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Abstract. For a minimal smooth projective surface S of general type over a field of characteristic
p > 0, we prove that

K2S � 32�.OS /:

Moreover, if 18�.OS / < K2
S
� 32�.OS /, the Albanese morphism of S must induce a genus 2

fibration. A classification of surfaces withK2
S
D 32�.OS / is also given. The inequality also implies

�.OS / > 0, which answers completely a question of Shepherd-Barron.

Keywords. Slope inequality, fibration of surfaces, Miyaoka–Yau type inequality, Albanese
fibration

1. Introduction

Let S be a smooth projective surface of general type over an algebraically closed field k.
When k D C, we have the celebrated Miyaoka–Yau inequality (see [13, 23])

c21.S/ � 3c2.S/: (1)

By Noether’s formula (see [1, Chap. I, (5.5)])

12�.OS / D c
2
1.S/C c2.S/; (2)

the Miyaoka–Yau inequality (1) can also be formulated as

c21.S/ � 9�.OS /: (3)

The Miyaoka–Yau inequality (3) plays an important role in the study of complex algebraic
surfaces (see e.g. [3, 16]).
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When char.k/ D p > 0, Noether’s formula (2) remains true (see [2, §5]), but
the Miyaoka–Yau inequality (1) fails. In fact, Raynaud’s examples (see [17] or §4.1
below) show that there exist minimal smooth projective surfaces S of general type with
c2.S/ < 0, a contradiction to (1) as c21.S/ D K

2
S > 0 when S is minimal. As c2.S/ can

be negative, a natural question is whether �.OS / can be negative or not. Shepherd-Barron
has shown that �.OS / > 0 unless its Albanese map induces a fibration f W S ! C with
singular generic fibre of arithmetic genus 2 � g � 4 and p � 7 (see [18, Theorem 8] or
Theorem 3.1 below). However, the question whether there exists such a surface S with
�.OS / < 0 remains unsolved (see [18, Remark p. 268]). Shepherd-Barron also suggested
that the most obvious place to look for such examples would be where .p; g/ D .2; 2/.
Later, it was proved by the first author [6] that �.OS / > 0 when p � 3. Our main result
in this article is a Miyaoka–Yau type inequality

K2S � 32�.OS /

for all smooth projective surfaces S of general type, which in particularly implies that
�.OS / > 0 for any p and answers Shepherd-Barron’s question completely.

We observe that the above Miyaoka–Yau type inequality follows in fact from a series
of slope inequalities. Let f W S ! C be a relatively minimal surface fibration of genus
g � 2 over k. The slope inequalities are numerical relations between K2

S=C
and �f WD

deg.f�!S=C /. When k D C, we have Xiao’s slope inequality

K2S=C �
4g � 4

g
�f : (4)

It was proved for any minimal fibration by G. Xiao [22] and for semi-stable fibrations
independently by Cornalba and Harris [5]. Some other proofs have also been given [15].
In this paper, we first prove a partial generalization of Xiao’s slope inequality in positive
characteristic.

Theorem 1.1. Let f W S ! C be a relatively minimal fibration of genus g � 2 over an
algebraically closed field k of positive characteristic. Assume any one of the following
assumptions is true:

(a) the generic fibre of f is hyperelliptic;

(b) the generic fibre of f is smooth;

(c) the genus b WD g.C / satisfies b � 1,

Then Xiao’s slope inequality K2
S=C
�

4g�4
g
�f holds.

Note that in positive characteristic, the generic fibre of f may be non-smooth (i.e.
singular). It should also be pointed out that in case the generic fibre of f is singular, we
do not have the nefness of KS=C and the semi-positivity of f�!S=C . As a result, both
K2
S=C

and �f may be negative (see §4.1 for an example). Under the assumption that f
has a smooth generic fibre, Xiao’s slope inequality (4) has already been proven [19] by
H. Sun and the last two authors.

We then point out that as one of the positive characteristic pathologies, Xiao’s slope
inequality (4) fails in general.
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Proposition 1.2 (see §4.2). For infinitely many integers g � 3, there exists a relatively
minimal surface fibration f W S ! C of genus g over an algebraically closed field k of
positive characteristic such that

K2S=C <
4g � 4

g
�f :

For general fibrations or fibrations of small genus, we also give some different slope
inequalities.

Theorem 1.3. Let f W S ! C be a relatively minimal fibration of genus g � 3 over an
algebraically closed field k and b WD g.C /. Then

(a) if KS is nef, then K2S �
2g�2
g

deg.f�!S /;

(b) if g D 3 and f is non-hyperelliptic, then K2
S=C
� 3�f ;

(c) if g D 4 and KS is nef, then 7K2
S=C
� 15�f � 48.b � 1/;

(d) if g � 5 and KS is nef, then

K2S=C �
2.g � 1/.g � 2/

g2 � 3g C 1
�f �

4.g � 1/.g2 � 4g C 2/

g2 � 3g C 1
.b � 1/:

When k D C, the slope inequality in (b) for non-hyperelliptic fibrations of genus 3
was proved by Horikawa [7] and Konno (see [8]). For non-hyperelliptic fibrations with
g D 4; 5, Konno [9] and Chen [4] have also given some other slope inequalities. In pos-
itive characteristic, Yuan and Zhang have given a slope inequality for general genus g in
[24, Lem. 3.2] in terms of b D g.C /. Our slope inequalities in (c) and (d) are different.

Now let us return to the Miyaoka–Yau type inequality. For a minimal surface S of
general type, when c2.S/� 0, Noether’s formula (2) already implies thatK2S � 12�.OS /.
So we assume c2.S/ < 0. Shepherd-Barron [18, Thm. 6] has shown that the Albanese map
of S induces a fibration f WS!C of (arithmetic) genus g� 2 and b WDg.C /� 2. We will
call such an f W S ! C the Albanese fibration of S . As an application of Theorems 1.1
and 1.3, we have

Theorem 1.4. If c2.S/ < 0, let f W S ! C be the Albanese fibration of genus g � 2.
Then

K2S �

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

.12g C 8/.g � 1/

g2 � g � 1
�.OS / if the generic fibre is hyperelliptic;

18�.OS / if g D 3;
840

47
�.OS / if g D 4;

12.g � 1/.3g2 � 4g � 4/

g.3g2 � 12g C 15/
�.OS / if g � 5:

By the above results and elementary computations, we have
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Theorem 1.5. Let S be a minimal smooth projective surface of general type. ThenK2S �
32�.OS /. Moreover, when

18�.OS / < K
2
S � 32�.OS /;

the Albanese fibration of S must be a fibration of genus 2.

Examples of surfaces S with K2S D 32�.OS / are given in §4.3. Moreover, we give in
§4.2 an example of S whose Albanese fibration is of genus 3 andK2S D 18�.OS / to show
that the inequality 18�.OS / < K2S � 32�.OS / in the theorem is optimal.

This theorem answers the question of Shepherd-Barron and leads to the following
classification of surfaces with �.OS / < 0 after Liedtke [12]. In addition, the above
Miyaoka–Yau type inequality can also be used to study the canonical map of surfaces
of general type as in [3].

Theorem 1.6 (after [12, Prop. 8.5]). Let S be a smooth projective surface over an algeb-
raically closed field k of characteristic p > 0 with �.OS / < 0. Then either

(1) S is birational to P1 � C with g.C / D 1 � �.OS /, or

(2) S is quasi-elliptic of Kodaira dimension 1 and p D 2 or 3.

This paper is organized as follows.
In §2, we first recall Xiao’s approach to slope inequalities and then prove Theorem 1.1

(cf. Theorem 2.7) and Theorem 1.3 (cf. Propositions 2.9 and 2.10).
In §3, we prove Theorem 1.4 (cf. Theorem 3.2) by applying Theorems 1.1 and 1.3,

and then we prove Theorem 1.5 (cf. Corollary 3.4).
Finally, in §4 we recall or give the following examples in positive characteristic:

� Raynaud’s examples of minimal surfaces S of general type with c2.S/ < 0. In his
examples, the Albanese fibration of S is hyperelliptic with g D .p � 1/=2 and attains
equality in Theorem 1.5 for the hyperelliptic case. Moreover, the Albanese fibration
f W S ! C satisfies Xiao’s equality.

� Examples of fibrations violating Xiao’s slope inequality (hence proving Proposition 1.2).

� Examples of general type surfaces with K2S D 32�.OS /.

Conventions

� A surface fibration (or simply a fibration) is a flat morphism f W S ! C from a pro-
jective smooth surface to a smooth curve over an algebraically closed field such that
f�OS D OC . In particular, all geometric fibres of f are connected. In positive charac-
teristic, the generic fibre of f may be singular.

� For a surface fibration f W S ! C , we denote

– KS (resp. KC ) WD the canonical divisor of S (resp. C );

– KS=C WD KS � f
�KC ;

– �f WD deg.f�!S=C /;

– l.f / WD dimk.R
1f�OS /tor.
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Let g be the genus of fibres of f and b WD g.C /. Then

K2S=C D K
2
S � 8.g � 1/.b � 1/; (5)

�f D �.OS / � .g � 1/.b � 1/C l.f / (6)

by Riemann–Roch and Leray’s spectral sequence.

� An integral curve over k is called hyperelliptic if it admits a flat double cover of P1k ,
and a surface fibration f W S ! C is called hyperelliptic if a general fibre of f is
hyperelliptic.

2. Slope inequalities for fibrations in positive characteristic

In this section, we study some slope inequalities in positive characteristic. Our strategy is
based on Xiao’s approach to slope inequalities. We prove Xiao’s slope inequality for some
special fibrations (see Theorem 2.7). We also observe that Xiao’s slope inequality cannot
hold for the general case (see Remark 2.8), and prove some other slope inequalities (see
Propositions 2.9 and 2.10).

2.1. Xiao’s slope inequality in positive characteristic

In [22], Xiao introduces slope inequalities for fibrations f W S ! C by studying the
Harder–Narasimhan filtration of f�!S=C . For the readers’ convenience, we briefly recall
the idea.

Let C be a smooth projective curve over an algebraically closed field. For a vector
bundle E on C , let

�.E/ WD
deg.E/
rk.E/

where rk.E/ and deg.E/ denote the rank and degree of E respectively. The vector bundle
E is called semi-stable if�.E 0/��.E/ for any subbundleE 0�E. One has the following
well-known theorem.

Theorem 2.1 (Harder–Narasimhan filtration). For any vector bundleE on C , there exists
a unique filtration of subbundles

0 DW E0 � E1 � � � � � En D E;

called the Harder–Narasimhan filtration, such that

(1) each subquotient bundle Ei=Ei�1 is semi-stable for 1 � i � n,

(2) �1 > � � � > �n, where �i WD �.Ei=Ei�1/ for 1 � i � n.

We denote by �min.E/ the last slope �n of E.
For a relatively minimal fibration f W S ! C of genus g � 2 over C, by using the

Harder–Narasimhan filtration of f�!S=C ,

0 DW E0 � E1 � � � � � En WD f�!S=C ;
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Xiao constructs a sequence of effective divisors

Z1 � � � � � Zn � 0

such that Ni D KS=C �Zi ��iF .1 � i � n/ are nef Q-divisors. Here F is a fibre of f
and �i WD �.Ei=Ei�1/. Then he uses the following elementary lemma, which holds also
for characteristic p > 0, to get a lower bound of K2

S=C
.

Lemma 2.2 ([22, Lem. 2]). Let f W S ! C be a relatively minimal fibration with a
general fibre F , and D be a nef .resp. f -nef / divisor on S . Suppose that there are a
sequence of effective divisors

Z1 � � � � � Zn � ZnC1 D 0

.resp. such that Zn is vertical/ and a sequence of rational numbers

�1 > � � � > �n; �nC1 D 0;

such that Ni WD D �Zi � �iF .1 � i � n/ are nef Q-divisors. Then

D2
�

nX
iD1

.di C diC1/.�i � �iC1/; where di D Ni � F .

Xiao’s approach cannot be applied directly in positive characteristic. A key point is
the failure of the following lemma in positive characteristic.

Lemma 2.3 ([14, Thm. 3.1], or [22, Lem. 3]). Over C, for any vector bundle E on C ,
the Q-divisor OP.E/.1/ � �min.E/ � � is nef on P .E/ where � is a fibre of P .E/! C .

A key observation of [19] is that one can apply Lemma 2.4 below instead of Lem-
ma 2.3 to generalise Xiao’s approach to positive characteristic. Until the end of this section
we assume C is defined over an algebraically closed field k with char.k/ D p > 0.

Lemma 2.4. If the quotient bundles Ei=Ei�1 of the Harder–Narasimhan filtration of a
vector bundle E on C are all strongly semi-stable .definition recalled below/, then the
Q-divisor OP.E/.1/ � �min.E/ � � is nef on P .E/, where � is a fibre of P .E/! C .

Recall that if FC W C ! C is the (absolute) Frobenius morphism, a bundle E on C is
called strongly semi-stable (resp., strongly stable) if its pull back by the k-th power F kC is
semi-stable (resp., stable) for any integer k � 0.

Theorem 2.5 ([10, Thm. 3.1]). For any vector bundle E on C , there exists an integer k0
such that all quotients Ei=Ei�1 .1 � i � n/ of the Harder–Narasimhan filtration

0 DW E0 � E1 � � � � � En D F
k�
C E

are strongly semi-stable whenever k � k0.

Remark 2.6. When g.C / � 1, semi-stable vector bundles are already strongly semi-
stable (see [20]). In particular, we can take k D k0 D 0 in Theorem 2.5.
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Now suppose f W S ! C is a relatively minimal fibration of genus g � 2. Take E D
f�!S=C and fix a k � k0. Denote by

0 D E0 � � � � � En D F
k�
C E D F k�C f�!S=C (7)

the Harder–Narasimhan filtration, ri WD rk.Ei /, �i WD �.Ei=Ei�1/ and call z�i WD �i=pk

the normalised slopes. Then (recall �nC1 D 0)

�f D
1

pk
deg.F k�C E/ D

1

pk

nX
iD1

ri .�i � �iC1/ D

nX
iD1

ri .z�i � z�iC1/: (8)

Let us now recall the construction given in [19] of effective divisors

Z1 � � � � � Zn � 0

such that Ni WD pkKS=C �Zi � �iF is nef. Consider the commutative diagram

S

F k
S

((F k
//

f

))RR
RRR

RRR
RRR

RRR
RRR

RR S 0 WD S �C;F k
C
C

˛ //

f 0

��

S

f

��
C

F k
C // C

and, for each i , the natural homomorphism

f �Ei ,! f �F k�C E D F k�S f �f�OS .KS=C /! F k�S !S=C D OS .p
kKS=C /:

Denote by Li � F
k�
S !S=C the image of this homomorphism; then we can write Li D

ITi
� F k�S !S=C .�Zi / for a unique closed subscheme Ti of codimension 2 and a unique

effective divisor Zi . It is clear by construction that Z1 � � � � � Zn � 0 and Zn is vertical.
Let Ui WD SnTi , so there is a morphism over C

�i W Ui ! P .Ei /

such that ��i OP.Ei /.1/ D Li jUi
by the construction of Li . Note that the Q-divisor

c1.Li / � �iF is nef by Theorem 2.5 and Lemma 2.4 as the complement of Ui con-
sists of finitely many points, here F is a general fibre of f . In other words, we have the
nefness of

Ni D c1.Li / � �iF

by construction. Then Xiao’s approach applies in positive characteristic and we have

Theorem 2.7. Let f W S ! C be a relatively minimal fibration of genus g � 2, and
assume any one of the following conditions holds:

(a) the generic fibre of f is hyperelliptic;

(b) the generic fibre of f is smooth;

(c) the genus b WD g.C / satisfies b � 1.

Then Xiao’s slope inequality K2
S=C
�

4g�4
g
�f holds.
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Proof. Let di WD Ni � F D deg.Li jF /, dnC1 D pk.2g � 2/ and zdi WD di=p
k . By

Lemma 2.2, we have

p2kK2S=C �

nX
iD1

.di C diC1/.�i � �iC1/ (9)

or equivalently

K2S=C �

nX
iD1

. zdi C zdiC1/.z�i � z�iC1/: (10)

If the Clifford type inequalities

di � p
k.2ri � 2/ or equivalently zdi � 2.ri � 1/ .1 � i � n/ (11)

hold, we have by (9) the inequality (see [19, p. 695])

K2S=C � 4�f �
2

pk
.�1 C �n/ D 4�f � 2.z�1 C z�n/; (12)

which, together with the inequality

pkK2S=C � .2g � 2/.�1 C �n/ or equivalently K2S=C � .2g � 2/.z�1 C z�2/

(obtained by applying Lemma 2.2 toD D pkKS=C ,Z1 � Zn � 0 and �1 � �n), implies

K2S=C �
4g � 4

g
�f :

In conclusion, our theorem follows if the Clifford type inequalities (11) hold under any
one of the assumptions in the theorem. It remains to estimate di in order to prove (11).
Consider commutative diagrams

S

�i

$$u
n f _ X P

I
F k
//

f ��?
??

??
??

? S 0
�0

i //___

f 0

��

P .Ei /

||yy
yy
yy
yy

C

S

F k
S

((F k
//

f

))RR
RRR

RRR
RRR

RRR
RRR

RR S 0 D S �C;F k
C
C

˛ //

f 0

��

S

f

��
C

F k
C // C

where �0i W S
0 Ü P .Ei / is defined by the image L0i � ˛

�!S=C of f 0�.Ei / under the
canonical homomorphism

f 0
�
.Ei / � f

0�F k�C f�!S=C D ˛
�f �f�!S=C ! ˛�!S=C :

Then deg.�0i / j deg.�0i�1/ and deg.�0n/ D deg.�j!S0=C j
/ since

S 0
�0

i //___

�0
i�1 ##G

G
G

G
G P .Ei /

projection
��

P .Ei�1/
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is commutative. To prove the Clifford type inequalities (11), noting that �i is well-defined
on a general fiber F , we have

di D Ni � F D p
k deg.L0i jF 0/; deg.L0i jF 0/ D deg.�0i / deg.�i .F //:

Now when f W S ! C is hyperelliptic, we have 2 D deg.�0n/ j deg.�0i / for all i
and hence deg.�0i / � 2 .1 � i � n/. Noting deg.�i .F // � ri � 1, we have di D

pk deg.�0i / deg.�i .F // � pk.2ri � 2/ or equivalently

zdi � 2.ri � 1/ .1 � i � n/: (13)

Clifford type inequalities (11) hold when f W S ! C is hyperelliptic.
In non-hyperelliptic cases, if L0i is locally free along a general fibre F 0 of f 0 W S 0!C ,

then �0i is also defined along F 0 and we have di D pk deg.L0i jF 0/: Since L0i � ˛
�!S=C D

!S 0=C , L0i jF 0 is a special line bundle and we have deg.L0i jF 0/ � 2ri � 2 by Clifford’s
theorem (see [11]). Thus we have the desired Clifford type inequalities

di D p
k deg.L0i jF 0/ � p

k.2ri � 2/ .1 � i � n/:

Note that one sufficient condition for L0i to be locally free on F 0 is the normality of the
generic fibre S 0 �C Spec.k.C // of f 0. In fact, if the generic fibre is normal, then L0

is automatically locally free on it. Hence L0 is locally free on a general fibre F 0. The
normality of the generic fibre S 0 �C Spec.k.C // follows if (b) the generic fibre of f is
smooth or (c) g.C / � 1. In case (b) the generic fibre of f 0 is moreover smooth and in
case (c) we can take k D k0 D 0 by Remark 2.6 and hence f 0 D f .

In conclusion, under either assumption of our theorem, we have the Clifford type
inequalities (11) and therefore K2S �

4g�4
g

deg.f�!S /.

Remark 2.8. The Clifford type inequalities (11) can fail in general. As a result, Xiao’s
slope inequality does not hold in positive characteristic in general. We shall see such
counterexamples in §4.2.

2.2. Other slope inequalities

In this subsection we give some other slope inequalities.

Proposition 2.9 ([7,8]). Let f W S ! C be a non-hyperelliptic, relatively minimal fibra-
tion of genus 3. Then K2

S=C
� 3�f .

This result is well known over C and the proof in [8] works in any characteristic.

Proposition 2.10. Let f W S ! C be a relatively minimal fibration of genus g such that
KS is nef. Let b WD g.C /. Then

(1) K2S �
2g�2
g

deg.f�!S /;

(2) if g D 4, then 7K2
S=C
� 15�f � 48.b � 1/;

(3) if g � 5, then

K2S=C �
2.g � 1/.g � 2/

g2 � 3g C 1
�f �

4.g � 1/.g2 � 4g C 2/

g2 � 3g C 1
.b � 1/:
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Proof. We adopt the notations used in the previous section. Namely, let E WD f�!S=C
and

0 D E0 � E1 � � � � � En D F
k�
C E

be the Harder–Narasimhan filtration of F k�C E for some k � k0 (see Theorem 2.5). Take
z�i ; ri ; Zi ; Ni and zdi defined as in the previous section, in the paragraphs preceding (7).
Then we see that

N1 D p
kKS=C �Z1 � �1 � F � p

kKS � .�1 C 2p
k.b � 1// � F

is nef. As KS is nef, we have

p2kK2S � p
kKS �N1 C p

kKS � .p
kKS �N1/ � p

kKS � .�1 C 2p
k.b � 1//F

� pk.2g � 2/.�1 C p
k.2b � 2//:

In other words,
K2S � 4.g � 1/.b � 1/C .2g � 2/ � z�1: (14)

Note that by definition we have g � z�1 � �f D deg.f�!S / � 2g.b � 1/. Combining this
inequality with (14), we obtain

K2S �
2g � 2

g
deg.f�!S /:

Since K2S D KS=C C 8.g � 1/.b � 1/, we can reformulate (14) as

K2S=C � .2g � 2/ � z�1 � 4.g � 1/.b � 1/: (15)

Let vi WD z�1 � z�i , so 0 D v1 < � � � < vn. By (8) and (10), we have

K2S=C � 4.g � 1/ � z�1 � �
�n�1X
iD1

. zdi C zdiC1/.vi � viC1/C 4.g � 1/vn

�
;

�f � g � z�1 D �
�n�1X
iD1

ri .viC1 � vi /C gvn

�
:

With the help of Lemma 2.11, we immediately have

K2S=C � 4.g � 1/ � z�1 �

´
5.�f � g � z�1/; g D 4;

.2g � 4/.�f � g � z�1/; g � 5:

Combining this with (15), after a simple calculation we obtain the desired inequalities by
eliminating z�1.

Lemma 2.11. Let

ˆ WD

n�1X
iD1

. zdi C zdiC1/.vi � viC1/C 4.g � 1/vn; ‰ WD

n�1X
iD1

ri .viC1 � vi /C gvn:

Then

ˆ �

´
5‰; g D 4;

.2g � 4/‰; g � 5:



Slope inequalities and a Miyaoka–Yau type inequality 621

Proof. Take e1 WD zd1C zd2, ei D zdiC1� zdi�1 for i D 2; : : : ; n�1 and en D 2g�2� zdn�1.
ThenˆD

Pn
iD1 eivi and‰D

Pn
iD1.ri � ri�1/vi ; r0 WD 0. Moreover,

Pn
iD1 ei D 4g� 4.

Case rn�1 < g � 1 or n D 1: When g D 4, we have

5‰ � 10vn C 5vn�1 � en � vn C .15 � en/ � vn�1

� en � vn C .12 � en/ � vn�1 � ˆ

since it is clear that en � 2g � 2 < 10. When g � 5, we have

.2g � 4/‰ � .4g � 8/vn C .2g � 4/vn�1 � en � vn C .6g � 12 � en/ � vn�1

� en � vn C .4g � 4 � en/ � vn�1 � ˆ

since it is clear that en � 2g � 2 < 4g � 8.

Case rn�1 D g � 1; rn�2 < g � 2 or n D 2: When g D 4, we have

5‰ � 5vn C 10vn�1 � en � vn C .15 � en/ � vn�1

� en � vn C .12 � en/ � vn�1 � ˆ

since in this case en D 6� zdn�1 � 6� rn�1 C 1 D 4 < 5 by (13). When g � 5, we have

.2g � 4/‰ � .2g � 4/vn C .4g � 8/vn�1 � en � vn C .6g � 12 � en/ � vn�1

� en � vn C .4g � 4 � en/ � vn�1 � ˆ

since in this case en D 2g � 2 � zdn�1 � g < 2g � 4.

Case rn�1 D g � 1; rn�2 D g � 2: When g D 4, we have

5‰ � 5vn C 5vn�1 C 5vn�2 � en � vn C en�1 � vn�1 C .15 � en � en�1/ � vn�2

� en � vn C en�1 � vn�1 C .12 � en � en�1/ � vn�2 � ˆ

since in this case en � 4 and en�1 D 6� zdn�2 � 6� rn�2C 1D 5. When g � 5, we have

.2g � 4/‰ � .2g � 4/vn C .2g � 4/vn�1 C .2g � 4/vn�2

� en � vn C en�1 � vn�1 C .6g � 12 � en � en�1/ � vn�2

� en � vn C en�1 � vn�1 C .4g � 4 � en � en�1/ � vn�2 � ˆ

since in this case en � g and en�1 D .2g � 2/ � zdn�2 � g C 1 � 2g � 4.

3. Miyaoka–Yau type inequality in positive characteristic

We now start to study Miyaoka–Yau type inequalities. Suppose S is a minimal surface of
general type over an algebraically closed field k with char.k/ D p > 0. If c2.S/ � 0, we
have an immediate Miyaoka–Yau type inequality c21.S/ � 12�.OS / obtained from (2).
Thus, it suffices to discuss S with c2.S/ < 0.
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We first recall a fundamental theorem on algebraic surfaces of general type with neg-
ative c2 due to Shepherd-Barron.

Theorem 3.1 (Shepherd-Barron [18, Theorem 8]). If c2.S/ < 0, then the Albanese map
of S induces a fibration f W S ! C such that

� C is a non-singular projective curve of genus b WD g.C / � 2 and f�OS Š OC ;

� the fibre has .arithmetic/ genus g WD pa.F / � 2;

� the geometric generic fibre is a singular rational curve with at least one cusp singular-
ity.

We call f W S ! C the Albanese fibration of S . As an application of Theorem 2.7,
Proposition 2.9 and Proposition 2.10, we have

Theorem 3.2. Let c2.S/ < 0 and f W S ! C be the Albanese fibration of S . Then

K2S �

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

.12g C 8/.g � 1/

g2 � g � 1
�.OS / if f is a hyperelliptic fibration;

18�.OS / if g D 3;
840

47
�.OS / if g D 4;

12.g � 1/.3g2 � 4g � 4/

g.3g2 � 12g C 15/
�.OS / if g � 5:

Proof. We first recall the numerical relations (5) and (6):

K2S=C D K
2
S � 8.g � 1/.b � 1/;

�f D �.OS / � .g � 1/.b � 1/C l.f /:

If f W S ! C is hyperelliptic, by Theorem 2.7 one has

K2S � 8.g � 1/.b � 1/ �
4g � 4

g

�
�.OS / � .g � 1/.b � 1/C l.f /

�
�
4g � 4

g

�
1

12
.K2S C c2.S// � .g � 1/.b � 1/

�
D
g � 1

3g
K2S C

g � 1

3g
c2.S/ �

4.g � 1/2.b � 1/

g
:

By the inequality c2.S/ � �4.b � 1/ (see [6, (3.3)]), one has

K2S �
.12g C 8/.g � 1/

2g C 1
.b � 1/; in other words

4.b � 1/

K2S
�

2g C 1

.g � 1/.3g C 2/
;

which implies the first inequality in Theorem 3.2:

12�.OS /

K2S
D 1C

c2.S/

K2S
� 1 �

4.b � 1/

K2S

� 1 �
2g C 1

.g � 1/.3g C 2/
D

3.g2 � g � 1/

.3g C 2/.g � 1/
:



Slope inequalities and a Miyaoka–Yau type inequality 623

Other inequalities follow from the same computations. In fact, if we have a slope
inequality K2

S=C
�  .g/�f � �.g/.b � 1/ with  .g/ < 12, we get

K2S � 8.g � 1/.b � 1/

�  .g/

�
K2S C c2.S/

12
� .g � 1/.b � 1/C l.f /

�
� �.g/.b � 1/

�  .g/

�
K2S � 4.b � 1/

12
� .g � 1/.b � 1/

�
� �.g/.b � 1/:

Thus

K2S �
12.8 �  .g//.g � 1/ � 4 .g/ � 12�.g/

12 �  .g/
.b � 1/:

So we have

12�.OS /

K2S
D 1C

c2.S/

K2S
� 1 �

4.12 �  .g//

12.8 �  .g//.g � 1/ � 4 .g/ � 12�.g/
:

Now by Propositions 2.9 and 2.10, we can take

�  .3/ D 3; �.3/ D 0 if g D 3 and f is not hyperelliptic;

�  .4/ D 15=7, �.4/ D 48=7 if g D 4;

�  .g/ D
2.g � 1/.g � 2/

g2 � 3g C 1
, �.g/ D

4.g � 1/.g2 � 4g C 2/

g2 � 3g C 1
if g � 5.

Our theorem then follows from a simple calculation. Note that from the computation,
when f is a fibration of genus 3, we get

K2S �
88

5
�.OS / < 18�.OS /

if f is hyperelliptic, and K2S � 18�.OS / if f is non-hyperelliptic.

Remark 3.3. (1) From the proof, equality holds in the inequalities in the theorem if and
only if c2.S/D�4.b � 1/, l.f /D 0 and equality holds in the associated slope inequality.

(2) In §4.1 below, we will see that Raynaud’s examples attain equality for hyperelliptic
fibrations in this theorem.

(3) By Tate’s genus change formula (cf. [21] or [6, §2.1]), the genus g is such that
.p � 1/ j 2g.

Corollary 3.4. Let S be a minimal smooth projective surface of general type. Then

K2S � 32�.OS /:

Moreover, when
18�.OS / < K

2
S � 32�.OS /;

the Albanese fibration of S is a fibration of genus 2.
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Proof. If c2.S/ � 0, Noether’s formula implies K2S � 12�.OS /, so it is enough to con-
sider the case c2.S/ < 0. Then we have the Albanese fibration f W S ! C of genus g � 2.

If f W S ! C is hyperelliptic, by Theorem 3.2 we have

K2S �
.12g C 8/.g � 1/

g2 � g � 1
�.OS /

where h.g/ D .12gC8/.g�1/

g2�g�1
is a decreasing function of g with h.2/ D 32 (note h0.g/ D

�
8g2C8gC4

.g2�g�1/2
< 0). Thus K2S � 32�.OS /.

If f W S ! C is non-hyperelliptic, we haveK2S � 18�.OS / for g D 3; 4 immediately
from Theorem 3.2 and

K2S �
12.g � 1/.3g2 � 4g � 4/

g.3g2 � 12g C 15/
�.OS /

when g � 5. It is easy to see that n.g/ D 12.g�1/.3g2�4g�4/

g.3g2�12gC15/
is also a decreasing function

when g � 5 since

n0.g/ D �4
5g2..g � 3/2 � 2/C 4.g � 1/.3g � 5/

.g3 � 4g2 C 5g/2
< 0:

Thus K2S � n.5/�.OS / D
408
25
�.OS / < 18�.OS /. Altogether, we have

K2S � 32�.OS /

for all minimal smooth projective surfaces S of general type and when K2S > 18�.OS /,
f W S ! C must be a fibration of genus 2.

In the next section, we shall construct the following examples:

(1) Examples of S with K2S D 32�.OS / (cf. §4.3) ;

(2) An example of S with K2S D 18�.OS / but with Albanese fibration of genus 3 (cf.
Proposition 4.4).

So the bounds in Corollary 3.4 are optimal.
To end this section, it is worth mentioning that Theorem 3.2 implies Gu’s conjecture

for the “hyperelliptic part” (see [6, Conjecture 1.4]).

Corollary 3.5. Let S be a minimal algebraic surface of general type in positive charac-
teristic p � 5. Assume that c2.S/ < 0 and the Albanese morphism f W S! C has generic
hyperelliptic fibre. Then

�.OS / �
p2 � 4p � 1

4.3p C 1/.p � 3/
K2S (16)

and equality holds exactly for Raynaud’s examples .see §4.1).
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Proof. Since we always have g � .p � 1/=2 by the genus change formula (see [21] or
[6, §2.1]), (16) is a direct consequence of Theorem 3.2 because

h.g/ D
.12g C 8/.g � 1/

g2 � g � 1

is a decreasing function of g with

h

�
p � 1

2

�
D
4.3p C 1/.p � 3/

p2 � 4p � 1
:

If S is one of Raynaud’s examples, equality holds in (16) by a direct computation (see
§4.1). Conversely, equality holds in (16) only if g D .p � 1/=2 by the above statement,
c2.S/D�4.b � 1/; l.f /D 0 andK2

S=C
D

4g�4
g
�f by Remark 3.3. The equality c2.S/D

�4.b � 1/ holds only if all geometric fibres of f are irreducible. Moreover, when g D
.p � 1/=2, there is an integral horizontal divisor � contained in the non-smooth locus
of f such that Œ� W C � D p. So f has no multiple fibre: each geometric fibre of f is
irreducible and reduced. And our result is a direct consequence of Lemma 4.3 below.

4. Examples

4.1. Raynaud’s examples

In [17], Raynaud constructed a class of pairs .S;L/, where S is a smooth projective
algebraic surface in positive characteristic and L is an ample line bundle on S such that
H 1.S;L/¤ 0. These pairs give counterexamples to Kodaira’s vanishing theorem in pos-
itive characteristic. In fact, Raynaud’s examples do not only violate Kodaira’s vanishing
theorem, but also lead to many other pathologies in positive characteristic.

We now briefly recall their construction; one can also refer to [17] or [6, §4]. Let us
start with a smooth projective curve C of genus b WD g.C / � 2 over an algebraically
closed field k of characteristic p > 2 equipped with a rational function f 2 k.C /nk.C /p

such that
div.df / D pD

for some divisor D on C . We have the following examples of C known as a special case
of the Artin–Schreier curves.

Example 4.1 (Artin–Schreier curves). Let C be the projective normal curve associated
to the following plane equation:

yp � y D  .x/;  .x/ 2 kŒx�:

Then div.dx/ D .2b � 2/1, where1 2 C is the unique point at infinity. For a suitable
choice of  .x/ (e.g.,  .x/D xpC1), the genus b D g.C / can be such that p j2b � 2 > 0.
Therefore div.dx/ D p �D for

D D
2b � 2

p
1:
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Starting from .C; f /, Raynaud shows there is a rank 2 vector bundle E on C along
with a non-singular effective divisor † on � W P D P .E/! C such that

� det.E/ ' OC .D/;

� †� P is a non-singular divisor consisting of two irreducible components†1,†2 such
that

– †1 is a section of � and †1 2 jOP .1/j;

– � W †2 ! C is inseparable and of degree p, so it is the Frobenius;

– †1 \†2 D ;.

Moreover, all such configurations .P;†/ come from his construction by a suitable choice
of .C; f /, and we actually have

� †2 2 jOP .p/˝ �
�!�1C j:

In particular, the divisor † is an even divisor on P , so we can construct a flat double
cover � W S ! P with branch divisor† by choosing any line bundle M on P with M2 '

OP .†/. The resulting surface S is smooth over k since † is (see [6, §2]).

Definition 4.2 (Raynaud’s examples). Let S be a smooth projective surface over k. We
say that S is one of Raynaud’s examples if there is a flat double cover � W S ! P with
branch divisor †,

S
� //

f ��@
@@

@@
@@

P

�~~~~
~~
~~
~~

C

Note that by construction, the fibration f W S!C in Raynaud’s construction is hyper-
elliptic. Let f W S ! C be one of Raynaud’s examples associated to the triple .C;P;†/.
Then

� f W S ! C is a fibration of genus g D .p � 1/=2;

� K2S D .3p
2 � 8p � 3/.b � 1/=p;

� �.OS / D .p
2 � 4p � 1/.b � 1/=.8p/.

Thus

K2S=C D K
2
S � 8.g � 1/.b � 1/ D �.p � 1/.p � 3/.b � 1/; (17)

�f D �.OS / � .g � 1/.b � 1/ D �
.p � 1/2.b � 1/

8p
: (18)

In particular, we have equality in Xiao’s inequality (see Theorem 1.1):

K2S=C D
4g � 4

g
�f

and both sides of the equality are negative. Raynaud’s examples are such that

K2S D
4.3p C 1/.p � 3/

p2 � 4p � 1
�.OS /;

which is the maximal possible slope for the “hyperelliptic part” (see Corollary 3.5).
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We end this subsection by a characterization of Raynaud’s examples.

Lemma 4.3. Suppose f W S ! C is a surface fibration. Then S is one of Raynaud’s
examples if and only if

(a) every geometric fibre of f is a singular rational curve of arithmetic genus

g D
p � 1

2
I

(b) every geometric fibre is hyperelliptic and integral.

Proof. The “only if” part can be checked directly. Conversely, let � be the hyperelliptic
involution, and � W S ! P 0 WD S=� be the quotient map. Then condition (b) implies that
the canonical homomorphism � W P 0 ! C has integral fibres. Noting that � W P ! C is
birational to a ruled surface (recall that k.C / is C1 by Tsen’s Theorem) and P 0 is normal
with integral �-fibres, we see that P 0 is exactly a smooth minimal ruled surface over C .
Thus the quotient map � WS!P 0 is a flat double cover with some branch divisor†0¨P 0,
and†0 itself is smooth over k (see [6, §2.2]). On the other hand, it can be deduced from [6,
§§2.1, 2.2] that †k.C/ WD †0 ��;C k.C / is a divisor of P 0

k.C/
WD P 0 ��;C k.C / ' P1

k.C/

such that

� degk.C/†k.C/ D p C 1 (since pa D .p � 1/=2);

� †k.C/ contains a point inseparable over k.C / (since all fibres are singular).

By degree counting, one concludes that .P 0; †0/ falls into the configuration given by
Raynaud.

4.2. Counterexamples to Xiao’s slope inequality

Starting from the triple pair .C; P D P .E/; †/ constructed in the previous subsection,
we can also take a cyclic cover of P branching at † of higher degree, which then gives
counterexamples to Xiao’s slope inequality.

After an étale base change if necessary, we now assume p C 1 j 2b � 2 and fix a line
bundle M on C such that MpC1 ' !C . Now since

† 2 jOP .p C 1/˝ �
�!�1C j D j.OP .1/˝ �

�M�1/pC1j;

this data gives a cyclic .p C 1/-cover � W S ! P branching at †. Since † is a smooth
divisor, S is smooth over k. Denote by

f D � ı � W S ! C

the associated surface fibration. Then

� S is a minimal surface of general type;

� every closed fibre of f is a singular rational curve of arithmetic genus .p2 � p/=2;

� K2S D �
�.KP C pc1.OP .1//C pf

�c1.M// D .p C 3/.p � 2/.2b � 2/;
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� �.OS / D

pX
jD0

�.O.�j /˝ ��M�j / D
p2 C p � 8

12
.2b � 2/;

� K2S=C D �.p
2
� 3p C 2/.2b � 2/ < 0;

� �f D �
p2 � 2p C 1

6
.2b � 2/ < 0.

So
K2
S=C

�f
D
6.p2 � 3p C 2/

p2 � 2p C 1
>
4.p � 2/.p C 1/

p.p � 1/
D
4g � 4

g
;

but since �f < 0, this violates Xiao’s slope inequality.
When p D 3, we have g D 3 andK2S D 18�.OS /. Note that f is clearly the Albanese

fibration of S , and we have the next proposition.

Proposition 4.4. There is a surface S of general type in characteristic 3 with K2S D
18�.OS / and with Albanese fibration of genus 3.

4.3. Surfaces of general type with maximal slope

Let S be a minimal surface of general type over an algebraically closed field k with
char.k/ D p. We have K2S � 32�.OS / by Theorem 3.2. When K2S D 32�.OS /, we say
the surface S is of maximal slope.

4.3.1. Characterisation of surfaces of maximal slope

Proposition 4.5. A general type surface S is of maximal slope if and only if there is a
fibration f W S ! C of genus 2 such that

(1) b WD g.C / � 2;

(2) all fibres of f are irreducible, singular and rational.

Proof. If S is of maximal slope, its Albanese fibration f W S ! C is of genus 2 by
Corollary 3.4. Moreover, from Remark 3.3, when S has maximal slope, one must have
c2.S/D�4.b � 1/, which is equivalent to all fibres of f being irreducible (see [6, (3.3)]).

Conversely, if S admits such a fibration f W S ! C , then any fibre of f can have
only unibranch singularities and therefore c2.S/D�4.b � 1/ by the Grothendieck–Ogg–
Shafarevich formula. On the other hand, since all fibres of f are irreducible and reduced
(since genus 2 fibres have no multiplicity), we have l.f / D 0 and the relative canonical
map

v W S ! P D P .f�!S=C /

is a morphism without base point. In particular,

!S=C D v
�O.1/:

Therefore K2
S=C
D 2c21.O.1// D 2 deg.f�!S=C /. It then follows from Remark 3.3 again

that K2S D 32�.OS /.
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By Tate’s genus change formula (see [21] or [6, §2.1]), the fibration f in Proposi-
tion 4.5 may only occur in characteristic p D 2; 3 or 5.

4.3.2. Surfaces of maximal slope when p D 5

Proposition 4.6. If p D 5, a surface of general type is of maximal slope if and only if it
is one of Raynaud’s examples.

Proof. This follows from Lemma 4.3 and Proposition 4.5.

4.3.3. Surfaces of maximal slope when p D 2. We give another example of a surface
with maximal slope when p D 2. Define C to be the quintic plane curve given by the
homogeneous equation

Y 4Z C YZ4 D X5 (19)

over an algebraically closed field k of characteristic p D 2. One can easily check that C
is a smooth curve of genus b WD g.C / D 6. There are two affine subsets Ci (i D 0; 1)
of C :

C0 .ZD1/ W y
4
C yDx5; xD

X

Z
; yD

Y

Z
; with CnC0D¹.0; 1; 0/ºI

C1 .Y D1/ W z
04
C z0Dx05; x0D

X

Y
D
x

y
; z0D

Z

Y
D
1

y
; with CnC1D¹.0; 0; 1/º:

For simplicity, we introduce the following notation:

� 1 is the point .0; 1; 0/ which is the complement of C0 in C ;

� ƒ WD ¹.0; 1; �/ j � 2 F�16º D ¹.0; �; 1/ j � 2 F�16º ¨ C .

� C 01 WD C1nƒ;

� C10 D C0 \ C
0
1.

Over C0, S is defined as
Y 20 D S0T

5
0 C xS

6
0 (20)

in the weighted projective space Proj.OC0
ŒS10 ; T

1
0 ; Y

3
0 �/. Here the superscript on each

element is its homogeneous degree.
Over C 01, S is defined as

Y 21 D S1T
5
1 C

x0

1C z06
S61 (21)

in the weighted projective space Proj.OC 0
1
ŒS11 ; T

1
1 ; Y

3
1 �/.

The homogeneous translation relation is given by8̂̂<̂
:̂
S1 D x

03S0;

T1 D x
0T0;

Y1 D x
04Y0 C .1C z

03/T 30 ;
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and this construction makes sense because

x08.Y 20 � S0T
5
0 C xS

6
0 / D Y

2
1 �

�
S1T

5
1 C

x0

1C z06
S61

�
and x0 is invertible on C01.

One can easily check that S is a non-singular surface and the fibration f W S ! C

is as in Proposition 4.5. So this gives an example of a surface with maximal slope in
characteristic 2. In this example, we actually have �.OS / D 1 and K2S D 32. We also
mention that S is obtained from C � P1 by taking the quotient relative to the foliation
D D s6 @

@s
C

@
@x
; where s is the parameter of P1.

4.3.4. No surface of maximal slope when pD 3. Finally, we prove that there is no surface
of general type with maximal slope when p D 3. Suppose we have such a surface S . Note
that the relative canonical map gives a morphism: � W S ! P .f�!S=C / since each fibre
of f is irreducible and reduced, and � is necessarily a flat double cover (see [6, §2]). Let
M ¨ P .f�!S=C / be the branch divisor of � , which satisfies

� M is a smooth, horizontal divisor and ŒM W C � D 6;

� each component of M is inseparable over C ;

� for each point c 2 C , its inverse image in M has exactly two points. In fact, if some c
has one inverse image, then the fibre of f at c is by construction a flat double cover of
P1k branching at a single point of multiplicity 6; such a fibre is clearly not irreducible.

Then there are two possibilities:

(A) M DM1 CM2 with M1 �M2 D 0, and the projections Mi ! C (i D 1; 2) are both
isomorphic to the Frobenius morphism;

(B) M is irreducible and the projection u WM ! C factors as

M
FM //

u
  A

AA
AA

AA
A M 0

v
~~||
||
||
||

C

where FM is the Frobenius morphism and v is an étale double cover.

Indeed, we only need to consider case (A), since by replacing C by the base change v
above which is an étale double cover, case (B) can be turned into (A).

Finally, we exclude case (A). Let † be the divisor class O.1/ of P .f�!S=C /, and
Mi �num 3†C uiF for i D 1; 2. Recall that

†2 D deg.f�!S=C / D �f ;

and we have

2b � 2 D .3†C uiF /
2
C .3†C uiF /.�2†C .�f C 2b � 2/F /; (22)

0 D .3†C u1F /.3†C u2F /: (23)

Thus u1 D u2 and b D 1, which is a contradiction.
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