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Abstract. Let M be a meromorphic connection with poles along a smooth divisor D in a smooth
algebraic variety. Let Sol M be the solution complex of M. We prove that the good formal structure
locus of M coincides with the locus where the restrictions to D of Sol M and Sol End M are local
systems. Despite the very different natures of these loci (the first one is defined via algebra, and
the second via analysis), the proof of their coincidence is geometric. It relies on moduli of Stokes
torsors.
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The main issue of this paper is to understand how the geometry of the Stokes phenomenon
in any dimension sheds light on the interplay between the singularities of a differential
equation and the singularities of its solutions.

Consider an algebraic linear system M of differential equations with n variables

@X

@xi
D �iX; i D 1; : : : ; n;

where �i is an r � r matrix with coefficients in the ring CŒx1; : : : ; xn�Œx�1n � of Lau-
rent polynomials with poles along the hyperplane D in Cn given by xn D 0. At a point
away from D, holomorphic solutions of the system M are fully understood by means of
Cauchy’s theorem. At a point of D, the situation is much more complicated. It is still
the source of challenging unsolved problems. We call D the singular locus of M. Two
distinguished open subsets of D where the singularities of M are mild can be defined.

First, the set Good.M/ of good formal structure points of M is the subset of D con-
sisting of points P such that in a formal neighbourhood of P , M admits a good formal
structure. For P being the origin, and modulo ramification issues that will be neglected
in this introduction, this means roughly that there exists a base change with coefficients
in CJx1; : : : ; xnKŒx�1n � splitting M into a direct sum of well-understood systems easier to
work with.
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Good formal structure can always be achieved in the one variable case [36]. It is
desirable in general because it provides a concrete description of the system, at least
formally at a point. In the higher variable case however, it was observed in [37] that M

may not have good formal structure at every point of D. Thus, the set Good.M/ is a
non-trivial invariant of M. As proved by André [2], the set Good.M/ is the complement
in D of a Zariski closed subset F of D either purely of codimension 1 in D or empty.
Traditionally, F is called the turning locus of M, in view of the way the Stokes directions
of M move along a small circle in D going around a turning point. In a sense, the good
formal structure locus of M is the open subset of D where the singularities of the system
M are as simple as possible.

To define the second distinguished subset ofD associated to M, let us view M as a D-
module, that is, a module over the Weyl algebra of differential operators. Let us denote by
Sol M the solution complex of the analytification of M. Concretely, H0 Sol M encodes
the holomorphic solutions of our differential system while the higher cohomologies of
Sol M keep track of higher Ext groups in the category of D-modules. As proved by
Kashiwara [17], the complex Sol M is perverse. From a theorem of Mebkhout [31], the
restriction of Sol M to D, that is, the irregularity complex of M along D, denoted by
Irr�D M in this paper, is also perverse. In particular, .Sol M/jD is a local system on D
away from a closed analytic subset of D. The smooth locus of .Sol M/jD is the largest
open set in D on which .Sol M/jD is a local system. In a sense, the smooth locus of
.Sol M/jD is the open subset ofD where the singularities of the .derived/ solutions of M

are as simple as possible.
As observed in [44], the open set Good.M/ is included in the smooth locus of

.Sol M/jD and .Sol End M/jD . The reverse inclusion was conjectured in [44, §15.0.5].
Coincidence of Good.M/ with the smooth locus of .Sol M/jD and .Sol End M/jD seems
surprising at first sight, since goodness is an algebraic notion whereas Sol M is transcen-
dental. The main goal of this paper is to prove via geometric means the following

Theorem 1. Let X be a smooth complex algebraic variety. Let D be a smooth divisor
in X . Let M be a meromorphic connection on X with poles along D. Then the good
formal structure locus of M is the locus of D where .Sol M/jD and .Sol End M/jD are
local systems.

Other criteria detecting good points of meromorphic connections are available in the
literature. Let us mention André’s criterion [2, Th. 3.4.1] in terms of specializations of
Newton polygons. Let us also mention Kedlaya’s criterion [21, Th. 4.4.2] in terms of the
variation of spectral norms under varying Gauss norms on the ring of formal power series.
This criterion is numerical in nature. By contrast, the new criterion given by Theorem 1
is transcendental. Its sheaf-theoretic flavour makes it possible to track the turning points
in the cohomology of the irregularity complex. For an application of this observation, we
refer to Theorem 2 below.

The main tool at stake in the proof of Theorem 1 is geometric, via moduli of Stokes
torsors [48]. For a detailed explanation of the line of thought that brought them into the
picture, we refer to §2.1.
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Before stating an application of Theorem 1 (see Theorem 2 below), we explain how
these moduli are used by giving the main ingredients of the proof of Theorem 1 in dimen-
sion 2. In that case, we have to show the goodness of a point 0 2 D given that .Sol M/jD
and .Sol End M/jD are local systems in a neighbourhood of 0. The main problem is to
extend the good formal structure of M across 0. This good formal structure can be seen as
a system of linear differential equations N defined in a neighbourhood of a small disc��

in D punctured at 0.
To show that N extends across 0, we first construct via Stokes torsors a moduli

space X parametrizing very roughly systems defined in a neighbourhood of � and for-
mally isomorphic to M along �. A distinguished point of X is given by M itself. Sim-
ilarly, we construct a moduli space Y roughly parametrizing systems defined in a neigh-
bourhood of�� and formally isomorphic to Mj�� along��. Two distinguished points of
Y are Mj�� and N . Restriction from � to �� provides a morphism of algebraic varieties
res WX! Y. The problem of extending N is then the problem of proving that res hits N .
The moduli spaces X and Y have the wonderful property that the tangent map TM res is
exactly the map

�.�;H1 Sol End M/! �.��;H1 Sol End M/

associating to s 2�.�;H1SolEndM/ the restriction of s to��. In this geometric picture,
the smoothness of .H1 Sol End M/jD around 0 thus translates into the fact that TM res is
an isomorphism of vector spaces. Since X and Y are smooth, we deduce that res is étale
at the point M. Thus, the image of res in Y contains a non-empty open set. We prove
furthermore (see Theorem 3 below) that res is a closed immersion, so its image is closed
in Y. Since Y is irreducible, we conclude that res is surjective, which proves the existence
of the sought-after extension of N .

Let us now describe an application of Theorem 1. Let X be a smooth variety over a
finite field of characteristic p > 0. Let `¤p be a prime number. As proved by Deligne [9],
there are only a finite number of semisimple `-adic local systems on X with prescribed
rank, bounded ramification at infinity and up to a twist by a character coming from the
base field. A natural question is to look for a differential analogue of this finiteness result.
LetX be a smooth complex proper algebraic variety. Let M be a meromorphic connection
on X . In this situation, H. Esnault and A. Langer asked whether it is possible to control
the resolution of turning points of M by means of X , the rank of M and the irregularity
of M. In dimension 2, this question amounts to bounding the number of blow-ups needed
to eliminate the turning points of M. To the author’s knowledge, this question is still
widely open. If such a bound exists in dimension 2, the number of turning points of M

should in particular be bounded by a quantity depending only on the surface X , the rank
of M and the irregularity of M. As an application of Theorem 1, we give such a bound
in a relative situation, thus providing the first evidence for a positive answer to H. Esnault
and A. Langer’s question:

Theorem 2. Let S be a smooth complex algebraic curve. Let 0 2 S . Let p W C ! S

be a relative smooth proper curve of genus g. Let M be a meromorphic connection
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on C with poles along the fibre C0 of p above 0. Let rD.M/ be the highest generic
slope of M along C0. Then the number of turning points of M along C0 is bounded by
8.rank M/2.g C 1/rD.M/.

To prove Theorem 2, the main tools are Theorem 1 and a new boundedness result for
nearby slopes [47] suggested by the `-adic picture [14]. See Remark 7.1.4 for details.

A crucial step in the proof of Theorem 1 is to understand the geometry of the restric-
tion map for Stokes torsors. This is achieved in Theorem 3 below. To state it, let X be a
smooth complex algebraic variety. Let D be a normal crossing divisor in X . Let M be
a meromorphic connection on X with poles along D. Suppose that M has good formal
structure in the sense of Mochizuki (see §1.5). Let pD W zX ! X be the fibre product
of the real blow-ups of X along the components of D. For every subset A � D, put
@A WD p�1D .A/. Let St<DM be the Stokes sheaf of M (see §2.3 for details). This is a sheaf
of complex unipotent algebraic groups on @D. Then we have the following

Theorem 3. Let U � V � D be non-empty open subsets in D such that V is connected.
Then the natural morphism

H 1.@V;St<DM /! H 1.@U;St<DM /

is a closed immersion of affine schemes of finite type over C.

Let us finally give an application of Theorem 3 to degenerations of irregular singular-
ities. LetX be a smooth algebraic variety and letD be a germ of smooth divisor at 0 2X .
Let M be a germ of meromorphic connection defined in a neighbourhood of D in X and
with poles alongD. Motivated by Dubrovin’s conjecture and the study of Frobenius man-
ifolds, Cotti, Dubrovin and Guzzetti [6] studied how much information on the Stokes data
of M can be retrieved from the restriction of M to a smooth curve C transverse to D and
passing through 0.

Under the assumption that M yD
splits as a direct sum of regular connections twisted

by meromorphic functions a1; : : : ; an 2 OX .�D/ with simple poles alongD, they proved
that the Stokes data of the restriction MjC determine in a bijective way the Stokes data
of M in a small neighbourhood of 0 in D. This is striking, since the numerators of the
ai � aj may vanish at 0, thus inducing a discontinuity at 0 in the configuration of the
Stokes directions. Using different methods, this was reproved by Sabbah [41, Th. 1.4].
In this paper, we give a short conceptual proof of a stronger version of Cotti, Dubrovin
and Guzzetti’s injectivity theorem: we do not make no assumption on the shape of M yD

,
nor do we suppose that D is smooth or C is transverse to D. The price to pay for this
generality is the use of resolution of turning points, as proved in the fundamental work
of Kedlaya [22] and Mochizuki [35]. The intuition that the techniques developed in this
paper could be applied to the questions considered by Cotti, Dubrovin and Guzzetti is due
to C. Sabbah.

To state our result, let us recall that an M-marked connection is the data of a pair
.M; iso/ where M is a germ of meromorphic connection with poles along D defined
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in a neighbourhood of D in X , and iso W M yD ! M yD
is an isomorphism of formal

connections.

Theorem 4. Let X be a germ of smooth algebraic variety around a point 0. Let D be a
germ of divisor passing through 0. Let M be a germ of meromorphic connection at 0 with
poles along D. Let C be a smooth curve passing through 0 and not contained in any of
the irreducible components ofD. If .M1; iso1/ and .M2; iso2/ are M-marked connections
such that

.M1; iso1/jC ' .M2; iso2/jC

then .M1; iso1/ and .M2; iso2/ are isomorphic in a neighbourhood of 0.

Let us give an outline of the paper. In Section 1, we introduce some background mate-
rial on asymptotic analysis and on the Stokes sheaf. In Section 2, we introduce the sheaf
of relative Stokes torsors and prove its constructibility. In Section 3, we prove the repre-
sentability of the moduli of Stokes torsors. We then prove Theorem 3. In Section 4, we
interpret the tangent spaces and the obstruction theory for these moduli in a transcendental
way via the solution complexes for connections. We then prove Theorem 4. In Section 5,
we show how to reduce the proof of Theorem 1 to extending the good formal model of M

across the point 0 under study. In Section 6, we show that the sought-after extension exists
provided that the moduli space of Stokes torsors associated to a resolution of the turning
point 0 for M satisfies suitable geometric conditions. Finally, we show that these geo-
metric conditions are always satisfied when the hypothesis of Theorem 1 are satisfied,
thus concluding the proof of Theorem 1. Section 7 is devoted to the proof of Theorem 2.
We collect in an appendix some elementary facts about torsors and Stokes filtered local
systems. Note that our use of Stokes filtered local systems is a purely technical detour to
obtain the triviality criterion of Lemma 8.4.1.

1. The Stokes sheaf. Global aspects

1.1. Geometric setup

In this subsection, we introduce basic notations. In this paper, a regular pair .X;D/ will
be the data of a smooth complex algebraic variety X and of a strict normal crossing
divisorD in X . For a quasi-coherent sheaf F on X , we denote by FjD the sheaf of germs
of sections of F along D. Let D1; : : : ; Dm be the irreducible components of D. For
I � J1;mK, set

DI WD
\
i2I

Di and DıI WD DI n
[
i…I

Di :

1.2. Functions with asymptotic expansion along D

For i D 1; : : : ; m, let zXi ! X be the real blow-up of X along Di . Let pD W zX ! X

be the fibre product of the zXi , i D 1; : : : ; m, above X . For every subset A � D, put
@A WD p�1D .A/. Let �A W @A! @D be the canonical inclusion.
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Let A be the sheaf of functions on @D admitting an asymptotic expansion
along D [37]. For a closed subset Z in D, let AbZ be the completion of A along the
pull-back by pD of the ideal sheaf of Z. Put A<Z WD Ker.A! AbZ/. When Z D D, the
sheaf A<D can be concretely described locally as follows (see [37, Ch. II, §1.1.11] for
a proof). Let .x1; : : : ; xn/ be local coordinates centred at 0 2 D such that D is defined
around 0 by x1 � � �xl D 0 for some l 2 J1;mK. Then the germ of A<D at Q 2 @0 is given
by those holomorphic functions u defined over the trace on X nD of a neighbourhood �
of Q in zX , and such that for every compact K � � and every .N1; : : : ; Nl / 2 Nl , there
exists a constant CK;N > 0 satisfying

ju.x/j � CK;N jx1j
N1 � � � jxl j

Nl for every x 2 K \ .X nD/: (1.2.1)

From (1.2.1), we deduce the following elementary lemma.

Lemma 1.2.2. Let � W Y ! X be a cyclic Galois cover of X ramified along D. Put
E D ��1.D/. Let z� W zY ! zX be the map induced by � at the level of the real blow-up.
Then the canonical map A<D ! z��A

<E induces an isomorphism between A<D and the
sheaf of invariants of z��A<E under the Galois group of �.

1.3. Good formal structure

Let .X;D/ be a regular pair. Meromorphic connections in this paper will be supposed to
be flat. Let P be a point in D. An elementary local model at P denotes a meromorphic
connection N of the form

N D
M
a2IP

Ea ˝Ra

where IP is a finite set in OX;P .�D/, Ea D .OX;P .�D/; d � da/ and Ra is a regular
singular meromorphic connection on X with poles along D. If furthermore the following
conditions are satisfied:

(1) for an element a in IP , if a does not belong to OX;P , then the divisor of a is anti-
effective with support in D,

(2) for a; b in IP , if a � b does not belong to OX;P , then the divisor of a � b is anti-
effective with support in D,

we say that N is a good elementary local model at P . Let M be a meromorphic con-
nection on X with poles along D. Let Y be the stratum of D containing P . Following
[21, §6.2.3], we say that M has an elementary local model at P if at the cost of shrink-
ingX , there exists an elementary local model N at P and an isomorphism of connections

ObX jY ˝OX M ' ObX jY ˝OX N : (1.3.1)

If furthermore N is a good elementary local model at P , we say that M has a good
elementary local model at P . We say that M has a good formal structure at P if there
exists a cyclic Galois cover of some neighbourhood of P , ramified alongD, on which the
pull-back of M admits a good elementary local model at some inverse image of P . If this
is true for every point P in D, we say that M has a good formal structure.
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1.4. Irregular values

Let .X; D/ be a regular pair. Let M be a meromorphic connection on X with poles
along D. If M has a good elementary local model at every point P in D, the images
by OX .�D/! OX .�D/=OX of the finite sets IP appearing in §1.3 organize into a sub-
sheaf of OX .�D/=OX onD. This is the sheaf of irregular values of M. Let us denote it by
I. We say that I is very good if for every point P in D, the difference of any two distinct
elements of IP has poles along every component of D passing through P . These defini-
tions extend in a straightforward way to the case where M has good formal structure. See
[39, §9.c] for details.

1.5. Mochizuki’s definition of good formal structure

As pointed out in [21, §4.3.3], there is a small discrepancy between the notion of good
formal structure in [21] and that from [35]. Mochizuki further requires that the sets IP
appearing in the decomposition (1.3.1) satisfy the extra assumption that the OX -modules
generated by the differences a � b, a; b 2 IP not lying in OX , are totally ordered by
inclusion. If M has good formal structure in the sense of Mochizuki, then M has good
formal structure in the sense of Kedlaya. Due to [21, §4.3.1], if M and End M have good
formal structure in the sense of Kedlaya, then M has good formal structure in the sense
of Mochizuki.

Note that these notions coincide when D is smooth. Hence, this discrepancy is invisi-
ble in the statement of Theorem 1. However, the notion of goodness used in Theorems 3,
5 and 6 is that of Mochizuki. It will be needed to ensure that for any point P in D, there
exists a component Z of D passing through P such that for any a; b 2 IP distinct, a � b
has poles along Z. If not explicitly mentioned otherwise, good formal structure will be
taken in the sense of Kedlaya.

1.6. The Stokes sheaf

Let .X; D/ be a regular pair. Let M be a meromorphic connection defined on X with
poles along D. Suppose that M has good formal structure. We set

@M D A p̋�1
D

OXjD
p�1D M and @M yD

D A yD p̋�1
D

OXjD
p�1D M:

Let DX be the sheaf of differential operators on X . The sheaf A is endowed with an
action of p�1D DX jD . Hence, so is @M. We can thus form the de Rham complex of M with
coefficients in A as

@M! p�1D �1
X jD p̋�1

D
OXjD

@M! � � � ! p�1D �n
X jD p̋�1

D
OXjD

@M:

It is denoted by DR @M. Similarly, we denote by DR<D M the de Rham complex of M

with coefficients in A<D .
LetZ be a closed subset ofD. Let St<ZM be the subsheaf of H0DR@EndM of sections

asymptotic to the identity along Z, that is, of the form IdCf where f has coefficients
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in A<Z . The sheaf St<ZM is a sheaf of complex unipotent algebraic groups on @Z. This is
the Stokes sheaf of M along Z. For every C-algebra R, the sheaf of R-points of St<ZM is
a sheaf of groups on @Z. It is denoted by St<ZM .R/. This is the Stokes sheaf of M along
Z relative to R.

1.7. The Stokes locus

Let .X;D/ be a regular pair. Let pD W zX!X be the real blow-up ofX alongD. Let M be
a meromorphic connection defined on X with poles along D. Suppose that M has a good
elementary local model at every point of D. Let I be the sheaf of irregular values of M.
Let P be a point inD. Let a;b 2 IP be distinct. Put Fa;b WD Re.a� b/jx� ord.a�b/jwhere
.x1; : : : ; xn/ are local coordinates centred at P such that D is given by x1 � � �xm D 0. By
definition, the Stokes locus of .a; b/ is defined as Fa;b ı pD D 0. The Stokes locus of M is
the union of the loci of the form Fa;b ı pD D 0, where a; b are as above. If M is ramified,
then at the cost of shrinking X , there exists a cyclic Galois cover � W Y ! X ramified
along D such that �CM is unramified. Let z� W zY ! zX be the map induced by � at the
level of the real blow-up. Then the Galois group G of � acts on I. Hence, the action of G
on zY preserves the Stokes locus of �CM. Thus, the Stokes locus of �CM descends to a
closed subset in @D, called the Stokes locus of M. This locus depends only on M and not
on the choice of �.

1.8. Some facts on the Stokes sheaf

Let .X; D/ be a regular pair. Let M be a meromorphic connection on X with poles
along D. Suppose that M has good formal structure. As a consequence of Lemma 1.2.2,
we have

Lemma 1.8.1. Let � W Y ! X be a cyclic Galois cover of X ramified along D. Put
ED ��1.D/. Let z� W zY ! zX be the map induced by � at the level of the real blow-up. Then
z��1 St<DM ' St<E

�CM
and the canonical map St<DM ! z�� St<E

�CM
induces an isomorphism

between St<DM and the sheaf of invariants of z�� St<E
�CM

under the Galois group of �.

Lemma 1.8.2. The Stokes sheaf of M is constructible with respect to the stratification
of @D induced by the Stokes locus of M.

Proof. From Lemma 1.8.1, we can suppose that M is unramified. The question is local
on @D. From Mochizuki’s asymptotic development theorem [39, Th. 12.5], we can further
suppose that M is a good elementary local model at a point P . In that case, let us write

M D
M
a2I

Ea ˝Ra

where I is a good set of irregular values at P , Ea D .OX .�D/; d � da/ and Ra is
regular with poles along D. Let ia W Ea ˝Ra ! N be the canonical inclusion and let
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pa W N ! Ea ˝Ra be the canonical projection. Sections of St<DM on an open set � are
automorphisms of M on � \ .X nD/ of the form IdCf where paf ib D 0 unless

ea�b 2 �.� ;A<D/: (1.8.3)

Lemma 1.8.2 then follows from the observation that condition (1.8.3) is constant on each
stratum of the stratification of @D induced by the Stokes locus of .a; b/.

Lemma 1.8.4. Let .X; D/ be a germ of regular pair at a point P . Let D1; : : : ; Dm be
the components of D. Let M be a meromorphic connection on X with poles along D.
Suppose that M has good formal structure. Let � W Y ! X be a cyclic Galois cover of X
ramified along D such that �CM is unramified. Suppose that the difference of any two
distinct irregular values for M at P has poles along ��1.Dm/. Put I D J1;m� 1K. Then
the adjunction morphism

��1DI St<DM ! ��1DI �D
ı
I
��
�1
Dı
I

St<DM (1.8.5)

is an isomorphism.

Proof. From Lemma 1.8.1, we can suppose that M is unramified. Injectivity is obvious,
so it remains to prove surjectivity at a point Q in @P . This is a local question around Q.
From Mochizuki’s asymptotic development theorem [39, Th. 12.5], we can thus suppose
that M is a good elementary local model. Let us write

M D
M
a2I

Ea ˝Ra

where I is a good set of irregular values at P , Ea D .OX .�D/; d � da/ and Ra is
regular with poles along D. Let ia W Ea ˝Ra ! N be the canonical inclusion and let
pa W N ! Ea ˝Ra be the canonical projection. Let � be a neighbourhood of Q in @X
of the form

.Œ0; rŒ � I1/ � � � � � .Œ0; rŒ � Im/ ��

where r > 0,� is a ball in Cn�m centred at 0, and I1; : : : ; Im are closed intervals in S1. To
prove the surjectivity of (1.8.5) at Q, it is enough to show that at the cost of shrinking � ,
the restriction morphism

�.� \ @D;St<DM /! �.� \ @DıI ;St<DM /

is a bijection. Sections of St<DM on � \ @D are automorphisms of M on � \ .X nD/ of
the form IdCf where paf ib D 0 unless

ea�b 2 �.� \ @D;A<D/: (1.8.6)

Sections of St<DM on

� \ @DıI D .¹0º � I1/ � � � � � .¹0º � Im�1/ � .�0; rŒ � Im/ ��



J.-B. Teyssier 378

are automorphisms of M on � \ .X nD/ of the form IdCf where paf ib D 0 unless

ea�b 2 �.� \ @DıI ;A
<D/: (1.8.7)

We thus have to show that for any distinct a; b 2 I, conditions (1.8.6) and (1.8.7) are
equivalent for � small enough. A change of variable reduces the problem to the case
where a � b D 1=x

˛1
1 � � � x

˛m
m where .˛1; : : : ; ˛m/ 2 Nm�1 � N�. Note that condition

(1.8.6) trivially implies (1.8.7). Suppose that e1=x
˛1
1
���x
˛m
m lies in �.� \ @DıI ;A

<D/. At
the cost of shrinking � , we can suppose that there exists a constant C > 0 such that for
every

.x1; : : : ; xn/ 2 .�0; rŒ � I1/ � � � � � .�0; rŒ�Im�1/ � .Œr=2; rŒ � Im/ ��

we have
je1=x

˛1
1
���x
˛m
m j � C jx1j � � � jxm�1j:

Writing xi D .ri ; �i / for i D 1; : : : ; m, this means

ecos.˛1�1C���C˛m�m/=r
˛1
1
���r
˛m
m � Cr1 � � � rm�1:

In particular, ˛i > 0 for i D 1; : : : ; m � 1 and cos.˛1�1 C � � � C ˛m�m/ < 0 for every
.�1; : : : ; �m/ 2 I1 � � � � � Im. At the cost of shrinking � further, there exists c > 0 such
that cos.˛1�1 C � � � C ˛m�m/ < �c on I1 � � � � � Im. Then

je1=x
˛1
1
���x
˛m
m j � e�c=jx1j

˛1 ���jxmj
˛m

on � . Since ˛i > 0 for i D 1; : : : ;m, we deduce that (1.8.7) holds. This proves the equiv-
alence between conditions (1.8.6) and (1.8.7) and thus finishes the proof of Lemma 1.8.4.

2. Stokes torsors

2.1. Why moduli of Stokes torsors?

Let us explain in this subsection how the moduli of Stokes torsors were found to be rel-
evant to the proof of Theorem 1. We use the notations from the introduction and work
in dimension 2. We suppose that 0 2 D lies in the smooth locus of .Sol M/jD and
.Sol End M/jD , and we want to prove that 0 is a good formal structure point for M.

From a theorem of Kedlaya [21, 22] and Mochizuki [33, 35], our connection M

acquires good formal structure at any point after pulling back by a suitable sequence
of blow-ups aboveD. To test the validity of the conjecture [44, §15.0.5], a natural case to
consider was the case where only one blow-up is needed. Using the results of André [2],
it was shown in [45] that the conjecture reduces in this case to the following

Question. Given two good meromorphic connections M and N with poles along the
coordinate axis in C2 and formally isomorphic at 0, is it true that

dim.H1 Sol End M/0 D dim.H1 Sol End N /0 ‹ (2.1.1)
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It turns out that each side of (2.1.1) appeared as dimensions of moduli spaces of Stokes
torsors constructed by Babbitt–Varadarajan [3]. These moduli spaces were associated with
germs of meromorphic connections in dimension 1. Babbitt and Varadarajan proved that
they are affine spaces. This suggested the existence of a moduli space X with two points
P;Q2X such that the left-hand side of (2.1.1) would be dimTPX and the right-hand side
of (2.1.1) would be dim TQX. The equality (2.1.1) would then follow from the smooth-
ness and connectedness of the putative moduli. This is what led to [48], but the question
of smoothness and connectedness was left open. In the meantime, a positive answer to the
above question was given by purely analytic means by C. Sabbah [40].

2.2. Relation to [48]

In [48], a moduli space for local Stokes torsors was constructed in any dimension. This
moduli space suffers two drawbacks in view of the proof of Theorem 1. First, the Stokes
sheaf used in [48] only makes sense in a neigbourhood of a point, whereas our situation
will be global as soon as we apply Kedlaya–Mochizuki’s resolution of turning points.
Second, the relation between irregularity and the tangent spaces of the moduli from [48]
only holds in particular cases. To convert the hypothesis on Irregularity appearing in The-
orem 1 into a geometric statement pertaining to moduli of torsors, we need to replace
the Stokes sheaf StM of a connection M by a subsheaf denoted by St<DM . We will abuse
terminology by also calling the torsors under St<DM Stokes torsors. The sheaf St<DM has
the advantage of being globally defined when M is globally defined. Along the smooth
locus of D, the sheaf St<DM is the usual Stokes sheaf. The only difference between StM
and St<DM appears at a singular point of D.

2.3. The functor of relative Stokes torsors

We use the notations from §1.6. Let R be a C-algebra. Torsors under St<ZM .R/ are the
Stokes torsors along Z relative to R. For every subset A � Z, let H 1.@A; St<ZM / be the
functor

C-alg! Set; R 7! H 1.@A;St<ZM .R//:

From [48, Th. 1], the functor H 1.@P; St<PM / is an affine scheme of finite type over C for
every point P in D.

Lemma 2.3.1. Let P be a point in D. Torsors under St<PM on @P have no non-trivial
automorphisms.

Proof. The assertion was proved in [48, Th. 1.8.1] in the case where M is a good ele-
mentary local model. An inspection of the proof, relying on the Babbitt–Varadarajan
representability theorem in dimension 1 as well as the Malgrange–Sibuya theorem, shows
that it carries over verbatim to the case of an arbitrary connection with good formal struc-
ture.
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Lemma 2.3.2. Let A be a subset in D. Torsors under St<DM on @A have no non-trivial
automorphisms.

Proof. Let P be a point in A. It is enough to show that torsors under St<DM on @P have
no non-trivial automorphisms. Let T be a St<DM -torsor on @P . Let � W T ! T be an
automorphism of St<DM -torsors. Since A<D is a subsheaf of A<P , there is an injection
� W St<DM ! St<PM . To show that � is the identity of T amounts to showing that the push-
forward ��� W ��T ! ��T is the identity of the St<PM -torsor ��T . This last assertion is a
consequence of Lemma 2.3.1.

As a straightforward consequence of Lemma 2.3.2, we deduce

Corollary 2.3.3. Let A be a subset in D with the topology induced by D. Then the
presheaf of functors R1pA� St<DM defined as

Open.A/! Set; U 7! H 1.@U;St<DM /;

is a sheaf of functors. That is, for every cover U of A by open subsets, the first arrow in
the diagram of pointed functors

H 1.@A;St<DM /!
Y
U2U

H 1.@U;St<DM / �
Y

U;V 2U

H 1.@U \ @V;St<DM /

is an equalizer.

Remark 2.3.4. Observe that the sheaf condition in Corollary 2.3.3 is still satisfied if one
takes instead of a cover by open subsets of A a cover K by compact subsets K such that
the associated family of open subsets VK forms a cover of A.

As a consequence of Lemma 1.8.1, Remark 2.3.4 and Lemma 8.1.1, we have

Corollary 2.3.5. Let .X;D/ be a regular pair. Let � W Y ! X be a cyclic Galois cover
of X ramified along D. Let G be the Galois group of �. Put E D ��1.D/. Let A be a
subset inD. Let M be a meromorphic connection on X with poles alongD. Suppose that
M has good formal structure. Then the canonical morphism of functors

H 1.@A;St<DM /! H 1.@��1.A/;St<E
�CM

/G

is an isomorphism.

2.4. Dévissage of the sheaf of relative Stokes torsors

The goal of this subsection is to relate Stokes torsors on a stratum to Stokes torsors on a
suitably chosen stratum which is less deep. This will be done in Proposition 2.4.2.

Lemma 2.4.1. Let .X;D/ be a germ of regular pair at a point P . LetD1; : : : ;Dm be the
components ofD. Let M be a meromorphic connection onX with poles alongD. Suppose
that M has good formal structure. Let I be a subset in J1; mK. For every element T in
H 1.@DıI ;St<DM /, the sheaf �Dı

I
�T is a �Dı

I
��
�1
Dı
I

St<DM -torsor on @D.
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Proof. Let Q be a point in @D. From Lemma 8.1.2, we have to show the existence of a
neighbourhood � ofQ in zX such that the Stokes torsors on � \ @DıI are trivial. To do this,
we can suppose that Q lies in @P . Let � W Y ! X be a cyclic Galois cover of X ramified
along D such that �CM is unramified. Let z� W zY ! zX be the Galois cover induced by �
at the level of the real blow-up. Let U be a neighbourhood of Q that decomposes z�. By
pulling back the situation to a connected component of z��1.U /, we reduce to the case
where M is unramified. Since we are working in a neighbourhood of Q, Mochizuki’s
asymptotic development theorem [39, Th. 12.5] reduces the proof to the case where M

is a good elementary local model. Then Lemma 2.4.1 is a consequence of the triviality
criterion in Lemma 8.4.1.

Proposition 2.4.2. Let .X;D/ be a germ of regular pair at a point P . Let D1; : : : ; Dm
be the components of D. Let M be a meromorphic connection on X with poles along D.
Suppose that M has good formal structure. Let � W Y ! X be a cyclic Galois cover of X
ramified along D such that �CM is unramified. Suppose that the difference of any two
distinct irregular values for M at P has poles along ��1.Dm/. Put I D J1;m� 1K. Then
the restriction morphism

H 1.@DI ;St<DM /! H 1.@DıI ;St<DM / (2.4.3)

is an isomorphism of functors.

Proof. From Lemmas 2.4.1 and 1.8.4, the functor ��1DI �DıI� induces a well-defined mor-
phism H 1.@DıI ;St<DM /! H 1.@DI ;St<DM /, providing an inverse for (2.4.3).

2.5. The stalks of the sheaf of Stokes torsors

Lemma 2.5.1. Let .X; D/ be a regular pair. Let D1; : : : ; Dm be the irreducible com-
ponents of D. Let M be a meromorphic connection on X with poles along D. Suppose
that M has good formal structure. Let I; J be subsets in J1;mK with J � I . Let Z be a
manifold in DıI . Then Z admits a fundamental system of neighbourhoods U in DJ such
that the restriction morphism

H 1.@U;St<DM /! H 1.@Z;St<DM / (2.5.2)

is an isomorphism.

Proof. Let I be the sheaf of irregular values of M. It is enough to prove that Stokes
torsors on @Z and their morphisms extend uniquely over a neighbourhood of Z in DJ
depending only on I. To do this, we can suppose that Z is a point P and that .X;D/ is
a germ of regular pair at P . Similarly to [48, §1.9.1], the constructibility of St<DM allows
one to construct a ball U in DJ of radius r > 0 centred at P and a cover V of @U by
subsets V depending only on I, of the formY

i2J

.¹0º � Ii / �
Y
i…J

.Œ0; rŒ � Ii / ��



J.-B. Teyssier 382

where I1; : : : ; Im are closed intervals in S1, � is the ball of radius r centred at 0, and
V trivializes every torsor under St<DM . At the cost of shrinking V , the constructibility of
St<DM further allows us to suppose that for any V;W 2 V , the maps

�.V;St<DM /! �.V \ @P;St<DM /

and
�.V \W;St<DM /! �.V \W \ @P;St<DM /

are bijective. For the above choice of U , the bijectivity of (2.5.2) follows.

Corollary 2.5.3. Let .X;D/ be a regular pair. Let M be a meromorphic connection on
X with poles along D. Suppose that M has good formal structure. Let I be a subset
in J1;mK. Let iZ W Z ! DıI be a manifold in DıI . Then the canonical morphism

i�1Z R1pD� St<DM ! R1pZ� St<DM

is an isomorphism.

Proof. By definition, the sheaf i�1Z R1pD� St<DM is associated to the presheaf

FZ W Open(Z)! Set; V 7! lim
�!
U�V

�.U;R1pD� St<DM /:

By taking J to be the empty set in Lemma 2.5.1, we observe that the above inductive limit
identifies canonically with H 1.@V;St<DM / D �.V;R1pZ� St<DM /. Hence, we have

FZ ' R
1pZ� St<DM :

From Corollary 2.3.3, the presheafR1pZ� St<DM is a sheaf. Thus the assertion follows.

Corollary 2.5.4. Let .X;D/ be a regular pair. Let M be a meromorphic connection onX
with poles along D. Suppose that M has good formal structure. Let P be a point in D.
Then the stalk of R1pD� St<DM at P is canonically identified with H 1.@P;St<DM /.

2.6. Constructibility of the sheaf of Stokes torsors

Theorem 5. Let .X; D/ be a regular pair. Let D1; : : : ; Dm be the irreducible compo-
nents of D. Let M be a meromorphic connection on X with poles along D. Suppose that
M has good formal structure in the sense of Mochizuki. Then the sheaf R1pD� St<DM

is constructible on D. More precisely, for every subset I � J1; mK, the restriction
of R1pD� St<DM to DıI is locally constant.

Proof. The statement is local along D. Hence, we can suppose that .X; D/ is a germ
of regular pair at a point P and I D J1; mK. From Corollary 2.3.5, we can suppose that
M is unramified. We argue recursively on m. The case where m D 1 will be treated
last. Suppose that m � 2. Since R1pD� St<DM is a sheaf, to prove that its restriction to
DıI DDI is a local system, it is enough to find a connected open neighbourhood UI of P
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inDıI DDI such that any pointQ in UI admits a fundamental system of connected open
neighbourhoods VI such that

�.UI ; R
1pD� St<DM /! �.VI ; R

1pD� St<DM /

is an isomorphism. From Corollary 2.5.3, we have to find a connected open neighbour-
hood UI of P in DıI D DI such that any point Q in UI admits a fundamental system of
connected open neighbourhoods VI such that

H 1.@UI ;St<DM /! H 1.@VI ;St<DM /

is an isomorphism. Since M has good formal structure in the sense of Mochizuki, we
can suppose that the difference of any two distinct irregular values of M at P has poles
along Dm. Put J D J1;m � 1K. Let UI be a small ball in DI centred at P . From Lemma
2.5.1, we can choose a ball U in DJ centred at P and containing UI such that

H 1.@U;St<DM /! H 1.@UI ;St<DM /

is an isomorphism. Let Q be a point in UI . Let VI be a ball in UI centred at Q. From
Lemma 2.5.1 again, we can choose a ball V in DJ centred at Q with VI � V � UI and
such that the morphism

H 1.@V;St<DM /! H 1.@VI ;St<DM /

is an isomorphism. Put U ıJ D U \D
ı
J and V ıJ D V \D

ı
J . Then we are left to prove that

the middle vertical arrow in the commutative diagram

H 1.@UI ;St<DM /

��

H 1.@U;St<DM /

��

�oo // H 1.@U ıJ ;St<DM /

��

H 1.@VI ;St<DM / H 1.@V;St<DM /
�oo // H 1.@V ıJ ;St<DM /

(2.6.1)

is an isomorphism. From Lemma 2.4.2, the right horizontal arrows in (2.6.1) are iso-
morphisms. Hence, we are left to prove that the right vertical arrow in (2.6.1) is an
isomorphism. By recursion assumption, the restriction of R1pD� St<DM to DıJ is a local
system. We observe that the map V ıJ ! U ıJ is a product of the inclusion of two discs
��1 � �

�
2 punctured at 0 with the inclusion of two balls B1 � B2 in Cn�m. In particular,

V ıJ ! U ıJ is a homotopy equivalence. Hence the right vertical arrow in (2.6.1) is an iso-
morphism. This concludes the reduction of the proof of Theorem 5 to the case where D
is smooth.

We now treat the case where D is smooth. The question is again local on D. Hence,
we can suppose that .X; D/ is a germ of smooth divisor at a point P . From Lemma
2.3.5, we can suppose that M is unramified. This case was treated in [38, Ch. II, §6.3].
Alternatively, sinceD is smooth, the sheaf of irregular values for M is very good. Hence,
Lemma 8.3.2 reduces the proof of Theorem 5 with D smooth to the analogous statement
for marked Stokes filtered local systems. This case follows from Mochizuki’s extension
theorem [34, Theorem 4.13].



J.-B. Teyssier 384

3. The geometry of the moduli of Stokes torsors

3.1. Representability by a scheme

The first goal of this section is to prove the following representability theorem:

Theorem 6. Let .X; D/ be a regular pair. Let M be a meromorphic connection on X
with poles along D. Suppose that M has good formal structure in the sense of Mochizuki
.�1.5/. Then the functor H 1.@D;St<DM / is representable by an affine scheme of finite type
over C.

Proof. The idea is to analyse separately the contributions coming from each stratum ofD.
Let D1; : : : ; Dm be the components of D. We argue by recursion on the depth of the
deepest stratum of D. The case where D is smooth will be treated last. Let Z be the
deepest stratum of D. From Lemma 2.5.1, there is an open neighbourhood U of Z in @D
such that the restriction morphism

H 1.@U;St<DM /! H 1.@Z;St<DM /

is an isomorphism. Put V D D nZ. From Corollary 2.3.3, we have

H 1.@D;St<DM / D H 1.@U;St<DM / �H1.@.U\V /;St<D
M

/ H
1.@V;St<DM /:

By recursion assumption, the functorsH 1.@V;St<DM / andH 1.@.U \ V /;St<DM / are affine
schemes of finite type over C. Hence, we are left to prove that H 1.@Z; St<DM / is an
affine scheme of finite type over C. To do this, we can suppose that Z is connected.
Hence, at the cost of restricting the considerations to a small enough open neighbourhood
of a connected component of Z, we can suppose that Z is DıI D DI for I D J1; mK.
From Corollary 2.5.3, H 1.@DıI ; St<DM / is the space of sections of the sheaf R1pD� St<DM

on @DıI . From Theorem 5, the restriction of R1pD� St<DM to DıI is a local system. Hence,
if B is a small ball in DıI centred at a point P , the functor H 1.@DıI ; St<DM / is the func-
tor of invariants for the action of �1.DıI ; P / on H 1.@B; St<DM /. That is, if .
1; : : : ; 
N /
denotes a set of generators for �1.DıI ; P /, the diagram of functors

H 1.@DıI ;St<DM / //

��

H 1.@B;St<DM /

.Id;
1;:::;
N /
��

H 1.@B;St<DM /
Diagonal

// H 1.@B;St<DM /NC1

(3.1.1)

is cartesian. To prove Theorem 6, we are thus left to prove thatH 1.@B;St<DM / is an affine
scheme of finite type over C. In particular, we can suppose that .X;D/ is a germ of regular
pair at P . Since M is good in the sense of Mochizuki, the conditions of Proposition 2.4.2
are satisfied. Put J D J1;m� 1K. From Lemma 2.5.1, there is a small ballU inDJ centred
at P such that

H 1.@U;St<DM /! H 1.@B;St<DM /

is an isomorphism. Hence we are left to prove that H 1.@U; St<DM / is an affine scheme of



Moduli of Stokes torsors and singularities of differential equations 385

finite type over C. Hence, if we put U ıJ D U \DıJ , Proposition 2.4.2 implies that the
restriction morphism

H 1.@U;St<DM /! H 1.@U ıJ ;St<DM /

is an isomorphism. By recursion assumption, the functor H 1.@U ıJ ; St<DM / is an affine
scheme of finite type over C. This concludes the reduction of Theorem 6 to the case
where D is smooth.

If D is smooth, we reduce using (3.1.1) and Corollary 2.5.1 to proving that for a
point P inD, the functorH 1.@P;St<DM / is a scheme of affine type over C. Let i W C !X

be a smooth curve in X transverse to D at P . Let � W eC ! zX be the morphism induced
by C at the level of the real blow-up. Observe that � induces an isomorphism above P .
Since ��1 St<DM ' St<P

iCM
, we deduce that

H 1.@P;St<DM / ' H 1.@P;St<P
iCM

/:

Hence, we are left to prove Theorem 6 in the one-dimensional case. This case was treated
by Babbitt–Varadarajan [3]. This finishes the proof of Theorem 6.

Remark 3.1.2. Note that in the case where M has rank 2, the moduli space of Stokes
torsors whose existence is asserted by Theorem 6 is known to be an affine space [49].

The diagram (3.1.1) in the proof of Theorem 6 gives the following

Proposition 3.1.3. Let .X; D/ be a regular pair. Let M be a meromorphic connection
on X with poles along D. Suppose that M has good formal structure in the sense of
Mochizuki .�1.5/. Let D1; : : : ; Dm be the components of D. Let I be a subset of J1;mK.
Suppose that DıI is connected. Let P be a point in DıI . Then the natural morphism

H 1.@DıI ;St<DM /! H 1.@P;St<DM /

is a closed immersion.

We record the following immediate corollary of Proposition 3.1.3 for later use.

Corollary 3.1.4. Let .X;D/ be a regular pair. Let M be a meromorphic connection onX
with poles alongD. Suppose that M has good formal structure in the sense of Mochizuki.
Let D1; : : : ; Dm be the components of D. Let I be a subset of J1;mK. Let U � V � DıI
be non-empty open subsets in DıI such that V is connected. Then the natural morphism

H 1.@V;St<DM /! H 1.@U;St<DM /

is a closed immersion.

Proof. Choose a point P in U . Then there is a factorization

H 1.@V;St<DM / //

''

H 1.@U;St<DM /

��

H 1.@P;St<DM /
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From Proposition 3.1.3, the diagonal arrow is a closed immersion between affine schemes.
Hence, the horizontal arrow is a closed immersion.

3.2. Passing from one stratum to another stratum is a closed immersion

The next proposition is the technical core of this paper.

Proposition 3.2.1. Let .X;D/ be a germ of regular pair at a point P . Let D1; : : : ; Dm
be the components of D. Put I D J1; mK. Let i 2 I . Then for a small enough ball � in
Di centred at P , the morphism of schemes

H 1.@P;St<DM /! H 1.@��;St<DM / (3.2.2)

is a closed immersion, where �� D � n
S
j2In¹iºDj � D

ı
i .

Proof. Let us first construct the morphism (3.2.2). From Lemma 2.5.1, for a small enough
ball � in Di centred at P , the restriction morphism

H 1.@�;St<DM /! H 1.@P;St<DM /

is an isomorphism. Then the morphism (3.2.2) is defined as the composition

H 1.@P;St<DM /
�
 � H 1.@�;St<DM /! H 1.@��;St<DM /

Note that both functors appearing in (3.2.2) are affine schemes as a consequence of The-
orem 6. Let j W @�� ! @D be the canonical inclusion. The sheaf ��1Di St<DM of algebraic

groups is distinguished in St<Di
M

. We thus have an exact sequence of sheaves of algebraic
groups on @Di ,

1! ��1Di St<DM

�
�! St<Di

M
! Q! 1:

There is an adjunction morphism

��1P St<Di
M
! ��1P j�j

�1 St<Di
M
D ��1P j�j

�1 St<DM : (3.2.3)

Hence, there is a factorization

H 1.@P;St<DM /

((

�� // H 1.@P;St<Di
M

/

��

H 1.@��;St<DM /

(3.2.4)

From a similar argument to that in Lemma 1.8.4, the adjunction morphism (3.2.3) is an
isomorphism of sheaves on @P . Hence, the vertical arrow in (3.2.4) is an isomorphism of
functors. Hence,H 1.@P;St<Di

M
/ is an affine scheme of finite type over C, and to complete

the proof, it is enough to prove that

�� W H
1.@P;St<DM /! H 1.@P;St<Di

M
/
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is a closed immersion. From [10, I.2], there is an exact sequence of pointed functors

H 0.@P;Q/! H 1.@P;St<DM /
��
�! H 1.@P;St<Di

M
/! H 1.@P;Q/: (3.2.5)

Let us prove that H 0.@P;Q/ is trivial. The complex of sheaves

St<Di
M
! @End M yD

! @End MbDi
induces a sequence of sheaves

Q ,! @End M yD
! @End MbDi : (3.2.6)

By applying pD� and then looking at the germs at P , we deduce from [37, p. 44] the
sequence

0! H 0.@P;Q/! End M yD;P
! End MbDi ;P : (3.2.7)

By flatness of End M over OX , the second map in (3.2.7) is injective. Hence, H 0.@P;Q/

is trivial. Thus, the diagram of functors

H 1.@P;St<DM /

��

��

// �

��

H 1.@P;St<Di
M

/ // H 1.@P;Q/

(3.2.8)

is cartesian, where � denotes the trivial Q-torsor. If we knew thatH 1.@P;Q/ is a scheme,
we would directly find that �� is a closed immersion. This does not seem to follow
from the use of skeletons in [48]. We will circumvent this problem by a group-theoretic
argument.

From Lemma 1.8.2, the sheaf St<Di
M

is constructible with respect to the stratification
of @D induced by the Stokes locus of M. Hence, the same argument as in [48, Th. 1.9.1]
applies. In particular, there exists a cover U of @P by open subsets such that the morphism
of affine schemes

Z1.U;St<Di
M

/! H 1.@P;St<Di
M

/ (3.2.9)

is surjective at the level of R-points for every C-algebra R. From [3, Th. 2.7.3], the mor-
phism (3.2.9) admits a section. Composing this section with

Z1.U;St<Di
M

/! Z1.U;Q/

gives rise to a commutative triangle of functors

H 1.@P;St<Di
M

/ //

''

H 1.@P;Q/

Z1.U;Q/

OO

(3.2.10)
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The algebraic group
GU WD

Y
U2U

�.U;Q/

acts on Z1.U;Q/. Let
GU ! Z1.U;Q/ (3.2.11)

be the morphism of schemes obtained by restricting the action ofGU to the trivial cocycle.
Since H 0.@P;Q/ ' 0, the morphism (3.2.11) is a monomorphism. There is a commuta-
tive diagram

H 1.@P;St<DM /

��

��

GU

��

// �

��

H 1.@P;St<Di
M

/ // Z1.U;Q/ // H 1.@P;Q/

(3.2.12)

We would like to reduce the problem of proving that �� is a closed immersion to the prob-
lem of proving that (3.2.11) is a closed immersion. To do this, we would like to complete
the left diagram in (3.2.12) to a cartesian square. Note that the right square in (3.2.12)
may not be cartesian since there may be cocycles in Z1.U;Q/ that are cohomologous to
the trivial cocycle only after passing to a refinement of U. To treat this problem, we argue
by using the universal torsor under St<DM on @P .

Let T univ be the universal torsor under St<DM on @P . Let A be the ring of func-
tions of H 1.@P; St<DM /. From the commutativity of (3.2.10), the image 
 of T univ in
Z1.U;Q.A// induces the trivial Q.A/-torsor. Hence, there exists a refinement V of U

such that 
jV is cohomologous to the trivial cocycle, that is, such that 
jV lies in the image
of GV .A/! Z1.V ;Q.A//. Hence, there is a commutative square

H 1.@P;St<DM / //

��

��

GV

��

H 1.@P;St<Di
M

/ // Z1.V ;Q/

(3.2.13)

This square is cartesian. Indeed, let F be the fibre product of H 1.@P; St<Di
M

/ with GV

over Z1.V ;Q/. By definition, there is a commutative diagram of functors

H 1.@P;St<DM / //

�� ''

F

��

H 1.@P;St<Di
M

/

(3.2.14)

Since the right vertical arrow in (3.2.13) is a monomorphism, F is a subfunctor of
H 1.@P;St<Di

M
/. Hence, all maps in (3.2.14) are inclusions of functors. We are thus left to

prove that F is a subfunctor of H 1.@P; St<DM /. This is an immediate consequence of the
fact that H 1.@P; St<DM / is the functor of torsors T 2 H 1.@P; St<Di

M
/ inducing the trivial

Q-torsor.
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Hence, to prove that �� is a closed immersion, we are left to show that (3.2.11) for V is
a closed immersion. From the general theory of algebraic group actions, the map (3.2.11)
factors as

GV

˛
�! O

ˇ
�! Z1.V ;Q/

where ˛ is faithfully flat, O is the orbit of the trivial cocycle underGV and ˇ is an immer-
sion of schemes. Since smoothness is a local property for the fppf topology [43, Tag
05B5], the smoothness of GV implies that O is smooth. By definition, ˛ is an isomor-
phism at the level of C-points. Hence, ˛ is an isomorphism of varieties. We are thus left
to show that O is closed inZ1.V ;Q/. It is enough to show that O is closed inZ1.V ;Q/red.
From the Kostant–Rosenlicht theorem [5, Ch. I, Th. 4.10], it is enough to show thatGV is
a unipotent algebraic group, which is a consequence of the fact that the Stokes sheaves are
sheaves of unipotent algebraic groups. This concludes the proof of Proposition 3.2.1.

3.3. Proof of Theorem 3

Let U � V � D be non-empty open subsets in D such that V is connected. We want to
show that the natural morphism

H 1.@V;St<DM /! H 1.@U;St<DM / (3.3.1)

is a closed immersion of affine schemes of finite type over C. Let A be the set of open
subsets U 0 in V containing U and such that the natural morphism

H 1.@U 0;St<DM /! H 1.@U;St<DM /

is a closed immersion. We want to show that A contains V . Note that A is not empty
since it contains U . Let A0 be a subset of A which is totally ordered by inclusion. Let R
be the ring of functions of H 1.@U; St<DM /. For U 0 2 A0, let IU 0 be the ideal of functions
of H 1.@U 0;St<DM / in H 1.@U;St<DM /. By the assumption on A0, the family .IU 0/U 02A0 of
ideals is totally ordered by inclusion. Hence, I WD

S
U 02IU 0

is an ideal in R. Since R is
noetherian, there exists U 00 2 A

0 such that I D IU 0
0
. In particular, IU 0 D IU 0

0
for every

U 0 2 A0 containing U 00. Set V 0 WD
S
U 02A0 U

0. From Corollary 2.3.3, we deduce

H 1.@V 0;St<DM / ' lim
U 02A0

H 1.@U 0;St<DM / ' lim
U 02A0;U 0

0
�U 0

H 1.@U 0;St<DM /

' H 1.@U 00;St<DM /:

Thus, V 0 2 A. From the Zorn lemma, we deduce that A admits a maximal element W . If
W is closed in V , then we have W D V by connectedness of V . Suppose now that W is
not closed in V . Let P 2 W nW and let B be a small ball in V containing P and such
that H 1.@B; St<DM /! H 1.@P; St<DM / is an isomorphism. Set W 0 WD W [ B � V . We
are going to show that W 0 2 A, which contradicts the fact that W is maximal in A. From
the factorization

H 1.@W 0;St<DM /! H 1.@W;St<DM /! H 1.@U;St<DM / (3.3.2)
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we are left to show that the first arrow in (3.3.2) is a closed immersion. From Corollary
2.3.3, the diagram

H 1.@W 0;St<DM / //

��

H 1.@B;St<DM /

��

H 1.@W;St<DM / // H 1.@.W \ B/;St<DM /

(3.3.3)

is cartesian. Hence, it is enough to show that the right vertical arrow in (3.3.3) is a closed
immersion. Let .Pn/n2N be a sequence of points inW converging to P . SinceW is open,
the sequence .Pn/n2N can be supposed to lie in some Dıi for i 2 J1;mK. Let � � B be
a small enough neighbourhood of P in Di . Set �� D � n

S
j2In¹iºDj � D

ı
i . From our

choice for i , the open set W \�� is not empty. We have the commutative diagram

H 1.@B;St<DM / //

��

H 1.@��;St<DM /

��

H 1.@.W \ B/;St<DM / // H 1.@.W \��/;St<DM /

(3.3.4)

From Proposition 3.2.1, the top horizontal arrow in (3.3.4) is a closed immersion. From
Corollary 3.1.4, the right vertical arrow in (3.3.4) is a closed immersion. Hence, the left
vertical arrow in (3.3.4) is a closed immersion. Hence,W 0 2 A, which contradicts the fact
that W is maximal in A. Thus, W D V 2 A, which finishes the proof of Theorem 3.

4. Stokes torsors and marked connections

4.1. Notations

For a morphism � W Y ! X of smooth complex varieties, we denote by �C the inverse
image functor for D-modules and by �C the direct image functor for D-modules. For
precise definitions, we refer to [12].

In this section, .X;D/ will denote a regular pair. Let M be a connection on X with
poles along D. Suppose that M has good formal structure.

4.2. Definition of marked connections and relation with Stokes torsors

Let us recall that an M-marked connection is the data of a pair .M; iso/ where M is a
germ of meromorphic connection with poles along D defined in a neighbourhood of D
in X , and where iso W M yD !M yD

is an isomorphism of formal connections. We denote
by Isomiso.M;M/ the St<DM .C/-torsor of isomorphisms between @M and @M which are
asymptotic to iso along D. The proof of the following statement was suggested to me
by T. Mochizuki. I thank him for kindly sharing it. When D is smooth, it was known to
Malgrange [26]. See also [38, Ch. II, §6.3].
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Lemma 4.2.1. The map associating to the isomorphism class of the M-marked connec-
tion .M; iso/ the St<DM .C/-torsor Isomiso.M;M/ is bijective.

Proof. Let us construct an inverse. Take T 2 St<DM .C/ and let g D .gij / be a cocycle
for T associated to a cover .Ui /i2I of @D. Let L be the Stokes filtered local system on
@D associated to M. Set Li WD LjUi . Then g allows one to glue together the Li into a
Stokes filtered local system LT on @D independent of the choice of g. From the irregular
Riemann–Hilbert correspondence [34, Th. 4.11], LT is the Stokes filtered local system
associated to a unique (up to isomorphism) good meromorphic connection MT defined
in a neighbourhood of D and with poles along D. By construction, the isomorphism
LT jUi ! LjUi corresponds to an isomorphism @MT jUi ! @MjUi . We thus obtain a for-
mal isomorphism isoi W @MT ; yDjUi ;

! @M yDjUi
. On Uij , the discrepancy between isoi

and isoj is measured by the asymptotic of gij along D. By definition, this asymptotic
is Id. Hence, the isoi glue together into a globally defined isomorphism @M

T ; yD
! @M yD

.
Applying pD� thus yields an isomorphism iso WM

T ; yD
!M yD

. It is then standard to check
that the map T ! .MT ; iso/ is the sought-after inverse.

4.3. Proof of Theorem 4

We are now in a position to prove Theorem 4. Let X be a germ of smooth algebraic
variety around a point 0. Let D be a germ of divisor passing through 0. Let M be a germ
of meromorphic connection at 0 with poles along D. Let C be a smooth curve passing
through 0 and not contained in any of the irreducible components of D. Let .M1; iso1/
and .M2; iso2/ be M-marked connections such that

.M1; iso1/jC ' .M2; iso2/jC :

We want to show that .M1; iso1/ and .M2; iso2/ are isomorphic in a neighbourhood of 0.
Let � W Y ! X be a resolution of turning points for M around 0. Such a resolution
exists by works of Kedlaya [22] and Mochizuki [35]. Set E WD ��1.D/. At the cost of
blowing up further, we can suppose that the strict transform C 0 of C is transverse to E
at a point P in the smooth locus of E. Note that E is connected. From Lemma 4.2.1, the
�CM-marked connections .�CM1; �

C iso1/ and .�CM2; �
C iso2/ define two C-points

of H 1.@E;St<E
�CM

/. For i D 1; 2, the cone of the canonical comparison morphism

�C�
CMi !Mi (4.3.1)

is supported on D. Note that the right-hand side of (4.3.1) is localized along D. From
[32, Th. 3.6-4], the left-hand side of (4.3.1) is localized along D. Hence, the morphism
(4.3.1) is an isomorphism. Thus

.�C�
CMi ; �C�

C isoi / ' .Mi ; isoi /:

Hence, it is enough to show .�CM1; �
C iso1/ ' .�CM2; �

C iso2/. By assumption,

.�CM1; �
C iso1/jC 0 ' .M1; iso1/jC ' .M2; iso2/jC ' .�CM2; �

C iso2/jC 0 :
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Hence, .�CM1; �
C iso1/jC 0 and .�CM2; �

C iso2/jC 0 define the same C-point in
H 1.@P; St<P

.�CM/jC 0
/. Let � WfC 0 ! zY be the morphism induced by C 0 ! Y at the level

of the real blow-up. Observe that � induces an isomorphism above P . Since ��1 St<E
�CM

'

St<P
.�CM/jC 0

, we have

H 1.@P;St<P
.�CM/jC 0

/ ' H 1.@P;St<E
�CM

/:

Hence, the images of .�CM1; �
C iso1/ and .�CM2; �

C iso2/ by the restriction map

H 1.@E;St<E
�CM

/! H 1.@P;St<E
�CM

/ (4.3.2)

are the same. From Theorem 3, the map (4.3.2) is a closed immersion. Hence,
.�CM1; �

C iso1/ ' .�CM2; �
C iso2/, which concludes the proof of Theorem 4.

4.4. Obstruction theory and tangent space

We use the notations from §4.1. Let us compute the obstruction theory of H 1.@D; St<DM /

at a point T0 2 H
1.@D; St<DN .C//. We fix a morphism of infinitesimal extensions of C-

algebras
R0 ! R! C; I WD KerR0 ! R;

such that I is annihilated by KerR0 ! C. In particular, I 2 D 0 and I is endowed with
the structure of a C-vector space, which we suppose to be finite-dimensional. Let T 2

H 1.@D; St<DM .R// lift T0. Choose a cover U D .Ui /i2K of @D such that T comes from
a cocycle g D .gij /i;j2K . Set Li .R/ WD Lie St<DM .R/jUi . The identifications

Li .R/jUij
�
�! Lj .R/jUij ; M 7! g�1ij Mgij ;

allow us to glue the Li .R/ together into a sheaf of R-Lie algebras over @D

denoted by Lie St<DM .R/T and depending only on T and not on g. For t D

.tijk/ 2 LC
2.U; Lie St<DM .R/T /, we denote by sijk the unique representative of tijk in

�.Uijk ; Li .R//. Then

.dt/ijkl D tjkl � tikl C tijl � tijk D Œgij sjklg
�1
ij � sikl C sijl � sijk �:

Lemma 4.4.1. There exists

ob.T / 2 I ˝C LH
2.@D;Lie St<DM .C/T0/

such that ob.T / D 0 if and only if T lifts to H 1.@D;St<DM .R0//.

Proof. For any i; j 2 K, let hij 2 �.Uij ; St<DM .R0// be an arbitrary lift of gij to R0. We
can always choose the hij to satisfy hi i D Id and hijhj i D Id. Since Lie St<DM .R0/ is
locally free,

I � Lie St<DM .R0/ ' I ˝R0 Lie St<DM .R0/ ' I ˝C Lie St<DM .C/:
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We will use both descriptions without mention. We set

sijk WD hijhjkhki � Id 2 �.Uijk ; I � Lie St<DM .R0//:

We see sijk as a section of I ˝C Li .C/ over Uijk and denote by Œsijk � its class in I ˝C

Lie St<DM .C/T0 . We want to prove that the Œsijk � define a cocycle. As seen above, this
amounts to proving the following equality in �.Uijk ; I ˝C Lie St<DM .C//:

gij .0/sjklg
�1
ij .0/ � sikl C sijl � sijk D 0 (4.4.2)

where gij .0/ is the image of gij by R! C. We have

gij .0/sjklg
�1
ij .0/ D hijhjkhklhljhj i � Id

D .hijhjk � hik C hik/hklhljhj i � Id

D .hijhjk � hik/gkl .0/glj .0/gj i .0/C hikhklhljhj i � Id

D .hijhjk � hik/gki .0/C hikhklhljhj i � Id

D .hijhjk � hik/hki C hikhklhljhj i � Id

D hijhjkhki C hikhklhljhj i � 2 Id :

We now see how the second term of the last line above interacts with the second term of
the left-hand side of (4.4.2):

hikhklhljhj i � sikl D hikhklhljhj i � hikhklhli C Id

D hikhkl .hljhj i � hli /C Id

D gik.0/gkl .0/.hljhj i � hli /C Id

D gil .0/.hljhj i � hli /C Id

D hilhljhj i :

Hence,

gij .0/sjklg
�1
ij .0/ � sikl C sijl � sijk D hilhljhj i C hijhjlhli � 2 Id

D .hijhjlhli /
�1
C hijhjlhli � 2 Id

D .hijhjlhli /
�1..hijhjlhli /

2
� 2hijhjlhli C Id/

D .hijhjlhli /
�1s2ijl D 0;

where the last equality comes from I 2 D 0. Hence, the Œsijk � define a cocycle of I ˝C

Lie St<DM .C/T0 . Another choice of lift gives rise to a homologous cocycle. We denote by
ob.T / the class of .Œsijk �/ijk in LH 2.@D; I ˝C Lie St<DM .C/T0/. It is standard to check
that ob.T / has the sought-after property.

Corollary 4.4.3. Let .M; iso/ be an M-marked connection. Then H 2.D; Irr�D EndM//

is an obstruction theory for H 1.@D;St<DM / at Isomiso.M;M/.

Proof. Set T WD Isomiso.M;M/. As observed in [48, §5.2], the canonical identification

H0 DR<D End M
�
�! Lie St<DM .C/T
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induces

LH i .@D;Lie St<DM .C/T / ' H i .@D;Lie St<DM .C/T / ' H i .@D;H0 DR<D EndM/

' H i .@D;DR<D EndM/ ' H i .D; Irr�D EndM/:

The second identification comes from the fact [11, Prop. 1] that DR<D End M is concen-
trated in degree 0. The third identification comes from [40, Th. 2.2]. Then the corollary
follows from Lemma 4.4.1.

Reasoning exactly as in [48, Th. 5.2.1], we prove the following

Lemma 4.4.4. For every M-marked connection .M; iso/, the tangent space of
H 1.@D;St<DM / at .M; iso/ identifies canonically with H 1.D; Irr�D EndM/.

5. Reduction of Theorem 1 to extending the formal model

5.1. Reduction to dimension 2

In this subsection, we reduce the proof of Theorem 1 to dimension 2. The main tool is
André’s goodness criterion [2, Th. 3.4.3] in terms of Newton polygons. This reduction
does not seem superfluous. Of crucial importance for the rest of the proof will be indeed
the fact that when X is an algebraic surface and D a smooth divisor in X , then for every
point 0 2 D and every meromorphic connection M on X with poles along D, the for-
mal model of M splits on a small enough punctured disc around 0. This fact is specific
to dimension 2, since it pertains to the property that turning points in dimension 2 are
isolated.

Lemma 5.1.1. The converse inclusion in Theorem 1 is true in any dimension if it is true
in dimension 2.

Proof. Take n > 2. We argue recursively: supposing that Theorem 1 holds in dimensions
strictly less than n, we prove that it holds in dimension n. Let X be a smooth complex
algebraic variety of dimension n. Let D be a smooth divisor in X . Let M be an algebraic
meromorphic connection on X with poles along D. Let 0 2 D and suppose that Irr�D M

and Irr�D End M are local systems in a neighbourhood of 0. If j W X nD ! X and i W
D ! X are the canonical inclusions, we have a distinguished triangle

jŠL! Sol M! i� Irr�D M

where L is a local system on the complement of D. Hence, the characteristic cycle of
Sol M is supported on the union of T �XX with T �DX . From a theorem of Kashiwara and
Schapira [20, Th. 11.3.3], so does the characteristic cycle of M. Hence, any smooth hyper-
surface transverse to D and passing through 0 is non-characteristic with respect to M in
a neighbourhood of 0. Let us choose such a hypersurface Z and let iZ W Z ! X be the
canonical inclusion. From [2, Th. 3.4.3], the turning locus of M is a closed subset of D
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which is either empty or purely of codimension 1 in D. Since n > 2, the hypersurface Z
can be chosen such that M and End M have good formal structure generically along
Z \ D. The connection iCZM is a meromorphic connection with poles along Z \ D.
It satisfies the hypothesis of Theorem 1 at 0. Indeed, by Kashiwara’s restriction theo-
rem [19],

Irr�Z\D i
C

ZM D .Sol iCZM/jZ\D ' .Sol M/jZ\D;

and similarly for End M. Hence, Irr�Z\D i
C

ZM and Irr�Z\D End iCZM are local systems in
a neighbourhood of 0 in Z \D. By recursion hypothesis, iCZM is good at 0. In partic-
ular, the Newton polygon of iCZM at 0 (which is also the Newton polygon of M at 0) is
the generic Newton polygon of iCZM along Z \D. From our choice for Z, the generic
Newton polygon of iCZM along Z \D is the generic Newton polygon of M along D.
Hence, the Newton polygon of M at 0 is the generic Newton polygon of M along D,
and similarly End M. By a theorem of André [2, Th. 3.4.1], we deduce that M has good
formal structure at 0, which proves Lemma 5.1.1.

5.2. Setup and recollections

From now on, we restrict ourselves to dimension 2. We use coordinates .x; y/ on A2C and
set Dx WD ¹y D 0º;Dy WD ¹x D 0º. Let D be a neighbourhood of 0 in Dx and let CŒD�
be the coordinate ring of D. Set D� WD D n ¹0º.

Let M be an algebraic meromorphic flat bundle on a neighbourhood of D in A2C
with poles along D. In algebraic terms, M yD

defines a CŒD�..y//-differential module. At
the cost of shrinking D if necessary, we can suppose that the restriction M� of M to a
neighbourhood of D� has good formal structure at every point of D�.

There is a ramification v D y1=d , d � 1 and a finite Galois extension L=C.x/ such
that the set I of generic irregular values for M lies in FracL.v/. If p W DL ! D is the
normalization of D in L, generic irregular values of M are thus meromorphic functions
on DL �A1v . We have

L..v//˝M '
M
a2I

Ea ˝Ra (5.2.1)

where the Ra are regular. Following [2, Def. 3.2.4], we recall

Definition 5.2.2. We say that M is semistable at P 2 D if

(1) I � CŒDL�P ..v//,

(2) the decomposition (5.2.1) descends to CŒDL�P ..v//˝M.

In this definition, CŒDL�P denotes the localization of CŒDL� above P . This is a
semilocal ring. Let �a 2 L..v// ˝ End M be the projector on the factor Ea ˝Ra. As
explained in [2, §3.2.2], the point P is stable if and only if generic irregular values of M

and the coefficients of the �a in a basis of End M belong to CŒDL�P ..v//. Since M has
good formal structure at any point of D�, generic irregular values of M and the coeffi-
cients of the �a in a basis of End M do belong to CŒDL�P ..v// for every P 2D�. Hence,
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they belong CŒD�L�..v// where D�L WD D n p
�1.0/. Thus

CŒD�L�..v//˝M ' CŒD�L�..v//˝N �L (5.2.3)

where
N �L D

M
a2I

Ea ˝Ra

is a germ of meromorphic connection defined on a neighbourhood ofD�L inDL �A1v and
with poles along D�L. The action of

Gal.L=C.x// � Z=dZ

on the left-hand side of (5.2.3) induces an action on N �L . Taking the invariants yields a
meromorphic flat bundle N � defined on a neighbourhood � of D� in A2C . By Galois
descent, (5.2.3) descends to an isomorphism iso� between the formalizations of M�

and N � along D�.

5.3. Reduction to the problem of extending the formal model

The goal of this subsection is to show that the proof of Theorem 1 reduces to proving
that the M�-marked connection .N �; iso�/ defined in §5.2 extends to an M-marked con-
nection in a neighbourhood of 0. To do this, we need three lemmas. The notations and
constructions from §5.2 are in use.

Lemma 5.3.1. Suppose that N � extends to a meromorphic flat bundle N defined in a
neighbourhood of D in A2C and with poles along D. Then N is semistable at 0.

Proof. It is enough to treat the case whereK D C.x/ and d D 1. In that case, §5.2 shows
that on a neighbourhood � of D� in A2C , we have

N � D
M
a2I

N �a

where N �a is a meromorphic connection on � with poles along D� and with single irreg-
ular value a. The open D � A1C retracts onto the small neighbourhood on which N is
defined. Since N is smooth away from D, we deduce that N extends canonically to a
meromorphic connection on D �A1C with poles along D.

Let a 2 I. The restriction of the projector �a to the complement of D� in � is a flat
section of EndN . SinceD� �A1C retracts on�, parallel transport allows one to extend �a
canonically over D� �A1C . We still denote by �a this extension. Hence, N �a extends to a
meromorphic connection on D� � A1C with poles along D�. Let 
 be a small loop in �
going around the Dy axis. By assumption, the monodromy of N along 
 is trivial. Thus,
�a is invariant under the monodromy of End N along 
 . Hence, �a extends canonically
to .D �A1C/ n ¹0º. By Hartogs’ property, it extends further to a section $a of End N on
D �A1C .
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Set Na WD $a.N / � N for every a 2 I. We have $2
a D $a and

P
a2I $a D IdN

because these equalities hold on a non-empty open set. Hence, N D
L
a2I Na. Since$a

is flat, the connection on N preserves each Na. Let us prove that the Na are locally free
as OD�A1C

.�D/-modules.
Let E be a Deligne–Malgrange lattice [29] for N . Since we work in dimension 2, we

know from [29, Th. 3.3.2] that E is a vector bundle. We observe that $a stabilizes E
away from 0. By Hartogs’ property, we deduce that $a stabilizes E. Hence, $a.E/ is a
direct factor of E. So $a.E/ is a vector bundle. Thus,

Na D $a.N / D $a.E.�D// D .$a.E//.�D/

is a locally free OD�A1C
.�D/-module of finite rank with connection extending N �a . To

prove Lemma 5.3.1, we are thus left to consider the case where I D ¹aº.
If I D ¹aº, then [2, Th. 3.3.1] implies a 2 CŒD�..y//. Hence, R WD E�a ˝ N yD is

a formal meromorphic connection with poles along D. By assumption, R is generically
regular along D. From [7, Th. 4.1], we deduce that R is regular. Hence, N yD D Ea ˝R

with R regular, which concludes the proof of Lemma 5.3.1.

Lemma 5.3.2. Let N be a meromorphic flat connection with poles along D. Suppose
that N is semistable at 0 and that Irr�D N and Irr�D End N are local systems in a neigh-
bourhood of 0. Then N has good formal structure at 0.

Proof. Let I be the set of irregular values of N at 0. There is a ramification v D y1=d ,
d � 1 and a finite Galois extension L=C.x/ such that I � L..v//. Let DL ! D be the
normalization of D in L. At the cost of shrinking D, we can suppose that every point of
D is semistable for N . Hence, I � CŒDL�..v// and

CŒDL�..v//˝N D
M
a2I

Ea ˝Ra

where the connections Ra are regular. As seen in the proof of Lemma 5.1.1, the assump-
tion on Irr�D implies that any smooth curve transverse to D is non-characteristic for N .
Taking the Dy axis yields

dim H1 Irr�0 NjDy D dim.H1 Irr�D N /0 D
X
a2I

.ordy a/ rk Ra:

On the other hand, choose a point P 2DL above 0. Then the irregular values of NjDy are
the a.P /, a 2 I. Thus,

H1 Irr�0 NjDy D
X
a2I

ordy a.P / rk Ra

Hence, ordy a.P / D ordy a for every a 2 I. In particular, the coefficient function of the
highest power of 1=v contributing to a 2 I does not vanish at P . Arguing similarly for
End N , we find that N has good formal structure at 0.
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Lemma 5.3.3. Suppose that Irr�D M is a local system. For every M-marked connection
.N ; iso/, the complex Irr�D N is a local system.

Proof. From [31], the complex Irr�D N is perverse. To prove that it is a local system,
it is thus enough to prove that the local Euler–Poincaré characteristic �.D; Irr�D N / W

D ! Z of Irr�D N is constant. From the local index theorem [16, 28], the local Euler–
Poincaré characteristic of Irr�D N depends only on the characteristic cycle of N . Since
the characteristic cycle of N depends only on N via N yD , we have

�.D; Irr�D N / D �.D; Irr�D M/:

By assumption, �.D; Irr�DM/ is constant. Hence, �.D; Irr�DN / is constant, which finishes
the proof.

Proposition 5.3.4. Let D be an open neighbourhood of 0 in a hyperplane of A2C . Let M

be an algebraic meromorphic flat bundle on a neighbourhood of D with poles along D.
Set D� D D n ¹0º and let M� be the restriction of M to a neighbourhood of D�. Let
.N �; iso�/ be the M�-marked connection constructed in �5.2. Suppose that Irr�D M and
Irr�D End M are local systems in a neighbourhood of 0. If .N �; iso�/ extends to an M-
marked connection, then M has good formal structure at 0.

Proof. Let .N ; iso/ be an M-marked connection extending .N �; iso�/. From Lemma
5.3.1, the extension N is semistable at 0. From Lemma 5.3.3, we know that Irr�D N and
Irr�D End N are local systems in a neighbourhood of 0. From Lemma 5.3.2, we deduce
that N has good formal structure at 0. Hence, so does M.

6. Extension via moduli of Stokes torsors

6.1. A geometric extension criterion

In this subsection, we relate the moduli of Stokes torsors to the problem of extending
marked connections. Let D be an open subset of a hyperplane in A2C . Pick P 2 D. Set
D� WD D n ¹P º. Let M be an algebraic meromorphic flat bundle in a neighbourhood U
of D in A2C and with poles along D. Let M� be the restriction of M to U n ¹P º. Let
� W Y ! A2C be a resolution of the turning point P for M. Such a resolution exists by
works of Kedlaya [21] and Mochizuki [33]. Let � be an open disc of D containing P .
Set �� D � n ¹P º. Set E WD ��1.�/ and pick Q 2 ��. Let

ˆ W H 1.@E;St<E
�CM

/! H 1.@Q;St<�M /

be the restriction morphism of Stokes torsors.

Lemma 6.1.1. Let .N �; iso�/ be an M�-marked connection such that .N �Q; iso�Q/ lies in
the image of ˆ. Then .N �; iso�/ extends into an M-marked connection.
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Proof. From Lemma 4.2.1, any C-point ofH 1.@E;St<E
�CM

/ comes from a unique �CM-
marked connection. Hence, there exists .N 0; iso0/2H 1.@E;St<E

�CM
/ such thatˆ.N 0; iso0/

D .N �P ; iso�P /. From [32, Th. 3.6-4], the D-module N WD �CN 0 is a meromorphic con-
nection defined in a neighbourhood of � and with poles along �. By flat base change,

Ny� ' O bA2C j�
˝R��.DX!A2C

˝N 0/

' R��.ObX jE ˝DX!A2C
˝N 0/

' R��.DX!A2C
˝N 0

yE
/

' �CN 0
yE
;

and similarly My�
'�C.�

CM/ yE . Hence, iso WD�C iso0 defines an isomorphism between
Ny� and My�

. So .N ; iso/ is an M-marked connection in a neighbourhood of �. By
definition, the germ of .N ; iso/ atQ is .N �Q; iso�Q/. Since R1p�� St<�

�

M is a local system
on ��, we deduce

.N ; iso/j�� D .N �; iso�/j�� :

Hence, the gluing of .N ; iso/ and .N �; iso�/ provides the sought-after extension of
.N �; iso�/ to an M-marked connection.

Let us now give a sufficient condition for the surjectivity of ˆ in terms of the irregu-
larity complex.

Proposition 6.1.2. With the notations from §6.1, suppose furthermore that the perverse
complex Irr�D End M is a local system on �. Then ˆ induces an isomorphism between
each irreducible component of H 1.@E;St<E

�CM
/ and H 1.@Q;St<�M /.

Proof. From [3], we know that H 1.@Q; St<�M / is an affine space. Since affine spaces in
characteristic 0 have no non-trivial finite étale covers, it is enough to prove that ˆ is finite
étale. From Theorem 3, the morphism ˆ is a closed immersion. We are thus left to show
that ˆ is étale.

Étale morphisms between smooth schemes of finite type over C are those mor-
phisms inducing isomorphisms on tangent spaces. Hence, we are left to prove that
H 1.@E; St<E

�CM
/ is smooth and that ˆ induces isomorphisms on tangent spaces. Let

.M; iso/ be a �CM-marked connection. From Corollary 4.4.3, an obstruction theory to
lifting infinitesimally the Stokes torsor of .M; iso/ is given by

H 2.E; Irr�E EndM/ ' H 2.�; Irr�D �C EndM/ ' 0: (6.1.3)

The first identification expresses the compatibility of irregularity with proper push-
forward. Furthermore, from Lemma 5.3.3 applied to the End M-marked connection
.�C EndM;�C iso/, the perverse complex Irr�D �C EndM is a local system concentrated
in degree 1. This implies the vanishing (6.1.3). Hence, H 1.@E; St<E

�CM
/ is smooth at

.M; iso/. From Lemma 4.2.1, any C-point of H 1.@E; St<E
�CM

/ is of the form .M; iso/.
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Thus, H 1.@E;St<E
�CM

/ is smooth. Furthermore, we have a commutative diagram

T.M;iso/H
1.@E;St<E

�CM
/ //

o

��

T.MQ;isoQ/H
1.@Q;St<�M /

o

��

H 1.E; Irr�E EndM/ //

o

��

.H1 Irr�D EndM/Q

j

��

H 1.�; Irr�D �C EndM/ //

o

��

.H1 Irr�D EndM/Q

j

��

H 0.�;H1 Irr�D �C EndM/ // .H1 Irr�D EndM/Q

The two upper vertical maps are isomorphisms by Lemma 4.4.4. As already seen,
Irr�D �C EndM is a local system concentrated in degree 1. Hence, the last vertical and
the bottom arrows are isomorphisms. Thus, the tangent map of ˆ at .M; iso/ is an iso-
morphism. This finishes the proof of Proposition 6.1.2.

6.2. Proof of Theorem 1

Let X be a smooth complex algebraic variety. Let D be a smooth divisor in X . Let M be
an algebraic meromorphic connection with poles along D.

We first prove the direct inclusion in Theorem 1. Suppose that M has good formal
structure at a closed point P 2 D. Since the good formal structure locus of M is open
in D [2], we can suppose at the cost of restricting the situation that M has good formal
structure along D. By Mebkhout’s theorem [31], the complexes Irr�D M and Irr�D End M

are perverse. To prove that they are local systems onD, it is thus enough to prove that their
local Euler–Poincaré characteristic is constant. From the local index theorem [16,28], the
local Euler–Poincaré characteristic of Irr�D M depends only on the characteristic cycle
of M. Since the characteristic cycle of M depends only on M via M yD

, we are reduced
to treat the case where M D Ea ˝ R where a 2 OX .�D/ is good and where R is a
regular singular meromorphic connection with poles alongD. Since Irr�D is exact, we can
suppose further that the rank of R is 1. In that case, a standard computation shows that
the characteristic cycle of M is supported on the union of T �XX with T �DX . Hence, any
smooth transverse curve to D is non-characteristic for M. Let P 2 D and let C be a
smooth transverse curve to D passing through P . From [19], we have

.Irr�D M/P ' Irr�P MjC ' CordD aŒ�1�:

Hence, the local Euler–Poincaré characteristic of Irr�D M is constant, and similarly for
Irr�D End M. This finishes the proof of the direct inclusion in Theorem 1.

We now prove the converse inclusion. From Lemma 5.1.1, we can suppose that X
is a surface. Let P 2 D be such that Irr�D M and Irr�D End M are local systems in a
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neighbourhood of P in D. At the cost of taking local coordinates around P , we can
suppose that D is an open subset of a hyperplane in A2C . Put D� WD D n ¹P º. Let M�

be the restriction of M to a small neighbourhood of D� in X . Let .N �; iso�/ be the M�-
marked connection defined in §5.2. Such a connection exists at the cost of replacing X
by a small enough neighbourhood of P in X . From Proposition 5.3.4, we are left to show
that .N �; iso�/ extends to a M-marked connection. Let � be a small enough disc in
D containing P such that Irr�D M and Irr�D End M are local systems on �. Put �� WD
� n ¹P º. Let � W Y ! X be a resolution of turning points for M at P . Set E WD ��1.�/
and pick Q 2 ��. Let

ˆ W H 1.@E;St<E
�CM

/! H 1.@Q;St<�M /

be the restriction morphism of Stokes torsors. From Lemma 6.1.1, to prove that .N �; iso�/
extends into an M-marked connection, it is enough to prove that .N �Q; iso�Q/ lies in the
image of ˆ. This is indeed the case by Lemma 6.1.2, which finishes the proof of Theo-
rem 1.

7. A boundedness theorem for turning points

7.1. Nearby slopes

Let X be a smooth complex algebraic variety and let M be a holonomic DX -module. Let
f 2 OX be a non-constant function. Let  f be the nearby cycle functor associated to f
[18,25,27,30]. Following [47], we recall that the nearby slopes of M associated to f are
the rational numbers r 2Q�0 such that there exists a germN of meromorphic connection
at 0 2 A1C with slope r such that

 f .M ˝ f
CN/ ¤ 0: (7.1.1)

We denote by Slnb
f .M/ the set of nearby slopes of M associated to f . In dimension 1,

the nearby slopes of M associated to a local coordinate centred at a point 0 are the usual
slopes of M at 0. See [47, Th. 3.3.1] for a proof. In general, the set Slnb

f .M/ is finite [8].
If M is a meromorphic connection, an explicit bound for Slnb

f .M/ is given in [47] in
terms of a resolution of turning points of M. This bound behaves poorly with respect to
restriction. We will need a sharper bound in the case where f is a smooth morphism. It
will be provided by the following more general proposition.

Proposition 7.1.2. Let M be a germ of meromorphic connection at 0 2 An with poles
along the divisorD given by f WD x1 � � �xd D 0. Let ri be the highest generic slope of M

along xi D 0. Put rD.M/ D max ¹r1; : : : ; rd º. Then

Slnb
f .M/ � Œ0; rD.M/�:

Proof. Take r > rD.M/ and let N be a germ of meromorphic connection at 0 2 A1C with
slope r . We want to show the vanishing (7.1.1) in a neigbourhood of 0. By a standard
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Galois argument, one reduces to the case where r and the ri , i D 1; : : : ; d , are integers.
Since  f is a formal invariant, we can further suppose that N D t˛E1=t

r
where ˛ 2 C.

Let us assume for a moment that M is generated as a DX -module by a coherent OX -
submodule F stable by f rD.M/xi@xi , i D 1; : : : ; d , and such that M D F.�D/. Let
.e1; : : : ; eN / be a generating family for F in a neighbourhood of 0. Then the f ˛e1=f

r
ei ,

i D 1; : : : ; N , generate M ˝ f CN as a DX -module. Let � W Cn ! Cn � Ct be the
graph of f . Set ı WD ı.t � f /. Then the si D f ˛e1=f

r
eiı, i D 1; : : : ; N , generate

�C.M˝ f
CN/. To show that the germ of  f .M˝ f CN/ at 0 vanishes, we are thus left

to prove that si belongs to V�1.DCn�Ct /�CF for every i D 1; : : : ;N , where V�.DCn�Ct /

is the Kashiwara–Malgrange filtration on DCn�Ct . For i D 1; : : : ; N , we have

f rD.M/x1@x1si D f
rD.M/

�
˛ �

r

f r

�
si C

dX
jD1

gj sj � f
rD.M/C1@tsi ; gj 2 OX :

Hence,

rsi D ˛t
rsi C t

r�rD.M/

dX
jD1

gj sj � f
rx1@x1si � f

rC1@tsi :

Since r > rD.M/, we have

t r�rD.M/

dX
jD1

gj sj 2 V�1.DCn�Ct /�CF:

Note furthermore that

f rx1@x1si D x1@x1f
rsi � rf

rsi D t
r .x1@x1 � r/si 2 V�1.DCn�Ct /si ;

f rC1@tsi D @t t
rC1si D .r C 1/t

rsi C t
r t@tsi 2 V�1.DCn�Ct /si :

Hence, si 2 V�1.DCn�Ct /�CF , which proves the sought-after vanishing. We are thus left
to prove Lemma 7.1.3 below.

Lemma 7.1.3. Let M be a germ of meromorphic connection at 0 2 AnC with poles along
the divisorD given by f WD x1 � � �xd D 0. Let ri be the highest generic slope of M along
xi D 0. Suppose that the ri are integers and put rD.M/ D max ¹r1; : : : ; rd º. Then M is
generated as a DX -module by a coherent OX -submodule F stable by f rD.M/xi@xi for
every i D 0; : : : ; d and such that M D F.�D/.

Proof. Let E be a lattice in M as constructed by Malgrange [29]. By construction,
M D E.�D/. Since holonomic DX -modules are noetherian, M DDXf

�kE for k large
enough. Let us show that F D f �kE fits our purpose. For m 2 E, we have

f rD.M/xi@xi .f
�km/ D �kf rD.M/.f �km/C f �k.f rD.M/xi@xim/:

Hence, it is enough to show that E is stable by f rD.M/xi@xi , i D 0; : : : ; d . Since OXan;x

is faithfully flat over OX;x for every x 2 D, we have E DM \ Ean in Man. Hence, it is
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enough to show that Ean is stable by f rD.M/xi@xi , i D 0; : : : ; d . Let j W U ! X an be
the complement in X of the union of the singular locus ofD with the turning locus of M.
By construction of the Deligne–Malgrange lattices, a section of M belongs to Ean if and
only if its restriction to U belongs to Ean

jU
. Hence, we can suppose that D is smooth and

that M has good formal structure along D. We can further suppose that M is unramified
along D. Since O

Xan; yD
is faithfully flat over OXan;D , we can suppose that M is a good

elementary local model, that is,

M D
M

a2OXan .rD.M/D/

Ea ˝Ra

where the Ra are regular meromorphic connections with poles along D. In that case, E
is by definition a direct sum of the form

L
Ea where Ea is a Deligne lattice [7] in Ra.

In that case, the sought-after stability is obvious.

Remark 7.1.4. The bound for nearby slopes proved in Proposition 7.1.2 was suggested
by the `-adic picture [14]. In loc. cit., a similar bound was obtained for `-adic nearby
slopes of smooth morphisms [46]. In that setting, the main tools are Beilinson’s and
Saito’s work on the singular support [4] and the characteristic cycle [42] for `-adic
sheaves, as well as semicontinuity properties [13, 15] for various ramification invariants
produced by Abbes and Saito’s ramification theory [1]. From this perspective, Proposition
7.1.2 is a positive answer to a local variant for differential equations of a conjecture in [24]
on the ramification of the étale cohomology groups for local systems on the generic fiber
of a strictly semistable pair. See [14, Conj. 5.8] for a precise statement.

7.2. Boundedness of the turning locus in the case of smooth proper relative curves

This subsection is devoted to the proof of Theorem 2. Let S be a smooth complex alge-
braic curve. Let p W C ! S be a relative smooth proper curve of genus g. Let M be a
meromorphic connection of rank r on C with poles along the fibre C0. Let Z.M/ be the
subset of points in C0 at which M does not have good formal structure (that is, the turning
locus of M). Let irrC0 M be the generic irregularity of M along C0. Let rD.M/ be the
highest generic slope of M along C0. We put

K WD .Sol M/jC0 Œ1�˚ .Sol End M/jC0 Œ1�:

It is a complex of C-vector spaces on C0 with constructible cohomology, concentrated in
degrees 0 and 1. The generic rank of K is

rK D irrC0 M C irrC0 End M � rrD.M/C r2rD.End M/ � 2r2rD.M/

where the last inequality comes from rD.End M/ � rD.M/. The Euler–Poincaré charac-
teristic formula [23, Th. 2.2.1.2] applied to K gives

�.C0; K/ D .2 � 2g/rK �
X

x2SingK

.rK � dim H0Kx/C dim H1Kx
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where SingK denotes the singular locus of K, that is, the subset of points in C0 in the
neighbourhood of which K is not a local system concentrated in degree 0. From the
Mebkhout perversity theorem [31], the complex K is perverse. In particular, H0K does
not have sections with punctual support. Thus,

rK � dim H0Kx � 0

for every x 2 SingK. From perversity again [44, Th. 13.1.6], the local Euler–Poincaré
characteristic ofK at x 2 SingK differs from its generic value rK . Hence, for x 2 SingK,
the quantity

.rK � dim H0Kx/C dim H1Kx

is positive and non-zero. Hence, we have a bound

jSingKj � .2 � 2g/rK � �.C0; K/:

From Theorem 1, the singular points of K are exactly the points in C0 at which M does
not have good formal structure. Hence

jZ.M/j � 2rK C j�.C0; K/j:

We are now left to bound �.C0; K/. Since the irregularity complex is compatible with
proper push-forward [32, 3.6-6], we have

j�.C0; .Sol M/jC0/j D j�.0;Rp�.Sol M/jC0/j D j�.0; .SolpCM/j0/j

D

ˇ̌̌X
i

.�1/i irr0 H ipCM
ˇ̌̌
�

X
i

irr0 H ipCM

�

X
i

rk H ipCM �max Slnb
t .H

ipCM/

�

X
i

rk H ipCM �max Slnb
t .pCM/:

Since nearby slopes are compatible with proper push-forward [47, Th. 3 (ii)], we have
Slnb
t .pCM/ � Slnb

p .M/. Since p is smooth, Proposition 7.1.2 yields

j�.C0; .Sol M/jC0/j � rD.M/
X
i

rk H ipCM:

For a generic point s 2 S , we have furthermoreX
i

rk H ipCM D
X
i

dim .Sol H ipCM/s D
X
i

dim .H i SolpCM/s

D

X
i

dim .Rip� Sol M/s D
X
i

dimH i .Cs;L/:

where L denotes the local system of solutions of MjCs . Then H i .Cs;L/ D 0 for every
i ¤ 0; 1; 2 and we have

dimH 0.Cs;L/ � rk L D rk MjCs D r:
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From Poincaré–Verdier duality, we have

dimH 2.Cs;L/ D dimH 0.Cs;L
�/ � rk L� D rk MjCs D r:

Finally,

dimH 1.Cs;L/ D ��.Cs;L/C dimH 0.Cs;L/C dimH 2.Cs;L/

D ��.Cs;C/ rk LC dimH 0.Cs;L/C dimH 2.Cs;L/

� 2r.g C 1/:

Putting everything together yields

jZ.M/j � 8r2.g C 1/rD.M/:

This finishes the proof of Theorem 2.

8. Appendix

8.1. Torsors

In this subsection, we collect elementary facts and definitions on torsors under a sheaf of
groups.

Let X be a topological space. Let G be a sheaf of groups on X . We recall that a torsor
under G is a sheaf F on X endowed with a left action of G such that there exists an
open cover U of X such that for every U 2 U, there exists an isomorphism of sheaves
FjU ' GjU commuting with the action of G , where G acts on itself by multiplication on
the left. We denote by Tors.X;G / the category of G -torsors on X . It is a standard fact that
isomorphism classes of G -torsors are in bijection with H 1.X; G /, the set of non-abelian
cohomology classes of G .

The following lemma is due to Babbitt–Varadarajan [3, Th. 1.3.3].

Lemma 8.1.1. Let p W Y ! X be a Galois finite covering of compact metric spaces with
Galois group G. Let G be a sheaf of groups on X . Suppose that the p�G -torsors have no
non-trivial automorphisms. Then the canonical morphism

H 1.X;G /! H 1.Y; p�G /G

is bijective.

In [3, Th. 1.3.3], the condition on p�G is expressed in terms of the triviality of the set
of global sections of the twist [3, §1.3] of p�G by a p�G -torsor T . Observe that this set
is also the set of automorphisms of T .

Lemma 8.1.2. Let p W Y ! X be a morphism of topological spaces. Let G be a sheaf
of groups on Y . Let T be a G -torsor on Y . Suppose that X admits a cover U by open
subsets such that for every U 2 U, the torsor T is trivial on p�1.U /. Then p�T is a
p�G -torsor on X .
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8.2. Recollections on Stokes filtered local systems

The goal of this subsection is to recall the notion of Stokes filtered local systems. Note
that our use of Stokes filtered local systems in this paper is a purely technical detour
to obtain the triviality criterion (Lemma 8.4.1). Hence, we do not claim completeness
of these recollections and they can be omitted on a first reading. For more background
material, we refer to [34] and [39].

We fix a germ of regular pair .X;D/ at a point P and denote by pD W zX ! X the real
blow-up of X along D. Let I be a good sheaf of irregular values in OX .�D/=OX . Let us
recall the following fact [34, Th. 3.5].

Fact 8.2.1. For every point Q in @D, there is an open neighbourhood UQ of Q in @D
such that for every point Q0 in UQ, the induced map

.IpD.Q/;�Q/! .IpD.Q0/;�Q0/

is well-defined and order preserving.

The following definition appears in the absolute case in [34, Def. 3.6].

Definition 8.2.2. LetR be a ring. Let U be a locally connected subset in @D. An I-Stokes
filtered local system on U is the data of a local system L of projectiveR-modules of finite
type on U , and for every point Q in U , a split .IpD.Q/;�Q/-filtration L�;Q on LQ by
projective submodules. We further require the following compatibility conditions when
Q varies. For every point Q in U , and every neighbourhood UQ of Q as in Fact 8.2.1
such that UQ \ U is connected, the filtration L�;Q0 on LQ0 is induced by that on LQ via
.IpD.Q/;�Q/! .IpD.Q0/;�Q0/.

Remark 8.2.3. Let U be a locally connected subset in @D. Put Z D pD.U / and sup-
pose that IjZ is constant. Then the notion of IjZ-graded local system on U makes sense.
Observe that any IjZ-graded local system on U gives rise to an IjZ-Stokes filtered local
system onU . On the other hand, the grading operation Gr from [34, §3.6] is a well defined
functor converting IjZ-Stokes filtered local systems on U into IjZ-Stokes graded local
systems on U . Of interest to us will be the case where Z lies in a stratum of @D or when
I is very good.

The following is a relative variant of [34, Prop. 3.16] which can be easily deduced
from it.

Proposition 8.2.4. Let .X;D/ be a germ of regular pair at a point P . Let D1; : : : ; Dm
be the components of D. Let I be a subset in J1; mK. Let I � OX .�D/=OX be a good
sheaf of irregular values. LetQ be a point in @P . Let � be a neighbourhood of Q in zX of
the form

mY
iD1

.Œ0; rŒ � Ii / ��

where r > 0, where I1; : : : ; Im are closed intervals in S1, and where� is a ball in Cn�m

centred at 0. We have
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� \ @DıI D
Y
i2I

.¹0º � Ii / �
Y
i…I

.�0; rŒ � Ii / ��:

Let R be a ring. Then, at the cost of shrinking � , every I-Stokes filtered local system on
� \ @DıI relative to R comes from an I-Stokes graded local system on � \ @DıI .

The relationship between Stokes filtered local systems and Stokes torsors will be
established via the notion of marked Stokes filtered local systems, which we now intro-
duce.

Definition 8.2.5. LetU be a locally connected subset in @D. PutZDpD.U / and suppose
that IjZ is constant. Let R be a ring. Let .L;L�/ be an I-Stokes filtered local system on
U relative to R. An .L; L�/-marked Stokes filtered local system on U is the data of a
pair ..L;L�/; iso/ where .L;L�/ is an I-Stokes filtered local system on U and iso is an
isomorphism between Gr L and GrL.

8.3. Relation to Stokes torsors

Let .X;D/ be a germ of regular pair at a point P . Let D1; : : : ; Dm be the components
of D. Let I be a subset in J1; mK. Let M be a good elementary local model on X with
poles along D, that is,

M D
M
a2I

Ea ˝Ra

where I is a good set of irregular values at P , where Ea D .OX .�D/; d � da/ and Ra

is a regular singular meromorphic connection on X with poles along D. For a 2 I, we
denote by �I .a/ the truncation of a which consists in keeping only the monomials in a
having poles along every component Di ; i 2 I . Put

M.I / D
M
a2I

E�I .a/ ˝Ra:

With the help of Proposition 8.2.4, Lemma 8.3.1 that follows allows one to transfer split-
ting statements for Stokes filtered local systems to triviality statements for Stokes torsors.

Lemma 8.3.1. Let .L;L�/ be the Stokes filtered local system on @D associated to M.I /.
Let U be a locally connected subset in @DıI . Let R be a C-algebra. Let .L.R/; L.R/�/
be the Stokes filtered local system relative to R induced by .L; L�/. Then there is a
canonical bijection between H 1.U; St<DM .R// and the set of isomorphism classes of
.L.R/; L.R/�/-marked Stokes filtered local systems on U . Via this identification, the
trivial torsor under St<DM .R/ corresponds to ..L.R/; L.R/�/; id/.

Proof. Observe that the restriction of St<DM to @DıI is the sheaf St<DM.I /. Hence, we are left
to construct a bijection between H 1.U; St<DM.I /.R// and the set of isomorphism classes
of .L.R/; L.R/�/-marked Stokes filtered local systems on U . Note that the sheaf �I .I/
of irregular values of M.I / is very good on DıI . Then Lemma 8.3.1 is consequence of
Lemma 8.3.2 below.
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Lemma 8.3.2. Let .X;D/ be a germ of regular pair at a point P . Let M be a meromor-
phic connection on X with poles along D. Suppose that M has a good elementary local
model at every point. Suppose that the sheaf of irregular values of M is very good. Let
.L;L�/ be the Stokes filtered local system on @D associated to M. LetU be a locally con-
nected subset in @D. Let R be a C-algebra. Then there is a canonical bijection between
H 1.U; St<DM .R// and the set of isomorphism classes of .L.R/; L.R/�/-marked Stokes
filtered local systems on U . Via this identification, the trivial torsor under St<DM .R/ cor-
responds to ..L.R/; L.R/�/; id/.

Proof. Let ..L;L�/; iso/ be an .L.R/; L.R/�/-marked Stokes filtered local system
on U . Consider the sheaf Isomiso.L; L.R// on U whose sections on an open sub-
set V in U are the set of isomorphisms of Stokes filtered local systems f W .L;L�/!
.L.R/; L.R/�/ on V such that Gr f D iso. Since L is locally isomorphic to the Stokes
filtered local system associated to Gr L, and similarly for L, the sheaf Isomiso.L; L.R//

is a torsor for the action of St<DM .R/ on Isomiso.L; L.R// by post-composition. On the
other hand, let T be an element in H 1.U; St<DM .R//. Choose a cover V D .Vi /i2K of U
such that T comes from a cocycle g D .gij /i;j2K . Set Li WD L.R/jUi . The identifica-
tions gij W Li jUij ! Lj jUij allow us to glue the Li together into a Stokes filtered local
system .L;L�/ on U . Since the gij lie in St<DM .R/, the graded of the identity mor-
phisms Li ! L.R/jUi glue together into an isomorphism iso W Gr L ! GrL. Hence,
..L;L�/; iso/ defines an .L.R/; L.R/�/-marked Stokes filtered local systems on U
whose isomorphism class does not depend on any choice. It is then a standard check
to verify that the two constructions above are mutually inverse bijections.

8.4. Trivialization of Stokes torsors

As a consequence of the relationship between Stokes filtered local systems and Stokes
torsors in Lemma 8.3.1, the variant of Mochizuki’s splitting criterion in Proposition 8.2.4
gives the following triviality criterion for torsors under the Stokes sheaf of a good ele-
mentary local model.

Lemma 8.4.1. Let .X;D/ be a germ of regular pair at a point P . LetD1; : : : ;Dm be the
components of D. Let I be a subset in J1; mK. Let M be a good elementary local model
on X with poles along D. Let Q be a point in @P . Let � be a neighbourhood of Q in zX
of the form

mY
iD1

.Œ0; rŒ � Ii / ��

where r > 0, I1; : : : ; Im are closed intervals in S1, and � is a ball in Cn�m centred at 0.
We have

� \ @DıI D
Y
i2I

.¹0º � Ii / �
Y
i…I

.�0; rŒ � Ii / ��:

Then, at the cost of shrinking � , Stokes torsors on � \ @DıI are trivial.
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Proof. We use the notations from §8.3. Let .L; L�/ be the �I .I/-Stokes filtered local
system on @D associated with M.I /. From Lemma 8.3.1, we are left to show that at the
cost of shrinking � , the .L; L�/-marked Stokes filtered local systems on � \ @DıI are
trivial. To do this, it is enough to show that at the cost of shrinking � , the �I .I/-Stokes
filtered local systems on � \ @DıI come from �I .I/-graded local systems on � \ @DıI .
Then the conclusion is a consequence of Proposition 8.2.4.
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