fn � L1.Rn/;

the space of bounded measurable functions. Clearly, G.Q/ D GLn.Q/ acts on Fn. Let
�D �� W GLn.Q/! Aut.V�/ be a finite-dimensional irreducible representation as above.
Let � � GLn.Q/ be an arithmetic subgroup. The spaces of invariants, respectively coin-
variants,

H 0.�;F _n ˝ V_� / D .F
_
n ˝ V_� /

� ; H0.�;Fn ˝ V�/ D .Fn ˝ V�/� ; (9.2)

are finite-dimensional spaces dual to each other, since the module of characteristic func-
tions is finitely generated over the group ring of the arithmetic subgroup � .

For example, for n � 2, if � is the trivial representation, and � � GLn.Z/ D Aut.L/
is the stabilizer of the vector

� D .1; 0; 0; : : :/ 2 L˝ Z=NZ;

then the group of coinvariants is (up to torsion) our group Mn.Z=NZ/. Similarly, by tak-
ing the stabilizer of the coordinate co-vector modulo N , we obtain the co-vector version
M�n.Z=NZ/.

More generally, for any finite abelian groupG with character group A such thatG can
be generated by at least n elements let us choose an element

� 2 L˝ A; L D Zn;

such that the induced homomorphism L_!A is surjective. We define �.G;n/�GLn.Z/
as the stabilizer of �. Note that the conjugacy class of the stabilizer does not depend on
the choice of �. Then, for n � 2 such that G is generated by at most n elements, we have

Mn.G/˝Q D H0.�.G; n/;Fn/: (9.3)

A key observation is that Fn is a GLn.Q/-module which is finitely generated as a
GLn.Z/-module; moreover,

ResGLn.Q/
GLn.Z/

.Fn/ 2 Perf.QŒGLn.Z/�-mod/; (9.4)
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i.e., Fn, considered as a GLn.Z/-module, admits a finite-length resolution by finitely
generated projective modules over the group ring of GLn.Z/ (see Proposition 21).

Question 20. Are there other interesting GLn.Q/-modules which are finitely generated
as GLn.Z/-modules, or more strongly, belong to

Perf.QŒGLn.Z/�-mod/‹

An even more general question would be to find a bounded from above complex of
representations of G.Q/which, after restriction to G.Z/, is quasi-isomorphic to a complex
of finitely generated projective modules over the group ring.

Both Q-vector spaces in (9.2) carry actions of Hecke operators, which have algebraic
eigenvalues in these spaces. By (9.4),

dim.Hi .�;Fn ˝ V�// <1 for all i � 0;

and the spaces, for i � 1, also carry actions of Hecke operators with algebraic eigenvalues.
We will see below that our representation Fn falls into a well-studied subclass

of cohomological automorphic forms, i.e., those realized in cohomology of arithmetic
groups with coefficients in finite-dimensional representations �.

Recall the definition of Steinberg modules: Let V=Q be a Q-vector space of dimen-
sion n � 0, and Tn the simplicial complex of flags of Q-vector subspaces of V , i.e., the
geometric realization of the poset of nontrivial subspaces in V . Put

St.V / WD

8̂̂<̂
:̂
Hn�2.Tn;Z/; n � 3;

Z-combinations of lines in V with total weight 0; n D 2;

Z; n D 0; 1:

This is a representation of Aut.V /, which we denote by Stn for V DQn. One of the roles
of the Steinberg module is a dualizing module, in the sense that

Hi .SLn.Z/;Stn ˝M/ D Hn.n�1/=2�i .SLn.Z/;M/

for any representation M of SLn.Z/ with coefficients in Q.
Let F .V / D Fn, as in (9.1), where the identification depends on the choice of a basis

of V ; different choices are related by the action of Gn.Q/ on Fn. It has a filtration by
submodules

0 � F �0.V / � F �1.V / � � � � � F �n.V / D F .V /;

where F �i .V / are generated by functions pulled back from quotient spaces of dimen-
sion i . In particular,

F �0.V / D Z D ¹constant Z-valued functions on V º:

The following fact is presumably well-known:
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Proposition 21.

gri .F .V // D
M

V�V 0; dim.V 0/Di

St.V 0/˝ or.V 0/;

where or.V 0/ is the 1-dimensional Z-module of orientations of V 0, i.e., GL.V 0/ acts via
the sign of the determinant.

Proof. Let us first prove that

grn.F .V // D F .V /=F �n�1.V / is isomorphic to St.V /˝ or.V /:

We apply the Fourier transform to elements of F .V / viewed as distributions with moder-
ate growth on V ˝R ' Rn.

For example, the Fourier transform of the characteristic function of the standard
coordinate octant .R�0/n is equal to the distribution

nY
iD1

�p
�1 v.p..1=xi /C �ı.xi /

� nY
iD1

jdxi j

with values in volume forms, where v:p:.1=x/ is the unique odd distribution of homogen-
eity degree �1 on R1 equal to 1=x on R n 0.

The image of F �n�1.V / is characterized by the property that the support of the
distribution is contained in a finite union of hyperplanes. Therefore, the quotient group
F .V /=F �n�1.V / is identified with the abelian group generated by volume elements on
the dual space .V ˝R/_, of the form

.
p
�1/njdx1 ^ � � � ^ dxnj=.x1 � � � xn/;

where x1; : : : ; xn are coordinates in .V ˝R/_ in a rational basis. Choosing an orientation
of V (or equivalently of V _) and dividing by .

p
�1/n, we identify the latter space with

the top-degree meromorphic differential forms on the vector space V _ considered as an
algebraic variety AnQ over Q spanned by forms of type ^niD1.dxi=xi / for coordinates in
a rational basis. This is an alternative description of the Steinberg module. The case of
deeper terms of the dimension filtration is similar.

This implies that the computation of cohomology with coefficients in F .V /, tensored
with finite-dimensional modules, and in particular of coinvariants, would reduce to the
computation of cohomology for St-modules and their pullbacks from parabolic sub-
groups. There is extensive literature on the cohomology of St-modules (see, e.g., [1] and
the references therein), but these computations do not capture the potentially interesting
extension data in F .V /.

To summarize, we have a surjective homomorphism

Fn� Stn ˝ orn; where orn W GLn.Q/! Q�;  7! sgn.det.//:

It gives rise to a surjective homomorphism

H0.�.G; n/;Fn/� H0.�.G; n/;Stn ˝ orn/:
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Proposition 22. There exists a commutative diagram

H0.�.G; n/;Fn/

'

��

// // H0.�.G; n/;Stn ˝ orn/

'

��
Mn.G/˝Q

�� // //M�n .G/˝Q

where the horizontal arrows are the natural surjections, the left vertical arrow is the
isomorphism (9.3) and the right vertical arrow is an isomorphism as well.

Proof. The proof of the commutativity is straightforward; we explain only the right ver-
tical isomorphism. Recall that the Steinberg representation Stn restricted to GLn.Z/ is
generated by the set of Z-bases ¹.e1; : : : ; en/º modulo relations

� .e�.1/; : : : ; e�.n// D .�1/
n.e1; : : : ; en/, � 2 Sn,

� .e1; e2; e3; : : : ; en/ D .e1 C e2; e2; e3; : : : ; en/C .e1; e1 C e2; : : : ; en/,

� .e1; : : : ; en/ D .�e1; e2; : : : ; en/

(see, e.g., [4, Theorem B] and the references therein). Therefore, Stn ˝ orn restricted
to GLn.Z/ is again generated by the set of Z-bases ¹.e1; : : : ; en/º; but subject to new
relations

� .e�.1/; : : : ; e�.n// D .e1; : : : ; en/, � 2 Sn,

� .e1; e2; e3; : : : ; en/ D .e1 C e2; e2; e3; : : : ; en/C .e1; e1 C e2; : : : ; en/,

� .e1; : : : ; en/ D �.�e1; e2; : : : ; en/.

We see that the first relation is the symmetry (S), and the last one the anti-symmetry
relation (5.1); the second relation translates to relation (M) for k D 2.

Put
Hn WD GLn.R/=R�>0 � On.R/I

for n � 2, and G generated by at most n elements, we have

M�n .G/˝Q D H0.�.G; n/;Stn ˝ orn/ D HBM
n�1.�.G; n/nHn; orn/

D Hn.n�1/=2.�.G; n/nHn; or˝nn / D Hn.n�1/=2.�.G; n/; or˝nn /:

Indeed, the generator .e1; : : : ; en/ of Stn, where e1; : : : ; en is the standard basis of Zn,
maps to the homology class of the Borel–Moore chain

.R�>0/
n�1
' Diag>0;n.R/=R

�
>0 � Hn:

The third isomorphism is Poincaré duality.
Let � � GLn.Z/ be an arithmetic group. The cuspidal part of cohomology, with coef-

ficients in a finite-dimensional representation � of GLn.Q/, is

H�cusp.�; �/ WD Image.H�c .�nHn; �/! H�.�nHn; �//:
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Notice that orn restricted to GLn.Z/ coincides with the algebraic representation detn W
 7! det./.

It is known that H i
cusp.�; �/ ¤ 0 only for

n.nC 1/=2 � 1

2
�
Œ.n � 1/=2�

2
� i �

n.nC 1/=2 � 1

2
C
Œ.n � 1/=2�

2
:

The upper bound coincides with n.n � 1/=2 for n D 1; 2; 3 and is strictly smaller for
n � 4. Our experiments (see Section 8) suggest that

M�n;prim.G/ D H
n.n�1/=2
cusp .�.G; n/; or˝nn /;

hence vanishes for n � 4.
In the following section, we will see that, for nD 2, the main actors are modular forms

of weight 2, and sums of two Tate motives twisted by characters.
Other variants of the definition of F are possible:

� using Z or finite fields as coefficients, instead of Q-coefficients, one can study torsion
effects;

� one can omit the condition of factoring by characteristic functions with support in
dimension � n � 1;

� when the representation � is on the space of degree-d polynomials, one can consider
polynomial splines, with respect to some complete rational fan † on Rn, i.e., functions
on Rn which are piecewise polynomial on the cones of †, with Q-coefficients, and
with continuous derivatives up to some fixed d 0 < d .

The last example is especially interesting as such representations are realized as sub-
modules of extensions of Steinberg modules, and coinvariants with values in such mod-
ules could, potentially, capture higher homology groups of Steinberg modules, thus mak-
ing them computationally much more accessible.

We finish this section with a challenge concerning the possibility, in the framework of
Question 20, to go beyond the realm of cohomological (but still algebraic) automorphic
forms.

Question 23. Can one find a representation of SL2.Q/ whose restriction to SL2.Z/ is
finitely generated, and whose Hecke spectrum captures modular forms of weight 1 and
Maass forms with Laplace eigenvalue 1=4?

Morally, such modules should be realized in a class of odd/even distributions on R2

of homogeneity degree �1.

10. Lattice-theoretic approach to multiplication and co-multiplication

In this section, we reinterpret the multiplication and co-multiplication on M�n .G/, defined
in Section 5, in terms of lattices.
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For any n � 1 and any nontrivial finite abelian group G we define

En.G/ WD Q¹epi Zn�Gº
I

it is a finite-dimensional permutation module for GLn.Z/. Define the stack (with finite
stabilizers)

Xn WD GLn.Z/nGLn.R/=On.R/:

This stack parametrizes rank n Arakelov bundles on 3Spec.Z/, i.e., pairs .L; h/, where L
is a lattice of rank n and h is a positive-definite quadratic form on L˝R. Let Ln;G be a
Q-local system on Xn associated with the representation En.G/˝ orn. Then we have

M�n .G/˝Q D HBM
n .Xn;Ln;G/: (10.1)

The multiplication r�, defined in Section 5, admits the following reformulation in
this language. Consider flags G� of subgroups

0 D G�0 ¨ G�1 ¨ � � � ¨ G�r D G; r � 1;

and sequences of positive integers n1; : : : ; nr such that n1 C � � � C nr D n. We have a
homomorphism

rO
iD1

HBM
ni
.Xni ;Lni ;gri .G�//! HBM

n .Xn;Ln;G/; (10.2)

defined as follows. Consider the graph

Yrn1;:::;nr � .Xn1 � � � � �Xnr / �Xn

of the closed embedding (hence proper map) Xn1 � � � � �Xnr ! Xn; given by

.L1; h1/; : : : ; .Lr ; hr / 7! .L D L1 ˚ � � � ˚ Lr ; h D h1 � � � � � hr /:

We have a diagram

Yrn1;:::;n
�n1;:::;nr

wwppp
ppp

ppp
pp �n

""F
FF

FF
FF

F

Xn1 � � � � �Xnr Xn

Here, �n1;:::;nr is an isomorphism. The morphism of local systems

��n1;:::;nr .Ln1;gr1.G�/ � � � � �Lnr ;grr .G�//! ��nLn;G

is given, at any point, by

� a canonical identification of orientation bundles

or.L1/˝ � � � ˝ or.Lr /
�

! or.L/;
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� a morphism of fibers of local systems associated to the permutation modules

Q¹epi L_
1
�A1º ˝ � � � ˝Q¹epi L_r�Ar º ! Q¹epi L_�Aº; (10.3)

defined as follows. Consider � 2L˝A WDHom.L_;A/ such that the restriction of � to
L_i � L_ takes values in characters of G vanishing on G�i�1, for all i ; such characters
induce characters of gri .G�/, and homomorphisms

�i W L_i ! Ai WD Hom.gri .G�/;C
�/I

we insist that �i are surjective for all i (this implies that � is surjective as well). Such a
� defines a morphism of permutation modules of rank 1, given by an elementary matrix
with indices

.�1; : : : ; �r /; �:

Taking the sum over all such elementary matrices defines the desired homomorphism
(10.3).

The co-multiplication ��, defined in Section 5, also admits a geometric reformula-
tion. We have a homomorphism

HBM
n .Xn;Ln;G/!

rO
iD1

HBM
ni
.Xni ;Lni ;gri .G�// (10.4)

defined similarly to (10.2), but instead of the graph Yrn1;:::nr of a map, we consider the
correspondence

Y�
n1;:::;nr

� Xn � .Xn1 � � � � �Xnr /;

which is étale over Xn and proper over Xn1 � � � � �Xnr , and which can be viewed as the
graph of a multi-valued map. In detail, an element of Yn1;:::;nr is given by these data:

� .L; h/, a lattice of rank n, with a metric, i.e., a positive quadratic form h on L˝ R as
above,

� a flag L� of full sublattices

0 D L�0 ¨ L�1 ¨ � � � ¨ L�r D L;

� a choice of isomorphisms Li ' gri .L�/ such that the induced metrics on Lni ˝ R
coincide with hi .

We have a diagram

Y�
n1;:::;n

�n

||xx
xx
xx
xx �n1;:::;nr

''NN
NNN

NNN
NNN

Xn Xn1 � � � � �Xnr

The morphism of local systems on Yn,

��nLn;G ! ��n1;:::;nr .Ln1;gr1.G�/ ˚ � � � ˚Lnr ;grr .G�//;

is given, at any point, by
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� a natural isomorphism of orientation bundles

or.L/ ' or.L1/˝ � � � ˝ or.Lr /;

� a morphism of fibers of local systems associated to the permutation modules

Q¹epi L_�Aº
! Q¹epi L_

1
�A1º ˝ � � � ˝Q¹epi L_r�Ar º (10.5)

defined as follows. Consider � 2 L˝ A WD Hom.L_; A/ such that it induces a com-
mutative diagram

L_ D L?�0

����

© L?�1

����

© � � � © L?�r

����
A D G?�0 © G?�1 © � � � © G?�r

i.e.,
G?�i D �.L

?
�i /; i D 0; : : : ; r � 1:

Such a character � is surjective (case i D 0) and induces surjective homomorphisms

�i W L_i ! Ai D Hom.Gi ;C�/; i D 1; : : : ; r;

where Li D L�i=L�i�1 andGi D G�i=G�i�1. Again, � defines an elementary matrix
with indices �; .�1; : : : ; �r /; taking the sum over all such � we obtain the desired
homomorphism.

Proposition 24. Using the identifications

M�n .G/˝Q D HBM
n .Xn;Ln;G/

and formulas (10.2) and (10.4) we obtain homomorphisms

M�n1.G1/˝ � � � ˝M�nr .Gr /˝Q�M�n .G/˝Q

which are the same as those induced from � and r in Section 5.

Proof. The case of the product follows immediately from the definition: a basis e1; : : : ; en
of L gives a closed Borel–Moore chain ' Rn>0, consisting of diagonal forms h in this
basis.

To verify the co-product we need the following: let L'Zn be the standard coordinate
lattice, up to the action of Sn Ë .Z=2Z/n interchanging the coordinates and acting by sign
on each coordinate. We have a canonical Borel–Moore closed chain

Cn � ChainsBM
n .Xn;Z/; @.Cn/ D 0;

given by the image of positive diagonal matrices. Given a flag 0D L�0 ¨ � � � ¨ L�r D L
and using the correspondence Y�

n1;:::;nr
we obtain a closed Borel–Moore chain

CL� � ChainsBM
n .Xn1 � � � � �Xnr ;Z/;
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and to any point h in Cn we associate a collection

.h1; : : : ; hr / 2 Xn1 � � � � �Xnr :

The main observation is that if the flag is not compatible with the chosen coordinate
decomposition, then the corresponding chain is a boundary. From this it follows that only
the coordinate flags contribute to the formula.

Following the reasoning in Section 5, specifically (5.17), we define

HBM
n;prim.Xn;Ln;G/ � H

BM
n .Xn;Ln;G/

as the common kernel of all nontrivial co-multiplication homomorphisms (r � 2). Evid-
ently, we have

M�n;prim.G/˝Q D HBM
n;prim.Xn;Ln;G/

under the above identifications.
We recall the topological definition of cuspidal cohomology:

Hn;cusp.Xn;Ln;G/ WD Image.Hn.Xn;Ln;G/! HBM
n .Xn;Ln;G//:

Conjecture 25. For every nontrivial finite abelian group G and every n � 1, we have

HBM
n;prim.Xn;Ln;G/ D Hn;cusp.Xn;Ln;G/ � H

BM
n .Xn;Ln;G/:

This conjecture is essentially our guess, stated implicitly in Section 5. Assuming this
conjecture, we would obtain the following reformulation:

Conjecture 26. For every nontrivial finite abelian group G and n � 1, the natural homo-
morphism

nM
rD1

M
n1C���CnrDn
G� of length r

Hn1;cusp.Xn1 ;Ln1;gr1.G�//˝ � � � ˝Hnr ;cusp.Xnr ;Lnr ;grr .G�//

! HBM
n .Xn;Ln;G/

is an isomorphism.

Representation theory gives a canonical splitting of cohomology of arithmetic groups
into the sum of the cuspidal and the remaining (Eisenstein) parts, after tensoring by C.
Our considerations, for GLn.Z/, suggest that we have a splitting over Q. Namely, define

HBM
n;coprim.Xn;Ln;G/

as the quotient by the sum of the images of all nontrivial product maps (10.2). It is tempt-
ing to make a companion conjecture:
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Conjecture 27. For every nontrivial finite abelian groupG and n� 1, the homomorphism

HBM
n .Xn;Ln;G/

!

nM
rD1

M
n1C���CnrDn
G� of length r

Hn1;coprim.Xn1 ;Ln1;gr1.G�//˝ � � � ˝Hnr ;coprim.Xnr ;Lnr ;grr .G�//

is an isomorphism.

Conjecture 28. The composition

HBM
n;prim.Xn;Ln;G/ ,! HBM

n .Xn;Ln;G/� HBM
n;coprim.Xn;Ln;G/

is an isomorphism.

The considerations above fit into a general framework. For n � 1, let Rn be the set
of finite-dimensional irreducible representations of GLn.Z/ which appear as direct sum-
mands of tensor products of

� representations of
GLn. OZ/ D

Y
p

GLn.Zp/;

� irreducible algebraic representations �� W GLn.Q/! V� with highest weight �.

Obviously, R1 consists of two elements, and Rn are countable infinite sets for n � 2.
Given

�1 2 Rn1 ; �2 2 Rn2 ; � 2 Rn; for n D n1 C n2;

we can define the multiplicity space

mult��1;�2 2 VectC;

which is a finite-dimensional complex vector space, by

HomGLn1 .Z/�GLn1 .Z/
.�n1 � �n2 ; �jGLn1 .Z/�GLn2 .Z/

/:

The correspondence Yrn1;n2 gives rise to a natural homomorphism

mult��1;�2 ˝H
BM
� .Xn; �n1/˝H

BM
� .Xn2 ; �n2/! HBM

� .Xn; �/:

The collection of these can be organized in the following way. Let C be a semisimple (in
the countable sense) C-linear tensor category, with countable sums and tensor products
commuting with sums, and with simple objects ��, corresponding to � 2

`
n�1 Rn; the

tensor product is given by

��1 ˝ ��2 D
M
�

mult��1;�2 ˝C ��:
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The expression on the right is infinite. Put

A� WD
M
n�1

M
�2Rn

HBM
� .Xn; �˝ ��/ 2 Ob.C/:

The object A� carries the structure of a supercommutative associated Z-graded nonunital
algebra in C . Using chains instead of homology groups gives rise to a commutative dif-
ferential Z-graded nonunital algebra, which by Koszul duality can be identified with a
differential graded Lie algebra (or L1-algebra). The next question is: what is this algebra,
or its Koszul dual dg Lie algebra?

The category C itself seems to have a description as a category of representations of
a certain type of an infinite-dimensional semigroup.

In the model example, consider Rfin
n , consisting of irreducible representations of the

symmetric group Sn. Then the corresponding analog Cfin of the category C is a subcat-
egory of Deligne’s category of representations of glt , where t is a parameter (fractional
dimension).

In the second model example, more relevant to our considerations, let Ralg
n be the

set of irreducible algebraic representations �� W GLn.Q/! V� with highest weights �.
Defining multiplicity spaces mult��1;�2 in a similar fashion, we obtain a category C alg of
highest weight representations of the (well-known) central extension

1! C� ! G! GL1.C/ı ! 1;

where GL1.C/ı is the connected component of the identity of the group

Autcont;C-mod.C
1/; where C1 WD C..t//:

The group G acts on a space of countable dimension

V WD
M
i2Z

V1
2 Ci .C1/:

An analog of Weyl–Schur duality says that, for all n� 1, GLn.C/ acts on V˝n, commuting
with the G-action, and identifying highest weight representations of G of level n (i.e.,
those where the central extension acts with character z 7! zn) with algebraic irreducible
representations of GLn.C/.

From our perspective, it would be important to explicitly identify the category C=p ,
whose simple objects correspond to irreducible finite-dimensional representations of the
groups GLn.Fp/, n � 1, and the category Cp , whose simple objects correspond to irre-
ducible finite-dimensional continuous representations of GLn.Zp/, n � 1.

We can develop a similar framework for co-multiplication. Given

�1 2 Rn1 ; �2 2 Rn2 ; � 2 Rn; for n D n1 C n2;

we can define the co-multiplicity space comult�1;�2� 2 VectC , a finite-dimensional com-
plex vector space, as

HomPn1;n2 .Z/.�jPn1;n2 .Z/ ; �n1 � �n2/;
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where Pn1;n2 � GLn1 is the stabilizer of the flag Zn1 � Zn. The correspondence Y�
n1;n2

gives rise to a natural homomorphism

comult��1;�2 ˝H
BM
� .Xn; �/! HBM

� .Xn; �n1/˝H
BM
� .Xn2 ; �n2/:

We obtain a co-associative co-algebra, without a unit, in a tensor category which is no
longer symmetric, a priori.

Note that there might be nontrivial extensions between two representations from Rn,
which suggests that the definition of the category C and algebra A� could be enhanced
by considering extension data. Also, the category C is not rigid, and hence should be
interpreted not as a category of representations of a group but rather of a semigroup.

Finally, all considerations above can be carried over to the number field case, but in
this case, instead of lattices we should consider all nontrivial finitely generated torsion-
free modules.

11. Case n D 2: modular symbols

We recall the definition of modular symbols of weight 2 for

�1.N / WD

²
 2 SL2.Z/ W  D

�
1 �

0 1

�
mod N

³
; N 2 Z�2:

Let M2.�1.N // be the Q-vector space generated by pairs .c; d/ with

c; d 2 Z=N; gcd.c; d;N / D 1;

and subject to relations

(1) .c; d/ D �.d;�c/ (and hence D .�c;�d/ D �.�d; c//,

(2) .c; d/C .d;�c � d/C .�c � d; c/ D 0.

It is known that M2.�1.N // is naturally identified with the Borel–Moore homology group
HBM
1 .X1.N /;Q/ of the complex modular curve

X1.N / WD �1.N /nH ;

where H is the upper half-plane. The symbol .c; d/ corresponds to the image in X1.N /
of the geodesic path from a=c to b=d, where�

a b
c d

�
2 �1.N /

is any element with c; d D c;d mod N.
Using (1) we can rewrite (2) as

(20) .d; c/ D .d; c � d/C .d � c; c/.
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Indeed, substituting c 7! �c into (2), we obtain

0
.2/
D .�c; d/C .d; c � d/C .c � d;�c/

.1/
D �.d; c/C .d; c � d/C .c � d;�c/

.1/
D �.d; c/C .d; c � d/C .d � c; c/;

There is an involution on M2.�1.N //,

� W .c; d/ 7! .�c; d/
.1/
D �.d; c/:

Written in the form .c; d/ 7! �.d; c/ it obviously preserves relations (20) and cyclic anti-
symmetry .1/. It corresponds to the automorphism of the first homology group coming
from the anti-holomorphic involution onX1.N / associated with the map � 7! �N� , � 2H ,
on the universal cover. Denote by M�2 .�1.N // the .�/-eigenspace for the involution �.

The dimensions are given by

dim.M2.�1.N /// D 2g C C.N/ � 1; dim.M�2 .�1.N /// D g C
C.N/ � C2.N /

2
;

where

� g D g.N / is the genus of X1.N /, which is the same as the dimension of the space of
cusp forms of weight 2 for �1.N / (see the table in Section 5),

� C.N/ is the number of cusps (elements of P1.Q/=�1.N /), and

� C2.N / is the number of cusps fixed by the anti-holomorphic involution described
above.

For N D 1; 2; 3; 4, C.N/ D C2.N / D 1; 2; 2; 3, respectively; and for N � 5,

C.N/ D
1

2

X
d jN

�.d/�.N=d/; C2.N / D

´
�.N /C �.N=2/ if N is even,

�.N / if N is odd.

Now we will discuss the connection to our groups of symbols M2.Z=NZ/ and
M�2 .Z=NZ/.

Proposition 29. M�2 .Z=NZ/˝Q is isomorphic to M�2 .�1.N // .

Proof. Indeed, the subspace M�2 .�1.N // (or rather its quotient space) can be described
in terms of generators and relations as

(R1) .a1; a2/
� D .a2; a1/

�,

(R2) .a1; a2/
� D .a1; a2 � a1/

� C .a1 � a2; a2/
�,

(R3) .a1; a2/
� D �.a2;�a1/

�.

Here (R3) is the same as (1), (R2) is as (20), and (R1) is �-invariance. Therefore, the natural
map

M�2 .Z=NZ/˝Q
�
�!M�2 .�1.N //; ha1; a2i

�
7! .a1; a2/

�;

is an isomorphism, as relations (R1)–(R3) are exactly the defining relations for
M�2 .Z=NZ/.
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Note that
.a; 0/� D .0; a/� D 0 2M�2 .�1.N //;

by (R1) and (R3). Incidentally, relation (R2) can be replaced by the co-vector version

.R2�/ .a1; a2/
� D .a1 C a2; a2/

� C .a1; a1 C a2/
�.

Indeed, substitute a1 7! a1; a2 7! a1 C a2 into (R2) and use dihedral symmetry by (R1)
and (R3).

As a corollary of Theorems 12 and 14, together with the guesses

dim.M2;prim.Z=NZ/˝Q/ D dim.M�2;prim.Z=NZ/˝Q/ D g.N /;

we would obtain a formula which follows from Proposition 29:

dim.M�2 .Z=NZ/˝Q/ D g.N /C
1

4

X
d jN;3�d�N=3

�.d/�.N=d/

forN�1
D dim.M�2 .�1.N /// D g.N /C

C.N/ � C2.N /

2

and a hypothetical formula

dim.M2.Z=NZ/˝Q/
‹
D g.N /C

1

2

X
d jN;d�3

�.d/�.N=d/

forN�5
D g.N /C C.N/ � C2.N /=2:

Presumably, one can deduce the above formula using the relation between the Steinberg
module and module F2 (see Proposition 21). The formulas for dimensions simplify when
N D p � 5 is a prime:

g.p/ D
.p � 5/.p � 7/

24
; C.p/ D C2.p/ D p � 1;

dim.M�2 .Z=pZ/˝Q/ D dim.M�2 .�1.p/// D g.p/;

dim.M2.Z=pZ/˝Q/
‹
D
p2 C 23

24
D g.p/C

p � 1

2
: (11.1)

The rest of the section will be devoted to a direct proof of (11.1).
We have two maps

M2.Z=pZ/�M�2 .Z=pZ/; ha; bi 7! ha; bi�; (11.2)

M2.Z=pZ/
�

!M1.1/˝M�1 .Z=pZ/ DM�1 .Z=pZ/; (11.3)

where (11.3) is the (only possible) co-product map given by

ha; bi 7! .1 � ıa;0/hai
�
C .1 � ıb;0/hbi

�:
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The map (11.2) is surjective by definition, and (11.3) is surjective up to 2-torsion: its right
inverse after tensoring with Q is given by

hai� 7! 1
2
.ha; 0i � h�a; 0i/: (11.4)

The validity of (11.1) follows from the following result:

Proposition 30. The map given by the sum of (11.2) and (11.3),

M2.Z=pZ/!M�2 .Z=pZ/˚M�1 .Z=pZ/;

is an isomorphism up to torsion.

Proof. We will check (after tensoring with Q) that the kernel of (11.2) is generated
by the image of (11.4). By definition (5.1), this kernel is spanned by the elements
ha; bi C ha;�bi 2M2.Z=pZ/.

Lemma 31. For all a; b 2 Z=pZ with a ¤ 0, we have

ha; bi C ha;�bi D 2 � ha; 0i 2M2.Z=pZ/:

Proof. From (M) we have

ha; bi D ha � b; bi C ha; b � ai; ha � b; ai D h�b; ai C ha � b; bi:

Taking the difference between the two equations, we obtain

ha; bi C h�b; ai D ha; b � ai C ha; a � bi;

which we can write, by (S), as

ha; bi C ha;�bi D ha; b � ai C ha;�b C ai:

Iterating this, we get

ha; bi C ha;�bi D ha; b �mai C ha;�b Cmai; m D 1; : : : ; p:

For a ¤ 0 .mod p/, there is an m solving the equation ma D b .mod p/, which implies
the claimed identity

ha; bi C ha;�bi D 2 � ha; 0i: (11.5)

Lemma 32. For all a 2 Z=pZ; a ¤ 0, we have

ha; 0i C h�a; 0i D 0 2M2.Z=pZ/˝Q:

Proof. Replacing a by �a in Lemma 31 and adding the equations, we obtain

.ha; bi C h�a; bi/C .ha;�bi C h�a;�bi/ D 2 � .ha; 0i C h�a; 0i/:
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Using again Lemma 31, with a replaced by b, respectively �b, we find

2 � .hb; 0i C h�b; 0i/ D 2 � .ha; 0i C h�a; 0i/ (11.6)

for all a; b ¤ 0. To show the vanishing of

ı WD h1; 0i C h�1; 0i 2M2.Z=pZ/˝Q

consider the sumX
a;b¤0

.ha; bi C hb;�ai/ D 2.p � 1/ �
X
b¤0

hb; 0i D .p � 1/2ı;

where we substituted (11.5) and (11.6). Apply the blowup relation (M) to each term and
relate to the original sum:

.M/
D

X
a;b¤0

ha � b; bi C
X
a;b¤0

ha; b � ai C
X
a;b¤0

hb C a;�ai C
X
a;b¤0

hb;�a � bi

.S/
D 4

X
b¤0;a¤�b

ha; bi D 4
X
a;b¤0

ha; bi C 4
X
a¤0

ha; 0i � 4
X
a¤0

ha;�ai

D 2.p � 1/2ı C 2.p � 1/ı D 2p.p � 1/ı:

After the blowup relation, we changed variables in the summation using the symmetry
relation, then related to the original range of the summation with discrepancy terms, and
used the relations X

a¤0

.ha; 0i C h�a; 0i/ D .p � 1/ı

and
ha;�ai D 0 (H ha; 0i

.M/
D ha; 0i C ha;�ai:

Finally, we obtain
.p � 1/2ı D 2p.p � 1/ı;

which implies
.p2 � 1/ı D 0 2M2.Z=pZ/: (11.7)

It follows that for all a ¤ 0 we have the claimed identity

ha; 0i C h�a; 0i D 0 2M2.Z=pZ/˝Q:

Now we are ready to finish the proof of Proposition 30. By Lemma 31, the kernel of
(11.2) is spanned (up to torsion) by elements of the form ha;0i. It follows from Lemma 32
that these elements can be written as

ha; 0i D 1
2
.ha; 0i � h�a; 0i/ 2M2.Z=pZ/˝Q:

Therefore, we get exactly the image of the right inverse (11.4).

Remark 33. The factor p2 � 1 in (11.7) gives a partial explanation for the experiment-
ally observed jumping behavior of dim.M2.Z=pZ/ ˝ F`/ for primes ` j .p ˙ 1/ (see
Section 8).
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