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Abstract. In this paper, we first consider steady Euler flows in two-dimensional bounded annuli,
as well as in complements of disks, in punctured disks and in the punctured plane. We prove that
if the flow does not have any stagnation point and satisfies rigid wall boundary conditions together
with further conditions at infinity in the case of unbounded domains and at the center in the case
of punctured domains, then the flow is circular, in the sense that the streamlines are concentric
circles. In other words, the flow then inherits the radial symmetry of the domain. We then show
two classification results for the steady Euler equations in simply or doubly connected bounded
domains with free boundaries. Here, the flows are further assumed to have constant norm on each
connected component of the boundary, and the domains are then proved to be disks or annuli. On
the one hand, the proofs use ODE and PDE arguments to establish some geometric properties of the
trajectories of the flow and the orthogonal trajectories of the gradient of the stream function. On the
other hand, we also show some comparison results of independent interest for a derived semilinear
elliptic equation satisfied by the stream function. These last results, which are based on the method
of moving planes, adapted here to some almost circular domains located between some streamlines
of the flow, lead with a limiting argument to the radial symmetry of the stream function and the
streamlines of the flow.

Keywords. Euler equations, circular flows, semilinear elliptic equations, free boundary problems,
method of moving planes

1. Introduction and main results

Throughout this paper, j j denotes the Euclidean norm in R2 and, for 0 � a < b � 1,
�a;b denotes the two-dimensional domain defined by

�a;b D ¹x 2 R2 W a < jxj < bº:
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When a < b are two positive real numbers, �a;b is a bounded smooth annulus. When
0 < a < b D 1, �a;1 is an exterior domain which is the complement of a closed disk.
When 0 D a < b <1, �0;b is a punctured disk. When 0 D a < b D 1, �0;1 is the
punctured plane R2 n ¹0º, where we denote 0 D .0; 0/ with a slight abuse of notation.

We also denote

er .x/ D
x

jxj
and e� .x/ D er .x/

?
D

�
�
x2

jxj
;
x1

jxj

�
for x D .x1; x2/ 2 R2 n ¹0º. Moreover, for x 2 R2 and r > 0,

B.x; r/ D ¹y 2 R2 W jy � xj < rº

denotes the open Euclidean disk with center x and radius r . We also write Br D B.0; r/
and

Cr D @Br D ¹x 2 R2 W jxj D rº:

1.1. Liouville-type radial symmetry results for steady Euler flows in �a;b

In �a;b , we consider steady flows v D .v1; v2/ of an inviscid fluid, solving the system of
the Euler equations: ´

v � r v Cr p D 0 in �a;b;

div v D 0 in �a;b;
(1.1)

where the solutions v and p are always understood in the classical sense, that is, they are
(at least) of class C 1 in �a;b and therefore satisfy (1.1) everywhere in �a;b . We always
assume rigid wall boundary conditions, that is, v is (at least) continuous up to the regular
parts of @�a;b and tangential there:´

v � er D 0 on Ca if a > 0;

v � er D 0 on Cb if b <1:
(1.2)

The Euler equations are an old but still very active research field. The search for qual-
itative properties of steady solutions is an important aspect of the study of the Euler flows,
and the first main motivation of our paper is to understand the effect of the geometry of
the underlying domain �a;b on the properties of steady flows, and more precisely to get
some conditions on the flow which guarantee its radial symmetry (see the precise defini-
tion below). In other words, how does the solution inherit the geometric radial symmetry
properties of the domain ? Our primary goal is thus to establish some Liouville-type res-
ults for the Euler equations. But the paper is also concerned with related Serrin-type free
boundary problems, for which the underlying domain, simply or doubly connected, is free,
but is eventually proved to be circular due to additional boundary conditions. Lastly, the
paper contains some new comparison results of independent interest on semilinear elliptic
equations in doubly connected domains, which are used to show the rigidity results for
the Euler equations in given domains and for the related free boundary problems.
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A flow v in�a;b is called a circular flow if v.x/ is parallel to the vector e� .x/ at every
point x 2 �a;b , that is, v � er D 0 in �a;b . The main goal of the results of this subsection
is to show that, under some conditions, the flow is circular. We obtain such results in the
four cases 0 < a < b <1, 0 < a < b D1, 0 D a < b <1, and 0 D a < b D1.

The case of bounded smooth annuli �a;b with 0 < a < b <1. The first result is con-
cerned with flows having no stagnation point in the closed annulus �a;b . Throughout the
paper, the stagnation points of a flow v are the points x for which jv.x/j D 0.

Theorem 1.1. Assume 0 < a < b <1. Let v be a C 2.�a;b/ flow solving (1.1)–(1.2) and
such that jvj > 0 in �a;b . Then v is a circular flow, and there is a C 2.Œa; b�/ function V
with constant strict sign such that

v.x/ D V.jxj/e� .x/ for all x 2 �a;b :

It actually turns out that the assumption jvj > 0 in �a;b can be slightly relaxed.
Namely, if jvj > 0 in the open annulus�a;b and if the set of stagnation points is assumed
to be properly included in one of the connected components of @�a;b , then the same
conclusion holds, and then in fact jvj > 0 in �a;b . This is the purpose of the following
result.

Theorem 1.2. Assume 0 < a < b <1. Let v be a C 2.�a;b/ flow solving (1.1)–(1.2) and
such that

¹x 2 �a;b W jv.x/j D 0º ¨ Ca or ¹x 2 �a;b W jv.x/j D 0º ¨ Cb : (1.3)

Then jvj > 0 in �a;b and the conclusion of Theorem 1.1 holds.

Theorem 1.2 is clearly stronger than Theorem 1.1, but we preferred to state The-
orem 1.1 separately since the assumption is simpler.

Several further comments are in order. First of all, despite the fact that �a;b is not
simply connected, the flow v has a stream function u W �a;b ! R of class C 3.�a;b/
defined by

r
?u D v; that is;

@u

@x1
D v2 and

@u

@x2
D �v1 (1.4)

in�a;b , since v is divergence free and tangential on Ca. Notice that the stream function u
is uniquely defined in �a;b up to an additive constant. Theorems 1.1 and 1.2 can then be
viewed as Liouville-type symmetry results since their conclusion means that the stream
function u is radially symmetric (and strictly monotone with respect to jxj in �a;b). Fur-
thermore, if for x in �a;b one denotes by �x the solution of´

P�x.t/ D v.�x.t//;

�x.0/ D x;
(1.5)

the conclusion of Theorems 1.1 and 1.2 implies that each function �x is defined in R and
periodic, and that the streamlines „x D �x.R/ of the flow are concentric circles.
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Theorems 1.1 and 1.2 also mean equivalently that any C 2.�a;b/ noncircular flow
for (1.1)–(1.2) must have a stagnation point either in the open annulus �a;b , or in both
circles Ca and Cb , or the set of stagnation points is equal to Ca, or it is equal to Cb .

Without the assumption jvj > 0 in �a;b or the weaker one (1.3), the conclusion of
Theorems 1.1 and 1.2 obviously does not hold in general, in the sense that there are non-
circular flows which do not fulfill (1.3). To construct such flows explicitly, we first point
out that, for any continuous function f W R! R and any nonradial C 2.�a;b/ solution u
of

�uC f .u/ D 0 (1.6)

in �a;b which is constant on Ca and on Cb and which has a critical point in �a;b , the
C 1.�a;b/ field v D r?u is a noncircular solution of (1.1)–(1.2) with a stagnation point
in �a;b: notice indeed that v D r?u satisfies the boundary condition

v � er D �ru � e� D 0

on @�a;b since u is constant on Ca and on Cb , and v solves (1.1) with pressure

p D �jvj2=2 � F.u/ D �jruj2=2 � F.u/;

where F 0 D f . As an example, let � 2 R and ' 2 C1.Œa; b�/ be the principal eigenvalue
and the principal eigenfunction of the eigenvalue problem

�'00.r/ � r�1'0.r/C r�2'.r/ D �'.r/ in Œa; b�

with ' > 0 in .a; b/ and Dirichlet boundary condition '.a/ D '.b/ D 0 (the principal
eigenvalue � is unique and the principal eigenfunction ' is unique up to multiplication by
positive constants). The C1.�a;b/ function u defined by u.x/ D '.jxj/x1=jxj (that is,
u.x/ D '.r/ cos.�/ in the usual polar coordinates) satisfies

�uC �u D 0 in �a;b

and it has some critical points in �a;b (since min�a;b u < 0 < max�a;b u and u D 0

on @�a;b). Actually, it can easily be seen that ' has only one critical point in Œa; b� and
that u has exactly six critical points in �a;b (two in �a;b , two on Ca, and two on Cb).
Then the C1.�a;b/ flow v D r?u is a noncircular flow solving (1.1)–(1.2) and having
two stagnation points in �a;b and four on @�a;b .

However, we do not know whether the hypothesis (1.3) could be more relaxed for the
conclusion of Theorems 1.1 and 1.2 to still hold. For instance, would it be sufficient to
assume that v has no stagnation point in �a;b? We refer to the comments after the proof
of Theorems 1.1 and 1.2 in Section 3.1 below for further details on this question.

On the other hand, we point out that the sufficient conditions jvj > 0 in �a;b or the
more general one (1.3) are obviously not equivalent to being a circular flow, in the sense
that there are circular flows for (1.1)–(1.2) which do not fulfill (1.3) (besides the trivial
flow vD .0;0/!). Actually, anyC 1.�a;b/ circular flow v.x/D V.jxj/e� .x/ solving (1.1)–
(1.2) and for which V 2 C 1.Œa; b�/ does not have a constant strict sign, has a set of
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stagnation points containing at least a circle. For instance, let � 2 R and � 2 C1.Œa; b�/
be the principal eigenvalue and the principal eigenfunction of the eigenvalue problem

��00.r/ � r�1�0.r/ D ��.r/ in Œa; b�;

with � > 0 in .a; b/ and Dirichlet boundary condition �.a/ D �.b/ D 0, and let u D
�.j � j/. Then v Dr?uD �0.j � j/e� is a C1.�a;b/ nontrivial circular flow solving (1.1)–
(1.2) with pressure p.x/ D ��0.jxj/2=2 � ��.jxj/2=2 and with a circle of stagnation
points in �a;b: more precisely, if r� 2 .a; b/ denotes a real number such that �.r�/ D
maxŒa;b� � (it is easy to see that r� is the only critical point of � in Œa; b�), then the set of
stagnation points of the flow v is equal to the whole circle Cr� .

Lastly, the assumption on the C 2.�a;b/ smoothness of v is a technical assumption
which is used in the proof. It warrants the C 1 smoothness of the vorticity

! D
@v2

@x1
�
@v1

@x2
;

satisfying v � r! D 0 in �a;b , and the C 1 smoothness of the vorticity function f arising
in the semilinear elliptic equation of the type (1.6) satisfied by the stream function u. We
refer to the proofs of the preliminary results in Section 2 and especially Lemma 2.8 below
for further details.

The case of exterior domains �a;1 with 0 < a <1.

Theorem 1.3. Assume 0 < a <1 and b D1. Let v be a C 2.�a;1/ flow solving (1.1)–
(1.2) and such that

¹x 2 �a;1 W jv.x/j D 0º ¨ Ca and lim inf
jxj!C1

jv.x/j > 0: (1.7)

Assume moreover that

v.x/ � er .x/ D o.1=jxj/ as jxj ! C1: (1.8)

Then jvj > 0 in�a;1 and v is a circular flow, namely there is a C 2.Œa;C1// function V
with constant strict sign such that v.x/ D V.jxj/e� .x/ for all x 2 �a;1.

As for Theorems 1.1 and 1.2, the conclusion of Theorem 1.3 says that the stream
function u is radially symmetric and strictly monotone with respect to jxj in �a;1, and
that the streamlines of the flow v are concentric circles.

In the proof of Theorem 1.3 given in Section 3.2, the o.1=jxj/ behavior in (1.8) seems
nearly optimal. Let us show that without (1.8) the conclusion of Theorem 1.3 does not
hold in general. Consider the C1.�a;1/ function u defined by u.x/D 2.jxj2=a2 � 1/C
.jxj=a � a=jxj/x1=jxj, that is,

u D 2

�
r2

a2
� 1

�
C

�
r

a
�
a

r

�
cos �



F. Hamel, N. Nadirashvili 328

in the usual polar coordinates. The function u satisfies �u � 8=a2 D 0 in �a;1 with
Dirichlet boundary condition u D 0 on Ca, and the C1.�a;1/ field v D r?u satis-
fies (1.1)–(1.2) with pressure p D �jvj2=2C 8u=a2. In the usual polar coordinates, the
field v is given by

v D

�
4r

a2
C

�
1

a
C
a

r2

�
cos �

�
e� C

��
1

a
�
a

r2

�
sin �

�
er : (1.9)

It satisfies condition (1.7) (and even inf�a;1 jvj � 2=a > 0). But

v.x/ � er .x/ D

�
1

a
�

a

jxj2

�
x2

jxj
¤ o

�
1

jxj

�
as jxj ! C1;

and v is not a circular flow. However, since u.x/ ! C1 as jxj ! C1 and u D 0

on Ca and since u has no critical point, it is easily seen that all solutions �x of (1.5)
are defined in R and periodic and that all streamlines „x D �x.R/ (which are level
sets of u) surround the origin.1 Nevertheless, the streamlines do not converge to any
family of circles at infinity since a calculation yields maxy2„x jyj � miny2„x jyj D
maxR j�x.�/j �minR j�x.�/j ! a=2 > 0 as jxj ! C1. In this counterexample, one actu-
ally has 0 < lim supjxj!C1 jv.x/ � er .x/j < C1. Thus, there may be another critical
behavior than o.1=jxj/ in (1.8) for which the conclusion would still hold, although a dif-
ferent proof would be necessary. The question of the characterization of a critical behavior
is left open.

We point out that, in Theorem 1.3, the flow v is not assumed to be bounded. Actually,
there are unbounded circular flows satisfying all assumptions of Theorem 1.3: consider
for instance the C1.�a;1/ unbounded circular flow v defined by

v.x/ D jxje� .x/;

solving (1.1)–(1.2) with stream function u.x/ D jxj2=2 and pressure p.x/ D jxj2=2, and
satisfying inf�a;1 jvj D a > 0.

Notice lastly that condition (1.7) is fulfilled in particular when inf�a;1 jvj > 0. Fur-
thermore, as soon as jvj > 0 on Ca (which holds if inf�a;1 jvj > 0), the boundary
condition (1.2) and the continuity of v imply in particular that v � e� has a constant strict
sign on Ca. Under the condition inf�a;1 jvj > 0, the following result then provides some
estimates on the infimum or the supremum of the vorticity @v2

@x1
�
@v1
@x2

in �a;1, in terms
of the sign of v � e� on Ca.

Theorem 1.4. Assume 0 < a <1 and b D1. Let v be a C 2.�a;1/ flow solving (1.1)–
(1.2) and such that inf�a;1 jvj > 0. If v � e� > 0 on Ca .respectively v � e� < 0 on Ca/,
then

sup
�a;1

�
@v2

@x1
�
@v1

@x2

�
> 0 .respectively inf

�a;1

�
@v2

@x1
�
@v1

@x2

�
< 0/:

1Throughout the paper, we say that a Jordan curve C surrounds the origin if the bounded con-
nected component of R2 n C contains the origin.
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The flow v given by (1.9) is an example of a flow satisfying the assumptions of The-
orem 1.4, with v � e� > 0 on Ca, and for which the vorticity (namely�u) is actually equal
to the positive constant 8=a2 everywhere in �a;1.

Theorem 1.4 can also be viewed as a Liouville-type result. Namely, we show in its
proof that if inf�a;1 jvj> 0 and v � e� > 0 on Ca, and if the vorticity is nonpositive every-
where in �a;1, then v is a circular flow of the type v D V.j � j/e� with V W Œa;C1/!
Œ�;C1/ for some �> 0. Therefore, the vorticity @v2

@x1
.x/� @v1

@x2
.x/DV 0.jxj/CV.jxj/=jxj

cannot be nonpositive everywhere (since otherwise the function r 7! r V .r/ .� �r/would
be nonincreasing in Œa;C1/, leading to a contradiction).2

Notice that Theorem 1.4 does not hold good if the assumption inf�a;1 jvj > 0 is
dropped. There are actually some circular flows v satisfying (1.1)–(1.2) such that jvj > 0
in �a;1 and v � e� > 0 on Ca, but inf�a;1 jvj D 0 and for which the vorticity is negative
everywhere. Consider for instance the C1.�a;1/ circular flow

v.x/ D
1

jxj2
e� .x/;

solving (1.1)–(1.2) with stream function u.x/D�1=jxj and pressure p.x/D�1=.4jxj2/:
one has jvj> 0 in�a;1 and v � e� > 0 on Ca, but inf�a;1 jvj D 0 and @v2

@x1
.x/� @v1

@x2
.x/D

�1=jxj3 < 0 in �a;1.

The case of punctured disks �0;b with 0 < b <1

Theorem 1.5. Assume a D 0 and 0 < b < 1. Let v be a C 2.�0;b n ¹0º/ flow solv-
ing (1.1)–(1.2) and such that

¹x 2 �0;b n ¹0º W jv.x/j D 0º ¨ Cb (1.10)

and Z
C"

jv � er j ! 0 as " >
�! 0: (1.11)

Then jvj> 0 in�0;b n ¹0º and v is a circular flow, namely there is a C 2..0;b�/ function V
with constant strict sign such that v.x/ D V.jxj/e� .x/ for all x 2 �0;b n ¹0º.

Notice that (1.11) is fulfilled in particular if v.x/ � er .x/ D o.1=jxj/ as jxj >�! 0. Let
us show that without (1.11) the conclusion of Theorem 1.5 does not hold in general.
To do so, let us give a counterexample similar to (1.9) above (which was there defined
in �a;1). More precisely, consider the C1.�0;b n ¹0º/ function u defined by u.x/ D
.jxj=b � b=jxj/x1=jxj, that is,

u D

�
r

b
�
b

r

�
cos �

in the usual polar coordinates. The function u satisfies�uD 0 in�0;b n ¹0ºwith Dirichlet
boundary condition u D 0 on Cb , and the C1.�0;b n ¹0º/ field v D r?u satisfies (1.1)–

2The same arguments do not lead to any contradiction in the case of bounded annuli �a;b and
�0;b with b <1; see Remark 1.6.
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(1.2) with pressure pD�jvj2=2 (and vorticity equal to 0). In polar coordinates, the field v
is given by

v D

��
1

b
C
b

r2

�
cos �

�
e� C

��
1

b
�
b

r2

�
sin �

�
er : (1.12)

It has only two stagnation points in �0;b n ¹0º and they both lie on Cb . Hence, (1.10)
is fulfilled. But

R
C"
jv � er j D 4.b=" � "=b/ ¹ 0 as " >

�! 0, and v is not a circular flow.
In this counterexample, one actually has

R
C"
jv � er j � 4b=" as " >

�! 0. Thus, there may
be another critical behavior than o.1/ in condition (1.11) for which the conclusion would
still hold, although a different proof would be necessary. The question of characterizing
the critical behavior is still open.

Lastly, in Theorem 1.5, the flow v is not assumed to be bounded. Actually, there are
unbounded circular flows satisfying all assumptions of Theorem 1.5: consider for instance
the C1.�0;b n ¹0º/ unbounded circular flow v defined by

v.x/ D
1

jxj
e� .x/ (1.13)

solving (1.1)–(1.2) with stream function u.x/ D ln jxj and pressure p.x/ D �1=.2jxj2/,
and satisfying jvj > 0 in �0;b n ¹0º and then (1.10)–(1.11).

Remark 1.6. A result similar to Theorem 1.4 does not hold in the punctured disk �0;b .
For instance, the C1.�0;b n ¹0º/ flow (1.13) satisfies (1.1)–(1.2), v � e� > 0 on Cb ,
inf�0;b jvj > 0, but @v2

@x1
�
@v1
@x2
� 0 in�0;b . The same observation holds good in a smooth

annulus �a;b with 0 < a < b <1.

Remark 1.7. Let us comment here the similar conditions (1.8) and (1.11). Condition (1.8)
implies that

R
CR
jv � er j ! 0 as R ! C1, which would be the dual of (1.11). But the

stronger pointwise asymptotic behavior (1.8) is truly used in the proof of Theorem 1.3,
and in particular in the proof of Lemma 3.1 below. Replacing (1.8) by the weaker integral
condition limR!C1

R
CR
jv � er j D 0 still yields some intermediary results (see the com-

mon preliminary results of Section 2 below), but it is an open question to decide whether
the conclusion of Theorem 1.3 would still hold with the integral condition instead of the
pointwise one.

The case of the punctured plane �0;1. The last geometric configuration considered in
the paper is the punctured plane

�0;1 D R2 n ¹0º:

Theorem 1.8. Let v be a C 2.�0;1/ flow solving (1.1) and such that jvj > 0 in�0;1 and
lim infjxj!C1 jv.x/j > 0. Assume moreover that

v.x/ � er .x/ D o.1=jxj/ as jxj ! C1 and
Z
C"

jv � er j ! 0 as " >
�! 0: (1.14)

Then v is a circular flow. Furthermore, there is a C 2..0;C1// function V with constant
strict sign such that v.x/ D V.jxj/e� .x/ for all x 2 �0;1.
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The conclusion says that, under roughly speaking the absence of stagnation points in
the punctured plane and at infinity, and under the same conditions as in Theorems 1.3
and 1.5 on the behavior of the radial component of v at infinity and at the origin, all
streamlines are closed and are just concentric circles.

Remark 1.9. Let us mention here other rigidity results for the stationary solutions of (1.1)
in various geometrical configurations. The analyticity of the streamlines under a condition
of the type v1 > 0 in the unit disk was shown in [19]. The local correspondence between
the vorticities of the solutions of (1.1) and the co-adjoint orbits of the vorticities for the
nonstationary version of (1.1) in more general annular domains was investigated in [8]. In
a previous paper [14] (see also [15]), we considered the case of a two-dimensional strip
with bounded section and the case of bounded flows in a half-plane, assuming in both
cases that the flows v are tangential on the boundary and that inf jvj > 0; all streamlines
are then proved to be lines which are parallel to the boundary of the domain (in other
words, the flow is a parallel flow). Compared to [14], the results of the present paper
are concerned with different geometrical situations, and the cases of punctured disks or
exterior domains involve specific difficulties. We here also include and prove some new
comparison results of independent interest for solutions of semilinear elliptic equations in
doubly connected domains (see Proposition 1.14 in Section 1.3 below), not to mention the
Serrin-type free boundary problems considered in Section 1.2. These types of problems,
as well as some methods used here such as the method of moving planes or the Kelvin
transform, were not used in [14–16]. Earlier results by Kalisch [18] were concerned with
flows in two-dimensional strips under the additional assumption v � e ¤ 0, where e is
the main direction of the strip. In [16], we considered the case of the whole plane R2

and we showed that any C 2.R2/ bounded flow v is still a parallel flow under the condi-
tion infR2 jvj > 0, with completely different tools based on the study of the growth of the
argument of the flow at infinity.

1.2. Serrin-type free boundary problems with overdetermined boundary conditions

The last main results on the solutions of the Euler equations (1.1) are two Serrin-type
results in smooth simply or doubly connected bounded domains whose boundaries are
free but on which the flow is assumed to satisfy an additional condition.

Theorem 1.10. Let � be a C 2 nonempty simply connected bounded domain of R2. Let
v 2 C 2.�/ satisfy the Euler equations (1.1) and assume that v � nD 0 and jvj is constant
on @�, where n denotes the outward unit normal on @�. Assume moreover that v has a
unique stagnation point in �. Then, up to translation,

� D BR

for some R > 0. Furthermore, the unique stagnation point of v is the center of the disk
and v is a circular flow, that is, there is a C 2.Œ0; R�/ function V W Œ0; R�! R such that
V ¤ 0 in .0; R�, V.0/ D 0, and v.x/ D V.jxj/e� .x/ for all x 2 BR n ¹0º.
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In the proof, we will show that the C 3.�/ stream function u defined by (1.4) satisfies
a semilinear elliptic equation�uC f .u/D 0 in�. Furthermore, up to normalization, the
function u vanishes on @� and is positive in�. Lastly, since jvj is assumed to be constant
along @�, the normal derivative @u

@n
of u along @� is constant. This problem is therefore

an elliptic equation with overdetermined boundary conditions. Since the celebrated paper
by Serrin [25], it has been known that these overdetermined boundary conditions on @�
determine the geometry of �, namely, � is then a ball and the function u is radially sym-
metric (hence, here, v would then be a circular flow). The proof is based on the method of
moving planes developed in [3, 6, 11, 25] and on the maximum principle, and it relies on
the Lipschitz continuity of the function f . In our case, the function f is given in terms
of the function u itself and it is continuous in Œ0;max� u�, as will be seen in the proof of
Theorem 1.10. But it can be non-Lipschitz-continuous on the whole range Œ0;max� u�.
More precisely, it can be non-Lipschitz-continuous in any left neighborhood of the max-
imum value max� u.3 One therefore has to adapt the proof to this case by removing small
neighborhoods of size " around the maximum point of u (which is the unique stagna-
tion point of v); one shows the symmetry of the domain in all directions up to " and one
concludes by passing to the limit as " >

�! 0.

Remark 1.11. Other free boundary problems related to the Euler equations have been
considered by Gómez-Serrano, Park, Shi and Yao [13]. They proved that if a solution
v of the Euler equations (1.1) in R2 has a vorticity which is the indicator function of a
bounded set (a patch) and if v is tangential on the boundary of this set, then v is circular
(up to translation) and the patch is a disk (see also [10, Chapter 4] for an earlier result
when the patch is assumed to be simply connected). It was also shown in [13] that smooth
solutions of (1.1) in R2 with nonnegative compactly supported vorticity must be radially
symmetric (up to translation). Other rigidity results of [13,17] also deal with nonstationary
uniformly rotating solutions.

In connection with Theorems 1.5 and 1.10, we state the following conjecture.

Conjecture 1.12. LetD be an open nonempty disk and let z 2D. Let v be a C 2.D n ¹zº/
and bounded flow solving (1.1) and v � n D 0 on @D, where n denotes the outward unit
normal on @D. Assume that jvj > 0 in D n ¹zº. Then z is the center of the disk and the
flow is circular with respect to z.

Up to translation, one can assume that D D Bb for some b 2 .0;C1/, hence n D er
on @D. If the point z is a priori assumed to be the center of the disk, i.e. the origin, then
Theorem 1.5 implies that v is a circular flow. Up to rotation, assume now that z D .˛; 0/

3For instance, for any R > 0, the C1.BR/ flow v.x/ D �4jxj2x? satisfies (1.1) in BR with
v � er D 0 on CR, and with pressure p.x/ D .8=3/jxj6 (up to an additive constant). Furthermore,
jvj is constant on CR and the only stagnation point of v in BR is the center of the disk. The
stream function u.x/ D R4 � jxj4 (up to an additive constant) satisfies the elliptic equation �uC
f .u/ D 0 in BR with f .s/ D 16

p
R4 � s, and the function f is not Lipschitz continuous in any

left neighborhood of max
BR

u D R4.
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for some ˛ 2 .0; b/ and, without loss of generality, that the stream function u is positive
in D n ¹zº and vanishes on @D. The goal would be to reach a contradiction. As far as
Theorem 1.10 is concerned, the method of proof described in the paragraph following the
statement shows simultaneously the symmetry of the domain and the symmetry of the
function u (which obeys an equation of the type �uC f .u/ D 0), thanks to the overde-
termined boundary conditions satisfied by u. Here in Conjecture 1.12, the same techniques
based on the method of moving planes implies for instance on the one hand that the func-
tion u is even in x2 in �0;b n ¹zº, and on the other hand that u.x1; x2/ < u.2˛ � x1; x2/
for all .x1; x2/ 2 �0;b such that x1 > ˛. But, regarding the second property, the Hopf
lemma might not apply to the function .x1; x2/ 7! u.x1; x2/� u.2˛ � x1; x2/ at the point
z D .˛; 0/ since the vorticity function f might not be Lipschitz continuous around the
limiting value of u at z (see also the comments after the proof of Theorems 1.1 and 1.2 in
Section 3.1 below, and notice that u is not differentiable at z, unless one further assumes
that jv.x/j ! 0 as x ! z). Therefore, the arguments as in the proof of Theorem 1.10 do
not lead to an obvious contradiction if z is not the center of the disk. However, Conjec-
ture 1.12 seems natural and will be the purpose of further investigation.

A related weaker conjecture (with stronger assumptions) can also be formulated: if
D is an open nonempty disk and z 2 D, and if v 2 C 2.D/ solves (1.1) with v � n D 0
on @D and z is the only stagnation point of v in D, then z is the center of the disk and
v is circular with respect to z. For the same reasons as in the previous paragraph (since
the vorticity function f might not be Lipschitz continuous around u.z/), the proof of that
second conjecture is not clear either.

The last main result related to the Euler equations is concerned with the case of doubly
connected bounded domains.

Theorem 1.13. Let !1 and !2 be two C 2 nonempty simply connected bounded domains
of R2 such that !1 � !2, and denote

� D !2 n !1:

Let v 2C 2.�/ satisfy the Euler equations (1.1). Assume that v �nD 0 on @�D @!1[@!2,
where n denotes the outward unit normal on @�, and that jvj is constant on @!1 and
on @!2. Assume moreover that jvj > 0 in �. Then !1 and !2 are two concentric disks
and, up to translation,

� D �a;b

for some 0 < a < b <1 and v is a circular flow satisfying the conclusion of Theorem 1.1
in �.

In this case, by using the arguments of Section 2 below (which also lead to the proof of
Theorems 1.1 and 1.2 in�a;b with 0<a<b <1), it follows that the stream function u of
the flow v satisfies a semilinear elliptic equation�uC f .u/D 0 in�, with uD c1 on @!1
and u D c2 on @!2, for some real numbers c1 ¤ c2. Furthermore, min.c1; c2/ < u <

max.c1; c2/ in� and the normal derivative @u
@n

is constant along @!1 and along @!2. Since
v has no stagnation point in �, the function f is then shown to be Lipschitz continuous
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in the whole interval Œmin.c1; c2/;max.c1; c2/�, and known results of Reichel [21] and
Sirakov [27] imply that, up to translation, � D �a;b for some 0 < a < b <1, and u is
radially symmetric.

Further symmetry results have been obtained for nonlinear elliptic equations of the
type �u C f .u/ D 0 or more general ones in exterior domains with overdetermined
boundary conditions (see e.g. [1, 22, 27]), or in the whole space (see e.g. [12, 20, 26]),
in both cases with further assumptions on the solution u at infinity and on the function f .
Such conditions are in general not satisfied by the stream function u and the vorticity
function f of a flow v that would be defined in the complement of a simply connected
bounded domain or in the whole or punctured plane. Lastly, we refer to [5, 9, 23, 24] for
further references on overdetermined boundary value elliptic problems in domains with
more complex topology or in unbounded epigraphs.

1.3. Directional comparison results for semilinear elliptic equations in some doubly
connected domains

As briefly mentioned after Theorems 1.10 and 1.13, the main strategy of these results,
as well as the other ones in the fixed annular domains �a;b , is to show that the stream
function u satisfies a semilinear elliptic equation�uC f .u/D 0 in the domain under con-
sideration and that this stream function is then radially symmetric (and the domain itself
is circular if the boundary is free). The radial symmetry of the stream function u means
that the flow v is circular. The proof of the radial symmetry of u follows from its even
symmetry and monotonicity with respect to each direction. The proof of the symmetry
and monotonicity relies on some directional comparison results which are themselves
based on the method of moving planes in doubly connected domains trapped between
two level sets of u. We point out that these level sets are not known a priori to be circles
and their precise shape is not known. That is why we have to show in this framework
a key proposition containing some new directional comparison results, which we think
are of independent interest and which we state and will use for more general semilinear
heterogeneous elliptic equations. Proposition 1.14 below will be used as a key step in the
proof of Theorems 1.3–1.5, 1.8 and 1.10. We also point out that the heterogeneity in (1.17)
below is not an artifice, since we will truly deal with heterogeneous equations obtained
after a Kelvin transform of some original equations set in exterior domains.

To do so, let us first introduce a few notations. For e 2 S1 D C1 and � 2 R, we denote

Te;� D ¹x 2 R2 W x � e D �º; He;� D ¹x 2 R2 W x � e > �º; (1.15)

and, for x 2 R2,
Re;�.x/ D xe;� D x � 2.x � e � �/e: (1.16)

In other words, Re;� is the orthogonal reflection with respect to the line Te;�.

Proposition 1.14. Let „ and „0 be two C 1 Jordan curves surrounding the origin, and
let� and�0 be the bounded connected components of R2 n„ and R2 n„0, respectively.
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0

R
R'

Fig. 1. The sets �, �0, ! D � n �0, He;� \ � (light blue background), Re;�.�0/ (with dashed
boundary), and !e;� (dashed red).

Assume that �0 � � and let
! D � n�0

be the nonempty and doubly connected domain located between„ and„0, with boundary

@! D „ [„0:

Write R0 Dminx2„0 jxj > 0 and RDmaxx2„ jxj > R0. Let e 2 S1, let �Dmaxx2„ x � e
> 0 and let " 2 Œ0; �/. Let c1 < c2 2 R and let ' 2 C 2.!/ be a solution of8̂̂<̂

:̂
�' C F.jxj; '/ D 0 in !;

c1 < ' < c2 in !;

' D c1 on „; ' D c2 on „0;

(1.17)

with a continuous function F W ŒR0; R� � Œc1; c2�! R that is nonincreasing with respect
to its first variable and uniformly Lipschitz continuous with respect to its second variable.
Assume that

Re;�.He;� \�/ � � for all � > "; (1.18)

Re;�.He;� \„
0/ � �0 for all � > " (1.19)

.see Fig. 1/. Then, for every � 2 Œ"; �/,

'.x/ � 'e;�.x/ D '.xe;�/ for all x 2 !e;� (1.20)

with
!e;� D .He;� \ !/ nRe;�.�0/:

4

Organization of the paper. In Section 2, we give some common preliminaries for the
proofs of Theorems 1.1–1.5, 1.8, 1.10 and 1.13 in fixed or free domains. Namely, we study
the properties of the streamlines of the flow and we derive a semilinear elliptic equation

4Notice that !e;� is open by definition, and it is nonempty for each � 2 Œ0; �/: indeed, for such
�, the set Te;� \„ is not empty and, for any x 2 Te;� \„ and r > 0, !e;� \ B.x; r/ ¤ ;. But
!e;� may not be connected, as can be seen in Fig. 1.
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for the stream function. Section 3 is devoted to the proofs of Theorems 1.1–1.5 and 1.8,
when the circular domain �a;b is fixed. The cases of the exterior domains �a;1 and
the punctured disks �0;b and punctured plane �0;1 involve some additional difficulties
and require specific additional assumptions. The proof of the Serrin-type Theorems 1.10
and 1.13 is carried out in Section 4. Lastly, Section 5 is concerned with the proof of
Proposition 1.14. Proposition 1.14 and its subsequent limiting argument showing that the
flow considered is circular are necessary for the proofs of Theorems 1.3–1.5 and 1.8 in
the case of exterior or punctured domains, as well as for the proof of Theorem 1.10 about
simply connected domains with free boundary.

2. Some common preliminaries

In this section, we state and prove some common properties which will be used in the
proofs of the main results on the Euler equations (1.1) in a fixed annular domain �a;b or
in simply or doubly connected domains with free boundaries. To cover all possible cases,
throughout this section we consider two C 1 Jordan curves C1 and C2 and we assume
that they both surround the origin, that is, the bounded connected components !1 and !2
of R2 n C1 and R2 n C2 contain the origin 0. We further assume that

!1 � !2:

Our aim here is to study the properties of the stream function u and the streamlines of
a divergence-free flow v in the open connected set� in one of the following four possible
cases:

� D !2 n !1; or � D R2 n !1; or � D !2 n ¹0º; or � D R2 n ¹0º:

Notice that � is bounded if � D !2 n !1 or !2 n ¹0º, and unbounded in the other two
cases. We say that � is not punctured if � D !2 n !1 or R2 n !1, and punctured in the
other two cases. We point out that the annular domains �a;b with 0 � a < b � 1 fall
within these four types of domains �. We also set´

D D � if � is not punctured;

D D � n ¹0º if � is punctured:
(2.1)

Throughout this section, v D .v1; v2/ is a C 1.D/ vector field. We point out that the
C 2.D/ regularity of v will be specified and used only in Lemma 2.8 below, as will also be
the Euler equations v � rvCrpD 0 themselves. We also point out that if� is punctured,
then v is not assumed to be defined at 0. It is however always assumed that

div v D 0 in D; jvj > 0 in �; (2.2)

and 8<: v � n D 0 on @!1 if � is not punctured;Z
C"

jv � er j ! 0 as " >
�! 0 if � is punctured;

(2.3)
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where n denotes the outward unit normal to � (that is, on C1 and/or C2 as appropri-
ate). The assumptions (2.2)–(2.3) are in force throughout Section 2, and are therefore not
repeated in the statements.

The first common result is concerned with the existence and some elementary proper-
ties of the stream function u.

Lemma 2.1. (i) There is a unique .up to additive constants/ C 2.D/ scalar function u
such that

r
?u D v in D;

and there is a constant cin such that´
u D cin 2 R on @!1 if � is not punctured;

u.x/! cin 2 R as jxj >�! 0 if � is punctured:
(2.4)

(ii) If one further assumes that8<: v � n D 0 on @!2 if � is bounded;Z
CR

jv � er j ! 0 as R!C1 if � is unbounded;
(2.5)

then there is a constant cout such that´
u D cout 2 R on @!2 if � is bounded;

u.x/! cout 2 R as jxj ! C1 if � is unbounded:
(2.6)

Furthermore,

cin ¤ cout and min.cin; cout/ < u < max.cin; cout/ in �:5 (2.7)

Proof. (i) The existence and uniqueness (up to additive constants) of a stream function
u 2 C 2.D/ is a consequence of the fact that � is doubly connected, v is divergence free
and satisfies conditions (2.3) on the inner boundary of �.

Assume now that � is not punctured, and consider a parametrization of its inner
boundary C1 by a C 1.R/ periodic function �1 such that j�01j > 0 in R. From the first
condition in (2.3), the function u ı �1 is constant in R, that is, there is cin 2 R such that
u D cin on C1 D @!1.

Assume now that � is punctured, and let � > 0 be such that Br n ¹0º � � for all
r 2 .0; �/. Since u has no critical point in � (because jvj > 0 in � by (2.2)), it follows
that

u > min
�

min
Cr1

u;min
Cr3

u
�

in �r1;r3 , for all 0 < r1 < r3 < �:

5The subscript “in” in cin refers to the “inner” boundary of �, which is @!1 (resp. ¹0º) if � is
not punctured (resp. punctured). Similarly, the subscript “out” in cout refers to the “outer” boundary
of �, which is @!2 (resp. the infinity) if � is bounded (resp. unbounded).
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In particular, minCr2 u >min.minCr1 u;minCr3 u/ for all 0 < r1 < r2 < r3 < �, hence the
function r 7! minCr u is strictly monotone in a right neighborhood of 0 and has a limit
cin 2R at 0. On the other hand, the integral condition in (2.3) means that

R
Cr
jru � e� j! 0

as r >
�! 0, hence the oscillation of u on Cr converges to 0 as r >

�! 0, that is,

osc
Cr
u WD max

Cr
u �min

Cr
u! 0 as r >

�! 0: (2.8)

Finally, maxCr u! cin as r >
�! 0, and u.x/! cin as jxj >�! 0.

(ii) Similarly, conditions (2.5), together with (2.2), imply the existence of cout 2 R
such that (2.6) holds in both the bounded and unbounded cases. In the unbounded case,
the integral condition in (2.5) also implies, as in (2.8) above, that

max
CR

u �min
CR

u! 0 as R!C1: (2.9)

Finally, in all cases, since u has no critical point in �, the properties (2.4) and (2.6)
immediately yield (2.7).

The second common result is concerned with the trajectories of the gradient flow ru,
with u given by Lemma 2.1. Namely, for x 2D, withD as in (2.1), let �x be the solution
of ´

P�x.t/ D ru.�x.t//;

�x.0/ D x:
(2.10)

For y 2 R2 and E � R2, we set

dist.y;E/ D inf
z2E
jy � zj:

Lemma 2.2. (i) If x 2 �, then there exist �1 � t�x < 0 < t
C
x � C1 such that �x W

.t�x ; t
C
x /! � is of class C 1 with .u ı �x/0 > 0 in .t�x ; t

C
x / and´

dist.�x.t/; @�/! 0 as t ! t˙x if � is bounded;

dist.�x.t/; @�/! 0 or j�x.t/j ! C1 as t ! t˙x if � is unbounded:
(2.11)

(ii) If � is not punctured and x 2 @!1, then either �x.t/ D x for all t 2 R, or there is
tCx 2 .0;C1� such that �x W Œ0; tCx /! �[ @!1 is of class C 1 with .u ı �x/0 > 0 in
Œ0; tCx /, �x..0; t

C
x // � �, and

dist.�x.t/; @!2/ ����!
t!t
C
x

0 if � is bounded

.resp. j�x.t/j ����!
t!t
C
x

C1 if � is unbounded/; (2.12)

or there is t�x 2 Œ�1; 0/ such that �x W .t�x ; 0� ! � [ @!1 is of class C 1 with
.u ı �x/

0 > 0 in .t�x ; 0�, �x..t
�
x ; 0// � �, and (2.12) holds with t�x instead of tCx .
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(iii) If � is bounded, if (2.5) holds and if x 2 @!2, then either �x.t/ D x for all t 2 R,
or there is tCx 2 .0;C1� such that �x W Œ0; tCx / ! � [ @!2 is of class C 1 with
.u ı �x/

0 > 0 in Œ0; tCx /, �x..0; t
C
x // � �, and

dist.�x.t/; @!1/ ����!
t!t
C
x

0 if � is not punctured

.resp. j�x.t/j ����!
t!t
C
x

0 if � is punctured/; (2.13)

or there is t�x 2 Œ�1; 0/ such that �x W .t�x ; 0� ! � [ @!2 is of class C 1 with
.u ı �x/

0 > 0 in .t�x ; 0�, �x..t
�
x ; 0// � �, and (2.13) holds with t�x instead of tCx .

Proof. (i) Consider any x in �. Since ru is of class C 1.D/, the solution �x of (2.10) is
defined in a neighborhood of 0 and the quantities t˙x defined by´

tCx D sup ¹t > 0 W �x..0; t// � �º;

t�x D inf ¹t < 0 W �x..t; 0// � �º
(2.14)

are such that �1 � t�x < 0 < t
C
x � C1. The functions �x W .t�x ; t

C
x /! � and u ı �x W

.t�x ; t
C
x /! R are of class C 1, with

.u ı �x/
0.t/ D jru.�x.t//j

2
D jv.�x.t//j

2 > 0 for all t 2 .t�x ; t
C
x /;

since jvj > 0 in � by (2.2). Let us then show (2.11) as t ! tCx (the limit as t ! t�x can
be treated similarly). Let us assume by way of contradiction that (2.11) (with t ! tCx )
does not hold. So, in all configurations, there exist an increasing sequence .tn/n2N in
.t�x ; t

C
x / converging to tCx and a point y 2� such that �x.tn/! y as n!C1. Since the

continuous field jruj D jvj does not vanish in � by (2.2), there are real numbers r > 0,
� > 0 and � > 0 such that´

B.y; r/ � �; jruj � � in B.y; r/;

�z.t/ 2 B.y; r/ for all z 2 B.y; r=2/ and t 2 Œ��; ��:

Since �x.tn/ ! y as n ! C1, one has �x.tn/ 2 B.y; r=2/ for all n large enough,
hence �x is defined in Œtn � �; tnC �� with �x.t/ 2 B.y; r/�� for all t 2 Œtn � �; tnC ��
and n large enough. This implies that tCx DC1. Furthermore, for all n large enough, one
has

.u ı �x/
0.t/ D jru.�x.t//j

2
� �2 for all t 2 Œtn � �; tn C ��,

hence
u.�x.tn C �// � u.�x.tn � �//C 2�

2�:

Since u ı �x is increasing in .t�x ; t
C
x / and since tn ! tCx D C1 as n! C1, one then

gets u.�x.t//!C1 as t ! tCx DC1, contradicting the fact that �x.tn/! y, tn! tCx
and the continuity of u at y. Therefore, (2.11) has been proved.
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(ii) Assume now that � is not punctured and consider x 2 @!1. From (2.3), either
jru.x/j D 0 (and then �x.t/ D x for all t 2 R), or jru.x/j > 0 and

ru.x/ D ˙jru.x/jn.x/;

with n.x/ the outward normal vector to� at x. Ifru.x/D�jru.x/jn.x/ (resp.ru.x/D
jru.x/jn.x/) with jru.x/j > 0, then ru.x/ points into (resp. outward from) � at x
and the quantity tCx (resp. t�x ) given in (2.14) is well defined and satisfies 0 < tCx �

C1 together with �x..0; tCx // � � and �x.Œ0; tCx // � � [ @!1 (resp. �1 � t�x < 0,
�x..t

�
x ; 0// � �, and �x..t�x ; 0�/ � � [ @!1). Furthermore, �x and u ı �x are of class

C 1.Œ0; tCx // (resp. C 1..t�x ; 0�/) and .u ı �x/0 > 0 in Œ0; tCx / (resp. in .t�x ; 0�). Lastly, if
ru.x/ D �jru.x/jn.x/ with jru.x/j > 0, then, as in (i), (2.11) still holds with t ! tCx ,
and since the continuous function u is equal to the constant cin 2 R on @!1 by Lem-
ma 2.1 (i), one gets (2.12). If ru.x/ D jru.x/jn.x/ with jru.x/j > 0, one similarly
gets (2.12) with t�x instead of tCx .

(iii) If � is bounded and (2.5) holds, and if x 2 @!2, then either jru.x/j D 0 and
�x.t/ � x in R, or �x is defined in .t�x ; 0� or Œ0; tCx / and ranges in � [ @!2, and the
conclusion follows as in (ii).

Remark 2.3. The extremal values t˙x in Lemma 2.2 can be finite or infinite. Consider for
instance the case�D�a;b with 0 � a < b �1 and a circular flow v.x/D V.jxj/e� .x/

with a C 1..a; b// positive scalar function V (the function V can be assumed to be exten-
ded in a C 1 fashion at a and b when they are positive real numbers, and therefore v is of
class C 1.D/ with D as in (2.1)). Assumptions (2.2)–(2.3) and (2.5) are fulfilled, and the
stream function u is given by u.x/ D U.jxj/ in D, with U 0 D V . For any x 2 �a;b , the
solution �x of (2.10) can then be written as

�x.t/ D &x.t/er .x/ with & 0x.t/ D V.&x.t// for all t 2 .t�x ; t
C
x /.

Therefore, the finiteness of tCx .resp. of t�x / is equivalent to the integrability of the func-
tion 1=V at b .resp. at a/.

The third common result provides the existence of a C 1 curve in D connecting the
inner and outer boundaries of �, along which u is strictly monotone, and which will be
as in Lemma 2.2 a trajectory of the gradient flow.

Lemma 2.4.
S D ¹x 2 D W jv.x/j D 0º

the set of stagnation points of v inD, defined by (2.1) .notice that S � @�\D by (2.2)/.

(i) Assume that8̂̂̂̂
<̂̂
ˆ̂̂̂:
S ¨ C1 or S ¨ C2; and v � n D 0 on C2 if � D !2 n !1;

S ¨ C1 if � D R2 n !1;

S ¨ C2 and v � n D 0 on C2 if � D !2 n ¹0º;Z
CR

jv � er j ! 0 as R!C1 if � D R2 n ¹0º:

(2.15)
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Then there exist �1 � tin < tout � C1, an interval I � R and a C 1 function � W
I ! D such that .u ı �/0 ¤ 0 in I and8̂̂̂̂
<̂
ˆ̂̂:
I D Œtin; tout�; �.tin/2@!1; �.tout/2@!2 if �D!2 n !1;

I D Œtin; tout/; �.tin/2@!1; j�.t/j!C1 as t <�! tout if �DR2 n !1;

I D .tin; tout�; j�.t/j!0 as t >�! tin; �.tout/2@!2 if �D!2 n ¹0º;

I D .tin; tout/; j�.t/j!0 as t >�! tin; j�.t/j!C1 as t <�! tout if �DR2 n ¹0º:
(2.16)

(ii) If � D R2 n !1 together with

S ¨ C1 and lim inf
jxj!C1

jv.x/j > 0; (2.17)

then there exist �1 < tin < tout � C1 and a C 1 function � W Œtin; tout/! D D �

such that .u ı �/0 ¤ 0 in Œtin; tout/ and

�.tin/ 2 @!1; j�.t/j ! C1 as t <
�! tout; and ju.�.t//j ! C1 as t <

�! tout:

Furthermore, one can take tin D 0 without loss of generality.

Remark 2.5. Notice that condition (2.15) implies (2.5) in all possible configurations
of � except when � D R2 n !1: in that case, in (2.15) we do not assume that
limR!C1

R
CR
jv � er j D 0, whereas in (2.5) we do. We also point out that, again if

� D R2 n !1, condition (2.17) implies (2.15), but still does not imply (2.5).

Proof of Lemma 2.4. (i) Here we assume (2.15). Consider first the case � D !2 n !1,
and assume that S ¨ C1 in (2.15) (the case S ¨ C2 can be handled similarly). Then
jvj D jruj > 0 on C2 D @!2 and there exists a point

A 2 C1 D @!1

such that jru.A/j D jv.A/j> 0 and ru.A/ is parallel to the normal vector n.A/. Assume
first that ru.A/ points into � at A, that is, ru.A/ D �jru.A/jn.A/, and let

� D �A

be the solution of (2.10) with x D A. With the notations of Lemma 2.2 (ii), the func-
tion � is of class C 1.Œ0; tCA // and .u ı �/0 > 0 in Œ0; tCA /, with u.�.0// D u.A/ D cin by
Lemma 2.1 (i). Furthermore, (2.12) implies that dist.�.t/; @!2/! 0 as t ! tCA , hence
u.�.t//! cout as t ! tCA , where cout 2 R is given by Lemma 2.1 (ii) (since (2.5) is satis-
fied by (2.15), here with�D !2 n !1). In particular, one has cin < cout and cin < u < cout

in�. On the other hand, the function jru ı � j is continuous in Œ0; tCA /, positive at 0 (since
jru.�.0//j D jv.A/j > 0), positive in .0; tCA / (since �..0; tCA // � �), and

lim inf
t!t
C

A

jru.�.t//j D lim inf
t!t
C

A

jv.�.t//j > 0
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(since the continuous field jvj is positive on the compact set C2 D @!2 and dist.�.t/; @!2/
! 0 as t ! tCA ). As a consequence, there is � > 0 such that j P�.t/j D jru.�.t//j � � for
all t 2 Œ0; tCA /. Therefore, .u ı �/0.t/ D jru.�.t//j2 � �2 for all t 2 Œ0; tCA / and tCA is
a positive real number, since u is bounded in the compact set �. Moreover, for every
t 2 Œ0; tCA /,

cout � cin � u.�.t//� u.A/D u.�.t//� u.�.0//D

Z t

0

jru.�.s//j2ds � �

Z t

0

j P�.s/jds;

hence the length of the curve �.Œ0; tCA // is finite. Finally, there is a point AC 2 C2 D @!2
such that �.t/ ! AC as t ! tCA . By setting �.tCA / D AC and remembering that the
field ru is (at least) continuous in �, it follows that the function � W Œ0; tCA �! � D D is
then of class C 1.Œ0; tCA �/ and .u ı �/0 > 0 in Œ0; tCA �. To sum up, if ru.A/ points into �
at A, then (2.16) holds in the case � D !2 n !1 with tin D 0 and tout D t

C

A . Similarly, if
ru.A/ points outward from � at A, then (2.16) still holds, with tin D 0, tout D �t

�
A 2

.0;C1/, �.t/ D �A.�t / for t 2 Œ0;�t�A �, and �A of class C 1.Œt�A ; 0�/.
Consider now the case � D R2 n !1. By (2.3) and (2.15), there is a point A 2 C1 D

@!1 such that ru.A/ is not zero and parallel to the normal vector n.A/. Assume that
ru.A/ points into � at A (the other case can be treated similarly) and let � D �A. The
function � W Œ0; tCA /! � [ @!1 D � D D is of class C 1.Œ0; tCA // and .u ı �/0 > 0 in
Œ0; tCA /, for some tCA 2 .0;C1�. It then follows from Lemma 2.2 (ii) (with t ! tCA ) that
j�.t/j ! C1 as t ! tCA . This yields (2.16) with tin D 0 and tout D t

C

A .
Consider then the case � D !2 n ¹0º. By (2.15), there is a point A 2 C2 D @!2 such

that ru.A/ is not zero and parallel to the normal vector n.A/. Assume that ru.A/ points
outward from� atA (the other case can be treated similarly) and let � D �A. The function
� W .t�A ; 0�! � [ @!2 D D is of class C 1..t�A ; 0�/ and .u ı �/0 > 0 in .t�A ; 0�, for some
t�A 2 Œ�1; 0/. Since (2.5) is satisfied by (2.15) (here with � D !2 n ¹0º), it then follows
from Lemma 2.2 (iii) (with t ! t�A ) that j�.t/j ! 0 as t ! t�A . This yields (2.16) with
tin D t

�
A and tout D 0.

Lastly, consider the case � D R2 n ¹0º. By (2.15), condition (2.5) is fulfilled. By
Lemma 2.1, there are then cin¤ cout in R such that u.x/! cin as jxj >�! 0 and u.x/! cout

as jxj ! C1. Pick any point A 2 �. By Lemma 2.2 (i), the function �A W .t�A ; t
C

A /! �

DD is of class C 1..t�A ; t
C

A //, with �1� t�A < t
C

A �C1, and .u ı �A/0 > 0 in .t�A ; t
C

A /.
Using also (2.11), one finds that either j�A.t/j ! 0 as t ! t�A and j�A.t/j ! C1 as
t! tCA , or j�A.t/j!C1 as t! t�A and j�A.t/j! 0 as t! tCA . In the former case, (2.16)
holds with � D �A and .tin; tout/ D .t

�
A ; t

C

A /, whereas in the latter case (2.16) holds with
� D �A.� �/ and .tin; tout/ D .�t

C

A ;�t
�
A /.

(ii) Assume now that � D R2 n !1 and that (2.17) is fulfilled. In particular, (2.15)
holds and the previous part (i) yields the existence of 0 D tin < tout � C1 and a C 1

function � W Œtin; tout/! � such that .u ı �/0 ¤ 0 in Œtin; tout/, �.tin/ D �.0/ 2 @!1, and
j�.t/j ! C1 as t <

�! tout. Furthermore, by construction, either � D �A, with AD �.0/ 2
@!1 such that jv.A/j> 0, or � D �A.��/. The only thing to prove is that ju.�.t//j !C1
as t <�! tout. By (2.17), there areR> 0 and �> 0 such that R2 nBR �� and jv.x/j � � for
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all jxj �R. Let T 2 .0; tout/ be such that j�.s/j �R for all s 2 ŒT; tout/. For all t 2 ŒT; tout/,
one has

ju.�.t// � u.�.T //j D

Z t

T

jru.�.s//j2 ds � �

Z t

T

j P�.s/j ds � �.j�.t/j � j�.T /j/:

Consequently, ju.�.t//j ! C1 as t <
�! tout. The proof of Lemma 2.4 is complete.

The fourth common result states that the streamlines of the flow are C 1 Jordan curves
surrounding the origin, and that they approach 0 or infinity as appropriate. For x in D
defined by (2.1), �x denotes the solution of (1.5), ranging in D and defined in a maximal
interval Ix containing 0, and

„x D �x.Ix/

denotes the streamline of the flow containing x. We recall that, by definition, the stream
function u given in Lemma 2.1 is constant along each streamline of the flow.

Lemma 2.6. (i) If (2.5) holds, then, for every x 2 �, the function �x is defined in R
and periodic, and the streamline „x D �x.R/ is a C 1 Jordan curve surrounding the
origin. Furthermore,8<:min

R
j�xj ! C1 as jxj ! C1 if � is unbounded;

max
R
j�xj ! 0 as jxj >�! 0 if � is punctured:

(ii) If (2.5) holds with � unbounded and lim infjxj!C1 jv.x/ � e� .x/j > 0, then

max
R
j�xj �min

R
j�xj ! 0 as jxj ! C1:

(iii) If � D R2 n !1 and inf� jvj > 0, then, for every x 2 �, the function �x is defined
in R and periodic, and the streamline„x D �x.R/ is a C 1 Jordan curve surrounding
the origin. Furthermore, minR j�xj ! C1 and ju.x/j ! C1 as jxj ! C1, and
u � cin has a constant strict sign in �, where u D cin on @!1.

Proof. (i) From Lemma 2.1, there are cin ¤ cout in R such that the stream function u satis-
fies (2.4) and (2.6)–(2.7). Therefore, the continuity of u inD and the fact that u is constant
along each streamline of the flow imply that, for each x 2 �, inft2Ix dist.�x.t/; @�/ > 0
and „x D �x.Ix/ is bounded. Since jruj D jvj > 0 in � by (2.2), it is standard to con-
clude that, for each x 2 �, the function �x is periodic and the streamline „x D �x.R/
(here, Ix D R) is a C 1 Jordan curve surrounding the origin.

If � is unbounded, then u.x/ ! cout 2 R as jxj ! C1 by (2.6). Applying also
(2.4), (2.7), and the continuity of u in D, it easily follows that mint2R j�x.t/j ! C1 as
jxj ! C1. Similarly, if � is punctured, then maxt2R j�x.t/j ! 0 as jxj >�! 0.

(ii) In the unbounded case, assume now that lim infjxj!C1 jv.x/ � e� .x/j> 0, in addi-
tion to (2.5). From (i), one knows that, for each x 2 �, the streamline „x is a C 1 Jordan
curve surrounding the origin, with minR j�xj !C1 as jxj !C1. Let us now show that
maxR j�xj �minR j�xj! 0 as jxj!C1. LetR> 0 and � > 0 be such that R2 nBR ��
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and jru.x/ � er .x/j D jv.x/ � e� .x/j � � for all jxj � R. In view of the continuity of ru,
let us only consider the case

ru.x/ � er .x/ � � for all jxj � R (2.18)

(the case ru.x/ � er .x/ � �� can be handled similarly). Consider any " > 0. From (2.9)
and (2.18), there is R" � RC " such that

max
Cjxj�"

u < u.x/ � " �=2 and min
CjxjC"

u > u.x/C " �=2; for all jxj � R":

Thus, for every x with jxj � R", one has „x � �jxj�";jxjC" and maxR j�xj � minR j�xj

< 2".
(iii) Consider now the case � D R2 n !1 and assume that

� WD inf
�
jvj > 0: (2.19)

Notice that we do not assume condition (2.5), so Lemma 2.1 (ii) and parts (i)–(ii) of the
present lemma cannot be applied. In particular, we do not know yet that u has a limit at
infinity or that all streamlines of the flow surround the origin. However, Lemma 2.4 (ii)
can be applied, since (2.17) is fulfilled here. Therefore, there exist tout 2 .0;C1�, a point
A2 @!1 (actually,A can here be arbitrarily chosen on @!1 since jvj>0 on @!1), and aC 1

function � W Œ0; tout/!D such that �.0/D A, .u ı �/0 ¤ 0 in Œ0; tout/, and j�.t/j ! C1
and ju.�.t//j ! C1 as t <

�! tout. Assume that .u ı �/0 > 0 in Œ0; tout/ (the other case can
be handled similarly), hence

u.�.t//!C1 as t <
�! tout: (2.20)

By construction of � in Lemma 2.4 (ii), this case corresponds to the condition that
ru.A/ � n.A/ < 0.

Denote

E D ¹s 2 Œ0; tout/ W the streamline „�.s/ is a C 1 Jordan curve surrounding the originº;

and let us show that
E D Œ0; tout/: (2.21)

To do so, we prove that E is not empty (it contains 0), relatively open in Œ0; tout/ and
that the largest interval containing 0 and contained in E is actually Œ0; tout/. Note first that
since v � n D 0 and jvj > 0 on C1 D @!1, the streamline „�.0/ D „A is equal to the C 1

Jordan curve C1 and it surrounds the origin by assumption. In other words, 0 2 E.
Let us now show that E is relatively open in Œ0; tout/. Let s0 2 E and denote x D

�.s0/ 2�. By definition, the function �x is periodic, with some period Tx > 0. Remember
also that u is constant along each streamline of the flow. Therefore, since v is (at least)
continuous and jv.x/j D jru.x/j > 0 in �, there are real numbers r > 0 and � 2 .0; Tx/
such that, for every y 2 B.x; r/ \�, there are real numbers t˙y such that

�� < t�y < 0 < t
C
y < � and B.x; r/\„y D B.x; r/\ u

�1.¹u.y/º/ D �y..t
�
y ; t
C
y //:
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On the other hand, since �x.Tx/ D �x.0/ D x, the Cauchy–Lipschitz theorem provides
the existence of r 0 2 .0; r� such that, for every z 2 B.x; r 0/\�, the function �z is defined
(and of class C 1) at least on the interval Œ0; Tx � and �z.Tx/ 2 B.x; r/ \�. Furthermore,
by continuity of � , there is " > 0 such that s0 C " < tout and

�.s/ 2 B.�.s0/; r
0/ \� D B.x; r 0/ \� for all s 2 Œmax.0; s0 � "/; s0 C "�:

As a consequence, for every s 2 Œmax.0; s0 � "/; s0 C "�, the points z WD �.s/ 2

B.x; r 0/ \� and y WD �z.Tx/ 2 B.x; r/ \� satisfy u.z/ D u.y/, hence

z 2 B.x; r 0/ \ u�1.¹u.y/º/ � B.x; r/ \ u�1.¹u.y/º/

and z D �y.t/ for some t 2 .t�y ; t
C
y / .� .��; �//. Thus, �y.�Tx/ D z D �y.t/ and since

jt j< � < Tx , the function �y is defined in R and .Tx C t /-periodic. So is �z since z 2„y .
In other words, for every s 2 Œmax.0; s0 � "/; s0 C "�, the function ��.s/ D �z is defined
in R and periodic. Since jruj D jvj > 0 in �, one then concludes that „�.s/ is a C 1

Jordan curve surrounding the origin. Finally, the set E is relatively open in Œ0; tout/.
Denote

T� D sup ¹t 2 Œ0; tout/ W Œ0; t � � Eº:

The previous paragraphs imply that 0 < T� � tout. The proof of (2.21) will be complete
once we show that T� D tout. Assume by way of contradiction that T� < tout (in particular,
T� is then a positive real number). Consider any increasing sequence .sn/n2N in .0; T�/
and converging to T�. Owing to the definition of T�, each function ��.sn/ is periodic and
each streamline „�.sn/ surrounds the origin. Furthermore, since each sn is positive and
u ı � is increasing in Œ0; tout/ and u is constant on C1 .3 A D �.0//, each streamline
„�.sn/ is included in the (open) set �. Consider now any n 2 N and any point

x 2 „�.sn/:

Notice that u.x/ D u.�.sn// and remember that u ı � is increasing in Œ0; tout/, hence

u.A/ D u.�.0// < u.�.sn// D u.x/ < u.�.T�//:

Moreover, by Lemma 2.2 (i), there exist �1 � t�x < 0 < tCx � C1 such that �x W
.t�x ; t

C
x /! � is of class C 1 with

.u ı �x/
0 > 0 in .t�x ; t

C
x /; and dist.�x.t/; @!1/! 0 or j�x.t/j ! C1 as t ! t˙x :

(2.22)

The nonzero vector P�x.0/ D ru.�x.0// D ru.x/ is orthogonal to „�.sn/ at x by defin-
ition of u. Since u.�x.0// D u.x/ > u.A/ D cin with u D cin on C1 D @!1, and since
„�.sn/ is a C 1 Jordan curve surrounding the origin and meeting �x..t�x ; t

C
x // orthogon-

ally at the only point x, it follows from (2.22) that dist.�x.t/; @!1/! 0 as t ! t�x and
u.�x.t// > cin for all t 2 .t�x ; t

C
x /. Then, for any t 2 .t�x ; 0/,

u.�.T�// > u.x/ D u.�x.0// D

Z 0

t

jru.�x.s//j
2 ds C u.�x.t//

� �

Z 0

t

j P�x.s/j ds C cin � �.jxj � j�x.t/j/C cin
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with � > 0 as in (2.19). In the limit as t ! t�x , one gets jxj � R1 C .u.�.T�// � cin/=�

with R1 WD maxy2C1 jyj. This holds for any n 2 N and any x 2 „�.sn/, hence

sup
n2N

�
max

R
j��.sn/j

�
� R1 C

u.�.T�// � cin

�
DWM:

Finally, consider the streamline„�.T�/ parametrized by the function ��.T�/. If there is
a real number t such that j��.T�/.t/j >M , then j��.sn/.t/j >M for all n large enough, by
the Cauchy-Lipschitz theorem. Therefore,„�.T�/�BM , and since jvj>0 in�, it follows
that ��.T�/ is defined in R and periodic, and „�.T�/ is a C 1 Jordan curve surrounding the
origin. In other words, T� 2 E. Since E has been proved to be relatively open in Œ0; tout/,
one is led to a contradiction with the definition of T� if T� < tout. Eventually, T� D tout

and (2.21) is proved.
We now claim that

min
R
j��.s/j ! C1 as s <

�! tout: (2.23)

Indeed, for any R > R1, let C 2 Œ0;C1/ be such that juj � C in � \ BR. By (2.20),
there is then � 2 .0; tout/ such that u.�.s// > C for all s 2 .�; tout/, hence u.��.s/.t// D
u.�.s// > C and j��.s/.t/j > R for all s 2 .�; tout/ and t 2 R. Thus, minR j��.s/j > R for
all s 2 .�; tout/. This yields (2.23).

Consider then any point x 2 � and let us deduce that „x surrounds the origin.
From (2.20)–(2.21) and (2.23), there is s 2 .0; tout/ such that u.�.s// > u.x/ and the
streamline „�.s/ is a C 1 Jordan curve surrounding both x and the origin. Therefore,
the streamline „x is bounded (it belongs to the bounded connected component of
R2 n„�.s/). Using again the fact that jvj > 0 in �, one concludes that the function �x is
periodic and „x is a C 1 Jordan curve surrounding the origin.

From the previous properties, we easily deduce that minR j�xj ! C1 as jxj !
C1. Indeed, for any fixed R > R1 D maxy2@!1 jyj, there is s 2 .0; tout/ such that
minR j��.s/j > R, by (2.23). Then, for any x with jxj > R0 WD maxR j��.s/j > R, the
streamlines „x and „�.s/ do not intersect, and both are C 1 Jordan curves surrounding
the origin, hence minR j�xj > minR j��.s/j > R. This shows that minR j�xj ! C1 as
jxj ! C1.

Finally, let us prove that u.x/!C1 as jxj ! C1. Fix any B > 0, and, by (2.20),
let s 2 .0; tout/ be such that u ı � > B in .s; tout/. Let RB > R1 be such that minR j�xj >

maxt2Œ0;s� j�.t/j for all jxj � RB . For every x such that jxj � RB , the streamline „x
surrounds the origin and necessarily crosses �.Œ0; tout//, at a point �.sx/with sx 2 .s; tout/,
hence u.x/ D u.�.sx// > B . This shows that u.x/!C1 as jxj ! C1. Since uD cin

on @!1 and u has no critical point in �, one concludes that u > cin in �. The proof of
Lemma 2.6 is thereby complete.

Remark 2.7. If jvj > 0 on C1 D @!1 (resp. on C2 D @!2), then the boundary condi-
tions (2.3) (resp. (2.5)) imply that, for any x 2 @!1 with � not punctured (resp. x 2 @!2
with � bounded), �x is still defined and periodic in R with „x D @!1 (resp. „x D @!2).
If x 2 @� \D and jv.x/j D 0, then �x.t/ D x for all t 2 R and „x D ¹xº. If x 2 @!1
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with � not punctured (resp. x 2 @!2 with � bounded) with jv.x/j > 0 and if v has
some stagnation points on @!1 (resp. @!2), then �x is still defined in R, but it is not peri-
odic anymore and „x is a proper arc of @!1 (resp. @!2) which is relatively open in @!1
(resp. @!2).

In the last common preliminary result, we derive a semilinear elliptic equation �uC
f .u/ D 0 in D for some C 1 function f defined in the range of u. We recall that D is
defined in (2.1).

Lemma 2.8. Assume that v is of class C 2.D/, solves the Euler equations (1.1) in D,
and satisfies (2.2)–(2.3). Let u in C 3.D/ be given by Lemma 2.1 and let J be its range
J D ¹u.x/ W x 2 Dº.

(i) If (2.5) and (2.15) are fulfilled, then there is a C 1 function f W J ! R such that

�uC f .u/ D 0 in D:

(ii) If � D R2 n !1 and inf� jvj > 0, then the same conclusion holds.

Proof. First of all, since v is of class C 2.D/, the stream function u given by Lemma 2.1
is now of class C 3.D/. By continuity of u and connectedness of D, the range J of u is
an interval.

(i) Assume (2.5) and (2.15). It follows from Lemma 2.1 and its notations that the
interior of J is .min.cin; cout/;max.cin; cout//. Furthermore, J is open at cin if and only if
� is punctured, while J is open at cout if and only if� is unbounded (for instance, if�D
R2 n!1, then J D Œcin; cout/ or .cout; cin�). It then follows from Lemmas 2.1 and 2.4 (i) that,
with the same notations as there, the function g WD u ı � W I ! J is a C 1 diffeomorphism
from I onto J . Let g�1 W J ! I be its C 1 inverse diffeomorphism, and define

f .�/ D ��u.�.g�1.�/// for � 2 J: (2.24)

By the chain rule, the function f is of class C 1.J / (remember that �u is now of
class C 1.D/). The above formula means that the equation �u C f .u/ D 0 is satisfied
along the curve �.I /. Let us now check it in the whole set D. Consider first any point
x 2�. From Lemmas 2.4 (i) and 2.6 (i), the streamline„x surrounds the origin and meets
the curve �.I /. Hence, there is s 2 I such that �.s/ 2 „x . On the one hand, the stream
function u is constant along the streamline „x . On the other hand, the C 1.D/ vorticity
@v2
@x1
�
@v1
@x2
D �u satisfies v � r.�u/ D 0 in D from the Euler equations (1.1), hence �u

is constant along the streamline „x too. As a consequence, (2.24) yields

�u.x/C f .u.x// D �u.�.s//C f .u.�.s/// D �u.�.s//C f .g.s// D 0:

Therefore,�uC f .u/D 0 in�. Finally, since both functions�u and f ı u are (at least)
continuous in D, one concludes that �uC f .u/ D 0 in D.

(ii) Assume that � D R2 n !1 and inf� jvj > 0. From Lemmas 2.1 (i) and 2.6 (iii),
one has J D Œcin;C1/ or .�1; cin�. By Lemma 2.4 (ii), there are tout in .0;C1� and a
C 1 curve � W Œ0; tout/!D D� such that g WD u ı � is a C 1 diffeomorphism from Œ0; tout/
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onto J . Let g�1 W J ! Œ0; tout/ be itsC 1 inverse diffeomorphism, and define f 2C 1.J / as
in (2.24). Since, by Lemma 2.6 (iii), each streamline„x (for each x 2D D�) surrounds
the origin, it follows as in (i) above that the equation �uC f .u/ D 0 holds, here directly
in D. The proof of Lemma 2.8 is thereby complete.

3. Proof of the main results in fixed annular domains �a;b

This section is devoted to the proofs of Theorems 1.1–1.5 and 1.8 on the Euler flows in
the fixed annular domains �a;b with 0 � a < b � 1. The proofs rely on the common
properties proved in Section 2, as well as on various applications of Proposition 1.14 and
further specific arguments in the unbounded and punctured cases.

3.1. The case of bounded annuli �a;b: proofs of Theorems 1.1 and 1.2

This section is devoted to the proof of Theorem 1.2 (we recall that Theorem 1.1 is a partic-
ular case). Throughout this section, we consider real numbers 0 < a < b and a C 2.�a;b/
solution v of (1.1)–(1.2) satisfying (1.3), that is,

¹x 2 �a;b W jv.x/j D 0º ¨ Ca or ¹x 2 �a;b W jv.x/j D 0º ¨ Cb :

This situation falls within the general framework of Section 2, with C1 D Ca, !1 D Ba,
C2 D Cb , !2 D Bb , � D !2 n !1 D �a;b , and D D �a;b . Notice also that condi-
tions (2.2)–(2.3), (2.5), and (2.15) are fulfilled by assumption. Therefore, the flow has
a C 3.�a;b/ stream function u and, by Lemmas 2.1 and 2.8 (i), there are real numbers
cin ¤ cout and a C 1.Œmin.cin; cout/;max.cin; cout/�/ function f such that8̂̂<̂

:̂
�uC f .u/ D 0 in �a;b;

min.cin; cout/ < u < max.cin; cout/ in �a;b;

u D cin on Ca; u D cout on Cb :

(3.1)

It then follows from [27, Theorem 5]6 that u is radially symmetric and strictly monotone
with respect to jxj in �a;b . Therefore, there is a C 3.Œa; b�/ strictly monotone function
U W Œa; b�!R such that u.x/D U.jxj/ for all x 2�a;b . The flow v Dr?u is then given
by

v.x/ D V.jxj/e� .x/

for all x 2�a;b , with V DU 0 2C 2.Œa;b�/. Lastly, since jvj is continuous in�a;b and does
not vanish in �a;b , nor in the whole circle Ca or in the whole circle Cb , the function V
has a constant strict sign in Œa; b�. The proof of Theorem 1.2 is thereby complete.

6Notice that this result holds in any dimension n � 2. It is similar to the classical radial
symmetry property proved in [11] in the case where u is a positive solution of the equation
�uC f .u/ D 0 in a ball, with Dirichlet condition u D 0 on the boundary.
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A related open question. For a C 2.�a;b/ flow v solving (1.1)–(1.2), could the assump-
tion (1.3) be slightly relaxed for v still to be necessarily a circular flow? As we mentioned
in the introduction, the conclusion does not hold in general if v has stagnation points
in �a;b . So a natural question is:

if jvj > 0 in �a;b , is v a circular flow? (3.2)

We first point out that Lemmas 2.1, 2.2 and 2.6 (i), with � D �a;b , still hold since they
do not use the whole assumption (2.15) (more precisely, they do not use (1.3)), but only
jvj > 0 in�a;b . Consider then any point y 2 �a;b . With the notations of Lemma 2.2, and
assuming that cin < cout (after possibly changing v to �v and u to �u), there are some
quantities t˙y such that �1 � t�y < 0 < tCy � C1 and the solution �y of (2.10) with y
in place of x is of class C 1..t�y ; t

C
y // and ranges in �a;b , with´

j�y.t/j ! a and u.�y.t//! cin as t ! t�y ;

j�y.t/j ! b and u.�y.t//! cout as t ! tCy :
(3.3)

The C 1..t�y ; t
C
y // function g WD u ı �y is increasing (we recall that .u ı �y/0.t/ D

jru.�y.t//j
2 D jv.�y.t//j

2 > 0 for all t 2 .t�y ; t
C
y /), and so g is an increasing homeo-

morphism from .t�y ; t
C
y / onto .cin; cout/. The function f W .cin; cout/! R defined by

f .�/ D ��u.�y.g
�1.�/// for � 2 .cin; cout/ (3.4)

is of class C 1..cin; cout// and, since for every x 2 �a;b the streamline „x intersects
�y..t

�
y ; t

C
y // by Lemma 2.6 (i), the same arguments as in the proof of Lemma 2.8 (i)

imply that
�uC f .u/ D 0 in �a;b :

Furthermore, remembering from Lemma 2.6 (i) that, for each x 2�a;b , theC 1 solution �x
of (1.5) is periodic and ranges in �a;b , it follows from the continuity of u in the compact
set �a;b and the facts that u D cin on Ca, u D cout on Cb and cin < u < cout in �a;b , that

max
t2R
j�x.t/j ! a as jxj >�! a and min

t2R
j�x.t/j ! b as jxj <�! b:

Since the function �u is constant along any streamline of the flow from the Euler equa-
tions (1.1) and since �u is uniformly continuous in �a;b , it follows from the previous
observations that �u is constant on Ca and constant on Cb . Let d1 and d2 be the val-
ues of �u on Ca and Cb , respectively, and set f .cin/ D �d1 and f .cout/ D �d2. One
then infers from (3.3)–(3.4) that f W Œcin; cout� ! R is continuous in Œcin; cout� and the
equation �uC f .u/ D 0 holds in the closed annulus �a;b (so u is a classical C 2.�a;b/
solution of (3.1)). However, since

f 0.�/ D �
r.�u/.�y.g

�1.�/// � ru.�y.g
�1.�///

jru.�y.g�1.�///j2
for all � 2 .cin; cout/
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and since jru.�y.g�1.�///j may converge to 0 as � ! cin or cout (this happens if jvj D 0
on Ca or if jvj D 0 on Cb), the function f 0 may be unbounded in .cin; cout/.7 The argument
used in the proof of Theorem 1.2 to conclude that the solution u of (3.1) is radially sym-
metric relies on [27, Theorem 5], which itself uses the Lipschitz continuity of f over the
range of u. Thus, the same argument cannot be applied in general when v is just assumed
to have no stagnation point in�a;b , without the assumption (1.3). Other arguments should
then be used to prove that v is circular or to disprove this property in general. We leave
this question for further work.

3.2. The case of unbounded annuli �a;1: proofs of Theorems 1.3 and 1.4

Throughout this section, we fix a positive real number a and we consider a C 2.�a;1/
flow v solving (1.1)–(1.2) and such that

¹x 2 �a;1 W jv.x/j D 0º ¨ Ca and jvj � � > 0 in �aC1;1 (3.5)

for some positive real number � > 0 (these conditions are fulfilled in both Theorems 1.3
and 1.4). We also assume that either v.x/ � er .x/ D o.1=jxj/ as jxj ! C1 (that is, (1.8)
holds, for Theorem 1.3) or inf�a;1 jvj > 0 (for Theorem 1.4). This situation fits into the
framework of Section 2, with C1 D Ca, !1 DBa,�DR2 n!1 D�a;1, andD D�a;1.
Notice also that conditions (2.2)–(2.3) and (2.15) are fulfilled by assumption. So is (2.17),
hence Lemma 2.4 (ii) can be applied. Furthermore, either (2.5) is fulfilled (from (1.8),
for Theorem 1.3) and Lemmas 2.1 (ii) and 2.8 (i) can be applied, or the conditions of
Lemmas 2.6 (iii) and 2.8 (ii) are fulfilled. Therefore, from Lemmas 2.1, 2.4 (ii), 2.6 (iii)
and 2.8, the flow has a C 3.�a;1/ stream function u, and there exist a real number cin

(which can be taken to be 0, since u is unique up to additive constants) and cout D ˙1

(we can assume that cout DC1, even if it means changing v to�v and u to�u), together
with a C 1.Œ0;C1// function f such that8̂̂<̂

:̂
�uC f .u/ D 0 in �a;1;

u > 0 in �a;1;

u D 0 on Ca; u.x/!C1 as jxj ! C1:

(3.6)

3.2.1. Proof of Theorem 1.3. In addition to (3.5), we further assume that

v.x/ � er .x/ D o.1=jxj/ as jxj ! C1: (3.7)

7For instance, the smooth flow v.x/ D .jxj � a/e� .x/ solves (1.1)–(1.2) with pressure p.x/ D
jxj2=2 � 2ajxj C a2 ln jxj and stream function u.x/ D .jxj � a/2=2 (up to additive constants),
while jvj D 0 on Ca and jvj > 0 in �a;b . Here, cin D 0, cout D .b � a/2=2 and f .s/ D �2 C
a=.aC

p
2s/ for s 2 Œcin; cout�D Œ0; .b � a/

2=2�, hence f 0 is not bounded in .cin; cout/. Notice that
this example is a circular flow, which makes question (3.2) still relevant.
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As a consequence, (2.5) holds, and there is R0 � aC 1 such that

jru � er j D jv � e� j � �=2 in �R0;1: (3.8)

Hence, Lemma 2.6 (i, ii) can be applied and the streamlines„x D �x.R/ (with x 2�a;1)
surround the origin and are such that

min
R
j�xj ! C1 and max

R
j�xj �min

R
j�xj ! 0 as jxj ! C1 (3.9)

(actually, the second conclusion is stronger than the first, since �x.0/D x). Together with
the normalization of u (that is, u > 0 in �a;1), properties (3.8)–(3.9) yield the existence
of R1 � R0 � aC 1 such that

ru.x/ � er .x/ � �=2 for all jxj � R0; min
R
j�xj � R0 for all jxj � R1.

For any x with jxj �R1, it then follows that, for every � 2R, there is a unique %x.�/�R0
such that .%x.�/ cos �; %x.�/ sin �/ 2 „x , and moreover

„x D ¹.%x.�/ cos �; %x.�/ sin �/ W � 2 Rº: (3.10)

Notice also that the 2�-periodic function %x is of class C 3.R/ from the implicit function
theorem.

If some streamlines were true circles centered at the origin, then [27, Theorem 5]
would imply that the stream function u is radially symmetric in the bounded region
between Ca and these streamlines. To circumvent the fact that the streamlines are not
known to be true circles a priori, we use Lemma 3.1 below and Proposition 1.14 to com-
pare the stream function u with its reflection with respect to some lines approximating
any line containing the origin. We then proceed by passing to the limit as the approxim-
ation parameter goes to 0. With Proposition 1.14, it then easily follows that u is radially
symmetric and that all streamlines are truly circular, thus completing the proof of The-
orem 1.3.

To apply this strategy, let us now introduce some additional notations which will be
used in this section, as well as in the proof of Theorems 1.4, 1.5, 1.8 and 1.10 in the
following sections. For x 2 �a;1, let �x denote the bounded connected component of
R2 n„x . Notice that�x is well defined and contains the origin, by Lemma 2.6 (i). Notice
also that u is equal to the positive constant u.x/ along„x , while u vanishes along Ca and
has no critical point in �a;1. Hence,

0 < u.y/ < u.x/ for all y 2 �x \�a;1; (3.11)

where�x \�a;1 is the bounded domain located between„x and Ca. As a consequence,
ru.z/ points outwards from �x at each point z 2 „x .

Recalling that the sets Te;� and He;� and the reflection Re;� have been defined
in (1.15)–(1.16), the following lemma says that, for any " > 0, the set �x \He;� will
be an admissible set for the method of moving planes for any e 2 S1 and � > " > 0,
provided jxj is large enough.
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Fig. 2. The sets �x , He;� \�x and Re;�.He;� \�x/.

Lemma 3.1. For each " > 0, there exists R" > a such that

Re;�.He;� \�x/ � �x

for all e 2 S1, � > " and jxj � R" .see Fig. 2/.

Proof. Fix " > 0, and assume that the conclusion does not hold. Then there are sequences
.xn/n2N in �a;1, .en/n2N in S1, .�n/n2N in .";C1/ and .yn/n2N such that

lim
n!C1

jxnjDC1; and yn2Hen;�n \�xn and zn WDRen;�n.yn/ 62�xn for all n2N:

From (3.9), there is a sequence .rn/n2N of positive real numbers converging to 0 such
that Bjxnj�rn ��xn � BjxnjCrn for all n 2N, hence jynj � jxnj C rn. On the other hand,
since yn � en > �n > " > 0, one has

jynj
2
� jznj

2
D jynj

2
� jRen;�n.yn/j

2
D 4�n.yn � en � �n/ > 0;

hence jynj > jznj � jxnj � rn since zn 62 �xn . As a consequence, jxnj � rn � jznj <
jynj � jxnj C rn for all n 2 N, and limn!C1.jynj � jxnj/ D limn!C1.jynj � jznj/ D

0. The inequality jynj2 � jznj2 D 4�n.yn � en � �n/ > 4".yn � en � �n/ > 0 yields
limn!C1.yn � en � �n/ D 0. Hence,

dist.yn; „xn \ Ten;�n/! 0 and jyn � znj ! 0 as n!C1:

For each n 2 N, let 'n 2 R be such that en D .cos 'n; sin 'n/. Since yn � en > �n >
" > 0, there is a unique �n 2 .��=2; �=2/ such that

yn=jynj D .cos.'n C �n/; sin.'n C �n//:

Similarly, since .zn � yn/ � en! 0 as n!C1, one has zn � en > "=2 for all large n and
there is a unique � 0n 2 .��=2; �=2/ such that

zn=jznj D .cos.'n C � 0n/; sin.'n C � 0n//:
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Fig. 3. The points yn, y0n, zn, z0n, and �n (here en D .1; 0/ and 'n D 0).

Since limn!C1 jyn � znj D 0 and limn!C1 jynj D limn!C1 jznj D limn!C1 jxnj

D C1, one also infers that �n � � 0n ! 0 as n! C1. We also recall that (3.10) holds
with xn instead of x, for all n large enough. It then follows from Lemma 2.6 (i) and the
assumptions on yn and zn that jynj � %xn.'n C �n/ and jznj � %xn.'n C �

0
n/ for all n

large enough. Denote, for n large enough,

y0n D .%xn.'n C �n/ cos.'n C �n/; %xn.'n C �n/ sin.'n C �n// 2 „xn ;

z0n D .%xn.'n C �
0
n/ cos.'n C � 0n/; %xn.'n C �

0
n/ sin.'n C � 0n// 2 „xn ;

and observe that yn 2 .0; y0n� and z0n 2 .0; zn�.
We now claim that � 0n ¤ �n for all n large enough. Indeed, otherwise, up to extraction

of a subsequence, y0n D z
0
n and the four points 0, yn, y0n D z

0
n and zn would be aligned

in that order. But since yn � zn D 2.yn � en � �n/en with yn � en � �n > 0, the vectors
yn and zn would be parallel to en. Hence, yn D .yn � en/en with yn � en > �n > " > 0
and zn D .zn � en/en with zn � en D 2�n � yn � en < �n < yn � en. This contradicts the
fact that 0, yn and zn lie on the half-line RCen in that order. Thus, � 0n ¤ �n for all n
large enough, so for all n without loss of generality. Notice that the same arguments also
imply that �n ¤ 0 and � 0n ¤ 0 for all n large enough (since otherwise in either case one
would have �n D � 0n D 0 up to extraction of a subsequence), thus for all n without loss of
generality. In particular, either 0 < �n < �=2 or ��=2 < �n < 0.

Assume first that, up to extraction of a subsequence, 0 < �n < �=2 for all n. One then
infers from the definition of zn D Ren�n.yn/ and the previous paragraph that

0 < �n < �
0
n < �=2:

Remember now that 0 < u.y/ < u.xn/ for every y in the domain �xn \�a;1 between
„xn andCa, andru.z/ points outwards from�xn at each point z 2„xn . For each n 2N,
since yn 2 .0; y0n�, z

0
n 2 .0; zn� and yn � zn D &nen with &n WD 2.yn � en � �n/ > 0, there

is an angle �n 2 Œ�n; � 0n� � .0; �=2/ such that

�n WD .%xn.'n C �n/ cos.'n C �n/; %xn.'n C �n/ sin.'n C �n// 2 „xn \ Œyn; zn�
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and ru.�n/ � en � 0 (see Fig. 3). The point �n can be defined as the first point
on „xn \ Œyn; zn� when going from y0n to z0n along „xn with increasing angle. Notice
that j�nj ! C1 since jynj ! C1 and jyn � znj ! 0 as n!C1. Let v1;n D v.�n/ � en
and v2;n D v.�n/ � e?n . The inequality ru.�n/ � en � 0 means that v2;n � 0. Therefore,

v.�n/ � er .�n/ D v1;n cos�n C v2;n sin�n � v1;n cos�n; (3.12)

while 0 < �=2 � jv.�n/ � e� .�n/j D j � v1;n sin�n C v2;n cos�nj for all n large enough,
from (3.8) and limn!C1 j�nj D C1. But since the continuous function v � e� D ru � er
has a constant strict positive sign at infinity, it follows that

�=2 � v.�n/ � e� .�n/ D �v1;n sin�n C v2;n cos�n

for all n large enough. Since v2;n � 0 and 0 < �n < �=2, one gets �v1;n sin �n � �=2,
hence v1;n � ��=2. Together with (3.12), it follows that v.�n/ � er .�n/ � �.�=2/ cos �n
for all n large enough. On the other hand, since �n 2 Œyn; zn� and limn!C1 jzn � ynj D

limn!C1.yn � en � �n/ D 0, we have �n � en � �n ! 0, hence �n � en � "=2 for all n
large enough (since �n > " > 0 for all n). Finally,

cos�n D
�n � en

j�nj
�

"

2j�nj
and v.�n/ � er .�n/ � �

�"

4j�nj

for all n large enough. That last inequality contradicts the assumption (3.7) and the limit
limn!C1 j�nj D C1.

The second case, for which, up to extraction of a subsequence, ��=2 < �n < 0 for
all n (and so ��=2 < � 0n < �n < 0) can be handled similarly and leads to a contradiction
as well. The proof of Lemma 3.1 is thereby complete.

Proof of Theorem 1.3. We shall show that the stream function u is radially symmetric
in�a;1. Notice that we already know that u D 0 on Ca. Let then x ¤ y 2 �a;1 be such
that jxj D jyj .> a/, and set

e D
y � x

jy � xj
2 S1: (3.13)

Pick 0 < " < a. Let R" > a be as in Lemma 3.1. From (3.9), there is a point x" 2 �a;1
such that jx"j � R" and minR j�x" j > jxj D jyj. Lemma 3.1 then yields

Re;�.He;� \�x"/ � �x" for all � > ": (3.14)

We are now going to apply Proposition 1.14 with8̂̂̂̂
<̂̂
ˆ̂̂̂:
„ D „x" ; � D �x" ; „0 D Ca; �0 D Ba; ! D �x" n Ba;

R0 D a; R D max
R
j�x" j > a; � D max

z2„x"

z � e > a > " > 0;

' D �u 2 C 3.!/; c1 D �u.x"/ D �uj„x" < 0; c2 D 0 D �ujCa ;

F .r; s/ D F.s/ D �f .�s/ for .r; s/ 2 Œa; R� � Œ�u.x"/; 0�:
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Notice immediately that assumption (1.19) is automatically satisfied. The function F
clearly satisfies the assumptions of Proposition 1.14 since f is of class C 1.Œ0;C1//. The
function ' satisfies �' C F.'/ D 0 in !, with c1 < ' < c2 in ! (since 0 < u < u.x"/
in �x" \ �a;1 by (3.11)). In view of (3.14), all assumptions of Proposition 1.14 are
satisfied. Proposition 1.14 applied with � D " implies that ' � 'e;", so u � ue;" in !e;"
with

!e;" D .He;" \ !/ nRe;".�0/ D .He;" \ .�x" n Ba// nRe;".Ba/:

Observe now that y � e D .jyj2 � x � y/=jy � xj > 0 since jxj D jyj and x ¤ y, and
remember that a < jyj < minR j�x" j, hence y 2 !. Therefore, y 2 !e;" for all " > 0 small
enough, and

u.y/ � ue;".y/ D u.ye;"/ D u.y � 2.y � e � "/e/

for all " > 0 small enough. By passing to the limit " >
�! 0 and using the definition of e and

the assumption jxj D jyj, one infers that

u.y/ � u.y � 2.y � e/e/ D u.x/:

Since the last inequality holds for all x ¤ y 2 �a;1 such that jxj D jyj (and also for
all x; y 2 Ca), the C 3.�a;1/ function u is radially symmetric in �a;1. By (3.5)–(3.6),
there is then a C 3.Œa;C1// function U such that U.a/ D 0, U 0 > 0 in Œa;C1/ and
u.x/ D U.jxj/ for all x 2 �a;1. This means that v.x/ D V.jxj/e� .x/ for all x 2 �a;1
with V D U 0 2 C 2.Œa;C1// and V > 0 in Œa;C1/. The proof of Theorem 1.3 is thereby
complete.

3.2.2. Proof of Theorem 1.4. In addition to (3.5), we actually assume the stronger condi-
tion

jvj D jruj � � > 0 in �a;1 (3.15)

for some � > 0. Since from our normalization the function u is positive in �a;1 and
vanishes on Ca, conditions (1.2) and (3.15) imply that

v � e� D ru � er � � > 0 on Ca: (3.16)

To prove Theorem 1.4, we have to show that the supremum of the vorticity is positive:

sup
�a;1

�
@v2

@x1
�
@v1

@x2

�
> 0: (3.17)

Assume by way of contradiction that

�u D
@v2

@x1
�
@v1

@x2
� 0 in �a;1: (3.18)

We will show that u is radially symmetric, and this will easily lead to a contradiction. To
prove the radial symmetry of u, let us use a Kelvin transform of the variables by setting

w.x/ D u.x=jxj2/ for x 2 �0;1=a n ¹0º;
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and let us show that theC 3.�0;1=a n ¹0º/ functionw is radially symmetric in�0;1=a n ¹0º.
From (3.6), one has

w D 0 on C1=a; w > 0 in �0;1=a and w.x/!C1 as jxj >�! 0;

and a straightforward calculation yields

�w.x/C
1

jxj4
f .w.x// D 0 for all x 2 �0;1=a n ¹0º;

that is, �w.x/C F.jxj; w.x// D 0 in �0;1=a n ¹0º with

F W .0; 1=a� � Œ0;C1/! R; .r; s/ 7! F.r; s/ D r�4f .s/:

The function F is of class C 1..0; 1=a� � Œ0;C1//. Furthermore, the range of u is the
whole interval Œ0;C1/ by (3.6), and f � 0 in Œ0;C1/ by (3.6) and (3.18). Therefore, F
is nonincreasing with respect to its first variable in .0; 1=a� � Œ0;C1/.

Consider now any two points x ¤ y 2 �0;1=a n ¹0º with jxj D jyj. As in the proof of
Theorem 1.3, denote

e D
y � x

jy � xj
2 S1

and consider an arbitrary real number " such that

0 < " < jxj D jyj � 1=a:

By Lemma 2.6 (iii), there is a point x" 2 �a;1 such that minR j�x" j > 1=" > a. One
knows that the streamline „x" surrounds the origin and that u D u.x"/ > 0 along „x" .
Furthermore, as in (3.11), one has 0 < u< u.x"/ in the domain�x" \�a;1 between„x"
and Ca, since u D 0 on Ca and u has no critical point in �a;1.

Denote „ D C1=a and

„0 D ¹z 2 R2 W z=jzj2 2 „x"º:

Notice that the Jordan curve „0 surrounds the origin and „0 � B" .� B1=a/ by definition
of x". Set � D B1=a, let �0 be the bounded connected component of R2 n„0, and let

! D � n�0 D B1=a n�0 .� �";1=a/:

Denote R D 1=a,

0 < R0 D min
z2„0
jzj D

1

maxR j�x" j
< " < R;

and � D maxz2„ z � e D 1=a > 0. One has 0 < " < 1=a, hence " 2 Œ0; �/. The function
' D w is of class C 3.!/ with

' D c1 D 0 on „ D C1=a, ' D c2 D u.x"/ > 0 on „0, and 0 < ' < u.x"/ in !
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(since 0 < u < u.x"/ in�x" \�a;1). Furthermore, ' satisfies�' C F.jxj; '/D 0 in !
with F.r; s/ D r�4f .s/ and .r; s/ 2 ŒR0; 1=a� � Œ0; u.x"/�. The function F then satisfies
the conditions of Proposition 1.14. Lastly, condition (1.18) is immediately satisfied since
� D B1=a, and (1.19) also holds since He;� \„0 D ; for all � > " (because „0 � B").
To sum up, all assumptions of Proposition 1.14 are fulfilled. Its conclusion with � D "

yields w � we;" in !e;" with

!e;" D .He;" \ .B1=a n�0// nRe;".�0/:

Since y � e > 0 and since�0 �B" andRe;".�0/�B3", it follows that y 2!e;" for all " > 0
small enough. As a consequence, w.y/ � we;".y/ D w.ye;"/ D w.y � 2.y � e � "/e/ for
all " > 0 small enough and the passage to the limit as "! 0 yields

w.y/ � w.y � 2.y � e/e/ D w.x/

by definition of e. Since this holds for all x ¤ y 2�0;1=a n ¹0º with jxj D jyj, this means
that w is radially symmetric in �0;1=a n ¹0º, hence u is radially symmetric in �a;1. In
view of (3.16), there is then a C 3.Œa;C1// function U such that u.x/ D U.jxj/ and
U 0 � � > 0 in Œa;C1/. But�u � 0 in�a;1 by (3.18). Hence U 00.r/C r�1U 0.r/ � 0 in
Œa;C1/ and the function r 7! rU 0.r/ is nonincreasing in Œa;C1/, a contradiction with
U 0 � � > 0.

As a conclusion, (3.18) cannot hold, that is, (3.17) holds and the proof of Theorem 1.4
is thereby complete.

3.3. The case of punctured disks �0;b: proof of Theorem 1.5

Throughout this section, we fix a positive real number b and we consider aC 2.�0;b n ¹0º/
flow v solving (1.1)–(1.2) and such that

¹x 2 �0;b n ¹0º W jv.x/j D 0º ¨ Cb and
Z
C"

jv � er j ! 0 as " >
�! 0: (3.19)

This situation falls within the framework of Section 2, with C2 D Cb , !2 D Bb , � D
!2 n ¹0º D�0;b , andDD�0;b n ¹0º, and conditions (2.2)–(2.3), (2.5), and (2.15) are ful-
filled by assumption. Therefore, by Lemmas 2.1 and 2.8 (i), the flow has a C 3.�0;b n ¹0º/
stream function u, and there exist a real number cout (which can be taken to be 0, since u
is unique up to additive constants) and 0 ¤ cin 2 R (we can assume that 0 < cin � C1,
even if it means changing v to �v and u to �u), together with a C 1.Œ0; cin// function f
such that 8̂̂<̂

:̂
�uC f .u/ D 0 in �0;b n ¹0º;

u > 0 in �0;b;

u D 0 on Cb; u.x/! cin as jxj >�! 0:

(3.20)

One goal is to show that u is radially symmetric in�0;b n ¹0º. Consider any two points
x ¤ y 2 �0;b n ¹0º with jxj D jyj. As in the proofs of Theorems 1.3 and 1.4, denote

e D
y � x

jy � xj
2 S1
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and consider an arbitrary real number " such that

0 < " < jxj D jyj � b:

By Lemma 2.6 (i), there is a point x" 2�0;b such that maxR j�x" j< "< b, and the stream-
line „x" surrounds the origin with u D u.x"/ > 0 along „x" . Since u D 0 on Cb and u
has no critical point in �0;b , one infers that 0 < u < u.x"/ in the domain ! between „x"
and Cb . Denote „ D Cb , „0 D „x" , � D Bb , let �0 D �x" be the bounded connected
component of R2 n„x" , and notice that

! D � n�0:

Set
R D b; 0 < R0 D min

z2„0
jzj < " < R and � D max

z2„
z � e D b > 0:

One has " 2 .0; �/. The function ' D u is of class C 3.!/ with

' D c1 D 0 on „ D Cb; ' D c2 D u.x"/ > 0 on „0; and 0 < ' < u.x"/ in !:

Furthermore,�'CF.'/D 0 in !, with F W ŒR0; b�� Œ0;u.x"/� 3 .r; s/ 7! F.r; s/D f .s/

satisfying all conditions of Proposition 1.14. Lastly, condition (1.18) is immediately sat-
isfied since � D Bb , and (1.19) also holds since He;� \„0 D ; for all � > " (because
„0 �B"). To sum up, all assumptions of Proposition 1.14 are fulfilled. Its conclusion with
� D " yields u � ue;" in !e;", with

!e;" D .He;" \ .Bb n�0// nRe;".�0/:

Since y � e > 0 and since �0 � B" and Re;".�0/ � B3", it follows that y 2 !e;" for all
" > 0 small enough. As a consequence, u.y/ � u.ye;"/ D u.y � 2.y � e � "/e/ for all
" > 0 small enough and the passage to the limit as " >

�! 0 yields

u.y/ � u.y � 2.y � e/e/ D u.x/

by definition of e. Since this holds for all x ¤ y 2 �0;b n ¹0º with jxj D jyj, this means
that u is radially symmetric in �0;b n ¹0º. By (3.19)–(3.20), there is then a C 3..0; b�/
function U such that u.x/ D U.jxj/ and U 0 < 0 in .0; b�. Hence, v.x/ D U 0.jxj/e� .x/
for all x 2 �0;b n ¹0º, and the proof of Theorem 1.5 is thereby complete.

3.4. The case of the punctured plane �0;1 D R2 n ¹0º: proof of Theorem 1.8

Let v be a C 2.�0;1/ flow solving (1.1) and such that jvj > 0 in �0;1, we have
lim infjxj!C1 jv.x/j > 0, and (1.14) holds. This situation fits into the framework of Sec-
tion 2, with�DD D R2 n ¹0º D �0;1, and conditions (2.2)–(2.3), (2.5), and (2.15) are
fulfilled by assumption. Therefore, from Lemmas 2.1 and 2.8 (i), the flow has aC 3.�0;1/
stream function u, and there exist cin ¤ cout 2 R (we can assume that cin > cout, even if



Circular flows for the Euler equations in two-dimensional annular domains 359

it means changing v to �v and u to �u), together with a C 1..cout; cin// function f such
that 8̂̂<̂

:̂
�uC f .u/ D 0 in �0;1;

cout < u < cin in �0;1;

u.x/! cin as jxj >�! 0; u.x/! cout as jxj ! C1:

(3.21)

Moreover, (1.14) and lim infjxj!C1 jv.x/j > 0 yield lim infjxj!C1 jv.x/ � e� .x/j > 0.
It then follows from Lemma 2.6 (i, ii) that each streamline „x D �x.R/ is a C 1 Jordan
curve surrounding the origin, with

max
R
j�xj �min

R
j�xj ! 0 as jxj ! C1 and max

R
j�xj ! 0 as jxj >�! 0:

Since u is unique up to additive constants, one can also assume that cin > 0 > cout. Pick
then a point X 2 �0;1 such that u.X/ D 0, and let �X be the bounded connected com-
ponent of R2 n „X (then 0 2 �X ). In view of the inequalities cin > 0 > cout and the
assumption jruj > 0 in �0;1, it follows that u > 0 in �X n ¹0º and u < 0 in R2 n�X .
Furthermore, by definition of u, v is orthogonal to the normal vector to �X . As a con-
sequence, Lemma 2.6 (iii) can also be applied with !1 D�X , hence cout D�1 in (3.21).

Now, still using the notations (1.15)–(1.16), it follows as in Lemma 3.1, from the
assumptions lim infjxj!C1 jv.x/j > 0 and v.x/ � er .x/ D o.1=jxj/ as jxj ! C1, that,
for every " > 0, there is R" > 0 such that

Re;�.He;� \�x/ � �x

for all e 2 S1, � > " and jxj > R".
Lastly, let x ¤ y 2 �0;1 with jxj D jyj. Define e 2 S1 as in (3.13) and let 0 < " <

jxj D jyj. As in the proofs of Theorems 1.3 and 1.5, there are x" 2 R2 n�X and x0" 2�X
such that minR j�x" j > jxj D jyj > ",

Re;�.He;� \�x"/ � �x" for all � > "; (3.22)

and maxR j�x0" j < " < jxj D jyj. The streamlines „ D „x" and „0 D „x0" surround the
origin, and u is equal to c1 D u.x"/ < 0 along „ and to c2 D u.x0"/ > 0 along „0. Fur-
thermore, u.x"/ < u < u.x0"/ in the domain

! D �x" n�x0"

located between „x" and „x0" . Denote R0 D minz2„0 jzj D minR j�x0" j 2 .0; "/, R D
maxz2„ jzj D maxR j�x" j > jxj D jyj > " > R

0, and � D maxz2„ z � e > minR j�x" j >

jxj D jyj > " > 0. The C 3.!/ function ' D u satisfies (1.17) with ŒR0; R� � Œc1; c2� 3
.r; s/ 7! F.r; s/D f .s/ satisfying the assumptions of Proposition 1.14 since f is of class
C 1..�1; cin//. By (3.22) and the fact that He;� \„0 D ; for all � > " (since „0 � B"),
assumptions (1.18)–(1.19) are satisfied. All assumptions of Proposition 1.14 are therefore
fulfilled. Proposition 1.14 applied with � D " implies that u � ue;" in !e;" with

!e;" D .He;" \ .�x" n�x0"// nRe;".�x0"/:
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As in the proof of Theorem 1.5, one has y 2 !e;" for all " > 0 small enough, hence

u.y/ � ue;".y/ D u.ye;"/ D u.y � 2.y � e � "/e/

for all " > 0 small enough. By passing to the limit as " >
�! 0 and using the definition of e

and the assumption jxj D jyj, one infers that u.y/ � u.y � 2.y � e/e/ D u.x/. Since the
last inequality holds for any x ¤ y 2 �0;1 such that jxj D jyj, the C 3.�0;1/ function
u is radially symmetric in �0;1. Since jruj D jvj > 0 in �0;1 and cin > cout D �1,
there is then a C 3..0;C1// function U such that U 0 < 0 in .0;C1/ and u.x/ D U.jxj/
for all x 2 �0;1. This means that v.x/ D V.jxj/e� .x/ for all x 2 �0;1 with V D U 0 2
C 2..0;C1// and V < 0 in .0;C1/. The proof of Theorem 1.8 is thereby complete.

4. Proofs of the Serrin-type Theorems 1.10 and 1.13

We start in Section 4.1 with the proof of Theorem 1.13 dealing with the case of doubly
connected bounded domains, since the proof follows easily from the arguments used in the
proof of Theorems 1.1–1.2 and from some known results of Reichel [21] and Sirakov [27]
on elliptic overdetermined boundary value problems. Section 4.2 is then devoted to the
proof of Theorem 1.10.

4.1. Proof of Theorem 1.13

Let !1, !2, � D !2 n !1 and v be as in Theorem 1.13. Up to translation, one can
assume that 0 2 !1, and the assumptions of Theorem 1.13 then fall within the frame-
work of Section 2, with C1 D @!1, C2 D @!2, � D !2 n !1, D D � D !2 n !1, and
conditions (2.2)–(2.3), (2.5), and (2.15) are fulfilled by assumption. Therefore, the flow
has a C 3.�/ stream function u, and by Lemmas 2.1 and 2.8 (i) there are real num-
bers cin ¤ cout (one can again assume that cin > cout) and a C 1.Œcout; cin�/ function f
such that 8̂̂<̂

:̂
�uC f .u/ D 0 in �;

cout < u < cin in �;

u D cin on @!1; u D cout on @!2:

(4.1)

Since ˇ̌̌̌
@u

@n

ˇ̌̌̌
D jruj D jvj > 0 along @�,

where n denotes the outward unit normal on @�, and since jvj is constant along @!1 and
along @!2, it follows that @u

@n
is also constant along @!1 and along @!2 (and @u

@n
> 0 on @!1

and @u
@n
< 0 on @!2). One concludes from [21,27] (see also [2,28]) that, up to translation,

� D �a;b for some 0 < a < b < 1 and u is radially symmetric and decreasing with
respect to jxj in � D �a;b . The assumptions and the conclusion of Theorem 1.1 are then
satisfied, and the proof of Theorem 1.13 is complete.
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4.2. Proof of Theorem 1.10

Let ! be a C 2 nonempty simply connected bounded domain of R2 (we here call this
domain ! instead of � to distinguish it from the notations of Section 2, which are used
below). Let v 2 C 2.!/ satisfy the Euler equations (1.1) in !. We assume that v � n D 0
and jvj is constant on @!, where n denotes the outward unit normal on @!, and v has a
unique stagnation point in !. Since ! is simply connected and v is divergence free, there
is a C 3.!/ stream function u satisfying (1.4). Furthermore, u is constant along @! since
v � n D 0 on @!. Up to normalization, one can assume that

u D 0 on @!: (4.2)

By assumption, u has a unique critical point in !, and jruj D jvj is constant along @!.
Then j @u

@n
j D jruj D jvj > 0 on @!. Up to changing v to �v and u to �u, one can assume

that
@u

@n
D  < 0 on @! (4.3)

for some negative constant  . Hence, u has a unique maximum point in ! (which is
actually in !) and this point is the unique critical point of u in !. Up to translation, one
can assume that this point is the origin 0. One also infers from the uniqueness of the
critical point of u that

0 < u < u.0/ for all x 2 ! n ¹0º: (4.4)

This situation then falls within the framework of Section 2, with C2 D @!, !2 D !,
�D! n ¹0º, andDD! n ¹0º, and conditions (2.2)–(2.3), (2.5), and (2.15) are fulfilled by
assumption (in particular, the integral condition (2.3) in the present punctured case is sat-
isfied since here v is continuous at 0 and jv.0/j D 0). Therefore, from Lemma 2.8 (i) and
the previous notations, there exists a C 1.Œ0; u.0/// function f such that �uC f .u/ D 0
in ! n ¹0º. Furthermore, by setting f .u.0// D ��u.0/, it follows from (4.2), (4.4) and
the continuity of u and �u in ! that f is continuous at u.0/, and hence in the whole
interval Œ0; u.0/�. By the continuity of u and �u at 0, the equation

�uC f .u/ D 0

holds in !. Our goal is to show that ! is then a ball centered at the origin and that u is
radially symmetric and decreasing with respect to jxj in !.

Remembering that u satisfies (4.2)–(4.4), it would then follow from [25] that ! D BR
for some R > 0 and u is radially symmetric and decreasing with respect to jxj in !, if
the function f were known to be Lipschitz continuous in Œ0; u.0/�. However, f 0 is not
bounded in a neighborhood of u.0/ in general (see the comments after Theorem 1.10 in
Section 1.2). We will nevertheless still be able to show the desired symmetry of ! and
of u by removing from ! small neighborhoods of 0 and applying Serrin’s strategy and
the method of moving planes in punctured domains. The images by u of the closures of
these punctured domains are intervals of the type Œ0; L�, with 0 < L < u.0/, and thus f
is Lipschitz continuous in Œ0; L�.
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More precisely, let first � > 0 be such that B� � ! and let e be any unit vector. Let �
be any real number in .0; �/, and denote

�e D max
x2@!

x � e > � > �:

Using the same notations Te;�, He;� and Re;� as in (1.15)–(1.16), it follows from [4] that
there ise� 2 .�; �e/ such that

Re;�.He;� \ !/ � ! for all � 2 .e�; �e/: (4.5)

Since maxR j�xj ! 0 as jxj >�! 0 by Lemma 2.6 (i) (or here, more simply, because of (4.2),
(4.4) and the continuity of u in !), there is x� 2 ! n ¹0º such that„x� � B� . Let then�0

be the bounded connected component of R2 n„x� (notice that �0 � B� � !) and let

z! D ! n�0

be the doubly connected bounded domain located between„x� and @!. Notice that @z! D
„x� [ @!, 0 62 xz! and

0 < u < u.x�/ in z! (4.6)

since u has no critical point in z!.
From (4.5), two cases can occur: either

(a) we have
Re;�.He;� \ !/ � ! for all � 2 Œ�; �e/; (4.7)

(b) there is �� 2 Œ�;e�� such that Re;�.He;� \ !/ � ! for all � 2 .��; �e/, and either

– (internal tangency) there is a point x� 2He;�� \ @! such that x�
e;��
DRe;��.x

�/

is in @!, or

– (orthogonality) Te;�� meets @! orthogonally, at some point p�.

We will prove that only case (a) occurs.
Assume by way of contradiction that case (b) occurs. Denote8̂̂<̂
:̂
„ D @�; „0 D „x� ; R0 D min

x2„0
jxj 2 .0; �/; R D max

x2„
jxj > � > R0;

" D �� 2 Œ�;e�� � Œ0; �e/;
c1 D 0 D uj@! ; c2 D u.x�/ D uj„x� 2 .0; u.0//:

The C 3.xz!/ function ' D u satisfies c1 < ' < c2 in z! by (4.6) and �' C F.'/ D 0

in xz!, where F.s/ D f .s/ for s 2 Œc1; c2� � Œ0; u.0//. The function F is therefore C 1 in
Œc1; c2�. Condition (1.18) holds by definition of ", �� and �e , and (1.19) is automatically
fulfilled since „0 � B� and " D �� � �. Therefore, all assumptions of Proposition 1.14
are satisfied and it follows from the conclusion applied with � D " D �� that

u � ue;�� in !e;�� with !e;�� D .He;�� \ z!/ nRe;��.�0/:

Denote
w D ue;�� � u:
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Since F D f is of class C 1 in Œc1; c2� � Œ0; u.0//, the nonnegative C 3.!e;��/ function w
satisfies an equation of the type�wC cw D 0 in !e;�� for some c 2 C.!e;��/. Thus, the
strong maximum principle implies that, for each connected component !0 of !e;�� , either
w > 0 in !0, or w � 0 in !0. We shall now consider separately the internal tangency case
and the orthogonality case.

Consider first the case of internal tangency: there is a point x� 2 He;�� \ @! such
that x�

e;��
D Re;��.x

�/ 2 @!, hence

u.x�/ D u.x�e;��/ D 0 and w.x�/ D 0:

Since �0 \ @! D ;, one has x� 62 �0 [ Re;��.�0/. There is a connected component !�

of!e;�� such that x� 2 @!�, andB.x�; r/\!DB.x�; r/\!� for all r > 0 small enough
(in particular, the interior sphere condition in !� is satisfied at x� 2 @!�). Let n.�/ be the
generic notation for the outward normal to ! at a point � 2 @!. Owing to the definitions
of �� and x�, one has Re;��.n.x�// D n.x�e;��/, while rue;��.x�/ D Re;��.ru.x�e;��//
owing to the definition of ue;�� . Hence,

rw.x�/ � n.x�/ D rue;��.x
�/ � n.x�/ � ru.x�/ � n.x�/

D Re;��.ru.x
�
e;��// �Re;��.n.x

�
e;��// � ru.x

�/ � n.x�/

D ru.x�e;��/ � n.x
�
e;��/ � ru.x

�/ � n.x�/ D 0

sinceru � n is equal to the constant  on @! by (4.3). It then follows from the Hopf lemma
applied to the function w at the point x�, together with the strong maximum principle,
that

w � 0 in !�; that is, u � ue;�� in !�:

On the other hand, as for (5.3) in the proof of Proposition 1.14, one has

@!� � @!e;��

�
�
.Te;��\ xz!/nRe;��.�

0/
�„ ƒ‚ …

DW@1!e;��

[
�
.He;��\@!/nRe;��.�

0/
�„ ƒ‚ …

DW@2!e;��

[
�
He;��\ z!\Re;��.„x�/

�„ ƒ‚ …
DW@3!e;��

:

Since ue;�� D u.x�/ on Re;��.„x�/ and u < u.x�/ in z!, one has w D ue;�� � u > 0 on
@3!e;�� , hence @3!e;�� \ @!� D ; and

@!� �
�
.Te;�� \ xz!/ nRe;��.�

0/
�
[
�
.He;�� \ @!/ nRe;��.�

0/
�

� .Te;�� \ !/ [ .He;�� \ @!/:

Therefore, !� is a connected component ofHe;�� \!. Sincew � 0 in !�, the arguments
of Reichel [22] (see also [1, 27]) imply that ! D !� [Re;��.!�/. Hence ! symmetric
with respect to the line Te;�� , and moreover u is itself symmetric with respect to Te;�� ,
which is impossible since 0 62 Te;�� and 0 is the only maximum point of u. As a con-
sequence, the case of internal tangency is ruled out.

Consider now the case of orthogonality, that is, Te;�� meets @! orthogonally, at some
point p�. By definition of ue;�� , one has u.p�/ D ue;��.p

�/, thus w.p�/ D 0. Notice
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also that, as in the case of internal tangency, p� 62 �0 [ Re;��.�0/. There is a connected
component !� of !e;�� such that p� 2 @!�, and B.p�; r/\! \He;�� D B.p�; r/\!�

for all r > 0 small enough. Since u and @u
@n

are constant on @! and since Te;�� meets @!
orthogonally at p�, it follows as in [22] that all first and second order derivatives of w
vanish at p�. Serrin’s corner lemma [25] and the strong maximum principle then yield
w � 0 in !�. One is then led to a contradiction as in the previous paragraph.

As a consequence, only case (a) occurs. Thus, (4.7) holds. By arguing as at the begin-
ning of the study of case (b) and applying Proposition 1.14 with "D � this time, one infers
that

u � ue;� in !e;� for all � 2 Œ�; �e/; (4.8)

with !e;� D .He;� \ z!/ nRe;�.�0/. Since (4.7) and (4.8) hold for every direction e 2 S1

and for every � 2 .0; �/, one finally concludes that ! D BR for some R > 0 and that, as
in the proof of Theorem 1.5, u is radially symmetric in ! D BR. Since 0 is the unique
critical point of the C 3.BR/ function u and since u D 0 on @BR with u > 0 in BR, there
is a C 3.Œ0; R�/ function U W Œ0; R�! R such that u.x/ D U.jxj/ in BR, with U 0.0/ D 0
and U 0 < 0 in .0; R�. Therefore,

v.x/ D r?u.x/ D U 0.jxj/e� .x/ for all x 2 BR n ¹0º

and the C 2.Œ0; R�/ function V D U 0 satisfies the desired conclusion. The proof of The-
orem 1.10 is thereby complete.

5. Proof of Proposition 1.14

The proof is based on the method of moving planes developed in [3, 6, 11, 25], adapted
to our geometrical configuration. The idea is to compare the function ' with its reflection
'e;� in !e;� by moving the lines Te;� and decreasing � from the value � to ". We recall
that

!e;� D .He;� \ !/ nRe;�.�0/:

Notice in particular that R0 � jxj � R for all � 2 Œ"; �/ and x 2 !e;�, since !e;� � ! D
� n�0.

Consider first any � 2 ."; �/. For each x 2 !e;�,

xe;� D Re;�.x/ 2 Re;�.He;� \ !/ � Re;�.He;� \�/ � �

by (1.18), and xe;� 62 �0, hence xe;� 2 !. Thus

Re;�.!e;�/ � !

and the function 'e;� given in (1.20) is well defined and of class C 2 in !e;�. Furthermore,
�'e;� C F.jxe;�j; 'e;�/ D 0 in !e;�. Since jxj � jxe;�j for all x 2 !e;� (remember that
� > " � 0) and since F is nonincreasing with respect to its first variable, it follows that

�'e;� C F.jxj; 'e;�/ � 0 in !e;�:
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Let
ˆe;� D 'e;� � ';

which is well defined and of class C 2 in !e;�. We have

�ˆe;� C ce;�ˆe;� � 0 in !e;�; (5.1)

where, say,

ce;�.x/ D

8<:
F.jxj; 'e;�.x// � F.jxj; '.x//

'e;�.x/ � '.x/
if 'e;�.x/ ¤ '.x/;

0 if 'e;�.x/ D '.x/:

Since the function F is assumed to be Lipschitz continuous with respect to its second
variable, uniformly with respect to the first one, the function ce;� is in L1.!e;�/, and
moreover there is a constant M � 0 such that

jce;�.x/j �M for all � 2 ."; �/ and all x 2 !e;�: (5.2)

Consider again any � 2 ."; �/ and decompose the boundary of !e;� into three parts.
More precisely, since

@.A \ B \ C/ � .@A \ B \ C/ [ .A \ @B \ C/ [ .A \ B \ @C /

for any three sets A, B and C , since @! D„[„0 and since .He;� \„0/ nRe;�.�0/D ;
by assumption (1.19), one has (with A D He;�, B D ! and C D R2 nRe;�.�0/)

@!e;� �
�
.Te;� \ !/ nRe;�.�

0/
�„ ƒ‚ …

DW@1!e;�

[
�
.He;� \„/ nRe;�.�

0/
�„ ƒ‚ …

DW@2!e;�

[
�
He;� \ ! \Re;�.„

0/
�„ ƒ‚ …

DW@3!e;�
(5.3)

(see Fig. 4). Notice that since Te;� \„ D Te;� \ @� is nonempty (because � 2 ."; �/ �
Œ0; �/), both sets @1!e;� and @2!e;� are nonempty (however, @3!e;� may be empty). Fur-
thermore, even if!e;� may not be connected (as in Fig. 4), the boundary of each connected
component of !e;� intersects @2!e;� [ @3!e;�.

Let us now study the sign of ˆe;� on @!e;�, for any � 2 ."; �/. First, on @1!e;�
.� Te;�/, one has 'e;� D ', hence ˆe;� D 0. Secondly, for each x 2 @2!e;�, one has

xe;� 2 Re;�.He;� \„/ � Re;�.He;� \�/ � �

by (1.18), hence xe;� 2 ! [„0 and 'e;�.x/ D '.xe;�/ > c1 by (1.17), while x 2 „ and
'.x/ D c1. Thus, ˆe;�.x/ D 'e;�.x/ � '.x/ > 0 for each x 2 @2!e;�. Thirdly, for each
x 2 @3!e;�, one has xe;� 2 „0 and 'e;�.x/ D '.xe;�/ D c2, while x 2 ! and '.x/ < c2,
by (1.17). Thus, ˆe;�.x/ D 'e;�.x/ � '.x/ > 0 for each x 2 @3!e;�. As a consequence,
ˆe;� � 0 on @!e;� and even ˆe;� > 0 on @2!e;� [ @3!e;� .¤ ;/, hence

0 � ˆe;� 6� 0 on the boundary of each connected component of !e;�: (5.4)
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Fig. 4. The three parts @1!e;�, @2!e;� and @3!e;� of the boundary of !e;� (dashed red).

Let us now consider � ' � with � < �. Since the functions ˆe;� satisfy (5.1)–(5.4),
and since the sets !e;� are all included in the given bounded domain � and the Lebesgue
measure j!e;�j of !e;� goes to 0 as � <

�! � owing to the definition of �, it follows for
instance from the maximum principle in sets with bounded diameter and small Lebesgue
measure and from the strong maximum principle [7] that there is �0 2 ."; �/ such that
ˆe;� > 0 in !e;� for all � 2 .�0; �/.

Let us finally define

�� D inf ¹� 2 ."; �/ W ˆe;�0 > 0 in !e;�0 for all �0 2 .�; �/º;

and notice that " � �� � �0 < �. Our goal is to show that �� D ". Assume by way of
contradiction that �� > ". Notice that ˆe;�� � 0 in !e;�� by continuity (indeed, for each
x 2 !e;�� , we have x 2 !e;� for � � �� > 0 small, hence '.x/ < 'e;�.x/ for � � ��
> 0 small, and '.x/ � 'e;��.x/ by passing to the limit � >

�! �� and by continuity of ';
therefore, ' � 'e;�� in !e;�� again by continuity of '). On the other hand, 0 �ˆe;�� 6� 0
on the boundary of each connected component of !e;�� , because �� 2 ."; �/. Hence,
ˆe;�� > 0 in !e;�� from the strong maximum principle. As in the previous paragraph,
from [7], there exists ı > 0 such that the weak maximum principle holds in any open set
!0 � ! for the solutions ˆ 2 C 2.!0/\ C.!0/ of�ˆC cˆ � 0 in !0 with ˆ � 0 on @!0

and kckL1.!0/ �M , as soon as j!0j � ı. Let then K be a compact subset of !e;�� such
that

j!e;�� nKj < ı=2:

Since minKˆe;�� > 0, it follows from the continuity of ' in ! that there exists � 2 .";��/
such that, for all � 2 Œ�; ���,

min
K
ˆe;� > 0; @.!e;� nK/ D @!e;� [ @K and j!e;� nKj < ı:

For any such � 2 Œ�; ���, one then has 0 � ˆe;� 6� 0 on the boundary of each connected
component of !e;� nK and one infers from the choice of ı and from the strong maximum
principle that ˆe;� > 0 in !e;� n K, and finally ˆe;� > 0 in !e;�. This last property
contradicts the definition of ��.
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As a conclusion, �� D ". Therefore, for every � 2 ."; �/, one has ˆe;� > 0 in !e;�,
so ' < 'e;� in !e;� and ' � 'e;� in !e;� by continuity of '. As in the previous paragraph,
it also follows by continuity that ' � 'e;" in !e;". The proof of Proposition 1.14 is thereby
complete.
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