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Abstract. We compute the subgroup of the monodromy group of a generalized Kummer variety
associated to equivalences of derived categories of abelian surfaces. The result was announced by
Markman and Mehrotra (2017). Mongardi (2016) showed that the subgroup constructed here is in
fact the whole monodromy group. As an application we prove the Hodge conjecture for the gen-
eric abelian fourfold of Weil type with complex multiplication by an arbitrary imaginary quadratic
number field K, but with trivial discriminant invariant in Q�=Nm.K�/. The latter result is inspired
by a recent observation of O’Grady that the third intermediate Jacobians of smooth projective vari-
eties of generalized Kummer deformation type form complete families of abelian fourfolds of Weil
type. Finally, we prove the surjectivity of the Abel–Jacobi map from the Chow group CH2.Y /0 of
codimension 2 algebraic cycles homologous to zero on every projective irreducible holomorphic
symplectic manifold Y of Kummer type onto the third intermediate Jacobian of Y , as predicted by
the generalized Hodge Conjecture.
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1. Introduction

1.1. Monodromy of generalized Kummers

Let X be a complex projective abelian surface, X .n/ its n-th symmetric product, and
X Œn� the Hilbert scheme of length n zero-dimensional subschemes of X . Let � W X Œn� !
X be the composition of the Hilbert–Chow morphism X Œn� ! X .n/ and the summation
morphism X .n/ ! X . The generalized Kummer variety KX .n � 1/ is the fiber of � over
0 2 X ; it is a smooth, projective, simply connected variety of dimension 2n� 2. It admits
a holomorphic symplectic form, unique up to a constant multiple [2]. The morphism � is
an isotrivial family, with every fiber isomorphic to KX .n � 1/. The variety KX .1/ is the
KummerK3 surface associated to X . Let sn 2 H even.X;Z/ be the Chern character of the
ideal sheaf of a length n subscheme of X . The moduli space M.sn/ of rank 1 torsion free
sheaves on X with Chern character sn is isomorphic to X Œn� � Pic0.X/.

Set
V WD H 1.X;Z/˚H 1.X;Z/�:

V has a natural symmetric unimodular bilinear pairing, given by

..a1; a2/; .b1; b2// D b2.a1/C a2.b1/; (1.1)

and H�.X;Z/ is the spin representation of the arithmetic group Spin.V / recalled below
in (4.6). The half-spin representations are SC WD H even.X;Z/ and S� WD H odd.X;Z/.
Each of the half-spin representations admits a symmetric integral and unimodular
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Spin.V /-invariant bilinear paring, recalled below in (4.15), and Spin.V /, Spin.SC/, and
Spin.S�/ all embed as the same subgroup of SO.V / � SO.SC/ � SO.S�/. The latter
identification of the three spin groups is a consequence of an integral version of trial-
ity for Spin.8/ (Theorem 4.6). Let z� act on H i .X; Z/ by .�1/i.i�1/=2 and on V by
z�.a1; a2/ D .�a1; a2/. Denote by G.SC/even the subgroup of GL.V ˚ SC ˚ S�/ gen-
erated by Spin.V / and z� . The group G.SC/even arrises naturally as one of the Clifford
groups (see (4.6)). We describe next a monodromy representation of G.SC/even on the
cohomology ring of the moduli space M.sn/.

Definition 1.1. Let Y be a smooth projective variety. An automorphism g of the cohomo-
logy ringH�.Y;Z/ is called a monodromy operator if there exists a family Y!B (which
may depend on g) of compact Kähler manifolds, having Y as a fiber over a point b0 2 B ,
and such that g belongs to the image of �1.B; b0/ under the monodromy representation.
The monodromy group Mon.Y / of Y is the subgroup of GL.H�.Y;Z// generated by all
the monodromy operators.

Let P be an object in the bounded derived category Db.X �X/ of coherent sheaves
on X � X , which is the Fourier–Mukai kernel of an auto-equivalence ˆP W D

b.X/!

Db.X/ of the derived category of the abelian surface X . Then ch.P /, considered as a
correspondence, induces an automorphism ofH�.X;Z/, which is the image of an element
g of Spin.V / in GL.H�.X;Z// via the spin representation, by results of Mukai and Orlov
(see Section 7). Let E be a universal sheaf overX �M.sn/. Let �ij be the projection from
X �M.sn/ �X �M.sn/ onto the product of the i -th and j -th factors. Set

g WD c2nC2
�
�24;�Œ�

�
12E
�
˝ ��34E ˝ �

�
13P �Œ1�

�
;

where the pull-back, push-forward, dual E�, and tensor product are all taken in the derived
category, and Œ1� is the shift. One can express the right hand side above in terms of the
cohomology class ch.P /, using the Grothendieck–Riemann–Roch theorem. We get the
class g in H 4nC4.M.sn/ �M.sn/;Z/, associated to every element g of Spin.V /, by
replacing ch.P / by g in the latter cohomological expression. Considering also the ana-
logue for compositions of equivalences of derived categories and dualization yields a
class g for every element g 2 G.SC/even (see (6.3)). Let G.SC/even

sn
be the subgroup

of G.SC/even stabilizing sn. Define Spin.V /sn similarly. Assume n � 3.

Theorem 1.2 (Theorem 8.6). (1) The correspondence g induces a graded ring auto-
morphism for every g 2 G.SC/even

sn
. The resulting map

mon W G.SC/even
sn
! AutŒH�.M.sn/;Z/�

is a group homomorphism and its image is contained in the monodromy group
Mon.M.sn//.

(2) For every g 2 Spin.V /sn there exists a topological complex line bundle Lg over
M.sn/ such that

.g ˝mong/.ch.E// D ch.E/��M ch.Lg/;

where �M W X �M.sn/!M.sn/ is the projection.
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Let �X be the group of points of order n on X . The translation action of �X on X
induces a translation action onX Œn�. The morphism � WX Œn�!X is invariant with respect
to the latter action and so �X acts on KX .n � 1/: This induces an embedding of �X in
Mon.KX .n � 1//. The action of �X on H i .KX .n � 1/;Z/ is trivial, for i D 2; 3, by
Lemma 10.1 (4).

Proposition 1.3 (Proposition 10.2). There exists a unique injective homomorphism

mon W G.SC/even
sn
! Mon.KX .n � 1//=�X (1.2)

such that the restriction homomorphismsH i .M.sn/;Z/!H i .KX .n� 1/;Z/, i D 2; 3,
are G.SC/even

sn
-equivariant with respect to the homomorphisms mon and mon.

Let Y be a hyperkähler variety deformation equivalent to the generalized Kummer
KX .m/ of an abelian surface, m � 2. We determine the image Mon2.Y / of the mono-
dromy group in AutŒH 2.Y;Z/�. The second cohomologyH 2.Y;Z/ admits the symmetric
bilinear Beauville–Bogomolov–Fujiki pairing [2]. It has signature .3;�4/. Given an ele-
ment u of H 2.Y;Z/ with .u; u/ equal to 2 or �2, let Ru W H 2.Y;Z/! H 2.Y;Z/ be the
reflection in u, Ru.w/ D w � 2

.w;u/
.u;u/

u, and set ru WD
.u;u/
�2

Ru. Then ru is the reflection
in u when .u; u/ D �2, and �ru is the reflection in u when .u; u/ D 2. Set

W WD hru W u 2 H
2.Y;Z/ and .u; u/ D ˙2i (1.3)

to be the subgroup of O.H 2.Y;Z// generated by the elements ru. Then W is a normal
subgroup of finite index in O.H 2.Y;Z//.

The lattice H 2.Y;Z/ is not unimodular. The residual group H 2.Y;Z/�=H 2.Y;Z/
is cyclic of order dim.Y / C 2. The image of W in the automorphism group of
H 2.Y; Z/�=H 2.Y; Z/ has order 2 and is generated by multiplication by �1, by [26,
Lemma 4.10]. We get a character

� W W ! ¹1;�1º � C�: (1.4)

The character group Hom.W ;C�/ is isomorphic to Z=2Z �Z=2Z and is generated by �
and the determinant character det (the proof is identical to that of [26, Cor. 7.9]). Note
that det.ru/ D .u; u/=2 and �.ru/ D �.u; u/=2. Consequently, their product det �� takes
ru to �1, for bothC2 and �2 vectors u. Let W det �� be the kernel of det ��.

Theorem 1.4. The image Mon2.Y / in O.H 2.Y;Z// of the monodromy group Mon.Y /
is equal to W det ��. Consequently, the homomorphism

mon W G.SC/even
sn
! Mon.KX .n � 1//=�X ;

given in .1.2/, is an isomorphism.

The inclusion W det �� �Mon2.Y / is proven in Section 10.1. The reverse inclusion was
proven by Mongardi [33], using general results about the action of the monodromy of an
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irreducible holomorphic symplectic manifold1 on classes of extremal curves, as well as an
additional monodromy constraint proven in [31, Cor. 4.8]. Proposition 1.3 and Theorem
1.4 yield the short exact sequence

1! �X ! Mon.KX .n � 1//! G.SC/even
sn
! 1;

the extension class of which is yet to be determined.
Theorem 1.4 implies that the image of Mon2.Y / in O.H 2.Y; Z//=.�1/ has

index 2�.n/, where n D dimYC2
2

and �.n/ is the Euler number of n (the number of dis-
tinct prime divisors of n) (see [27, Lemma 4.2]). Consequently, the Hodge-isometry class
of H 2.Y;Z/ does not determine the bimeromorphic class of Y , for Y with a generic
period. There are 2�.n/ distinct bimeromorphic classes of hyperkähler varieties, deform-
ation equivalent to the generalized Kummer, for each generic weight 2 Hodge-isometry
class, by Verbitsky’s Torelli Theorem for irreducible holomorphic symplectic manifolds
[28, Theorem 1.3]. In particular, the Kummers KX .n � 1/ and K yX .n � 1/, of a generic
complex torus X and its dual yX , are not bimeromorphic. Namikawa proved this counter-
example in the case of Kummer fourfold (where n D 3) [41].

1.2. A monodromy representation for more general moduli spaces

Let w 2 H even.X;Z/ be a primitive Hodge class. Denote by wi the graded summand in
H 2i .X;Z/. Set

.w;w/ WD

Z
X

.2w0w2 � w
2
1/:

Assume that w0 � 0 and .w; w/ � �6. Choose a w-generic ample line bundle H on X
(see Section 3 for the definition). Then the moduli space MH .w/ ofH -stable sheaves with
Chern character w is a projective, non-singular, connected, and holomorphic symplectic
variety of dimension 2� .w;w/, by results of Mukai and Yoshioka [56]. Yoshioka proved
that the Albanese variety of MH .w/ is isomorphic to X � Pic0.X/ and each fiber of the
Albanese map alb WMH .w/! X � Pic0.X/ is deformation equivalent to a generalized
Kummer variety [56]. The analogue of Theorem 1.2 for MH .w/ is proved in Corollary
9.4 below, where a group homomorphism

mon W G.SC/even
w ! Mon.MH .w//

is constructed. Proposition 1.3 is stated and proved in Proposition 10.2 for any fiber
Ka.w/ of the Albanese map alb W MH .w/ ! X � Pic0.X/, replacing �X by the sub-
group �w of Aut.Ka.w// acting trivially onH i .Ka.w/;Z/, for i D 2; 3. The constructed
homomorphism

mon W G.SC/even
w ! Mon.Ka.w//=�w

is an isomorphism, by Theorem 1.4.

1An irreducible holomorphic symplectic manifold Y is a simply connected compact Kähler
manifold such that H0.Y;�2

Y
/ is 1-dimensional spanned by a nowhere degenerate 2-form.
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1.3. The Hodge conjecture for a generic abelian fourfold of Weil type of discriminant 1

A 2n-dimensional abelian variety A is of Weil type if there exists an embedding � W K ,!

End.A/˝Z Q of an imaginary quadratic number fieldK WDQŒ
p
�d�, where d is a posit-

ive integer, such that the eigenspaces with eigenvalues
p
�d and �

p
�d for the action of

�.
p
�d/ on H 1;0.A/ are both n-dimensional. A polarized 2n-dimensional abelian vari-

ety of Weil type is a triple .A;K; h/; with .A;K/ as above and h 2 H 1;1.A;Z/ an ample
class, such that �.

p
�d/�h D dh. Any abelian variety of Weil type .A;K/ admits such

an ample class h [49, Lemma 5.2 (1)].
Polarized 2n-dimensional abelian varieties of Weil type come in n2-dimensional fam-

ilies [55], [49, Sec. 5.3]. The top exterior power
V2n
K H 1.A;Q/ of H 1.A;Q/ as a

K-vector space is naturally embedded as a subspace of Hn;n.A;Q/, which together with
hn spans a 3-dimensional subspace over Q. The generic abelian variety of Weil type A
has a cyclic Picard group but a 3-dimensional Hn;n.A;Q/ [55], [49, Th. 6.12]. If A is an
abelian variety of dimension 4, which is not isogenous to a product of abelian varieties,
and such that the cup product homomorphism Sym2H 1;1.A;Q/! H 2;2.A;Q/ is not
surjective, then A is of Weil type, by [34]. This reduced the proof of the Hodge conjecture
for abelian fourfolds to those of Weil type, by [46, Theorem 4.11].

Let Nm W K� ! Q� be the norm homomorphism, sending aC b
p
�d to a2 C db2.

Associated to the isogeny class of a polarized abelian variety of Weil type .A;K; h/ is a
discrete invariant in Q�=Nm.K�/, called its discriminant [49, Lemma 5.2 (3)]. Following
is the second main result of this paper, which is proven in Section 13.

Theorem 1.5 (Theorem 13.4). Let .A; K; h/ be a polarized abelian fourfold of Weil
type of discriminant 1. The 3-dimensional subspace of H 2;2.A;Q/ spanned by h2 andV4
K H

1.A;Q/ consists of algebraic classes. In particular, the Hodge conjecture holds
for the generic such .A;K; h/.

The case K D QŒ
p
�3� was previously proven by Schoen for arbitrary discriminant

in [48] and for K D QŒ
p
�1� and discriminant 1 in [47].

1.4. The modular sheaf over a universal deformation of MH .w/ �MH .w/

The proof of Theorem 1.5 involves the construction of a coherent sheaf over every 4-
dimensional compact complex torus in a 5-dimensional family of such tori, which con-
tains a representative of each isogeny class of abelian 4-folds of Weil type of discrimin-
ant 1. In Section 1.4.1 we describe this 5-dimensional family. In Section 1.4.2 we describe
the coherent sheaf over X � Pic0.X/. In Section 1.4.3 we briefly explain why this coher-
ent sheaf deforms to one over each member of this 5-dimensional family of complex
tori. In Section 1.4.4 we outline the proof of Theorem 1.5 about the algebraicity of the
Hodge–Weil classes.

1.4.1. A period domain for two families. Let X be an abelian surface and set V WD
H 1.X;Z/ ˚ H 1.X;Z/�, SC WD H even.X;Z/ and S� WD H odd.X;Z/. We endow SC
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with the unimodular symmetric bilinear pairing (4.15) of signature .4; 4/ (minus the
Mukai pairing). Let w 2 SC be the Chern character of the ideal sheaf of a length nC 1
subscheme, n � 2. Let w? be the sublattice orthogonal to w in SC. Then w? is natur-
ally isometric to H 2.KX .n/;Z/ (with minus the Beauville–Bogomolov–Fujiki pairing),
and the period domain of 2n-dimensional irreducible holomorphic symplectic manifolds
deformation equivalent to the generalized Kummer variety KX .n/ is

�w? WD ¹` 2 P .w? ˝Z C/ W .`; `/ D 0; .`; Ǹ/ < 0º;

by [2]. Choose a basis ¹e1; e2; e3; e4º ofH 1.X;Z/, compatible with the orientation of X ,
and let ¹e�1 ; e

�
2 ; e
�
3 ; e
�
4 º be the dual basis. Consider the following classes in

V4
V :

˛ WD

4X
iD1

ei ^ e
�
i ;

ˇ WD e1 ^ e2 ^ e3 ^ e4;

 WD e�1 ^ e
�
2 ^ e

�
3 ^ e

�
4 ;

cw WD �.nC 1/
2˛2 C 4.nC 1/3ˇ C 4.nC 1/:

We refer to cw as the Cayley class due to part (1) of the following.

Proposition 1.6. (1) (Proposition 11.2) The class cw spans the 1-dimensional subspace
of
V4

Q V invariant under Spin.V /w .

(2) (Lemmas 12.1, 12.2) �w? is also the period domain of integral weight 1 Hodge
structures .V; J /, where J W VR ! VR is a complex structure satisfying:

(a) V 1;0 and V 0;1 are maximal isotropic with respect to the symmetric bilinear pair-
ing (1.1) on VC .

(b) Each of the two lifts of J 2 SO.VR/ to Spin.VR/ maps to an involution of SCR ,
determined by J up to sign, one of whose eigenspaces is a negative definite 2-
dimensional subspace of w?R .

(c) The class cw is of Hodge type .2; 2/.

Note that�w? is an open analytic subset of the quadric of isotropic lines inw?C � S
C

C .
The correspondence between periods ` 2 �w? and maximal isotropic subspaces V 1;0 in
VC is the restriction to �w? of the well known isomorphism between the quadric of
isotropic lines in the half-spin representation SCC of Spin.VC/ and one of the connected
components of the maximal isotropic Grassmannian of VC (see [6, III.1.6]).

Proposition 1.6 gives rise to the universal torus

T ! �w? (1.5)

over the 5-dimensional period domain�w? , and cw determines an integral class of Hodge
type .2; 2/ in the cohomology H 4.T`;Z/ of the fiber T` over each ` 2 �w? .
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Proposition 1.7 (Proposition 12.6 and Corollary 12.9). Let h 2 SC satisfy .h; w/ D 0

and .h; h/ < 0. Set d WD .w; w/.h; h/=4. The restriction of the universal torus T to the
4-dimensional subspace �¹w;hº? � �w? consisting of periods ` orthogonal to h is a
complete family of polarized 4-dimensional abelian fourfolds of Weil type of discrimin-
ant 1 with complex multiplication by QŒ

p
�d�.

All possible imaginary quadratic number fields arise, since the lattice SC is unimod-
ular. Complex multiplication by

p
�d is best explained by an integral version of triality

for Spin.8/. The groups V and S� are the two half-spin representations of Spin.SC/. The
elements w; h of SC are elements of the Clifford algebra

C.SC/ WD

1M
kD0

.SC/˝k=hw1 ˝ w2 C w2 ˝ w1 � .w1; w2/ W w1; w2 2 S
C
i:

The spin representation V ˚ S� is a C.SC/-module, a fact which corresponds to an
algebra isomorphism m W C.SC/! End.V ˚ S�/. Each of h and w maps each of the
two direct summands of V ˚ S� to the other direct summand. Hence, the product w � h
maps V to itself. We have w � hC h �w D .h;w/D 0, by the defining relation of the Clif-
ford algebra, and so .mw ımh/2 D �m2w ım

2
h
D �

.w;w/.h;h/
4

idV˚S� D .�d/ idV˚S� .
Proposition 1.7 was first proved by O’Grady in the following set-up. The complex

torus T`, ` 2 �w? , is isogenous to the third intermediate Jacobian of every marked 2n-
dimensional irreducible holomorphic symplectic manifold Y in M0

w?
with period `,

by Lemma 12.15. O’Grady observed that every ample class h on Y with Beauville–
Bogomolov–Fujiki degree .h; h/ D 2k induces complex multiplication on the interme-
diate Jacobian with imaginary quadratic field QŒ

p
�d�, where d WD .nC 1/k [43].

1.4.2. The modular sheaf. Following is a second description of the class cw . Let M.w/

be the moduli space of rank 1 torsion free sheaves on X with Chern character w. Then
M.w/ is 2nC 4-dimensional. Let E be a universal sheaf over X �M.w/. Let �ij be the
projection from M.w/ �X �M.w/ onto the product of the i -th and j -th factors. Let

E WD Ext1�13.�
�
12E; �

�
23E/ (1.6)

be the relative extension sheaf over M.w/ �M.w/. Then E is a reflexive torsion free
sheaf of rank 2nC 2, which is locally free away from the diagonal [29, Rem. 4.6]. Given
a sheaf F 2M.w/, letEF be the restriction ofE to ¹F º �M.w/. SetA WDX � Pic0.X/.
Then A acts faithfully on M.w/, the first factor via push-forward by translation automor-
phisms of X and the second factor by tensorization. For a generic sheaf F 0 in M.w/, the
resulting morphism onto the A-orbit of F 0,

�F 0 W A!M.w/;

is an embedding. Spin.V /w acts on H�.M.w/; Z/ via a monodromy action (The-
orem 1.2) and on H�.A;Z/ WD

V�
V via the natural action on the exterior algebra of

the fundamental representation V .
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Theorem 1.8. (1) (Theorem 11.1) The class c2.End.E// 2 H 4.M.w/ �M.w/;Z/ is
Spin.V /w -invariant with respect to the diagonal monodromy representation of The-
orem 1.2. Similarly, c2.End.EF // 2 H 4.M.w/;Z/ is Spin.V /w -invariant.

(2) (Corollary 9.6) The homomorphism ��F 0 WH
�.M.w/;Z/!H�.A;Z/ is Spin.V /w -

equivariant. Hence, the class ��F 0c2.End.EF // is Spin.V /w -invariant.

(3) (Proposition 11.2) The equality cw D ��F 0c2.End.EF // holds.

The Spin.V /w -invariance of c2.End.E// follows from the automorphic property of
the Chern character of the universal sheaf in Theorem 1.2 (2). The Spin.V /w -invariance
of cw follows from Theorem 1.8 (3).

1.4.3. Deforming the modular sheaf. We would like to deform the coherent sheaf
��F 0End.EF / on A D X � Pic0.X/ to a coherent sheaf over every fiber T`, ` 2 �w? ,
of the universal torus (1.5). This would prove the algebraicity of the Spin.V /w -invariant
Hodge class cw whenever T` is algebraic. For that purpose we deform the moduli space
M.w/ and the sheaf EF . We first describe the deformation of M.w/.

There exists a moduli space Mw? of marked irreducible holomorphic symplectic
manifolds and a surjective and generically injective period map Per W M0

w?
! �w?

from each connected component M0
w?

of moduli [18, 52]. Choose a connected com-
ponent M0

w?
containing a marked generalized Kummer. There exists a universal family

p W Y !M0
w?

of irreducible holomorphic symplectic manifolds of generalized Kummer
deformation type [30, Th. 1.1]. Pulling back to M0

w?
the universal torus T ! �w? con-

structed in (1.5) via the period map we get a universal fiber product Per�T �M0

w?
Y. The

latter admits a diagonal action by a trivial group scheme �w over M0
w?

, whose quotient
is a universal deformation

… WM!M0
w?

(1.7)

of the moduli space M.w/. The family … is constructed in (12.12).
The above discussion is worked out for more general smooth and compact moduli

space M.w/ over X , for more general primitive classes w 2 SC. We choose M.w/,
so that the universal sheaf E is twisted, and the sheaf EF is maximally twisted, i.e., its
Brauer class in the analytic Brauer group H 2

an.M.w/;O�
M.w/

/ has order equal to the rank
of EF . It follows that the sheaf EF does not have any proper non-trivial subsheaves and
is thus slope-stable with respect to every Kähler class on M.w/. The second Chern class
of End.EF / is Spin.V /w -invariant, hence it remains of Hodge type .2; 2/ over the whole
of M0

w?
, by Lemma 12.14. A theorem of Verbitsky states that if G is a slope-stable

reflexive sheaf and c2.End.G// remains of Hodge type over the whole of M0
w?

, then G
deforms to a twisted sheaf over each fiber of the universal family … (see Theorem 13.3).
Such sheaves G are said to be hyper-holomorphic. EF has these properties and we obtain
the following result, which is the main cycle-theoretic construction of the paper.

Theorem 1.9 (Theorem 13.3). The sheaf EF deforms with M.w/ to a reflexive sheaf,
locally free on the complement of a point, over every fiber of the universal family… given
in (1.7). Similarly, the sheaf E given in (1.6) deforms with M.w/ �M.w/ to a reflexive
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sheaf, locally free away from the diagonal, over the cartesian square of every fiber of the
universal family ….

Verbitsky’s theorem applies to slope-stable reflexive sheaves over hyperkähler mani-
folds. It applies in our set-up, since every hyperkähler structure on a marked irreducible
holomorphic symplectic manifold Y with period ` determines a hyperkähler structure on
the complex torus T`, ` 2 �w? , and both correspond to the same twistor line in�w? , by
Proposition 12.6. Hence, the restriction of the universal family… WM!M0

w?
to twistor

lines in M0
w?

consists of twistor deformations of the fiber of … as well. Note that Ver-
bitsky’s theorem has already been used to prove the algebraicity of monodromy invariant
Hodge classes in [4, 5, 29].

1.4.4. Outline of the proof of Theorem 1.5. It remains to prove that the 3-dimensional
subspace of Hodge–Weil classes in H 2;2.T`;Q/ consists of algebraic classes when ` is a
period in�¹w;hº? as in Proposition 1.7. The embedding �F 0 W A! ¹F º �M.w/ deforms
to an embedding � W T` ! ¹F`º �M` associated to a choice of a pair of points .F`; F 0`/
in the cartesian square M` �M` of the fiber over ` of the universal family … given
in (1.7). Hence, the 1-dimensional subspace of Spin.V /w -invariant classes inH 2;2.T`;Q/
is spanned by the algebraic class cw , by Theorems 1.8 (3) and 1.9. Now QŒ

p
�d� acts

on T` via rational correspondences, which are algebraic, and we show that the QŒ
p
�d�-

translates of cw and the square ‚2
h

of the polarization of T` span the 3-dimensional space
of Hodge–Weil classes (Theorem 13.4).

1.5. Surjectivity of the Abel–Jacobi map

Let… WM!M0
!?

be the universal deformation of the moduli space MH .w/ of sheaves
on an abelian surface X given in (1.7). Assume that the dimension of MH .w/ is � 8.
Given b 2M0

!?
, let Eb be the deformation of the modular sheaf (1.6) constructed in

Theorem 1.9 over the cartesian square Mb �Mb of the fiber Mb of…. Let eb W Yb!Mb

be the inclusion of a fiber of the Albanese map alb W Mb ! Alb.Mb/. Let J 2.Yb/ WD
H 3.Yb;C/=ŒH

2;1.Yb/ C H
3.Yb;Z/� be the intermediate Jacobian. Assume that Yb is

projective. Then J 2.Yb/ is the codomain for the Abel–Jacobi map associated to any fam-
ily of complex codimension 2 algebraic cycles on Yb homologous to 0.

Given F 2Mb , let EF be the restriction of Eb to ¹F º �Mb . Fix a point F0 2Mb

and consider the map
AJb WMb ! J 2.Yb/

sending F 2Mb to the Abel–Jacobi image of an algebraic cycle representing the Chow
class

e�b Œc2.E
_
F

L
˝ EF / � c2.E

_
F0

L
˝ EF0/�; (1.8)

where E_F is RHom.EF ;OMb
/ and the tensor product is taken in the derived category.

The morphism AJb factors through a morphism

AJb W Alb.Mb/! J 2.Yb/; (1.9)

since the fibers of alb are simply connected.
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Theorem 1.10. The morphism AJb is surjective for every b 2M0
!?

for which Yb is pro-
jective.

Claire Voisin suggested to the author to prove the above theorem as a corollary of
Theorem 1.9. The proof of Theorem 1.10 is provided in Section 14.

1.6. Organization of the paper

In Section 3 we recall Yoshioka’s result that the fibers of the Albanese map of a moduli
space of stable sheaves on an abelian surface are irreducible holomorphic symplectic man-
ifolds of generalized Kummer deformation type. We also recall the relationship between
the second cohomology of the fibers and the Mukai lattice.

In Section 4 we recall the integral versions of the Clifford algebra and Clifford groups
associated to the cohomology of an abelian surface X . We then recall the integral version
of triality for Spin.V /, where V is the rank 8 lattice H 1.X;Z/˚H 1.X;Z/�.

In Section 5 we identify a set of generators for the stabilizer Spin.V /sn of the Chern
character sn of the ideal sheaf of a length n subscheme of an abelian surface.

In Section 6 we construct a class g in the cohomology of a product of two mod-
uli spaces MH1.w1/ �MH2.w2/ of Hi -stable sheaves with Chern character wi over
an abelian surface Xi associated to a parity preserving isomorphism g W H�.X1;Z/!
H�.X2;Z/ satisfying g.w1/ D w2. When g is a parallel transport operator,2 or when
g is induced by an equivalence of the derived categories of X1 and X2, then g ˝ g W
H�.X1 �MH1.w1//! H�.X2 �MH2.w2// maps the class of a universal sheaf to a
class of a universal sheaf and g is a parallel transport operator. We show that the assign-
ment g 7! g is multiplicative and we extend the construction to include the contravariant
functor of dualization of sheaves.

In Section 7 we lift certain generators for the stabilizer Spin.V /sn found in Section 5
to auto-equivalences of the derived category of an abelian surface X .

In Section 8 we use results of Yoshioka to show that the auto-equivalences found in
Section 7 map sheaves in M.sn/ to sheaves in M.sn/. This enables us to prove The-
orem 1.2 about the monodromy representation mon W G.SC/even

sn
! Aut.H�.M.sn/;Z//.

In Section 9 we extend the latter monodromy representation to an action of a group-
oid G (a category all of whose morphisms are isomorphisms). Objects .X; w; H/ of
G consist of an abelian surface X , a primitive Chern character w, and a w-generic
polarization H . Morphisms in HomG ..X1; w1; H1/; .X2; w2; H2// are parallel transport
operators  W H�.MH1.w1/;Z/! H�.MH2.w2/;Z/. A result of Yoshioka implies the
existence of such morphisms whenever the dimensions of the two moduli spaces are

2 Let X1, X2 be compact Kähler manifolds. An isomorphism g W H�.X1;Z/! H�.X2;Z/
is a parallel transport operator if there exists a family � W X ! B of compact Kähler manifolds,
points b1; b2 2 B , isomorphisms  i W Xi ! Xbi

with the fibers over bi , and a continuous path 
from b1 to b2 in B , such that  2;� ı g ı  �1 is induced by parallel transport in the local system
R��Z along  .
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equal. Yoshioka’s result enables us to construct the monodromy representation mon W
G.SC/even

w ! Mon.M.w// for all primitive Chern characters w. We also establish in
Section 9 the Spin.V /w -equivariance of the homomorphism ��F 0 W H

�.MH .w/;Z/ !
H�.X � yX;Z/ of Theorem 1.8.

In Section 10.1 we prove Theorem 1.4 about the monodromy group of generalized
Kummer varieties. In Section 10.2 we identify the Lie algebra of the Zariski closure of
the monodromy group as a subalgebra of the Looijenga–Lunts–Verbitsky Lie algebra. We
then verify that monodromy invariant classes of an irreducible holomorphic symplectic
manifold of generalized Kummer deformation type are Hodge classes.

In Section 11 we prove the Spin.V /w -invariance of c2.End.E// for the modular
sheaf E over M.w/ �M.w/ in Theorem 1.8 (1). We then prove that the Cayley class cw
is the pull-back of c2.End.E// (Theorem 1.8 (3)).

In Section 12.1 we construct the universal torus T , given in (1.5), over the period
domain �w? of irreducible holomorphic symplectic manifolds of generalized Kummer
deformation type. In Section 12.2 we prove Proposition 1.7; we construct the polar-
ization ‚h and the complex multiplication for the complex tori with periods in the
4-dimensional subloci�¹w;hº? in the 5-dimensional period domain�w? . In Section 12.3
we construct a hyperkähler structure on the complex torus T` associated with a Kähler
class on an irreducible holomorphic symplectic manifold with period ` (Proposition
12.6). In Section 12.4 we prove that the subloci �¹w;hº? parametrize abelian fourfolds
of Weil type of discriminant 1. In Section 12.5 we construct the universal deformation
… WM !M0

w?
of the moduli space of sheaves over the moduli space of marked irre-

ducible holomorphic symplectic manifolds of generalized Kummer deformation type. In
Section 12.6 we prove that the torus T` is isogenous to the third intermediate Jacobian
of the irreducible holomorphic symplectic manifold of generalized Kummer deformation
type with period `.

In Section 13 we prove Theorem 1.5 about the algebraicity of the Hodge–Weil classes
on abelian fourfolds of Weil type of discriminant 1.

In Section 14 we prove Theorem 1.10 verifying the generalized Hodge conjecture for
codimension 2 algebraic cycles homologous to 0 on every projective irreducible holo-
morphic symplectic manifold of generalized Kummer deformation type.

2. Notation

Let X be a complex projective abelian surface, yX WD Pic0.X/ its dual surface, and X Œn�

the Hilbert scheme of length n zero-dimensional subschemes of X . Let X .n/ be the
n-th symmetric product of X and hc W X Œn� ! X .n/ the Hilbert–Chow morphism. Let
� WX .n/!X be the morphism sending a cycle to its sum and let � WX Œn�!X be the com-
position � ı hc. The .2n � 2/-dimensional generalized Kummer KX .n � 1/ is the fiber
of � over 0 2 X . It is a simply connected projective holomorphically symplectic variety.
The algebra of holomorphic differential forms onKX .m/ is generated by the holomorphic
symplectic form, which is unique up to a constant scalar [2]. Consequently,KX .m/ admits
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a hyperkähler structure. The first three Betti numbers bi .KX .m// of KX .m/, m > 1, are
b1.KX .m// D 0, b2.KX .m// D 7, and b3.KX .m// D 8, by [10, Th. 2.4.11].

Let H be an ample line bundle on an abelian surface X and let MH .v/ denote the
moduli space of Gieseker–Simpson H -stable coherent sheaves on X with Chern charac-
ter v. We always assume that v is primitive and H is v-generic (see Section 3), so that
MH .v/ is smooth and projective. We denote by Ka.v/ the fiber of the Albanese mor-
phism from MH .v/ to its Albanese variety over the point a. Then K0.sn/ D KX .n � 1/,
where sn is the Chern character of the ideal sheaf of a length n subscheme.

A glossary of notation is included in Section 15.

3. The Mukai lattice and the second cohomology of a moduli space of sheaves

Let X be an abelian surface. Set SC WD
L2
iD0H

2i .X;Z/. The Mukai pairing on SC is
given by

hx; yi WD

Z
X

.x1y1 � x0y2 � x2y0/; (3.1)

where x D .x0; x1; x2/, y D .y0; y1; y2/, and xi , yi are the graded summands in
H 2i .X; Z/. We refer to SC as the Mukai lattice of X and elements of SC will be
called Mukai vectors. Following Mukai we endow SCC WD SC ˝Z C with a weight 2
Hodge structure by setting .SC/2;0 WD H 2;0.X/; .SC/0;2 WD H 0;2.X/; and .SC/1;1 WD
H 0.X/˚H 1;1.X/CH 4.X/:

Let v D .r; c1; �/ 2 SC be a primitive Mukai vector, with c1 2 H 2.X;Z/ of Hodge
type .1; 1/. There is a system of hyperplanes in the ample cone of X , called v-walls, that
is countable but locally finite [19, Ch. 4C]. An ample class is called v-generic if it does
not belong to any v-wall. Choose a v-generic ample class H . Assume that the moduli
space MH .v/, of Gieseker–Simpson H -stable sheaves on X with Chern character v, is
non-empty. Then MH .v/ is smooth, connected, projective, and holomorphic symplectic
of dimension hv; vi C 2 [36]. The Albanese variety of MH .v/ is isomorphic to X � yX
whenever the dimension of MH .v/ is at least 4, and each fiber of the Albanese map
alb WMH .v/!X � yX is simply connected and deformation equivalent to the generalized
Kummer variety of the same dimension [56, Th. 0.2].

Denote by Ka.v/ the fiber of alb over a point a 2 X � yX . The second cohomo-
logy H 2.Ka.v/;Z/ is endowed with a natural symmetric bilinear form, the Beauville–
Bogomolov–Fujiki form [2]. Let E be a quasi-universal family over X �MH .v/ of
similitude � , so that E restricts to X � ¹tº, t 2 MH .v/, as the direct sum E˚�t of �
copies of a sheaf Et representing the isomorphism class t . Let v? be the sublattice of SC

orthogonal to v with respect to the Mukai pairing. Denote by �X and �M the projections
from X �MH .v/ onto the corresponding factors. Given a Mukai vector y D .y0; y1; y2/
set y_ WD .y0;�y1; y2/. Let

� 0 W v? ! H 2.MH .v/;Z/
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be given by

� 0.y/ D �
1

�
Œ�M;�.ch.E/��Xy

_/�1;

where the subscript 1 denotes the graded summand in H 2.MH .v/;Z/. We denote the
composition of � 0 with restriction to the Albanese fiber by

� W v? ! H 2.Ka.v/;Z/: (3.2)

Theorem 3.1 ([56, Th. 0.2]). If the dimension of MH .v/ is � 8, then the homomor-
phism � is a Hodge isometry with respect to the Mukai pairing and the Hodge structure
on v? and the Beauville–Bogomolov–Fujiki pairing on H 2.Ka.v/;Z/.

4. Spin.8/ and triality

LetX be an abelian surface. Set S WDH�.X;Z/, SC WDH even.X;Z/, S� WDH odd.X;Z/,
and V WD H 1.X;Z/˚H 1. yX;Z/. In Section 4.1 we review the basic facts about Clif-
ford algebras and groups associated to the abelian surface X via the rank 8 lattice V .
In Section 4.2 we review the bilinear operations V ˝ SC ! S�, V ˝ S� ! SC, and
SC ˝ S� ! V induced by the Clifford product. In Section 4.3 we review triality for the
arithmetic subgroup Spin.V / of Spin.8/.

4.1. The Clifford groups

Endow V with the symmetric bilinear form

.a; b/V WD b2.a1/C a2.b1/; (4.1)

where aD .a1; a2/, b D .b1; b2/, a1; b1 2H 1.X;Z/, and a2; b2 2H 1. yX;Z/, and we use
the natural identification of H 1. yX;Z/ with H 1.X;Z/�. Then V is an even unimodular
lattice, the orthogonal direct sum of four copies of the hyperbolic plane, and Q.a/ WD
1
2
.a; a/V is an integral quadratic form. Let C.V / be the Clifford algebra, i.e., the quotient

of the tensor algebra of V by the relation

v � w C w � v D .v; w/V : (4.2)

As a general reference on Clifford algebras and the theory of spinors we recommend [6].
The free abelian group H�.X;Z/ is isomorphic to

V�
H 1.X;Z/ and is a C.V /-module

and C.V / maps isomorphically onto EndŒH�.X;Z/�, by [9, Prop. 3.2.1 (e)]. The C.V /-
module structure of H�.X; Z/ is seen as follows. V embeds in C.V /, and also in
EndŒH�.X;Z/� by sending w 2 H 1.X;Z/ to the wedge product

Lw WD w ^ .�/ (4.3)

and � 2H 1. yX;Z/ŠH 1.X;Z/� to the corresponding derivationD� ofH�.X;Z/ send-
ing H i .X;Z/ to H i�1.X;Z/. The resulting homomorphism m W V ! EndŒH�.X;Z/�
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satisfies the analogue of the relation (4.2), i.e., m.v/ ı m.w/ C m.w/ ı m.v/ D

.v; w/idH�.X;Z/. Hence m extends to an algebra homomorphism m W C.V / !

EndŒH�.X;Z/�, by the universal property of C.V /.
We let

� W C.V /! C.V / (4.4)

be the main anti-automorphism, sending v1 � � � � � vr to vr � � � � � v1. Let

˛ W C.V /! C.V / (4.5)

be the main involution, acting as multiplication by �1 on C odd.V / and as the identity on
C even.V /. The conjugation x 7! x� is the composition of � and ˛. Set3

Spin.V / WD ¹x 2 C.V /even
W x � x� D 1 and x � V � x� � V º;

Pin.V / WD ¹x 2 C.V / W x � x� D 1 and x � V � x� � V º;

G0.V / WD ¹x 2 C.V / W x � �.x/ D 1 and x � V � �.x/ � V º;

G.V / WD ¹x 2 C.V /� W x � V � x�1 � V º; (4.6)

G.V /even
WD G.V / \ C.V /even: (4.7)

The condition x � V � x�1 � V in the definition of G.V /, combined with the fact that
V has even rank, implies that x is either even or odd and G.V / is contained in the union
C.V /even [ C.V /odd [6, II.3.2]. Note that x 2 C.V / is invertible if and only if x � x� is,
i.e., if and only if x � x� D ˙1. Thus, Pin.V / is an index 2 subgroup of G.V /. We get the
extension

1! Spin.V /! G.V /even
! Z=2Z! 0:

Given a vector v 2 V , we have v� D �v and v � v� D �v � v D �Q.v/. If v1, v�1 are
vectors in V with Q.v1/ D 1 and Q.v�1/ D �1, then v�1 belongs to Pin.V /, v1 belongs
to G.V /, and .v1 � v�1/ belongs to G.V /even.

The standard representation V is defined4 by the homomorphism

� W G.V /! O.V /; �.x/.v/ D x � v � x�1: (4.8)

If Q.v/ D ˙1, then ��.v/ is reflection in v,

��.v/.w/ D w �
2.v; w/V

.v; v/V
� v; 8w 2 V: (4.9)

3In reference [6] these groups are called Clifford groups of the orthogonal group of V with
respect to the quadratic form Q. The group G.V / is denoted in [6] by � , the group G0.V / by �0,
the group G.V /even by �C, and the group Spin.V / by �C0 . The main anti-automorphism � is
denoted in [6, II.3.5] by ˛.

4Chevalley denotes the standard representation by � WG.V /!O.V / [6, Sec. 2.3]. The conven-
tion in [7, Sec. 2.7] is different and there �.x/.v/ D ˛.x/ � v � x�1. The two representations agree
on G.V /even.
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Let
m W C.V /! End.S/ (4.10)

be the Clifford algebra representation and denote by

m W G.V /! GL.S/ (4.11)

as well its restriction to the subset G.V / � C.V /.
The character group Hom.O.V /;C/ of O.V / is isomorphic to Z=2Z � Z=2Z and is

generated by the determinant character det and the orientation character

ort W O.V /! ¹˙1º: (4.12)

The latter is defined as follows. The positive cone in V ˝Z R is homotopic to the 3-sphere.
The character ort represents the action of isometries on the third singular cohomology of
the positive cone [28, Sec. 4]. Denote by OC.V / the kernel of ort.

Lemma 4.1. The homomorphism � is surjective and it maps Pin.V / onto OC.V / and
Spin.V / onto SOC.V /.

Proof. The lattice V is the orthogonal direct sum of four copies of the even unimodular
rank 2 hyperbolic lattice U . Hence, O.V / is generated by the reflections ��.v/, given in
(4.9), in elements v 2 V with .v;v/V D˙2, by [54, Sec. 4.3]. The element� idU 2O.U /
is a product of two reflections. Hence, � idV is a product of eight reflections and soO.V /
is generated by the set ¹�.v/ W v 2 V; .v; v/V D ˙2º.

The lemma implies that the homomorphism � pulls back the character ort to the quo-
tient homomorphism

ort W G.V /! G.V /=Pin.V / Š ¹˙1º; x 7! x � x� 2 ¹˙1º: (4.13)

The determinant character of O.V / is pulled back via � to the parity character

p W G.V /! G.V /=G.V /even
Š ¹˙1º:

The product of the parity and orientation characters is the norm character denoted5

N W G.V /! ¹˙1º; x 7! x � �.x/: (4.14)

The subgroup G0.V / of G.V / is the kernel of N .
H�.X; Z/ is a subalgebra of C.V /, invariant under both � and ˛, and � acts on

H i .X;Z/ by .�1/i.i�1/=2. There is a natural symmetric pairing6 on H�.X;Z/ defined
by

.s; t/S WD

Z
X

�.s/ [ t: (4.15)

5In Chevalley’s book the norm character is denoted by � and in Deligne’s notes by N [6, 7].
6This pairing is denoted by ˇ.s; t/ in [6, Sec. 3.2]. Another natural symmetric pairing ž.s; t/ WDR

X s
� [ t is considered in [6, III.2.5]. The isomorphism S ! S� induced by ž is the one induced

by the Fourier–Mukai functor in (7.1) below. We chose to use the former pairing ˇ, since it is the
pairing used in the Triality Chapter IV of [6].
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We setQS .s/ WD 1
2
.s; s/S for s 2 S WDH�.X;Z/. Given x 2G.V /, we have the equality

.x � s; x � t /S D N.x/.s; t/S ;

where N is the norm character (4.14). In particular, an element v 2 V with Q.v/ D ˙1
satisfies

.v � s; v � t /S D Q.v/.s; t/S : (4.16)

The latter equation holds for every v 2 V [6, IV.2.3].
Let .�; �/SC and .�; �/S� be the restrictions of the pairing (4.15) to SC and S�.

Both are even symmetric unimodular bilinear pairings, which are Spin.V /-invariant. Note
that �.�; �/SC is the pairing given in (3.1), which is known as the Mukai pairing [38,
56]. The pairing on V is G.V /-invariant. The pairings on SC and S� are not invariant
under G.V /even. Rather, the pairing spans a rank 1 module in Sym2.SC/ corresponding
to the character (4.13). Let zO.SC/ be the subgroup of GL.SC/ preserving the bilinear
pairing .�; �/SC only up to sign. Define zO.S�/ similarly. Let z̨ 2 GL.S/ be the element
acting as the identity on SC and by �1 on S�. It follows from the Triality Principle
recalled below that z̨ corresponds to the action of j.�id/, where j is an order 3 outer
automorphism of Spin.V /, and so z̨ is the image of a unique element of Spin.V / in GL.S/
(Theorem 4.6). Denote by

z̨ 2 Spin.V / (4.17)

the corresponding central element. Set S zO.SC/ WD zO.SC/ \ SL.SC/ and S zO.S�/ WD
zO.S�/ \ SL.S�/. G.V /even maps to S zO.SC/ with kernel generated by z̨, to S zO.S�/

with kernel generated by �z̨, and onto SO.V / with kernel generated by �1. The image
of G.V /even has index 2 in S zO.SC/.

4.2. Bilinear operations via the Clifford product

The Clifford product defines the homomorphisms V ˝ SC ! S�, V ˝ S� ! SC, and

SC ˝ S� ! V: (4.18)

The latter is the composition of V � ! V , given by the bilinear pairing .�; �/V , and the
homomorphism SC ˝ S� ! V �, sending s ˝ t to ..�/ � s; t/S� 2 V �.

Example 4.2. Let us calculate the homomorphisms

msn W V ! S� (4.19)

corresponding to Clifford multiplication .�/ � sn with the Chern character sn D .1; 0;�n/
2SC of the ideal sheaf of a length n subscheme. Let vD .w;�/2V , wherew 2H 1.X;Z/
and � 2 H 1.X;Z/�. Then

msn.v/ WD v � .1; 0;�n/ D w ^ .1; 0;�n/CD� .1; 0;�n/ D w � nD� .Œpt�/

D w C nPD�1.�/:
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In the last equality we used the isomorphism

PD W H i .X;Z/! H 4�i .X;Z/� (4.20)

given by ˇ 7!
R
X
ˇ ^ .�/. The equality

ŒPD.D� .Œpt�//�.x/ WD
Z
X

D� .Œpt�/ ^ x D ��.x/; 8x 2 H 1.X;Z/; (4.21)

follows from
0 D D� .Œpt� ^ x/ D D� .Œpt�/ ^ x C �.x/Œpt�:

Note that the homomorphism (4.19) is equivariant with respect to the action of the sub-
group G.V /even

sn
of G.V /even stabilizing sn. The integral representations V and S� restrict

to G.V /even
sn

as isogenous representations, which are not isomorphic. The cokernel ofmsn
is H 3.X; Z=nZ/ and is naturally identified with H1.X; Z=nZ/ as well as with the
group �X of points of order n on X .

The homomorphism (4.18) restricts to sn ˝ S� as a homomorphism

m�sn W S
�
! V; (4.22)

which is the adjoint of (4.19) with respect to the pairings .�; �/V and .�; �/S� . Explicitly,
given .w; ˇ/ 2 S� with w 2 H 1.X;Z/ and ˇ 2 H 3.X;Z/,

m�sn.w; ˇ/ D .�nw;�PD.ˇ//: (4.23)

In particular, m�sn ımsn W V ! V and msn ım
�
sn W S

� ! S� are both multiplication by
QSC.sn/ D �n.

Remark 4.3. Letmsn W V ! S� be the homomorphism given in (4.19). Given a primitive
element w 2 SC with .w;w/SC D �2n, there exists an element g 2 Spin.V / satisfying
g.sn/ D w. Given x 2 V , and regarding x and g as elements of C.V /, we have the
equalities

g.msn.x// D g � x � sn D .g � x � g
�1/ � .g � sn/ D mw.�.g/.x//:

Letm�sn W S
�! V be the adjoint ofmsn and definem�w similarly. We get the commutative

diagram

V
msn //

�.g/

��

S�

g

��

m
�
sn // V

�.g/

��

V
mw // S�

m
�
w // V

In particular, the cokernels of msn and mw are isomorphic and both m
�
w ı mw and

mw ım
�
w are multiplication by �n.

Let m�1w W S
�
Q ! VQ be the inverse of mw W VQ ! S�Q. The quotient m�1w .S

�/=V

is then a subgroup �w of the compact torus VR=V isomorphic to .Z=nZ/4 canonically
associated to w. The subgroup �w is the kernel of the homomorphism VR=V ! S�R=S

�

induced by mw .
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Example 4.4 (An element of G.SC/even
sn

which does not belong to Spin.V /sn ). Consider
the two vectors s1 D .1; 0;�1/ and s D .1; 0; 1/ in SC. Then QS .s1/ D �1, QS .s/ D 1,
and .s1; s/SC D 0. The composition m�s ıms1 W V ! V is given by

m�s ıms1.w; �/ D m
�
s .w;PD�1.�// D .w;��/:

Consequently, m�s1 ıms D .m
�
s ıms1/

� D �.m
�
s ıms1/

�1 D �.m
�
s ıms1/. This agrees

with the relation s1 � s C s � s1 D .s1; s/SC D 0 in the Clifford algebra C.SC/ (see also
(4.29) below for a more conceptual interpretation). Similarly, ms1 ı m

�
s W S

� ! S� is
given by

ms1 ım
�
s .w; ˇ/ D .w;�ˇ/:

The reflections Rs1.r;H; t/ D .t; H; r/ and Rs.r;H; t/ D .�t; H;�r/ of SC commute,
and Rs1 ı Rs.r; H; t/ D .�r; H;�t /. Let zms1�s be the element of GL.V / � GL.SC/ �
GL.S�/ acting on V via m�s1 ı ms , on S� via ms1 ı m

�
s , and on SC via Rs1 ı Rs .

Let G.SC/even be the subgroup of GL.V / � GL.SC/ � GL.S�/ generated by Spin.V /
and zms1�s . The notation G.SC/even is motivated by triality (see (4.30) below). Note that
Rs1 ıRs.sn/ D �sn. Hence, both of the products �zms1�s and �z̨ zms1�s , of zms1�s with �1
or �z̨ in Spin.V /, belong to the stabilizer G.SC/even

sn
of sn 2 SC. Set

z� WD �z̨ � zms1�s 2 G.S
C/even
sn
: (4.24)

Note that z� acts on SC and S� via the restriction of the main anti-involution � of C.V /
to its subalgebra H�.X;Z/. However, the action of z� on V is not the identity, and so it
does not agree with the restriction of the action of � to the embedding of V in C.V /.

Lemma 4.5. The image of the homomorphism

G.V /even
sn

�
�! SO.V /! SO.V=nV /

is equal to the subgroup of SO.V=nV / leaving invariant the summand H 1.X;Z=nZ/�

in the direct sum decomposition

V=nV WD H 1.X;Z=nZ/˚H 1.X;Z=nZ/�:

Consequently, we get the homomorphism

N� W G.V /even
sn
! GLŒH 1.X;Z=nZ/�: (4.25)

Proof. Reduce modulo n the homomorphisms msn given in (4.19). The kernel in V=nV
is H 1.X;Z=nZ/� and the kernel is G.V /even

sn
-invariant.

4.3. Triality

SetAX WD V ˚ S�˚ SC. We endowAX with the bilinear pairing induced by that of each
of the summands, so that AX is an orthogonal direct sum of the three lattices. Define the
commutative, but non-associative, algebra structure on AX , using the Clifford multiplic-
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ation and the homomorphism (4.18). The product of two elements in the same summand
vanishes [6, IV.2.2]. Any automorphism � of the algebra AX which leaves V and the sum
S� ˚ SC invariant belongs to the image in GL.AX / of the kernel G0.V / � G.V / of the
norm character (4.14) via the homomorphism

z� W G.V /! O.V / � GL.S/; (4.26)

given by z�.g/ D .�.g/;m.g//, where � is given in (4.8) andm in (4.11) (see [6, IV.2.4]).
Restriction of z� to G0.V / yields the faithful representation

z� W G0.V /! Aut.AX /: (4.27)

If, in addition, each of the three summands is � -invariant, then � belongs to the image
of Spin.V /. This leads to a symmetric definition of Spin.V / in terms of the algebra AX .
Given an element a of AX , denote byma the linear homomorphism of AX acting via mul-
tiplication by a. Note, in particular, that the compositionms1 ıms2 of two multiplications
by elements si of SC,

.ms1 ıms2/.a/ WD s1 � .s2 � a/; a 2 AX ;

acts on the subspace V ˚ S� via an element ms1�s2 of Spin.V /, provided .s1; s1/SC D
.s2; s2/SC D 2 or .s1; s1/SC D .s2; s2/SC D �2. The sublattice SC belongs to the kernel
of ms1 ıms2 , but z�.ms1�s2/ leaves SC invariant and acts on SC as an isometry.

Following is the Triality Principle, adapted from [6, Th. IV.3.1 and Sec. 4.5].

Theorem 4.6. There exists an automorphism J of order 3 of the algebra AX , preserving
its bilinear pairing, with the following properties.

(1) J.V / D SC; J.SC/ D S�, and J.S�/ D V .

(2) J�1 z�.Spin.V //J D z�.Spin.V //, where z� is the representation (4.27). Consequently,
there exists a unique outer automorphism j of Spin.V / of order 3 satisfying

z�.j.g// D J�1 z�.g/J:

Proof. The proof consists in checking that the explicit construction of the automor-
phism J in [6, Th. IV.3.1] and of j in [6, Sec. 4.5], which is stated for vector spaces,
carries through for our lattices. We outline the construction. Let u1 be an element of SC

satisfying .u1; u1/SC D 2. We could choose for example u1 D .1; 0; 1/. Let t be the
automorphism of the lattice AX mapping V to S� via the Clifford action of elements of
V � C.V / on u1 2 SC � S , sending S� to V via the product by u1 in AX , so via (4.18),
and acting on SC by �Ru1 . Choose an element x1 of V satisfying Q.x1/ D 1, so that
.x1; x1/V D 2. Regarding x1 as an element of C.V /, via the embedding V � C.V /, we
find that x1 belongs to the subgroup G0.V / of G.V /. Set J WD z�.x1/t , the composition
of the automorphisms z�.x1/ and t of the lattice AX . It is an isometry and an algebra auto-
morphism of AX ˝Z Q, by [6, Th. IV.3.1] (see also [6, paragraph preceding IV.2.4]), and
so of AX as well. The properties in part (1) of the theorem follow by construction. The
identity J 3 D id holds for the vector space AX ˝Z Q, by [6, proof of Th. IV.3.1], and so
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must hold also for the J -invariant lattice AX . The invariance of Spin.V / in part (2) of the
theorem follows from that of Spin.VQ/, by [6, proof in Sec. 4.5], and the existence of j
follows, since the representation z� is faithful.

As a corollary of the Triality Principle we get the following identification of V ˚ S�

with the Clifford module
V�

SC of the integral Clifford algebra C.SC/ associated to
the decomposition SC D J.H 1.X;Z//˚ J.H 1.X;Z/�/ as a direct sum of maximal iso-
tropic sublattices. Let zJ WC.V /!C.SC/ be the isomorphism extending the isomorphism
JjV W V ! SC induced by the isometry J . Let AdJ W End.SC ˚ S�/! End.S� ˚ V /
be the isomorphism sending f to J ı f ı J�1. Let m W C.V /! End.SC ˚ S�/ be the
algebra homomorphism given in (4.10). Given x 2 C.V /, letmx 2 End.SC ˚ S�/ be its
image under m.

Corollary 4.7. There exists a unique injective algebra homomorphism

m W C.SC/! End.S� ˚ V /

which restricts to the embedding of SC in C.SC/ as multiplication in AX by elements
of SC. The following diagram is commutative:

V
� //

J

��

C.V /
m //

zJ
��

End.SC ˚ S�/

AdJ
��

SC
� // C.SC/

m // End.S� ˚ V /

In particular, for x 2 V and y1; y2 2 SC, the following equalities hold in End.S� ˚ V /:

mJ.x/ D J ımx ı J
�1; (4.28)

my1 ımy2 Cmy2 ımy1 D .y1; y2/SC � idS�˚V : (4.29)

Proof. The left square is commutative, by definition of zJ . The right lower arrow m is
defined by the requirement that the right square is commutative. It is an algebra homo-
morphism, since the upper arrow m is, and it restricts to SC as multiplication in AX , due
to J being an algebra automorphism of AX . Equality (4.28) follows from the commut-
ativity of the diagram, and (4.29) comes from

my1 ımy2
.4.28/
D .J ımJ�1.y1/ ı J

�1/ ı .J ımJ�1.y2/ ı J
�1/

D J ımJ�1.y1/ ımJ�1.y2/ ı J
�1:

So

my1 ımy2 Cmy2 ımy1 D J ı .mJ�1.y1/ ımJ�1.y2/ CmJ�1.y2/ ımJ�1.y1// ı J
�1

D J ı .J�1.y1/; J
�1.y2//V � idS ı J�1

D .y1; y2/SC � idS�˚V ;

where the second equality follows from the C.V /-module structure of S and the defining
relation (4.2) of C.V /, and the last is due to J being an isometry.
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Set G.SC/ WD zJG.V / zJ�1 � C.SC/ and define its subgroup G.SC/even similarly,

G.SC/even
WD zJG.V /even zJ�1; Spin.SC/ WD zJ ŒSpin.V /� zJ�1: (4.30)

Let zm W G.SC/! GL.AX / be the unique homomorphism making the following diagram
commutative:

G.V /
z�
//

Ad zJ
��

O.V / � GL.SC ˚ S�/

AdJ
��

G.SC/
zm // O.SC/ � GL.S� ˚ V /

(4.31)

Note the equality
zm.Spin.SC// D z�.Spin.V // (4.32)

as subgroups of Aut.AX /, by Theorem 4.6 (2). However, zm.�1/ and z�.�1/ are distinct
elements of the center. The element z�.�1/ acts as the identity on V and as � idS on S D
SC ˚ S�. The element zm.�1/ acts as the identity on SC and via scalar multiplication
by �1 on V ˚ S�.

Let
� W G.SC/! O.SC/

be the composition of zm with the restriction homomorphism to the G.SC/-invariant dir-
ect summand SC of AX . The representation � of G.SC/ is analogous to that of G.V /
given in (4.8). Explicitly,G.SC/even is generated by z�.Spin.V // and one additional auto-
morphism zms1�s�1 ; acting on V ˚ S� via ms1 ı ms�1 , which is the composition of two
multiplications

.ms1 ıms�1/.a/ WD s1 � .s�1 � a/; a 2 AX ;

where si , i D 1;�1, are two elements of SC and .si ; si /SC D 2i . One can take, for
instance, s1 D .1; 0; 1/ and s�1 D .1; 0;�1/ as in Example 4.4. The action of the element
zms1�s�1 on SC is the composition Rs1 ı Rs�1 of the two reflections. Then G.SC/even

preserves .�;�/SC and maps into SO.SC/, but its image in SL.V / is contained in S zO.V /.
In particular, G.SC/even is not contained in the image of G.V / in GL.AX / via � �m.

Note that if s 2 G.SC/even does not belong to Spin.SC/, then �.s/ acts on SC as an
isometry, V and S� are s-invariant, but the action of s on V ˚ S� reverses the sign of
the pairing, so its restriction belongs to zO.V ˚ S�/ but not to O.V ˚ S�/, in analogy
to (4.16).

Consider the composite homomorphism

G.SC/even
sn
! S zO.V /! S zO.V=nV /:

Its composition with Ad zJ W Spin.V /! Spin.SC/ agrees with the restriction of the hom-
omorphism N�, given in (4.25), to Spin.V /. The image of G.SC/even

sn
in S zO.V=nV / leaves

the subgroup H 1.X;Z=nZ/� invariant. The quotient of .V=nV / by H 1.X;Z=nZ/� is
naturally isomorphic to H 1.X;Z=nZ/. We obtain a homomorphism

G.SC/even
sn
! GLŒH 1.X;Z=nZ/�: (4.33)
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5. Generators for the stabilizer Spin.S C/sn

Given a lattice ƒ, let R.ƒ/ be the group generated by reflections in C2 and �2 vectors
in ƒ. Set SR.ƒ/ WD R.ƒ/ \ SO.ƒ/ and SRC.ƒ/ WD R.ƒ/ \ SOC.ƒ/. The former is
generated by elements which are products of an even number of reflections. SRC.ƒ/ is
generated by elements which are either products of an even number of reflections in C2
vectors, or products of an even number of reflections in �2 vectors. Let U be the rank 2
even unimodular hyperbolic lattice. The lattice SC is isometric to U˚4. The orthogonal
group is generated by reflections, O.U˚k/ D R.U˚k/, for k � 3 (see [54, Sec. 4.3]).
Consequently, we get the following.

Corollary 5.1. SOC.U˚k/ D SRC.U
˚k/ for k � 3.

Set e1 WD .1; 0; 0/ 2 SC and e2 WD .0; 0; 1/ 2 SC. Let Spin.V /e1;e2 be the subgroup
of Spin.V / stabilizing both e1 and e2.

Lemma 5.2. Spin.V /e1;e2 leaves invariant each of the subspaces H 1.X; Z/ and
H 1. yX;Z/ of V , its action on H 1.X;Z/ factors through an isomorphism

f W Spin.V /e1;e2 ! SL.H 1.X;Z//;

and its action on H 1. yX;Z/ factors through an isomorphism with SL.H 1. yX;Z//.

Proof. Consider V as a subspace of C.V / as in Section 4. Then H 1.X;Z/ is the inter-
section of V with the left ideal of C.V / annihilating e2 and H 1. yX;Z/ is the intersection
of V with the left ideal annihilating e1. In the language of [6, Sec. 3.1] the elements ei ,
i D 1; 2, are pure spinors and each of the two maximal isotropic sublattices of V is the
one associated to the pure spinor. If g belongs to Spin.V /e1;e2 and v to H 1.X;Z/, then

�.g/.v/ � ei D .g � v � g
�1/ � ei D .g � v � g

�1/ � .g � ei / D g � .v � ei /;

where � denotes multiplication in C.V / as well as the module action of C.V / on S , and
the second equality follows since g stabilizes ei . Hence, �.g/.v/ � ei D 0, if and only if
v � ei D 0. Thus, Spin.V /e1;e2 leaves each ofH 1.X;Z/ andH 1. yX;Z/ invariant. Further-
more, z�.Spin.V /e1;e2/D zm.Spin.SC/e1;e2/, by (4.32), and the latter is Spin.H 2.X;Z//,
since H 2.X;Z/ is the subspace of SC orthogonal to ¹e1; e2º. Spin.H 2.X;Q// acts on
each of its half-spin representationsH 1.X;Q/ andH 1. yX;Q/ via an injective homomor-
phism into SL.H 1.X;Q// and SL.H 1. yX;Q//, by [6, III.7.2]. Hence, the homomorphism
f is well defined and injective.

Conversely, SL.H 1.X;Z// acts via isometries on
V2

H 1.X;Z/ and we get the com-
mutative diagram

Spin.V /e1;e2
f

//

((

SL.H 1.X;Z//

uu

SOC.
V2

H 1.X;Z//
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SOC.
V2

H 1.X;Z// is generated by products of two reflections in classes c 2H 2.X;Z/
with .c; c/SC D 2 and products of two reflections in classes c 2 H 2.X;Z/ with .c; c/SC
D �2, by Corollary 5.1. The left slanted arrow is surjective, since these generators are
in its image. The kernel of the right slanted arrow is � id, which is in the image of f ,
since zm.�1/, given in (4.31), acts as the identity on SC and maps to � idV . Hence, f is
surjective as well. The verification of the statement for H 1. yX;Z/ is identical.

Let sn WD .1; 0;�n/, n � 3.

Lemma 5.3. (1) The stabilizer SO.SC/sn is equal to the subgroup SR.s?n / of the reflec-
tion group of the orthogonal complement s?n � S

C of sn.

(2) R.s?n / is generated by O.H 2.X;Z// and reflections in vectors of the form .1; A; n/,
with A 2 H 2.X;Z/ a primitive class satisfying

R
X
A [ A D 2n � 2.

(3) SR.s?n / is generated by SO.H 2.X;Z// and products Rt1Rt2 of reflections, where
ti D .1; Ai ; n/ 2 s

?
n are vectors of the above form.

Proof. (1, 2) It suffices to prove that O.SC/sn is generated by O.H 2.X; Z// D
R.H 2.X;Z// and C2 vectors of the form .1; A; n/, with A primitive. The argument
proving Lemma 7.4 in [26] applies to show that the stabilizer O.SC/sn is generated by
O.H 2.X;Z// and reflections inC2 elements .r;A; rn/ 2 s?n , with A 2H 2.X;Z/ primit-
ive. If r D 0, thenR.r;A;rn/ belongs to R.H 2.X;Z//. If r ¤ 0, then the reflectionR.r;A;rn/
is a composition of reflections Rti , with ti D .1;Ai ; n/ aC2 vector in s?n , and Ai primit-
ive, by the argument proving [26, Lemma 7.7].

(3) Let t D .0;A; 0/ and uD .1;B;n/, with
R
X
A[AD˙2 and

R
X
B [B D 2n� 2.

The equalityRuRt DRtRtRuRt DRtRRt .u/ implies that every element of SR.s?n / can
be written as a product

Rt1 � � �RtkRu1 � � �Ru` ; (5.1)

with kC ` even, ti are˙2 vectors inH 2.X;Z/, and uj D .1;Bj ; n/ areC2 vectors in s?n ,
with Bj primitive.

It remains to prove that we can choose ` to be even as well. The proof is similar
to that of [26, Lemma 7.7]. Assume k and ` are odd. Choose A 2 H 2.X;Z/ satisfy-
ing .A; A/SC D 2 and .A; B1/SC D �1. Then A C B1 D RA.B1/ is a primitive class
in H 2.X; Z/. Set tkC1 WD .0; A; 0/. Then .tkC1; u1/ D �1 and v WD Ru1.tkC1/ D

tkC1 C u1 D .1; A C B1; n/. Thus, the subgroup generated by the three reflections
¹RtkC1 ; Ru1 ; Rvº is the permutation group Sym3, and

Ru1 D RtkC1Ru1Rv:

Substitute the right hand side for Ru1 in (5.1) to replace ` by `C 1.

Lemma 5.4. The stabilizer Spin.SC/sn is generated by Spin.SC/e1;e2 Š SL.H 1.X;Z//
and products t1t2 2 Spin.SC/sn , where each ti D .1; Ai ; n/ is a C2 vector in s?n and Ai
is a primitive class in H 2.X;Z/.



The monodromy of generalized Kummer varieties 255

Proof. Let SOC.SC/sn be the kernel of the restriction of the orientation character
(4.12) to SO.SC/sn . The homomorphism Spin.SC/sn ! SOC.S

C/sn is surjective, by
Lemma 4.1, and its kernel is equal to the kernel7 of Spin.SC/! SOC.S

C/ and is con-
tained in Spin.SC/e1;e2 . The homomorphism f W Spin.SC/e1;e2 ! SOC.H

2.X;Z// is
surjective, by Lemma 5.2. Hence, it suffices to prove that SOC.SC/sn is generated by
SOC.H

2.X; Z// and the products Rt1Rt2 of the reflections in the vectors ti . Let g
be an element of SOC.SC/sn . Then g D Ra1 � � �RakRt1 � � �Rt` with ai 2 H 2.X;Z/,
.a1; a2/SC D˙2, ti of the above form, and ` even, by Lemma 5.3 (3). Let k D kC C k�,
where k� is the number of ai with .a1; a1/SC D �2. Then k� is even, since g belongs
to SOC.SC/sn and .ti ; ti / D 2. Hence, kC is even as well and Ra1 � � �Rak belongs to
SOC.H

2.X;Z//.

6. Equivariance of the Chern character of a universal sheaf

Fix a non-negative integer n. Let Cn be the category whose objects are triples
.X; H; w/, where X is an abelian surface, w D .r; ˇ; s/ 2 H even.X;Z/ is a primitive
class with r � 0, ˇ 2 H 1;1.X; Z/, .w; w/SC D �2n, H is a w-generic polariza-
tion, and such that there exists a universal sheaf E over X �MH .w/. A morphism
in HomCn..X1; w1; H1/; .X2; w2; H2// consists of a pair .g; �/, where � is in Z=2Z
and g W H�.X1;Z/! H�.X2;Z/ is a group homomorphism mapping H even.X1;Z/ to
H even.X2;Z/ and H odd.X1;Z/ to H odd.X2;Z/ and satisfying the following condition.
There exists a ring isomorphism

 W H�.MH1.w1/;Z/! H�.MH2.w2/;Z/

such that for a choice of universal sheaves Ei over Xi �MHi .wi / and some class c 2
H 2.MH2.w2/;Z/ we have

.g ˝ /.ch.E1// D ch.E2/ exp.c/ if � D 0;

..�g�/˝ /.ch.E1// D ch.E_2 / exp.c/ if � D 1;
(6.1)

where � WH�.Xj ;Z/!H�.Xj ;Z/ acts onH i .Xj ;Z/ by .�1/i.i�1/=2. In the displayed
equation above E_2 is the derived dual, and the product is by the pull-backs of exp.c/ via
the projection to MH2.w2/.

Composition of morphisms .h; �/ 2 HomCn..X1;w1;H1/; .X2;w2;H2// and .g; ı/ 2
HomCn..X2; w2;H2/; .X3; w3;H3// is given by

.h; �/ ı .g; ı/ D .�ıh�ıg; � C ı/: (6.2)

We prove in this section that Cn is indeed a category with the above composition rule,
namely, the existence of a ring isomorphism  WH�.MH1.w1/;Z/!H�.MH3.w3/;Z/

7It is the order 2 subgroup generated by s � s, where s 2 SC is a class with QSC.s/ D �1.
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and a class c 2 H 2.MH3.w3/; Z/ needed for the right hand side of (6.2) to satisfy
one of the two conditions displayed in (6.1) (Corollary 6.5 and Lemmas 6.7 and 6.8).
Furthermore,  in (6.1) is uniquely determined by .g; �/ via an explicit formula (6.3)
(Lemma 6.4). Everything follows formally from the expression of the class of the diagonal
in H�.MH .w/ �MH .w/;Z/ in terms of a universal sheaf. We do not discuss exist-
ence of morphisms in this section. In Section 9, HomCn..X1; w1; H1/; .X2; w2; H2// is
shown to be non-empty (Theorem 9.3), and in Corollary 9.4 an injective homomorphism8

G.SCX /
even
w ! AutCn..X;w;H// is constructed for n � 3. In the current section we treat

the case where X is a K3 surface as well.
Given a smooth projective variety M , we denote by

` W
M
i

H 2i .M;Q/!
M
i

H 2i .M;Q/;

.r C a1 C a2 C � � � / 7! 1C a1 C
�
1
2
a21 � a2

�
C � � � ;

the universal polynomial map, which takes the exponential Chern character of a complex
of sheaves to its total Chern class. We let

DM W H
even.M;Z/! H even.M;Z/

be the dualization automorphism acting by .�1/i on H 2i .M;Z/.
LetX1 andX2 be two abelian orK3 surfaces and letwi 2H even.Xi ;Z/ be two Mukai

vectors. Assume that the moduli space M.wi / of Gieseker–Simpson stable sheaves onXi
(with respect to a choice of polarizations when the rank is different from 1) is compact for
i D 1; 2, and that dim.M.w1//D dim.M.w2//. Setm WD dim.M.wi //, i D 1; 2. Denote
by �i the projection from X1 �M.w1/ �X2 �M.w2/ onto the i -th factor. Set

D WD DX1�M.w1/�X2�M.w2/:

Given a class ı in H even.X1 � X2;Z/, classes ˛i in H even.Xi �M.wi /;Q/, and an ele-
ment � 2 Z=2Z, we define a class ı;�.˛1; ˛2/ in H 2m.M.w1/ �M.w2/;Q/ by

ı;�.˛1; ˛2/

D cm

�®
`
�
�24� ŒD

1��Œ��12.˛1/ � �
�
13.ı/� � �

�
34.˛2/ � �

�
1 .
p

tdX1/ � �
�
3 .
p

tdX2/�
�¯�1�

:

(6.3)

(The Todd classes tdXi are equal to 1 for an abelian surface.) If Ei is a complex of sheaves
on Xi �M.wi /, we denote ı;�.ch.E1/ �

p
tdX1 ; ch.E2/ �

p
tdX2/ also by ı;�.E1;E2/.

Let MH .w/ be a smooth and projective m-dimensional moduli space of H -stable
sheaves on a K3 or abelian surface X . Denote by pi the projection from MH .w/ � X �

MH .w/ onto the i -th factor and by pij the projection onto the product of the i -th and
j -th factors.

8The homomorphism sends f 2 G.SC
X
/even
w to .�ort.f / zmf ; ort.f //, where ort is the character

(8.3) and zm W G.SC
X
/even ! SO.SC

X
/ � S zO.S�

X
/ is given in (4.31).
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Theorem 6.1. Let E1, E2 be any two universal families of sheaves over X �MH .w/.

(1) ([24]) The class of the diagonal in the Chow ring of MH .w/ �MH .w/ is identified
by

cmŒ�p13Š.p
�
12.E1/

_
L
˝ p�23.E2//�;

where both the dual .E1/_ and the tensor product are taken in the derived category.

(2) ([25, Theorem 1]) The integral cohomology H�.MH .w/;Z/ is torsion free.

Remark 6.2. A version of Theorem 6.1 holds for a projective moduli space MH .w/

of H -stable sheaves on a K3 or abelian surface X , even if the universal sheaves E1
and E2 are twisted with respect to the pull-back to X �MH .w/ of a Brauer class � 2
H 2

an.MH .w/;O
�
MH .w/

/ (a Čech cohomology class for the analytic topology). In that case
a universal class e in the topological K-ring K.X �MH .w// of X �MH .w/ was con-
structed in [25, Sec. 3.1], unique up to tensorization by the class of a topological complex
line bundle. The statement of Theorem 6.1 then holds with Ei replaced by any such uni-
versal class ei in K.X �MH .w//, by [25, Prop. 24].

We denote by �X the class of the diagonal in X � X . Given a homomorphism g W

H�.X1;Z/! H�.X2;Z/ preserving the parity of the cohomological degree, we get the
class .1 � g/.�X1/ in H even.X1 �X2;Z/ inducing g. Set

g;�.˛; ˇ/ WD .1�g/.�X1 /;�
.˛; ˇ/: (6.4)

When the parameter � is omitted, it is understood to be zero. When X1 D X2 and g D id,
Grothendieck–Riemann–Roch yields the equality

id.E1;E2/ D cm¹�p13Š.p
�
12.E1/

_
L
˝ p�23.E2//º: (6.5)

In Section 8 we will see examples where g.E1; E2/ is the class of the graph of an iso-
morphism, when g is induced by a stability preserving auto-equivalence of the derived
category of the surface.

Identifying H�.M.w1/;Z/ with its dual, via Poincaré duality x 7!
R

M.w1/
x [ .�/,

we will view the class ı;�.E1; E2/ as a homomorphism (preserving the grading) from
H�.M.w1/;Z/ toH�.M.w2/;Z/. We identifyH�.X;Z/with its dual via Poincaré dual-
ity as well and regard classes in H�.X1 � X2;Z/ as homomorphisms from H�.X1;Z/
to H�.X2;Z/.

Let dX 2 AutŒH�.X;C/� and dM.w2/ 2 AutŒH�.M.w2/;C/� be graded ring auto-
morphisms preserving the intersection pairings and satisfying

DX�M.w2/ D dX ˝ dM.w2/ (6.6)

as automorphisms of H even.X �M.w2/;C/. Clearly, dX determines dM.w2/ uniquely,
and each is determined by the above equation, up to a constant factor on each graded sum-
mand of the cohomology groups. When X is a K3 surface, the odd cohomology groups
of both X and M.w2/ vanish, and we get a natural factorization by setting dX D DX



E. Markman 258

and dM.w2/ D DM.w2/. When X is an abelian surface, we can let dX and dM.w2/ act
on the i -th cohomology via multiplication by .

p
�1/i . Note that dX has order 4. Nev-

ertheless, conjugation by dX has order 2 and the corresponding inner automorphism
of AutŒH�.X;Z/� WD GLŒH even.X;Z/� � GLŒH odd.X;Z/� is independent of the choice
of dX in the factorization (6.6).

Let � 2 AutŒH�.X;Z/� be the element acting by .�1/i.i�1/=2 on H i .X;Z/. Then
dX commutes with � and the corresponding inner automorphisms of AutŒH�.X;Z/� are
equal.9 Note that dX is an isometry with respect to the pairing (4.15) onH�.X;C/ (since
dX commutes with � ). Similarly, dM.w2/ preserves the Poincaré duality pairing.

Let g WH�.X1;Z/!H�.X2;Z/ be a linear homomorphism preserving the parity of
the cohomological degree. Note that

dX2gd
�1
X1
D �g� (6.7)

and is hence an integral homomorphism. Indeed, dX� acts on H even.X/ as the identity
and on H odd.X/ via multiplication by a scalar. Hence, dX2�f D fdX1� for every lin-
ear homomorphism f W H�.X1;Z/! H�.X2;Z/ preserving the parity of the grading.
Applying the latter equality with f D �g� we get dX2gd

�1
X1
D dX2�.�g�/�d

�1
X1
D �g�:

Given � 2 Z=2Z, we set

d �Xi WD

´
dXi if � D 1;

id if � D 0:

We use this notation only in conjugation, where the equality d �X2g.d
�
X1
/�1D ��g�� makes

it unambiguous, since � is an involution.
Let  W H�.M.w1/; Z/ ! H�.M.w2/; Z/ be an isomorphism of graded rings.

Assume that universal sheaves Ei exist over Xi �M.wi / for i D 1; 2.

Definition 6.3. (1) Assume that g.w1/ D w2. We say that g˝  maps a universal class
of M.w1/ to a universal class of M.w2/ if

.g ˝ /.ch.E1/
p

tdX1/ D Œch.E2/
p

tdX2 ��
�
M.w2/

exp.cg/;

where the class cg 2 H 2.M.w2/;Z/ is characterized by

rank.w2/��M.w2/
cg D c1.E2/ � Œ.g ˝ /.ch.E1/

p
tdX1/�1: (6.8)

(2) Assume that g.w1/ D .w2/_. We say that g ˝  maps a universal class to the dual
of a universal class if

.g ˝ /.ch.E1/
p

tdX1/ D Œch.E_2 /
p

tdX2 ��
�
M.w2/

exp.cg/;

where rank.w2/��M.w2/
cg D �c1.E2/ � Œ.g ˝ /.ch.E1/

p
tdX1/�1:

(3) We say that g;�.E1; E2/ maps a universal class of M.w1/ to a universal class .or
the dual of a universal class/ of M.w2/ if d �X2g.d

�
X1
/�1 ˝ g;�.E1;E2/ does.

9In Section 4 the automorphism � is extended to the main anti-automorphism (4.4) of the Clif-
ford algebra C.V /; � is an element of G.SC/even (see Example 4.4).
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The following is a characterization of the class g.E1;E2/. Let .X1;L1/ and .X2;L2/

be polarized K3 or abelian surfaces, ML1.w1/ and ML2.w2/ compact moduli spaces of
stable sheaves, and Ei a universal sheaf over Xi �MLi .wi /.

Lemma 6.4 ([26, Lemma 5.2]). Suppose that f WH�.ML1.w1/;Z/!H
�.ML2.w2/;Z/

is a ring isomorphism, g W H�.X1;Z/! H�.X2;Z/ a linear homomorphism preserving
the parity of the cohomological degree, and f ˝ g maps a universal class of ML1.w1/

to a universal class of ML2.w2/. Then Œf � D g.E1;E2/: In particular, given g, a ring
isomorphism f satisfying the condition above is unique .if it exists/.

Corollary 6.5. Assume that g.E1; E2/ maps a universal class of M.w1/ to a univer-
sal class of M.w2/, h.E2; E3/ maps a universal class of M.w2/ to a universal class
of M.w3/, and both g.E1;E2/ and h.E2;E3/ are ring isomorphisms. Then hg.E1;E3/
D h.E2;E3/ ı g.E1;E2/.

Lemma 6.6. Let g W H�.X1;Z/! H�.X2;Z/ be a linear homomorphism.

(1) g;1.E1;E2/ D .d�1M.w1/
˝ 1/d�1

X2
g;0.E1;E2/ D .dM.w1/ ˝ 1/dX2g;0

.E1;E2/:

(2) When regarded as homomorphisms,

g;1.E1;E2/ D d�1
X2
g;0.E1;E2/ ı dM.w1/ D dX2g;0

.E1;E2/ ı d
�1
M.w1/

: (6.9)

Consequently, we have the following equalities:

.d�1X2 gdX1 ˝ g;1.E1;E2// ı .d
�1
X1
˝ d�1M.w1/

/ D d�1X2 g ˝ d�1X2 g;0
.E1;E2/;

.dX2gd
�1
X1
˝ g;1.E1;E2// ı .dX1 ˝ dM.w1// D dX2g ˝ dX2g;0

.E1;E2/:
(6.10)

(3) If g;1.E1; E2/ maps a universal class of M.w1/ to the dual of a universal class of
M.w2/, then dX2g˝ dX2g;0.E1;E2/maps a universal class of M.w1/ to a universal
class of M.w2/.

Proof. (1) The class g;1.˛1; ˛2/ involves �13� Œ�
�
12.˛1/�

�
24Œ.1˝ g/.�X1/��

�
34.˛2/�.

The corresponding class in the definition of h;0.˛1; ˛2/ is

�13�
�
D¹��12.˛1/�

�
24Œ.1˝ h/.�X1/�º�

�
34.˛2/

�
D �13�

�
��12.D˛1/�

�
24Œ.dX1 ˝ dX2/.1˝ h/.�X1/��

�
34.˛2/

�
:

Integrating first along the X1 factor and using the fact that dX1 is a ring automorphism
preserving the intersection pairing we get

�13�
�
��12..dM.w1/ ˝ 1/˛1/�

�
24Œ.1˝ dX2h/.�X1/��

�
34.˛2/

�
:

Now we can “pull dM.w1/ ˝ 1 out” as it commutes with the Gysin map �13� (by the
projection formula). Being a ring automorphism, dM.w1/ ˝ 1 commutes with `, the
inversion, and projection on the class of degree 2m. Setting h D d�1X2 g we get the first
identity. The second identity follows using the same argument, the fact that g;1.E1;E2/
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and .1 ˝ h/.�X / are even cohomology classes, and the identities D2 D id on the
even cohomology of the products Xi �M.wi / and X1 � X2, so dM.w1/ ˝ dX1 and
d�1

M.w1/
˝ d�1X1 restrict to the same automorphism of the even cohomology and so do

dX1 ˝ dX2 and d�1X1 ˝ d
�1
X2

.
(2) The equalities in (6.9) follow from part (1). Each equality in (6.10) follows from

the corresponding equality in (6.9).
(3) The equality g;1.E1; E2/ ı dM.w1/ D dM.w2/ ı g;1.E1; E2/ holds, since

g;1.E1; E2/ is assumed to be a graded ring isomorphism. The second equality below
follows.

dX2g ˝ dX2g;0
.E1;E2/

.6.10/
D dX2g ˝ .g;1.E1;E2/ ı dM.w1//

D dX2g ˝ .dM.w2/ ı g;1.E1;E2//

D .dX2 ˝ dM.w2// ı .g ˝ g;1.E1;E2//:

The latter is assumed to map a universal class to a universal class. Hence, so does dX2g˝
dX2g;0

.E1;E2/.

Lemma 6.7. Assume that g;1.E1;E2/ maps a universal class of M.w1/ to the dual of a
universal class of M.w2/, h;1.E2;E3/ maps a universal class of M.w2/ to the dual of a
universal class of M.w3/, and both g;1.E1;E2/ and h;1.E2;E3/ are ring isomorphisms.
Then �h�g;0.E1;E3/D h;1.E2;E3/ ı g;1.E1;E2/ and it is a ring isomorphism that maps
a universal class of M.w1/ to a universal class of M.w3/.

Proof. The equality

ŒdX3hd
�1
X2
˝ h;1.E2;E3/� ıD

�1
X2�M.w2/

ı ŒdX2gd
�1
X1
˝ g;1.E1;E2/� ıDX1�M.w1/

D .dX3hd
�1
X2
g/˝ Œh;1.E2;E3/ ı g;1.E1;E2/�

follows from the definition of dXi andDM.wi /, i D 1; 2; 3. The left hand side maps a uni-
versal class of M.w1/ to a universal class of M.w3/, by Lemma 6.6 (3). The right hand
side is the tensor product of the integral homomorphism dX3hd

�1
X2
g with a ring isomor-

phism. Lemma 6.4 implies that the latter must be dX3hd�1X2 g;0
.E1;E3/. Consequently,

.dX3hd
�1
X2
g/˝ ŒdX3hd

�1
X2
g;0.E1;E3/�

maps a universal class of M.w1/ to a universal class of M.w3/. Finally, the equality
dX3hd

�1
X2
g;0.E1;E3/ D �h�g;0.E1;E3/ follows from the equality dX3hd

�1
X2
D �h� (see

(6.7)).

Lemma 6.8. Assume that g;0.E1; E2/ maps a universal class of M.w1/ to a univer-
sal class of M.w2/, h;1.E2; E3/ maps a universal class of M.w2/ to the dual of a
universal class of M.w3/, f;0.E3; E4/ maps a universal class of M.w3/ to a univer-
sal class of M.w4/, and g;0.E1; E2/, h;1.E2; E3/, and f;0.E3; E4/ are ring isomor-
phisms. Then hg;1.E1; E3/ D h;1.E2; E3/ ı g;0.E1; E2/ and it is a ring isomorphism
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that maps a universal class of M.w1/ to the dual of a universal class of M.w3/. Simil-
arly, f;0.E3;E4/h;1.E2;E3/ D �f �h;1.E2;E4/ and it is a ring isomorphism that maps
a universal class of M.w2/ to the dual of a universal class of M.w4/.

Proof. The proof is similar to that of Lemma 6.7. We check only the latter equality. We
have h;1.E2;E3/ D dX3h;0.E2;E3/ ı d

�1
M.w2/

; by Lemma 6.6 (2). Hence,

f;0.E3;E4/h;1.E2;E3/ D fdX3h;0.E2;E4/ ı d
�1
M.w2/

;

by Corollary 6.5. The right hand side is equal to d�1
X4
fdX3h;1

.E2;E4/, by Lemma 6.6 (2).

The latter is equal to �f �h;1.E2;E4/, by (6.7).

Let g and  be as in Definition 6.3 (1).

Lemma 6.9. If g ˝  maps a universal class of M.w1/ to a universal class of M.w2/,
then .�g�/˝  maps the dual of a universal class of M.w1/ to the dual of a universal
class of M.w2/.

Proof. Set Di WD DXi�M.wi /, i D 1; 2. We have

.�g� ˝ /.ch.E1/_
p

tdX1/ D .D2.g ˝ /D1/
�
D1.ch.E1/

p
tdX1/

�
D .D2.g ˝ //.ch.E1/

p
tdX1/ D D2

�
ch.E2/

p
tdX2 exp.cg/

�
D ch.E2/_

p
tdX2 exp.�cg/:

7. Equivalences of derived categories

Let X be an abelian surface and let V , SC, and S� be the regular and half-spin integ-
ral representations of Spin.V / recalled in Section 4.1. Let Aut.Db.X// be the group of
auto-equivalences of the bounded derived category of coherent sheaves onX . Mukai, Pol-
ishchuk, and Orlov constructed a homomorphism Aut.Db.X//! Spin.V / whose image
is equal to the subgroup preserving the Hodge structure of V (see [39, Th. 3.5], [9, Prop.
4.3.7], and [17, Prop. 9.48]). Their result holds for abelian varieties of arbitrary dimension.
For abelian surfaces we get a homomorphism Aut.Db.X//! Spin.SC/ using the equal-
ity (4.32). In Corollary 7.8 below we exhibit an explicit lift to Aut.Db.X// of products
msmt 2 Spin.SC/ for certain pairs s; t 2 SC, each of self-intersection 2. These lifts will
be shown in Section 8 to induce isomorphisms of certain moduli spaces of stable sheaves.

7.1. Tensorization by a line bundle

Let F be a line bundle on X . Denote by �F 2 Spin.V / the element corresponding to
the auto-equivalence of Db.X/ of tensorization by F . Explicitly, �F is the element of
Spin.V / which maps to the element of GL.S/D GL.H�.X;Z// acting by multiplication
by the Chern character of F . That this element of GL.S/ is the image of a unique element
of Spin.V / is proven directly in [6, III.1.7].
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Lemma 7.1. �F acts on AX as follows:

(1) On SC: Given .r;H; s/ 2 SC,

�F .r;H; s/ D .r;H C rc1.F /; s C rc1.F /
2=2CH ^ c1.F //:

(2) On S�: Given .w;w0/ 2 H 1.X;Z/˚H 3.X;Z/,

�F .w;w
0/ D .w;w0 C c1.F / ^ w/:

(3) On V : Given .w; �/ 2 H 1.X;Z/˚H 1.X;Z/�,

�.�F /.w; �/ D .w �D� .c1.F //; �/:

Proof. The action on H�.X;Z/ is multiplication by the Chern character ch.F / WD 1C
c1.F / C c1.F /

2=2 of F . For the action on V , embed V in C.V / � EndŒH�.X; Z/�
sending .w; �/ to Lw CD� as in (4.3). Conjugation yields

�F ı .Lw/ ı .�F /
�1
D Lw ; �F ı .D� / ı .�F /

�1
D D� � LD� .c1.F //;

where the last equality is verified as follows. Set f WD c1.F /. For a 2 S we get

ch.F /.D� .ch.F �1/a// D D� .a/C ch.F /ŒD� .ch.F �1//�a;

and ch.F /D� .ch.F �1//D Œ1C f C f 2=2�Œ�D� .f /C fD� .f /�D�D� .f /: (Compare
part (3) with [6, proof of III.1.7, p. 74, last displayed formula]).

7.2. Fourier–Mukai transform with kernel the Poincaré line bundle

Let �X and � yX be the projections from X � yX onto the corresponding factors. Let
P be the normalized Poincaré line bundle over X � yX . Then P restricts to X � ¹tº,
t 2 yX , as a line bundle in the isomorphism class t and to ¹0º � yX as the trivial line
bundle. The Fourier–Mukai functor ˆP W D

b.X/ ! Db. yX/ with kernel P is given
by R� yX;�.L�

�
X .�/˝ P /. Let � W H�.X;Z/� ! H�. yX;Z/ be the natural isomorphism

identifying H j .X;Z/� and H j . yX;Z/. Explicitly, ��1 W H 1. yX;Z/! H 1.X;Z/� is the
dual of the composition of the isomorphisms

H 1.X;Z/! H1.Pic0.X/;Z/
D
�! H1. yX;Z/! H 1. yX;Z/�;

where the left one is induced by the identification Pic0.X/ D H 1.X;OX /=H
1.X;Z/ via

the exponential sequence. For k > 1, � is given by the composition Œ
Vk

H 1.X;Z/�� ŠVk
ŒH 1.X;Z/��!

Vk
H 1. yX;Z/, where the left isomorphism is the natural one and the

right is the k-th exterior power of � W H 1.X;Z/� ! H 1. yX;Z/. On the level of cohomo-
logy ˆP induces �P WD

P4
iD0 �

i
P

, where

�iP WD .�1/
i.iC1/=2� ı PDX W H i .X;Z/! H 4�i . yX;Z/; (7.1)



The monodromy of generalized Kummer varieties 263

and PDX is given in (4.20), by [37, Prop. 1.17]. Let‰P WD
b. yX/!Db.X/ be the integral

functor with kernel P_ ˝ ��
yX
! yX , where P_ is the line bundle dual to P . Then ‰P Œ2� is

the left adjoint of ˆP , by [17, Prop. 5.9]. We have the natural isomorphism

‰P Œ2� ıˆP Š idDb.X/; (7.2)

since ˆP is an equivalence [35, Theorem 2.2].
The following lemma deals with some delicate sign issues.

Lemma 7.2. The following equalities hold for classes � in H j .X; Z/ and ! in
H 4�j .X;Z/.

(1)
R
X
� ^ ! D

R
yX
�.PDX .�// ^ �.PDX .!//:

(2) PD�1
yX
..��/�1.�// D .�1/j �.PDX .�//:

(3) The isomorphism �P induces an isometry from SX WDH�.X;Z/ to S yX WDH
�. yX;Z/

with respect to the pairings given in (4.15).

Proof. (1) Let ¹e1; e2; e3; e4º be a basis of H 1.X;Z/ compatible with the orientation, so
satisfying

R
X
e1 ^ e2 ^ e3 ^ e4 D 1, and let ¹f1; f2; f3; f4º be a dual basis ofH 1. yX;Z/,

so that .��1.fi //.ej / D ıi;j . The element PDX .e1/ 2 H 3.X;Z/� sends e2 ^ e3 ^ e4 to
1 and its kernel consists of ¹e1 ^ ei ^ ej W 1 < i < j º, so �.PDX .e1// D f2 ^ f3 ^ f4.
Similarly, given a permutation � of ¹1; 2; 3; 4º,

�.PDX .e�.1/// D sgn.�/f�.2/ ^ f�.3/ ^ f�.4/;

�.PDX .e�.1/ ^ e�.2/// D sgn.�/f�.3/ ^ f�.4/;

�.PDX .e�.1/ ^ e�.2/ ^ e�.3/// D sgn.�/f�.4/:

The sign of the cyclic shift of four elements is �1, and so

�.PDX .e�.2/ ^ e�.3/ ^ e�.4/// D � sgn.�/f�.1/;

�.PDX .e�.3/ ^ e�.4/// D sgn.�/f�.1/ ^ f�.2/:

We getZ
yX

�.PDX .e�.1/// ^ �.PDX .e�.2/ ^ e�.3/ ^ e�.4///

D �

Z
yX

f�.2/ ^ f�.3/ ^ f�.4/ ^ f�.1/ D

Z
yX

f�.1/ ^ f�.2/ ^ f�.3/ ^ f�.4/

D sgn.�/ D
Z
X

e�.1/ ^ e�.2/ ^ e�.3/ ^ e�.4/:

Similarly,Z
yX

�.PDX .e�.1/ ^ e�.2/// ^ �.PDX .e�.3/ ^ e�.4/// D
Z
yX

f�.3/ ^ f�.4/ ^ f�.1/ ^ f�.2/

D

Z
yX

f�.1/ ^ f�.2/ ^ f�.3/ ^ f�.4/ D

Z
X

e�.1/ ^ e�.2/ ^ e�.3/ ^ e�.4/:
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Part (3) follows from part (1) and (7.1). Indeed,Z
X

� ^ !
.4.15/
D .�1/j.j�1/=2.�; !/SX ;Z

yX

�.PDX .�// ^ �.PDX .!//
.7.1/
D .�1/j.jC1/=2.�1/.4�j /.4�jC1/=2

Z
yX

�P .�/ ^ �P .!/

D .�1/j.j�1/=2.�1/.4�j /.4�j�1/=2
Z
yX

�P .�/ ^ �P .!/

.4.15/
D .�1/j.j�1/=2.�1/.4�j /.4�j�1/=2.�1/.4�j /.4�j�1/=2.�P .�/; �P .!//S yX

D .�1/j.j�1/=2.�P .�/; �P .!//S yX :

Hence, .�; !/SX D .�P .�/; �P .!//S yX , by part (1).
(2) Let  be a class in H j . yX;Z/. We have the equalities

.��1.//.�/ D ..��1/�.�//./ D ..��/�1.�//./ D

Z
yX

PD�1
yX
..��/�1.�// ^ ; (7.3)

where the last equality follows from the definition of PD yX . Now  D �.PDX .ı// for some
ı 2 H 4�j .X;Z/. Part (1) yields the second equality below:Z

yX

�.PDX .�// ^  D
Z
yX

�.PDX .�// ^ �.PDX .ı//

D

Z
X

� ^ ı D .�1/j.4�j /
Z
X

ı ^ � D .�1/j
Z
X

ı ^ �

D .�1/j .PDX .ı//.�/ D .�1/j .��1.//.�/

.7.3/
D .�1/j

Z
yX

PD�1
yX
..��/�1.�// ^ 

for all  in H j . yX;Z/. The equality in part (2) follows.

Lemma 7.3. The equality �.PDX .ˇ ^ w// D D.��/�1.w/.�.PDX .ˇ/// holds for all w 2
H 1.X;Z/ and all ˇ 2 H 2.X;Z/.

Proof. Let  be a class in H 1.X;Z/. Set zw WD .��/�1.w/ and z WD .��/�1./. Then
.��/�1.w ^ / D zw ^ z . We have

Dz .D zw.�.PDX .ˇ//// D . zw ^ z/.�.PDX .ˇ/// D
Z
yX

PD�1
yX
. zw ^ z/ ^ �.PDX .ˇ//

Lem. 7.2 (2)
D

Z
yX

�.PDX .w ^ // ^ �.PDX .ˇ//

Lem. 7.2 (1)
D

Z
X

w ^  ^ ˇ D

Z
X

ˇ ^ w ^  D .PDX .ˇ ^ w//./

D Dz .�.PDX .ˇ ^ w///:
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Let 'P W VX ! V yX be the isomorphism given by

'P .w; �/ D �.�.�/; .�
�/�1.w// (7.4)

for all .w; �/ 2 VX , w 2 H 1.X;Z/ and � 2 H 1.X;Z/�.

Lemma 7.4. The following diagram is commutative:

VX
� //

'P

��

C.VX / // End.SX / 3

Ad�P

��

f_

��

V yX
� // C.V yX /

// End.S yX / 3 �Pf �
�1
P

Proof. For w 2 H 1.X;Z/ we need to show that D'P .w/ D Ad�P
.Lw/. Evaluating both

sides on  2 H�. yX;Z/ the equality becomes

.�P ı Lw ı �
�1
P /./ D �D.��/�1.w/./: (7.5)

The above equality holds for all  2H 2. yX;Z/, by Lemma 7.3 applied with ˇ WD ��1
P
./.

Both sides of (7.5) vanish for  2 H 0. yX;Z/. For  WD Œpt yX � 2 H
4. yX;Z/, the left hand

side of (7.5) is �P .w/. The right hand side is

�D.��/�1.w/Œpt yX �
.4.21/
D PD�1

yX
..��/�1.w//

Lem. 7.2 (2)
D ��.PDX .w// D �P .w/:

Equation (7.5) thus holds for all  2 H even. yX;Z/. We have �P .Le�.1/.�
�1
P
.f�.1//// D

�P .Le�.1/.� sgn.�/e�.2/ ^ e�.3/ ^ e�.4/// D �P .�ŒptX �/ D �1 2H
0. yX;Z/. Similarly,

�D.��/�1.e�.1//.f�.1// D �1. Both sides of (7.5) vanish for  D fi and w D ej if i ¤ j .

The case  2 H 3. yX;Z/ checks as well.

We denote by � yX W H
j . yX;Z/� ! H j .

yyX;Z/ the homomorphism analogous to �. Let
yP be the Poincaré line bundle over yX � yyX . The composition � yP ı �P W SX ! S yyX

is equal
to � yX ı .�

�/�1. Indeed,

� yP ı �P D .�1/
j.jC1/=2.�1/.4�j /.4�jC1/=2� yX PD yX �PDX D .�1/j � yX PD yX �PDX

D � yX ı .�
�/�1;

where the last equality follows from Lemma 7.2 (2). Hence, given � 2 H 1. yX;Z/�, we
have

Ad� yP .�D� /
.7.5/
D Ad� yP ı Ad�P

.L��� / D AdŒ� yX .��/�1�.L��� /:

Now, � yX ı .�
�/�1 is a cohomology ring isomorphism. Hence the right hand side above is

equal toL.� yXı.��/�1/.���/ DL� yX .�/ D�L' yP .�/:We deduce that Ad� yP .D� /DL' yP .�/ for
the dual of every abelian surface. Hence

Ad�P
.D� / D L'P .�/ for every � 2 H 1.X;Z/�.
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Remark 7.5. The isomorphism � yX ı .�
�/�1 W H 1.X; Z/ ! H 1.

yyX; Z/ corresponds to

the standard isomorphism st W X ! yyX . The isomorphism 'P corresponds to an iso-

morphism z'P W X � yX ! yX �
yyX , which pulls back the line bundle yP to P�1. The

isomorphism �z'P pulls back the line bundle yP to P�1 as well and it restricts to the
second factor yX as the identity onto the first factor yX of the image. Similarly, �z'P

restricts to the first factor X as the standard isomorphism st onto the second factor yyX
of the image. Mukai and Orlov composed z'P with the isomorphism id yX � � .st/�1 W
yX �
yyX ! yX �X obtaining an isomorphism z�P W X � yX ! yX �X which pulls back yP

to P , and whose square is minus the identity (see [17, Rem. 9.12 and Ex. 9.38 (v), p. 213]
or [45, Rem. 2.2]).

The natural isomorphisms 'P W VX ! V yX and �P W SX ! S yX combine to yield
the linear isomorphism �P W AX ! A yX , which is an isometry. The isometry 'P has a
unique extension to an algebra isomorphism z'P W C.VX /! C.V yX /, by the definition of
the Clifford algebras, and z'P .Spin.VX // D Spin.V yX /, by definition of the spin groups.
Lemma 7.4 implies

z�.z'P .g// D Ad�P
.z�.g//

for all g 2 Spin.VX /, where z� W Spin.VX /! Aut.AX / is the restriction of the homomor-
phism given in (4.27) and we denote by z� W Spin.V yX /! Aut.A yX / its analogue.

7.3. Lifting products of two .C2/-reflections to auto-equivalences

Consider the natural homomorphism

Pic.X/! Pic. yX/; F 7! yF WD det .ˆP .F //
�1: (7.6)

Then c1. yF / D �.PD.c1.F ///, by (7.1).
Let F be a line bundle on X , and �F 2 Spin.VX / the isometry of H�.X;Z/ induced

by tensorization withF . Set s WD .1;0;1/2SCX and ys WD .1;0;1/2SC
yX

. Then .s; s/
S
C

X

D 2.
Denote by Rs the reflection (4.9) in s.

Lemma 7.6. The auto-equivalence ˆ�1
P
ı .˝ yF / ıˆP ı .˝F

�1/ of Db.X/ maps to the
element zms � zm�F .s/ of Aut.AX /. In other words,

z�.��1P ı � yF ı �P ı �
�1
F / D zms � zm�F .s/; (7.7)

where z� is the homomorphism in (4.26) and zm is defined in (4.31). The displayed element
acts on SCX via the composition Rs ıR�F .s/ of the two reflections.

Proof. Consider the composition � WD zmys ı �P W AX ! A yX . Then � maps H even.X;Z/

to H even. yX;Z/ and preserves the grading and � W SCX ! SC
yX

is given by

�.r;H; t/ D �.r; �.PD.H//; t/:
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Set z�F WD z�.�F / 2 Aut.AX / and define z� yF similarly. We claim that conjugation
yields the equality

� ı z�F ı �
�1
D z� yF (7.8)

in z�.Spin.V yX //. It suffices to verify that both sides act the same way on SC
yX

and on V yX ,

since Spin.V yX / acts faithfully on the direct sum SC
yX
˚ V yX . Both sides of (7.8) map to the

same element of SO.SC
yX
/, by the above computation of �. Let � be a class in H 1.X;Z/,

! a class in H 3.X;Z/, and set z� WD .��/�1.�/ 2 H 1. yX;Z/� and y! WD �.PDX .!// 2
H 1. yX;Z/: Consider the element .y!; z�/ 2 V yX . We have

z� yF .y!;
z�/ D .y! �Dz� .c1.

yF //; z�/ D .y! �Dz� .�.PDX .c1.F ////; z�/; (7.9)

where the first equality follows from Lemma 7.1 (3) and the second from the equal-
ity c1. yF / D �.PDX .c1.F /// observed above. Let us evaluate �z�F ��1.y!; z�/: Note that
zm�1
ys
D zmys . Example 4.2 with n D �1 yields the equality

zm�1
ys .y!;

z�/ D .y!;�PD�1
yX
.z�//

in S�
yX
. Now PD�1

yX
.z�/ D �P .�/, by Lemma 7.2 (2), and y! D �P .!/. Hence,

��1P .y!;�PD�1
yX
.z�// D .��; !/ (7.10)

in S�X . The equality z�F .��;!/D .��;! � c1.F /^ �/ holds by Lemma 7.1 (2). We have
the following two equalities, the first by (7.10):

�P .��; ! � c1.F / ^ �/ D .y! � �.PDX .c1.F / ^ �//;�PD�1
yX
.z�//;

zmys.y! � �.PDX .c1.F / ^ �//;�PD�1
yX
.z�// D .y! � �.PDX .c1.F / ^ �//; z�/:

The right hand side above is equal to the right hand side of (7.9), by Lemma 7.3. Hence,
both sides of (7.8) map to the same isometry of V yX as well, and (7.8) is verified.

Substitute the equality (7.8) into (7.7) to get the following equalities in Aut.A yX /:

��1P ı .� ı
z�F ı �

�1/ ı �P ı z�
�1
F D .��1P ı zmys ı �P / ı z�F ı .�

�1
P ı . zmys/

�1
ı �P / ı z�

�1
F

.7.11/
D zms ı z�F ı . zms/

�1 z��1F
.7.12/
D zms � zm�F .s/:

Lemma 7.7. The following equalities hold in GL.AX /:

��1P zmys�P D zms; (7.11)

z�F zms z�
�1
F D zm�F .s/: (7.12)

Proof. Equation (7.11): �P restricts to an isometry from SCX to SC
yX

, by Lemma 7.2. The
right hand side acts on SC by �Rs , where Rs is the reflection in s. The left hand side acts
by �R��1

P
.ys/ D �Rs as well.
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The element zms maps S�X to VX and VX to S�X , and zm2s D 1 2 Aut.AX /. Hence, it
suffices to check that both sides restrict to the same homomorphism from S�X to VX . Let
.˛; ˇ/ 2 S�X , ˛ 2 H 1.X;Z/ and ˇ 2 H 3.X;Z/. This checks as follows:

�P . zms.˛; ˇ//
.4.23/
D 'P .˛;�PDX .ˇ//

Lem. 7.4
D .�.PDX .ˇ//;�.��/�1.˛//:

zmys.�P .˛; ˇ// D zmys.�PDX .ˇ/;��PDX .˛//
.4.23/
D .�PDX .ˇ/;�PD yX .��PDX .˛///

Lem. 7.2 (2)
D .�.PDX .ˇ//;�.��/�1.˛//:

Equation (7.12): The restrictions of both sides to SCX are equal, since z�F restricts
to SCX as an isometry. Both sides map S�X to VX and VX to S�X . The square of both sides
is the identity, so it suffices to check that both sides restrict to the same homomorphism
from S�X to VX . This checks as follows. Let .˛; ˇ/ 2 S�X . We have

z�F . zms.˛; ˇ//
.4.23/
D z�F .˛;�PDX .ˇ//

Lem. 7.1
D .˛ CDPDX .ˇ/.c1.F //;�PDX .ˇ//;

zm�F .s/.
z�F . zms.˛; ˇ/// D zm�F .s/.˛ CDPDX .ˇ/.c1.F //;�PDX .ˇ//

D .˛ CDPDX .ˇ/.c1.F /// ^ �F .s/ �DPDX .ˇ/.�F .s//;

z�F .˛; ˇ/
Lem. 7.1
D .˛; ˇ C c1.F / ^ ˛/:

Substituting �F .s/ D 1C c1.F /C c1.F /2=2C ŒptX � we see that the right hand sides of
the two lines above are equal, using also the equalityDPDX .ˇ/.Œpt�/D �ˇ, which follows
from (4.21).

Assume now that F1 and F2 are two line bundles on X . Let ˆFi W D
b.X/! Db.X/

be tensorization by Fi .

Corollary 7.8. The auto-equivalence .ˆF�1
2
ı Œ1�ı‰P ıˆ yF2

/ı .ˆ yF�1
1
ı Œ1�ıˆP ıˆF1/

of Db.X/ is mapped to the element zm��1
F2
.s/ ı zm��1

F1
.s/ of Aut.AX /, which acts on SCX as

the composition R��1
F2
.s/ ıR��1

F1
.s/ of two reflections in theC2 vectors ��1Fi .s/, i D 1; 2:

.ˆF�1
2
ı Œ1� ı ‰P ı ˆ yF2

/ ı .ˆ yF�1
1
ı Œ1� ı ˆP ı ˆF1/ 7! zm��1

F2
.s/ ı zm��1

F1
.s/: (7.13)

Proof. The left hand side translates via (7.2) to the left hand side below:

�F�1
2
.��1P � yF2˝ yF�11

�P�F1˝F�12
/�F2

Lem. 7.6
D �F�1

2
. zms ı zm�

F�1
1
˝F2

.s//�F2

.7.12/
D zm��1

F2
.s/ ı zm��1

F1
.s/:

8. Monodromy of moduli spaces via Fourier–Mukai functors

Let ˆ W Db.X1/ ! Db.X2/ be an equivalence of derived categories of abelian sur-
faces which maps H1-stable sheaves with a primitive Chern character w1 to H2-stable
sheaves with Chern character w2. In Section 8.1 we note that ˆ induces an isometry
� WH�.X1;Z/!H�.X2;Z/ and an isomorphism f WMH1.w1/!MH2.w2/ such that
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� ˝ f� W H
�.X1 �MH1.w1/;Z/! H�.X2 �MH2.w2/;Z/ maps a universal class to

a universal class. In Section 8.2 we prove Theorem 1.2 constructing the homomorphism
mon W G.SC/even

sn
! Mon.M.sn//. In Section 8.3 we construct monodromy equivariant

homomorphisms from the half-spin representations SCX and S�X to canonical quotients of
Hd .M.sn/;Z/.

8.1. Stability preserving Fourier–Mukai transformations

Let Xi , i D 1; 2, be abelian surfaces, vi 2 SCXi a primitive Mukai vector, and Hi a vi -
generic polarization on Xi . Assume that the integral transform ˆF WD

b.X1/!Db.X2/

with kernel an object F in Db.X1 � X2/ is an equivalence, and ˆF .E/ is an H2-stable
sheaf with Mukai vector v2, for every H1-stable coherent sheaf E on X1 with Mukai
vector v1. Denote by ˆF � idM.v1/ W D

b.X1 �MH1.v1// ! Db.X2 �MH1.v1// the
integral transform with kernel the object inDb.X1 �MH1.v1/�X2 �MH1.v1//, which
is the derived tensor product of the pull-backs of the object F and the structure sheaf of
the diagonal in the cartesian square of MH1.v1/. Then ˆF � idM.v1/ is an equivalence
[45, Assertion 1.7]. Let Ev1 be a (possibly twisted) universal sheaf over X1 �MH1.v1/:

The object ˆF � idM.v1/.Ev1/ is represented by a flat (possibly twisted by the pull-back
of a Brauer class from MH1.v1/) family of H2-stable coherent sheaves with Mukai vec-
tor v2 on X2, by [37, Theorem 1.6]. Let f W MH1.v1/ ! MH2.v2/ be the classifying
morphism associated to this family. Then f is easily seen to be an open immersion,
which must be surjective, by compactness of MH1.v1/ and irreducibility of MH2.v2/

(Theorem 3.1). Hence, f is an isomorphism. Let �F W H�.X1;Z/! H�.X2;Z/ be the
parity preserving isomorphism induced by ˆF [17, Cor. 9.43]. Then �F .v1/ D v2. Let
evi 2 K.Xi �MHi .vi // be a universal class (see Remark 6.2).

Lemma 8.1. �F ˝ f� WH�.X1 �MH1.v1/;Q/!H�.X2 �MH2.v2/;Q/ maps a uni-
versal class to a universal class, in the sense of Definition 6.3. In particular, f� D
�F .ev1 ; ev2/:

Proof. The statement was proven in detail in [26, Lemma 5.6] in the case of moduli spaces
of sheaves on K3 surfaces. The proof for abelian surfaces is identical. We briefly outline
the argument in the case of fine moduli spaces admitting untwisted universal sheaves Evi ,
i D 1; 2. In that case .idX1 � f /

�Ev2 represents the object ˆF � idM.v1/.Ev1/, possibly
after replacing Ev2 by its tensor product with the pull-back of a line bundle on MH2.v2/.
Now chŒˆF � idM.v1/.Ev1/� D .�F ˝ id/.ch.Ev1//. Hence, .�F ˝ f�/ maps ch.Ev1/ to
ch.Ev2/. The equality f� D �F .Ev1 ;Ev2/ now follows from Lemma 6.4.

8.2. The monodromy representation of G.SC/even
sn

Let X be an abelian surface and let H be an ample line bundle on X with �.H/ D n � 2
(and genus nC 1 and degree 2n). Given a length nC 1 subscheme Z � X , we get the
equality

ch.IZ ˝H/ D .1;H;�1/:
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In particular, znC1 WD ch.IZ ˝H/ is orthogonal to s WD .1; 0; 1/, .znC1; s/SC D 0. Let
yX be the dual surface and yH the line bundle associated to H via (7.6). Then yH is ample

as well.

Proposition 8.2 ([56, Proposition 3.5]). LetE be a�-stable sheaf with ch.E/D .r;H;a/,
a < 0. Then the sheaf cohomology H i .ˆP .E// vanishes for i ¤ 1, and H1.ˆP .E// is a
�-stable sheaf with Chern character .�a; yH;�r/. In particular, if H generates Pic.X/,
then the composition Œ1� ıˆP induces an isomorphism of moduli spaces

MH .r;H; a/
Š
�!M yH

.�a; yH;�r/:

We conclude that the compositionˆ yH�1 ı Œ1� ıˆP ıˆH induces an isomorphism of
the moduli spaces

X ŒnC1� � yX ŠMH .1; 0;�n � 1/
Š
�!M yH

.1; 0;�n � 1/ Š yX ŒnC1� �X (8.1)

as well as of the Albanese fibers (the generalized Kummer varieties). An isomorphism
of cohomology rings induced via push-forward by an isomorphism is a parallel transport
operator, by definition (see footnote 2 in Sec. 1.6). Let EX and E yX be the universal ideal
sheaves. Setting g WD ���1

yH
ı �P ı �H , we see that (8.1) induces the parallel transport

operator g.EX ; E yX /, and the isomorphism g ˝ g.EX ; E yX / maps a universal class of
MH .1; 0;�n � 1/ to a universal class of M yH

.1; 0;�n � 1/, by Lemma 8.1. The latter
property is stable under deformation of the pair .X;H/, dropping the condition that H is
ample. Consequently, we get the following corollary.

Corollary 8.3. Let F1 and F2 be two line bundles with c1.Fi / primitive and �.Fi / D n.
The left hand side of equality (7.13), and hence its right hand side

g0 WD zm.1;F�1
2
;nC1/ ı zm.1;F�1

1
;nC1/;

has the property that g0.EX ;EX / is a monodromy operator which maps a universal class
of MH .1; 0;�n � 1/ to another universal class of MH .1; 0;�n � 1/.

Note that .1; F �1i ; nC 1/ D ��1Fi
.s/, i D 1; 2, are two vectors in SCX orthogonal to

the Chern character snC1 and of square 2 with respect to .�; �/
S
C

X

, so that g0 belongs to
Spin.SCX /snC1 .

Let the ample line bundle H on X have Euler characteristic nC 2, n � 2. Given a
length nC 1 subscheme Z � X , we get

znC1 WD ch.IZ ˝H/ D .1;H; 1/:

In particular, znC1 is orthogonal to the �2 vector s1 WD .1; 0;�1/. Let D yX W D
b. yX/!

Db. yX/op be the functor taking E 2 Db. yX/ to E_ WD RHom.E;O yX /. Set

GP WD D yX ıˆP Œ2�:

Given E 2 Db.X/, set
G iP .E/ WD H i .GP .E//;
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the i -th sheaf cohomology. If E is a coherent sheaf, then G i
P
.E/ is isomorphic to the

relative extension sheaf Ext i� yX
.P ˝ ��X .E/;OX� yX /, by Grothendieck–Verdier duality

and the triviality of the relative canonical line bundle !� yX .

Proposition 8.4 ([56, Proposition 3.2]). LetE be a�-stable sheaf with ch.E/D .r;H;a/,
a > 0. Then the sheaf cohomology G i

P
.E/ vanishes for i ¤ 2, and G 2

P
is a �-stable

sheaf with Chern character .a; c1. yH/; r/. In particular, if H generates Pic.X/, then the
composition GP Œ2� induces an isomorphism of moduli spaces

MH .r;H; a/
Š
�!M yH

.a; yH; r/:

We conclude that the composition ˆ yH�1 ı GP Œ2� ıˆH induces another isomorphism
between the moduli spaces in (8.1).

Denote by
�X W AX ! AX (8.2)

the element of G.SC/even in (4.24). Then �X acts on SC via DX WD �Rs ı Rs1 , where
s D .1; 0; 1/ and s1 D .1; 0;�1/.

Corollary 8.5. (1) The composition

��1
yH

.E
.1; yH;1/

;E yX / ı �P ;1.E.1;H;1/;E.1; yH;1// ı �H .EX ;E.1;H;1// W

H�.MH .1; 0;�1 � n/;Z/! H�.M yH
.1; 0;�1 � n/;Z/

is equal to � yX��1yH � yX�P�H ;1
.EX ; E yX /, is induced by an isomorphism of the moduli

spaces, and maps a universal class to the dual of a universal class.

(2) Let H and F be line bundles on X with �.F / D n, �.H/ D nC 2. Assume that the
classes c1.F / and c1.H/ in H 2.X;Z/ are primitive. Set

 WD ��X�
�1
F ��1P � yF �

�1
yH
� yX�P�H :

Then the automorphism  ;1.EX ; EX / of H�.M.1; 0;�1 � n/;Z/ is induced by a
monodromy operator.

Proof. (1) Let f WMH .1; 0;�1 � n/!M yH
.1; 0;�1 � n/ be the isomorphism in Pro-

position 8.4. Let � W MH .1; H; 1/! M yH
.1; yH; 1/ be the associated isomorphism. By

construction, we have an isomorphism, in the derived category of yX �MH .1;H; 1/,

.1 yX � �/
�.E_

.1; yH;1/
/ Š ˆP �O�M.1;H;1/

.E.1;H;1//

for suitably chosen universal sheaves. Consequently, we have the equality

ch.E_
.1; yH;1/

/ D .�P ˝ ��/.ch.E.1;H;1///;

and so �P ˝ �� maps a universal class of MH .1;H; 1/ to the dual of a universal class of
M yH

.1; yH; 1/. Hence, .d�1
yX
�P /˝ .d

�1

M.1; yH;1/
��/ maps a universal class of MH .1;H; 1/
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to a universal class of M yH
.1; yH; 1/. Lemma 6.4 implies the equality

d�1
M.1; yH;1/

�� D d�1
yX
�P ;0

.E.1;H;1/;E.1; yH;1//:

We get

�� D dM.1; yH;1/
d�1
yX
�P ;0

.E.1;H;1/;E.1; yH;1// D d�1
yX
�P ;0

.E.1;H;1/;E.1; yH;1//dM.1;H;1/:

The right hand side is equal to �P ;1.E.1;H;1/;E.1; yH;1//, by (6.9). Hence, the graph of �
is Poincaré dual to the class �P ;1.E.1;H;1/;E.1; yH;1//. The composition in the statement
of part (1) is equal to � yX��1yH � yX�P�H ;1

.EX ;EX /, by Lemma 6.8.

(2) The homomorphism 
���1
F
��1

P
� yF ;0

.E yX ;EX / is a deformation of the isomorphism
in Proposition 8.2 and is hence a parallel transport operator. The equality

 ;1.EX ;EX / D ���1
F
��1

P
� yF ;0

.E yX ;EX /� yX�
�1
yH
� yX�P�H ;1

.EX ;EX /

follows from Lemma 6.8. The latter is a composition of a parallel transport operator and
an isomorphism, and is hence a parallel transport operator (so a monodromy operator).

Let
ort W G.SC/even

! Z=2Z (8.3)

be the pull-back of the character ofO.SC/ corresponding to the orientation of the positive
cone in SCR and analogous to the character (4.12). The kernel of ort is Spin.SC/. Let
Z=2Z Ë Spin.SC/ be the semidirect product with multiplication given by .�1; g1/.�2; g2/
WD .�1 C �2; �

�2
X g1�

�2
X g2/. We have the isomorphism

b W G.SC/even
! Z=2Z Ë Spin.SC/;

given by b.g/ D .ort.g/; �ort.g/
X g/. Set sn WD .1; 0;�n/, n � 3. Note that �X belongs to

G.SC/even
sn

, by Example 4.4. Let  WZ=2Z Ì Spin.SC/!EndŒH�.M.sn/;Z/� send .�;g/
to the correspondence homomorphism induced by the class g;�.Esn ;Esn/. Set

mon WD  ı b W G.SC/even
! EndŒH�.M.sn/;Z/�: (8.4)

Let DX�M.sn/ be the automorphism of H even.X � M.sn/; Z/ acting on the group
H 2i .X �M.sn/;Z/ by .�1/i . Let �M be the unique solution of the equation

1˝ �M D .�X ˝ 1/ ıDX�M.sn/: (8.5)

Explicitly, �M acts onH j .M.sn/;Z/ via .�1/j.jC1/=2. We get the factorizationDX�MD

�X ˝ �M. We get the group homomorphism

G.SC/even
sn
! G.SC/even

sn
� AutŒH�.M.sn/;Z/�;

g 7! .�
ort.g/
X g�

ort.g/
X ; �

ort.g/
M

mon.g//;

whose image consists of pairs mapping a universal class to a universal class, by the fol-
lowing theorem. Set � WD �X .
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Theorem 8.6. (1) The class

�ort.g/g;ort.g/.Esn ;Esn/ 2 H
4nC4.M.sn/ �M.sn/;Z/

induces a graded ring automorphism for every g 2 G.SC/even
sn

. The resulting map

mon W G.SC/even
sn
! AutŒH�.M.sn/;Z/� (8.6)

is a group homomorphism.

(2) If ort.g/ D 0, then g ˝ g;0.Esn ;Esn/ maps a universal class to a universal class.

(3) If ort.g/ D 1, then g� ˝ �g;1.Esn ; Esn/ maps a universal class to the dual of a
universal class.

(4) The image of the homomorphism mon in (8.6) is contained in the monodromy group
Mon.M.sn//.

Proof. (1) The fact that the map mon is a group homomorphism would follow, once the
rest of the statements in parts (1)–(3) of the theorem are proven, by Corollary 6.5, and
Lemmas 6.7 and 6.8.

We first prove part (1) for the subgroup of Spin.SC/sn stabilizing both .1; 0; 0/ and
.0; 0; 1/. This subgroup is the image of SL.H 1.X;Z// via the inverse of the isomor-
phism f in Lemma 5.2. A marked compact complex torus of dimension 2 is a pair
.X 0; �/ consisting of a compact complex torus X 0 of dimension 2 and an isomorphism
� WH 1.X 0;Z/!H 1.X;Z/, whereX is our fixed abelian surface. Two pairs .X1; �1/ and
.X2;�2/ are isomorphic if there exists an isomorphism f WX1!X2 such that �2D �1f �.
Let M be the moduli space of isomorphism classes of marked compact complex 2-
dimensional tori. Let M0 be the connected component containing .X; id/. The group
GL.H 1.X;Z// acts on M, via g.X 0; �/ D .X 0; g�/, and the subgroup SL.H 1.X;Z//
leaves M0 invariant. We have a universal torus � W X !M0, a relative Douady space
XŒn�!M0 of length n zero-dimensional subschemes of fibers of � , a relative dual torus
y� W yX !M0, and so a relative moduli space MX.sn/ WD yX �M0 XŒn� !M0 of rank 1
torsion free sheaves on fibers of � with Chern character sn. Furthermore, we have a uni-
versal sheaf E over X �M0 MX.sn/.

Let MX .sn/ be the fiber of MX.sn/ over .X; id/. The group SL.H 1.X; Z// acts
via monodromy operators on H�.X;Z/ and on H�.MX .sn/;Z/, by [26, Lemma 6.6].
The Chern character ch.E/ maps to a global flat section of the local system R…�Q,
where … W X �M0 MX.sn/ !M0 is the natural morphism. Hence, ch.E/ restricts to
an SL.H 1.X;Z//-invariant class in H�.X �MX .sn//, under the diagonal monodromy
action. The statement of part (1) follows for the image of SL.H 1.X;Z// in Spin.SC/sn ,
by Lemma 6.4. The statement of part (1) follows for the elements of Spin.SC/sn which
are the compositions zmt1 zmt2 , where ti D .1; Ai ; n/ 2 s?n , satisfying .ti ; ti /SC D 2, and
Ai is a primitive class in H 2.X;Z/, by Corollary 8.3. The statement of part (1) follows
for the whole of Spin.SC/sn , since the latter is generated by the image of SL.H 1.X;Z//
and compositions zmt1 zmt2 as above, by Lemma 5.4.
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Part (2) is evident for elements of SL.H 1.X; Z// and it was verified in Corol-
lary 8.3 for the above mentioned compositions zmt1 zmt2 , so it follows for all elements
of Spin.SC/sn .

In the verification of part (3) we use the evident identity dX .�g/d�1X D �.�g/��1 D

g� and Definition 6.3 (3). Then Corollary 8.5 verifies part (3) for g D � , which belongs
to G.SC/even

sn
but not to Spin.SC/sn . The result of part (1) thus extends to G.SC/even

sn
.

(4) The statement was verified for elements of SL.H 1.X;Z// above, and is estab-
lished in Corollaries 8.3 and 8.5, hence it is verified for a set of generators of G.SC/even

sn
.

8.3. The half-spin representations as subquotients of the cohomology ring

We identify nextH 2.KX .n� 1/;Z/ as aG.SCX /
even
sn

-module by determining the equivari-
ance property of the isomorphism � in (3.2). We do this more generally for all degrees as
follows. Let zId be the ideal in H�.M.sn/;Z/ generated by H i .M.sn/;Z/, 1 � i � d ,
denote by zI j

d
its graded summand of degree j , and set I WD

L
d�2
zI d
d�1

. Set Q.M.sn//

WD H�.M.sn/;Z/=I . In particular, Q1.M.sn// D H 1.M.sn/;Z/, and Qd .M.sn// D

Hd .M.sn/;Z/=I d , where I d WD zI d
d�1

. For example,

I 2 D H 1.M.sn/;Z/ [H
1.M.sn/;Z/;

I 3 D H 1.M.sn/;Z/ [H
2.M.sn/;Z/;

I 4 D H 1.M.sn/;Z/ [H
3.M.sn/;Z/CH

2.M.sn/;Z/ [H
2.M.sn/;Z/:

We have the homomorphism z� W SX ! H�.M.sn/;Q/, given by

z�.�/ WD �M;�Œ�
�
X .�X .�// [ ch.E/�: (8.7)

Set S1X WD S
�
X , S2X WD S

C

X \ s
?
n , and for j > 2 let SjX be SCX if j is even, and S�X if j is

odd. Let
z�j W S

j
X ! Qj .M.sn//˝Z Q (8.8)

be the composition of z� with the inclusion SjX � SX and the projectionH�.M.sn/;Q/!

Qj .M.sn//˝Z Q:Note that z�j is independent of the choice of the universal sheaf, by our
definition of SjX and Qj .M.sn//: Note also that Q2.M.sn// is isomorphic to the second
integral cohomology H 2.Ka.sn/;Z/ of the generalized Kummer, z�2 above is injective
and has integral values, and the integral isomorphism � in (3.2) factors through z�2, since
H 1.Ka.sn/;Z/ vanishes.

The action of any graded ring automorphism of H�.M.sn/;Z/ descends to an action
on Qj .M.sn// for all j � 1. Similarly, the action of �M given in (8.5) descends to one
on Qj .M.sn// for all j � 1.

Corollary 8.7. The image of z�j , j � 1, is invariant under the monodromy action
of G.SCX /

even
sn

via the homomorphism mon given in (8.6) and the image spans
Qj .M.sn//˝Z Q. Furthermore, for all � 2 SjX and all g 2 G.SCX /

even
sn

we have

mong.z�j .�// D �
ort.g/
M

Œz�j .�
ort.g/
X g�

ort.g/
X .�//�: (8.9)
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In particular, z�j is mon-equivariant with respect to the subgroup Spin.SCX /sn of
G.SCX /

even
sn

.

Proof. The image of z�j spans Qj .M.sn// ˝Z Q, since the Künneth factors of ch.E/
generate H�.M.sn/;Q/, by [24, Cor. 2]. Let ¹x1; : : : ; x16º be a basis of SX with each
class either even or odd. Let ch.E/ WD

P
i xi ˝ ei be its Künneth decomposition. Then

z�.�/ D
P
i .�; xi /SX ei . If g belongs to Spin.V /sn , so that ort.g/ D 0, then

mong.z�.g�1.�/// D mong
�X
i

.g�1.�/; xi /SX ei

�
D

X
i

.�; g.xi //SX mong.ei /

D �M;�Œ�
�
X .�X .�// [ .g ˝mong/.ch.E//�:

Consequently, we get
mong.z�.g�1.�/// D z�.�/ exp.cg/; (8.10)

where the class cg is given in (6.8), since .g ˝ mong/.ch.E// is a universal class, by
Theorem 8.6. The projection of the right hand side to Q.M.sn//˝Z Q is equal to that
of z�.�/. The identity (8.9) follows.

Assume ort.g/ D 1. Then

mong.z�.�Xg�1�X .�/// D
X
i

.�; �Xg�X .xi //SX mong.ei /

D �M;�Œ�
�
X .�X .�// [ ¹..�Xg�X /˝mong/.ch.E//º�: (8.11)

Now, ..g�X /˝mong/.ch.E// is the dual of a universal class, by Theorem 8.6. So

..�Xg�X /˝mong/.ch.E//

projects to the image of .1˝ �M/.ch.E// in H�.X;Z/˝Q.M.sn//. We conclude that
the right hand side of (8.11) and �M.z�.�// project to the same class inQ.M.sn//. Hence,
so does the left hand side of (8.11). We have thus verified the equation obtained from (8.9)
by substituting .�Xg�X /.�/ for �. We conclude that (8.9) follows in this case as well.

We construct next an integral analogue of the homomorphism (8.8) into Qj .M.sn//.
Given a topological spaceM , letK.M/ WD K0.M/˚K1.M/ be the topologicalK-ring
of M . The Chern character induces a ring isomorphism ch W K.M/˝Z Q! H�.M;Q/
sendingK0.M/ intoH even.M;Q/ andK1.M/ intoH odd.M;Q/ [21, V.3.26]. The Chern
classes cj=2.x/ 2 H j .M;Z/ are defined for an odd integer j � 1 in [25, Def. 19]. They
satisfy the equality

chk�1=2.x/ D .�1/k�1=.k � 1/Šck�1=2.x/ (8.12)

for x 2 K1.M.sn// and a positive integer k, by [25, Lemma 22 (2)].
For the abelian surface X the Chern character is integral and we get an isomorphism

ch W K.X/! H�.X;Z/. Integrality follows for K0.X/, since the intersection pairing on
H 2.X;Z/ is even, and for K1.X/ since the coefficient of the right hand side of (8.12)
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is ˙1 for k D 1; 2. Surjectivity of ch W K.X/ ! H�.X;Z/ follows, since H�.X;Z/
is generated by H 1.X;Z/, the latter is spanned by pull-back of classes via maps to a
circle S1, and surjectivity of ch W K.S1/! H�.S1;Z/ is clear. The Künneth theorem in
K-theory yields an isomorphism

ŒK0.X/˝K0.M.sn//�˚ ŒK
1.X/˝K1.M.sn//�! K0.X �M.sn//;

by [1, Cor. 2.7.15]. Choose a basis ¹x1; : : : ; x16º of K.X/ which is a union of a basis
of K0.X/ and a basis of K1.X/. Let ŒE� 2 K.X �M.sn// be the class of a universal
sheaf. We get the Künneth decomposition

ŒE� D

16X
iD1

xi ˝ ei

with ei either in K0.M.sn// or K1.M.sn//.

Theorem 8.8 ([25, Theorem 1]). The Chern classes of ¹ei W 1 � i � 16º generate the
integral cohomology ring H�.M.sn/;Z/.

Let � ŠX W K.X/ ! K.X �M.sn// be the pull-back homomorphism and denote by
�M;Š W K.X �M.sn//! K.M.sn// the Gysin homomorphism. The involution �X acts
on H i .X;Z/ via .�1/i.i�1/=2, as in (4.15), and we denote the involution ch�1 ı �X ı ch W
K.X/! K.X/ by �X as well. We get the homomorphism e W K.X/! K.M.sn// given
by

e.�/ WD �M;Š.�
Š
X .�X .�// [ ŒE�/:

The Chern classes of e.xi /, 1 � i � 16, generate H�.M.sn/;Z/, by Theorem 8.8.
Let Ncj W K.M.sn// ! Q2j .M.sn// be the composition of the Chern class map

cj W K.M.sn// ! H 2j .M.sn/; Z/ with the natural projection H 2j .M.sn/; Z/ !
Q2j .M.sn//. Then Ncj is a group homomorphism. This is proven in [27, Prop. 2.6] for
an integer j � 0 and K0.M.sn//, and for a half-integer j and K1.M.sn// it follows
from (8.12) and the linearity of the Chern character homomorphism, hence of the integral
homomorphism .j � 1=2/Š chj .

Let
N�j W S

j
X ! Qj .M.sn//; j � 1, (8.13)

be the composition of

SX WD H
�.X;Z/

ch�1
���! K.X/

e
�! K.M.sn//

Ncj
�! Qj .M.sn// (8.14)

with the inclusion SjX ! SX .

Lemma 8.9. If the ranks of SjX and Qj .M.sn// are equal, then N�j is an isomorphism
and Qj .M.sn// is torsion free. This is the case for 1 � j � 3.
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Proof. The first statement is clear, since the homomorphism N�j is surjective for all j � 0,
by Theorem 8.8. Q1.M.sn// D H 1.M.sn/;Z/ and its rank is equal to the first Betti
number 8 of the Albanese X � yX of M.sn/. The rank of Q2.M.sn// is equal to that
of H 2.KX .n � 1/;Z/, which is 7 by Theorem 3.1, since H 1.KX .n � 1/;Z/ vanishes.
Q3.M.sn// is isomorphic to Q3.X Œn�/, since M.sn/ is isomorphic to yX � X Œn� and
H�. yX;Z/ is generated by H 1. yX;Z/. Now b3.X

Œn�/ D 40 by Göttsche’s formula [10,
Cor. 2.3.13], and

8 D rank.S�/ � rank.Q3.X Œn�// � 40 � b3.X/ � rank.Q2.X Œn�//b1.X/

D 40 � 4 � 7 � 4 D 8:

Hence, the ranks of S� and Q3.M.sn// are equal.

Lemma 8.10. The composition of N�2j with the natural homomorphism Q2j .M.sn//!

Q2j .M.sn//˝Z Q is equal to .�1/j�1.j � 1/Šz�2j if j is an integer, and to

.�1/j�1=2.j � 1=2/Šz�2j

if j is half an odd integer. Consequently, the integral version of (8.9), with z�k replaced by
N�k holds whenever Qk.M.sn// is torsion free, and in particular for k 2 ¹1; 2; 3º.

Proof. We have the commutative diagram

K.X/
�X //

ch
��

K.X/
�Š
X //

ch
��

K.X �M/
[ŒE�

//

ch
��

K.X �M/
�M;Š

//

ch
��

K.M/

ch
��

H�.X;Z/
�X // H�.X;Z/

��
X // H�.X �M;Q/

[ ch.E/
// H�.X �M;Q/

�M;�
// H�.M;Q/

The first (left) square commutes by definition of the top �X , the second and third by well
known properties of the Chern character, and the fourth by the topological version of
Grothendieck–Riemann–Roch and the triviality of the Todd class of X . Finally, let Nchj W
K.M/! Q2j .M/ ˝Z Q be the composition of chj with the quotient homomorphism
H 2j .M;Q/! Q2j .M/˝Z Q. Then Ncj D .�1/j��.j � �/Š Nchj , where � D 1 if j is an
integer, and � D 1=2 if j is half an odd integer (see for example [25, Lemma 22]).

9. Four groupoids

We extend in Corollary 9.4 the representation of G.SC/even
sn

in the monodromy group of
the moduli space M.sn/ of rank 1 sheaves, given in Theorem 8.6, to more general moduli
spaces. This is achieved by extending the monodromy group symmetry of a single moduli
space to a symmetry of the collection of all smooth and compact moduli spaces MH .w/

of stable sheaves on abelian surfaces with respect to a groupoid, whose morphisms are
parallel transport operators. In Corollary 9.6 we construct a Spin.SC/w -equivariant hom-
omorphism from the cohomology H�.MH .w/;Z/ of a moduli space of sheaves on an
abelian surface X to H�.X � yX;Z/.
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A groupoid is a category whose morphisms are all isomorphisms. Let G1 be the
groupoid whose objects are abelian varieties and whose morphisms HomG1.X; Y / are
objects E in Db.X � Y / such that the integral transform ˆE W D

b.X/! Db.Y / with
kernel E is an equivalence of triangulated categories. Composition of morphisms cor-
responds to convolution of the objects. Given abelian varieties X and Y of the same
dimension, let U.X � yX; Y � yY / be the set of isomorphisms f W X � yX ! Y � yY such
that f � W H 1.Y � yY ;Z/! H 1.X � yX;Z/ induces an isometry with respect to the sym-
metric bilinear pairing (4.1).10 Let G2 be the groupoid whose objects are abelian varieties
and whose morphisms HomG2.X;Y / are isomorphisms f WX � yX! Y � yY in the subset
U.X � yX;Y � yY /. Composition of morphisms is the usual composition of isomorphisms.
The following combines results of Orlov and Polishchuk.

Theorem 9.1 ([17, Prop. 9.39, Exercise 9.41, and Prop. 9.48]). There exists an explicit
full functor f W G1! G2 sending the object X to itself and associating to an equivalence
ˆE W D

b.X/ ! Db.Y / with kernel E 2 Db.X � Y / an isomorphism fE W X � yX !

Y � yY in U.X � yX; Y � yY /.

Let G3 be the groupoid whose objects are triples .X; w; H/, where X is an
abelian surface, w 2 SCX is a primitive Mukai vector, and H is a w-generic polar-
ization, such that the moduli space MH .w/ has dimension � 4. Morphisms in
HomG3 Œ.X1;w1;H1/; .X2;w2;H2/� are pairs .g;/, where g WH�.X1;Z/!H�.X2;Z/
is an isometry, with respect to the pairings (4.15), preserving the parity of the grading and
satisfying g.w1/ D w2, and  is a graded ring isomorphism

 W H�.MH1.w1/;Z/! H�.MH2.w2/;Z/:

Each pair .g; / is assumed to be the composition .gk ; k/ ı .gk�1; k�1/ ı � � � ı .g1; 1/,
where .gi ; i / is of one of three types. Type 1: gi WH�.Xi ;Z/!H�.XiC1;Z/ is induced
by an equivalenceˆEi WD

b.Xi /!Db.XiC1/ of triangulated categories which mapsHi -
stable sheaves with Mukai vectorwi toHiC1-stable sheaves with Mukai vectorwiC1, and
i is induced by an isomorphism zi WMHi .wi /!MHiC1.wiC1/ of moduli spaces, which
is in turn induced by ˆEi (see Section 8.1). Type 2: gi WH�.Xi ;Z/!H�.XiC1;Z/ and
i W H

�.MHi .wi /;Z/! H�.MHiC1.wiC1/;Z/ are parallel transport operators associ-
ated to a continuous path from a point b0 to a point b1 in the complex analytic base B
of a smooth family … WM ! B of moduli spaces of stable sheaves corresponding to a
family � W X ! B of abelian surfaces, and a section w of Reven��Z of Hodge type, as
well as a section h ofR2��Z of Hodge type (not necessarily continuous) such that h.b/ is
a w.b/-generic polarization on the fiber Xb of � , and the fiber Mb of … is a smooth and
projective moduli space Mh.b/.w.b// of h.b/-stable sheaves over Xb for all b 2 B . An
isomorphism is chosen betweenXi andXb0 , mappingw1 andH1 tow.b0/ and h.b0/. An
isomorphism is chosen between XiC1 and Xb1 with the analogous properties. The chosen
isomorphisms yield isomorphisms between Mb0 and MHi .wi / and between Mb1 and

10See [17, Def. 9.46] for a matrix form characterization of elements of U.X � yX; Y � yY /.



The monodromy of generalized Kummer varieties 279

MHiC1.wiC1/. Type 3: Analogous to type 2 but the Mukai vectors are all .1; 0;�n/, the
data h is dropped, the family � WX! B is a smooth and proper family of 2-dimensional
complex tori, and each fiber Mb is the product X Œn�

b
� yXb , where the first factor is the

Douady space of length n subschemes.

Remark 9.2. Note that in each of the three types of morphisms .gi ; i / above, gi ˝ i
maps a universal class to a universal class, in the sense of Definition 6.3. This is obvi-
ous for types 2 and 3, and for type 1 it follows from Lemma 8.1. Consequently, the
same holds for their composition .g; /, by Corollary 6.5. In particular, a morphism
.g; / is determined already by g, since  D g.Ew1 ; Ew2/, by Lemma 6.4. Whenever
non-empty, HomG3 Œ.X; sn; H/; .X; w; H/� is a right AutG3.X; sn; H/-torsor and a left
AutG3.X; w; H/-torsor. AutG3.X; sn; H/ contains Spin.SCX /sn for sn WD .1; 0;�n/ and
n � 3, by Theorem 8.6.

The main result of [56] may be stated as follows.

Theorem 9.3. The set HomG3 Œ.X1; w1; H1/; .X2; w2; H2/� is non-empty for any two
objects .Xi ; wi ;Hi /, i D 1; 2, of G3 with .w1; w1/SC

X1

D .w2; w2/SC
X2

.

Let .X;w;H/ be an object of G3 with .w;w/
S
C

X

D �2n, n � 3, and denote by ew 2
K.X �MH .w// the class of a possibly twisted universal sheaf.

Corollary 9.4. The class 
�

ort.g/
X

g;ort.g/.ew ; ew/ 2H
4nC4.MH .w/�MH .w/;Z/ induces

a monodromy operator mon.g/ 2 Aut.H�.MH .w/;Z// for every g 2 G.SCX /
even
w . The

resulting map
mon W G.SCX /

even
w ! Aut.H�.MH .w/;Z//

is a group homomorphism. The analogues of statements (2) and (3) of Theorem 8.6 hold
as well.

Proof. Choose a morphism .g; / 2 HomG3 Œ.X1; sn; H1/; .X; w; H/�, where n D

�.w;w/
S
C

X

=2. Such a morphism exists by Theorem 9.3. Let esn be the class of a universal
sheaf over X1 �MH1.sn/. Then  D g.esn ; ew/, by Remark 9.2. Now g W SX1 ! SX
is the composition of parallel transport operators and isomorphisms induced by equi-
valences of derived categories of abelian surfaces and g.sn/ D w. Thus, g conjugates
G.SCX1/

even
sn

to G.SCX /
even
w . Given f 2 G.SCX1/

even
sn

, let mon.f / 2 Mon.MH1.sn// be the
monodromy operator of Theorem 8.6. Then mon.f / D 

�
ort.f /
X1

f;ort.f /.esn ; esn/. The con-

jugate  ımon.f / ı �1 is equal to 
�

ort.f /
X

gfg�1;ort.f /.ew ; ew/, by Lemma 6.8. The latter

is just mon.gfg�1/, since ort.gfg�1/D ort.f /. Hence, the map mon of the current corol-
lary is the conjugate via  and g of the homomorphism mon of Theorem 8.6:

mon.h/ D  ımon.g�1hg/ ı �1

for every h 2 G.SCX /
even
w . It is thus a group homomorphism into the monodromy group.

If ort.h/ D 0, then h ˝ mon.h/ maps a universal class to a universal class, since
g�1hg ˝mon.g�1hg/ and g ˝  do. The case ort.h/ D 1 is similar.
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Let G4 be the groupoid whose objects are 2-dimensional compact complex toriX , and
let HomG4.X; Y / consist of ring isomorphisms f W H�.X � yX;Z/! H�.Y � yY ;Z/,
each of which is the composition fk ı fk�1 ı � � � ı f1 of a sequence of isomorphisms
fi W H

�.Xi � yXi ;Z/! H�.XiC1 � yXiC1;Z/ of one of two types. Type 1: Xi and XiC1
are projective and fi is induced by an isomorphism zf W Xi � yXi ! XiC1 � yXiC1 in
U.Xi � yXi ; XiC1 � yXiC1/. Type 2: fi is the parallel transport operator associated to a
continuous path from a point b0 to a point b1 in the base B of a smooth and proper family
� W X ! B of 2-dimensional compact complex tori. Isomorphisms are chosen between
Xb0 is and Xi and between Xb1 and XiC1.

We define next a functor F W G3! G4 as follows. F sends the object .X;w;H/ to X .
F sends a morphism .g; / W .X1; w1;H1/! .X2; w2;H2/ of type 1, corresponding to a
Fourier–Mukai transformation ˆE W D

b.X1/! Db.X2/ with kernel E 2 Db.X1 �X2/,
to the isomorphism fE;� W H

�.X1 � yX1;Z/! H�.X2 � yX2;Z/ induced by the isomor-
phism fE W X1 � yX1 ! X2 � yX2 of Theorem 9.1. Morphisms of types 2 and 3 in G3 are
associated to continuous paths in the bases of families of 2-dimensional complex tori Xb
and F sends these to the associated parallel transport operators of the fourfolds Xb � yXb .

Let Alg be the category of commutative algebras with a unit. Let‰ W G3! Alg be the
functor which sends an object .X;w;H/ toH�.MH .w/;Z/. The functor‰ sends a mor-
phism .g;/ in G3 to  . Let† W G4!Alg be the functor which sendsX toH�.X � yX;Z/.
The functor † sends a morphism in G4 to itself. We get a second functor † ı F from G3
to Alg:

Given an object .X; w;H/ of G3 and a generic H -stable coherent sheaf F on X of
Mukai vector w, we get the embedding

�F W X � yX !MH .w/ (9.1)

given by �F .x; L/ D �x;�.F /˝ L, where L 2 yX , x 2 X , and �x W X ! X sends x0 to
x C x0. We postpone the proof that �F is an embedding to Lemma 10.1 (1). The homo-
morphism ��F W H

�.MH .w/;Z/! H�.X � yX;Z/ is independent of the choice of such
a generic F , as the data ��F is discrete and depends continuously on F . We thus denote ��F
also by

qw W H
�.MH .w/;Z/! H�.X � yX;Z/: (9.2)

Proposition 9.5. The assignment .X; w; H/ 7! qw defines a natural transformation q
from ‰ to † ı F .

Proof. Given an isomorphism  WH�.MH1.w1/;Z/!H�.MH2.w2/;Z/ corresponding
to a morphism .g; / in HomG3 Œ.X1; w1; H1/; .X2; w2; H2/� and Hi -stable sheaves Fi
on Xi with Mukai vectors wi , i D 1; 2, we need to prove that the following diagram is
commutative:

H�.MH1.w1/;Z/


//

��
F1
��

H�.MH2.w2/;Z/

��
F2
��

H�.X1 � yX1;Z/
†.F .g;//

// H�.X2 � yX2;Z/
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The commutativity for morphisms .g; / of type 2 and 3 is obvious. Consider next the
case where .g; / is of type 1, associated to a stability preserving Fourier–Mukai trans-
formation ˆE W D

b.X1/! Db.X2/, which induces an isomorphism

z WMH1.w1/!MH2.w2/

of the two moduli spaces, and we choose F2 to be a sheaf representing the objectˆE.F1/.
The commutativity of the above diagram follows from the commutativity of the diagram

X1 � yX1 //

fE

��

Aut.MH1.v1//

Adz

��

g

��

X2 � yX2 // Aut.MH2.v2// zgz�1

The commutativity of the latter diagram follows from the analogous commutativity when
we regard Xi � yXi as a subgroup of the group of auto-equivalences of the derived cat-
egories Db.Xi / of Xi and regard MHi .vi / as a subset of objects in Db.Xi / for i D 1; 2
(see [17, Cor. 9.58]).

The group Spin.SCX /sn acts on H�.MH .sn/;Z/ via the monodromy representation
mon in (8.6). Corollary 9.4 implies that Spin.SCX /w similarly acts on H�.MH .w/;Z/.
The group H 1.X � yX;Z/ is the representation VX of Spin.SCX / and so Spin.SCX /w acts
on H�.X � yX;Z/ Š

V�
VX :

Corollary 9.6. The homomorphism qw W H
�.MH .w/;Z/! H�.X � yX;Z/, given in

(9.2), is Spin.SCX /w equivariant.

Proof. The proof of Theorem 8.6 exhibits the image of Spin.SCX /sn via mon as a sub-
group of the automorphism group AutG3.X; sn; H/. Conjugating by a morphism in
HomG3 Œ.X; sn;H/; .X;w;H/� we find that Spin.SCX /w is a subgroup of AutG3.X;w;H/,
for every object .X;w;H/ of G3, by Corollary 9.4. Now qw is AutG3.X;w;H/-equivari-
ant, by Proposition 9.5.

Let N�1 W S�X ! H 1.M.w/;Z/ be the isomorphism given in (8.13). Let m W SCX !
Hom.S�X ; VX / be the homomorphism given in Corollary 4.7.

Lemma 9.7. The composition qw ı N�1 WS�X !H
1.X � yX;Z/DVX is eithermw or�mw .

Proof. Both qw and N�1 are Spin.SCX /w -equivariant, and thus so is their composition.
The homomorphism qw is equivariant, by Corollary 9.6. Equivariance of N�1 is proven in
Lemma 8.10 whenwD sn and the proof goes through in the general case, once we replace
Theorem 8.6 by Corollary 9.4. Hence, qw ı N�1 is a multiple kmw for some integer k. It
remains to prove that jkj D 1. It suffices to prove it forwD sn, by Theorem 9.3. It suffices
to prove that the cardinality of coker.qsn/ is equal to that of the group �sn of n-torsion
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points of X , by Remark 4.3 and the fact that z�1 is an isomorphism. The cokernel of qsn is
equal to the cokernel of the composition

H 1.Alb.M.sn//;Z/! H 1.M.sn/;Z/
��
F
�! H 1.X � yX;Z/;

since the left arrow is an isomorphism and the right is qsn . Now, Alb.M.sn// D X � yX

and the above displayed composition is the pull-back by the homomorphism X � yX !

X � yX corresponding to multiplication by n on the first factor and the identity on the
second, whose kernel is �sn (see [11, proof of Th. 7]).

10. The monodromy of a generalized Kummer

We prove Theorem 1.4, about Mon2.Y / for an irreducible holomorphic symplectic mani-
fold Y deformation equivalent to a generalized Kummer, in Section 10.1. In Section 10.2
we relate the Lie algebra of the Zariski closure of the monodromy integral Spin.7/-
representation we constructed on the cohomology of Y to an action of a Lie algebra
constructed by Verbitsky. We use it to show that Spin.7/-invariant classes are Hodge
classes (Lemma 10.8).

10.1. The monodromy action on the translation-invariant subring

Let M.v/ WDMH .v/ be a smooth and compact moduli space ofH -stable sheaves of prim-
itive Mukai vector v of dimensionm� 8 over an abelian surfaceX . The Albanese variety
Alb0.M.v// is the connected component of the identity in the larger groupD.M.v//, the
Deligne cohomology group of M.v/ (see [8]). They fit in the exact sequence

0! Alb0.M.v//! D.M.v//! Hm;m.M.v/;Z/! 0:

Denote by Albd .M.v// the connected component of Deligne cohomology mapping to d
times the class Poincaré dual to the class of a point in Hm;m.M.v/;Z/. Let

alb WM.v/! Alb1.M.v//

be the Albanese morphism. The abelian fourfoldA WDX � Pic0.X/ acts on M.v/. Given a
point F 2M.v/ the action yields the morphisms �F WX � Pic0.X/!M.v/ and alb ı �F W
A! Alb1.M.v//. Define the morphism Nq W A! Alb0.M.v// by

Nq.g/ WD .alb ı �F /.g/ � alb.F /;

where the difference is defined, since Alb1.M.v// is an Alb0.M.v//-torsor. Then Nq is a
group homomorphism, since every morphism of abelian varieties mapping the identity to
the identity is a group homomorphism. The morphism Nq is independent of the point F
of M.v/, since it depends on F continuously and varies in a discrete group. We have

.alb ı �F /.g1 C g2/ D Nq.g1 C g2/C alb.F / D Nq.g1/C Œ Nq.g2/C alb.F /�

D Nq.g1/C .alb ı �F /.g2/:
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Thus, the action fits in the commutative diagram

A �M.v/

Nq�alb
��

� //M.v/

alb
��

Alb0.M.v// � Alb1.M.v//
N� // Alb1.M.v//

(10.1)

where � and N� are the action morphisms. The anti-diagonal action of a 2 A on A�M.v/

sends .b; F / to .b � a; �.a; F //.
Choose a point a 2 Alb1.M.v// and denote by Ka.v/ the fiber of alb over a. Let

�a WKa.v/!M.v/ be the inclusion. The pull-back homomorphism ��a WH
i .M.v/;Z/!

H i .Ka.v/;Z/ factors through a homomorphism

hi W Q
i .M.v//! H i .Ka.v/;Z/ (10.2)

for i D 2; 3, since H 1.Ka.v/;Z/ vanishes. Furthermore, h2 is an isomorphism, by The-
orem 3.1, and h3 is injective with finite cokernel, since Q3.M.v// is torsion free, by
Lemma 8.9, and pull-back by the covering map q W A �Ka.v/!M.v/ induces an iso-
morphism q� WH 3.M.v/;Q/!H 3.A�Ka.v/;Q/; by Göttsche’s formula for the Betti
numbers of Ka.v/ [10, Prop. 2.4.12].

Lemma 10.1. (1) The morphism �F is an embedding for generic F . In particular, the
abelian fourfold A WD X � Pic0.X/ acts faithfully on M.v/.

(2) The composition

S�X

z�1
Š
�! H 1.M.v/;Z/

.alb�/�1
Š

�����! H 1.Alb0.M.v//;Z/
Nq�

�! H 1.A;Z/ Š V

is mv or �mv . In particular, the kernel of the homomorphism Nq W A! Alb0.M.v//

is the subgroup �v of Remark 4.3. Consequently, �v acts on each fiber Ka.v/ of the
Albanese morphism.

(3) M.v/ is isomorphic to the quotient of A �Ka.v/ by the anti-diagonal action of �v .

(4) �v acts trivially on H i .Ka.v/;Z/, i D 2; 3, but embeds in Mon.Ka.v//. The image
of �v in Mon.Ka.v// is characterized as the subgroup of Mon.Ka.v// acting trivi-
ally on H i .Ka.v/;Z/, i D 2; 3.

Proof. Part (2) was established in Lemma 9.7. Let sn be the Mukai vector .1;0;�n/ of the
ideal sheaf of a length n subscheme ofX . Parts (1) and (3) are known when vD sn: see for
example [11, proof of Th. 7]. These statements follow from the case of sn whenever there
exists a Fourier–Mukai equivalenceˆ WDb.X/!Db.X 0/ of the derived categories map-
ping the Mukai vector v to sn and inducing an isomorphism between the moduli spaces
M.v/ and M.sn/. The fact that the action of X � Pic0.X/ on M.v/ conjugates to that
of X 0 � Pic0.X 0/ on M.sn/ follows from Orlov’s characterization of X � Pic0.X/ as the
connected component of the identity of the subgroup of the group of auto-equivalences
of Db.X/ which act trivially on the cohomology of X [17, Cor. 9.57]. The statements
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follow for a general moduli space M.v/ as above by Yoshioka’s proof that M.v/ is con-
nected to M.sn/ via a sequence of stability preserving Fourier–Mukai transformations
(inducing isomorphisms of moduli spaces) and deformations of the abelian surface (The-
orem 9.3).

Part (4) again reduces to the case v D sn. When v D sn, the abelian fourfold
X � Pic0.X/ naturally acts on M.v/, and the subgroup �X , of torsion points of X of
order n, is a subgroup of the first factor, which coincides with the subgroup �sn of
Remark 4.3. Write a D .x0; L/, x0 2 X and L 2 Pic0.X/. Let �a be the automorphism
of Ka.sn/ induced by pull-back of sheaves on X by the automorphism x 7! 2x0 � x of
X , followed by tensorization by L2. The group �X acts on Ka.sn/ by translation and is
equal to the subgroup of its automorphism group which acts trivially on H i .Ka.sn/;Z/,
i D 2; 3, while the subgroup of the automorphism group ofKa.sn/ which acts trivially on
H 2.Ka.sn/;Z/ is generated by �X and �a, by [3, Th. 3 and Cor. 5]. The automorphism �a
acts on H 3.Ka.sn/;Q/ via multiplication by �1 and �X embeds in Mon.Ka.sn//, by
[44, Th. 1.3]. The subgroup of Mon.Ka.sn// acting trivially on H 2.Ka.sn/;Z/ is known
to be induced by automorphisms, by [13, Th. 2.1], and thus contains the image of �X as
an index 2 subgroup.

Proposition 10.2. There exists a unique injective homomorphism11

mon W G.SCX /
even
v ! Mon.Ka.v//=�v

such that both h2 and h3, given in (10.2), are G.SCX /
even
v -equivariant with respect to the

homomorphisms mon, given in Corollary 9.4, and mon.

Proof. Let � W M ! T be a smooth and proper family of Kähler manifolds with
fiber M.v/ over a point t0 of an analytic space T . We get the commutative diagram of the
relative Albanese variety Alb1� of degree 1:

Ka.v/
�a //

��

M.v/

alb
��

� //M

ealb
��

�

vv

¹aº
� //

%%

Alb1.M.v//
� //

��

Alb1�

p

��

¹t0º
� // T

The morphism p is a fibration with connected fibers. Hence, the homomorphism p� W

�1.Alb
1
� ; a/ ! �1.T; t0/ is surjective. Let g 2 Mon.M.v// be a monodromy oper-

ator corresponding to a class  2 �1.T; t0/. Choose a class z in �1.Alb1� ; a/ such that

11Once Theorem 1.4 is proven it would follow that this homomorphism is in fact an isomorphism.
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p�.z/ D  . Let zg be the monodromy operator of Ka.v/ corresponding to z . Then the
pull-back homomorphism ��a W H

�.M.v/;Z/! H�.Ka.v/;Z/ is .g; zg/-equivariant,

��a.g.x// D zg.�
�
a.x//

for all x 2 H�.M.v/;Z/, since the evaluation homomorphism

p�R��Z! Rfalb�Z

is a global section, hence monodromy invariant. It follows that the homomorphisms h2
and h3 are .g; zg/-equivariant as well. Now, the image of zg in Mon.Ka.v//=�v is determ-
ined by its action on H i .Ka.v/;Q/ for i D 2; 3. Indeed, if zg1, zg2 2 Mon.Ka.v// and
zg1zg
�1
2 acts trivially on H i .Ka.v/;Q/ for i D 2; 3, then zg1zg�12 belongs to �v , since

�v is equal to the subgroup of Mon.Ka.v// acting trivially on both H 2.Ka.v/;Z/ and
H 3.Ka.v/;Z/, by Lemma 10.1. The homomorphisms

hi W Q
i .M.v//˝Z Q! H i .Ka.v/;Q/

are isomorphisms for i D 2; 3, as noted in the paragraph below (10.2). Hence, the image
of zg in Mon.Ka.v//=�v is uniquely determined by g. We get a canonical homomorphism

Mon.M.v//! Mon.Ka.v//=�v:

Define mon as the composition of the above homomorphism with the homomorphism
mon given in Corollary 9.4. The homomorphism mon is injective, since hi is injective
and G.SCX /

even
v -equivariant for i D 2; 3, and G.SCX /

even
v acts faithfully on the direct sum

of Qi .M.v//˝Q for i D 2; 3.

Pulling back the extension

0! �v ! Mon.Ka.v//! Mon.Ka.v//=�v ! 0

via mon we get the extension

0! �v ! zG.S
C/even
v ! G.SCX /

even
v ! 0; (10.3)

where zG.SC/even
v is a subgroup of Mon.Ka.v//, by the injectivity of mon.

Proof of Theorem 1.4. We prove the inclusion W det �� � mon2.G.SCX /
even
sn
/, as the

reverse inclusion was proven by Mongardi [33]. The restriction homomorphism
from H 2.M.sn/; Z/ to H 2.KX .n � 1/; Z/ factors through the isomorphism h2 W

Q2.M.sn//!H 2.KX .n� 1/;Z/ given in (10.2), by Theorem 3.1. Denote by W det �� the
corresponding subgroup of O.s?n / as well. Proposition 10.2 reduces the proof to check-
ing that the isomorphism N�2 W s?n ! Q2.M.sn// given in (8.13) conjugates the image
of mon.G.SCX /

even
sn
/ in GLŒQ2.M.sn/; Z/� onto W det ��. The subgroup Spin.SC/sn of

G.SCX /
even
sn

maps onto SOC.SC/sn , by Corollary 5.1. The image of mon.Spin.SC/sn/ in
GLŒQ2.M.sn/;Z/� is conjugated onto SOC.SC/sn via N�2, by the Spin.SC/sn -equivari-
ance of the latter established in Lemma 8.10. W det �� is generated by SOC.SC/sn and the
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involution of s?n sending .1; 0; n/ to �.1; 0; n/ and acting as the identity on H 2.X;Z/.
The involution �X given in (8.2) is an element of G.SCX /

even
sn

. The former involution of s?n
is precisely N��12 ımon�X ı N�2, by the equality

mon�X .z�2.�// D � N�2.�X .�//

for all � 2 s?n , which is a special case of Corollary 8.7 and Lemma 8.10.
It remains to prove the surjectivity of the homomorphism (1.2). Let Aut0.Ka.sn//

be the subgroup of Aut.Ka.sn// consisting of automorphisms acting trivially on
H 2.Ka.sn/; Z/. The subgroup of Mon.Ka.sn// acting trivially on H 2.Ka.sn/; Z/ is
known to be the image of Aut0.Ka.sn//, by [13, Th. 2.1]. It suffices to prove that the
image of mon contains the image of Aut0.Ka.sn//, by the surjectivity of mon2. Now
Aut0.Ka.sn// is generated by �sn and the automorphism �a of order 2 in the proof of
Lemma 10.1 (4), and action of the coset �a�sn on H 3.Ka.sn/;Q/ is equal to the action
of mon.�1/, as both act as minus the identity. Furthermore, mon.�1/ acts trivially on
H 2.Ka.sn/;Z/. It follows that the subgroup ¹1;�1º � G.SCX /

even
sn

is mapped via mon
onto the image of Aut0.Ka.sn// in Mon.Ka.sn//=�sn .

10.2. Comparison with Verbitsky’s Lie algebra representation

Lemma 10.3. The homomorphism mon of Proposition 10.2 embeds Spin.SCX /v as a nor-
mal subgroup of Mon.Ka.v//=�v .

Proof. The image of Spin.SCX /v has index 2 in Mon.Ka.v//=�v , by Proposition 10.2 and
the surjectivity statement of Theorem 1.4, and is thus a normal subgroup. We provide next
a proof independent of the surjectivity result, so independent of the result in [33]. We may
assume that vD .1;0;�1� n/. The homomorphism mon is injective, by Proposition 10.2.
The groupOC.SC/v naturally embeds inOC.v?/ and the image is a normal subgroup, by
[26, Lemma 4.10] (that lemma is stated for the Mukai lattice of aK3 surface, but the same
proof applies to the Mukai lattice of an abelian surface). Hence, SOC.SC/v embeds as a
normal subgroup, the image being the intersection of two normal subgroups of OC.v?/.
The restriction homomorphism r WMon.Ka.v//!Mon2.Ka.v// factors through a hom-
omorphism Nr W Mon.Ka.v//=�v ! Mon2.Ka.v//. The group Mon2.Ka.v// is naturally
identified with a subgroup of OC.v?/ and the inverse image via Nr of SOC.SC/v is thus
a normal subgroup of Mon.Ka.v//=�v . It remains to show that this inverse image is
mon.Spin.SCX /v/. Note that Spin.SCX /v surjects onto SOC.SC/v , by Lemma 4.1, and its
kernel has order 2 and is generated by an element acting via scalar multiplication by �1
on V and S�. The group �v has index 2 in the kernel of r , by the proof of Lemma 10.1 (4).
Hence, the kernel of Nr has order 2 and is thus contained in mon.Spin.SCX /v/.

Let Y be an irreducible holomorphic symplectic manifold of complex dimension 2n.
We recall next Verbitsky’s construction of a Lie algebra representation on the cohomo-
logy of Y . Set b2 WD dimH 2.Y;R/. Let h 2 EndŒH�.Y;R/� be the endomorphism act-
ing via scalar multiplication by i � 2n on H i .Y;R/. Given a class a 2 H 2.Y;R/ let
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ea 2 EndŒH�.Y;R/� be given by cup product with a. The class a is called of Lefschetz
type if there exists an endomorphism fa 2 EndŒH�.Y;R/� satisfying the sl2 commutation
relations

Œea; fa� D h; Œh; ea� D 2ea; Œh; fa� D �2fa:

Such an fa is unique if it exists. The triple ¹ea; h; faº is called a Lefschetz triple.
Let g.Y / be the Lie subalgebra of EndŒH�.Y;R/� generated by all Lefschetz triples.

Denote by gk.Y / its graded summand of degree k. Let Primk.Y /�H k.Y;R/ be the sub-
space annihilated by g�2.Y / and set Prim.Y / WD

L
k Primk.Y /. Let A2 � H�.Y;R/ be

the subring generated byH 2.Y;R/. The following theorem was proven by Verbitsky [50]
and in a detailed form by Looijenga and Lunts.

Theorem 10.4. (1) ([23, Prop. 4.5]) g.Y / is isomorphic to so.4; b2 � 2;R/ and g0.Y /

Š so.H 2.Y;R//˚Rh: The homomorphism e WH 2.Y;R/! g2.Y /, sending a to ea,
is an isomorphism. gk.Y / vanishes if k does not belong to ¹�2; 0; 2º.

(2) ([23, Prop. 1.6]) g.Y / preserves, infinitesimally, the Poincaré pairing on H�.Y;R/.

(3) ([23, Prop. 1.6 and Cor. 2.3]) H�.Y;R/ is the orthogonal direct sum, with respect to
the Poincaré pairing, of the A2-submodules generated by Primk.Y /, 0 � k � 2n,

H�.Y;R/ D
2nM
kD0

A2 � Primk.Y /:

(4) ([23, Cor. 1.13]) Let W be an irreducible g0.Y /-submodule of Primk.Y /. Then the
A2-submodule generated by W is an irreducible g.Y /-submodule. Conversely, all
irreducible g.Y /-submodules are of this type.

(5) ([51, Th. 7.1]) The Hodge endomorphism of H�.Y;C/, which acts on Hp;q.Y / via
scalar multiplication by

p
�1 .p � q/, is an element of the semisimple summand

so.H 2.Y;C// of g0.Y /˝R C.

Let Y be an irreducible holomorphic symplectic manifold of generalized Kummer
type. Let � be the subgroup of Aut.Y / acting trivially onH i .Y;Q/, i D 2;3. The �-action
commutes with the g.Y /-action, since � acts trivially on H 2.Y;R/ and fa is uniquely
determined by ea, for each Lefschetz triple ¹ea; h; faº: Hence, the �-invariant subring
H�.Y;R/� is a g.Y /-submodule of H�.Y;R/. Let Ak � H�.Y;R/� , k � 0, be the sub-
algebra generated by

Lk
iD0H

i .Y;R/� . This definition of A2 agrees with the one above,
since � acts trivially on H 2.Y;R/, by Lemma 10.1 (4). Set .Ak/j WD Ak \H j .Y;R/.
Let A0

k
be the A2-submodule of H�.Y;R/� generated by Prim.Y / \ Ak . Then A0

k
is the

maximal g.Y /-submodule of H�.Y;R/� which is contained in Ak , by parts (3) and (4)
of Theorem 10.4. The Poincaré pairing restricts to a non-degenerate pairing on each irre-
ducible g.Y /-submodule, by the second paragraph in the proof of [23, Prop. 1.6]. Hence,
the Poincaré pairing restricts to A0

k
as a non-degenerate pairing. Set Ck WD H k.Y;R/ for

0 � k � 3. For k � 4, set

Ck WD .A
0
k�2/

?
\H k.Y;R/� ;

where the orthogonal complement is taken with respect to the Poincaré pairing.
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Lemma 10.5. (1) H k.Y; R/� admits a monodromy invariant and g0.Y /-invariant
decomposition

H k.Y;R/� D .Ak�2/
k
˚ Ck : (10.4)

(2) The subspaces Ck , k � 2, generate H�.Y;R/� as a ring.

Proof. (1) � is a normal subgroup of Mon.Y / and so H�.Y;R/� is Mon.Y /-invariant.
Indeed, if ˛ 2 H�.Y;R/� , g 2 Mon.Y /, and  2 � , then g�1g belongs to � and so
.g.˛// D g.g�1g/.˛/ D g.˛/. Hence, g.˛/ belongs to H�.Y;R/� . The Mon.Y /-
action on H�.Y;R/� factors through Mon.Y /=� . The proof of [26, Cor. 4.6 (1)] now
applies to the Mon.Y /=�-action on H�.Y; R/� (instead of the Mon.X/-action on
H�.X;R/ for X of K3Œn�-deformation type).

(2) follows easily by induction from part (1).

Lemma 10.6. (1) C2i , i � 2, admits a Mon.Y /=�-invariant decomposition

C2i D C
0
2i ˚ C

00
2i :

Here C 02i either vanishes, or is a 1-dimensional representation of Mon.Y /=�; and
C 002i either vanishes, or is isomorphic to the tensor product of H 2.Y;R/ with a 1-
dimensional representation of Mon.Y /=� .

(2) C2iC1, i � 1, either vanishes, or is an irreducible 8-dimensional representation of
Mon.Y /=� . If C2iC1 does not vanish and Y D Ka.v/ for v D .1; 0;�1 � n/ 2 SCX ,
thenC2iC1 is the spin representation for the monodromy representation of Spin.SCX /v
given in Proposition 10.2.

Proof. As the decomposition (10.4) is Mon.Y /-invariant, we may prove the statements
for Y D Ka.v/ and � D �v , where v D .1; 0;�1 � n/ 2 SCX for an abelian surface X .

The moduli space M.v/ is the quotient of Ka.v/ � A by the anti-diagonal action
of �v , by Lemma 10.1 (3). Denote the quotient morphism by j W Ka.v/ � A! M.v/.
Then the pull-back homomorphism j � W H�.M.v/;R/! H�.Ka.v/ � A;R/�v is sur-
jective. Choose a point za ofA over a and let �za WKa.v/!Ka.V /�A be the natural inclu-
sion ontoKa.v/� ¹zaº. Then �a D j ı �za. The homomorphism ��

za
WH�.Ka.v/�A;R/!

H�.Ka.v/;R/ is surjective and �v-equivariant, since the action of �v on H�.A;R/ is
trivial. Hence, ��

za
WH�.Ka.v/ �A;R/�v !H�.Ka.v/;R/�v is surjective as well. It fol-

lows that
��a W H

�.M.v/;R/! H�.Ka.v/;R/
�v (10.5)

is the composition ��
za
ı j � of two surjective homomorphisms, hence itself surjective.

Let Bk be the projection to H k.M.v/;R/ of the image of the homomorphism z� W
SkX ˝Z R! H�.M.v/;R/, given in (8.7). The subspaces Bk generate the cohomology
ring H�.M.v/;R/, by [24, Cor. 2]. Let Bk be the image of Bk in H�.Ka.v/;R/�v

via the restriction homomorphism ��a. The subspaces Bk generate the cohomology ring
H�.Ka.v/;R/�v , by the surjectivity of (10.5). Hence,Bk C .Ak�2/kDH k.Ka.v/;R/�v .
Consequently, Bk surjects onto the direct summand Ck for all k. We get a surjective
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Spin.SCX /v-equivariant homomorphism SkX ˝Z R! Ck , with respect to the spin repres-
entation on SX and the monodromy representation on Ck . The rest of the proof of (1)
and (2) is identical to that of [26, Lemma 4.8], where the decomposition for even k fol-
lows from the decomposition SCX ˝Z R D Rv ˚ .v? ˝Z R/.

The quotient Mon.Y /=� has a canonical normal subgroup N obtained by conjugat-
ing the subgroup mon.Spin.SCX /v/ of Lemma 10.3 via a parallel transport operator from
H�.Ka.v/;Z/ to H�.Y;Z/.

Lemma 10.7. The Lie algebra of the Zariski closureNC ofN in GLŒH�.Y;C/� � is equal
to the semisimple direct summand so.H 2.Y;C// of the complexification g0.Y /˝R C of
Verbitsky’s Lie algebra g0.Y / introduced in Theorem 10.4 (1).

Proof. Verbitsky’s Lie algebra g0.Y / is a monodromy invariant subalgebra of
glŒH�.Y; C/� �, and so it suffices to prove the statement for Y D Ka.v/, v D
.1; 0;�1 � n/. Let

� W Spin.H 2.Ka.v/;C//! GLŒH�.Ka.v/;C/�v �

be the integration of the infinitesimal action of the semisimple part of Verbitsky’s Lie
algebra g0.Ka.v// in Theorem 10.4 (1) to the group action of the corresponding simply
connected group. Under the identification of v? ˝Z C with H 2.Ka.v/; C/ we may
view Spin.SCX /v as a Zariski dense arithmetic subgroup of Spin.H 2.Ka.v/;C//. We
claim that the mon representation of Spin.SCX /v , given in Proposition 10.2, extends to
a representation of Spin.H 2.Ka.v/;C//, which we again denote by mon. The proof is
identical to that of [26, Lemma 4.11 (3)], and uses the fact that the subspaces Ck gener-
ate H�.Ka.v/;C/�v , by Lemma 10.5 (2), and each of the representations Ck ˝R C of
Spin.SCX /v is induced from a representation of Spin.H 2.Ka.v/;C//, by Lemma 10.6.
(Contrast this with the congruence representation in Lemma 4.5.)

We adapt next the proof of [26, Lemma 4.13] to our set-up. The monodromy equivari-
ance of Verbisky’s representation � yields the equality

mon.g/�.f /mon.g/�1 D �.gfg�1/ (10.6)

for all f 2 Spin.H 2.Ka.v/;C// and all g 2 Spin.SCX /v . The equality holds also for all
g in Spin.H 2.Ka.v/;C//, by the density of Spin.SCX /v . Let

� W Spin.H 2.Ka.v/;C//! GLŒH�.Ka.v/;C/�v �

be given by �.g/ WD �.g/�1 mon.g/: We have

�.g/�.f /�.g/�1D�.g/�1mon.g/�.f /mon.g/�1�.g/.10.6/
D �.g/�1�.gfg�1/�.g/D�.f /:

Hence, �.f / commutes with �.g/ for all f; g 2 Spin.H 2.Ka.v/;C//. We get

�.fg/ D �.fg/�1 mon.fg/ D �.g/�1�.f /mon.g/ D �.f /�.g/:

Hence, � is a representation of Spin.H 2.Ka.v/;C//.
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Taking g D f the commutation of �.g/ and �.g/ yields

�.g/�1 mon.g/�.g/ D �.g/�.g/ D �.g/�.g/ D mon.g/:

Hence, �.g/ commutes with mon.g/ for all g 2 Spin.H 2.Ka.v/;C//. The subspaces Ck
are Spin.H 2.Ka.v/;C//-invariant with respect to both � and mon, by Lemma 10.5. The
irreducible monodromy subrepresentations C 02i and C 002i are non-isomorphic if they do not
vanish, by Lemma 10.6. Hence, each is also �-invariant, by the latter commutativity.

We claim that each of C2iC1, C 02i , and C 002i is an irreducible �-representation as well,
if it does not vanish. The statement is clear for the 1-dimensional C 02i . Note that each non-
trivial representation of Spin.H 2.Ka.v/;C// of dimension 7 is necessarily irreducible.
Similarly, each 8-dimensional representation which does not contain a trivial subrepres-
entation is necessarily irreducible. The Hodge structure of each g0.Ka.v//-submodule
in H�.Ka.v/;C/ is determined by the g0.Ka.v//-action, by Theorem 10.4 (4). Each
�-subrepresentation of H 2p.Ka.v/;C/ which is not of Hodge type .p; p/ is thus a non-
trivial � representation and each odd-degree subrepresentation is non-trivial. Irreducibility
of C2iC1 follows, if it does not vanish, as it is 8-dimensional in that case. If non-zero, C 002i
is 7-dimensional with Hodge numbers .hiC1;i�1; hi;i ; hi�1;iC1/D .1; 5; 1/, since the sur-
jective homomorphism SkX ˝Z R! C k constructed in the proof of Lemma 10.6 was a
Hodge homomorphism. Hence, if non-zero, C 002i is an irreducible �-representation.

We have seen that �.f / commutes with �.g/ for all f; g 2 Spin.H 2.Ka.v/;C//.
Hence, �must act on C 02i and C 002i via scalar multiplication, as they are irreducible subrep-
resentations of �, which appear with multiplicity 1 in the �-invariant �-representation C2i .
Similarly, � acts on Ck for odd k, via scalar multiplication. But Spin.H 2.Ka.v/;C//
does not have any non-trivial 1-dimensional representations. Hence, each Ck is a trivial
�-representation, and hence so is the subring H�.Ka.v/;C/�v they generate (Lemma
10.5 (2)). We conclude that � D mon and so

NC WD mon.Spin.H 2.Ka.v/;C/// D �.Spin.H 2.Ka.v/;C///:

Lemma 10.8. Every class in H 2p.Y;Q/� which is N -invariant is of Hodge type .p; p/.

Proof. An N -invariant class ˛ 2 H 2p.Y;R/� is annihilated by the Lie algebra of the
identity component of the Zariski closure NC of N in GLŒH�.Y;C/� �. The latter Lie
algebra is equal to the semisimple summand of the complexification g0.Y / ˝R C, by
Lemma 10.7. Hence, ˛ is annihilated by the Hodge endomorphism, by Theorem 10.4 (5).

11. The Cayley class as a characteristic class

We prove Theorem 1.8 in this section exhibiting the Spin.V /w -invariant Cayley class
cw 2 H

4.X � yX;Z/ as the second Chern class of the pull-back of a sheaf End.EF /

on MH .w/ (Proposition 11.2) such that c2.End.EF // is Spin.V /w -invariant (The-
orem 11.1).
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Let M.w/ WDMH .w/ be a smooth and compact moduli space of H -stable sheaves
with a primitive Mukai vector w over an abelian surface X . Assume12 that the dimen-
sion m of M.w/ is greater than or equal 8. Set yX WD Pic0.X/. Given a point of M.w/

representing the isomorphism class of a sheaf F , let �F W X � yX !M.w/ be the mor-
phism given in (9.1). Assume F is generic, so that the morphism �F is an embedding, by
Lemma 10.1. Let U be a universal sheaf over X �M.w/, possibly twisted by a Brauer
class � 2 H 2

an.M.w/;O�
M.w/

/. Let pri be the projection from X �M.w/ onto the i -th
factor, i D 1; 2, and let

ˆU W D
b.X/! Db.M.w/; �/

be the integral functor R pr2;�.L pr�1.�/
L
˝ U/ with kernel U. Let EF be the first sheaf

cohomology H1.ˆU.F
_//, whereF _ WDRHom.F;OX / is the object derived dual toF .

Then EF is the relative extension sheaf Ext1pr2
.L pr�1 F;U/. Under the identification

V Š H 1.X � yX;Z/ we see that
V4

V Š H 4.X � yX;Z/ is a Spin.SCX /-representation
and so restricts to a Spin.SCX /w -representation. The Spin.SCX /w -invariant subgroup ofV4

V has rank 1 [40, Sec. 2.1]. We will refer to either one of its integral generators as
“the” Cayley class of Spin.SCX /w (which belongs to H 4.X � yX;Z/ and depends on w).
The Cayley class is algebraic, by the following result.

Theorem 11.1. (1) The sheaf E, given in (1.6), is a reflexive sheaf of rank m � 2, which
is locally free away from the diagonal in M.w/ �M.w/. The class c2.End.E// 2
H 4.M.w/ �M.w/;Z/ is Spin.SCX /w -invariant with respect to the diagonal mono-
dromy representation of Corollary 9.4.

(2) EF is a reflexive sheaf of rank m � 2, which is locally free over M.w/ n ¹F º.

(3) The class c2.End.EF // is Spin.SCX /w -invariant with respect to the monodromy rep-
resentation of Corollary 9.4.

(4) The class ��F .c2.End.EF /// inH 4.X � yX;Z/ is non-zero and Spin.SCX /w -invariant.

The theorem is proved at the end of this section. We will need to treat first the case
w D sn WD .1; 0;�n/. Let P be the Poincaré line bundle over X � yX , normalized so that
its restriction to ¹0º � yX is trivial. Denote by ŒptX � 2 H

4.X;Z/ the class Poincaré dual
to a point and define Œpt yX � 2 H

4. yX;Z/ similarly. Let �i be the projection from X � yX

onto the i -th factor, i D 1; 2.

Proposition 11.2. If w D sn, then

��F .c2.End.EF /// D �n
2c1.P /

2
C 4n3��1 ŒptX �C 4n�

�
2 Œpt yX �; (11.1)

and the above class is Spin.SCX /sn -invariant.

12Theorem 8.6 should hold, more generally, for moduli spaces of dimension � 4. Once verified,
Corollary 9.4 would then follow for moduli spaces of dimension � 4 as well. The results of this
section would then extend to moduli spaces of dimension � 4.
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Proof. M.sn/ is isomorphic to X Œn� � yX . Let �ij be the projection from X � X Œn� � yX

onto the product of the i -th and j -th factors. Let Z�X �X Œn� be the universal subscheme
and IZ its ideal sheaf. Then U WD ��12IZ˝�

�
13P is a universal sheaf. Set F WD IZ , where

Z is a reduced length n subscheme supported on the set ¹zi W 1 � i � nº, consisting of n
distinct points. Let �x W X ! X be the translation �x.x0/ D x C x0 by x 2 X . The image
of �F W X � yX !M.sn/ is the subset

¹I�x.Z/ ˝ L W x 2 X; L 2
yXº:

If �x1.Z/D �x2.Z/ then n.x2 � x1/D 0 and translation by x2 � x1 permutes the support
of Z. Assume that n.zi � zj / ¤ 0 for some pair i; j , so that �F is an embedding. Let
�i � X � X be the translate of the diagonal � by .zi ; 0/, 1 � i � n. Let pij be the
projection from X � X � yX onto the product of the i -th and j -th factors. The pull-back
��FU of U toX � .X � yX/ via idX � �F is thus p�12ISniD1�i ˝ p�13P : Furthermore, ��FU

is isomorphic to the derived pull-back L��FU, as U is flat over M.sn/. Let ı W X � yX !
X �X � yX be the diagonal embedding .x;L/ 7! .x; x;L/. Then the class Œ��FU� of ��FU

in the topological K-group of X � X � yX is equal to Œp�13P � � nŒı�P �. The class ŒF _�
of F _ in the topological K-group of X is equal to ŒF �, hence to ŒOX �� nŒC0�, where C0
is the sky-scraper sheaf at the origin. Consider the cartesian diagram

X �X � yX
p13 //

p23
��

X � yX
�1 //

�2
��

X

X � yX
�2 // yX

We have an isomorphism of functorsRp23;� ıLp�13 ŠL�
�
2 ıR�2;�, by cohomology and

base change. Hence,

p̂�
13

P .�/ WD Rp23;� ı Lp
�
13.L�

�
1 .�/˝P / Š L��2 ıR�2;�.L�

�
1 .�/˝P /

Š L��2 ıˆP .�/:

We get an isomorphism of integral functors p̂�
13

P Š L�
�
2 ıˆP . Now, ˆP .C0/ Š O yX

and ˆP .OX / Š Cy0Œ�2�, where y0 is the origin of yX . Hence, Œ p̂�
13

P .F
_/� D �nŒO

X� yX
�

C � Š2ŒCy0�.
The integral functor ˆı�P W D

b.X/! Db.X � yX/ is just the composition

Db.X/
L��

1
���! Db.X � yX/

˝P
��! Db.X � yX/

of derived pull-back and tensorization by P , since p23 ı ı W X � yX ! X � yX is the
identity morphism. Hence, ˆı�P .C0/ Š L�

�
1C0, ˆı�P .OX / Š P , and

Œˆı�P .F
_/� D ŒP � � n� Š1ŒC0�:

We conclude that

Œˆ��
F

U.F
_/� D �nŒO

X� yX
�C � Š2ŒCy0� � nŒP �C n

2� Š1ŒC0�:
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The first three terms of its Chern character are thus

�chŒˆ��
F

U.F
_/� D 2nC nc1.P /C .n=2/c1.P /

2
� n2��1 ŒptX � � �

�
2 Œpt yX �C � � � :

Given a class ˛ in the topological K-group, of non-zero rank r , set

�.˛/ WD ch.˛/ exp.�c1.˛/=r/:

So the graded summand of degree 4 of the class

�.�Œˆ��
F

U.F
_/�/ WD chŒ�ˆ��

F
U.F

_/�
�
1 � .1=2/c1.P /C .1=8/c1.P /

2
C � � �

�
is

�2.�Œˆ��
F

U.F
_/�/ D .n=4/c1.P /

2
� n2��1 ŒptX � � �

�
2 Œpt yX �:

If we set b WD Œ�ˆ��
F

U.F
_/�, then c2.b ˝ b�/ D � ch2.b ˝ b�/ D �4n�2.b/; which is

equal to the right hand side of (11.1). Finally, H i .ˆU.F
_// vanishes if i 62 ¹1; 2º, and

H2.ˆU.F
_// is supported on the point of M.w/ representing F , and so on a subvariety

of codimension � 4. Hence, ci .EF / D ci .H1.ˆU.F
_// D ci .�ˆU.F

_// for i D 1; 2,
and so

��F c2.End.EF // D �
�
F c2.ŒˆU.F

_/�˝ ŒˆU.F
_/��/

D c2.L�
�
F .ŒˆU.F

_/�˝ ŒˆU.F
_/��// D c2.L�

�
F ŒˆU.F

_/�˝ L��F ŒˆU.F
_/��/

D c2.Œˆ��
F

U.F
_/�˝ Œˆ��

F
U.F

_/��/;

where the last equality follows from cohomology and base change and the isomorphism
L��FU Š ��FU observed above. Equality (11.1) thus follows.

The invariance of the class (11.1) would follow once we show that

ch.ŒˆU.F
_/�˝ ŒˆU.F

_/��/ (11.2)

is invariant with respect to the monodromy action of Spin.SCX /sn via mon in (8.6), since
the homomorphism ��F WH

4.M.sn/;Z/!H 4.X � yX;Z/ is Spin.SCX /sn -equivariant, by
Corollary 9.6. The Chern character ch.ˆU.F

_// is equal to z�.ch.F //, where z� is given
in (8.7). Now, mong.z�.g�1.ch.F ////D z�.ch.F //exp.cg/ for g 2 Spin.SCX /sn , by (8.10).
The invariance of the class (11.2) follows, since ch.F /D sn, and so g�1.ch.F //D ch.F /.

Proof of Theorem 11.1. (1) The reflexivity and rank statements are proven in [29,
Prop. 4.1 and Rem. 4.6]. We prove the Spin.SCX /w -invariance of c2.End.E//. Given
g 2 Spin.SCX /w , we see that .g ˝ mong/.ch.E// D ch.E/ exp.cg/; by Corollary 9.4,
where cg is given in (6.8). Hence, .�g� ˝ mong/.ch.E/_/ D ch.E/_ exp.�cg/, by
Lemma 6.9. The Chern character of the object F WD R�13;�RHom.��12E; �

�
23E/ in

Db.M.w/ �M.w// is obtained by contracting the tensor product ch.E/_ ˝ ch.E/ in
H�.X �M.w/ � X �M.w// with the class in H�.X/ ˝ H�.X/ corresponding to
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minus the Mukai pairing (4.15). The latter class is invariant under .�g�/ ˝ g. We get
the equality

.mong ˝mong/.ch.F // D ch.F /��1 exp.�cg/��2 exp.cg/:

The Spin.SCX /w -invariance of ch.RHom.F ;F // follows. Now, ch.F / D ch.O�M.w/
/

� ch.E/, since the first sheaf cohomology of F is E and the second is O�M.w/
and all

other sheaf cohomologies vanish, by [29, Prop. 4.1 and Rem. 4.6]. The statement follows,
since the classes chi .O�M.w/

/ vanish for i < m.
(2) is proven in [29, Prop. 4.1 and Rem. 4.6].
(3) The Spin.SCX /w -invariance of c2.End.EF // with respect to the monodromy rep-

resentation of Corollary 9.4 follows from (8.10) by the same argument used in Proposition
11.2 to prove the invariance when w D sn.

(4) The Spin.SCX /w -equivariance of ��F is established in Corollary 9.6. The non-van-
ishing of the pulled-back class ��F c2.End.EF // is checked forwD sn in Proposition 11.2.
It follows for all w by Remark 9.2 and Theorem 9.3.

12. Period domains

In Section 12.1 we construct the universal torus T , given in (1.5), over the period
domain �w? of irreducible holomorphic symplectic manifolds of generalized Kummer
deformation type. In Section 12.2 we prove Proposition 1.7; we construct the polar-
ization ‚h and the complex multiplication for the complex tori with periods in the
4-dimensional subloci�¹w;hº? in the 5-dimensional period domain�w? . In Section 12.3
we construct a hyperkähler structure on the complex torus T` associated with a Kähler
class on an irreducible holomorphic symplectic manifold with period ` (Proposition 12.6).
In Section 12.4 we prove that the subloci �¹w;hº? parametrize abelian fourfolds of
Weil type of discriminant 1. In Section 12.5 we construct the universal deformation
� W M !M0

w?
of the moduli space of sheaves over the moduli space of marked irre-

ducible holomorphic symplectic manifolds of generalized Kummer deformation type. In
Section 12.6 we prove that the torus T` is isogenous to the third intermediate Jacobian
of the irreducible holomorphic symplectic manifold of generalized Kummer deformation
type with period `.

12.1. Two isomorphic period domains

Keep the notation of Section 4.1. Set SCC WD SC ˝Z C and define S�C and VC simil-
arly. Let ` be an isotropic line in SCC . Clifford multiplication SCC ˝ VC ! S�C restricts
to ` ˝ VC as a homomorphism of rank 4, whose kernel is ` ˝ Z` for a maximal iso-
tropic subspace Z` of VC , by [6, III.1.4 and IV.1.1]. The image of ` ˝ VC is a max-
imal isotropic subspace of S�C . Conversely, ` is the kernel of the homomorphism SCC !

Hom.Z`; S�C /, induced by Clifford multiplication. We get an isomorphism between the



The monodromy of generalized Kummer varieties 295

quadric in P .SCC / of isotropic lines and a connected component IGC.4;VC/ of the Grass-
mannian IG.4; VC/ of maximal isotropic subspaces of VC . Similarly, interchanging the
roles of SCC and S�C we find that the quadric of isotropic lines in S�C is isomorphic to the
other connected component IG�.4; VC/ of the Grassmannian of maximal isotropic sub-
spaces of VC [6, III.1.6]. A maximal isotropic subspace of VC associated to an isotropic
line of SCC is called even. It is called odd if it is associated to an isotropic line in S�C .

Set
�SC WD ¹` 2 P .SCC / W .`; `/ D 0; .`;

Ǹ/ < 0º;

where the pairing is associated to the pairing .�; �/S given in (4.15). Then �SC is a con-
nected open analytic subset of the quadric hyperplane of isotropic lines. The discussion
above yields a Spin.SCR /-equivariant embedding

� W �SC ! IGC.4; VC/ (12.1)

of �SC as an open subset of IGC.4; VC/ in the analytic topology. Spin.SCR / acts trans-
itively on �SC (see [16, Sec. 4.1]), and so the image of � is an open Spin.SCR /-orbit. The
two maximal isotropic subspaces Z` and Z Ǹ of VC are transversal. Indeed, their intersec-
tion is even-dimensional by [6, III.1.10], it is not 4-dimensional since ` ¤ Ǹ, and it is not
2-dimensional by [6, III.1.12], since the 2-dimensional subspace ` C Ǹ is not isotropic.
Z Ǹ is the complex conjugate of Z` as the map � is defined over R, since Clifford multi-
plication was defined over Z. Let J` W VC ! VC be the endomorphism acting on Z` by i
and on Z Ǹ by �i . Then VR is J`-invariant and J` induces a complex structure on VR.
So the choice of ` 2 �SC endows SC with an integral weight 2 Hodge structure such
that .SCC /

2;0 D `, and it endows V with an integral weight 1 Hodge structure such that
V 1;0 D Z`.

Consider the real plane
P` WD Œ`C Ǹ� \ S

C

R : (12.2)

Let ¹e1; e2º be an orthogonal basis of P` satisfying .e1; e1/SC D .e2; e2/SC D �2 such
that ` is spanned by the isotropic vector e1 � ie2. Let

m W C.SC/! End.S� ˚ V /

be the homomorphism of Corollary 4.7, and denote also by m its extension to the corres-
ponding complex vector spaces. Recall the equality zm.Spin.SC// D z�.Spin.V //, estab-
lished in (4.32). It identifies Spin.SC/ with Spin.V /.

Lemma 12.1. The complex structure J` is the element of SO.VR/ which is the image of
the element me1 ıme2 of Spin.SCR /.

Proof. me1�ie2 is a nilpotent element of square zero, andZ` Dme1�ie2.S
�
C /� VC . Now,

.me1 ıme2/ ıme1�ie2 D ime1�ie2 :

Hence, me1 ıme2 acts on Z` via multiplication by i . Similarly, Z Ǹ D me1Cie2.S
�
C / and

me1 ıme2 acts on Z Ǹ by �i . Hence, me1 ıme2 is a lift of J` to an element of Spin.SCR /.
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Note thatme1 ıme2 acts on SCR with P` as the �1 eigenspace and P?
`

as the 1 eigen-
space. Let Spin.VR/` be the subgroup of elements acting as the identity on the plane P`
and let Spin.VR/`? be the subgroup of elements acting as the identity on the orthogonal
complement P?

`
. Then Spin.VR/`? is isomorphic to U.1/ and contains me1 ı me2 . It

consists of elements of the form a C bme1 ı me2 , a; b 2 R, a2 C b2 D 1. Clearly, J`
commutes with the action of the subgroup Spin.VR/` � Spin.VR/`? of Spin.VR/. The
group Spin.VR/` acts on Z` and Z Ǹ and the two representations are dual with respect to
the bilinear pairing of VC . Elements of Spin.VR/`? act on Z` via scalar product by ei� ,
and on Z Ǹ by e�i� , for some � 2 R.

Given a class w 2 SC with .w;w/ < 0, let

�w? WD ¹` 2 �SC W .`; w/ D 0º (12.3)

be the corresponding hyperplane section of �SC . The space �w? is connected as well,
and it is the period domain of irreducible holomorphic symplectic manifolds deformation
equivalent to generalized Kummers of dimension 2n if .w;w/ D �2n � 2 and n � 2, by
Theorem 3.1. Given ` 2 �w? , the integral weight 1 Hodge structure .V; J`/ has the addi-
tional property that

V4
V admits the integral Spin.SC/w -invariant Cayley class, recalled

in Section 11, which is of Hodge type .2; 2/, by the lemma below. Given a class h 2 w?,
let Spin.SC/w;h be the subgroup of Spin.SC/ stabilizing both w and h.

Lemma 12.2. (1) Any Spin.SC/w invariant class in
V2p

VC is of Hodge type .p; p/
with respect to J` for all ` 2 �w? .

(2) Any Spin.SC/w;h-invariant class in
V2p

VC is of Hodge type .p; p/ with respect
to J` for all ` 2 �w? such that .h; `/ D 0.

Proof. (1) The Zariski closure of the image of Spin.SC/w in GL.
V2p

VC/ contains the
image of Spin.SCR /w , and hence also that of Spin.VR/`? for all ` 2 �w? . A class inV2p

VC is of Hodge type .p; p/ with respect to J` if and only if it is Spin.VR/`? -
invariant.

(2) Spin.VR/`? is contained in Spin.VR/w;h. Hence, the Zariski closure of the image
of Spin.SC/w;h contains that of Spin.VR/`? .

Given a negative definite 3-dimensional subspace W of w?R we get a subgroup
Spin.SCR /W? of Spin.SCR /w , isomorphic13 to SU.2/, consisting of elements of Spin.SCR /
acting as the identity on W ?. It fits in the cartesian diagram

Spin.SCR /W?
� //

2W1

��

Spin.SCR /w

2W1

��

SO.W /
� // SO.SCR /w

13Spin.W / is isomorphic to SU.2/ and the even Clifford algebra C.W /even is the quaternion
algebra H, by [22, Ch. V, Ex. 1.5 (3) and Cor. 2.10].
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where the bottom horizontal homomorphism extends an isometry of W to an isometry
of SCR acting as the identity on W ?. If W is spanned by the real and imaginary parts
of an element of ` and a Kähler class on a marked irreducible holomorphic symplectic
manifold Y with period `, then W corresponds to a hyperkähler structure on Y [15,
Sec. 1.17]. We show in Sections 12.2 and 12.3 that the subgroup Spin.SCR /W? associ-
ated to W determines a hyperkähler structure on the complex torus T` WD VC=ŒZ` C V �

and Spin.SCR /W? acts on VC as the group of unit quaternions (Proposition 12.6 below).

12.2. The polarization map w? !
V2

V �

The construction in this section is inspired by O’Grady’s recent observation that the third
intermediate Jacobians of projective irreducible holomorphic symplectic varieties of gen-
eralized Kummer type are abelian fourfolds of Weil type [43]. Let w 2 SC be a primitive
class satisfying .w;w/SC D �2n, where n is a positive integer. Let w? be the sublattice
of SC orthogonal to w. Given a class h 2 SC we get the endomorphism mh of S� ˚ V ,
given in Corollary 4.7. It maps V to S� and S� to V . Multiplication by h in AX leaves
the direct summand S� ˚ V invariant and restricts to mh, by definition.

Let
‚0 W w? ! Hom.V; V / (12.4)

send h to the restriction ‚0
h

of mw ı mh to V . Note that mw ı mh C mh ı mw restricts
to V as .w; h/SC � idV , by (4.29). The latter scalar endomorphism vanishes due to the
fact that h is in w?. Furthermore, mh ımw restricts to V as the adjoint of the restriction
of mw ı mh with respect to the pairing .�; �/V , by definition of multiplication in AX .
Hence, ‚0

h
is anti-self-dual with respect to .�; �/V . The isomorphism V ! V � given by

x 7! .x; �/V induces an isomorphism a W Hom.V; V /! V � ˝ V � given by

a.f /.x; y/ WD .f .x/; y/V

for all x; y 2 V . An anti-self-dual homomorphism is sent by a to
V2

V �. Hence, we get
the composite homomorphism

‚ WD a ı‚0 W w? !
V2

V �; (12.5)

sending h to ‚h, where ‚h.x; y/ WD .‚0
h
.x/; y/V . More equivariantly, ‚ is the com-

position of the embedding w? !
V2

SC, sending h to w ^ h, with a Spin.V /-module
isomorphism

V2
SC Š

V2
V � (see [6, Sec. II.4, p. 96, 5-th displayed formula] for the

latter).
Let ortSC W G.S

C/even ! ¹˙1º be the character (8.3), except that here it will be con-
venient to have it take values in the multiplicative group ¹˙1º rather than in Z=2Z. An
element g ofG.SC/even acts on V as an isometry if ortSC.g/D 1, and it reverses the sign
of .�; �/V if ortSC.g/ D �1.

Lemma 12.3. ‚ spans a G.SC/even
w -invariant saturated rank 1 subgroup in

Hom.w?;
V2

V �/ and G.SC/even
w acts on it via the character ortSC . Moreover, ‚ spans

the Spin.V /w -invariant subgroup of Hom.w?;
V2

V �/.
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Proof. The homomorphism ‚00 W SC ! Hom.V; S�/, h 7! mh, is Spin.V /-equivariant,
since Spin.V / acts by algebra automorphisms of AX . The homomorphismmw W S

�! V

is Spin.V /w -equivariant, since Spin.V /w acts onAX by algebra automorphisms fixingw.
Invariance of ‚0 follows. Invariance of ‚ with respect to Spin.V /w follows from that
of ‚0 and the invariance of the bilinear pairing .�; �/V . If h 2 w? satisfies .h:h/SC D
˙2, then mh restricts to an isomorphism from V to S�, so ‚ is indivisible and spans a
saturated subgroup of Hom.w?;

V2
V �/.

We claim that the homomorphism ‚00 spans a rank 1 G.SC/even
w -invariant sublattice

of Hom.SC;Hom.V; S�// and G.SC/even
w acts on it via the character ortSC . The group

Spin.V /w is a normal subgroup of G.SC/even
w , hence the latter maps any Spin.V /w -

invariant submodule to a Spin.V /w -invariant submodule. Once we prove that there exists
a unique rank 1 Spin.V /w -invariant submodule in .SC/� ˝ V � ˝ S�, it would fol-
low that it is necessarily G.SC/even

w -invariant and equal to spanZ¹‚
00º. We then need

to show that G.SC/even
w acts on it via the character ortSC . The bilinear pairing of SC

is G.SC/-invariant, so that SC is a self-dual G.SC/even-module. V � is isomorphic to
V ˝ ortSC as a G.SC/even-module. Hence, it suffices to prove that SC ˝ V ˝ S�

contains a unique rank 1 Spin.SC/w -invariant submodule, which is the trivial charac-
ter of G.SC/even

w . Now G.SC/even D JG.V /evenJ�1 and J�1 ˝ J�1 ˝ J�1 maps a
G.SC/even

w -invariant element of SC ˝ V ˝ S� to a G.V /even
J�1.w/

-invariant element of
V ˝ S� ˝ SC. The Triality Principle thus reduces the verification of the above claim to
the statement that Spin.V /J�1.w/ has a unique invariant submodule in V ˝ S� ˝ SC,
which is the trivial character of G.V /even

J�1.w/
. Now V is a self-dual G.V /even-module

and S�Q ˝ S
C

Q decomposes as a direct sum of the representations VQ and
V3

VQ as a
G.VQ/

even-representation, by [6, Sec. 3.4, p. 96, third displayed formula]. VQ contains
a 1-dimensional trivial Spin.V /J�1.w/-submodule, the one spanned by J�1.w/, which
is also a trivial G.V /even

J�1.w/
-module. The Spin.V /J�1.w/-invariant submodule of

V3
VQ

vanishes.14 Hence, the statement about ‚00 is proven.
The imagemw ofw in Hom.V;S�/ via‚00 spans a 1-dimensionalG.SC/even

w -module
isomorphic to the restriction of ortSC , since w spans an invariant G.SC/even

w -module
in SC, and ‚00 spans a character isomorphic to ortSC , by the previous paragraph. A sim-
ilar argument shows that mw 2 Hom.S�; V / spans a 1-dimensional G.SC/even

w -module
isomorphic to the restriction of ortSC . The inverse of the bilinear pairing .�; �/V spans
a 1-dimensional G.SC/even

w -submodule of Hom.V �; V / isomorphic to the restriction of
ortSC . The homomorphism

.SC/� ˝ V � ˝ S� ! .w?/� ˝ V ˝ V

14Set u WD J�1.w/. The 28-dimensional representation
V2 VQ of Spin.VQ/u Š Spin..u?/Q/

decomposes as the direct sum of the 21-dimensional adjoint representation so..u?/Q/ Š

so.7/ and the 7-dimensional fundamental representation .u?/Q, both irreducible. Hence, the
Spin.V /u-invariant submodule of Hom..u?/�;

V2 V / has rank 1, it is contained in the image of
Sym2.u?/Q ˝ u, hence its image in

V3 V vanishes.
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induced by the restriction on the first factor, by the inverse of the bilinear pairing .�; �/V
on the second factor, and by mw on the third factor, is thus G.SC/even

w -equivariant. The
above displayed homomorphism maps ‚00 to ‚. Hence, G.SC/even

w acts via the character
ortSC on the rank 1 submodule spanned by ‚.

Remark 12.4. The Spin.V /w -equivariant composition

Sym2.w?/
Sym2‚
����! Sym2.

V2
.V �//!

V4
.V �/

is injective and maps the rank 1 trivial submodule of Sym2.w?/ to the submodule spanned
by the Cayley class (see [40, Sec. 2.1]).

Lemma 12.5. The endomorphism ‚0
h
WD mw ımh W V ! V satisfies

.‚0h/
2
D
�.w;w/.h; h/

4
idV D

n.h; h/

2
idV :

Given a period ` 2 �w? , the endomorphism ‚0
h
2 End.V / is a Hodge endomorphism of

the integral Hodge structure determined by ` whenever h belongs to ¹`; wº? \ SC.

Proof. We have .mw ımh/2 D �.mw ımw/ ı .mh ımh/ D
n.h;h/
2

idV ; where the first
equality is due to the identitymw ımh D �mh ımw observed above. It remains to prove
that the endomorphism ‚0

h
2 End.V / is a Hodge endomorphism of the integral Hodge

structure determined by ` whenever h belongs to ¹`; wº? \ SC. Indeed, such an h is of
Hodge type, the 2-form ‚h 2

V2
V � is of Hodge type, since ‚ is an integral homomor-

phism of Hodge structures, and‚0
h

is obtained from‚h via pairing with the class .�;�/V ,
which is of Hodge type as Z` is isotropic with respect to .�; �/V .

12.3. Diagonal twistor lines

We have the Spin.V /w -equivariant injective homomorphism ‚ W w? !
V2

V �, given in
(12.5). The explicit construction in terms of w and the symmetric pairing of V exhibits‚
as an integral homomorphism of Hodge structures, since w and the pairing are both of
Hodge type. Given a class h 2 w? \ SC satisfying .h; h/SC < 0, let

�¹w;hº? (12.6)

be the hyperplane section of �w? consisting of periods orthogonal to both w and h.
Given a period ` 2 �¹w;hº? we get the .1; 1/-form ‚h in

V2
V �R given in (12.5). We

fix an orientation of the negative cone of w?R , which determines an orientation for every
negative definite 3-dimensional subspace ofw?R (see, for example, [28, Lemma 4.1]). The
real plane P`, given in (12.2), is naturally oriented by its isomorphism with the complex
line `. We will always choose the sign of h so that given a basis ¹e1; e2º of P` compatible
with its orientation, the basis ¹e1; e2; hº is compatible with the orientation of the negative
definite 3-dimensional subspace P` C Rh � w?R . The complex torus T` is an abelian
variety for every ` 2 �¹w;hº? , by the following result.
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Proposition 12.6. (1) ‚h is a .1; 1/-form on the complex torus

T` WD VC=ŒZ` C V �;

whose associated symmetric pairing g.x; y/ WD ‚h.J`.x/; y/ is definite .and so ‚h
or ‚�h is a Kähler form/. We may choose the orientation of the negative cone of w?R
so that ‚h is a Kähler form.

(2) Let W be a negative definite 3-dimensional subspace of w?R and `; `0 two points of
�w? such that the planes P` and P`0 are both contained inW . Let h 2 P?

`
\W and

h0 2 P?
`0
\W be classes satisfying .h0; h0/D .h; h/ and such that the pairs .h; `/ and

.h0; `0/ are both compatible with the orientation ofW . Then g0.x;y/WD‚h0.J`0.x/;y/
is the same Kähler metric on VR as the metric g.x;y/ WD‚h.J`.x/;y/. If .h;h0/D 0,
then J` and J`0 satisfy J`J`0 D �J`0J`.

Proof. (1) We first express the bilinear form g in terms of the Clifford action using the
description of J` provided by Lemma 12.1:

g.x;y/D‚h.J`.x/;y/D .‚
0
h.J`.x//;y/V D .mw ımh ıme1 ıme2.x/;y/V ; (12.7)

where ‚0
h

is given in (12.4). The ordered set ¹w; h; e1; e2º is an orthogonal basis of a
negative definite subspace of SCR . All negative definite subspaces of SCR belong to a single
Spin.SCR /-orbit. It suffices to prove the analogous statement for some orthogonal basis of
a negative definite subspace of SCR . The latter statement translates via the commutative
diagram in Corollary 4.7 to the statement that the bilinear pairing

.mf1 ımf2 ımf3 ımf4.x/; y/S�

on S�R is definite for some orthogonal basis ¹f1; f2; f3; f4º of a negative definite subspace
of VR. Let ¹v1; v2; v3; v4º be a basis of H 1.X;Z/ satisfying

R
X
v1 ^ v2 ^ v3 ^ v4 D 1,

¹�1; �2; �3; �4º the dual basis of H 1.X; Z/� and set fi WD vi � �i , 1 � i � 4. Then
.fi ; fi / D �2 and so m2

fi
D �1. Set  WD mf1 ımf2 ımf3 ımf4 . Then 2 D 1. Being

an isometry, the adjoint of  is �1, and so  is self-adjoint and the pairing ..�/; �/S�
is symmetric. Regarding H 1.X;Z/ as a subgroup of S� and considering the action of 
on S�, we have

.v4/ D mf1 ımf2 ımf3.mf4.v4// D mf1 ımf2 ımf3.�1/ D �v1 ^ v2 ^ v3;

so that �..v4// D �.v4/ and ..v4/; v4/S� D �
R
X
.v4/ ^ v4 D 1. Given a permuta-

tion � of ¹1; 2; 3; 4º we similarly have

sgn.�/.v�.4// D mf�.1/ ımf�.2/ ımf�.3/ ımf�.4/.v�.4// D �v�.1/ ^ v�.2/ ^ v�.3/;

so that sgn.�/.v�.4// ^ v�.4/ D �v�.1/ ^ v�.2/ ^ v�.3/ ^ v�.4/ D �sgn.�/v1 ^ v2 ^
v3 ^ v4. We conclude that

..vi /; vi /S� D

Z
X

v1 ^ v2 ^ v3 ^ v4 D 1
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for 1 � i � 4. Hence, ...vi //; .vi // D 1, since  acts as an isometry. But ¹viº4iD1 [
¹.vi /º

4
iD1 is a basis of S�. Hence, the bilinear form ..�/; �/S� is positive definite.

(2) Given a negative definite 4-dimensional subspace † of SCR and an orthogonal
basis ¹f1; f2; f3; f4º of †, the element mf1 ımf2 ımf3 ımf4 of C.SCR / depends only
on the element f1 ^ f2 ^ f3 ^ f4 of the line

V4
†. Indeed, set zfi WD fi=

p
�Q.fi /, so

that mfi D
p
�Q.fi / m zfi

. Then mf1 ımf2 ımf3 ımf4 D
qQ4

iD1Q.fi / m zf1
ım zf2

ı

m zf3
ım zf4

; wherem zf1 ım zf2 ım zf3 ım zf4 is an element of Spin.SCR / which acts on† by
�1 and it acts on the orthogonal complement†? in SCR by 1. This determinesm zf1 ım zf2 ı

m zf3
ım zf4

up to sign, and the sign depends on the orientation of the basis ¹ zf1; zf2; zf3; zf4º.
Let ¹e01; e

0
2º be an orthogonal basis of P`0 satisfying .e0i ; e

0
i / D �2, i D 1; 2, and such that

`0 is spanned by e01 � ie
0
2. We get a second orthogonal basis ¹w;h0; e01; e

0
2º of the negative

definite subspace† WDW CRw. The two elements h0 ^ e01 ^ e
0
2 and h^ e1 ^ e2 of

V3
W

are equal. Consequently, w ^ h ^ e1 ^ e2 D w ^ h0 ^ e01 ^ e
0
2 and so

mw ımh0 ıme0
1
ıme0

2
D mw ımh ıme1 ıme2 :

The equality of the metrics g and g0 follows from (12.7).
It remains to prove that J`J`0 D �J`0J` when .h; h0/ D 0. Assume, possibly after

rescaling by a positive real factor, that .h; h/SC D .h
0; h0/SC D �2. Let f be an element

of ¹h; h0º? \W such that .f; f / D �2 and the ordered basis ¹h; h0; f º corresponds to
the orientation ofW . Then ¹h0; f º is a basis of P`, ¹h;f º is a basis of P`0 , J` or �J` lifts
to the element mh0 ımf of Spin.SCR /, and J`0 or �J`0 lifts to mf ımh, by Lemma 12.1.
We have

.mh0 ımf / ı .mf ımh/ D �mh0 ımh D �.mf ımh/ ı .mh0 ımf /:

Now, �1 2 Spin.SC/ acts on V via multiplication by �1.

Let � W T ! �w? be the pull-back of the universal torus over IGC.4; VC/ via the
restriction to �w? of the embedding � given in (12.1). Given a 3-dimensional negative
definite subspace W of w?R , let PW be the smooth conic of isotropic lines in WC . We
will refer to PW as a twistor line, denote by �W W TW ! PW the pulled-back family, and
refer to it as the twistor family associated toW . Proposition 12.6 (2) shows that the metric
gW .x; y/ WD‚h.J`.x/; y/, ` 2 PW , h 2W \P?

`
, .`; h/ compatible with the orientation

of W , and .h; h/ D �2, is independent of ` and is indeed a hyperkähler metric, and the
twistor family �W is the one associated to this metric. Given a point ` 2 PW we get the
commutative diagram

T`
� //

��

TW
� //

�W

��

T

�

��

¹`º
� // PW

� // �w?

(12.8)

Remark 12.7. Any two points `, `0 in the period domain�w? are connected by a twistor
path, a sequence `0; W1; `1; W2; : : : ; `k�1; Wk ; `k such that ` D `0, `0 D `k , Wi is a
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negative definite 3-dimensional subspace, and both `i and `iC1 belong to PWi for 0 �
i � k (see [15, Lemma 8.4]).

Remark 12.8. If .w; w/ D �2n, n � 3, then �w? is the period domain of generalized
Kummers of dimension 2n� 2. For all n � 2, the family � W T !�w? should be related
to generalized (not necessarily commutative) deformations of the derived categories of
coherent sheaves over abelian surfaces, in a sense similar to [32]. The 4-dimensional
compact complex torus should be thought of as the identity component of the subgroup of
the group of auto-equivalences of the deformed triangulated category, which acts trivially
on its numerical K-group.

12.4. Abelian fourfolds of Weil type

The following corollary asserts that .T`; ‚h/ is a polarized abelian variety of Weil type
according to [49, Def. 4.9]. This was first observed by O’Grady for the isogenous interme-
diate Jacobians of projective irreducible holomorphic symplectic manifolds of generalized
Kummer deformation type [43]. Given a positive integer d , let the norm map Nm W
QŒ
p
�d�!Q be given by Nm.aC b

p
�d/ WD .aC b

p
�d/.a� b

p
�d/D a2C b2d .

Let n � 1 be an integer and w a primitive element of SC satisfying .w;w/ D �2n.

Corollary 12.9. Let h 2 w? be an integral class and ` 2 �w? be such that the pair
.h; `/ satisfies the assumptions of Proposition 12.6. Then d WD �n.h; h/=2 is a positive
integer, T` is an abelian variety, and the ring ZŒ

p
�d� acts on T` via integral Hodge

endomorphisms such that ��.‚h/ D Nm.�/‚h for all � 2 ZŒ
p
�d�.

Proof. If h is integral, then ‚h is an ample class, by Proposition 12.6 (1), and so T` is
an abelian variety. Integrality of d is due to the fact that the lattice V is even. ZŒ

p
�d�

acts by sending
p
�d to the endomorphism ‚0

h
which satisfies .‚0

h
/2 D .�d/ idV , by

Lemma 12.5. Finally, we compute

‚h.‚
0
h.x/;‚

0
h.y//D ..‚

0
h/
2.x/;‚0h.y//D�d.x;‚

0
h.y//D d.‚

0
h.x/;y/D d‚h.x;y/;

where the third equality follows from the anti-self-duality of ‚0
h
. Set � WD a C b

p
�d .

We get

.��‚h/.x; y/ D ‚h.ax C b‚
0
h.x/; ay C b‚

0
h.y//

D .a2 C b2d/‚h.x; y/C abŒ‚h.x;‚
0
h.y//C‚h.‚

0
h.x/; y/�

D .a2 C b2d/‚h.x; y/ D Nm.�/‚h.x; y/:

We recall next a discrete isogeny invariant of abelian varieties of Weil type. Set K WD
QŒ
p
�d�. Consider the map H W VQ ˝ VQ ! K given by

H.x; y/ WD ‚h.x;‚
0
h.y//C

p
�d ‚h.x; y/ D d.x; y/C

p
�d .‚0h.x/; y/: (12.9)

Then H is a non-degenerate Hermitian form on the 4-dimensional K-vector space VQ,
by [49, Lemma 5.2]. Choose a K-basis ˇ WD ¹x1; x2; x3; x4º of VQ and denote by ‰ WD
.H.xi ; xj // the Hermitian matrix of H with respect to ˇ.
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Definition 12.10. The discriminant detH of H is the image of det.‰/ in Q�=Nm.K�/.

The discriminant detH is independent of the choice of ˇ, by [49, Lemma 5.2 (3)].

Lemma 12.11. The Hermitian forms of the abelian fourfolds of Weil type in Corol-
lary 12.9 all have trivial discriminants.

Proof. Let U be the rank 2 even unimodular lattice with Gram matrix
�
0 1
1 0

�
. The isometry

group of the orthogonal direct sum of three or more copies of U acts transitively on the
set of primitive elements with a fixed self-intersection, by [42, Th. 1.14.4]. The lattice SC

is isometric to U˚4. Hence, the sublattice spanned by ¹w; hº is contained in a sublattice
of SC isometric to U ˚ U . Consequently, the orthogonal sublattice ¹w; hº? contains a
sublattice U1 ˚ U2 of SC isometric to U ˚ U . Here and below, the notation .�/? is with
respect to the bilinear parings .�; �/SC or .�; �/V , but not with respect toH . In this proof
.�; �/V will be denoted by .�; �/. Let ei ; fi 2 Ui satisfy

.ei ; ei / D 2; .fi ; fi / D �2; .ei ; fi / D 0; i D 1; 2:

We get the four isotropic classes z1 WD e1 � f1, z2 WD e1 C f1, y1 WD e2 � f2, and
y2 WD e2C f2. The elements �i WDmei ımfi 2 G.S

C/even commute with‚0
h

(and so are
ZŒ
p
�d�-module automorphisms) and satisfy �2i D 1 2 C.S

C/ and

.�i .x/; �i .x// D �.x; x/; 8x 2 V: (12.10)

Let Lzi and Lyi be the 4-dimensional isotropic subspaces of VQ associated to the iso-
tropic vectors zi and yi , i D 1; 2, by [6, IV.1.1]. Then Lz1 and Lz2 are transversal, by
[6, III.1.10 and III.1.12]. The automorphism �i acts on Ui via multiplication by �1 and
on U?i as the identity. The four isotropic lines, and hence also the four isotropic sub-
spaces Lzi and Lyi , i D 1; 2, are each invariant with respect to both �1 and �2. The action
of �1 on Lzi commutes with that of the subgroup Spin.SC/e1;f1 of Spin.SC/ stabilizing
both e1 and f1. Further, Lzi is an irreducible representation of Spin.SC/e1;f1 . Hence,
�1 acts on each Lzi via multiplication by a scalar, which is 1 or �1, since �21 D 1. The
automorphism �1 acts on one of Lz1 or Lz2 via �1 and on the other as the identity, by
(12.10) and the transversality of Lz1 and Lz2 . Similarly, �2 acts on one of Ly1 or Ly2
via �1 and on the other as the identity. The subspaces Lzi ;yj WD Lzi \Lyj , i; j 2 ¹1; 2º,
are 2-dimensional, by [6, III.1.12], since the subspace spanned by ¹zi ; yj º is isotropic.
We conclude that each of Lzi ;yj WD Lzi \Lyj , i; j 2 ¹1; 2º, is the direct sum of two cop-
ies of the same character of the group G generated by �1 and �2 and the four characters
are distinct. It follows that ‚0

h
leaves each Lzi ;yj invariant, since it commutes with G.

Hence, each of Lzi ;yj is a 1-dimensional K-subspace of VQ. Let y be the transposition
permutation of ¹1; 2º. Then

L?zi ;yj D Lzi ;yj C Lzyi ;yj C Lzi ;yyj :

Being ‚0
h
-invariant, the right hand side is also the H -orthogonal K-subspace to Lzi ;yj .

Furthermore, both .�;�/V andH induce a non-degenerate bilinear pairing betweenLzi ;yj
and Lzyi ;yyj .
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Let a 2 Lz1;y1 and b 2 Lz2;y2 be elements satisfying

.a; b/ 6D 0 and .a;‚0h.b// D 0:

Note that .a; a/ D 0 D .b; b/. Set x1 WD a C b and x2 D a � b. Then .x1; x2/ D 0,
.x1; x1/ D 2.a; b/ D �.x2; x2/, and

H.x1; x2/ D d.x1; x2/C
p
�d .‚0h.x1/; x2/ D �2

p
�d .a;‚0h.b// D 0:

Choose a0 2 Lz1;y2 and b0 2 Lz2;y1 satisfying

.a0; b0/ 6D 0 and .a0; ‚0h.b
0// D 0:

Then .x3; x3/ D 2.a0; b0/ D �.x4; x4/ and H.x3; x4/ D 0. We conclude that ˇ WD
¹x1; x2; x3; x4º is an H -orthogonal K-basis for VQ and the ˇ-matrix ‰ of H satisfies

det.‰/ D
4Y
iD1

H.xi ; xi / D d
4

4Y
iD1

.xi ; xi / D d
4.x1; x1/

2.x3; x3/
2
2 .Q�/2:

The discriminant is trivial, since .Q�/2 is contained in Nm.K�/.

Lemma 12.12. The subgroup Spin.SC/w;H of Spin.SC/w leaving invariant the Her-
mitian form H given in (12.9) is equal to the subgroup Spin.SC/w;h stabilizing both w
and h.

Proof. Spin.SC/w;h preserves the bilinear pairing .�; �/V , acting as a subgroup of
Spin.V / via the identification (4.32), and Spin.SC/w;h commutes with the endomorphism
‚0
h
WD mw ımh of V . Hence, Spin.SC/w;h leaves the Hermitian formH invariant. Con-

versely, the subgroup Spin.SC/w;H consists of elements of Spin.SC/w which commute
with‚0

h
, by definition of the Hermitian formH . But‚0

h
is the element corresponding to h

in an irreducible Spin.SC/w -subrepresentation of Hom.V; V / isomorphic to w?. Hence,
Spin.SC/w;H is contained in Spin.SC/w;h.

12.5. A universal deformation of a moduli space of sheaves

Let M.w/ WD MH .w/ be a smooth and compact moduli space of H -stable sheaves
of primitive Mukai vector w of dimension � 8 over an abelian surface X . Let alb W
M.w/! Alb1.M.w// be the Albanese morphism to the Albanese variety of degree 1.
Choose a point a 2 Alb1.M.w// and denote by Ka.w/ the fiber of alb over a. Let
�a W Ka.w/!M.w/ be the inclusion. Aƒ-marking for an irreducible holomorphic sym-
plectic manifoldM is an isometry � WH 2.M;Z/!ƒwith a fixed latticeƒ. There exists a
moduli space Mƒ ofƒ-marked irreducible holomorphic symplectic manifolds, which is a
non-Hausdorff complex manifold [15]. Let �0 WH 2.Ka.w/;Z/! w? be the isometry of
Theorem 3.1 with respect to the Beauville–Bogomolov–Fujiki pairing on H 2.Ka.w/;Z/
and the Mukai pairing �.�; �/SC on SC. Below we will continue to work with the pair-
ing .�; �/SC rather than the Mukai pairing. Let t0 2Mw? be the point representing the
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isomorphism class of .Ka.w/; �0/ in the moduli space Mw? of w?-marked irreducible
holomorphic symplectic manifolds and let M0

w?
be the connected component of Mw?

containing t0. Denote by Per WM0
w?
!�w? the period map, sending a marked pair .Y;�/

to �.H 2;0.Y //.
Let w? be the trivial local system over M0

w?
with fiber w?. There exists a universal

family
p W Y !M0

w?
(12.11)

and a trivialization � W R2p�Z! w? with value �0 at t0, by [30, Th. 1.1]. The groups
of automorphisms of the fibers of p which act trivially on the second cohomology form
a trivial local system Aut0.p/ over M0

w?
, by [30, Th. 1.1]. The local subsystem Z of

Aut0.p/ of subgroups which act trivially on the third cohomology as well is thus a trivial
local system. We may thus extend the isomorphism of the fiber of Z over t0 with the
group �w , given in Lemma 10.1, to a trivialization  W Z! �w , where �w is the trivial
local system with fiber �w .

Let Per�.�/ W Per�T !M0
w?

be the pull-back via the period map of the universal
torus � W T !�w? given in diagram (12.8). Ignoring the complex structure, � is a differ-
entiably trivial fibration with fiber the compact torus VR=V . Hence, the local system �w
embeds naturally as a subsystem of torsion subgroups of Per�T . Let

M WD Per�T ��w Y

be the quotient of the fiber product of Per�T and Y over M0
w?

by the anti-diagonal action
of �w (this action is defined below diagram (10.1)). Denote by

… WM!M0
w?

(12.12)

the natural projection and let Mt be the fiber of … over t 2 M0
w?

. The fiber Mt0 is
naturally isomorphic to M.w/, by Lemma 10.1. The relative Albanese map is then

alb WM! .Per�T /=�w :

Let .Yt ; �t / be a fiber of Y over t 2M0
w?

endowed with the marking determined
by �. Set ` WD Per.Yt ; �t /. Let � be a Kähler class on Yt and set h WD �t .�/. LetW be the
subspace of .w?/R spanned by the negative definite plane P` and h. Then W is negative
definite with respect to .�; �/SC . Again denote by PW the conic of isotropic lines in WC .
We get a twistor family pW W YW ! PW of deformations of Yt [15, Sec. 1.17]. The
marking �t extends to a trivialization �W of R2pW;�Z, since PW is simply connected.
The pair .YW ; �W / determines an embedding �W W PW !M0

w?
such that Per ı �W is the

inclusion of PW in �w? . The image ePW WD �W .PW / is called the twistor line through
the point .Yt ; �t / associated to the Kähler class �.

The twistor family pW W YW ! PW admits a differential geometric construction,
which we now recall following [2]. Let M be an irreducible holomorphic symplectic
manifold, I its complex structure, and � a Kähler class. There exists a unique Ricci-flat
Kähler metric g such that !I .�; �/ WD g.I.�/; �/ is a Kähler form with class �. Further-
more, there exists an action of the quaternion algebra H WD R C RI C RJ C RK on
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the real tangent bundle of M via parallel endomorphisms such that !J C i!K is a non-
degenerate holomorphic 2-form and I is the original complex structure. We will refer to g
as the hyperkähler metric associated to the Kähler form �. Every purely imaginary unit
quaternion � WD aI C bJ C cK, a2C b2C c2 D 1, yields a complex structure onM and
a Kähler form !� WD g.�.�/;�/ with class in the positive definite 3-dimensional subspace
W WDR� C ŒH 2;0.M/CH 0;2.M/�\H 2.M;R/ such that the line `� WDH 2;0.M;�/ is
one of the two isotropic lines inWC orthogonal to !�. The sphere of unit purely imaginary
quaternions gets identified with the complex plane conic PW � P .WC/ of isotropic lines
with respect to the Beauville–Bogomolov–Fujiki pairing, by sending � to `�. One gets a
complex structure on the differentiable manifold PW �M such that the first projection
pW is holomorphic and the fiber over `� 2 PW is endowed with the complex structure �.
The resulting family pW W PW �M ! PW is the twistor family pW W YW ! PW , if we
let M D Yt .

Given a marked pair .Y;�/ 2M0
w?

and a Kähler class � on Y , we get the negative def-
inite 3-dimensional subspace W of w?R containing h WD �.�/ and such that WC contains
` WD Per.Y; �/. We get the hyperkähler metric gW on Y , associated to the Kähler form �,
and the metric g on T` associated to the Kähler form ‚h in Proposition 12.6. Hence, we
get a hyperkähler metric on the product T` � Y , which we call the product hyperkähler
metric associated to .Y;�; �/. The assignment � 7! Œ!�� 2W , associating to a purely ima-
ginary unit quaternion � the class in W of the Kähler form, identifies the sphere in W of
self-intersection �.�; �/ with the sphere of complex structures on Y associated to �. Sim-
ilarly, the sphere in W of self-intersection �2 was identified with the sphere of complex
structures on T` associated to ‚h. Rescaling � so that .�; �/ D 2, we get an identification
of the sphere of complex structures on Y and T` and so an action of H on the real tangent
bundle of T` � Y , so that the purely imaginary unit quaternions act via parallel complex
structures.

Definition 12.13. (1) The product hyperkähler structure on T` � Y , associated to a
marked pair .Y; �/ 2M0

w?
with period ` and a Kähler class � on Y , is the data

consisting of the product hyperkähler metric associated to .Y; �; �/ and the above
action of the quaternion algebra H.

(2) The above product hyperkähler structure on T` � Y is equivariant with respect to the
anti-diagonal action of �w and it thus descends to a hyperkähler structure on the quo-
tient ŒT` � Y �=�w , which we call the natural hyperkähler structure on ŒT` � Y �=�w
associated to a marked pair .Y; �/ 2M0

w?
with period ` and a Kähler class � on Y .

Denote by
…W WMW !

ePW (12.13)

the restriction of… WM!M0
w?

to the twistor lineePW through .Yt ; �t / associated to the
Kähler class �. Note that MW is the quotient by the anti-diagonal action of �w on the fiber
product of the two twistor families �W W TW ! PW , given in (12.8), and pW W YW ! PW
over the same twistor line PW in �w? . The fiber product is itself a twistor deformation
with respect to the product hyperkähler structure on T` � Yt . Similarly, the twistor family
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…W displayed above is the one associated to the natural hyperkähler structure on Mt WD

ŒT` � Yt �=�w .
Let .Y; �/ be a marked pair in M0

ƒ and set ` WD Per.Y; �/. Let H 2p.Y � T`;Q/
�w

be the subspace invariant under the anti-diagonal action of �w . Note the isomorphism
H�.Y � T`;Q/

�w Š H�.Y;Q/�w ˝H�.T`;Q/. Recall that the quotient Mon.Y /=�w
has a canonical normal subgroup N , obtained by conjugating the image of Spin.SC/w
in Mon.Ka.w//=�w via a parallel transport operator (Lemma 10.7). Every local system
over M0

w?
is trivial, by [30, Lemma 2.1]. Hence, we get an identification of N with

Spin.SC/w .

Lemma 12.14. Any class in H 2p.Y � T`;Q/
�w which is invariant under the diagonal

Spin.SC/w monodromy action is of Hodge type .p; p/.

Proof. If the Hodge operator belongs to the Lie algebra of the identity component of
the Zariski closure of a group acting on the cohomology rings of two compact Kähler
manifolds M1 and M2, then it belongs to the Lie algebra of the identity component of
the Zariski closure of its diagonal action on M1 �M2 (see for example [29, proof of
Lemma 3.2]). Hence, the statement follows from Lemmas 10.8 and 12.2.

12.6. Third intermediate Jacobians of generalized Kummers

The third Betti number of a generalized Kummer is 8 [10, p. 50]. The Hodge group
H 0;3.Yt / vanishes for the fiber Yt of p over t 2M0

w?
, and so the third intermediate

Jacobian H 1;2.Yt /=H
3.Yt ;Z/ is an abelian fourfold whenever Yt is projective, by the

Hodge–Riemann bilinear relations.

Lemma 12.15. There exists a global isogeny between the family of third intermediate
Jacobians of p W Y !M0

w?
and the family Per�T over M0

w?
.

Proof. Let V be the trivial local system with fiber V over M0
w?

. It is isomorphic to the
weight 1 variation of integral Hodge structures of the family Per�T . It suffices to construct
a global Spin.V /w -equivariant isogeny between the integral local systems V andR3p�Z,
by Lemma 12.14.

Let S� be the trivial local system with fiber S� over M0
w?

. Clifford multiplica-
tion mw W V ! S� by w induces a Spin.V /w -equivariant isogeny mw W V ! S�: It
remains to construct a Spin.V /w -equivariant isogeny from S� to R3p�Z. Let … WM!
M0
w?

be the universal deformation of M.w/ given in (12.12). Let Q3 be the quotient
of R3…�Z by the cup product image of R1…�Z ˝ R2…�Z. Recall that the fiber Yt0
was the Albanese fiber of the moduli space M.w/, by construction. Q3 has rank 8, since
M.w/ D ŒYt0 � X �

yX�=�w and �w acts trivially on H i .Yt0 � X �
yX;Q/ for i � 3.

The homomorphism N�3 W S� ! Q3.M.w//, given in (8.13), is a Spin.V /w -equivariant
isomorphism, by Lemmas 8.9 and 8.10 (extended to general Mukai vector w via The-
orem 9.3). The restriction homomorphism H 3.M.w/;Z/! H 3.Yt0 ;Z/ factors through



E. Markman 308

an injective15 Spin.V /w -equivariant homomorphism Q3.M.w// ! H 3.Yt0 ;Z/, since
H 1.Yt0 ;Z/ D 0: Composing the latter with N�3 we get a Spin.V /w -equivariant isogeny
S� ! H 3.Yt0 ;Z/. Every local system over M0

w?
is trivial, by [30, Lemma 2.1]. We get

a Spin.V /w -equivariant isogeny from S� to R3p�Z.

Remark 12.16. Note that for fourfolds Y of generalized Kummer type the polarization
map‚ Ww?!

V2
V � given in (12.5) is conjugate via Mukai’s isometryH 2.Y;Z/Šw?

and the isogeny between H 3.Y;Z/ and V of the above lemma to a map proportional to

H 2.Y;Z/!
V2

H 3.Y;Z/�;

given by h 7!
R
Y
h [ x [ y for x; y 2 H 3.Y;Z/, as both belong to the rank 1 invariant

subgroup under the Spin.SC/w monodromy action on Hom.H 2.Y;Z/;
V2

H 3.Y;Z/�/
(see Lemma 12.3). O’Grady used the latter map to construct the polarization on the
intermediate Jacobians, and the positivity of the metric in Proposition 12.6 (1) follows
in this case by the Hodge–Riemann bilinear relations. When Y is of generalized Kum-
mer type of dimension 2n � 6, O’Grady integrates the product h[ x [ y [ ˇn�2, where
ˇ 2 H 2;2.Y;Q/ is the Beauville–Bogomolov–Fujiki class [43].

13. Hyperholomorphic sheaves

We prove in this section Theorem 1.5 about the algebraicity of the Hodge–Weil classes
on abelian fourfolds of Weil type of discriminant 1. Let M.w/ WDMH .w/ be a smooth
and compact moduli space ofH -stable sheaves of primitive Mukai vectorw of dimension
� 8 over an abelian surface X . Given a class � 2 SCX WD H

even.X;Z/, denote by �i its
projection to H i .X;Z/.

Lemma 13.1. The Brauer class ˛ 2H 2
an.M.w/;O�

M.w/
/ of the universal sheaf has order

divisible by gw WD gcd ¹.w; �/ W � 2 SCX ; �2 2 H
1;1.X;Z/º:

Proof. The fiber Ka.w/ of M.w/ over a 2 Alb1.M.w// has dimension � 4, by assump-
tion, and so H 2.Ka.w/;Z/ is Hodge isometric to w?, by Yoshioka’s Theorem 3.1. It
suffices to prove that gw divides the order of the restriction of ˛ to Ka.w/. The proof of
the latter fact is identical to that of [29, Lemma 7.5 (2)].

Let r be an even integer satisfying r � 6. Let X be an abelian surface with a cyclic
Picard group generated by an ample class H with h WD c1.H/ satisfying

.h; h/
S
C

X

D �.2r2 C r/

(so
R
X
h2 D 2r2 C r). Set w WD .r; h; r/. Then .w;w/

S
C

X

D �r and gw D r .

15That restriction homomorphism is known to be surjective for generalized Kummer fourfolds,
by [20, Th. 6.33].
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Lemma 13.2. (1) The sheaf EF over M.w/ in Theorem 11.1 is ˛-twisted by a Brauer
class ˛ of order equal to the rank r of EF . Consequently, the sheaf EF does not
have any non-trivial subsheaf of lower rank and End.EF / is �-slope-polystable with
respect to every Kähler class � on M.w/. Furthermore, the first Chern class of every
direct summand of End.EF / vanishes.

(2) The sheaf E of Theorem 11.1 (1) is ��1 .˛
�1/��2˛-twisted, where ˛ is a Brauer class

of order equal to the rank r of E. Consequently, E is .��1 � C �
�
2 �/-slope-polystable

with respect to every Kähler class � on M.w/. Furthermore, the first Chern class of
every direct summand of End.E/ vanishes.

Proof. The proofs of the two parts are identical. We prove (1). The order of the Brauer
class necessarily divides the rank of the sheaf. In our case the rank r divides the order
of ˛ by Lemma 13.1. Hence, they are equal. The polystability of End.E/ is proven for
any torsion free reflexive sheaf E twisted by a Brauer class of order equal to its rank in
[29, Prop. 6.6]. The vanishing of the first Chern classes of the direct summands is proven
in [29, Lemma 7.2].

Theorem 13.3. The sheaf EF deforms with M.w/ to a reflexive sheaf, locally free on
the complement of a point, over every fiber of the universal family (12.12). The sheaf E
deforms with M.w/ �M.w/ to a reflexive sheaf, locally free away from the diagonal,
over the cartesian square of every fiber of the universal family (12.12).

Proof. The sheaf EF is �-slope-stable with respect to every Kähler class � on M.w/, by
Lemma 13.2. The class c2.End.EF // is Spin.SCX /w -invariant with respect to the mono-
dromy representation of Theorem 8.6, by Theorem 11.1. Hence, c2.End.EF // remains of
Hodge type .2; 2/ along any flat deformation to every fiber of the family … in (12.12), by
Lemma 12.14. Let � W H 2.Ka.w/;Z/! w? be the inverse of Mukai’s Hodge isometry.
It follows that the sheaf EF deforms as a twisted sheaf along the twistor family (12.13)
of the natural hyper-Kähler structure on M.w/ (Definition 12.13 (2)) associated to any
Kähler class � on the generalized Kummer Ka.w/ and the marking �, by [53, Th. 3.19],
which is generalized to the case of twisted sheaves in [29, Cor. 6.12]. The sheaf EF
deforms, furthermore, along every generic twistor path in M0

w?
, by [29, Prop. 6.17]. The

statement follows from the fact that every point in M0
w?

is connected to .M.w/; �/ via
a generic twistor path, by [50, Ths. 3.2 and 5.2.e]. The proof of the statement for the
sheaf E is identical.

Let T`, ` 2 �w? ; be an abelian fourfold of Weil type with ample class ‚h, h 2
w?, as in Corollary 12.9. It admits complex multiplication by K WD QŒ

p
�d�, where

d D .w; w/.h; h/=4. Let Spin.SC/w;h be the subgroup of Spin.SC/ stabilizing both w
and h. The group Spin.SC/w;h is an arithmetic subgroup of Spin.SCR /w;h Š Spin.4; 2;R/
and Spin.4; 2;R/ is isomorphic to SU.2; 2/ [14, IX.4.3 B (vi)]. SU.2; 2/ is the spe-
cial Mumford–Tate group of polarized abelian fourfolds of Weil type [55], [49, The-
orem 6.11].
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Theorem 13.4. The subspace H 4.T`; Q/Spin.SC/w;h , consisting of classes invariant
under Spin.SC/w;h, is 3-dimensional and consists of algebraic classes.

Proof. The complexification Spin.SCC /w;h of Spin.SC/w;h is isomorphic to SL.4;C/.
The invariant subspace H 4.T`;Q/

Spin.SC/w;h is 3-dimensional, by [40, Prop. 2], and it
consists of Hodge type .2; 2/ classes, by Lemma 12.2 (2). This agrees with Weil’s obser-
vation that H 2;2.A;Q/ is 3-dimensional for the general polarized abelian fourfold A of
Weil type with complex multiplication by the fieldK DQŒ

p
�d� in each complete family

[55], [49, Ths. 4.11 and 6.12]. Regarding H 1.A;Q/ as a 4-dimensional K vector space,
we get that

V4
K H

1.A;Q/ is a 1-dimensional K vector space, which is a 2-dimensional
Q-subspace of

V4
QH

1.A;Q/. Weil proved thatH 2;2.A;Q/ contains
V4
KH

1.A;Q/ and
for a generic A of Weil type the equality

H 2;2.A;Q/ D spanQ¹‚
2
hº C

V4
K H

1.A;Q/

holds [55], [49, Ths. 4.11 and 6.12]. It follows that
V4
K H

1.T`;Q/ is contained in
H 4.T`;Q/

Spin.SC/w;h for a generic ` 2 �w? such that .`; h/ D 0. The inclusionV4
K H

1.T`;Q/ � H
4.T`;Q/

Spin.SC/w;h (13.1)

must thus hold for all ` 2 �w? such that .`; h/ D 0, as it is a closed condition.
A class ˛ 2

V4
QH

1.T`;Q/ belongs to
V4
K H

1.T`;Q/ if and only if

.˛; �.v1/ ^ v2 ^ v3 ^ v4/ D .˛; v1 ^ � � � ^ �.vi / ^ � � � ^ v4/ (13.2)

for 2 � i � 4, for all vi 2 H1.T`;Q/ and all � 2 K. The structure of a 1-dimensional
K-vector space on

V4
K H

1.T`;Q/ is given by

.�˛; v1 ^ v2 ^ v3 ^ v4/ WD .˛; �.v1/ ^ v2 ^ v3 ^ v4/:

The inclusion (13.1) can be seen more directly using the following description of
the subspace

V4
K H

1.T`;Q/ of H 4.T`;Q/
Spin.SC/w;h . Let Z1 and Z2 be the two max-

imal isotropic subspaces of H 1.T`;C/ Š VC corresponding to the two isotropic lines
in the plane spanC¹w; hº in SCC . Explicitly, Zi is the kernel of m�i W VC ! S�C , where

�i Dw˙
2
p
�d

.h;h/
h. Note thatZi is defined overK. The Spin.SCC /w;h-action onZi factors

through SL.Zi / and so it acts trivially on
V4

Zi . Each
V4

Zi , i D 1; 2, is defined over
K and the non-trivial element in Gal.K=Q/ interchanges the two, so their direct sum is
defined over Q. Now,Z1 andZ2 are the two eigenspaces of the endomorphism‚0

h
of VC

in Lemma 12.5. If ¹z1; z2; z3; z4º is a basis for Zi , then

z1 ^ � � � ^ .aC b‚
0
h/.zi / ^ � � � ^ z4 D .aC bci /.z1 ^ z2 ^ z3 ^ z4/

for all a; b 2 Q, where the eigenvalue ci of ‚0
h

is ˙
p
�d . Hence, (13.2) holds for

˛ WD z1 ^ z2 ^ z3 ^ z4 and for vi 2 V �˝QK: The subspace
V4
KH

1.T`;Q/ thus contains
the intersection of

V4
Q H

1.T`;Q/ with the 2-dimensional complex subspace
V4

Z1 CV4
Z2 of

V4
C H

1.T`;Q/. Both subspaces are 2-dimensional over Q, hence equal.
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Let ' W K ! EndQ.H
1.T`;Q// be the homomorphism sending

p
�d to the endo-

morphism ‚0
h

given in (12.4). We get the degree 4 polynomial map '4 W K !

EndQ.
V4

QH
1.T`;Q// sending � to

V4
'.�/ and the latter restricts to the 1-dimensional

K-vector space
V4
K H

1.T`; Q/ as scalar multiplication by �4 2 K. The image of
the map � 7! �4, from K to K, spans K as a Q-vector space. Hence, given any
non-zero ˛ 2

V4
K H

1.T`;Q/, the set '4.�/.˛/, � 2 K, spans
V4
K H

1.T`;Q/. In con-
trast, '4.�/.‚2h/ D Nm.�/2‚2

h
, by Corollary 12.9, and so the 1-dimensional subspace

spanQ¹‚
2
h
º is invariant under '4.K/.

The Cayley class C , associated to the Spin.SC/w -action on H 4.T`; Z/, and ‚2
h

are linearly independent, by [40, Prop. 2]. Hence, the 2-dimensional Q-subspaces
spanQ ¹C;‚

2
h
º and

V4
K H

1.T`;Q/ of the 3-dimensional H 4.T`;Q/
Spin.SC/w;h intersect

non-trivially along a 1-dimensional Q-subspace. Choose a non-zero class ˛ in their inter-
section. It follows that H 4.T`;Q/

Spin.SC/w;h is spanned by ‚2
h

and the 2-dimensional
Q-subspace spanned by the '4.K/-translates of ˛.

Let Mt , t 2M0
w?

, be any fiber of the universal family … W M !M0
w?

given in
(12.12) and let .Yt ; �t / be the marked fiber of the universal family p W Y!M0

w?
of gen-

eralized Kummer type given in (12.11). Let ` be the period of .Yt ; �t /. Let � W T` !Mt

be the inclusion of a general fiber of Mt ! Yt=�w . Let Et be a deformation of EF
to the fiber Mt as in Theorem 13.3. Then c2.End.Et // restricts to T` as a non-zero
Spin.SC/w -invariant class ��c2.End.Et //, by Theorem 11.1, hence the restriction is a
non-zero integral multiple of the Cayley class. The Cayley class is thus algebraic. Hence,
so is the class ˛ above. The ring ZŒ

p
�d� acts on T` via holomorphic group endomor-

phisms, which are necessarily algebraic, by Corollary 12.9. This algebraic action induces
the cohomological action on H 4.T`;Q/ by '4.ZŒ

p
�d�/. Hence, the 2-dimensional sub-

space spanned by the '4.K/-translates of ˛ consists of algebraic classes as well.

Proof of Theorem 1.5. The two discrete invariants, K and the discriminant, of a polar-
ized abelian fourfold of Weil type .A;K; h/ determine a 4-dimensional connected period
domain of all polarized abelian fourfolds of Weil type with these two invariants, up to an
isogeny compatible with the subspaces of Hodge–Weil classes, by [48, Lemma 4, Sec. 6
and Sec. 7]. Every polarized abelian fourfold of Weil type .A;K; h/ with discriminant 1
and imaginary quadratic field K WD QŒ

p
�d� is thus isogenous to T` for some period `

in the period domain �¹w;h0º? given in (12.6), for some integral classes w 2 SC and
h0 2 w? of negative self-intersection such that .h0; h0/.w; w/=4 D d , by Corollary 12.9
and Lemma 12.11. The push-forward of an algebraic class via an isogeny of abelian vari-
eties is algebraic. Theorem 1.5 thus follows from Theorem 13.4.

14. The generalized Hodge conjecture for codimension 2 cycles on IHSM’s
of Kummer type

We prove Theorem 1.10 in this section verifying the generalized Hodge conjecture
for codimension 2 algebraic cycles homologous to 0 on every projective irreducible
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holomorphic symplectic manifold of generalized Kummer deformation type. We will
need a few preparatory results. Let X be an abelian surface, H a polarization on X ,
w 2 H even.X; Z/ a primitive Mukai vector, and assume that the moduli space M of
H -stable sheaves on X with Chern character w is smooth and projective of dimension
� 8. Assume that there exists a universal sheaf U over X �M (untwisted). The latter
assumption is equivalent to the equality gcd ¹.w;�/ W � 2 SCX ; �2 2H

1;1.X;Z/º D 1, by
[38, Appendix 2]. Let �ij be the projection from M �X �M onto the product of the i -th
and j -th factors. Let E WD Ext1�13.�

�
12U; �

�
23U/ be the relative first extension sheaf over

M �M. Let alb WM ! Alb.M/ be the Albanese map. Denote by Kt .w/, t 2 Alb.M/,
the fiber alb�1.t/. Let et W Kt .w/ ,!M be the inclusion. Set k WD 1

2
dimC.Kt .w//.

Given F 2M, let EF be the restriction of E to ¹F º �M. Fix F0 2M and consider
the map

AJE WM! J 2.K0.w// (14.1)

sending F to the Abel–Jacobi image of an algebraic cycle representing the Chow class

e�t Œc2.E
_
F

L
˝EF /� c2.E

_
F0

L
˝EF0/�: The latter class is the same as the one given in (1.8).

In the introduction the sheafE depended on a parameter b, and AJEb was denoted by AJb
for short. The proof of the surjectivity of AJE requires a few lemmas.

Set yX WD Pic0.X/. The group X � yX acts on M via .x; L/F D �x;�.F /˝ L, where
�x W X ! X is the translation by the point x 2 X . Given g WD .x; L/ 2 X � yX , denote
by zg WM!M the automorphism of M.

Lemma 14.1. The isomorphism Ezg.F / Š zg�.EF / holds for all F 2M and g 2 X � yX .

Proof. The sheaf E is homogeneous with respect to the diagonal action of X � yX on
M �M, i.e., we have an isomorphism .zg � zg/�.E/ Š E for every g 2 X � yX . Indeed,
given x 2X set z�x WD �x � idM WX �M!X �M and observe that for everyL2 Pic0.X/
we have the natural isomorphism

Ext1�13.�
�
2L˝ �

�
12z�x;�U; �

�
2L˝ �

�
23z�x;�U/ Š Ext1�13.�

�
12z�x;�U; �

�
23z�x;�U/

��x
�! Ext1�13.�

�
12U; �

�
23U/:

The isomorphism .zg � zg/�.E/Š E yields .zg � idM/
�.E/Š .idM � zg/�.E/, explaining

the second isomorphism below:

Ezg.F / Š ..zg � idM/
�.E//F Š ..idM � zg/�.E//F Š zg�.EF /: (14.2)

Set zM WD X � yX �K0.w/. Let

a W zM!M (14.3)

be the restriction of the action morphism X � yX �M ! M, given by a.x; L; F / D
�x;�.F / ˝ L. Then a is a surjective étale morphism. Denote by U0 the pull-back of
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U to X � K0.w/ via idX � e0. Let �ij be the projection from X � X � yX � K0.w/

onto the product of the i -th and j -th factors. Set zU WD .idX � a/�U. The restriction of
zU to X � ¹.x; L; F /º is isomorphic to �x;�.F /˝ L. The restriction of ��14U0 to X �
¹.x;L;F /º is isomorphic to F . Define � WX �X!X �X by �.x1; x2/D .x1C x2; x2/.
Let z� be the automorphism of X �X � yX �K0.w/ given by � � idX � idK0.w/. We con-
clude that there is a line bundle N over X � yX �K0.w/ and an isomorphism

zU Š ��234N ˝ z�
���14U0 ˝ �

�
13P : (14.4)

Let pij be the projection from zMDX � yX �K0.w/ onto the product of the i -th and j -th
factors. Let C0 be the sky-scraper sheaf supported on the origin inX . Letˆ zU WD

b.X/!

Db. zM/ be the integral functor with kernel zU.

Lemma 14.2. ˆ zU.C0/ Š N ˝ p
�
13U0:

Proof. Note that � restricts to ¹0º �X as the diagonal embedding ofX inX �X . Hence,
the restriction of �14 ı z� to ¹0º �X � yX �K0.w/ is equal to that of �24. The restriction
of ��13P to ¹0º � zM is the trivial line bundle. The statement follows from (14.4).

Let  WX �K0.w/! zM be given by .x;F /D .x;y0;F /, where y02 yX represents OX .
Let �K0.w/ be the projection from X �K0.w/ to K0.w/.

Lemma 14.3. L�ˆ zU.OX / Š .
�N/˝ L��

K0.w/
R�K0.w/;�U0.

Proof. Let qij be the projection from X � X � K0.w/ to the product of the i -th and
j -th factors. Set z WD .idX � / W X � X � K0.w/ ! X � zM. We have ˆ zU.OX / Š
R�234;�Œ�

�
234N ˝ z�

���14U0 ˝ ��13P � Š N ˝ R�234;�Œz�
���14U0 ˝ ��13P �. Hence,

L�ˆ zU.OX / is isomorphic to �N ˝Rq23;�ŒLz�¹z����14U0º�, by the triviality of .�13 ı
z/�P and cohomology and base change for the right square in the cartesian diagram

X �K0.w/

�K0.w/

��

X �X �K0.w/
z
//

q13oo

q23

��

X �X � yX �K0.w/

�234

��

K0.w/ X �K0.w/


//
�K0.w/oo X � yX �K0.w/

Set y� WD �� idK0.w/. The isomorphismL�ˆ zU.OX /Š .
�N/˝Rq23;�Œy�

�q�13U0� thus
follows from the equality �14 ı z� ı z D q13 ı y�. The isomorphism

L�ˆ zU.OX / Š .
�N/˝Rq23;�Œq

�
13U0�

follows from the equality q23 D q23 ı y� and the fact that Ry��Ly�� is the identity. The
statement follows by cohomology and base change with respect to the left square in the
above diagram.

Proof of Theorem 1.10. Up to translation, the morphism AJb , given in (1.9), is determ-
ined by the homomorphism AJb;� W H1.Alb.Mb/; Z/ ! H1.J

2.Yb/; Z/. The latter
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depends continuously on b andEb . Any two points b1;b2 of M0
!?

with projective Yb1 and
Yb2 can be connected by a subfamily of … with projective fibers. It thus suffices to prove
Theorem 1.10 for one point in M0

!?
. We will prove it for a moduli space of sheaves M

as in (14.1).
Let CHi .M/ be the group of codimension i algebraic cycles in M and CHi .M/0 its

subgroup of cycles homologous to zero. Given a point ŒF � in M representing the isomor-
phism class of a sheaf F , let �F W X � yX !M be the map onto the orbit of ŒF � under the
X � yX -action. Set

J 2.M/ WD H 3.M;C/=ŒF 2H 3.M;C/CH 3.M;Z/�;

where F 2H 3.M;C/ WD H 3;0.M/˚H 2;1.M/ is the second subspace in the Hodge fil-
tration. We have the commutative diagram of Abel–Jacobi maps

X � yX
�F0 //M

 
//

%%

CH2.M/0
AJM //

e�
0

��

J 2.M/

r

��

CH2.K0.w//0
AJK // J 2.K0.w//

where the horizontal map  sends F to c2.E_F
L
˝ EF / � c2.E

_
F0

L
˝ EF0/, with both

the dual E_F and the tensor product taken in the derived category, and the right ver-
tical homomorphism r is induced by the restriction homomorphism e�0 W H

3.M;C/!
H 3.K0.w/;C/:

It suffices to prove the surjectivity of r ı AJM ı  ı �F0 , as r ı AJM ı  is equal to
AJE given in (14.1). Being a morphism of complex tori, the composition is induced by
a linear homomorphism (its differential) from H1.X � yX;R/ Š V �R to H 3.K0.w/;R/.
Both are irreducible Spin.V /w -representations. Hence, it suffices to prove that the differ-
ential of r ı AJM ı  ı �F0 is Spin.V /w -equivariant and it does not vanish.

Let Z0 be an algebraic cycle representing the Chow class c2.E_F0
L
˝ EF0/. Then

zg�.Z0/ represents c2.E_zg.F0/
L
˝ Ezg.F0//, by (14.2). Given a smooth path  from 0 to

g1 2 X � yX we get the cochain � WD
S
g2 zg.Z0/ with boundary zg1.Z0/ � Z0. The

point .AJM ı /.zg1.F0// is the projection to J 2.M/ of the class inH 1;2.M/˚H 0;3.M/

which corresponds to the linear functional sending a class � in H 2kC3;2kC2.M/ ˚

H 2kC4;2kC1.M/ to
R
�
�: Let � be a tangent vector to  at 0. Let

da W T0ŒX � yX�! H 0.TM/

be the homomorphism induced by the action of X � yX on M. Then the restriction
of da.�/ to Z0 maps to a global section of the real normal bundle of Z0 in � . The dif-
ferential of .AJM ı /maps da.�/ toH 1;2.M/˚H 0;3.M/, hence to a linear functional
on H 2kC3;2kC2.M/˚H 2kC4;2kC1.M/, whose value at a cohomology class � is equal
to
R
Z0
.�; da.�//, where .�; da.�// W H q.M; �

p

M
/! H q.M; �

p�1

M
/ is induced by con-

traction with da.�/ (see [12, Lecture 6]). The differential of AJM ı ı �F0 at 0 2 X � yX
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thus maps � to the linear functional

� 7!

Z
M

.�; da.�// [ c2.E
_
F0

L
˝ EF0/;

since the homology class of Z0 is Poincaré dual to the cohomology class of

c2.E
_
F0

L
˝ EF0/. The value at � ˝ � of the differential of AJE ı �F0 at 0 is thus given by

d0.AJE ı �F0/.� ˝ �/ D
Z

M

.e0;�.�/; da.�// [ c2.E
_
F0

L
˝ EF0/; (14.5)

where e0;� W H 4k�3.K0.w/;C/ ! H 4kC5.M;C/ is the Gysin homomorphism, since
dr� is induced by .e�0 /

� D e0;�.
Set zM WD X � yX �K0.w/. Let Œpt� 2 H 8.X � yX;Z/ be the class Poincaré dual to a

point in X � yX . We prove next that

.e0;�.�/; da.�// D a�.� � .Œpt�; �// (14.6)

for all � 2 H 4k�3.K0.w/; C/, where � denotes the outer product and we consider
H 4k�3.K0.w/;C/˝H 7.X � yX;C/ as a subspace of H 4kC4. zM;C/ via the Künneth
decomposition. Let ze0 WK0.w/! zM be given by t 7! .0;0; t/. We have e0D a ı ze0, where
a is given in (14.3), and so the Gysin map e0;� is the composition a� ı ze0;�. Let �w be the
Galois group of a W zM!M. A class ˇ in H�. zM;C/ decomposes as ˇ D a�.ˇ0/C ˇ00,
where ˇ00 belongs to the direct sum of non-trivial �w -representations. ThenZ

M

˛ [ a�.ˇ/ D

Z
zM

a�.˛/ [ ˇ D

Z
zM

a�.˛ [ ˇ0/ D deg.a/
Z

M

˛ [ ˇ0

for all ˛ 2H�.M/. Hence, a�.ˇ/D deg.a/ˇ0. Now, ze0;�.�/D � � Œpt�, the outer product
of � with Œpt�. The group �w acts on X � yX �K0.w/ via its translation action on X � yX
and its action on K0.w/ as automorphisms acting trivially on H i .K0.w/;C/ for i � 3
and so also for i � 4k � 3, by Lemma 10.1 (4). Hence, given � 2 H 2k�1;2k�2.K0.w//,
the class � � Œpt� is �w -invariant and equal to a��0 for some �0 2 H 2kC3;2kC2.M/,
and e0;�.�/ D deg.a/�0 D .k C 1/4�0. Let z� be the global tangent vector of zM D

X � yX � K0.w/ corresponding to � via the natural isomorphism H 0.T ŒX � yX�/ D

H 0.T zM/. Then a�.da.�// D z� via the isomorphism a�TM Š T zM. We have

1

deg.a/
a�.e0;�.�/; da.�// D a

�.�0; da.�// D .a��0; z�/ D .� � Œpt�; z�/ D � � .Œpt�; �/:

Applying a� to both sides we get (14.6).
Combining (14.5) and (14.6) we get

d0.AJE ı �F0/.� ˝ �/ D
Z
zM

.� � .Œpt�; �// [ a�c2.E_F0
L
˝ EF0/:

The differential d0.AJE ı �F0/ is Spin.V /w -equivariant, by the Spin.V /w -invariance of

c2.E
_
F0

L
˝ EF0/ established in Theorem 11.1. The right hand side in the above dis-

played equation does not vanish for some �˝� 2H 0.T ŒX � yX�/˝H 2k�1;2k�2.K0.w//
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if and only if the Künneth direct summand of a�c2.E_F0
L
˝ EF0/ in H 1.X � yX/ ˝

H 3.K0.w// does not vanish. This is the case if and only if the Künneth direct sum-
mand of a�c2.EF0/ in H 1.X � yX/ ˝ H 3.K0.w// does not vanish, since the corres-
ponding direct summand of a�c1.EF0/

2 vanishes, as H 2.X � yX �K0.w// decomposes
as H 2.X � yX/˚H 2.K0.w//. For the same reason, the direct summand of a�c2.EF0/
inH 1.X � yX/˝H 3.K0.w// does not vanish if and only if that of a� ch2.EF0/ does not
vanish.

Assume next that w is the Mukai vector .1; 0;�1 � k/ of the ideal sheaf of a length
k C 1 subscheme. The class a� ch2.EF0/ is equal to � ch2.ˆ zU.F

_
0 //, as a�EF0 is the

first sheaf cohomology of ˆ zU.F
_
0 /, the second sheaf cohomology is the direct sum of

the sky-scraper sheaves of the points of zM over ŒF0�, and all other sheaf cohomologies
vanish. We have

ch2Œˆ zU.F
_
0 /� D ch2Œˆ zU.OX /� � .k C 1/ ch2Œˆ zU.C0/�:

Let y0 be the point of yX representing the isomorphism class of the trivial line bundle.
It suffices to prove that the Künneth direct summand of ch2Œˆ zU.C0/� in H 1.X � yX/

˝ H 3.K0.w// restricts non-trivially to X � ¹y0º � K0.w/, while the Künneth direct
summand of ch2Œˆ zU.OX /� in H 1.X � yX/ ˝ H 3.K0.w// restricts to zero in X �

¹y0º �K0.w/.
The object .idX � ze0/�ˆ zU.C0/ is isomorphic to the tensor product of a line bundle

with U0, by Lemma 14.2. Hence, the Künneth component of .idX � ze0/� ch2.ˆ zU.C0//
in H 1.X/˝H 3.K0.w// is equal to that of ch2.U0/. We have the equality

e�0�M;�Œ�
�
X .�/ [ ch.U/� D �Ko.w/;�Œ�

�
X .�/ [ ch.U0/�; (14.7)

by the projection formula applied to the cartesian diagram

X �K0.w/
idX�e0 //

�K0.w/

��

X �M

�M

��

K0.w/
e0 //M

The only graded summand of ch.U0/ (resp. ch.U/) which contributes to the hom-
omorphism (14.7) from H 3.X/ to H 3.K0.w// (resp. to H 3.M/) is ch2.U0/ (resp.
ch2.U/). The left hand side of (14.7) induces an isomorphism from H odd.X;Q/ onto
H 3.K0.w/;Q/, by Lemma 8.9 and the surjectivity of h3, given in (10.2), established in
the paragraph preceding Lemma 10.1. Hence, so does the right hand side, and the Künneth
direct summand of ch2Œˆ zU.C0/� in H 1.X � yX/˝H 3.K0.w// restricts non-trivially to
X � ¹y0º �K0.w/.

The Künneth component in H 1.X/ ˝ H 3.K0.w// of � ch2Œˆ zU.OX /� is equal
to that of .�N/ ˝ L��

K0.w/
R�K0.w/;�U0, by Lemma 14.3, and hence also to that

of L��
K0.w/

R�K0.w/;�U0, as observed above. The Künneth component in H 1.X/ ˝

H 3.K0.w// of the latter clearly vanishes. This completes the proof of Theorem 1.10.
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15. Glossary of notation

V the lattice H1.X;Z/˚H1. yX;Z/ Eq. (4.1)
Spin.V / the spin group of a lattice or a vector space V Eq. (4.6)
Spin.V /w the stabilizer of w in Spin.V / Sec. 1.1
Pin.V / the pin group of a lattice or a vector space V Eq. (4.6)
G.V / one of the Clifford groups Eq. (4.6)
G0.V / one of the Clifford groups Eq. (4.6)
G.V /even the even Clifford group Eq. (4.6)
G.V /even

w the stabilizer of w in G.V /even Sec. 1.1
C.V / the Clifford algebra of a lattice or a vector space V Sec. 4.1
C.V /even the even direct summand of C.V / Sec. 4.1
C.V /odd the odd direct summand of C.V / Sec. 4.1
S the cohomology H�.X;Z/ as the spin representation Sec. 4.1
SC H even.X;Z/ as the half-spin representation Sec. 4.1
S� H odd.X;Z/ as the half-spin representation Sec. 4.1
AX the algebra V ˚ SC ˚ S� Sec. 4.3
m spin representation of the Clifford algebra C.V / Eq. (4.10),

or C.SC/ Cor. 4.7
mw the value of m on w 2 SC Eq. (4.29)
m spin representation of the Clifford group Eq. (4.11)
zm embedding of G.SC/ in GL.AX / Eq. (4.31)
zO.SC/ subgroup of GL.SC/ preserving the pairing up to sign Sec. 4.1
S zO.SC/ subgroup of SL.SC/ preserving the pairing up to sign Sec. 4.1
.�; �/V the pairing on V Eq. (1.1)
h�; �i the Mukai pairing on H even.X;Z/ Eq. (3.1)
.�; �/S the pairing on S Eq. (4.15)
� main anti-automorphism of C.V / Eq. (4.4)
z� lift of � to G.SC/even Eq. (4.24)
�X the automorphism of AX induced by z� Eq. (8.2)
˛ main involution of C.V / Eq. (4.5)
z̨ element in the center of Spin.V / Eq. (4.17)
� the homomorphism G.V /! O.V / Eq. (4.8)
z� the homomorphism G.V /! GL.AX / Eq. (4.26)
ort the orientation character Eq. (4.12), (8.3)
SOC.V / the kernel of the orientation character in SO.V / Sec. 4.1
OC.V / the kernel of the orientation character in O.V / Sec. 4.1
Lw the endomorphism w ^ � W H�.X;Z/! H�.X;Z/ Eq. (4.3)
D� endomorphism of H�.X;Z/ of contraction with � Sec. 4.1
PD Poincaré duality homomorphism Eq. (4.20)
yX Pic0.X/ of an abelian surface X Sec. 2
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X Œn� Hilbert scheme of length n subschemes of a surface X Sec. 1.1
X .n/ the n-th symmetric product of an abelian surface X Sec. 1.1
KX .m/ generalized Kummer variety of an abelian surface X Sec. 1.1
MH .v/ moduli space of stable sheaves with Mukai vector v Sec. 3
Ka.v/ fiber of the Albanese map MH .v/! X � yX over a Sec. 3
Mon.Y / monodromy group of a compact Kähler manifold Y Def. 1.1
mon the monodromy representation on H�.M.w/;Z/ Eq. (8.6)
mon the monodromy representation on H�.Ka.v/;Z/ Prop. 10.2
�X group of points of order n on the abelian surface X Sec. 1.1
�w subgroup of torsion points in the torus VR=V Rem. 4.3
g;�.E1;E2/ correspondence in H2m.M.w1/ �M.w2/;Q/ Eq. (6.3)
DM homomorphism acting by .�1/i on H2i .M/ Sec. 6
dX , dM.w/ a choice of factorization DX�M.w/ D dX ˝ dM.w/ Eq. (6.6)
z� homomorphism S ! H�.M.sn/;Q/ Eq. (8.7)
Qd .M.w// quotient of Hd .M.w/;Z/ Sec. 8.3

S
j
X

8̂<̂
:
SC
X

if j is even; j ¤ 2;
SC
X
\ s?n if j D 2;

S�
X

if j is odd

Eq. (8.8)

z�j homomorphism S
j
X
! Qj .M.w//˝Z Q Eq. (8.8)

hi homomorphism Qi .M.w//˝Z Q! H i .Ka.v/;Q/ Eq. (10.2)
�F embedding of X � yX in the orbit of F in MH .w/ Eq. (9.1)
qw ��

F
W H�.MH .w/;Z/! H�.X � yX;Z/ Eq. (9.2)

�w? period domain Eq. (12.3)
�¹w;hº? period domain Eq. (12.6)
Mw? moduli space of marked hyperkähler manifolds Sec. 12.5
M0
w?

a connected component of Mw? Sec. 12.5
‚0 homomorphism w? ! Hom.V; V / Eq. (12.4)
‚ homomorphism w? !

V2 V � Eq. (12.5)
J` complex structure on VC associated to ` 2 �w? Sec. 12.1
T` a complex torus associated to a period ` 2 �w? Sec. 12.1
Per the period map Mw? ! �w? Sec. 12.5
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