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Abstract. We continue the study of the properties of graphs in which the ball of radius r around
each vertex induces a graph isomorphic to the ball of radius r in some fixed vertex-transitive graph
F , for various choices of F and r . This is a natural extension of the study of regular graphs.

More precisely, if F is a vertex-transitive graph and r 2 N, we say a graph G is r-locally F if
the ball of radius r around each vertex of G induces a graph isomorphic to the graph induced by the
ball of radius r around any vertex of F . We consider the following random graph model: for each
n 2N, we letGn DGn.F; r/ be a graph chosen uniformly at random from the set of all unlabelled,
n-vertex graphs that are r-locally F . We investigate the properties possessed by the random graph
Gn with high probability, i.e. with probability tending to 1 as n!1, for various natural choices
of F and r .

We prove that if F is a Cayley graph of a torsion-free group of polynomial growth, and r is
sufficiently large depending on F , then the random graph Gn D Gn.F; r/ has largest component
of order at most n5=6 with high probability, and has at least exp.nı / automorphisms with high
probability, where ı > 0 depends upon F alone. Both properties are in stark contrast to random
d -regular graphs, which correspond to the case where F is the infinite d -regular tree. We also show
that, under the same hypotheses, the number of unlabelled, n-vertex graphs that are r-locally F
grows like a stretched exponential in n, again in contrast with d -regular graphs. In the case where
F is the standard Cayley graph of Zd , we obtain a much more precise enumeration result, and more
precise results on the properties of the random graph Gn.F; r/. Our proofs use a mixture of results
and techniques from geometry, group theory and combinatorics.

We make several conjectures regarding what happens for Cayley graphs of other finitely gener-
ated groups.
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1. Introduction

Many results in combinatorics concern the impact of ‘local’ properties on ‘global’ prop-
erties of combinatorial structures (e.g. graphs). Some of these results concern the global
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properties of all structures with a given local property. Others concern the ‘typical’ global
properties of a ‘random’ structure with a given local property. As an example of the
former, Dirac’s classical theorem [22] states that in any n-vertex graph where each vertex
has degree at least n=2, there exists a Hamiltonian cycle. On the other hand, the literature
on random graphs contains many examples of the latter, among which is the following.
Let G.n; m/ denote the Erdős–Rényi random graph, chosen uniformly at random from
the set of all m-edge graphs with vertex-set ¹1; : : : ; nº. Erdős and Rényi [24] proved that
if " > 0 is fixed, andmD b.1C "/n=2c, then with high probability, the graphG.n;m/ has
one component of order ‚.n/ (called the ‘giant’ component), and ‚.n/ other connected
components, each of orderO.logn/. (Here, and henceforth, ‘with high probability’ means
‘with probability tending to 1 as n!1’.) It is natural to ask what happens to the global
properties of G 2 G.n;m/ if we impose a local condition at each vertex. For example, if
m D dn=2, where d 2 N and n is even, and we start with G.n;m/ and condition on the
event that every vertex has degree d , then what we get is of course the random (labelled)
d -regular graph: the graph Gn.d/, chosen uniformly at random from the set of all d -
regular graphs on ¹1; : : : ; nº. The following are consequences of theorems of Bollobás,
McKay and Wormald.

Theorem 1 (Bollobás [14] / Wormald [61]). Let d � 3 be a fixed integer. Then with high
probability, Gn.d/ is d -connected.

Theorem 2 (Bollobás [13] / Wormald [61]). Let d; g � 3 be fixed integers. Then

Prob ¹girth.Gn.d// � gº D .1C o.1//
exp.�

Pg�1

lD1
�l /

1 � exp.�.�1 C �2//
;

where

�i D
.d � 1/i

2i
.i 2 N/:

In particular, Gn.d/ has girth at least g with positive probability.

Theorem 3 (Bollobás [15] / McKay and Wormald [53]). Let d � 3 be a fixed integer.
Then

EŒjAut.Gn.d//j�! 1 as n!1:

Hence, Gn.d/ is asymmetric with high probability, and so is a uniform random d -regular
unlabelled graph on n vertices.

For comparison, note that if d 2 N is fixed, then the Erdős–Rényi random graph
G.n; dn=2/ (which has average degree d ), also has girth at least g with positive probab-
ility, for any fixed g � 3. On the other hand, G.n; dn=2/ has ‚.n/ isolated vertices with
high probability, and therefore has exp.‚.n logn// automorphisms with high probability.

(Recall that if G is a graph, the girth of G is the length of the shortest cycle in G;
if G is acyclic, we define girth.G/ D 1. We write Aut.G/ for the group of all auto-
morphisms of G. We say that G is asymmetric if it has no non-trivial automorphism, i.e.
jAut.G/j D 1.)
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It is natural to ask what happens to the global structure of a graph when we impose a
‘local’ condition which is stronger than being d -regular. A natural condition to impose is
that the subgraph induced by the ball of radius r in G around any vertex is isomorphic to
some fixed graph, for some fixed, small r 2 N. We proceed to recall (e.g. from [8]) some
definitions that make this precise.

If G is a (simple, undirected) graph, we write V.G/ for the vertex-set of G and E.G/
for its edge-set. If S � V.G/, we write GŒS� for the subgraph of G induced by S , i.e. the
maximal subgraph of G with vertex-set S . If v;w 2 V.G/, the distance from v to w in G
is defined to be the minimum number of edges in a path from v to w in G; it is denoted
by dG.v; w/. If v 2 V.G/, and r 2 N, we define Linkr .v; G/ to be the subgraph of G
induced by the set of vertices of G with distance at most r from v, and we define

Link�r .v;G/ WD Linkr .v;G/ n
®
¹x; yº 2 E.G/ W dG.v; x/ D dG.v; y/ D r

¯
:

A rooted graph is an ordered pair .G; v/ where G is a graph, and v 2 V.G/.
Our key definition, introduced in [8], is as follows.

Definition 1. If .F; u/ is a rooted graph, we say that a graph G is r-locally .F; u/ if for
every vertex v 2 V.G/, there exists a graph isomorphism � W Linkr .u;F /! Linkr .v;G/
such that �.u/ D v.

We remark that if F is vertex-transitive, then Definition 1 is independent of the choice
of u. Hence, if F is a vertex-transitive graph, we say that a graph G is r-locally F if there
exists u 2 V.F / such that G is r-locally .F; u/.

A slightly weaker notion, also studied in [8], is as follows.

Definition 2. If .F; u/ is a rooted graph, we say that a graph G is weakly r-locally
.F;u/ if for every vertex v 2 V.G/, there exists a graph isomorphism � W Link�r .u;F /!
Link�r .v;G/ such that �.u/ D v.

Note that if a connected graph is viewed as a 1-dimensional simplicial complex,
equipped with the usual graph metric that assigns length 1 to every edge, then a graph
G is weakly r-locally .F; u/ if and only if for every vertex v 2 V.G/, there exists a (met-
ric) isometry  from the (metric) ball of centre u and radius r in F to the (metric) ball
of centre v and radius r in G, with  .u/ D v. Definition 2 is therefore perhaps more nat-
ural from a geometric point of view, whereas Definition 1 is perhaps more natural from
a combinatorial point of view. To avoid confusion, we remark that Georgakopoulos [28]
and De La Salle and Tessera [21] define a graph G to be r-locally F (for a connected,
vertex-transitive graph F ) if it satisfies Definition 2 for some u 2 V.F /. Note however
that we have the implications

G is r-locally .F;u/ H) G is weakly r-locally .F;u/ H) G is .r � 1/-locally .F;u/;

for any r 2 N. Hence, if we are interested in these notions for large r (as is the case in
[21,28] and this paper), it does not really matter which notion we work with. In this paper,
we work with Definition 1.
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As a simple example, if d 2 N with d � 2, let Td denote the infinite d -regular
tree. A graph G is r-locally Td if and only if it is a d -regular graph with girth at least
2r C 2, and G is weakly r-locally Td if and only if it is d -regular with girth at least
2r C 1. We remark that regular graphs of high girth have been intensively studied (see
e.g. [39, 42, 50]).

Another natural example is as follows. If d 2 N, the d -dimensional lattice Ld is the
graph with vertex-set Zd , and edge-set®

¹x; x C eiº W x 2 Zd ; i 2 Œd �
¯
;

where ei D .0; 0; : : : ; 0; 1; 0; : : : ; 0/ denotes the i th unit vector in Rd . It is natural to ask
what can be said about the global structure of graphs that are r-locally Ld , for various
integers d and r . We note that Ld is the standard Cayley graph of the free Abelian group
on d generators, whereas T2d is the standard Cayley graph of the free group on d gener-
ators, so the case F D Ld of Definition 1 is perhaps a ‘second’ natural case to study, the
‘first’ natural case perhaps being T2d .

It turns out that for all d � 2 and all r � 3, graphs which are r-locally Ld have a very
rigidly prescribed, ‘algebraic’ global structure. Indeed, the authors proved the following
in [8].

Theorem 4. Let d 2N with d � 2. Let r 2N with r � 2 if d D 2 and r � 3 if d � 3. Let
G be a connected graph. Then G is r-locally Ld if and only if G is isomorphic to Ld=� ,
where � � Aut.Ld / is such that � has minimum displacement at least 2r C 2, and G is
weakly r-locally Ld if and only if G is isomorphic to Ld=� , where � � Aut.Ld / is such
that � has minimum displacement at least 2r C 2. In particular, ifG is a connected graph
that is weakly 3-locally Ld , then G is covered by Ld .

(Here, if F is a graph and � � Aut.F /, the minimum displacement of � is defined
to be D.�/ WD min ¹dF .v; 
.v// W v 2 V.F /; 
 2 � n ¹Idºº: If F is a graph and � �
Aut.F / with � acting freely on F , the quotient graph F=� is as defined in Definition 11,
in Section 3. If F and G are graphs, we say that F covers G if there exists a graph
homomorphism from F to G that is bijective on neighbourhoods; see Definition 4 in
Section 3.)

We remark that similar structure theorems for the case d D 2 (albeit with combinator-
ial rather than algebraic descriptions) were obtained by Thomassen [57] and by Márquez,
de Mier, Noy and Revuelta [52].

Viewed as a subgroups of Isom.Rd /, the groups � in Theorem 4 are d -dimensional
crystallographic groups, and the orbit spaces Rd=� are compact topological orbifolds. It
follows that for any d � 2, we can view any finite, connected graph which is 3-locally
Ld as a ‘quotient lattice’ of Ld inside a compact d -dimensional topological orbifold.
Bieberbach’s theorems [10, 11] imply that for any d 2 N, there are only a finite number
(f .d/, say) of affine-conjugacy classes of d -dimensional crystallographic groups (where
two crystallographic groups are said to be affine-conjugate if they are conjugate via an
affine transformation of Rd ). It follows that the orbit space Rd=� is homeomorphic to one
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of at most f .d/ topological spaces. (See Section 3 of this paper, or [8], for the definitions
of any unfamiliar terms used above.)

The ‘rigidity’ phenomenon in Theorem 4 can be seen as a discrete analogue (for
graphs) of the curvature-zero case of the seminal rigidity results of Ballmann [5] and
independently Burns and Spatzier [19] on complete connected Riemannian manifolds of
finite volume and bounded nonpositive sectional curvature.

Observe that the ‘algebraic’ structure in Theorem 4 is in stark contrast to the situation
for regular graphs of high girth (i.e., graphs which are r-locally Td for fixed r; d 2 N).
Indeed, the uniform random d -regular graph Gn.d/ can be generated using a simple,
purely combinatorial process, namely, the Configuration Model of Bollobás [12], and
Gn.d/ has girth at least g with positive probability for any fixed d; g � 3, by Theorem 2.

Georgakopoulos [28] and the first author [7] asked whether the phenomenon in The-
orem 4 holds more generally. Following [21], we say that a locally finite, vertex-transitive
graph F is local-to-global rigid (or LG-rigid, for short) if there exists r 2 N such that
any connected graph that is r-locally F must be covered by F . (A graph F is said to be
locally finite if every vertex of F has only finitely many neighbours.) Georgakopoulos
and the first author asked the following.

Question 1. Is every locally finite Cayley graph of a finitely presented group LG-rigid?

This question was answered in the negative by De La Salle and Tessera, who construc-
ted in [21] a locally finite Cayley graph of PGL.4;Z/ that is not LG-rigid. (See [20,21] for
other counterexamples.) On the other hand, De La Salle and Tessera proved the following
beautiful positive result.

Theorem 5 (De La Salle, Tessera, [21]). If F is a locally finite Cayley graph of a torsion-
free group of polynomial growth, then there exists r 2 N such that for any connected
graphG that is r-locally F , there exists a group � � Aut.F / acting freely on F such that
the quotient graph F=� is isomorphic to G. In particular, F is LG-rigid.

Recall that a group � is said to be torsion-free if the only element of � with finite
order is the identity, and it is said to have polynomial growth if there exists K 2 N and a
finite generating set S of � such that for any n 2 N,

j¹g 2 � W 9s1; : : : ; sn 2 S such that g D s1 : : : snºj � nK :

Strengthening a result of Georgakopoulos [28], De La Salle and Tessera also proved
in [21] that if F is a locally finite Cayley graph of a finitely presented group and F is
quasi-isometric to a tree, then F is LG-rigid. We conjecture that the conclusion of LG-
rigidity in Theorem 5 holds without the torsion-free hypothesis; the same conjecture has
been made independently by De La Salle and Tessera [personal communication].

In this paper, we study the typical properties of n-vertex graphs that are r-locally F ,
and the number of such graphs, for various choices of F and r . We introduce a new
random graph model as follows.
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Definition 3. Let F be a fixed infinite, locally finite, vertex-transitive graph, and let r 2N
be a fixed integer. For each n 2 N, we let Gn D Gn.F; r/ be a graph chosen uniformly at
random from the set �n D �n.F; r/ of all unlabelled, n-vertex graphs that are r-locally F .

We investigate the properties possessed by the random graphGn with high probability
(meaning, as usual, with probability tending to 1 as n!1). This is a natural extension
of the well-studied random regular graph Gn.d/, which corresponds roughly to the case
F DTd and r D 1. (The random d -regular graphGn.d/ is a labelled graph, but as outlined
in [62], many properties possessed byGn.d/with high probability are also possessed with
high probability by the uniform random unlabelled n-vertex d -regular graph.) However,
the main combinatorial and probabilistic tools used for studying random regular graphs
arise from the aforementioned Configuration Model of Bollobás, whereas in the cases
we consider, there is no such simple combinatorial process that generates a uniform (or
even approximately uniform) random n-vertex graph that is r-locally F . Instead, we use
a mixture of geometric, algebraic and combinatorial arguments, and the results we obtain
are somewhat less sharp than their analogues for random regular graphs.

Note that the random graph Gn D Gn.F; r/ in the above definition is defined only if
�n ¤ ;. In the cases we study, �n ¤ ; for all n sufficiently large depending on F and r
(see Remark 2), so there is no problem with considering properties possessed by Gn with
high probability. In the generality of Definition 3, it is possible that �n.F; r/ D ; for
infinitely many n, for example �n.T3; 1/ D ; for all odd n, but so long as �n.F; r/ ¤ ;

for infinitely many n, we simply interpret ‘with high probability’ to mean with probability
tending to 1 as n!1 over integers n such that �n.F; r/ ¤ ;, as is usual with random
d -regular graphs when d is odd. If F is a locally finite Cayley graph of a residually finite
group � , then for every r 2 N, there exist (arbitrarily large) finite connected graphs that
are r-locally F , so in particular, �n.F; r/ ¤ ; for infinitely many n. (This follows easily
by considering the quotient graph F=� 0 for appropriate finite-index subgroups � 0 of � , as
in the proof of Proposition 38.) In all such cases, the random graph model above is non-
trivial. However, it is in place to remark that there exists a locally finite Cayley graph F
of the Baumslag–Solitar group BS.2; 3/, and a positive integer r , such that no non-empty
finite graph is r-locally F ; this follows for example from Corollary K in [21]. For all such
pairs .F; r/, the random graph model above is of course trivial; this causes a very slight
issue in Section 2 on open problems.

Our first aim is to estimate the number of n-vertex graphs that are r-locally Ld , for
various pairs of integers d; r . We prove the following rather precise estimate.

Theorem 6. Define r�.2/ D 2, r�.d/ D 3 for all 3 � d � 7, and r�.d/ D d.d � 1/=2e
for all d � 8. Let d 2 N with d � 2, and let r 2 N with r � r�.d/. Let ad;r .n/ denote
the number of unlabelled n-vertex graphs that are r-locally Ld . Then there exists "d > 0
depending upon d alone such that

log ad;r .n/ D .1COd;r .n�"d //Kdnd=.dC1/;

where Kd WD dC1
d
. 1

2d�1

Qd
iD2 �.i//

1=.dC1/.
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This theorem says that, if r grows linearly with d , then the number of unlabelled
graphs on n vertices that are r-locally Ld grows like a stretched exponential in n. (This is
in sharp contrast with the number of unlabelled .2d/-regular graphs on n vertices, which
grows superexponentially in n.) Note that, in contrast to Theorem 4, Theorem 6 applies
only in the case where r grows linearly with d . A less precise enumeration result could
be proved under the same hypotheses as in Theorem 4, but for brevity and for clarity of
exposition, we do not prove such a result here.

We remark that a much stronger statement holds for d D 1 with r�.1/ WD 1 (see
Remark 5). In particular, we have

log a1;r .n/ D �
p
2n=3 � r lognCOr .1/ as n!1.

Our proof of Theorem 6 has several steps (of which the second, in particular, may be
of independent interest):

� We first use Theorem 4, together with some standard results and arguments from group
theory and topological graph theory, to prove that the connected unlabelled n-vertex
graphs that are r-locally Ld are in one-to-one correspondence with conjugacy-classes
of subgroups � � Aut.Ld / such that jZd=�j D n and D.�/ � 2r C 2, provided
r � r�.d/. Our next task is to enumerate the latter.

� We show that for any x � 0, all but an o.1/-fraction of the conjugacy-classes of sub-
groups � � Aut.Ld / such that jZd=�j � x andD.�/� 2r C 2, are conjugacy-classes
of subgroups consisting only of translations (‘pure-translation subgroups’), provided
r � r�.d/; we then estimate the number of the latter. We do this by analysing the
former subgroups in terms of their lattices of translations and their point groups, using
a cohomology argument borrowed from one of the standard proofs of Bieberbach’s
Third Theorem, and using a combinatorial argument to show that a uniform random
sublattice of Zd with index at most x is unlikely to have any non-trivial hyperoctahed-
ral symmetry.

It follows from this part of the proof that for any x� 0, all but an o.1/-fraction of the
connected unlabelled graphs on at most x vertices that are r-locally Ld (for r � r�.d/)
are quotient lattices of Ld inside topological tori of the form Rd=�0 (where �0 is the
group of translations by vectors in a rank-d sublattice of Zd ). We may call such graphs
‘generalized discrete torus’ graphs, since they generalize the usual discrete torus C d

k
;

the latter is obtained when �0D h¹x 7! xC kei W i 2 Œd �ºi. In general, the ‘fundamental
domain’ of a generalized discrete torus graph is a parallelepiped that need not have any
of its edges parallel to a coordinate axis.

It is in place to remark that in the case 3 � r < d.d � 1/=2e, a positive fraction of
the connected unlabelled graphs on at most x vertices that are r-locally Ld are quotient
lattices of Ld inside a topological orbifold obtained by taking the quotient of a topo-
logical torus Rd=�0 by some involution of the form x 7! c � x, where c 2 .1

2
� Z/d ,

so the assumption that r grows linearly with d is necessary for this step of the proof to
work. (The rest of the proof works under the weaker assumption r � 2C 1¹d�3º.)
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� Combining the previous two steps allows us to estimate, for each x � 0, the num-
ber of connected unlabelled graphs with at most x vertices that are r-locally Ld . We
use this, combined with a generating function argument and a variant of a result of
Brigham on the asymptotics of partition functions, to obtain the estimate in Theorem
6 on the number of (possibly disconnected) unlabelled graphs with n vertices that are
r-locally Ld .

Using some of the same tools, we also prove the following.

Theorem 7. For any fixed integers d; r 2 N with d � 2 and r � 2C 1¹d�3º, the random
graph Gn.Ld ; r/ can be sampled in time polynomial in n, using a polynomial .in n/
number of coins with rational biases.

We then move on to consider the (much) more general case of connected, locally
finite Cayley graphs of torsion-free groups of polynomial growth. (This is a well-studied
class of graphs, and a natural extension of Ld case. We recall that Gromov’s celebrated
theorem [30] on groups of polynomial growth states that a finitely generated group has
polynomial growth if and only if it is virtually nilpotent.) Our first main result in this more
general case is as follows.

Theorem 8. Let F be a connected, locally finite Cayley graph of a torsion-free group of
polynomial growth. Then there exists r0 D r0.F / 2N such that for all r � r0, the random
graph Gn D Gn.F; r/ has largest component of order at most n5=6 with probability at
least 1 � exp.�n1=13/, provided n is sufficiently large depending on F and r .

Remark 1. In the case where F D Ld for d � 2, we may take r0 D 2C 1¹d�3º in the
above theorem.

Remark 2. We also show that if F is a connected, locally finite Cayley graph of a torsion-
free group of polynomial growth, and r 2 N, then for all n sufficiently large depending
on F and r , the set �n D �n.F; r/ in Definition 3 is non-empty (so that the statement of
Theorem 8 is meaningful for all sufficiently large n); this is the content of Lemma 39.

Our proof of Theorem 8 proceeds as follows. The first step is to obtain an upper
bound on the number of connected, unlabelled, n-vertex graphs that are r-locally F ,
for sufficiently large r and all n 2 N; this upper bound is deduced from Gromov’s the-
orem, Theorem 5, and certain other known results from geometric group theory, including
another result of De La Salle and Tessera (from [21]), on the structure of automorphism
groups of Cayley graphs of torsion-free groups of polynomial growth. The second step
is to obtain a lower bound on the above quantity, for an appropriate infinite sequence of
positive integers n; this step requires a rather intricate group-theoretic argument, together
with the use of a classical theorem of Gruenberg. In the third and last step of the proof,
we use the upper and lower bounds obtained in the first two steps to estimate the prob-
ability that a uniform random unlabelled, n-vertex graph that is r-locally F has largest
component of order n5=6. This part of the proof is combinatorial, and is performed by
the construction of explicit maps between certain carefully chosen classes of unlabelled
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graphs that are r-locally F , together with the use of classical results from the theory of
integer partitions. The upper and lower bounds obtained in the first and second steps in
our proof are (in general) far apart and are (probably both) far from the truth; the chal-
lenge in the third step is to find arguments robust enough to yield good estimates on the
required probability, in spite of this gap. Generating function techniques (often used in
similar problems where the gap is narrower) could not be directly used in our case.

Our next main result is that with high probability, the random graph Gn.F; r/ has at
least exp.poly.n// automorphisms:

Theorem 9. Let F be a connected, locally finite Cayley graph of a torsion-free group of
polynomial growth. There exists r0 D r0.F / 2 N and ı0 D ı0.F / > 0 such that for all
r � r0,

Pr ¹jAut.Gn.F; r//j � 2n
ı0
º � 1 � exp.�nı0/ (1)

provided n is sufficiently large depending on F and r .

In fact, our proof of Theorem 9 yields something somewhat stronger than (1), namely,
under the same conditions, with probability at least 1 � exp.�nı0/, the random graph
Gn.F; r/ has at least nı0 vertex-transitive components. The high-level structure of the
proof is similar to that of Theorem 8, except that in the second step, it is necessary to
obtain a lower bound on the number of connected, vertex-transitive unlabelled n-vertex
graphs that are r-locally F , for an appropriate infinite sequence of positive integers n.

Turning to the enumeration question, we prove a somewhat less precise result than
Theorem 6 in the more general case. Viz., using some of the same tools used in the proofs
of Theorems 8 and 9, together with a classical theorem of Brigham on the asymptotics
of partition functions, we prove that if F is a connected, locally finite Cayley graph of a
torsion-free group of polynomial growth, then there exists r0 D r0.F / 2 N such that for
each r � r0, the number bF;r .n/ of unlabelled, n-vertex graphs that are r-locally F grows
like a stretched exponential.

Theorem 10. Let F be a connected, locally finite Cayley graph of a finitely generated,
torsion-free group of polynomial growth, and let r0 D r0.F / be as in Theorem 5. For each
r � r0, there exist n0 2 N, C > 0, c > 0 and ˛ � 0 such that

c
p
n � log bF;r .n/ � Cn.˛C1/=.˛C2/

for all n 2 N such that n � n0.

We do not, however, determine limn!1.log logbF;r .n//=logn in the general case, as
we do in the case of Ld where r � r�.d/.

In the special case where F D Ld , we make the following conjecture, in the spirit of
Theorem 8.

Conjecture 1. Define r0.2/D 2 and r0.d/D 3 for all d � 3. Let d 2N with d � 2, and
let r 2N with r � r0.d/. Then with high probability, the largest component ofGn.Ld ; r/
has order

‚d;r .n
1=.dC1/ logn/:
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We remark that the statement of Conjecture 1 holds for d D 1 with r0.1/ D 1. This is
easily deduced from known results from the theory of integer partitions (see Section 3.4).

It is instructive to contrast Theorems 8 and 9 with the situation where F D Td , the
infinite d -regular tree, for d � 3. As remarked above, a graph G is r-locally Td if and
only if it is a d -regular graph of girth at least 2r C 2. By Theorem 2, for fixed integers
d;g � 3, a uniform random labelled d -regular graph on ¹1; : : : ; nº has girth at least g with
probability �d;g.1/ as n!1. Using Theorems 1 and 3, it follows that if d; g � 3 are
fixed integers andGn is the random graph chosen uniformly from the set of all unlabelled,
n-vertex, d -regular graphs of girth at least g, then with high probability,Gn is asymmetric
and d -connected. It follows that if d � 3 and r � 1, then with high probability,Gn.Td ; r/
is asymmetric and d -connected.

We remark that, instead of working with unlabelled graphs, one could consider instead
the properties of the random graph Hn D Hn.F; r/ chosen uniformly from the set of all
labelled graphs with vertex-set ¹1; : : : ; nº that are r-locally F , for various choices of F
and r , and the number of such graphs. The behaviour of Hn does not vary so strikingly
with the choice ofF and r as in our case: for example, if d;r 2N are fixed with d � 2, and
F is an infinite, d -regular, connected, vertex-transitive graph, then the number of labelled
graphs on ¹1; : : : :nº that are r-locally F is exp.‚d;r .n logn//, as is the number of labelled
d -regular graphs on ¹1; : : : ; nº. Hence, we believe that the random unlabelled graph Gn
is a more interesting object of study in this context. While the recent trend in probabilistic
combinatorics (perhaps for reasons of tractability) has been to focus more on random
labelled structures and their enumeration, unlabelled structures have also attracted much
attention in combinatorics, probability theory and related fields. We mention for example
the work of Tutte [58,59] in the 1960s and 70s on the enumeration of planar maps, and the
more recent work of Angel and Schramm [1], Le Gall [43], Gurel-Gurevich and Nachmias
[33], and others, on random planar maps. (See also the survey papers [44, 45] of Le Gall,
and the references contained therein.)

The remainder of this paper is structured as follows. In Section 2, we discuss a broad
collection of problems related to our work. In Section 3, we describe the background and
tools we will need from topological graph theory, group theory and topology, and we
prove some preliminary lemmas using these tools.

In Section 4, we prove Theorem 6, our enumeration result for unlabelled graphs that
are r-locally Ld . In Section 5, we consider the much more general case where Ld is
replaced by a connected, locally finite Cayley graph of a torsion-free group of polynomial
growth, and we prove Theorems 8–10.

In Section 6, we prove some more precise results on the typical properties of graphs
that are r-locally Ld , including a more precise version of Theorem 9 (on the order of the
automorphism group), for such graphs. (We note that the bulk of the paper is devoted to
the proofs of Theorems 6, 8 and 9, and the necessary preliminaries.)
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2. Related problems and conjectures

Our results and conjectures above are of course part of a more general class of questions,
which we proceed to discuss in this section. Let F be an infinite, locally finite, connected,
vertex-transitive graph, and let r 2N. Let us say that the pair .F; r/ is connectivity-forcing
if the random graph Gn D Gn.F; r/ in Definition 3 is connected with high probability. (If
there exists no non-empty finite graph that is r-locally F , then by convention we say that
.F; r/ is connectivity-forcing; otherwise, we have �n.F; r/ ¤ ; for infinitely many n, so
the term ‘with high probability’ is well-defined; see the discussion following Definition 3.)
It is natural to pose the following (perhaps rather ambitious) problem.

Problem 1. Characterise the pairs .F; r/ that are connectivity-forcing.

Note that it follows immediately from Theorem 8 that if F is a connected, locally
finite Cayley graph of a torsion-free group of polynomial growth, then there exists r0 2N
depending upon F alone such that for any r � r0, the pair .F; r/ is not connectivity-
forcing. On the other hand, it follows from the discussion at the end of Section 1 that the
pair .Td ; r/ is connectivity-forcing, for all r 2 N.

In the above problem, one may of course replace connectivity with any other graph
property (with the same proviso concerning when �n.F; r/ D ; for all n 2 N). A closely
related question is for which pairs .F; r/ it holds that Gn.F; r/ has a ‘giant component’
with high probability. (Recall that if .Gn/ is a sequence of random graphs, we say thatGn
has a giant component with high probability if there exists " > 0 such that

Prob ¹Gn has a component of order at least "nº ! 1

as n!1.) In this case, we say that the pair .F; r/ forces a giant component. We pose
the following.

Problem 2. Characterise the pairs .F; r/ that force a giant component.

Theorem 8 implies that if F is a connected, locally finite Cayley graph of a torsion-
free group of polynomial growth and r � r0.F /, then .F; r/ does not force a giant
component.

It is also natural to ask for which pairs .F; r/ it holds thatGn is an expander with high
probability. Let us state this problem in full. Recall that if G D .V; E/ is a finite graph,
and S � V.G/, we define the edge-boundary @S WD E.S;V n S/, i.e. it is the set of edges
of G between S and V n S . We define the vertex-boundary b.S/ WD N.S/ n S , i.e. it is
the set of vertices of G which are not in S , but which are adjacent to a point in S . We
define the edge-expansion ratio of G to be

h.G/ WD min ¹j@S j=jS j W 0 < jS j � jV j=2º:

Similarly, we define the vertex-expansion ratio of G to be

hv.G/ WD min ¹jb.S/j=jS j W 0 < jS j � jV j=2º:
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As usual, let �.G/ denote the maximum degree of G. Note that j@S j � �.G/jb.S/j for
all S � V , so hv.G/ � h.G/=�.G/.

Now let .Gn/n2N be any sequence of graphs with jV.Gn/j !1 as n!1, and with
uniformly bounded maximum degree (i.e., supn2N �.Gn/ <1). We say that Gn is an
expander with high probability if there exists " > 0 such that

Prob ¹h.Gn/ � "º ! 1 as n!1:

Note that this is actually a property of the sequence of random graphs .Gn/, not of a single
graph.

Let us say that the pair .F; r/ is expansion-forcing if Gn.F; r/ is an expander with
high probability. We pose the following.

Problem 3. Characterise the pairs .F; r/ that are expansion-forcing.

Note that if .F; r/ is expansion-forcing, then it is clearly connectivity-forcing. Bol-
lobás [16] proved that if d � 3 is a fixed integer, the random (labelled) d -regular graph
Gn.d/ has edge-expansion ratio at least d=18 with high probability. It follows from this,
Theorem 2 and Theorem 3 that for any d � 3 and any r 2N, the pair .Td ; r/ is expansion-
forcing. Furthermore, we have hv.Gn.Td ; r// � 1=18 with high probability. On the other
hand, if F is a connected, locally finite Cayley graph of a torsion-free group of polyno-
mial growth and r � r0.F /, then .F; r/ is not connectivity-forcing, so it is certainly not
expansion-forcing.

In the case where F is (the graph of) a regular tiling of the hyperbolic plane, we make
the following conjecture.

Conjecture 2. Let F be the graph of a regular tiling of the hyperbolic plane. Then for
any r 2 N, the pair .F; r/ is connectivity-forcing.

IfG is a finite graph, let us write l.G/ for the order of the largest component ofG. Let
R be the set of all x 2 Œ0; 1� such that there exists a pair .F; r/ such that with probability 1,
logn.l.Gn.F; r///! x as n!1. Conjecture 1 (together with a mild assumption on the
rate of convergence to 1 of the probability concerned) would imply that 1=.d C 1/ 2 R

for all d 2 N; Corollary 16 implies that 1=2 2 R. The fact that Gn.d/ is connected with
probability at least 1 �O.1=n2/ for each fixed integer d � 3, together with Theorems 2
and 3, implies that 1 2R. It would be of interest to further investigate the set R. It would
also be interesting to determine whether or not there exists a pair .F; r/ and an absolute
constant c > 0 such that with high probability, cn < l.Gn.F; r// < n, i.e. whether it is
possible forGn DGn.F; r/ to have a giant component and yet be disconnected, with high
probability.

If � is a finitely generated group, let us say that � is strongly-connectivity-forcing if
for any finite generating set S of � with Id … S and S�1 D S , and for any r 2 N, the pair
.Cay.�; S/; r/ is connectivity-forcing. We pose the following.

Problem 4. Characterise the finitely generated groups that are strongly-connectivity-
forcing.
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We conjecture that any finitely generated group with superexponential subgroup
growth is strongly-connectivity-forcing. (See the book of Lubotzky and Segal [51] for
background on such groups.)

We also conjecture that if � is a finitely generated, residually finite group, and F is a
connected, locally finite Cayley graph of � , then the property of .F;r/ being connectivity-
forcing / expansion-forcing / forcing a giant component, for all sufficiently large r , does
not depend upon the generating set chosen for F . More precisely, we make the following.

Conjecture 3. Let � be a finitely generated, residually finite group, and let Si . for
i D 1;2/ be two finite generating sets of � with Id…Si and S�1i DSi . LetFi DCay.�;Si /.
Then .F1; r/ has property P for all sufficiently large r if and only if .F2; r/ has property
P for all sufficiently large r , where P is the property of being connectivity-forcing, or the
property of being expansion-forcing, or the property of forcing a giant component.

(The hypothesis of residual finiteness is added to ensure that we never have �n.F; r/

D ; for all n 2 N; see the discussion after Definition 3.)
We now turn to questions of symmetry. We say a pair .F; r/ is asymmetry-forcing if

Gn.F; r/ has no nontrivial automorphisms, with high probability. We pose the following.

Problem 5. Characterise the pairs .F; r/ that are asymmetry-forcing.

It follows from the discussion at the end of Section 1 that for any d � 3 and any r 2N,
the pair .Td ; r/ is asymmetry-forcing. On the other hand, it follows immediately from
Theorem 9 that if F is a connected, locally finite Cayley graph of a torsion-free group of
polynomial growth, then there exists r0 2 N depending upon F alone such that for any
r � r0, the pair .F; r/ is not asymmetry-forcing; on the contrary, with high probability,
Gn.F; r/ has at least exp.poly.n// automorphisms. Motivated by the latter, we say a pair
.F; r/ is stretched-exponential-symmetry-forcing if there exists ı > 0 such that with high
probability, Gn.F; r/ has at least exp.nı/ automorphisms; it would also be of interest to
characterise the pairs .F; r/ that are stretched-exponential-symmetry-forcing. We thank
an anonymous referee for suggesting this problem.

We conclude with a more general suggestion for future research. It is straightforward
to generalise Definition 1 and the random graph model in Definition 3 to other well-
studied combinatorial structures, in particular to k-uniform hypergraphs and d -dimen-
sional simplicial complexes, for k � 3 and d � 2. It would be interesting to investigate
the typical properties of random k-uniform hypergraphs, or random d -dimensional sim-
plicial complexes, with given r-local structures. We remark that the topology of random
d -dimensional simplicial complexes (for d > 1) is a very active area of current research.
The most commonly studied model is perhaps the Yd .n; p/ model introduced in 2006 by
Linial and Meshulam [46]. (This is the random d -dimensional simplicial complex with
n vertices and full .d � 1/-dimensional skeleton, where each d -dimensional simplex is
included independently with probability p.)

For d -dimensional simplicial complexes with d > 1, there are two natural analogues
of (graph-)connectivity, namely, d -collapsibility and the vanishing of the d th homology
group over R. In a series of recent papers [2–4, 47], the thresholds for d -collapsibility
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and for the vanishing of the d th real homology group of Yd .n; p/ were established by
Aronshtam, Linial, Łuczak, Peled and Meshulam; see also [40] for a survey of related res-
ults. In [49], Lubotzky and Meshulam introduced a new model of random 2-dimensional
simplicial complexes with bounded upper degrees; these were shown to have positive
coboundary expansion with high probability. There is currently much interest in devel-
oping a model of random ‘regular’ d -dimensional simplicial complexes (for d > 1) with
good typical coboundary expansion; see e.g. [48]. We believe our random r-local model
is unlikely to solve this particular problem, but may have other interesting combinatorial
and topological properties.

3. Definitions, background and tools

This section is structured as follows. In Section 3.1, we list the basic (and standard) graph-
theoretic definitions, notations and conventions which we use. In Section 3.2, we list the
standard definitions and results we need from topological graph theory. In Section 3.3, we
list the definitions and classical results that we need from group theory and topology, and
we also obtain a useful group-theoretic lemma (Lemma 14) using the proof of the classical
Third Theorem of Bieberbach, and some well-known facts about group cohomology. In
Section 3.4, we use classical results from the theory of integer partitions to deduce that
the statement of Conjecture 1 holds in the case of L1.

3.1. Basic graph-theoretic definitions, notation and conventions

Unless otherwise stated, all graphs will be undirected and simple (that is, without loops or
multiple edges); they need not be finite. An undirected, simple graph is defined to be an
ordered pair of sets .V;E/, where E �

�
V
2

�
; V is called the vertex-set and E the edge-set.

An edge ¹v;wº of a graph will often be written vw, for brevity.
If G is a graph and S � V.G/, we let N.S/ denote the neighbourhood of S in G, i.e.

N.S/ D S [ ¹v 2 V.G/ W sv 2 E.G/ for some s 2 Sº:

If v 2 V.G/, we let �.v/D¹u2 V.G/ W uv 2E.G/º denote the set of neighbours of v. We
say the graph G is locally finite if each of its vertices has only finitely many neighbours.

If G is a graph, and u; v 2 V.G/ are in the same component of G, the distance from u

to v in G is the minimum length of a path from u to v; it is denoted by dG.u; v/ (or by
d.u; v/, when the graph G is understood). If G is a graph, and v is a vertex of G, the ball
of radius r around v is defined by

Br .v;G/ WD ¹w 2 V.G/ W dG.v; w/ � rº;

i.e. it is the set of vertices of G of distance at most r from v.
An automorphism of a graph G is a bijection � W V.G/ ! V.G/ such that

¹�.v/; �.w/º 2 E.G/ if and only if ¹v;wº 2 E.G/, for all v;w 2 V.G/.
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If � is a group, and S � � is symmetric (meaning that S�1 D S ) and Id … S , the
Cayley graph of � with respect to S is the graph with vertex-set � and edge-set ¹¹g; gsº W
g 2 �; s 2 Sº; we denote it by Cay.�; S/.

All logarithms in this paper are to base e.

3.2. Background and tools from topological graph theory

We follow [31, 41].

Definition 4. If F and G are graphs, and p W V.F /! V.G/ is a graph homomorphism
from F to G, we say that p is a covering map if p maps �.v/ bijectively onto �.p.v//,
for all v 2 V.F /. In this case, we say that F covers G.

It is easy to see that if F and G are graphs with G connected, and p W V.F /! V.G/

is a covering map, then p is surjective.

Definition 5. Let F andG be graphs, and let p W V.F /! V.G/ be a covering ofG by F .
The pre-image of a vertex of G under p is called a fibre of p.

Definition 6. Let F andG be graphs, and let p W V.F /! V.G/ be a covering ofG by F .
An automorphism � 2 Aut.F / is said to be a covering transformation of p if p ı � D p.
The group of covering transformations of p is denoted by CT.p/.

Note that any covering transformation of p acts on each fibre of p, but it need not act
transitively on any fibre of p.

Definition 7. Let F andG be graphs, and let p W V.F /! V.G/ be a covering ofG by F .
We say that p is a normal covering if CT.p/ acts transitively on each fibre of p.

It is well known (and easy to check) that if F is a connected graph, and p W V.F /!
V.G/ is a covering of G by F , then if CT.p/ acts transitively on some fibre of p, it acts
transitively on every fibre of p. Hence, in the previous definition, ‘on each fibre’ may be
replaced by ‘on some fibre’.

Definition 8. Let � be a group, let X be a set, and let ˛ W � �X ! X be an action of �
on X . For each x 2 X , we write Orb�.x/ WD ¹˛.
; x/ W 
 2 �º for the �-orbit of x, and
Stab�.x/ WD ¹
 2 � W ˛.
; x/ D xº for the stabiliser of x in � . When the group � is
understood, we suppress the subscript � .

Definition 9. If F is a graph and � � Aut.F /, the minimum displacement of � is defined
to be D.�/ WD min ¹dF .x; 
.x// W x 2 V.F /; 
 2 � n ¹Idºº.

Definition 10. Let � be a group, let X be a set, and let ˛ W � �X ! X be an action of �
on X . We say that ˛ is free if ˛.
; x/ ¤ x for all x 2 X and all 
 2 � n ¹Idº.

Definition 11 (Quotient of a graph). Let F be a simple graph, and let � � Aut.F /. Then
� acts on V.F / via the natural left action .
; x/ 7! 
.x/, and on E.F / via the natural
(induced) action .
; ¹x; yº/ 7! ¹
.x/; 
.y/º. We define the quotient graph F=� to be the
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multigraph whose vertices are the �-orbits of V.F /, and whose edges are the �-orbits
of E.F /, where for any edge ¹x; yº 2 E.F /, the edge Orb.¹x; yº/ has endpoints Orb.x/
and Orb.y/. Note that F=� may have loops (if ¹x; 
.x/º 2 E.F / for some 
 2 � and
x 2 V.F /), and it may also have multiple edges (if there exist ¹u1; u2º; ¹v1; v2º 2 E.F /
with 
1.u1/ D v1 and 
2.u2/ D v2 for some 
1; 
2 2 � , but ¹
.u1/; 
.u2/º ¤ ¹v1; v2º
for all 
 2 �).

Definition 12. Let G be a graph, and let � � Aut.G/. We say that � acts freely on G if
the natural actions of � on V.G/ and E.G/ are both free actions, or equivalently, if no
element of � n ¹Idº fixes any vertex or edge of G.

The following two lemmas are well-known, and easy to check.

Lemma 11. Let F be a connected .possibly infinite/ graph, let G be a graph, and let
p W V.F /! V.G/ be a covering map from F to G. Then CT.p/ acts freely on F .

Lemma 12. Let F and G be .possibly infinite/ graphs with G connected, and suppose
that p W V.F /! V.G/ is a normal covering map from F to G. Then there is a graph
isomorphism between G and F=CT.p/. Moreover, if � � Aut.F /, � acts freely on F
and F=� is a simple graph, then the natural quotient map q W V.F / 7! V.F /=� is a
normal covering map with CT.q/ D � .

3.3. Some preliminaries from group theory and topology

Fact 1. The group Isom.Rd / of isometries of d -dimensional Euclidean space satisfies

Isom.Rd / D ¹t ı � W t 2 T .Rd /; � 2 O.d/º D ¹� ı t W t 2 T .Rd /; � 2 O.d/º

D T .Rd / ÌO.d/;

where
T .Rd / WD ¹x 7! x C v W v 2 Rd º

denotes the group of all translations in Rd , and O.d/ � GL.Rd / denotes the group of all
real orthogonal d � d matrices.

Fact 2. For any d 2 N, we have

Aut.Ld / D ¹t ı � W t 2 T .Zd /; � 2 Bd º D ¹� ı t W t 2 T .Zd /; � 2 Bd º

D T .Zd / Ì Bd ;

where
T .Zd / WD ¹x 7! x C v W v 2 Zd º

denotes the group of all translations by elements of Zd , and

Bd D
®
� 2 GL.Rd / W �.¹˙ei W i 2 Œd �º/ D ¹˙ei W i 2 Œd �º

¯
;
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denotes the d -dimensional hyperoctahedral group, which is the symmetry group of the
d -dimensional (solid) cube with set of vertices ¹�1; 1ºd , and can be identified with the
permutation group®

� 2 Sym.Œd � [ ¹�i W i 2 Œd �º/ W �.�i/ D ��.i/ 8i
¯
;

in the natural way (identifying ei with i and �ei with �i for all i 2 Œd �). We therefore
have jBd j D 2ddŠ.

Remark 3. It is clear that every element of Aut.Ld / can be uniquely extended to an
element of Isom.Rd /. We can therefore view Aut.Ld / as a subgroup of Isom.Rd /.

Definition 13. If X is a topological space, and � is a group acting on X , the orbit space
X=� is the (topological) quotient spaceX=�, where x � y iff y 2 Orb�.x/, i.e. iff x and
y are in the same �-orbit.

Definition 14. If X is a topological space, a group � of homeomorphisms of X is said
to be discrete if the relative topology on � (induced by the compact-open topology on the
group of all homeomorphisms of X ) is the discrete topology.

Definition 15. If X is a topological space, and � is a discrete group of homeomorphisms
of X , we say that � acts properly discontinuously on X if for any x; y 2 X , there exist
open neighbourhoods U of x and V of y such that j¹
 2 � W 
.U / \ V ¤ ;ºj <1.

Fact 3. If � � Isom.Rd /, then � is discrete if and only if for any x 2 Rd , the orbit
¹
.x/ W 
 2 �º is a discrete subset of Rd . Hence, Aut.Ld / is a discrete subgroup of
Isom.Rd /.

Fact 4. If � � Isom.Rd / is discrete, then � acts properly discontinuously on Rd . (Note
that it is clear directly from the definition that Aut.Ld /, and any subgroup thereof, acts
properly discontinuously on Rd .)

Definition 16. Let � be a discrete subgroup of Isom.Rd /. The translation subgroup T�
of � is the (normal) subgroup of all translations in � . The lattice of translations of � is
the latticeL� WD ¹
.0/ W 
 2 T�º �Rd . We haveL� ŠZr for some r 2 ¹0;1; : : : ; dº; the
integer r is called the rank of the lattice L� . We say that � is a pure-translation subgroup
if � D T� .

Definition 17. A discrete subgroup � � Isom.Rd / is said to be a d -dimensional crystal-
lographic group if its lattice of translations has rank d (or, equivalently, if the orbit space
Rd=� is compact).

Definition 18. If � is a d -dimensional crystallographic group, its point group P� is
defined by

P� D ¹� 2 O.d/ W t ı � 2 � for some t 2 T .Rd /º:

Fact 5. If � is a d -dimensional crystallographic group, then its point group P� is finite,
and P� Š �=T� . Hence, � is a pure-translation subgroup if and only if P� D ¹Idº.
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Remark 4. If � �Aut.Ld / and jZd=�j<1, then � is a d -dimensional crystallographic
group, viewing Aut.Ld / as a subgroup of Isom.Rd / in the usual way (see Remark 3).
Moreover, in this case, L� is a sublattice of Zd (with rank d ), and P� is a subgroup
of Bd .

We will also need two group-theoretic lemmas. The first is well-known; we provide a
proof for completeness.

Lemma 13. If � is a d -dimensional crystallographic group, then �.L�/ D L� for all
� 2 P� , i.e. the point group of � acts on the lattice of translations of � .

Proof. Let � be a d -dimensional crystallographic group and let � 2P� . Let a 2L� . Then
there exists 
 2 T� such that a D 
.0/ and there exists t 2 T .Rd / such that t ı � 2 � .
Since T� is a normal subgroup of � and P� is a group of linear transformations, we have
� ı 
 ı ��1D .t ı �/ ı 
 ı .t ı �/�1 2 T� , and �.a/D �.
.0//D .� ı 
 ı ��1/.0/ 2L� .
Hence, P� acts on L� , as required.

The next lemma is a straightforward consequence of one of the proofs of Bieberbach’s
Third Theorem.

Lemma 14. For each d 2N, there exists kD k.d/2N such that for any rank-d latticeL
in Rd and any group P � O.d/, there are at most k.d/ d -dimensional crystallographic
groups � � Isom.Ld / with L� D L and P� D P , up to conjugation by translations.

Proof. We follow the exposition in [37]. Let L be a rank-d lattice in Rd , and let
P � O.d/. We may assume that there exists at least one d -dimensional crystallographic
group with lattice of translations L and point group P , otherwise we are done. By Fact 5,
P is a finite group. By Lemma 13, P acts on L, and therefore P acts on the torus Rd=L,
which can be viewed as a P -module.

For each d -dimensional crystallographic group � with lattice of translations L and
point group P , we define a map �� W P ! Rd as follows. For each � 2 P , choose a
translation tc W x 7! x C c such that tc ı � 2 � , and define ��.�/ D c. Now let s� W
P ! Rd=L be the composition of �� with the natural quotient map q W Rd ! Rd=L,
x 7! x C L, i.e., define

s�.�/ D ��.�/C L 8� 2 P:

Observe that the map s D s� satisfies the two conditions

s.Id/ D 0; (2)

s.��/ D s.�/C �.s.�// 8�; � 2 P: (3)

In the language of group cohomology, the set of maps s WP !Rd=L satisfying conditions
(2) and (3) is termed the group of 1-cocycles (of P , with the coefficients in Rd=L), and
is denoted by Z1.P;Rd=L/. (It is easily checked that the set of all 1-cocycles forms an
Abelian group under the operation of pointwise addition.)
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Observe also that � can be recovered from s� , since

� D ¹ta ı � W � 2 P; a 2 s�.�/º:

Indeed, clearly � � ¹ta ı � W � 2 P; a 2 s�.�/º. On the other hand, if 
 2 � , then

 D ta ı � for some � 2 P . Let c D ��.�/. Then we have

� 3 ta ı � ı .tc ı �/
�1
D ta�c ;

so a� c 2L and therefore a 2 cCLD s�.�/. Therefore, 
 2 ¹ta ı � W � 2P; a 2 s�.�/º.
It follows that � � ¹ta ı � W � 2 P; a 2 s�.�/º.

In fact, it is easily checked that for any 1-cocycle s, �s WD ¹ta ı � W � 2 P; a 2 s.�/º is
a d -dimensional crystallographic group with lattice of translations L and point group P .
Indeed, the group axioms follow straightforwardly from properties (2) and (3) of s. The
group �s is discrete, since for any x 2 Rd ,

¹
.x/ W 
 2 �sº D
[
�2P

¹�.x/C �.�/C v W v 2 Lº;

which is a discrete subset of Rd , since jP j<1 (see Fact 3). Finally, the lattice of transla-
tions of �s isL, by property (2) of s. Hence, �s is indeed a d -dimensional crystallographic
group with lattice of translations L and point group P .

It follows that the set of d -dimensional crystallographic groups with lattice of transla-
tions L and point group P is in one-to-one correspondence with the group of 1-cocycles
Z1.P;Rd=L/.

We now consider the effect on s� of conjugating � by a translation ta W x 7! x C a,
where a 2 R. Let � 2 P , and let c D ��.�/. Then for all x 2 Rd , we have

.ta ı .tc ı �/ ı t
�1
a /.x/D aC cC �.x � a/D a� �.a/C cC �.x/D .ta��.a/Cc ı �/.x/;

and therefore
ta ı .tc ı �/ ı t

�1
a D tcCa��.a/ ı �:

Passing to the quotient Rd=L, we see that

sta�t�a.�/ D s�.�/C a � �.a/ 8� 2 P;

i.e. conjugating � by ta changes s� by adding to s� the 1-cocycle sa, where we define
sa.�/ D a � �.a/ for all � 2 P . In the language of group cohomology, the set ¹sa W
a 2 Rd º is termed the group of 1-coboundaries (of P , with coefficients in Rd=L), and
is denoted by B1.P;Rd=L/. (Again, it is clear that the set of 1-coboundaries forms an
Abelian group under pointwise addition.) It follows that the set of equivalence classes of
d -dimensional crystallographic groups with lattice of translations L and point group P
(where two such groups are defined to be equivalent if they are conjugate via a translation
by an element of Rd ) is in one-to-one correspondence with the quotient group

Z1.P;Rd=L/=B1.P;Rd=L/; (4)
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which is precisely the 1-dimensional cohomology group of P with coefficients in Rd=L
(denoted H 1.P;Rd=L/). It follows from well-known facts from the theory of group
cohomology that the cohomology group (4) is finite. Indeed, for any finite group P , any
P -module M and any n 2 N, the nth cohomology group of P with coefficients in M ,
denoted Hn.P; M/, is a finitely generated Abelian group with every element of order
dividing jP j, so is finite (see [18]). Alternatively, see [56, p. 130] for an elementary and
direct proof of the finiteness of (4). This completes the proof of the lemma.

3.4. The L1 case, via the theory of integer partitions

In this section, we use known results from the theory of integer partitions to deduce that
the statement of Conjecture 1 holds for d D 1, with r0.1/ D 1.

Observe that a graph is r-locally L1 if and only if it is a vertex-disjoint union of
cycles each of length at least 2r C 2, so choosing an unlabelled n-vertex graph uniformly
at random from the set of all unlabelled, n-vertex graphs which are r-locally L1 cor-
responds precisely to choosing a partition of n uniformly at random from the set of all
partitions of n with each part of size at least 2r C 2. (Recall that if n 2 N, a partition
of n is a non-increasing sequence .�1; : : : ; �l / of positive integers with

Pl
iD1 �i D n. If

� D .�1; : : : ; �l / is a partition of n, the �i ’s are called the parts of �.) For n 2 N, we
let p.n/ denote the number of partitions of n. Hardy and Ramanujan [35] proved in 1918
that

p.n/ D .1CO.1=
p
n//

1

4n
p
3

exp.�
p
2n=3/: (5)

(This was one of the first applications of the celebrated Hardy–Littlewood circle method.
It was also proved independently by Uspensky [60] in 1920.) It suffices for us to prove
the following.

Proposition 15. Let r 2 N. For each n � 2r C 2, let � be a partition chosen uniformly
at random from the set of all partitions of n with each part of size at least 2r C 2. Then
with probability at least 1 � Or .1=n2/, the largest part �1 of the partition � satisfies
�1 D ‚r .

p
n logn/.

Proof. For each s 2 N, let p�s.n/ denote the number of partitions of n with all parts of
size at least s. It follows from results of Fristedt [27] that for any s 2 N, we have

p�s.n/ D ‚s.n
�.s�1/=2/p.n/: (6)

Hence, the probability that a random partition of n has all its parts of size at least 2r C 2
is

p�2rC2.n/

p.n/
D ‚r .n

�.2rC1/=2/: (7)

On the other hand, for any s 2 N, the number of partitions of n with a part of size s
is p.n � s/. Hence, for any m 2 Œn�, the probability that a uniform random partition of n
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has at least one part of size at least m is at most

n
p.n �m/

p.n/

(using the fact that p.n/ is a non-decreasing function of n). Choosing m D C
p
n log n,

and using (5) and performing Taylor expansions, we obtain

n
p.n �m/

p.n/
D n exp

�
�.1C o.1//

�
p
6
C logn

�
D O.1=nC /

if C � 3. Hence, a uniform random partition of n has largest part of size O.C
p
n log n/

with probability at least 1 �O.1=nC / provided C � 3.
Moreover, Erdős and Lehner [23] proved that for any fixed x 2 R, if � is a uniform

random partition of n, then its largest part �1 satisfies

�1 �

p
n logn
c0

C x
p
n

with probability
.1C o.1// exp

�
�
2
c0

exp
�
�
1
2
c0x

��
;

where c0 WD �
p
2=3. It follows from their proof that the same statement holds when

� log logn � x � 2 logn, and therefore

�1 �

p
n logn
c0

�
p
n log logn

with probability at least 1 � O.exp.� 2
c0
.log n/c0=2//. Hence, for all C � 3, a uniform

random partition of n has largest part of size ‚C .
p
n log n/ with probability at least

1�O.1=nC /. By choosing C to be sufficiently large depending on r , it follows from this
and (7) that if we choose a partition of n uniformly at random from the set of all partitions
with all parts of size at least 2r C 2, then with probability at least 1 � Or .1=n2/, the
largest part has size ‚r .

p
n logn/.

The following corollary is immediate.

Corollary 16. Let r 2 N. For each n � 2r C 2, with probability at least 1 �Or .1=n2/,
the largest component of Gn.L1; r/ has order ‚r .

p
n logn/.

Remark 5. Observe that using (5), (6) and the correspondence above, we see that for any
r 2 N, the number a1;r .n/ of unlabelled, n-vertex graphs that are r-locally L1 satisfies

a1;r .n/ D p�2rC2.n/ D ‚r .n
�.2rC1/=2/p.n/ D ‚r .n

�r / exp.�
p
2n=3/;

so
log a1;r .n/ D �

p
2n=3 � r lognCOr .1/:

(Note that this is a much more precise estimate than in Theorem 6.)
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4. Proof of Theorem 6

In this section, we prove Theorem 6, our enumeration result for graphs that are r-loc-
ally Ld , using the strategy sketched in the Introduction.

We first show that the connected unlabelled n-vertex graphs that are r-locally Ld are
in one-to-one correspondence with the conjugacy-classes of subgroups � �Aut.Ld / such
that jZd=�j D n and D.�/ � 2r C 2, provided r � 2C 1¹d�3º.

We recall the following straightforward result, proved in [8].

Proposition 17. Let d 2 N with d � 2, and let G be a connected graph that is 2-loc-
ally Ld . Let v0 2V.G/, and let WLink2.0;Ld /!Link2.v0;G/ be a graph isomorphism
with  .0/ D v0. Then there is at most one covering map p from Ld to G such that
p.x/ D  .x/ for all x 2 N.0/.

(We note that this was stated in [8] under a slightly stronger hypothesis, but it is clear
that the proof in [8] relies only upon G being 2-locally Ld .) We also need the following
lemmas.

Lemma 18. Suppose G1 and G2 are connected graphs which are 2-locally L2. Suppose
p1 W Z2 ! V.G1/ is a normal covering map from L2 to G1, and p2 W Z2 ! V.G2/ is
a normal covering map from L2 to G2. Then G1 is isomorphic to G2 if and only if the
subgroups CT.p1/ and CT.p2/ are conjugate in Aut.L2/.

Proof. Suppose that G1 Š G2. Let f W V.G2/! V.G1/ be a graph isomorphism from
G2 to G1. Then p WD f ı p2 W Z2 ! V.G1/ is a normal covering map from L2 to G1.
Choose � 2 Aut.L2/ such that p1 ı � and p agree with one another on N.0/. Then,
by Proposition 17, we have p1 ı � D p. Hence, CT.p2/ D CT.f ı p2/ D CT.p/ D
CT.p1 ı �/ D ��1 CT.p1/�.

Conversely, suppose CT.p2/ D ��1 CT.p1/� for some � 2 Aut.L2/. Define p D
p1 ı �. Then p W Z2 ! V.G1/ is a normal covering map from L2 to G1, and CT.p/ D
��1 CT.p1/� D CT.p2/. But by Lemma 12, G1 Š L2=CT.p/ and G2 Š L2=CT.p2/ D
L2=CT.p/, so G1 Š G2.

In exactly the same way, we may prove the following.

Lemma 19. Let d 2 N with d � 2. Suppose G1 and G2 are connected graphs which are
3-locally Ld . Suppose p1 W Zd ! V.G1/ is a normal covering map from Ld to G1, and
p2 WZd ! V.G2/ is a normal covering map from Ld toG2. ThenG1 is isomorphic toG2
if and only if the subgroups CT.p1/ and CT.p2/ are conjugate in Aut.Ld /.

Clearly, a subgroup � � Aut.Ld / with minimum displacement at least 2 acts freely
on Ld . Hence, from Theorem 4 and Lemmas 12 and 18, we may deduce the following.

Corollary 20. If r 2 N with r � 2, then the unlabelled, connected, n-vertex graphs
which are r-locally L2 are in an explicit one-to-one correspondence with the conjugacy-
classes of subgroups � � Aut.L2/ with minimum displacement at least 2r C 2 and with
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jZ2=�j D n; this correspondence is given by simply taking the quotient graph of L2 by � ,
i.e., � $ L2=� .

Similarly, using Lemma 19 in place of Lemma 18, we may deduce the following.

Corollary 21. If r; d 2 N with r; d � 3, then the unlabelled, connected, n-vertex graphs
which are r-locally Ld are in an explicit one-to-one correspondence with the conjugacy-
classes of subgroups � � Aut.Ld / with minimum displacement at least 2r C 2 and with
jZd=�j D n; this correspondence is given by taking the quotient graph of Ld by � , i.e.,
� $ Ld=� .

Our next aim is to deal with the subgroups � (as in Corollaries 20 and 21) that are
pure-translation subgroups. Clearly, a pure-translation subgroup � � Aut.Ld / is determ-
ined by its lattice of translations L� , which must be a sublattice of Zd . We now recall
some definitions and basic facts concerning sublattices of Zd .

A sublattice of Zd is a subgroup L of Zd ; such a subgroup must be isomorphic (as
a group) to ZR for some R � d , and the integer R is called the rank of L. If L is a
sublattice of Zd of rank d , then Zd=L is finite, and jZd=Lj is called the index of L; if L
has rank less than d , then its index is infinite. The minimum distance of L is defined to be
min ¹kxk1 W x 2 L n ¹0ºº. If L is a sublattice of Zd and � 2 Aut.Ld /, we say that L is
� -invariant if �.L/ D L.

It is well-known (and easy to see) that there is a one-to-one correspondence between
sublattices of Zd with index n, and upper-triangular, integer matrices B D .bij /i;j2Œd�

with 0 � bij < bi i for all j > i and all i 2 Œd �, and with
Qd
iD1 bi i D n. The matrix B

corresponds to the sublattice for which a Z-basis is the set of columns of B , i.e. the set° jX
iD1

bij ei W j 2 Œd �
±
: (8)

It follows that the number of sublattices of Zd of index n isX
c1;:::;cd2NW
c1:::cdDn

cd�11 cd�22 cd�33 : : : c2d�2cd�1:

Hence, the number of sublattices of Zd of index at most x isX
c1:::cd�x

cd�11 cd�22 cd�33 : : : c2d�2cd�1 DW Nd .x/:

It is well-known that

Nd .x/ D .1CO..log x/=x//
xd

d

dY
iD2

�.i/ (9)

(for an elementary proof of this, see for example [29]). We will use this estimate in what
follows.
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Observe that any pure-translation subgroup � � Aut.Ld / is invariant under conjug-
ation by any translation. Hence, two pure-translation subgroups �; � 0 � Aut.Ld / are
conjugate in Aut.Ld / if and only if they are conjugate via an element of the hyperoc-
tahedral group Bd . Note that if � and � 0 are pure-translation subgroups of Aut.Ld /, and
� 2 Bd , then ����1 D � 0 if and only if �.L�/ D L�0 . Hence, we obtain the following.

Fact 6. The number of conjugacy-classes of pure-translation subgroups � � Aut.Ld /
with jZd=�j D n is precisely the number of Bd -orbits of sublattices L of Zd with
jZd=Lj D n.

Notice that any sublattice of Zd is invariant under both Id and �Id. Our next result
says that for any other element � 2 Bd n ¹˙Idº, a uniform random sublattice of Zd with
index at most x is very unlikely to be invariant under � .

Lemma 22. Let � 2 Bd n ¹˙Idº. Let Nd;� .n/ denote the number of index-n sublattices
of Zd which are invariant under � . Then for x > 1, we haveX

n�x

Nd;� .n/ � Od .1/x
d�1CO.1=log logx/:

Proof. For each i 2 Œd �, let `i D ¹ei ;�eiº, and let Pd D ¹`i W i 2 Œd �º. Observe that Bd
acts on Pd . Let � 2 Bd n ¹˙Idº. Suppose firstly that � acts trivially on Pd . Then, since
� ¤ ˙Id, there exist i; j 2 Œd � such that �.ei / D �ei and �.ej / D ej . Without loss of
generality, we may assume that i D 1 and j D 2. Let L be a � -invariant sublattice of Zd

with index at most x. By the linearity of � , the matrix B corresponding to L satisfies

�b12e1 C b22e2 2 hBi;

where hBi denotes the Z-linear span of the columns of B . This condition holds only if
there exist �1; �2 2 Z such that

�b12e1 C b22e2 D �1b11e1 C �2.b12e1 C b22e2/;

which implies �2 D 1 and �1b11 D 2b12. Since b12 < b11, this condition holds only if
�1 2 ¹0;�1º, i.e. only if b12 D 0 or b12 D b11=2. Therefore,

Nd;� .n/ � 2
X

c1:::cdDn

cd�21 cd�22 cd�33 : : : c2d�2cd�1;

so X
n�x

Nd;� .n/ � 2
X

c1c2:::cd�x

cd�21 cd�22 cd�33 : : : c2d�2cd�1

� 2
X

c2c3:::cd�x

cd�22 cd�33 : : : c2d�2cd�1
X

c1�x=.c2c3:::cd /

cd�21

� 2
X

c2c3:::cd�x

cd�22 cd�33 : : : c2d�2cd�1.x=.c2c3 : : : cd //
d�1
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D 2xd�1
X

c2c3:::cd�x

c�12 c�23 : : : c
�.d�2/

d�1
c
�.d�1/

d

� 2xd�1
�X
c2�x

c�12

��X
c3�x

c�23

�
: : :
�X
cd�x

c
�.d�1/

d

�
D O.xd�1 log x/:

Now suppose instead that � does not act trivially on Pd . Then there exists i 2 Œd � such
that �.`i / ¤ `i . Without loss of generality, we may assume that �.`1/ D `2. Hence,
�.e1/ D ˙e2. Since �.L/ D L if and only if .��/.L/ D L, by considering �� if neces-
sary, we may assume that �.e1/ D e2. Then �.e2/ ¤ ˙e2. There are two cases.

Case 1: �.e2/ D ˙e1.

Case 2: �.e2/ D ˙ej for some j � 3.

First suppose that Case 1 occurs. Then, if �.L/D L, the corresponding matrix B satisfies

b12e2 ˙ b22e1 2 hBi:

This condition holds if and only if there exist �1; �2 2 Z such that

b12e2 ˙ b22e1 D �1b11e1 C �2.b12e1 C b22e2/;

which implies
˙b22 D �1b11 C �2b12; b12 D �2b22;

which implies �1b11 D ˙b22 � b212=b22, which implies

b11 j˙b22 � b
2
12=b22:

Once we have chosen bd;d ; bd�1;d�1; : : : ; b22, there are at most x=.b22b33 : : : bdd /
choices for each of b12; : : : ; b1;d (since we must have b1;j � x=.b22b33 : : : bdd / for
each j � 2), and then there are at most xO.1=log logx/ choices for b11, since

b11 j˙b22 � b
2
12=b22; j˙b22 � b

2
12=b22j � x

2
C 1 � 2x2;

and the divisor function � D �.m/ (D number of divisors of m) satisfies

�.m/ � mO.1=log logm/:

Hence,X
n�x

Nd;� .n/ �
X

c2:::cd�x

cd�22 cd�33 : : : c2d�2cd�1.x=.c2c3 : : : cd //
d�1xO.1=log logx/

D xd�1CO.1=log logx/
X

c2c3:::cd�x

c�12 c�23 : : : c
�.d�2/

d�1
c
�.d�1/

d

� Od .1/x
d�1CO.1=log logx/ log x � Od .1/xd�1CO.1=log logx/:
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Now assume that Case 2 occurs. Without loss of generality, we may assume that j D 3.
Then, if �.L/ D L, the corresponding matrix B satisfies

b12e2 ˙ b22e3 2 hBi:

This condition holds if and only if there exist �1; �2; �3 2 Z such that

b12e2 ˙ b22e3 D �1b11e1 C �2.b12e1 C b22e2/C �3.b13e1 C b23e2 C b33e3/;

which implies

0 D �1b11 C �2b12 C �3b13; b12 D �2b22 C �3b23; ˙b22 D �3b33;

which implies

�1b11 D �b12.b12 � .˙b22=b33/b23/=b22 � b13.˙b22=b33/;

which implies

b11 j �b12.b12 � .˙b22=b33/b23/=b22 � b13.˙b22=b33/:

Note that

j�b12.b12 � .˙b22=b33/b23/=b22 � b13.˙b22=b33/j � 2x
2:

Hence, exactly as before, once we have chosen bdd; bd�1;d�1; : : : ; b22, there are at
most x=.b22b33 : : : bdd/ choices for each of b12; : : : ; b1;d , and then there are at most
xO.1=log logx/ choices for b11. Therefore, by the same calculation as before, we haveX

n�x

Nd;� .n/ � Od .1/x
d�1CO.1=log logx/:

Lemma 22 may be restated in the following appealing way.

Corollary 23. Let � 2 Bd n ¹˙Idº and let x > 1. If L is a lattice chosen uniformly at
random from all sublattices of Zd of index at most x, then

Prob ¹�.L/ D Lº D Od .x�1CO.1=log logx//:

We can now estimate the number of Bd -orbits of sublattices of Zd with index at
most x. Let us write Ld

�x for the set of sublattices of Zd with index at most x (so that
jLd
�xj D Nd .x/), and let us write QLd

�x for the set of Bd -orbits of sublattices of Zd with
index at most x.

Proposition 24. The number j QLd
�xj of Bd -orbits of sublattices of Zd with index at most

x .equivalently, the number of conjugacy-classes of pure-translation subgroups � of
Aut.Ld / with jZd=�j � x/ satisfies

j QLd
�xj D .1COd .x

�1CO.1=log logx///cdx
d ; where cd WD

Qd
iD2 �.i/

2d�1dŠd
:
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Proof. Any sublattice L of Zd is invariant under Id and �Id, but for any � 2 Bd n ¹˙Idº,
the number of sublattices of Zd of index at most x which are invariant under � is at most
Od .x

d�1CO.1=log logx//, by Lemma 22. Since

jBd j D 2
ddŠ D Od .1/;

it follows that all but at most Od .xd�1CO.1=log logx// of the sublattices of index at most x
are not invariant under any element of Bd n ¹˙Idº. For any such sublattice L,

�.L/ D � 0.L/ ” ��1� 0 2 ¹˙Idº;

so there are precisely 2d�1dŠ distinct lattices L0 2 Ld
�x which are in the same Bd -orbit

as L (one for each left coset of ¹˙Idº in Bd ). For any lattice L 2 Ld
�x , there are at most

2d�1dŠ distinct lattices in the same Bd -orbit as L. Hence, the total number j QLd
�xj of

Bd -orbits in Ld
�x satisfies

1

2d�1dŠ
jLd
�xj � j

QLd
�xj �

1

2d�1dŠ
.1 �Od .x

�1CO.1=log logx///jLd
�xj

COd .x
�1CO.1=log logx//jLd

�xj;

so

j QLd
�xj D

1

2d�1dŠ
.1COd .x

�1CO.1=log logx///jLd
�xj

D .1COd .x
�1CO.1=log logx///

Qd
iD2 �.i/

2d�1dŠd
xd

D .1COd .x
�1CO.1=log logx///cdx

d ;

using (9). By Fact 6, j QLd
�xj is precisely the number of conjugacy-classes of pure-transla-

tion subgroups � � Aut.Ld / with jZd=�j � x.

Our next aim is to show that for fixed r 2 N, very few sublattices of Zd of index at
most x have minimum distance at most r .

Lemma 25. If d; r 2 N with d � 2, then the number of sublattices of Zd with index at
most x and minimum distance at most r is

Od;r .x
d�1 log x/:

Proof. Fix an element u 2 Zd with 0 < kuk1 � r . We shall bound the number of sublat-
tices of Zd with index at most x which contain u. Note that u D .u.1/; : : : ; u.d// has at
most r non-zero coordinates. By symmetry, we may assume that u.i/ D 0 for all i > r . If a
lattice L (with index at most x) contains u, then the corresponding matrix B has u 2 hBi,
so there exist �1; : : : ; �r 2 Z such that

u D

rX
jD1

�j

jX
iD1

bij ei :
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Equating i -coordinates, we obtain

u.i/ D

rX
jDi

�j bij .1 � i � r/:

Therefore, ˇ̌̌ rX
jDi

�j bij

ˇ̌̌
D ju.i/j � r .1 � i � r/:

In particular, j�rbrr j � r , so j�r j � r (since brr � 1). We make the following

Claim 1. We have j�r�kj � 2k�1r for all k � 1.

Proof of claim. We use induction on k. For k D 1, we have

j�r�1br�1;r�1 C �rbr;r�1j D ju
.r�1/
j � r;

so
j�r�1jbr�1;r�1 � r C j�r jbr;r�1 � r C r.br�1;r�1 � 1/ D rbr�1;r�1;

so j�r�1j � r (since br�1;r�1 � 1), as needed. For the induction step, suppose that k � 2
and j�r�l j � 2l�1r for all l < k. We haveˇ̌̌ rX

jDr�k

�j bij

ˇ̌̌
D ju.r�k/j � r;

so

j�r�kjbr�k;r�k � r C

rX
jDr�kC1

j�j jbj;r�k � r C
� rX
jDr�kC1

j�j j
�
.br�k;r�k � 1/

� r C .1C 1C 2C � � � C 2k�2/r.br�k;r�k � 1/

D r C 2k�1r.br�k;r�k � 1/ � 2
k�1rbr�k;r�k ;

so j�r�kj � 2k�1r , as required.

It follows that there are at most

.2r C 1/

r�1Y
kD1

.2kr C 1/ D Or .1/

choices for .�1; : : : ; �r /. Fix one such choice. Since u¤ 0, not all of �1; : : : ; �r are zero.
Let

J D ¹j W �j ¤ 0º D ¹j1; : : : ; jsº:

Then ˇ̌̌ sX
lD1

�jlb1jl

ˇ̌̌
� r: (10)
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Observe that once we have chosen bdd; bd�1;d�1; : : : ; b22, there are at most
x=.b22b33 : : : bdd/ choices for each b1j with j ¤ j1. Once we have chosen each b1j
with j ¤ j1, b1j1 is determined by the equation

u.1/ D

rX
jD1

�j b1j :

Hence, summing over all the Or .1/ possible choices of .�1; : : : ; �r /, the number of sub-
lattices of Zd with index at most x and containing u is at most

Or .1/
X

c2:::cd�x

cd�22 cd�33 : : : c2d�2cd�1.x=.c2c3 : : : cd //
d�1

D Or .1/x
d�1

X
c2:::cd�x

c�12 c�23 : : : c
�.d�2/

d�1
c
�.d�1/

d
� Od;r .1/x

d�1 log x:

Crudely, the number of choices for u is at most

rX
iD1

�
d

i

�
.2r C 1/i D Od;r .1/;

since u has at most r non-zero coordinates, and each of these has modulus at most r .
Hence, the total number of sublattices of Zd with index at most x and minimum distance
at most r is Od;r .1/xd�1 log x, as required.

Our aim is now to show that there are very few conjugacy-classes of subgroups � of
Aut.Ld /with jZd=�j � x andD.�/� 2r�.d/C 2, and which are not conjugacy-classes
of pure-translation subgroups. (See Theorem 6 for the definition of r�.d/.)

We need the following simple claim.

Claim 2. If � � Aut.Ld / with D.�/ � d C 1, then �Id … P� .

Proof. Let � � Aut.Ld / and suppose that �Id 2 P� . Then 
 W x 7! v � x 2 � for some
v 2 Zd . Definewi D bvi=2c for each i 2 Œd �. Then dLd .w;
.w//� d , soD.�/� d .

By Corollaries 20 and 21, for each d � 2, the finite, connected graphs that are r-
locally Ld (where r � 2 if d D 2 and r � 3 otherwise) correspond to subgroups � �
Aut.Ld / with D.�/ � 2r C 2. If r � r�.d/, where r�.d/ is defined as in Theorem 6,
then we have D.�/ � 2r C 2 � d C 1. Hence, all the subgroups � relevant to us have
�Id … P� . We remark that this is the only place where we rely upon r�.d/ growing
linearly with d ; the rest of our proof works with r0.d/ WD 2C 1¹d�3º in place of r�.d/.
The subgroups � � Aut.Ld / with jZd=�j <1 and P� D ¹Id;�Idº are precisely those
whose elements are translations and involutions of the form x 7! v � x; in this case,
Ld=� is r-locally Ld if and only if the lattice of translations of � has minimum distance
at least 2r C 2, and whenever .x 7! x � v/ 2 � , v has at least 2r C 2 odd components.
The number of conjugacy-classes of such subgroups with jZd=�j � x is ‚.xd /, as in
the pure-translation case, but the enumeration of conjugacy-classes of these subgroups
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(to the required degree of precision) is rather long-winded, so for brevity and clarity of
exposition we prefer to rule them out by taking r�.d/ � d.d � 1/=2e.

For brevity, let us say that a subgroup � � Aut.Ld / with jZd=�j < 1 is highly
symmetric if P� n ¹Id;�Idº ¤ ;. Recall that � is a pure-translation subgroup if and only if
P� D ¹Idº. Hence, all the subgroups � relevant to us either are pure-translation subgroups
or are highly symmetric.

Our next lemma says that if two subgroups of Aut.Ld / are conjugate via a translation
by a vector in Rd , then this vector can be taken to have entries in .Z [ .Z C 1=2//d ,
implying that when we restrict to subgroups of Aut.Ld /, the equivalence classes supplied
by Lemma 14 (where two crystallographic groups are ‘equivalent’ if they are conjugate
via a translation by a vector in Rd ) split into at most 2d conjugacy-classes in Aut.Ld /.

Claim 3. Let �1; �2 � Aut.Ld / with �2 D t�1t
�1 for some translation t by a vector

in Rd . Then there exists b 2 Rd such that 2b 2 Zd and �2 D tb�1t�b , where tb W x 7!
x C b denotes translation by b.

Proof. Let t W x 7! x C a. For any vector v 2 Rd , let tv W x 7! x C v denote translation
by v. Choose b 2 Rd such that 2b 2 Zd , jbi � ai j � 1=4 for all i 2 Œd �, and bi 2 Z if
ai ˙ 1=4 2 Z. Let �3 D tb�1t�b D tb�a�2t�.b�a/. We first observe that �3 � Aut.Ld /.
Indeed, let 
 2 �1; it suffices to prove that tb
 t�b 2 Aut.Ld /. Write 
.x/ D Ax C c,
where A 2 Bd and c 2 Zd . Since tb
 t�b is an isometry of Rd , it suffices to prove that
.tb
 t�b/.x/ 2 Zd for all x 2 Zd , i.e.

b C Ax � Ab C c 2 Zd 8x 2 Zd :

This is true if and only if b �Ab 2Zd . Note that �2 D ta�1t�a �Aut.Ld /, and therefore
a�Aa 2 Zd . Since A 2 Bd , for each i 2 Œd � there exist j 2 Œd � and ı 2 ¹�1; 1º such that
.Ax/i D ıxj for all x 2Zd . We have .a�Aa/i D ai � ıaj 2Z (since a�Aa 2Zd ), and
therefore, by our choice of b, we have .b � Ab/i D bi � ıbj 2 Z. Hence, b � Ab 2 Zd ,
as required.

It suffices now to prove that �3 D �2. Let x 2 Zd and 
 2 �2. Write 
.x/ D Ax C c
where A 2 Bd and c 2 Zd , and define " D b � a 2 Rd . Define

w D .tb�a
 t�.b�a//.x/ � 
.x/ D .t"
 t�"/.x/ � 
.x/:

Since tb�a�2t�.b�a/ D �3 � Aut.Ld /, we have w 2 Z3. Moreover,

w D .t"
 t�"/.x/ � 
.x/ D "C A.x � "/C c � Ax � c D " � A":

For each i 2 Œd �, we have

jwi j D j." � A"/i j D j"i � .A"/i j � j"i j C j.A"/i j D j"i j C j"j j

for some j 2 Œd �. By our choice of b, we have j"kj � 1=4 for all k 2 Œd �, and therefore
jwi j � 1=2 for all i 2 Œd �. Since w 2 Zd , it follows that w D 0. Hence, tb�a
 t�.b�a/ D 

for all 
 2 �2, and therefore �3 D �2, as required.
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Our next result says that there are very few conjugacy-classes of highly symmetric
subgroups � �Aut.Ld /with jZd=�j � x (compared to the number of conjugacy-classes
of pure-translation subgroups � � Aut.Ld / with jZd=�j � x).

Corollary 26. Let d 2 N with d � 2. The number of conjugacy-classes of highly sym-
metric subgroups � � Aut.Ld / with jZd=�j � x is at most Od .1/xd�1CO.1=log logx/.

Proof. Let � � Aut.Ld / with jZd=�j � x. Then, since �=T� Š P� , we have

jZd=L� j D jZ
d=T� j � jP� j jZ

d=�j � 2ddŠx D Od .x/: (11)

(We note that this holds whether or not � is highly symmetric.) Now assume in addition
that � is highly symmetric. ThenL� is invariant under some element ofBd n ¹Id;�Idº, so
by Lemma 22, L� there are at most Od .1/xd�1CO.1=log logx/ possibilities for L� . Trivi-
ally, since P� � Bd , there are at most 2jBd j D 2dŠ2

d
possibilities for P� . By Lemma 14,

for any fixed sublattice L of Zd and any fixed P � Bd , there are at most k.d/ sub-
groups � � Aut.Ld / with L� D L and P� D P , up to conjugation by translations (by
vectors in Rd ). If �1; �2 � Aut.Ld / and �2 D t�1t

�1 for some translation t W x 7!
x C c 2 T .Rd /, we need not have c 2 Zd , but by Claim 3, we may assume that 2c 2 Zd .
Hence, up to conjugation by translations in T .Zd /, there are at most 2dk.d/ subgroups
� � Aut.Ld / with L� D L and P� D P . Hence, there are at most

Od .1/x
d�1CO.1=log logx/

� 2dŠ2
d

� 2d � k.d/ D Od .1/x
d�1CO.1=log logx/

possibilities for the conjugacy-class of � in Aut.Ld /, as required.

Putting everything together, we obtain the following two lemmas.

Lemma 27. Let r � 2, and let 
2;r .n/ denote the number of connected, unlabelled, n-
vertex graphs which are r-locally L2. ThenX

n�x


2;r .n/ D .1COr .x
�1CO.1=log logx///1

4
�.2/x2:

Proof. The left-hand side is precisely the number of connected, unlabelled graphs on at
most x vertices that are r-locally L2. By Corollary 20, this is precisely the number of
conjugacy-classes of subgroups � � Aut.L2/ which have jZ2=�j � x and which have
minimum displacement at least 2r C 2. If � has minimum displacement at least 4, then
by Claim 2, �Id … P� , so either � is a pure-translation subgroup, or else � is highly
symmetric. Applying Proposition 24, Lemma 25 and Corollary 26 in the case d D 2, we
see that the aforesaid number is

j QL2
�xj �Or .x log x/CO.x1CO.1=log logx// D .1COr .x

�1CO.1=log logx///1
4
�.2/x2;

as required.

Similarly, we obtain the following.
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Lemma 28. Let d; r 2 N with d � 3 and r � r�.d/. Let 
d;r .n/ denote the number of
connected, unlabelled, n-vertex graphs which are r-locally Ld . ThenX
n�x


d;r .n/ D .1COd;r .x
�1CO.1=log logx///cdx

d ; where cd D
1

2d�1dŠd

dY
iD2

�.i/:

Proof. The left-hand side is the number of connected, unlabelled graphs on at most x
vertices that are r-locally Ld . By Corollary 21, this is precisely the number of conjugacy-
classes of subgroups � � Aut.Ld / which have jZd=�j � x and which have minimum
displacement at least 2r C 2. If � has minimum displacement at least 2r�.d/ C 2 �
d C 1, then by Claim 2, �Id … P� , so either � is a pure-translation subgroup, or else �
is highly symmetric. Applying Proposition 24, Lemma 25 and Corollary 26, we see that
the aforesaid number is

j QLd
�xj �Od;r .x

d�1 log x/COd .xd�1CO.1=.log logx//

D .1COd;r .x
�1CO.1=log logx///cdx

d ;

as required.

We now use a generating function argument to deduce Theorem 6. Recall that ad;r .n/
denotes the number of unlabelled (possibly disconnected) graphs on n vertices which are
r-locally Ld . We appeal to the following well-known fact (see for example [26, p. 29]).

Fact 7. Let � be a set, and letw W �!N be a function. (If S 2 � , we callw.S/ the weight
of S .) Suppose that � contains exactly 
.n/ elements of weight n, where 
.n/ 2 N [ ¹0º
for each n 2 N. If T is a multiset of elements of � , define the weight of T to be the sum
of the weights of the elements of T (counted with their multiplicities). For each n 2 N,
let a.n/ denote the number of weight-nmultisets of elements of � . Define a.0/D 1. Then
the (ordinary) generating function of a.n/ satisfiesX

n�0

anz
n
D

1Y
jD1

.1 � zj /�
.j /:

Applying this with � being the set of all finite, connected, unlabelled graphs that are
r-locally Ld , and with w.G/ being the number of vertices of a graph G, we obtainX

n�0

ad;r .n/z
n
D

1Y
jD1

.1 � zj /�
d;r .j /:

To estimate ad;r .n/ from our knowledge of 
d;r .n/, we use a variant of the following
result of Brigham.

Theorem 29 (Brigham, [17]). Suppose .b.n//1nD0 is a sequence of non-negative integers
with generating function satisfying

1X
nD0

b.n/zn D

1Y
jD1

.1 � zj /�
.j /;
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where .
.j //1jD1 is a sequence of non-negative integers satisfyingX
j�x


.j / � Kxu.log x/v

for some constants K > 0, u > 0, v 2 R. Define

B.n/ D

nX
kD0

b.n/:

Then

logB.n/ �
1

u

�
Ku�.uC 2/�.uC 1/

� 1
uC1 .uC 1/

u�v
uC1 n

u
uC1 .logn/

v
uC1 :

If, in addition, every sufficiently large positive integer can be partitioned into integers in
the set ¹n W 
.n/ � 1º, then

log b.n/ �
1

u

�
Ku�.uC 2/�.uC 1/

� 1
uC1 .uC 1/

u�v
uC1 n

u
uC1 .logn/

v
uC1 :

.Here, � denotes the usual �-function, and � the Riemann zeta function; all logarithms
are to base e./

Making a slightly different choice of the parameters in Brigham’s proof (and appeal-
ing to a theorem of Odlyzko [55] instead of the theorem of Hardy and Ramanujan,
Theorem A in [34], which Brigham uses) yields the following theorem in the case v D 0.
(This is an exercise in well-known techniques in Tauberian theory, and so for brevity, we
omit the proof.)

Theorem 30. Suppose .b.n//1nD0 is a sequence of non-negative integers with generating
function satisfying

1X
nD0

b.n/zn D

1Y
jD1

.1 � zj /�
.j /;

where .
.j //1jD1 is a sequence of non-negative integers satisfyingX
j�x


.j / D .1CO.x�"//Kxu

for some constants K > 0, u > 0, " 2 .0; 1�. Define

B.n/ D

nX
kD0

a.n/:

Then there exists ı > 0 such that

logB.n/ D .1CO.n�ı//
1

u

�
Ku�.uC 2/�.uC 1/

� 1
uC1 .uC 1/

u
uC1 n

u
uC1 :
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If, in addition, every sufficiently large positive integer can be partitioned into integers in
the set ¹n W 
.n/ � 1º, then

log b.n/ D .1CO.n�ı//
1

u

�
Ku�.uC 2/�.uC 1/

� 1
uC1 .uC 1/

u
uC1 n

u
uC1 :

It is easy to see that 
d;r .n/ � 1 for all n sufficiently large depending on d and r ;
indeed, the Cayley graph of Zn generated by the set

¹1; .2r C 1/; .2r C 1/2; : : : ; .2r C 1/d�1º [ ¹�1;�.2r C 1/; : : : ;�.2r C 1/d�1º (12)

is connected and r-locally Ld for all n � .2r C 1/d . (We thank an anonymous referee for
pointing this out, since it simplifies the argument in our original manuscript.) Therefore,
certainly, any sufficiently large positive integer can be partitioned into integers in the set
¹n W 
d;r .n/ � 1º. Hence, combining Lemmas 27 and 28 and Theorem 30 (with u D d ,
K D cd and " D 1=2) yields Theorem 6.

We now use some of the tools above to prove Theorem 7. Much of the proof will be
fairly standard to readers familiar with complexity theory, but we give it in full for the
convenience of others.

Proof of Theorem 7. Let d; r 2 N with d � 2 and r � 2C 1¹d�3º, and let n 2 N. We
write poly.n/ to denote a quantity that is polynomial in n (for fixed d; r 2 N). We sample
the random graph Gn.Ld ; r/ as follows.

We first enumerate, in time poly.n/, the connected unlabelled graphs on at most n
vertices that are r-locally Ld . By Corollaries 20 and 21, these are in (explicit) one-to-one
correspondence with the conjugacy classes of subgroups � � Aut.Ld / with minimum
displacement at least 2r C 2 and with jZd=�j � n, this correspondence being given by
taking the quotient graph Ld=� . If � � Aut.Ld / with jZd=�j � n, then by (11) we
have jZd=T� j � 2ddŠn. Note that T� can be identified with the corresponding sublattice
ƒT� of Zd (which has index at most 2ddŠn). Recall from (8) that for any x > 0, the
sublattices of Zd of index at most x are in (explicit) one-to-one correspondence with
the upper-triangular, integer matrices B D .bij /i;j2Œd� with 0 � bij < bi i for all j > i

and
Qd
iD1 bi i � x. This correspondence is given by taking the sublattice of Zd spanned

(over Z) by the columns of the corresponding matrix B:

B $ Span
° jX
iD1

bij ei W j 2 Œd �
±
: (13)

We enumerate all the sublattices of Zd with index at most 2ddŠn in time poly.n/, by
listing the corresponding matrices. Recall from Fact 2 that Aut.Ld / D T .Zd / Ì Bd .
We can represent the elements of Bd as d by d matrices with entires in ¹0;˙1º, and
therefore we can enumerate them in time Od .1/. For any subgroup � � Aut.Ld / with
jZd=�j <1, we have �=T� Š P� � Bd . Therefore, the normal subgroup T� has index
at most jBd j D 2ddŠ in � , which in turn, crudely, has index at most .2ddŠ/2n in Aut.Ld /,
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as does T� . Hence, for each choice � of T� , the corresponding subgroup � must be such
that

� C �; � \ T .Zd / D �; Œ� W �� � 2ddŠ: (14)

Let

F D ¹� � Aut.Ld / W (14) holds for some subgroup � of translations

satisfying jZd=�j � 2ddŠnº;

i.e. F is the union (over all possible choices of �) of the set of subgroups � satisfy-
ing (14). Note that some subgroups � in F may have jZd=�j > n, though all necessarily
have jZd=�j � 2ddŠn. The elements of F can, however, easily be enumerated in time
poly.n/. We may do this, crudely, by finding representatives for the (left) cosets of� in �
which are of the form �t , where � 2 Bd and t D tv is a translation by an element v 2 Zd

satisfying the ‘box’ condition

0 � v < bi;i � n 8i 2 Œd �: (15)

(Here, B is the matrix corresponding to the lattice ƒ D ƒ� of �.) Indeed, for each
possible index M � 2ddŠ, and for tuples .�1; : : : ; �M / 2 .Bd /M and .t1; : : : ; tM / 2
.T .Zd //M satisfying (15) and with t1 D �1 D Id, observe that ¹�i tiºi2ŒM� forms a set
of distinct (left) coset representatives of � as an index-M normal subgroup of some
� � Aut.Ld / if and only if the following three conditions are satisfied:

(i) �i .ƒ/ D ƒ for all i 2 ŒM � (guarantees normality of � in �);

(ii) for all i 2 ŒM �, there exists j 2 ŒM � such that �i ti�j tj 2 � (guarantees closure of �
under taking inverses);

(iii) for all i; j 2 ŒM �, there exists k 2 ŒM � such that t�1
k
��1
k
�i ti�j tj 2 � (guarantees

closure of � under multiplication).

For brevity, for any m; d 2 N we define

Boxd .m/ D ¹x 7! x C v W 0 � vi < m 8i 2 Œd �º:

The condition (15) implies that the translation t satisfies t 2 Boxd .n/. Now, condition (i)
can be checked by checking that for each i 2 ŒM �, we have �i .b/ 2 ƒ for each column b
ofB . This in turn can be done by solving (for x 2Zd ) the equationBxD �i .b/, or verify-
ing that no solution exists; solving this has complexity Od .log n log log n/, since integer
division (for integers at most n) has complexity O.log n log log n/ (see [6, 36]). Hence,
the total time required for checking condition (i) is Od .M log n log log n/ D poly.n/,
summing over all d columns of B and over all i 2 ŒM �. Condition (ii) can be checked in
time poly.n/ by checking, for each i 2 ŒM �, whether there exists j 2 ŒM � with �i�j D Id
(which guarantees that �i ti�j tj 2 T .Zd /), and then (if this holds) checking whether there
exists such a j for which the translation �i ti�j tj is a translation by an element of ƒ
(noting that �i ti�j tj 2 Boxd .2n/). Condition (iii) can be checked in time poly.n/, by
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checking, for each i; j 2 ŒM �, whether there exists k 2 ŒM � with �i�j D �k (which guar-
antees that t�1

k
��1
k
�i ti�j tj 2 T .Zd /), and then (if this holds), checking whether there

exists such a k for which the translation t�1
k
��1
k
�i ti�j tj is a translation by an element of

ƒ (noting that t�1
k
��1
k
�i ti�j tj 2 Boxd .3n/).

The above immediately implies that jF j � poly.n/. We now claim that F can be
partitioned into Aut.Ld /-conjugacy-classes in time poly.n/. Indeed, for �1; �2 2 F ,
let ¹gi;1T�i ; gi;2T�i ; : : : ; gi;MiT�i º be the set of (distinct, left) cosets of T�i in �i (for
i D 1; 2), where each gi;j can be written in the form �t with � 2 Bd and t 2 Boxd .n/. By
the definition of F , we have M1;M2 � 2

ddŠ. Now observe that �1 and �2 are conjugate
in Aut.Ld / if and only if the following three conditions hold:

(1) M1 DM2;

(2) there exists h 2 Aut.Ld / such that h�1T�1h D T�2 ;

(3) for each j 2 ŒM1� there exists ` D `.j / 2 ŒM1� such that hg1;jh�1T�2 D g2;`T�2 ,
or equivalently g�1

2;`
hg1;jh

�1 2 T�2 .

Since T�2 is a normal subgroup of �2, the conditions h�1T�1h
�1D T�2 and g�1

2;`
hg1;jh

�1

2 T�2 (in (2) and (3) above) are invariant under multiplying h on the left by an
element of T�2 . (For t 2 T�2 , we have g�1

2;`
tg2;` 2 T�2 , so g�1

2;`
hg1;jh

�1 2 T�2 iff
.g�1
2;`
tg2;`/.g

�1
2;`
hg1;jh

�1/.t�1/ 2 T�2 iff g�1
2;`
.th/g1;j .th/

�1 2 T�2 .) The subgroup T�2
has index at most .2ddŠ/2n in Aut.Ld /, so to check whether �1 and �2 are conjugate in
Aut.Ld /, we need only check .2ddŠ/2n possibilities for h andM1ŠD .2

ddŠ/Š possibilities
for the sequence .`.j / W j 2 ŒM1�/. For hD �t where � 2 Bd and t 2 Boxd .n/, we have
h�1T�1h D T�2 iff �.ƒ�2/ D ƒ�1 , a condition which can be checked in time poly.n/ in
the same way as condition (i) above. Similarly, writing g1;j D �1t1 and g2;` D �2t2, we
have g�1

2;`
hg1;jh

�1 2 T�2 iff ��1�2� D �1 and t�12 ��12 �t�1t1t
�1��1 2 T�2 , conditions

that can be checked in time poly.n/ similarly to condition (iii) above.
For each of the subgroups � 2 F found in the previous steps (up to conjugacy), we

(simultaneously) check whether � has minimum displacement at least 2r C 2, find the
quotient graph Ld=� , and verify that Ld=� has at most n vertices, all in time poly.n/,
as follows. We fix a set ¹g1; : : : ; gM º of (distinct, left) coset representatives of T� in � ,
where each gi can be written in the form �t with � 2 Bd and t 2 Boxd .n/; note that
M � 2ddŠ. We first construct the quotient graph Ld=T� (which is the quotient lattice
of Ld inside a d -dimensional torus), using the correspondence (13). We may view Ld=T�
as a (generalised) discrete torus graph. The vertex-set of Ld=T� is Zd=ƒT� , which is
naturally identified with the discrete cuboid

C WD

dY
iD1

¹0; 1; : : : ; bi i � 1º

via the quotient map q W Zd ! Zd=ƒT� that reduces modulo ƒT� , i.e., modulo the Z-
span of the columns of the matrix B . The edge-set of Ld=T� is simply ¹¹w; q.w C ei /º W
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w 2 C; i 2 Œd �º. For any w 2 C and any i 2 Œd �, q.w C ei / can be evaluated in time
Od .logn log logn/ by reducing modulo the Z-span of the columns of the matrix B .

Observe that the action of � on Ld induces an action of �=T� on the discrete torus
Ld=T� ; these two actions have the same quotient graph, namely Ld=� . Since Ld=T�
has at most 2ddŠn vertices and j�=T� j DM � 2ddŠ, the action of �=T� on the discrete
torus Ld=T� can be determined in time Od .n/ (using the left coset representatives gi ),
and therefore the quotient graph Ld=� can be determined in time poly.n/. (For each
i 2 ŒM � and each w 2 C , we have maxj2Œd� j.gi .w//j j � 2n and therefore q.gi .w// can
be evaluated in time Od .log n log log n/.) Checking that � has minimum displacement
at least 2r C 2 is equivalent to simply checking directly that the quotient graph Ld=� is
r-locally Ld , which can be done inOd;r .n/ steps since Ld=� has at most n vertices, and
each ball of radius r in Ld=� contains Od;r .1/ vertices.

The rest of the proof follows the method of Nijenhuis and Wilf [54]. Let H1; : : : ;HN
be an enumeration of the connected, unlabelled graphs on at most n vertices that are
r-locally Ld , with jH1j � � � � � jHN j; note that jHN j � n and that N � poly.n/. For
notational convenience, we define an ordering � on the set of such graphs, defined by
Hi � Hj iff i � j (and Hi � Hj iff i < j ). For each i 2 ŒN � and each k � n, we define
ak;Hi to be the number of unlabelled graphs on k vertices that are r-locally Ld , have at
least one component equal to Hi , and no components equal to any Hj with j > i . We
note the recurrence

ak;Hi D
X
j�i

ak�jHi j;Hj 8k � n;

which simply arises from removing a component isomorphic to Hi and considering all
possible choices for the ‘next largest’ component (‘next largest’ meaning, of course, with
respect to the ordering �). It is clear that this recurrence can be used to calculate (using
poly.n/ addition operations), all the numbers ak;Hi (for k � n, i � N ).

To sample a graph G, we perform the following process. We first choose the largest
component H of G (largest with respect to the ordering �), according to the probability
distribution

Prob ¹H D Hiº D
an;HiPN
jD1 an;Hj

:

We note that this distribution may be simulated by rolling (once) a fair, poly.n/-sided die,
which can in turn be simulated by flipping poly.n/ biased coins with rational biases (see
e.g. [25]). We then simply repeat this process, choosing the largest componentH 0 (largest
with respect to �) of G � V.H/ according to the probability distribution

Prob ¹H 0 D Hiº D
an�jH j;HiPN
jD1 an�jH j;Hj

;

etc. It is easy to see that this process generates the uniform random graph Gn.Ld ; r/ in
time poly.n/.
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5. Cayley graphs of torsion-free groups of polynomial growth

In this section, we consider the (much) more general case where Ld is replaced by a
Cayley graph of a torsion-free group of polynomial growth. Our principal objectives here
(which we accomplish in order) are to prove Theorems 8, 9 and 10.

Before proving Theorem 8, we first outline some of the notation, definitions and prior
results we will use.

Let � be a finitely generated group. For each n 2 N, we let an.�/ 2 N [ ¹0º denote
the number of subgroups of � with index n. We say that � has polynomial subgroup
growth if there exists ˛ � 0 such that an.�/ � n˛ for all n 2 N.

We need the following well-known lemma (see e.g. [51]).

Lemma 31. Let � be a finitely generated, virtually nilpotent group. Then � has polyno-
mial subgroup growth.

We recall the celebrated theorem of Gromov [30] characterizing the groups of poly-
nomial growth.

Theorem 32 (Gromov). Let � be a finitely generated group. Then � has polynomial
growth if and only if it is virtually nilpotent.

We need the following result of De La Salle and Tessera [21] (relying on a theorem of
Trofimov).

Proposition 33. Let � be a finitely generated, torsion-free group of polynomial growth,
and let F D Cay.�; S/ be a connected, locally finite Cayley graph of � . Then the vertex-
stabilizers of Aut.F / are finite.

The following is an immediate consequence of Proposition 33.

Corollary 34. Let � be a finitely generated, torsion-free, virtually nilpotent group, and
let F D Cay.�; S/ be a connected, locally finite Cayley graph of � . Then

ŒAut.F / W �� <1;

and therefore Aut.F / is virtually nilpotent.

Lemma 31, Theorem 32 and Corollary 34 together imply the following.

Corollary 35. Let � be a finitely generated group of polynomial growth, and let F be
a connected, locally finite Cayley graph of � . Then Aut.F / has polynomial subgroup
growth.

The following is an immediate consequence of Theorem 5 and Corollary 35.

Proposition 36. Let F be a connected, locally finite Cayley graph of a finitely gener-
ated, torsion-free group of polynomial growth. Then there exist r0 D r0.F / 2 N and
˛ D ˛.F / � 0 such that the number of unlabelled, connected graphs on at most x ver-
tices that are r0-locally F is at most x˛ .
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For each n; r 2 N, let 
F;r .n/ denote the number of connected, unlabelled graphs on
n vertices that are r-locally F ; Proposition 36 says that 
F;r .n/ � n˛ if r � r0. Similarly,
for each n 2 N, let bF;r .n/ denote the number of (not necessarily connected) unlabelled
graphs on n vertices that are r-locally F , and define bF;r .0/ D 1. (We regard the empty
graph to be r-locally F .) When F and r are understood, for brevity, we let B.n/ denote
the set of all unlabelled, n-vertex graphs that are r-locally F , so that bF;r .n/ D jB.n/j.

We now introduce the following.

Definition 19. Let F be a connected, locally finite Cayley graph of a finitely generated
group � , and let r 2N. We say that a subgroupƒ�� is good (for F and r) if Œ� Wƒ�<1
and ƒ \ BF .Id; 2r/ D ;.

Lemma 37. Let F be a connected, locally finite Cayley graph of a finitely generated
group � , and let r 2 N. If ƒ is a good subgroup of � , then F=ƒ .where ƒ acts on
V.F / D � by right multiplication/ is connected, r-locally F and vertex-transitive. In
particular, if � has a good subgroup of index n, then 
F;r .n/ � 1.

Proof. All properties are clear except (possibly) for the vertex-transitivity. To see the
latter, observe that the vertices of F=ƒ correspond to the left cosets of ƒ in � . Now let
F D Cay.�; S/. For any 
; x; y 2 � , xƒ is joined to yƒ in F=ƒ if and only if there exist

1; 
2 2 ƒ such that .x
1/�1.y
2/ 2 S , which holds if and only if there exist 
1; 
2 2 ƒ
such that .
x
1/�1.
y
2/ 2 S , i.e. if and only if 
xƒ is joined to 
yƒ in F=ƒ. Hence,
for any 
 2 � , the map xƒ 7! 
xƒ is an automorphism of F=ƒ, and the left action of �
is clearly transitive on the left cosets of ƒ in � .

Recall the following.

Definition 20. Let P be a property of groups, and let � be a group. We say that � is
residually P if for any 
 2 � n ¹Idº, there exists a normal subgroup N C � such that

 … N and �=N has the property P .

It is easy to see that if � is a finitely generated, residually finite group and F is a
connected, locally finite Cayley graph of � , then for every r 2 N, there exists a finite
graph that is r-locally F (see e.g. [28]). Interestingly, in the other direction, De La Salle
and Tessera [21, Corollary K] proved that if � is a finitely presented group with an ele-
ment of infinite order, and for every connected, locally finite Cayley graph F of � and
every r 2 N, there exists a graph that is r-locally F , then � must be residually finite. It
follows, for example, that there exists a connected, locally finite Cayley graph F of the
Baumslag–Solitar group BS.2; 3/, and a positive integer r , such that no finite graph is
r-locally F . We need the following slightly stronger variant of the first statement (under
stronger hypotheses).

Proposition 38. Let � be a finitely generated group of polynomial growth, and let F be
a connected, locally finite Cayley graph of � . Then there exists h1 2 N such that for any
multiple n of h1, there is a vertex-transitive, connected, n-vertex graph that is r-locally
F .so in particular, 
F;r .n/ � 1 whenever h1 jn/.
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Proof. Let BF .Id; 2r/ D ¹
1; : : : ; 
N º. By Gromov’s theorem (Theorem 32), � is vir-
tually nilpotent. Let � 0 � � be such that � 0 is nilpotent and Œ� W � 0� < 1. Since � 0

is a finitely generated nilpotent group, it has finite torsion subgroup, which for con-
venience we denote by ¹
NC1; : : : ; 
NCM º. (Note that we may have 
i D 
j for some
i � N and j > N .) By a theorem of Hirsch [38], � 0 is residually finite, and so for each
i 2 ŒN CM� there exists a subgroup ƒi � � 0 such that gi … ƒi and Œ� 0 W ƒi � < 1.
Define ƒ D

TNCM
iD1 ƒi ; then ƒ \ BF .Id; 2r/ D ; and Œ� 0 W ƒ� <1 (so Œ� W ƒ� <1),

and therefore ƒ is a good subgroup of �; moreover, � is torsion-free and nilpotent.
Let h1 WD Œ� W ƒ�. Since ƒ is a finitely generated, torsion-free nilpotent group, it has

a subgroup of every finite index; every such subgroup is a good subgroup of � . Hence,
� has a good subgroup of every index dividing h1. The proposition now follows from
Lemma 37.

We also need the following.

Lemma 39. Let � be a finitely generated, torsion-free group of polynomial growth, let
F be a connected, locally finite Cayley graph of � and let r 2 N. Then there exists n0 D
n0.F; r/ 2 N such that for any n 2 N with n � n0, there exists an n-vertex graph that is
r-locally F .i.e., bF;r .n/ � 1 for all n � n0/.

Proof. It suffices to show that the highest common factor of the set of integers ¹n 2 N W

F;r .n/ � 1º is equal to 1. By Lemma 37, it suffices to find a finite set of good subgroups
of � whose indices have highest common factor 1.

As in the proof of Proposition 38, let BF .Id; 2r/ D ¹
1; : : : ; 
N º, and let � 0 � � be
such that � 0 is nilpotent and Œ� W � 0� <1. Since � 0 is nilpotent, it is residually finite, and
so for each i 2 ŒN � there exists a subgroupƒi � � 0 such that gi … ƒi and Œ� 0 W ƒi � <1.
DefineƒD

TN
iD1ƒi ; thenƒ\BF .Id; 2r/D ; and Œ� 0 Wƒ� <1 (so Œ� Wƒ� <1), and

therefore ƒ is a good subgroup of � .
We now seek a finite-index subgroup ƒ0 � ƒ such that ƒ0 C � and for all i 2 ŒN �,


iƒ
0 does not have prime-power order in �=ƒ0. If ƒ itself satisfies this condition, then

we may take ƒ D ƒ0; otherwise, by relabelling the 
i if necessary, we may assume that

1ƒ; : : : ; 
kƒ all have prime-power order in �=ƒ, where k 2 ŒN �, and 
iƒ does not have
prime-power order in �=ƒ for any i > k. Let 
iƒ have order paii in �=ƒ for each i 2 Œk�,

where p1; : : : ; pk are primes and a1; : : : ; ak 2 N. Then by definition, we have 

p
ai
i

i 2 ƒ

for each i 2 Œk�, and since � is torsion-free, we have 

p
ai
i

i ¤ Id for each i 2 Œk�. Let q
be a prime distinct from p1; : : : ; pk . Since ƒ is torsion-free and nilpotent, by a theorem
of Gruenberg [32] it is residually a finite p-group for any prime p, and therefore for each

i 2 Œk�, it has a normal subgroup ƒ0i such that Œƒ W ƒ0i � is a power of q, and 

p
ai
i

i … ƒ0i .

Define ƒ0 D
Tk
iD1ƒ

0
i ; then Œƒ W ƒ0� is also a power of q, and 


p
ai
i

i … ƒ0 for all i 2 Œk�.
Finally, let

ƒ0 D
\
g2�

gƒ0g
�1
I

then ƒ0 C ƒ, ƒ0 C � and Œ� W ƒ0� <1.
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We now claim that for each i 2 ŒN �, 
iƒ0 does not have prime-power order in �=ƒ0.
Indeed, sinceƒ0 � ƒ, the order of 
iƒ in �=ƒ must divide the order of 
iƒ0 in �=ƒ0, so
this is trivially true for all i > k. Suppose then that i � k; we may assume without loss of

generality that k � 1 and i D 1. Sinceƒ=ƒ0 has order a power of q, the order of 

p
a1
1

1 ƒ0

in ƒ=ƒ0 is some power of q, say qb where b 2 N. In other words, .

p
a1
1

1 /q
b
2 ƒ0, and

if j 2 N with .

p
a1
1

1 /j 2 ƒ0, then qb j j . Let t be the order of 
1ƒ0 in �=ƒ0. Then


 t1 2ƒ
0 �ƒ0, so .


p
a1
1

1 /t 2ƒ0, and so qb j t . Moreover, since 
 t1 2ƒ
0 �ƒ, and 
1ƒ has

order pa11 in �=ƒ, we have pa11 j t . Hence, qbpa11 j t , so 
1ƒ0 does not have prime-power
order in �=ƒ0. The same holds for all i 2 Œk�, proving the claim.

Write the order of �=ƒ0 as a product of primes,

j�=ƒ0j D

MY
jD1

q
bj
j :

For each j 2 ŒM �, letHj be a Sylow qj -subgroup of �=ƒ0, and letGj be the correspond-
ing subgroup of � containing ƒ0, i.e. such that Gj =ƒ0 D Hj . Then for each i 2 ŒN � and
each j 2 ŒM �, we have 
i … Gj , since for every g 2 Gj , gƒ0 2Hj and therefore gƒ0 has
order a power of qj in �=ƒ0, whereas 
iƒ0 does not have prime-power order in �=ƒ0, by
construction. Hence, all the subgroups Gj are good subgroups of � . For each j , we have

Œ� W Gj � D Œ�=ƒ
0
W Gj =ƒ

0� D Œ�=ƒ0 W Hj � D
Y
i¤j

q
bi
i ;

and therefore the indices ¹Œ� W Gj � W j 2 ŒM �º have highest common factor 1. This com-
pletes the proof of the lemma.

We next make a useful ‘monotonicity’ observation.

Claim 4. Let � be a finitely generated, torsion-free group of polynomial growth, let F be
a connected, locally finite Cayley graph of � and let r 2 N. Let n0 be as in Lemma 39.
Then for all m; n 2 N [ ¹0º with n � mC n0, we have bF;r .n/ � bF;r .m/.

Proof. Let m; n be as in the statement of the claim. Let H0 be a fixed .n � m/-vertex
graph that is r-locally F . Given anm-vertex graphG that is r-locally F , we may produce
from G an n-vertex graph ˆ.G/ that is r-locally F by adding to G a vertex-disjoint copy
of H0. The map ˆ W B.m/! B.n/ is clearly injective, proving the claim.

We are now in a position to prove Theorem 8.

Proof of Theorem 8. Let r0 be as in Theorem 5, and let r � r0. For brevity, let us write

.n/ WD 
F;r .n/ and b.n/ WD bF;r .n/, for each n 2 N. For each k; n 2 N with k � n,
let a.n; k/ denote the number of unlabelled, n-vertex, r-locally F graphs with largest
component of order k.
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Let ı D ı.n/ > 0; " D ".n/ > 0 to be chosen later. Suppose for a contradiction that
for infinitely many n 2 N, the probability that a uniform random unlabelled n-vertex r-
locally F graph has largest component of order at least "n is greater than ı. Let us call
such integers n bad. Then for all bad n 2 N, we have

nX
kDd"ne

a.n; k/ > ıb.n/:

Observe that for any k � n, we have a.n; k/ � 
.k/b.n � k/, and therefore for all bad
n 2 N, we have

n max
d"ne�k�n


.k/b.n � k/ �

nX
kDd"ne

a.n; k/ > ıb.n/:

By Proposition 36, we have 
.k/ � n˛ for all k � n, and therefore

max
d"ne�k�n

b.n � k/ > ın�˛�1b.n/ (16)

for all bad n 2 N. For appropriate choices of ı and ", this will contradict the following
claim.

Claim 5. For all n; k 2 N such that n � n0 and k � n5=6, we have

b.n � k/

b.n/
� C exp.�cn1=12/;

where n0 is as in Lemma 39, and c; C > 0 are constants depending upon F and r alone.

Proof of claim. By appropriate choices of c andC , we may assume throughout that n is at
least any specified constant depending upon F and r . Let n5=6 � k � n. By an appropriate
choice of c, and by Claim 4, we may assume that k � n=2. We now split into two cases.

Case (i). First, suppose that at least half the graphs in B.n � k/ have largest component
of order less than .n� k/2=3. Let G denote the set of such graphs; then jG j � 1

2
jB.n� k/j.

Given a graph G 2 G , we produce a graph H 2 B.n/ as follows. Let q0 2 N be minimal
such that q0 � n0 and k � q0 is a multiple of h1 (where h1 is as in Proposition 38), and
define W D d.n � k/2=3=h1e.

Let M D d.k � q0/=..W C 1/h1/e and let m D .k � q0/=h1 �MW ; then m 2 N
and m � M . Choose any integer partition � D .�1; �2; : : :/ ` m, and for each i 2 ŒM �,
add toG a connected, ..W C �i /h1/-vertex component that is r-locally F . SinceW h1 �
.n � k/2=3, each of these added components has more vertices than any component of a
graph in G . Now add an additional vertex-disjoint copy of a fixed, q0-vertex graph H0
that is r-locally F , producing an n-vertex graph H that is r-locally F . (Note that the
total number of vertices added is MW h1 Cmh1 C q0 D k.) Given a fixed graph G 2 G ,
each integer partition � ` m produces from G in this way a different unlabelled graph
H 2 B.n/, and for G1 ¤ G2 2 G , the sets of n-vertex unlabelled graphs H 2 B.n/
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produced in this way by G1 and G2 are disjoint, since the graph in G that produced a
given H 2 B.n/ may be recovered from H by deleting a copy of H0, and then deleting
the M largest remaining components. It follows that

b.n/ � 1
2
p.m/b.n � k/;

where p.m/ denotes the number of integer partitions of m. It is easy to see that if n5=6 �
k � n=2, then m D .1C o.1//k=.n� k/2=3 � .1C o.1//n1=6 as n!1, and therefore,
using the Hardy–Ramanujan asymptotic (5) for p.m/, we obtain

b.n/ � .1C o.1//
1

8m
p
3

exp.�
p
2m=3/b.n � k/ �

1

C
exp.cn1=12/b.n � k/;

where the last inequality holds for all n and k as in the statement of the proposition,
provided c is sufficiently small and C is sufficiently large depending on h1.

Case (ii). Now suppose that more than half the graphs in B.n � k/ have largest com-
ponent of order at least .n � k/2=3. Let H denote the set of such graphs; then jH j >
1
2
jB.n� k/j. LetG 2H . LetG1; : : : ;GL be the components ofG, listed in non-decreas-

ing order of size, i.e. jV.G1/j � � � � � jV.GL/j. Let a; d 2 N with d j a, a � .n � k/2=3

and a2=.2d/ � n � k; we claim that there exists i 2 ŒL� such that jV.Gi�1/j � a and
jV.Gi /j � jV.Gi�1/j > d (where jV.G0/j WD 0). Indeed, suppose for a contradiction that
for all i 2 ŒL� with jV.Gi�1/j � a, we have jV.GiC1/j � jV.Gi /j � d ; then

n � k D jV.G/j � d C 2d C � � � C .a=d/d > a2=.2d/ � n � k;

a contradiction. From now on, fix dDb1
2
.n�k/1=6c and aD2b1

2
.n�k/1=6cd.n�k/5=12e;

clearly, d ja, and provided n is at least an absolute constant, we have a � .n� k/2=3 and
a2=.2d/ � n � k.

By the pigeonhole principle, there exists s � a such that, for at least jH j=a of the
graphs G in H , there exists i such that jV.Gi�1/j D s and jV.Gi /j � jV.Gi�1/j > d .
Let Js be the set of all such graphs; then jJsj � jH j=a � jB.n � k/j=.2a/. Let s0 > s
be minimal such that h1 j s0, and let Q D s0=h1. Choose d 0 maximal such that h1 j d 0

and d 0 � d C s � s0. (Note that d C s � s0 > d � h1 � h1 provided n is at least some
constant depending upon h1.) Let M D b.k � d 0/=s0c, and let q0 D k � d 0 �Ms0. Let
mD d 0=h1 2N. (Note that, provided n is at least some constant depending upon F and r ,
we have q0 � n0 and m �M .)

Now, given G 2 Js and a partition � D .�1; �2; : : :/ ` m, we produce from G a
graph H 2 B.n/ as follows. For each i 2 ŒM �, add to G a connected, ..Q C �i /h1/-
vertex component that is r-locally F . Since s < s0 DQh1 � .QC �i /h1 D s0 C �ih1 �
s0 Cmh1 D s

0 C d 0 � s C d , all of these added components have orders between s C 1
and s C d (inclusive), whereas all orders of components of graphs in Js are at most s
or greater than s C d . Now add an additional vertex-disjoint copy of a fixed, q0-vertex
graph H0 that is r-locally F , producing a graph H 2 B.n/. (Note that the total number
of vertices added is MQh1 C mh1 C q0 D Ms0 C d 0 C q0 D k.) Given a fixed graph
G 2 Js , each integer partition � ` m produces from G in this way a different unlabelled
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graphH 2B.n/, and forG1¤G2 2 Js , the sets of n-vertex unlabelled graphsH 2B.n/

produced in this way by G1 and G2 are disjoint, since the graph in Js that produced
a given H 2 B.n/ may be recovered from H by deleting first a copy of H0, and then
deleting the M components of the remaining graph that have orders between s C 1 and
s C d (inclusive). It follows that

b.n/ �
1

2a
p.m/b.n � k/:

Sincem>d=h1 � 2Db12 .n� k/
1=6c=h1 � 2� b

1
2
.n=2/1=6c=h1 � 2, and since, crudely,

a� n, we obtain (again using the Hardy–Ramanujan asymptotic for the partition function)

b.n/ � .1C o.1//
1

8nm
p
3

exp.�
p
2m=3/b.n � k/ �

1

C
exp.cn1=12/b.n � k/;

provided c is sufficiently small, and n and C are sufficiently large, depending upon h1
(i.e., upon F and r). By adjusting the values of c and C appropriately, one can ensure that
the above holds for all n � n0. This completes the proof of the claim.

Applying Claim 5 yields a contradiction to (16) for all n sufficiently large depending
upon ˛ and h1, in the case where " D n�1=6 and ı D exp.�n1=13/. This proves that there
are only finitely many bad integers n (with this choice of ı; "), yielding Theorem 8.

In the special case where F D Ld , by Theorem 4 we may take r0 D 2C 1¹d�3º in the
above proof, so we obtain the following.

Theorem 40. Define r0.2/ D 2 and r0.d/ D 3 for all d � 3. Let d 2 N with d � 2, and
let r 2N with r � r0.d/. Then the largest component ofGn.Ld ; r/ has order at most n5=6

with probability at least 1� exp.�n1=13/, provided n is sufficiently large depending upon
d and r .

In the other direction, we prove the following.

Proposition 41. Let F be a connected, locally finite Cayley graph of a torsion-free
group of polynomial growth. Let r0 D r0.F / be as in Theorem 5. Then there exists
"0 D "0.F / > 0 such that for all r � r0, the random graph Gn.F; r/ has a component of
order at least n"0 with probability at least 1� exp.�n1=4/, provided n is sufficiently large
depending on F and r .

Proof. Let r � r0. Let n0 D n0.F; r/ 2 N and "0 D "0.F / > 0 to be chosen later. Let
n � n0, and let G be the set of all graphs in B.n/ with largest component of order less
than n"0 . Let G 2 G . Since G has n vertices and all its components have order less
than n"0 ,G has more than n1�"0 components, so there exists k1 D k1.G/ < n"0 such that
G has at least n1�2"0 components of order k1. By Proposition 36, there are at most k˛1
unlabelled, connected graphs on k1 vertices that are r-locally F , so there exists a connec-
ted graph H1 D H1.G/ on k1 < n"0 vertices such that at least

n1�2"0=k˛1 � n
1�.˛C2/"0

components of G are isomorphic to H1.
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We now define a bipartite graph B with vertex-bipartition .G ;B.n/ n G /, as follows.
For each G 2 G , choose some connected graph H1 D H1.G/ on k1 D k1.G/ < n"0 ver-
tices such that at least n1�.˛C2/"0 components of G are isomorphic to H1 (as above).
Let Q D bn1�.˛C2/"0=h1c (where h1 is as in Proposition 38), and delete from G exactly
Qh1 components that are isomorphic to H1, producing a graph G0 with n �Qh1k1 ver-
tices. Let W D dn"0=h1e, let M D dQk1=.W C 1/e and let m D Qk1 �MW ; note
that m � M . For any integer partition � D .�1; �2; : : :/ ` m, we may produce a graph
H�;G 2 B.n/ n G by adding to G0 a connected, .W C �i /h1-vertex component that is
r-locally F , for each i 2 ŒM �. (Note that the total number of vertices added is MW h1 C

mh1 D Qh1k1 D jV.G/j � jV.G
0/j, and that each added component has order at least

W h1 � n
"0 , i.e. it has order greater than the order of any component of G.) Now we

define the edge-set of our bipartite graph B by joining G to each of the p.m/ graphs
H�;G obtained in this way (for each G 2 G ).

Each graph G 2 G has degree exactly p.m/ in the bipartite graph B, whereas each
graph H 2 B.n/ n G has degree at most n˛"0 in B. Indeed, if in the bipartite graph B, a
graph H 2 B.n/ n G is joined to some G 2 G , then the ‘intermediate’ graph G0 depends
only on H and not on G, since G0 can be recovered from H alone by deleting the M
components ofH that have order at least n"0 . GivenG0, there are at most n˛"0 possibilities
for G, since (by Proposition 36) there are at most n˛"0 connected graphs on less than
n"0 vertices that are r-locally F , so there are at most n˛"0 choices for the component
H1 D H1.G/ (and adding Qh1 copies of H1 to G0, we recover G).

Counting the edges of B in two different ways, we obtain

jB.n/ n G jn˛"0 � jG jp.m/;

so
jG j

jB.n/j
�
n˛"0

p.m/
:

It is easy to see that m � .1 C o.1//n1�.˛C3/"0 as n ! 1, and so using the Hardy–
Ramanujan asymptotic (5), we obtain

jG j

jB.n/j
� .1C o.1//4

p
3mn˛"0 exp.��

p
2m=3/

� Cn exp.�cn.1�.˛C3/"0/=2/ � exp.�n1=4/

if we choose "0 D 1=.2˛ C 7/ and n0 sufficiently large depending on F and r . (Here, c
and C are positive absolute constants.) This proves the proposition.

Remark 6. It is easy to adapt the proof of Proposition 41 to show that with probability
at least 1� exp.�n1=4/, the random graph Gn D Gn.F; r/ has a component of order that
is both at least n"0 and divisible by h1, where h1 is as in Proposition 38, provided n is
sufficiently large depending on F and r . (One simply replaces G in the proof by the set of
all graphs in B.n/with no component of order that is both at least n"0 and divisible by h1,
observing that the components added to G0 all have orders that are multiples of h1.) This
fact is useful in what follows.
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We now use Proposition 41 and Remark 6 to prove Theorem 9.

Proof of Theorem 9. Let r0 D r0.F / be as in Theorem 5, and let n 2 N. Let ı0 D ı0.F /
D "0=3, where "0 D "0.F / > 0 is as in Proposition 41. Let A denote the set of graphs
in B.n/ that have at most nı0 vertex-transitive components of order divisible by h1, and
let A0 denote the set of graphs in A that have a component of order that is at least n"0

and divisible by h1. (Here, h1 is as in Proposition 38.) We define a bipartite graph B with
vertex-bipartition .A0;B.n/ nA/, as follows. For each graph G 2 A0, let H2 D H2.G/
be a component of G of maximal order divisible by h1, and let Q DQG D jV.H2/j=h1.
DeleteH2 fromG, producing a graphG0 with n�Qh1 vertices. For any integer partition
� D .�1; : : : ; �m/ ` Q, we may produce a graph H�;G 2 B.n/ nA by adding to G0 a
vertex-transitive component of order �ih1, for each i 2 Œm�. (Note that the total number
of vertices added is h1

Pl
iD1 �i D Qh1.) Now we define the edge-set of our bipartite

graph B by joining G to each of the p.QG/ graphs H�;G obtained in this way (for each
G 2 G ).

A graph G 2 A0 has degree exactly p.QG/ in the bipartite graph B, whereas each
graph H 2 B.n/ nA has degree at most n˛Cn

ı0 in B. Indeed, if in the bipartite graph B,
a graph H 2 B.n/ nA is joined to some G 2 A0, then there are at most

bnı0cX
iD0

�
n � 1

i

�
� nn

ı0

ways of choosing the ‘intermediate’ graph G0 (since G0 may be obtained from H by
deleting all but j of the vertex-transitive components of G of order divisible by h1, for
some j � nı0 , and crudely, H has at most n=h1 � n � 1 vertex-transitive components
of order divisible by h1). Given the intermediate graph G0, there are then at most n˛

possibilities for G, since (by Proposition 36) there are at most n˛ connected graphs on at
most n vertices that are r-locally F , so there are at most n˛ choices for the component
H2 D H2.G/ (which, when added to G0, produces the graph G).

Counting edges of B in two different ways, and using the fact that ı0 D "0=3, we
obtain

jB.n/jn˛Cn
"0=3

� jB.n/ nAjn˛Cn
ı0
� jA0j min

G2A0
p.QG/ � p.dn

"0=h1e/jA
0
j: (17)

On the other hand, by Proposition 41 and Remark 6, provided n is sufficiently large
depending on F and r , we have

jA nA0j � exp.�n1=4/jB.n/j: (18)

Combining (17) and (18) yields

jAj

jB.n/j
� exp.�n�"0=3/

for all n sufficiently large depending on F and r , using the Hardy–Ramanujan asymp-
totic (5). It follows that, with probability at least 1� exp.�n�ı0/, a uniform random graph
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Gn 2 B.n/ has more than nı0 vertex-transitive components of order divisible by h1, so
in particular jAut.Gn/j � .h1/n

ı0
� 2n

ı0 , proving the theorem.

We now use the above machinery, combined with Brigham’s theorem (Theorem 29),
to prove Theorem 10, which says that bF;r .n/ grows like a stretched exponential for all
r � r0.

We will need the following easy corollary of Brigham’s theorem.

Corollary 42. Let .b.n//1nD0, .
.j //1jD1 be as in Theorem 29. Let h be the highest com-
mon factor of the set ¹n 2 N W 
.n/ � 1º. Then

log b.n/ �
1

u

�
Ku�.uC 2/�.uC 1/

� 1
uC1 .uC 1/

u�v
uC1 n

u
uC1 .logn/

v
uC1

for all n 2 N such that h jn.

(Note that the hD 1 case of Corollary 42 appears in [17]; the general case is a straight-
forward deduction therefrom, using the observation that any sufficiently large multiple
of h can be partitioned into integers in the set ¹n W 
.n/ � 1º.)

Proof of Theorem 10. Observe that the generating function of bF;r .n/ satisfies

1X
nD0

bF;r .n/z
n
D

1Y
jD1

.1 � zj /�
F;r .j /: (19)

Define the sequence .
 0.n//1nD1 by 
 0.n/ D 1 if n is a multiple of h1, and 
 0.n/ D 0
otherwise. Then, by Proposition 38, we have 
F;r .n/ � 
 0.n/ for all n 2 N. Note thatX

n�x


 0.n/ D bx=h1c 8x > 0: (20)

Define the sequence .b0.n//1nD0 by

1X
nD0

b0.n/zn D

1Y
jD1

.1 � zj /�

0.j /
I

then, since 
F;r .n/ � 
 0.n/ for all n 2 N, we have bF;r .n/ � b0.n/ for all n 2 N.
By Claim 4, we have bF;r .n/ � bF;r .m/ for all m; n 2 N such that n � mC n0, so

in particular, whenever n � n0, we have

bF;r .n/ � bF;r .b.n � n0/=h1ch1/ � b
0.b.n � n0/=h1ch1/: (21)

Applying Corollary 42 (with h D h1) to the sequence .
 0.j //1jD1, and using (20), yields

log b0.n/ � .1C o.1//�
p
2n=.3h1/

for n!1 such that h1 jn. Using (21) then yields

log bF;r .n/ � .1C o.1//�
p
2n=.3h1/ (22)

for (all) n!1.
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On the other hand, if r � r0, then by Proposition 36, we have


F;r .n/ � n
˛
8n 2 N; (23)

where ˛ D ˛.F / � 0. Comparing the sequence .
F;r .j //
1
jD1 with the sequence

.
 00.j //1jD1 defined by


 00.j / D

´
bj ˛c if h0 j j;

0 if h0 − j;

and appealing to Corollary 42, yields

log bF;r .n/ � .1C o.1//
1

˛ C 1

�
�.˛ C 3/�.˛ C 2/=h0

� 1
˛C2 .˛ C 2/

˛C1
˛C2 n

˛C1
˛C2 (24)

for n!1. Combining the upper bound (24) with the lower bound (22) yields the the-
orem.

6. Typical properties of graphs that are r-locally Ld

In this section, we use some of the results and techniques of Section 4 to obtain some
more precise results on the typical properties of unlabelled, n-vertex graphs which are r-
locally Ld , for various integers r and d . We first prove that if r � r�.d/ (where r�.d/ is
as defined in Theorem 6), then with high probability, all but at most a 1= poly.n/ fraction
of the vertices of the random graphGnDGn.Ld ; r/ lie in components that are isomorphic
to a quotient of Ld by a pure-translation subgroup of Aut.Ld /. (Such quotients can be
viewed as quotient lattices of Ld inside some d -dimensional torus Rd=ƒ, where ƒ is a
rank-d sublattice of Zd , i.e. the lattice of translations of some pure-translation subgroup
� � Aut.Ld / with jZd=�j <1; see the Introduction, or alternatively [8].) This is the
content of Theorem 44. We then obtain (in Proposition 46) a more precise lower bound
on jAut.Gn.Ld ; r//j than that which can be deduced from Theorem 9.

We will need the following ratio estimate, an easy consequence of Theorem 6.

Lemma 43. Let d 2 N with d � 2, and letKd ; "d ; r�.d/ be as in Theorem 6. Let r 2 N
with r � r�.d/. There exists ˇd;r > 0 such for all m � ˇd;rn1�"d , we have

ad;r .n �m/

ad;r .n/
� exp

�
�
1
5
Kdmn

� 1
dC1

�
:

Proof. By taking ˇd;r sufficiently large, we may assume that n � n0.d; r/ for any func-
tion n0 D n0.d; r/. We first suppose thatm � n=2. Using the fact that .1� x/a � 1� ax
for all a; x 2 .0; 1/, we have

log.ad;r .n// � log.ad;r .n �m//

D .1CO.n�"d //Kdn
d
dC1 � .1CO..n �m/�"d //Kd .n �m/

d
dC1

D Kdn
d
dC1 .1CO.n�"d / � .1 �m=n/

d
dC1 /
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� Kdn
d
dC1 .1CO.n�"d / � 1C d

dC1
m
n
/ D Kdn

d
dC1 . d

dC1
m
n
CO.n�"d //

�
1
2
Kdn

d
dC1m=n D 1

2
Kdmn

� 1
dC1 ;

provided ˇd;r is sufficiently large depending on d and r . Now suppose m � n=2. Given
a graph on k vertices which is r-locally Ld , we may produce a graph on k C .2r C 2/d

vertices which is r-locally Ld by adding a vertex-disjoint copy of the d -dimensional
discrete torus C d2rC2. Hence, ad;r .k/ � ad;r .k C .2r C 2/d / for all k � 0. It follows that
ad;r .n�m/� ad;r .n�m

0/ for somem0 2N with n=2� .2r C 2/d �m0 � n=2. Hence,
we have

log.ad;r .n// � log.ad .n �m// � log.ad;r .n// � log.ad;r .n �m0//

�
1
2
Kdm

0n�
1

dC1 �
1
5
Kdmn

� 1
dC1 ;

provided n is sufficiently large depending on d and r . Taking exponents proves the lemma.

We now prove the following.

Theorem 44. Let d 2 N with d � 2, and let r;R 2 N with R � r � r�.d/. There exists
� D �d;R > 0 depending upon d and R alone, such that with high probability, all but at
most n1�� of the vertices of Gn D Gn.Ld ; r/ are in components that are R-locally Ld

and isomorphic to a quotient of Ld by a pure-translation subgroup of Aut.Ld /.

To prove Theorem 44, we need a straightforward corollary of Theorem 29.

Corollary 45. Suppose .b.n//1nD0 is a sequence of positive integers with generating func-
tion satisfying

1X
nD0

b.n/zn D

1Y
jD1

.1 � zj /�
.j /; (25)

where .
.j //1jD1 is a sequence of non-negative integers satisfyingX
j�x


.j / � Kxu.log x/v

for some constantsK > 0, u > 0, v 2 R. Then there exists a constantK 0 > 0 .depending
only upon u; v and K/ such that

log b.n/ � K 0nu=.uC1/.logn/v=.uC1/ 8n 2 N:

Proof. Let .�.j //1jD1 be the sequence of non-negative integers defined byX
j�N

�.j / D dK.N C 1/u.log.N C 1//ve C 1 8N 2 N: (26)

Then we have X
j�N


.j / <
X
j�N

�.j / 8N 2 N: (27)
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Define .a.n//1nD0 by
1X
nD0

a.n/zn D

1Y
jD1

.1 � zj /��.j /: (28)

We make the following

Claim 6. If .27/ holds, and .a.n//; .b.n// are defined by .28/ and .25/ respectively, then
b.n/ � a.n/ for all n 2 N.

Proof of claim. Recall from Fact 7 that b.n/ is the number of weight-n multisets of ele-
ments of T , where T contains exactly 
.j / elements of weight j for all j 2 N, and a.n/
is the number of weight-n multisets of elements of � , where � contains exactly �.j / ele-
ments of weight j for all j 2N. Let A.n/ (respectively B.n/) denote the set of weight-n
multisets of elements of � (respectively T ); then a.n/ D jA.n/j and b.n/ D jB.n/j.
Fix n 2 N. It suffices to construct an injection ˆ W B.n/! A.n/. Choose any element
S1 2 � of weight 1. Let ��n, T�n denote the set of elements of � (respectively T ) of
weight at most n. Let w W � [ T ! N denote the weight function. We first construct
an injection f W T�n ! ��n n ¹S1º such that w.T / � w.f .T // for all T 2 T�n. Define
�0.1/ D �.1/ � 1 and �0.j / D �.j / for all j � 2. Then the set � n ¹S1º contains exactly
�0.j / elements of weight j , for each j 2 N, and by (27), we haveX

j�N


.j / �
X
j�N

�0.j / 8N 2 N: (29)

We define f inductively. Order the elements of T�n in non-decreasing order of weight,
say as T1; T2; : : : ; TM . If we have already defined f .T1/; : : : ; f .Ti�1/, define f .Ti /
to be an element of .� n ¹S1º/ n ¹f .Tj / W j < iº of minimal weight. By (29), we have
w.f .T // � w.T / for all T 2 T�n, so f .T�n/ � ��n n ¹S1º, as needed. Now for any
multiset X D .B1; : : : ; Bk/ 2 B.n/, define

ˆ.X/ D .f .B1/; : : : ; f .Bk/; S1; : : : ; S1/;

where the number of S1’s is equal to
Pk
iD1 w.Bi / �

Pk
iD1 w.f .Bi //. Clearly, ˆ.X/ is

an injection from B.n/ to A.n/. This proves the claim.

By (26), we have X
j�x

�.x/ D .1C o.1//Kxu.log x/v:

Hence, by Theorem 29,

log a.n/ D .1C o.1//K1nu=.uC1/.logn/v=.uC1/;

for some constant K1 > 0 depending only upon u, v and K. Hence,

log b.n/ � log a.n/ � K 0nu=.uC1/.logn/v=.uC1/

for some constant K 0 > 0 depending only upon u, v and K, proving the corollary.
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Proof of Theorem 44. Let d � 2 and R � r � r�.d/. Note that, by adjusting the value
of �d;R if necessary, we may assume throughout that n � n0.d; R/, for any function
n0 D n0.d;R/.

Define 
d;r;R.n/ (respectively, bd;r;R.n/) to be the number of connected (respectively,
possibly disconnected), unlabelled, n-vertex graphs which are r-locally Ld and either not
R-locally Ld or else not isomorphic to a quotient of Ld by a pure-translation subgroup.
Then, using Fact 7, we have

1X
nD0

bd;r;R.n/z
n
D

1Y
jD1

.1 � zj /�
d;r;R.j /:

Observe that X
n�x


d;r;R.n/ D Od;R.x
d�1CO.1=log logn// 8x � 1: (30)

Indeed, the above sum is precisely the number of conjugacy-classes of subgroups � �
Aut.Ld / such that jZd=�j � x and 2r C 2 � D.�/ � 2R C 1. The total number of
pure-translation subgroups with this property is precisely the number of sublattices of Zd

with index at most x and minimum distance in ¹2r C 2; 2r C 3; : : : ; 2RC 1º, which, by
Lemma 25, is at most

Od;R.x
d�1 log x/:

Moreover, the total number of subgroups � � Aut.Ld / with jZd=�j � x and D.�/ �
2r�.d/C 1 such that � is not a pure-translation subgroup is at most

Od .x
d�1CO.1=log logx//;

by Corollary 26 and Claim 2. Hence, we haveX
n�x


d;r;R.n/ D Od;R.x
d�1CO.1=log logx//;

as desired.
Slightly more crudely, it follows thatX

n�x


d;r;R.n/ D Od;R.x
d�1=2/:

It follows from Corollary 45 that

log bd;r;R.n/ � Kd;Rn.d�1=2/=.dC1=2/ D Kd;Rn.2d�1/=.2dC1/ 8n 2 N;

where Kd;R > 0 is a constant depending upon d and R alone.
Now let H be a finite, simple, connected graph which is r-locally Ld . Let us say that

H is R-bad if H is not R-locally Ld or if H is not isomorphic to a quotient of Ld by a
pure-translation subgroup. Let qd;R D qd;R.n/ be a function of n to be chosen later. We
shall bound the probability that the random graph Gn.Ld ; r/ has at least qd;R.n/ of its
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vertices in R-bad components. Fix an integer m � qd;R.n/. Using Lemma 43, it follows
that the probability that Gn has exactly m vertices in R-bad components is at most

bd;r;R.m/ad;r .n �m/

ad;r .n/
� exp.Kd;Rm

2d�1
2dC1 / exp

�
�
1
5
Kdmn

� 1
dC1

�
� exp

�
�
1
6
Kdn

.2d�1/=.2dC2/
�
;

provided we choose

qd;R.n/ D max
®
max ¹ˇd;r W r � Rºn1�"d ; Ld;Rn.2dC1/=.2dC2/

¯
for some Ld;R > 0 sufficiently large. Hence, by the union bound, the probability that Gn
has at least qd;R.n/ vertices in R-bad components is at most

n exp
�
�
1
6
Kdn

.2d�1/=.2dC2/
�
D o.1/:

Note that for each fixed d;R, we have

qd;R.n/ � n
1��d;R

for n sufficiently large depending on d and R, provided we choose �d;R > 0 sufficiently
small. This proves Theorem 44.

From Theorem 44, it follows immediately that the local limit of .Gn/ is the rooted
lattice .Ld ; 0/. For the reader’s convenience, we recall the definition of a local limit. If
.F;u/ and .G;w/ are two rooted graphs, we say that they are isomorphic as rooted graphs
if there exists a graph isomorphism � W V.F /! V.G/ such that �.u/ D w. Let .G; w/
be a random rooted graph, i.e. a probability distribution on the set of rooted graphs. Fol-
lowing [9], we say that a sequence of graphs .Gn/n2N has local limit .G; w/ as n!1
if for every R 2 N and for every rooted graph .H; v/, as n! 1, the probability that
LinkR.Gn; wn/ is isomorphic to .H; v/ (as a rooted graph) converges to the probabil-
ity that LinkR.G; w/ is isomorphic to .H; v/ (as a rooted graph), where wn is a vertex
chosen uniformly at random from V.Gn/. In particular, if .G;w/ is constant, the sequence
.Gn/n2N has local limit .G; w/ if the probability that LinkR.Gn; wn/ is isomorphic to
LinkR.G; w/ (as a rooted graph) tends to 1 as n ! 1, where wn is a vertex chosen
uniformly at random from V.Gn/.

Now let d � 2, let r � r�.d/ and let Gn D Gn.Ld ; r/. Let T D ¹n W �n ¤ ;º,
where �n denotes the set of all unlabelled, n-vertex graphs that are r-locally Ld . (Recall
that, by (12), we have n 2 T for all n sufficiently large depending on d and r .) The-
orem 44 implies that for any R 2 N, the probability that LinkR.Gn; wn/ is isomorphic to
LinkR.Ld ; 0/ tends to 1 as n!1, so the local limit of .Gn/n2T is .Ld ; 0/, as claimed.

Theorems 40 and 44 also easily imply the following.

Proposition 46. Let d 2 N with d � 2, and let r 2 N with r � r�.d/. Then with high
probability,

jAut.Gn.Ld ; r//j � exp.�.n1=6 logn//:
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Proof. We may assume that n � n0.d; r/, for any function n0 D n0.d; r/. Observe that if
H DLd=� for some pure-translation subgroup � �Aut.Ld /, thenH is vertex-transitive,
since the translation map

ta W Z
d=L� ! Zd=L� ; x C L� 7! x C aC L� ;

is an automorphism of H , for any a 2 Zd . By Theorem 40, with high probability the
largest component of Gn has order at most n5=6, and by Theorem 44, with high probab-
ility, all but at most n=2 vertices of Gn are in components of Gn that are isomorphic to
a quotient of Ld by a pure-translation subgroup of Aut.Ld /, provided n0 is sufficiently
large depending on d and r . If these two conditions hold, and there are k components
(H1; : : : ;Hk , say) that are isomorphic to a quotient of Ld by a pure-translation subgroup
of Aut.Ld /, then we have

kX
iD1

jHi j � n=2; 3 � jHi j � n
5=6
8i 2 Œk�;

so

jAut.Gn/j �
kY
iD1

jAut.Hi /j �
kY
iD1

jHi j � .n
5=6/bn=.2n

5=6/c
D exp.�.n1=6 logn//:

This proves the proposition.
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