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Abstract. Continuing the work of Johnson (2018), we classify the pure fields and pure valued
fields of dp-rank 1, up to elementary equivalence. In the process, we give a few new examples of
dp-minimal fields. Specializing to the case of dp-small fields, we prove that dp-small fields and
VC-minimal fields are all algebraically closed or real closed, as had been conjectured by Guingona
(2014). This generalizes earlier work of Haskell and Macpherson (1994) and Macpherson et al.
(2000), showing that C -minimal fields are algebraically closed, and weakly o-minimal fields are
real closed. In fact, we obtain slight strengthenings of these earlier results, since we assume no
compatibility between the field structure on the one hand and the C -relation or order on the other
hand. We also give a new proof of Jahnke, Simon, and Walsberg’s (2017) theorem that dp-minimal
valued fields are henselian. Lastly, we apply the Kaplan–Scanlon–Wagner (2011) theorem (NIP
fields are Artin–Schreier closed) to prove some general properties of strongly dependent valued
fields. For example, strongly dependent henselian valued fields are defectless.
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1. Introduction

The class of NIP structures plays a central role in contemporary model theory. It contains
the model-theoretically important class of stable structures, as well as many important
structures from algebra and number theory, such as the power series ring CJXK, the local
fields R;Qp (obtained by completing Q along its absolute values), and all abelian ordered
groups.

The class of dp-minimal structures can be regarded as the simplest type of NIP struc-
ture: dp-rank measures the complexity of an NIP structure, and dp-minimal structures are
the structures of dp-rank 1. But at the same time, dp-minimality generalizes many of the
important “minimality” notions in model theory, such as strong minimality, o-minimality,
VC-minimality, and p-minimality. Many of the NIP structures arising “naturally” in al-
gebra and number theory are already dp-minimal.
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This paper continues [18], and culminates in a classification of dp-minimal (pure)
fields and dp-minimal valued fields, up to elementary equivalence. The classification is
a bit complicated. The bulk of the examples come from various theories of henselian
valued fields. In addition to the usual suspects like R;Qp;C..X//, there are some positive
characteristic and mixed characteristic cases. See Theorem 1.3 for details.

The classification results rely on three key ingredients. First, we use the “canonical
topology” on dp-minimal fields, developed in [18]. This is a canonically determined field
topology on any dp-minimal field K that fails to be algebraically closed. The canonical
topology has several nice properties:

� There is a definable basis of opens.

� The topology is a V-topology, essentially meaning that the infinitesimals are a valuation
ideal.

Second, we use the henselianity of (_-)definable valuation rings on dp-minimal fields.
This was first proven in [17], but we give an alternative proof using the canonical topol-
ogy. This proof uses a new method for proving henselianity that may be of independent
interest.1 Lastly, we use Jahnke and Koenigsmann’s work on the definability of canoni-
cal (p-)henselian valuations [16]. Morally, this allows us to pin down the finest definable
valuation ring and gain control of the residue field.

Along the way, we produce some (apparently) new examples of dp-minimal fields
and valued fields. We also prove a few elementary facts about strongly dependent valued
fields.

1.1. Strong dependence, dp-minimality, and dp-smallness

Let M be a model and ¹X˛;iº˛2�; i2! be a rectangular array of definable sets. The X˛;i
form an ict-pattern or randomness pattern if the following two conditions hold:

� For each ˛, the sets X˛;0; X˛;1; X˛;2; : : : in row ˛ are uniformly definable.

� For each function � W � ! !, there is an a 2M� �M such that

a 2 X˛;i ” i D �.˛/; for all ˛ 2 �; i 2 !:

The number � is called the depth of the ict-pattern. If all theX˛;i are subsets of a definable
set Y , we say that the X˛;i form an ict-pattern in the set Y .

The dp-rank of a definable set Y is the supremum of cardinals � such that there is an
ict-pattern of depth � in the set Y , possibly in an elementary extension M� �M.

Using this, one defines:

(1) M is NIP (or dependent) if dp-rk.M/ <1, i.e., if there is an absolute bound on the
depth of ict-patterns in M DM1.

1For example, it has recently been used to prove the henselianity of definable valuation rings in
positive characteristic NIP fields. See [19, Theorem 2.8].
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(2) M is strongly dependent if there is no ict-pattern of depth @0 in M DM1.

(3) M is dp-minimal if dp-rk.M/D 1, i.e., there is no ict-pattern of depth 2 in MDM1.

One can show that (1) is equivalent to the usual definition of NIP (no formula has the
independence property). Note that

dp-minimal H) strongly dependent H) NIP:

Concretely, a theory T is dp-minimal if there does not exist a model M ˆ T , formulas
�.xIy/;  .xI z/ with jxj D 1, and elements bi ; cj such that for every i0; j0, the type

�.xI bi0/ ^  .xI cj0
/ ^

^
i¤i0

:�.xI bi / ^
^
j¤j0

: .xI cj /

is consistent. Here, the �.M I bi / are the sets of the first row, and the  .M I cj / are the
sets of the second row; .i0; j0/ is the function 2! !.

In [10, Definition 1.4], Guingona defines a related notion: a theory T is dp-small
if there does not exist a model M ˆ T , formulas �i .xI y/;  .xI z/ with jxj D 1, and
elements bi ; cj such that for every i0; j0, the type

�i0.xI bi0/ ^  .xI cj0
/ ^

^
i¤i0

:�i .xI bi / ^
^
j¤j0

: .xI cj /

is consistent. The subtle difference is that the definable sets of the first row are no longer
uniformly definable. Note that

dp-small H) dp-minimal:

It turns out that many theories are dp-small. One has the following implications (for any
sense of C -minimality):

weakly o-minimal +3 VC-minimal +3 dp-small

o-minimal

KS

strongly minimal

KS

C -minimal

dl

On the other hand, we will see that most dp-minimal fields fail to be dp-small. For
example, the field Qp of p-adic numbers and the field C..X// of Laurent series are dp-
minimal but not dp-small.

1.2. Main results

If .K; v/ is a valued field, we let Kv denote the residue field and vK denote the value
group. See [7] for the basics of valuation theory.

Theorem 1.1. Let .K; v/ be a strongly dependent non-trivially valued field.

(1) If .K; v/ is henselian, then .K; v/ is defectless.
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(2) If Kv is finite of characteristic p, then K has characteristic 0 and the absolute rami-
fication is bounded: the interval Œ�v.p/; v.p/� � vK is finite.

(3) If Kv is infinite of characteristic p, then the interval Œ�v.p/; v.p/� is p-divisible.
Here, if K has characteristic p, then Œ�v.p/; v.p/� denotes all of vK.

This is proven in §2.4. Parts (2)–(3) determine a dichotomy for strongly dependent
valued fields of positive residue characteristic. Theorem 1.1 was mostly already known.
The equicharacteristic 0 statements are trivial, and the equicharacteristic p statements
were proven by Kaplan, Scanlon, and Wagner [22]. The new statements are in mixed
characteristic, and are easily obtained by combining [22] with the technique of Shelah
expansions.

Theorem 1.2. Let K be a dp-minimal field, possibly with extra structure. Then at least
one of the following holds:

� K is finite.

� K is real closed.

� K is algebraically closed.

� K has a non-trivial definable henselian valuation.

In fact, if O is the intersection of the definable henselian valuation rings, then O is a
type-definable henselian valuation ring whose residue field is finite, real closed, or alge-
braically closed.

We prove this in §4.4. Theorem 1.2 is an instance of the more general “Shelah con-
jecture,” which changes “dp-minimal” to “NIP” and “algebraically closed” to “separably
closed” [12].

Using Theorem 1.2, we prove the following classification theorem in §7.

Theorem 1.3 (Classification of dp-minimal fields).

(1) Let � be an ordered abelian group such that �=n� is finite for all n > 1.

(a) Let k be a local field of characteristic 0. The theory of henselian valued fields
.K; v/ with vK � � and Kv � k is complete and dp-minimal.

(b) If p is a prime and � is p-divisible, then the theory of henselian defectless char-
acteristic p valued fields .K; v/ with vK � � and Kv ˆ ACFp is complete and
dp-minimal.

(c) If p is a prime, a 2 �>0, and Œ�a; a� � � is p-divisible, then the theory of
henselian defectless characteristic 0 valued fields .K; v/ with Kv ˆ ACFp and
.vK; v.p// � .�; a/ is complete and dp-minimal.

(2) If F is a pure field which is infinite and dp-minimal, then Th.F / is the reduct to the
language of rings of one of the above theories, for some �; k; p; a.

The important part is (2), though (1b)–(1c) are apparently new as well.
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Corollary 1.4. An infinite fieldK of characteristic p > 0 is dp-minimal if and only if it is
elementarily equivalent to a Hahn series field F alg

p ..t�// where � is a p-divisible ordered
abelian group with �=n� finite for all n > 0.

This is analogous to [17]’s classification of dp-minimal ordered fields—up to elemen-
tary equivalence, they are the Hahn fields R..t�// where � is an ordered abelian group
with �=n� finite for all n > 0.

In characteristic 0, case (1a) consists of exactly the fields elementarily equivalent to
K..t�// where K is a characteristic 0 local field and �=n� is finite for all n. However,
there seems to be no clean way to describe case (1c), which includes annoyances like the
spherical completions of

Qun
p .p

1=p; p1=p
2

; p1=p
3

; : : :/;

where Qun
p is the maximal unramified extension of Qp .

We also get a classification of dp-minimal valued fields in §8.

Theorem 1.5. Let .K; v/ be a valued field with infinite residue field. Then .K; v/ is dp-
minimal .as a pure valued field/ if and only if the following conditions all hold:

(1) The residue field Kv and value group vK are dp-minimal.

(2) The valuation v is henselian and defectless.

(3) In mixed characteristic, every element of Œ�v.p/; v.p/� is divisible by p.

(4) In pure characteristic p, the value group vK is p-divisible.

Theorem 1.6. Let .K; v/ be a valued field with finite residue field. Then .K; v/ is dp-
minimal .as a valued field/ if and only if the following conditions all hold:

(1) The value group vK is dp-minimal.

(2) The valuation v is henselian.

(3) The valuation is finitely ramified, in the sense that Œ�v.p/; v.p/� is finite. .In partic-
ular, K has characteristic 0 if v is non-trivial./

Meanwhile, for dp-small fields, we prove the following results in §5.

Theorem 1.7. Let K be an infinite field, possibly with extra structure.

(1) If K is VC-minimal .or more generally, dp-small/, then K is real closed or alge-
braically closed.

(2) If K is .densely/ C -minimal, then K is algebraically closed.

(3) If K is weakly o-minimal, then K is real closed.

In case (2), we mean C -minimal in the sense of Haskell and Macpherson [14] rather
than Delon [5]. In particular, we assume the C -relation is dense; see §5.1 for details.

Cases (2) and (3) are exactly the main results of [14] and [24], except that we have
generalized slightly: we do not assume any compatibility between the field operations and
the C -predicate or ordering.

Case (1) is the “VC-minimal fields conjecture” of [10].
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1.3. Related work

Dp-small ordered fields were classified by Guingona [10], and dp-minimal ordered fields
were classified by Jahnke, Simon, and Walsberg [17], who also classified the dp-minimal
ordered abelian groups and proved henselianity for dp-minimal valued fields, both of
which we shall use here.

In the four years since the classification of dp-minimal fields was announced, con-
siderable progress has been made on NIP fields. Here is a brief summary of the current
state of affairs. By work of Anscombe, Dolich, Farré, Goodrick, Halevi, Hasson, Jahnke,
and Sinclair [6,8,11–13,26], the classification of strongly dependent fields—and possibly
even NIP fields—has been reduced to the following two conjectures:

Conjecture 1.8 (Henselianity conjecture). If .K; v/ is an NIP valued field, then v is
henselian.

Conjecture 1.9 (“Shelah” conjecture). If K is an NIP field, then at least one of the fol-
lowing holds:

� K is separably closed.

� K is real closed.

� K is finite.

� K admits a definable henselian valuation.

Unfortunately, these two conjectures have proven difficult to attack. The main known
results are

(1) The henselianity conjecture for dp-minimal .K; v/, proven in [17].

(2) The Shelah conjecture for dp-minimal K, proven in the present paper (Theorem 1.2).

(3) The implication

Shelah conjecture H) henselianity conjecture,

proven in [13].

In [19, 20], I extend the techniques of the present paper to prove

(4) The henselianity conjecture for .K; v/ of positive characteristic.

(5) The Shelah conjecture for K of positive characteristic and finite dp-rank.

2. Strongly dependent valued fields

In [22], it is shown that all NIP fields are Artin–Schreier closed. We will use this fact to
prove several nice properties of strongly dependent valued fields.

2.1. Some valuation theory

The characteristic exponent of a valued field K is p if K has residue characteristic p,
and 1 if K has residue characteristic 0.
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Fact 2.1. If K is henselian and L=K is a finite extension, then

ŒL W K� D jvL=vKj � ŒLv W Kv� � pd ;

where p is the characteristic exponent, and d 2 N.

One says that the extension L=K is defectless if pd D 1. A henselian field K is
defectless if every finite extension is defectless.

Fact 2.2. The henselian fieldK is defectless if any of the following three conditions hold:

� K has residue characteristic 0.

� K has residue characteristic p, and p does not divide the degree of any finite extension
of K.

� K is spherically complete.

2.2. Perfection

Recall that a set X has rudimentarily finite dp-rank if there is no ict-pattern of depth @0
in X . Here, X can be type-definable, or even �-definable (i.e., pro-definable). In Lem-
mas 2.3 and 2.6, we shall use the fact that an infinite product D1 �D2 � � � � of infinite
definable sets has an ict-pattern of depth @0, and therefore fails to have rudimentarily
finite dp-rank.

Lemma 2.3. Let K be a strongly dependent field. Then K is perfect.

Proof. If K is imperfect, then there is a definable injection f W K � K ,! K, namely
f .x; y/ D xp C b � yp for any b … Kp .

Let X0 D K and let XiC1 D f .X0; Xi /. Note X0 � X1 � � � � . Let X1 be the type
definable set

T
i Xi . In the category of �-definable sets, there is a surjection X1 !Q1

iD0K, roughly sending

f .x0; f .x1; f .x2; : : :/// 7! .x0; x1; x2; : : :/:

More precisely, note that X1 D f .K;X1/, and f W K � X1
�
�! X1 is a bijection. Let

�1 and �2 be the two projections

X1
�
�! K �X1� K; X1

�
�! K �X1� X1:

Then the surjection X1 !
Q1
iD0K is the map

x 7! .�1.x/; �1.�2.x//; �1.�2.�2.x///; : : :/:

Since
Q1
iD0K does not have rudimentarily finite weight, neither does X1, nor does its

superset K.

Remark 2.4. LetK be a strongly dependent field of characteristic p, andL=K be a finite
extension. Then p does not divide ŒL W K�.
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Proof. By perfection,L=K is a separable extension, so this follows by [22, Corollary 4.5].

Lemma 2.5. Let K be an infinite strongly dependent field of positive characteristic p.
Then any valuation on K has p-divisible value group, and any henselian valuation on K
is defectless.

Proof. The first claim follows becauseK is Artin–Schreier closed, or because it is perfect.
For the second claim, if v is a henselian valuation, if L=K is a finite extension, and if w
is a prolongation of v to L, then

ŒL W K� D ŒLw W Kv� � jwL=vKj � pd ;

for some d 2 N. By Remark 2.4, p does not divide ŒL W K�, so d D 0, i.e., the valuation
is defectless.

2.3. Finite ramification

Lemma 2.6. Let .K; v/ be a strongly dependent mixed characteristic valued field. Sup-
pose the interval Œ�v.p/; v.p/� in the value group is finite. Then the residue field Kv is
finite.

Proof. We may replace K with a sufficiently saturated elementary extension. Note that
Kv is itself strongly dependent, hence perfect.

Let O be the valuation ring. By finite ramification, the maximal ideal of O is a princi-
pal ideal .�/ for some generator � . Let OO denote the �-definable set

OO D lim
 �

O=.�n/:

Then O surjects onto OO via the obvious map.
Suppose the map OO ! Kv had a �-definable section

s W Kv ! OO:

We would then obtain a �-definable bijection

Kv � OO
�
�! OO; .˛; x/ 7! s.˛/C � � x:

This would then yield �-definable surjections

O ! OO ! Kv � OO ! Kv �Kv � OO ! � � � ! Kv �Kv � � � � ;

showing that O is not strongly dependent unless Kv is finite.
So it suffices to produce a �-definable section of the projection OO! Kv. We will use

the Teichmüller character.

Claim 2.7. For each n, if m > n and res.y1/ D res.y2/ ¤ 0, then yp
m

1 � y
pm

2 2 .�n/.



Dp-minimal and dp-small fields 475

Proof. Note first that if I is any principal proper ideal of O, then .1C I /p � 1C J for
a strictly smaller principal ideal, namely J D I 2 C p � I . It follows that

.1C .�//p
m

� 1C .�m/:

Then for y1; y2 2 O�,

y1�y2 2 .�/ H)
y1

y2
2 1C.�/ H)

y
pm

1

y
pm

2

2 1C.�m/ H) y
pm

1 �y
pm

2 2 .�
m/� .�n/:

Now define a section s W .Kv/� ! OO� as follows: given non-zero ˛ 2 Kv, choose a
sequence y1; y2; : : : in O such that .res.yn//p

n
D ˛, using perfection of Kv. Then let

s.˛/ D lim
n!1

yp
n

n :

To see that this is well-defined and �-definable, note that for m > n, the class of yp
m

m

modulo .�n/ does not depend on ym, by the claim, nor on m, because for m0 > m,

y
pm0�m

m0 � ym 2 .�/ and so y
pm0

m0 � y
pm

m 2 .�n/:

And res.s.˛// D ˛, by choice of the yi ’s.
Therefore there is a �-definable section of OO� ! .Kv/�. We can extend this to a

section of OO ! Kv by sending 0 to 0.

2.4. Defectlessness and a dichotomy

Definition 2.8. If � is an ordered abelian group and p is prime, let Intp � denote the
maximal convex p-divisible subgroup of � .

The subgroup Intp � is first-order definable in � , because


 2 Intp � ” Œ�j
 j; j
 j� � p � �:

(Note that Œ�j
 j; j
 j� generates a convex subgroup.)

Definition 2.9. A valuation v W K ! � is roughly p-divisible if Œ�v.p/; v.p/� � p � � ,
where Œ�v.p/; v.p/� denotes ¹0º in pure characteristic 0, denotes � in pure characteris-
tic p, and denotes the usual interval Œ�v.p/; v.p/� in mixed characteristic.

In mixed characteristic, .K;v/ is roughly p-divisible if and only if v.p/2 Intp . In pure
characteristic p, .K;v/ is roughly p-divisible if and only if the value group is p-divisible.

Remark 2.10. Let P be one of the following properties of valuation data:

� Roughly p-divisible.

� Henselian.

� Henselian and defectless.

� Every countable chain of balls has non-empty intersection.
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If K1 ! K2 and K2 ! K3 are places, the composition K1 ! K3 has property P if and
only if each of K1 ! K2 and K2 ! K3 has property P .

For each property, this is straightforward to check.
In what follows, we will use the Shelah expansion. If M is an NIP structure, M sh

denotes the expansion of M by all externally definable sets. By [25, Proposition 3.23],
M sh eliminates quantifiers. Using this, one sees that ifM is dp-minimal or strongly depen-
dent, then so is M sh. Of course, properties like saturation will often be lost.

Theorem 2.11. Let .K; v/ be a strongly dependent valued field. If Kv is infinite, then
v is roughly p-divisible. If Kv is finite, then K has characteristic 0 and the interval
Œ�v.p/; v.p/� is finite. If v is henselian, then v is defectless.

Proof. All the properties described here are elementary properties, so we may replace K
with a sufficiently saturated elementary extension. We break into cases by the character-
istic and residue characteristic of v.

In equicharacteristic 0, Kv is infinite, rough p-divisibility is vacuous, and henselian
implies defectless (Fact 2.2).

In equicharacteristic p, Kv is infinite by [22, Proposition 5.3]. The value group is
p-divisible and the valuation is defectless if henselian, by Lemma 2.5.

This leaves the case of mixed characteristic. Let �0 be the biggest convex subgroup
not containing v.p/, and� be the smallest convex subgroup containing v.p/. These con-
vex subgroups decompose the place K ! Kv as a composition of three places:

K
vK=�
����! K1

�=�0
����! K2

�0
��! Kv; (2.1)

where each arrow is labeled by its value group. The fieldsK andK1 have characteristic 0,
while K2 and Kv have characteristic p.

Note that �=�0 embeds into R, so is small. Because K is sufficiently saturated, we
get the following chain of implications:

�0 D 0 H) � small H) Œ�v.p/; v.p/� small H) Œ�v.p/; v.p/� finite

H) �0 finite H) �0 D 0;

so �0 vanishes if and only if Œ�v.p/; v.p/� is finite.
Both �0 and � are externally definable, hence definable in Ksh. So the sequence of

places in (2.1) is interpretable in the strongly dependent structure Ksh.
In particular, �0 is p-divisible, by [22, Proposition 5.4]. So Intp vK is non-trivial or

Œ�v.p/; v.p/� is finite.
Note that we have just proven the following general fact:

If .K; v/ is a strongly dependent mixed characteristic valued field, then Intp vK is
non-trivial or Œ�v.p/; v.p/� is finite,

because this depends only on the elementary equivalence class of .K; v/.
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Combining with Lemma 2.6, we have actually shown

If .K; v/ is a strongly dependent mixed characteristic valued field, then Intp vK is
non-trivial or Kv is finite.

In particular, we can apply this fact to the strongly dependent placeK1!K2 in (2.1).
We see that

Intp.�=�0/ is non-trivial, or K2 is finite. (2.2)

Now we prove the three claims of the theorem.
First suppose that Kv is infinite. Then K2 is infinite, so �=�0 has a non-trivial

p-divisible convex subgroup by (2.2). Being archimedean, �=�0 has very few convex
subgroups and must be p-divisible itself. As �0 is p-divisible, it follows that � is p-
divisible, so v is roughly p-divisible.

Next suppose that Kv is finite. If Œ�v.p/; v.p/� is infinite, then �0 is non-trivial, so
K2 ! Kv is an infinite strongly dependent valued field of characteristic p with a finite
residue field. This contradicts [22, Proposition 5.3].

Next suppose that v is henselian. Then all three of the places in (2.1) are henselian.
By the equicharacteristic cases, K ! K1 and K2 ! Kv are defectless, so it remains to
show that K1 ! K2 is defectless. Because .K; v/ is saturated, any countable chain of
balls in .K; v/ has non-empty intersection. So the place K ! Kv satisfies the countable
intersection property of Remark 2.10. Therefore, so does K1 ! K2. However, the value
group of K1 ! K2 is �=�0. This group has countable cofinality, because it embeds
into R. Consequently, K1 ! K2 is spherically complete, hence defectless (Fact 2.2).

3. Henselianity

Until Theorem 3.15, we assume that M is a sufficiently saturated dp-minimal field that is
not strongly minimal. For any small model K �M, recall the type-definable set

IK D
\
¹X �X W X infinite and K-definableº

ofK-infinitesimals from [18, Definition 4.3, Corollary 5.7]. Recall that IK is the maximal
ideal of some _-definable valuation ring OK [18, Proposition 6.2].

In this section, we prove that OK is henselian. More generally, so is any _-definable
valuation ring on M. The henselianity of _-definable valuation rings on dp-minimal fields
was independently obtained by [17]. We give an alternative proof here using the canon-
ical topology constructed in [18]. This technique for proving henselianity has potential
applications to fields of higher rank.2

First we prove a general fact about _-definable valuation rings: their prolongations to
finite extension fields are still _-definable.

2For example, it is used in [19] to prove that positive characteristic NIP valuation rings are
henselian.
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Lemma 3.1. Let F be a field with some structure, andL=F be a finite extension. Suppose
O is a _-definable valuation ring on F . Then each extension of O to L is _-definable.

Proof. Replacing L with the normal closure of L over F , we may assume L=F is a
normal extension of some degree n. Let O0 be some extension of O toL. We can find some
finite set S � O0 such that O0 is the unique extension of O containing S , because there
are only finitely many extensions of O toL and the extensions are pairwise incomparable.
Then

O0 D
®
x 2 L W some extension of O to L contains S [ ¹xº

¯
:

Write S D ¹a1; : : : ; ak�1º. By the equivalence (1),(2) in Lemma 3.2 below, there is
d 2 N such that

L nO0 D ¹x 2 L W 1 D P.a1; : : : ; ak�1; x/ for some polynomial P.X1; : : : ; Xk/

with coefficients from m and degree less than dº:

Because O is _-definable, m is type-definable, so the right hand side is type-definable.
Therefore O0 is _-definable.

Lemma 3.2. Let L=F be a normal extension of degree n <1. Let ¹a1; : : : ; akº � L be
a finite subset. Let O be a valuation ring on F , and let OL be some extension of O to L.
Then for some d D d.n; k/ depending only on n and k, the following are equivalent:

(1) No extension of O to L contains ¹a1; : : : ; akº.

(2) 1 D P.a1; : : : ; ak/ for some polynomial P.X1; : : : ; Xk/ 2 mŒX1; : : : ; Xk � of degree
less than d.k; n/.

(3) 1 D P.a1; : : : ; ak/ for some P.X1; : : : ; Xk/ 2 mŒX1; : : : ; Xk �.

(4) ¹a1; : : : ; akº 6� �.OL/ for any � 2 Aut.L=F /.

Proof. Valued fields can be amalgamated, so Aut.L=F / acts transitively on the set of
extensions of O toL, by normality ofL=F . Therefore (4),(1). The equivalence (3),(1)
holds on general valuation-theoretic grounds:

� If some extension of O contains ¹a1; : : : ; akº, then every element of mŒa1; : : : ; ak � has
positive valuation, so 1 … mŒa1; : : : ; ak �.

� Conversely, if 1 … mŒa1; : : : ; ak �, then the ideal mŒa1; : : : ; ak � C OŒa1; : : : ; ak � is
non-trivial, so we can find a prime ideal n C OŒa1; : : : ; ak � containing mŒa1; : : : ; ak �.
By Chevalley’s theorem, there is a valuation w on L taking non-negative values on
OŒa1; : : : ; ak � and positive values on n � mŒa1; : : : ; ak � � m. Then w extends O and
a1; : : : ; ak are in the valuation ring of w.

Thus (1),(3),(4). Now consider the theory Tn whose models are pairs of valued fields
.L;OL; K;O/ with L=K a normal extension of degree n. In this language, condition (4)
is first-order, so compactness yields a bound on the degree in (3). This yields the stronger
statement (2), for some d depending on fixed n and k.
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Remark 3.3. If O is a _-definable valuation ring on a stable field K, then O is trivial.
More generally, if A � K and K is jAjC-saturated, and if O is an Aut.K=A/-invariant
valuation ring, then O is trivial.

Proof. Let p be the generic type of the field K. If a realizes p over A, then a �A a�1 by
the uniqueness of the generic type. Thus v.a/ � 0, v.a�1/ � 0, v.a/ � 0, and so
v.a/ D 0.

Now suppose d is any element ofK�. Take a 2K generic over Ad . Then d � a is also
generic over Ad , so v.d � a/ D 0 D v.a/, implying v.d/ D 0. Therefore the valuation is
trivial.

We now return to the specific setting of a sufficiently saturated dp-minimal field M,
not strongly minimal, with a small submodel K �M. Recall that a basic neighborhood
is a set of the form X � X with X infinite and M-definable. These form a neighborhood
basis of 0 for the canonical topology on M, and in particular they form a downward-
directed family [18, Corollary 5.7]. By definition, IK is the intersection of theK-definable
basic neighborhoods. As a consequence, we have

Remark 3.4 ([18, Remark 7.9]). For K-definable X �M,

0 2 Int.X/ ” IK � X;

with Int.X/ denoting the interior of X in the canonical topology on M.

Lemma 3.5. The group IK is open in the canonical topology on M.

Proof. Because IK is a subgroup of .M;C/, it suffices to show that IK is a neighborhood
of 0. Note that IK is type-definable and OK is _-definable, both over K. Therefore we
can find a K-definable set B lying between them:

IK � B � OK :

By directedness of the family of K-definable basic neighborhoods, there is a K-definable
basic neighborhood X �X such that

IK � X �X � B � OK :

Now choose some non-zero � 2 IK . Then

.� �X/ � .� �X/ D � � .X �X/ � � �OK � IK ;

so IK contains the basic neighborhood .� �X/ � .� �X/.

Lemma 3.6. Let f WMn !Mn be a finite-to-one definable map. Let X �Mn be a set
with non-empty interior with respect to the product topology on Mn. Then f .X/ also has
non-empty interior.
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Proof. We may assume X is definable, by shrinking it (recall the basis of definable
opens). By [18, Proposition 8.2], X has interior if and only if dp-rk.X/ D n, and f .X/
has interior if and only if dp-rk.f .X// D n. By basic properties of dp-rank, dp-rk.X/ D
dp-rk.f .X//.

Proposition 3.7. Let K be a small submodel of M. Let L=K be a finite algebraic exten-
sion, and L D L˝K M. .So L is a saturated elementary extension of L./ Then OK has
a unique extension to L.

(This does not immediately give henselianity of OK , because we are only considering
finite extensions L=M defined over the small field K.)

Proof. We first give the proof in characteristic¤ 2.
Replacing L with its normal closure over K, we may assume L=K is normal.
Let O1; : : : ;Om denote the extensions of OK to L. By Lemma 3.1, these are all _-

definable. Let mi be the maximal ideal of Oi ; this is type-definable. Let vi be the valuation
on L from Oi .

Write L D K.˛/ (possible because K is perfect by Lemma 2.3). So L DM.˛/ and
¹1; ˛; : : : ; ˛n�1º is a basis for L over M.

Claim 3.8.
T
i mi D

Pn�1
iD0 IK � ˛

i . Consequently,
T
i mi is type-definable over K.

Proof. Let .F;O/ be some algebraically closed valued field extending .M;OK/, and let
m be the maximal ideal of O. All the extensions of OK to L come from embeddings of L
into F , so if �1; : : : ; �n denote the embeddings of L into F , then

¹m1; : : : ;mmº D ¹�
�1
i .m/ W 1 � i � nº:

Thus \
i

mi D

n\
iD1

��1i .m/:

Because K � OK [18, Proposition 4.4.6]), it follows that Kalg � O, where Kalg is
the algebraic closure of K inside F . Let ˛1; : : : ; ˛n be the images of ˛ under �1; : : : ; �n.
These are pairwise distinct because L=M is separable (by Lemma 2.3 again). Let M be
the Vandermonde matrix whose .i; j / entry is ˛j�1i . Then M 2 GLn.Kalg/ � GLn.O/.

It follows that multiplication by M and M�1 preserves mn � F n. Concretely, this
means that if .x0; x1; : : : ; xn�1/ 2 F n, then the following are equivalent:

� Each xi is in m.

�
Pn�1
iD0 xi˛

i
j 2 m for each j .

Specializing to the case where x0; : : : ; xn�1 2M, and writing x D
Pn�1
iD0 xi˛

i , the fol-
lowing are equivalent:

� Each xi is in IK .

� �j .x/ 2 m for each j � n, or equivalently x 2 mi for each i � m.
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Our goal is to showmD 1. Suppose for the sake of contradiction thatm> 1. Because
the finite group Aut.L=K/ acts transitively on the Oi ’s, they are pairwise incomparable.
By the approximation theorem for valuations [3, VI.7.1, Corollaire 1], we can find an
element x 2 L such that x 2 1Cm1 and x 2 �1Cmi for i > 1.

Let I D
T
i mi . This is type-definable over K. Then

x … 1C I;

�x … 1C I;

x2 2 1C I:

By basic valuation theory, each 1Cmi is a subgroup of M�. The intersection 1C I is
therefore also a subgroup of M�. The intersection 1C I is also topologically open: by
Claim 3.8,

1C I D .1C IK/C IK � ˛ C IK � ˛
2
C � � � C IK � ˛

n�1;

and IK is open by Lemma 3.5. Similarly, anyK-definable neighborhood of 1 in L contains
1C I , because of Remark 3.4.

The squaring map on L� is finite-to-one, so by Lemma 3.6, .1 C I /2 has interior.
Since .1C I /2 is a group, it is actually open, hence contains a neighborhood of 1:

.1C I /2 is a neighborhood of 1. (3.1)

Now x … 1C I and �x … 1C I , and I is type-definable overK. So there is someK-
definable set U containing I , such that x … 1C U and �x … 1C U . By (3.1), .1C U/2

is a neighborhood of 1. It is K-definable, so it contains 1C I , hence x2. Then there is
y 2 1CU such that y2 D x2. Either x 2 1CU or �x 2 1CU , contradicting the choice
of U .

If K has characteristic 2, replace �1 and 1 with 0 and 1, replace the squaring map
with the Artin–Schreier map, and replace 1C I < L� with I < L.

There are several variants of the argument in Proposition 3.7:

� If char.K/ ¤ p and K has the primitive pth roots of unity, one can use the pth power
map instead of the squaring map.

� If char.K/ D p, one can use the pth Artin–Schreier map (as in the case p D 2 in the
proof).

Surprisingly, the Artin–Schreier technique can be generalized from dp-minimal fields to
the much broader setting of NIP fields. This yields a proof that NIP valued fields in posi-
tive characteristic are henselian [19, Theorem 2.8].

Lemma 3.9. If O is a non-trivial valuation ring on M, _-definable over K, then OK is
a coarsening of O. If O is definable, then the canonical topology on K is induced by the
valuation ring O.K/ D O \K on K.
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Proof. Let m be the maximal ideal of O. Then m is infinite because O is non-trivial, and
m is type-definable over K because O is _-definable over K. By [18, Remark 5.8],

IK � m �m D m;

implying that O � OK .
Now suppose O is definable. By [18, proof of Claim 6.6], the inclusions IK �O�OK

imply that ¹a � O.K/ W a 2 K�º is a neighborhood basis of 0 in the canonical topology
on K.

Remark 3.10. Suppose F is a field with some structure, and O1 and O2 are incomparable
_-definable valuation rings on F . Then the join O1O2 is definable.

Proof. The join can be written as either ¹x � y W x 2 O1; y 2 O2º (which is _-definable)
or as ¹x � y W x 2 m1; y 2 m2º, which is type-definable.3

Lemma 3.11. Let L=M be a finite algebraic extension. Any two non-trivial _-definable
valuation rings on L are not independent, i.e., they induce the same topology.

Proof. Let w1; w2 be two _-definable valuations on L, and let v1 and v2 be their restric-
tions to M. Let �i be the value group ofwi . LetK be a small model over which everything
is defined (including the extension L=M). Let vK be the valuation on M coming from OK
and IK . By Lemma 3.9, vK is a coarsening of v1 and v2. So there are convex subgroups
�i < �i such that vK is the coarsening of vi by�i . Letw0i be the coarsening ofwi by�i .
Then w01 and w02 are valuations on L extending vK . By Proposition 3.7, w01 D w

0
2. The

induced topology is invariant under coarsening, so w1; w01; w
0
2; w2 all induce the same

topology.

Proposition 3.12. Let L be a finite extension of M. Any two _-definable valuation rings
on L are comparable.

Proof. Suppose O1 and O2 are incomparable. Let O D O1 � O2 be their join, which is
definable by Remark 3.10. Let w be the valuation corresponding to O, and let v be its
restriction to M.

The residue field L0 WD Lw is a finite extension of M0 WDMv. Moreover, L0 has two
independent _-definable valuations, induced by O1 and O2. By Remark 3.3, this ensures
that L0 is infinite and unstable, so M0 is also infinite and unstable. But M0 has dp-rank
at most 1, so M0 is a dp-minimal unstable field. It is also as saturated as M, so all our
results so far apply to M0. By Lemma 3.11, L0 cannot have two independent _-definable
valuation rings, and we have a contradiction.

Corollary 3.13. Any _-definable valuation ring O on M is henselian.

3Here, we are using the fact that if O is a valuation ring with maximal ideal m, and S is any set,
then S �O and S �m are closed under addition, and are equal to each other unless S has an element
of minimum valuation. Incomparability of O1 and O2 ensures that e.g. v1.O2/ has no minimum.
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Proof. Otherwise, O would have two incomparable extensions to some finite Galois
extension of M.

Corollary 3.13 was obtained independently by Jahnke, Simon, and Walsberg [17,
Proposition 4.5]).

Theorem 3.14. The valuation ring OK .whose maximal ideal is the set of K-infinitesi-
mals/ is henselian.

We summarize the state of affairs for a general dp-minimal field as follows:

Theorem 3.15. Let K be a dp-minimal field.

(1) If K is infinite, sufficiently saturated, and not algebraically closed, then K admits a
non-trivial Henselian valuation .not necessarily definable/.

(2) Any definable valuation on K is henselian. Any two definable valuations on K are
comparable.

Proof. (1) If K is strongly minimal, then K is algebraically closed by a well-known
theorem of Macintyre. Otherwise, this is Theorem 3.14.

(2) We may assume K is sufficiently saturated. If K is not strongly minimal, this
is Proposition 3.12 and Corollary 3.13. Otherwise, K is NSOP, so has only the trivial
valuation.

4. The canonical valuation

We now turn to proving Theorem 4.8. This relies crucially on Jahnke and Koenigsmann’s
work on the definability of canonical valuations [16].

4.1. Review of canonical p-henselian valuations

Fix a prime p. Following [16], if K is any field, let K.p/ denote the p-closure of K, the
compositum of all finite Galois extensions L=K with Gal.L=K/ a p-nilpotent group.

A valuation v on K is p-henselian if it has a unique extension to K.p/. This is a
weakening of henselianity. On any fieldK there is a canonical p-henselian valuation vpK ,
which might be trivial. It has the following properties:

Fact 4.1. (1) If the residue field KvpK is not p-closed, then vpK is the finest p-henselian
valuation on K.

(2) Every p-henselian valuation strictly finer than vpK has p-closed residue field.

(3) If K admits no orderings and contains the pth roots of unity, then the valuation ring
of vpK is 0-definable in K from the field language.

The first two points appear in the discussion following [16, Theorem 2.2], and the
non-trivial third point is [16, Main Theorem 3.1].

Say that a field K is “p-corrupted” if no finite extension is p-closed.
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Lemma 4.2. LetK be a perfect field which is neither algebraically nor real closed. Then
some finite extension of K is p-corrupted for some p.

Proof. Replace K with K.
p
�1/ in characteristic 0. Take some non-trivial finite Galois

extensionL=K. Take p dividing jGal.L=K/j. By Sylow theory there is some intermediate
field K < F < L such that L=F is a p-nilpotent Galois extension. Then F.p/ ¤ F .
A theorem of Becker [2] says that if F is not p-closed and admits no orderings, then
ŒF .p/ W F �D1. We forced F to contain

p
�1 in characteristic 0, and F is not p-closed,

so ŒF .p/ W F � D 1. Then no finite extension F 0 of F will contain F.p/, nor F 0.p/ �
F.p/, so F is p-corrupted.

4.2. Applying canonical p-henselian valuations

Say that a fairly saturated field L, perhaps with extra structure, is special if it is a finite
extension of an infinite dp-minimal field.4

If L is a special field, then L is a finite extension of a perfect field K, so L is perfect.
(Or use Lemma 2.3 directly.) Moreover, the analogue of Theorem 3.15 holds for special
fields:

Remark 4.3. Let L be a special field.

(1) L admits a non-trivial Henselian valuation if L is sufficiently saturated, and not alge-
braically closed.

(2) Any definable valuation on L is henselian. Any two definable valuations on L are
comparable.

All of these facts follow easily from Theorem 3.15.
Also, special fields are closed under the following operations:

� Any finite extension of a special field is special.

� If L is special and w is a definable valuation on L, then Lw is finite or special.

To see the second point, let v D wjK, and note that Lw is a finite extension ofKv, which
is dp-minimal.

We get a handle on special fields via the following trick:

Proposition 4.4. Let L be a sufficiently saturated special field. Suppose L is not order-
able, and contains all the pth roots of unity. Then the canonical p-henselian valuation vpL
on L is definable, and its residue field is finite or p-closed.

Proof. Definability of vpL follows by the work of Jahnke and Koenigsmann [16, Main The-
orem 3.1]. Suppose the residue fieldLvpL is infinite and not p-closed. ThenLvpL is special

4More precisely, L is special if there is an L-definable infinite subfield K with ŒL W K� finite,
and the induced structure on K is dp-minimal.
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and not algebraically closed, so it admits a non-trivial henselian place LvpL ! L0. The
place L! Lv

p
L is henselian because it is definable, so the composition

L! Lv
p
L ! L0

is itself a henselian place, which corresponds to a finer p-henselian valuation than vpL . But
the canonical p-henselian valuation is the finest p-henselian valuation, unless its residue
field is p-closed, so we have a contradiction.

Mostly we will use the following consequence:

Corollary 4.5. Let L be a sufficiently saturated special field containing all the 4pth roots
of unity, and let v be a henselian valuation on L which is as fine as every definable
valuation on L. Then Lv is finite or p-closed.

Proof. Because vpL is definable, v is as fine as vpL . If v D vpL , then Lv is LvpL , which is
finite or p-closed. If v is strictly finer than vpL , then Lv is p-closed by Fact 4.1.2.

4.3. The saturated case

Remark 4.6. Let K be a field, .I; </ a totally ordered set, and hOxix2I be a totally
ordered chain of valuation rings on K. Then the intersection

O D
\
x2I

Ox

is itself a valuation ring on K. If the intersection has residue characteristic p, then some
Ox does: eitherK itself has characteristic p, or 1=p …O, hence 1=p …Ox for some x 2 I .

Theorem 4.7. Let K be a sufficiently saturated dp-minimal field. Let O1 be the inter-
section of all the definable valuation rings on K. .So O1 D K if K admits no definable
non-trivial valuations./

(1) O1 is a henselian valuation ring on K.

(2) O1 is type-definable, without parameters. In fact, it is the intersection of all 0-
definable valuation rings on K.

(3) The residue field of O1 is finite, real-closed, or algebraically closed. If it is finite,
then O1 is definable.

Proof. (1) By Theorem 3.15 (2), the class of definable valuation rings on K is totally
ordered, and they are all henselian. The intersection of a chain of valuation rings is a
valuation ring. The intersection of a chain of henselian valuation rings is henselian.

(2) We need to show that O1 is a small intersection. Suppose O is a definable val-
uation ring on K, defined by a formula �.KI b/. Let  .x/ be the formula asserting that
�.KI x/ is a valuation ring. Then

T
b2 .K/ �.KI b/ is a 0-definable valuation ring con-

tained in O. Thus every definable valuation ring on K contains a 0-definable valuation
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ring. Therefore O1 is the intersection of the 0-definable valuation rings on K. It is there-
fore type-definable over ;.

(2) First suppose that the residue field of O1 is finite. Let m1 denote the maximal
ideal of O1. Then m1 D K n O�11 , so m1 is _-definable. On the other hand, O1 is a
finite union of translates of m1, so O1 is also _-definable, hence definable.

Now suppose that the residue field is infinite. Let v1 denote the valuation associated
with O1. Note that v1 is as fine as any definable valuation on K, by choice of O1.

In particular, for every definable valuation v on K, the place K ! Kv1 factors as a
composition of two places

K ! Kv ! Kv1:

We first show that Kv1 is perfect. If Kv1 has characteristic p, then Kv has char-
acteristic p for some definable valuation v, by Remark 4.6. The field Kv is perfect
by Lemma 2.3, so the place Kv ! Kv1 ensures that Kv1 is perfect as well (perfect
equicharacteristic valued fields have perfect residue fields).

Suppose for the sake of contradiction that Kv1 is not algebraically closed or real
closed. As Kv1 is perfect, Lemma 4.2 applies, and some finite extension F of Kv1 is
p-corrupted for some prime p (not necessarily the characteristic).

Choose a finite extension L of K such that

� L contains all the 4pth roots of unity.

� If w1 denotes the (unique) extension of v1 to L, then Lw1 contains F , hence is not
p-closed (nor finite).

By Corollary 4.5, some definable valuation w on L is not a coarsening of w1. Let v
be wjK. Then v is a coarsening of v1:

v.x/ D v1.x/C�;

for some convex subgroup � < v1K. Coarsening w1 with respect to the same convex
subgroup�, we get a coarseningw0 ofw1, whose restriction toK is v. But v is henselian,
so w D w0, and w is coarser than w1, a contradiction.

4.4. The non-saturated case

Theorem 4.8. Let .K;C; �; : : :/ be a dp-minimal field, perhaps with additional structure.
Let O be the intersection of all 0-definable valuation rings on K. Then

(1) O is itself a valuation ring, possibly trivial .i.e., O might equal K/.

(2) Either O D K, or K is unstable and O induces the canonical topology on K.

(3) O is henselian and defectless.

(4) The residue field of O is finite, algebraically closed, or real closed.

Proof. The 0-definable valuation rings onK are henselian and pairwise comparable (The-
orem 3.15 (2)), so their intersection O is a henselian valuation ring, as in the previous
section.
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If O is non-trivial, then there is at least one 0-definable non-trivial valuation ring O1
on K, and K is unstable. By Lemma 3.9, the valuation ring O1 induces the canonical
topology on K. As O1 is a coarsening of O, the valuation ring O also induces the canon-
ical topology.

Let v be the valuation associated with O.

Claim 4.9. The valuation v is defectless.

Proof. If Kv has characteristic 0, then henselian implies defectless. So suppose Kv has
characteristic p. By Remark 4.6, there is some 0-definable valuation w with residue char-
acteristic p. The place K ! Kv splits as

K ! Kw ! Kv:

By Remark 2.10, both pieces are henselian. ThenK!Kw is defectless by Theorem 2.11,
andKw! Kv is defectless by Lemma 2.5. By Remark 2.10,K ! Kv is defectless.

Finally, we need to show that the residue field Kv is finite, algebraically closed, or
real closed.

Let M � K be a sufficiently saturated elementary extension, and let O1 be the type-
definable subring of M from the previous section—the intersection of the 0-definable
valuation rings on M. Then O D O1 \K.

There are three cases:
(1) If O1 has finite residue field, then O1 is definable, hence 0-definable. Then

O � O1, so O has finite residue field.
(2) Next, suppose O1 has algebraically closed residue field. Then for every n, we

have
8a1; : : : ; an 2 O1 9x W x

n
C a1x

n�1
C � � � C an 2 m1:

By compactness, there is some 0-definable valuation ring On on M such that

8a1; : : : ; an 2 On 9x W x
n
C a1x

n�1
C � � � C an 2 mn:

This remains true in K, as K �M. Because On � O and mn � m, we get

8a1; : : : ; an 2 O 9x W xn C a1x
n�1
C � � � C an 2 m:

Now if a1; : : : ; an 2 O and xn C a1xn�1 C � � � C an 2m, then x is integral over O. Thus
x 2 O, as O is integrally closed. Therefore all degree n monic polynomials in O=m have
roots.

(3) Next, suppose O1 has a real closed residue field. The unique extension of O1
to M.i/ has algebraically closed residue field. Repeating the arguments we just gave with
K.i/ and M.i/ instead ofK and M, we see that the residue field ofK.i/with respect to O

is algebraically closed. So the residue field ofK is real closed or algebraically closed.

Theorem 1.2 follows as a corollary.
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Proof of Theorem 1.2. IfK has a definable valuation, it is henselian by Theorem 3.15 (2).
Otherwise, the valuation ring O in Theorem 4.8 is trivial, andK is the residue field, which
is finite, algebraically closed, or real closed.

5. Dp-small fields

Recall the notion of dp-smallness (see §1.1). Dp-smallness is a stricter condition than
dp-minimality. Like dp-minimality,5 dp-smallness is preserved under reducts and under
naming parameters. Guingona shows that VC-minimal structures are dp-small [10, Propo-
sition 1.5].

Theorem 5.1. Let K be a dp-small field. Then K is algebraically closed or real closed.

Proof. We can and do take K to be sufficiently saturated. By [10, Theorem 1.6 (4)], the
value group vK is divisible for any definable valuation v on K.

By Theorem 4.7, there is a henselian defectless valuation v1 on K whose valuation
ring is the intersection of all definable valuation rings on K. The residue field of v1 is
algebraically closed, real closed, or finite. In the finite case, v1 is definable, and by Theo-
rem 2.11, the interval Œ�v.p/; v.p/� in the value group is finite, contradicting divisibility.

Therefore, the residue field Kv1 is algebraically closed or real closed. For K to
be algebraically closed or real closed, it suffices to show that the value group v1K is
divisible, by Ax–Kochen–Ershov in the real closed case and by defectlessness in the alge-
braically closed case.

Let ` be any prime. Let a be an element of K�. For each definable valuation O on K,
the value group K�=O� is `-divisible. So there are b 2 K� and c 2 O� such that a D
b` � c. The valuation ring O1 of v1 is the intersection of a small ordered set of O’s, so
by compactness, we can find b 2 K� and c 2 O�1 such that a D b` � c. Then v1.a/ D
` � v1.b/. So v1 has `-divisible value group, for arbitrary `.

We can also specialize this result to C -minimal and (weakly) o-minimal fields.

5.1. C -minimal fields

We will use the definition of C -minimality from Haskell and Macpherson [14], rather
than the more general definition from Delon [5]. For us, a C -relation is a ternary relation
C.xIy; z/ satisfying the following axioms:

(1) 8x; y; z W .C.xIy; z/! C.xI z; y//.

(2) 8x; y; z W .C.xIy; z/! :C.yI x; z//.

(3) 8x; y; z; w W .C.xIy; z/! .C.wIy; z/ _ C.xIw; z///.

(4) 8x 8y ¤ x 9z ¤ y W C.xIy; z/.

5And unlike VC-minimality. . .
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The intuition is that C.xIy; z/ holds if y and z are closer to each other than either is to x,
with respect to some ultrametric.

A unary definable set in a structure .M; : : :/ is a definable subset of M n with n D 1.
A structure .M; C; : : :/ is C -minimal if C is a C -relation and every unary definable set
D �M is definable without quantifiers in the reduct .M;C /. We make two comments on
the definition:

� In [5], Delon omits the density condition (4), which makes theories like RCF be C -
minimal. But we will assume density, following Haskell and Macpherson [14].

� When the structure is a field, we will not assume any compatibility between the C -
relation and field structure, unlike [14].

C -minimality implies VC-minimality and dp-smallness, so by Theorem 5.1, any C -min-
imal field is real closed or algebraically closed. We will show that the real closed case
cannot occur, but we will first need to prove that infinite definable sets in C -minimal
theories never admit definable total orders.

Definition 5.2. A dorderable set is a definable (not interpretable!) set admitting at least
one definable total order.

Definition 5.3. A structure M defines no total orders if there are no infinite dorderable
sets.

This condition can be checked on unary sets:

Lemma 5.4. If M has no infinite dorderable sets D � M 1, then M defines no total
orders.

Proof. Let C be the class of definable sets X containing an infinite dorderable subset
D � X .

Claim 5.5. If X � Y 2 C , at least one of X and Y is in C .

Proof. Given D � X � Y infinite and dorderable, consider the projection � W D ! X .
Each fiber of � is dorderable and embeds definably into Y , so if some fiber of � is infinite,
then Y 2 C . Otherwise, the fibers are all finite. Let g W �.D/ ! D pick out the least
element of each fiber. We can pull the ordering on D back to �.D/ along g. Then the
infinite subset �.D/ of X is dorderable, so X 2 C .

Consequently, if M 1 … C , then M n … C , proving Lemma 5.4.

In the rest of this section, we will show that (dense) C -minimal structures define no
total orders. For the sake of contradiction, suppose that there is an infinite dorderable
unary set X �M 1.

Definition 5.6. A tree-like set is a non-empty finite set S such that for every ball B ,
jS \ Bj is 0 or a power of 2.
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Note that jS j D 2n for some n, because the entirety ofM is a ball. We call n the depth
of S .

Lemma 5.7. Let B1 and B2 be disjoint balls. Let Si � Bi be a tree-like set of depth n.
Then S1 [ S2 is a tree-like set of depth nC 1.

Proof. Let B be any ball. If B intersects only Bi for i D 1 or 2, then jB \ S j D jB \ Si j
has the desired form. Otherwise, B intersects both of Bi , hence contains both. So B \ S
D S and jB \ S j D jS1j C jS2j D 2nC1.

Lemma 5.8. An infinite definable set X contains arbitrarily big tree-like sets.

Proof. The C -minimal density assumption ensures that every infinite ball contains two
disjoint infinite subballs. By induction on n, we see that

if B is an infinite ball, then B contains a tree-like set of depth n.

The density assumption also ensures that X contains an infinite ball.

For any definable set D, the characteristic function �D of D can be written as

�D D

mX
iD1

ai � �Bi
;

where the Bi ’s are balls and ai 2 ¹�1; 1º. This is an easy consequence of the swiss cheese
decomposition. Call the least such m the complexity of D. By compactness, complexity
is bounded in definable families.

If S is a tree-like set of depth n, then

jS \Dj D
X
s2S

�D.s/ D
X
s2S

mX
iD1

ai � �Bi
.s/ D

mX
iD1

ai � jS \ Bi j D

mX
iD1

a0i � 2
ki ;

for some a0i 2 ¹�1; 0; 1º and some ki 2 ¹1; : : : ; nº.
In particular, as D ranges through sets of complexity m, there are only .3n/m pos-

sibilities for jS \Dj. On the other hand, as D ranges through the half-infinite intervals
.�1; a/ � X (with respect to the ordering), the size jS \Dj should range through all
the values in ¹0; 1; : : : ; 2nº.

Let m bound the complexity of the half-infinite intervals, let n be large enough that
2nC 1 > .3n/m, and let S �X be a tree-like set of depth n. Then we have a contradiction.
We have shown

Proposition 5.9. .Dense/ C -minimal structures never define total orders.

Corollary 5.10. .Dense/ C -minimal structures never eliminate imaginaries.

Proof. Any C -minimal structure interprets the set of balls. Within this, the set of balls
around a given point is totally ordered, and infinite under the density assumption. So any
dense C -minimal structure interprets an infinite total order, but defines no infinite total
order.
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Corollary 5.11. .Dense/ C -minimal fields are algebraically closed.

Proof. Proposition 5.9 prevents dense C -minimal fields from being real-closed.

5.2. Weakly o-minimal fields

Weakly o-minimal fields turn out to be real closed. This will require a little bit of work.
First we prove a lemma. Let Gm denote the multiplicative group. Recall the various
notions of connected component:

� G0
m, the intersection of finite index definable subgroups.

� G00
m , the smallest type-definable subgroup of bounded index.

� G000
m , the smallest invariant6 subgroup of bounded index.

The latter two groups exist by a theorem of Gismatullin [9]. On general grounds, G000
m �

G00
m � G0

m.

Lemma 5.12. Let M be a sufficiently saturated dp-minimal field, not strongly minimal,
possibly with extra structure. Then every infinitesimal type is multiplicatively stabilized
by G0

m.

Proof. Let p be an infinitesimal type over M, and take a 2G0
m. Let  .xI z/ be a formula.

We will show that a�1 � p and p have the same  -type.
Let �.xI y; z/ be the formula  .x � yI z/. Every  -formula is a �-formula, so it suf-

fices to show that a�1 � p and p have the same �-type. Moreover, the multiplicative group
acts on �-formulas and hence on �-types.

For any ˛ 2 Gm, the type ˛ � p is an infinitesimal type, because p is infinitesimal. By
[18, Corollary 7.5], the orbit of p is small. Restricting to �-types, we see that pj� has a
small orbit as well.

Because infinitesimal types are definable [18, Corollary 7.6], the multiplicative stabi-
lizer of the �-type pj� is definable. Therefore the orbit is interpretable. Being bounded,
it must be finite. So pj� is stabilized by some finite-index subgroup of Gm. As a 2 G0

m, it
follows that a � pj� D pj� as claimed.

Corollary 5.13. Let M be a .sufficiently saturated/ dp-minimal field. Then G000
m

equals G0
m, which in turn equals the intersection of the sets of nth powers as n ranges

over positive integers.

Proof. If M is strongly minimal, all these facts are well-known. Assume M is not strongly
minimal. The fact that G0

m is
T
n.M

�/n holds because M�=.M�/n is finite [18, Theo-
rem 1.5]. The group G000

m exists by [9]. Because each non-zero infinitesimal type lives
in a specific coset of G000

m , the multiplicative stabilizer of any infinitesimal type must be
contained in G000

m . On the other hand, the stabilizer is G0
m by Lemma 5.12. So G0

m �

G000
m � G0

m.

6That is, Aut.M=A/-invariant for some small A.
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Using Lemma 5.12, we can prove a rather strong and surprising result.

Theorem 5.14. Let K be a dp-minimal algebraically closed field with extra structure.
Then there is no infinite definable subset of Kn with a definable total ordering.

Proof. We may replaceK with a monster M. Suppose some infinite definable setD�Mn

admits a definable total ordering <D . By Lemma 5.4, we may assume nD 1. ThenD has
non-empty interior by [18, Theorem 7.8]. Translating D, we may assume that 0 is in the
interior of D. So all infinitesimal types over M live in D.

Let p be some non-zero infinitesimal type. Then p is multiplicatively stabilized
by G0

m. Because M is algebraically closed, Gm is divisible. This implies that it has no
proper subgroups of finite index. Therefore G0

m D Gm, so a � p D p for any a 2 Gm.
Let ! be some root of unity, other than 1. Then ! � p D p. As p is non-zero and

! ¤ 1, the type p.x/ must say x ¤ ! � x. By totality of the ordering, we may assume
x <D ! � x is in p.x/, reversing the order if necessary.

Now if a realizes p in some elementary extension of M, then !i � a ˆ !i � p D p. In
particular,

!i � a <D ! � .!
i
� a/;

for all i . By transitivity, the map i 7! !i � a is strictly increasing, hence injective, contra-
dicting the fact that ! is a root of unity.

Because weakly o-minimal structures are VC-minimal and dp-small, we immediately
get the following corollary, which was probably more easily proven by other means:

Corollary 5.15. Weakly o-minimal fields are real-closed.

Again, this is slightly more general than the result in [24], since we are not assuming
that the weakly o-minimal ordering is a field ordering.

6. Quantifier elimination and dp-minimality

So far, we have assumed dp-minimality and obtained constraints. We now turn to the
positive side of the classification—Theorem 1.3 (1), which asserts that certain theories
are complete and dp-minimal.

Except in the cases of positive residue characteristic, completeness follows by the
Ax–Kochen–Ershov principle, and dp-minimality follows from Chernikov and Simon’s
result, proven in [4]:

Fact 6.1. A henselian valued field .K; v/ with residue characteristic 0 is dp-minimal if
and only if vK and Kv are dp-minimal.

In this section, we will handle the remaining cases, which are

� Hahn series fields like F alg
p ..t�// (with � dp-minimal and p-divisible).

� Their mixed characteristic analogues.

Along the way, we will prove quantifier elimination results in §6.1.
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We will make occasional use of the RV sort. If K is a valued field with valuation
ring O and maximal ideal m, then RV.K/ denotes the quotient K�=.1 Cm/, and rv W
K� ! RV.K/ is the natural map. We summarize the key facts about RV.K/:

(1) rv is a homomorphism K� ! RV.K/.

(2) rv.x � a/ D rv.y � a/ if and only if some ball contains x and y but not a.

(3) RV.K/ sits in a short exact sequence

1! Kv� ! RV.K/! vK ! 1;

where Kv is the residue field and vK is the value group.

(4) If L=K is an extension of valued fields, then L=K is immediate if and only if RV.L/
D RV.K/.

(5) If L=K is an extension of valued fields and rv.x/ 2 RV.L/ n RV.K/, then one of two
things happens:

� v.x/ 2 vL n vK.

� v.x/ 2 vK, so v.x/ D v.y/ for some y 2 K�. Then v.x=y/ D 0 and

res.x=y/ 2 res.L/ n res.K/ D Lv nKv:

6.1. A quantifier elimination result

Fix a prime p. Recall the definition of rough p-divisibility (Definition 2.9). Let T0 be the
theory of henselian defectless fields .K; v/ with Kv ˆ ACFp and with p-divisible value
group. Let T be the theory of henselian defectless roughly p-divisible fields .K; v/ with
Kv ˆ ACFp .

Every model of T0 is a model of T , and the converse holds in equicharacteristic p.
Models of T0 are tame (in the sense of [23]), though models of T need not be—they are
only “roughly” tame. Nevertheless, we will see that many of the good properties of T0
extend to T .

Remark 6.2. If M ˆ T0, then any finite field extension of M has degree prime to p.
Indeed, if L=M is finite, then henselianity and defectlessness imply

ŒL WM� D jvL=vM j � ŒLv WMv�:

But Mv is algebraically closed, so ŒLv WMv� D 1. And vM is p-divisible, so jvL=vM j
is prime to p.

Remark 6.3. Let .L; v/=.K; v/ be an extension of valued fields. Suppose .L; v/ is
henselian andK is relatively separably closed inL. ThenKv is relatively separably closed
in Lv.
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Proof. Otherwise, take ˛ 2 .Lv \Kvsep/ nKv. Let Nf .X/ be the monic irreducible poly-
nomial of ˛ overKv. Let f .X/ be a lift of Nf .X/ toKŒX�. By henselianity ofL, there is a
unique root a of f .X/ lying over ˛. Moreover, a is a simple root, so a 2 Ksep. Therefore
a and ˛ are in K and Kv, respectively.

Proposition 6.4. Let .M; v/ be a model of T .

(1) M is perfect.

(2) If a 2M and n 2 N, then a is an nth power if and only if v.a/ is divisible by n.

(3) If K is relatively algebraically closed in M , then K ˆ T .

Proof. First suppose that .M; v/ ˆ T0.
(1) If M has characteristic p, then M is perfect by Remark 6.2.
(2) One easily reduces to showing that if v.a/ D 0, then a is an `th power for all

primes `. For ` ¤ p, this follows by henselianity and the fact that res.a/ is an `th power.
For ` D p, this follows by Remark 6.2.

(3) We will showK ˆ T0. Note thatK is henselian and perfect because it is relatively
algebraically closed in M , which is henselian and perfect.7 Then M=K is regular, so
Gal.M/ surjects onto Gal.K/. Since p is prime to Gal.M/ (by Remark 6.2), p is also
prime to Gal.K/. In other words, p does not divide the degree of any finite extension
ofK. It follows immediately that .K;v/ is defectless,Kv is perfect, and vK is p-divisible.
Also, Kv is separably closed in Mv by Remark 6.3, and so Kv ˆ ACFp .

Next suppose .M;v/ˆ T but .M;v/ 6ˆ T0. ThenM has characteristic 0. Let v0 be the
coarsening of v with respect to the minimal convex subgroup of vM containing v.p/. (By
rough p-divisibility, this convex subgroup is p-divisible.) Let v00 be the induced valuation
on Mv0. Then .M; v0/ is a henselian field of residue characteristic 0, and .Mv0; v00/ is a
model of T0 of characteristic 0.

(1) M is perfect because it has characteristic 0.
(2) As before, one reduces to showing that if v.a/D 0, then a is an `th power. Because

.M; v0/ is a henselian field of residue characteristic 0, and v0.a/ D 0, the element a is an
`th power if and only if its residue res0.a/ 2 Mv0 is an `th power. But v00.res0.a// D
v.a/ D 0, so by the case of T0 considered above, res0.a/ is an `th power.

(3) Applying Remark 6.3 to .M;v0/=.K;v0/, we see thatKv0 is relatively algebraically
closed in Mv0. As Mv0 is a model of T0, so is Kv0, by the case of T0 considered
above. Therefore, the place Kv0 ! Kv is henselian and defectless, with p-divisible
value group and algebraically closed residue field Kv. The place K ! Kv0 is henselian
of residue characteristic 0 (hence defectless and roughly p-divisible). The composition
K ! Kv0 ! Kv is therefore henselian, defectless, and roughly p-divisible. And Kv is
algebraically closed.

7Recall that a valued field is henselian and perfect if and only if it is definably closed in an
ambient model of ACVF. If dcl.M/ DM , then dcl.K/ � Kalg \ dcl.M/ D Kalg \M D K.
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Lemma 6.5. Let K be a valued field. Suppose L and F are two immediate algebraic
extensions of K which are models of T . Then L and F are isomorphic as valued fields
over K.

Proof. We may replace K with the perfection of its henselization, which embeds into
both L and F . We then only need to show that L and F are conjugate (isomorphic as
pure fields) over K.

First suppose that vK is p-divisible, so L; F ˆ T0. Then K is Kaplansky, L and F
are algebraically maximally complete, and the desired result follows by the uniqueness of
maximal algebraic immediate extensions over Kaplansky fields.8

Otherwise,K, L, and F have characteristic 0. Let v0 be the coarsening with respect to
the convex subgroup generated by v.p/. As L and F are immediate, v0L D v0K D v0F .
Then .K;v0/ is a henselian field with residue characteristic 0, andL;F are two unramified
extensions.

By the structure theory of valued fields [7, Theorems 5.2.7 and 5.2.9], unramified
extensions of K are exactly controlled by their residue fields. Consequently, L and F are
isomorphic over K (as fields, or as valued fields) as long as Lv0 and Fv0 are isomorphic
extensions of Kv0.

Note that Lv0 and Fv0 are immediate extensions ofKv0. Also, Lv0 and Fv0 are mod-
els of T0. By the T0 case considered above, Lv0 and Fv0 are isomorphic, and we are
done.

Definition 6.6. LetM and N be valued fields. A partial v-elementary map fromM to N
is a valued field embedding f W K ! N for some subfieldK �M , such that the induced
map vf W vK! vN is a partial elementary map from vM to vN . If domf DM , we call
f WM ! N a v-elementary map, or say that f is total.

Lemma 6.7. If M; N ˆ T and N is jM jC-saturated, and f is a maximal partial v-
elementary map from M to N , then f is total.

Proof. Let K be the domain of f .

Claim 6.8. K is henselian.

Proof. Suppose not. As M and N are henselian, both contain the henselization of K.
We can extend f to an isomorphism f 0 between the henselizations of K and f .K/. The
henselization ofK has the same value group asK, so vf 0 D vf is still partial elementary.
Then f 0 is a strictly larger v-elementary map, a contradiction.

8In this particular case, the fact that L and F are conjugate over K should follow more directly
from the uniqueness-up-to-conjugacy of Hall subgroups in solvable groups. The extension Kalg=L

is prime to p, because Lˆ T0, and the extension L=K is purely of p-power degree, because it is an
immediate extension. So Gal.L/ should be a prime-to-p Hall subgroup of the pro-solvable group
Gal.K/.
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Claim 6.9. Let P.X/ be an irreducible polynomial over K of degree greater than 1. If
P.X/ has a root in M , then it does not have a root in N .

Proof. Otherwise, let ˛ be a root of P.X/ in M and ˇ be a root in N . By basic field
theory, there is an embedding of fields f 0 W K.˛/! f .K/.ˇ/ extending f , sending ˛
to ˇ. This map f 0 must also be a map of valued fields, because there is a unique valuation
on K.˛/ extending the valuation on K, by Claim 6.8.

We claim that f 0 is v-elementary. By saturation of vN , there is some elementary
embedding g W vM ! vN extending vf . The group homomorphism g � vf 0 from vK.˛/

! vN vanishes on vK, so it factors through the finite group vK.˛/=vK. As vN is torsion-
free, g � vf 0 vanishes on vK.˛/. Thus vf 0 is the restriction gjvK.˛/, so vf 0 is partial
elementary, and f 0 is partial v-elementary. This contradicts the maximality of f .

Claim 6.10. Every element of O�K is a pth power (in K). Consequently Kv is perfect.

Proof. Take a 2 O�K . Then Xp � a has a root in both M and N , so it has one in K.

Claim 6.11. Kv is separably closed, hence algebraically closed.

Proof. If not, let Nf .X/ 2 KvŒX� be a monic irreducible separable polynomial of degree
greater than 1. Let f .X/2OK ŒX� be a monic polynomial lifting Nf .X/. Then f .X/ is also
irreducible in KŒX� with degree greater than 1. The fields Mv and Nv are algebraically
closed, so Nf .X/ has roots in both Mv and Nv. Henselianity lifts these roots to roots of
f .X/ in M and N . This contradicts Claim 6.9.

Say that an embedding of abelian groups A ,! B is pure if B=A is torsionless. If A;B
are torsionless, this is equivalent to the condition that for every prime ` and every a 2 A,
if a is a multiple of ` in B , then a is a multiple of ` in A.

Claim 6.12. vK is pure in vM and vN .

Proof. Suppose 
 is divisible by ` in one of vM or vN . As vf is partial elementary, 
 is
divisible by ` in both vM and vN . Take a 2K with v.a/D 
 . By Proposition 6.4 (2), the
polynomial X` � a has a root in both M and N . By Claim 6.9, X` � a is not irreducible
over K. Then a has an `th root in K, so v.a/ D 
 is divisible by ` in vK.

Claim 6.13. K is relatively algebraically closed in M and N .

Proof. Let KM and KN be the relative algebraic closures of K in both fields. By Propo-
sition 6.4 (3), KM and KN are models of T . The value group extension jvKM=vKj is
torsion, but vK is pure in vM , so the value group extension must be trivial. Similarly,
KMv D Kv because KMv is algebraic over Kv, but Kv is algebraically closed.

Therefore KM is an immediate algebraic extension of K. Similarly, KN is an imme-
diate algebraic extension ofK. By Lemma 6.5,KM andKN are isomorphic overK. This
contradicts Claim 6.9 unless KM D K D KN .

Claim 6.14. Kv DMv.
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Proof. Otherwise, let tM be an element of M whose residue is not in Kv. By saturation
of N , we can find tN 2 N with residue not in Kv.

Let f 0 be the map K.tM / ! f .K/.tN / sending tM to tN and extending f . This
is a map of valued fields, because there is a unique valuation on K.t/ making t have
transcendental residue. (Modulo quantifier elimination in ACVF, this is the statement that
there is a unique type p.x/ that lives in the closed unit ball, but not in any smaller subballs.
The uniqueness of this type follows by C -minimality.) By Abhyankar’s inequality,

tr.deg.K.tM /v=Kv/C dimQ.Q˝Z .vK.tM /=vK// � tr.deg.K.tM /=K/ D 1:

Therefore vK.tM /=vK is torsion, and then vK.tM / D vK by Claim 6.12. Therefore
vf 0 D vf and the map f 0 is v-elementary, contradicting maximality of f .

Claim 6.15. vK D vM .

Proof. Otherwise, take 
M 2 vK n vM . Let g be an elementary embedding vN ! vM

extending vf . Let 
N D g.
M /.
Let tM (resp. tN ) be an element of M (resp. N ) having valuation 
M (resp. 
N ). The

elements tM and tN are transcendental over K, so there is a map of fields f 0 W K.tM /!
f .K/.tN / extending f and sending tM to tN . This is a map of valued fields, because 
M
and 
N define the same cut in Q˝Z vK, and there is a unique valuation on K.t/ mak-
ing v.t/ land in this cut (again, this follows by C -minimality and quantifier elimination
in ACVF).

We claim that f 0 is v-elementary, and that in fact vf 0 is gjvK.tM /. By Abhyankar’s
inequality,

vK.tM /

vK C Z � v.tM /

is torsion. So it suffices to show that vf 0 and g agree on vK and v.tM /. The former holds
because f 0 extends f and g extends vf , and the latter holds by choice of tN and 
N .

In summary, K is relatively algebraically closed in M and N , and M=K is an imme-
diate extension. By Proposition 6.4 (3), K is itself a model of T . In particular, K is
defectless.

Now take a 2 M n K. In M alg ˆ ACVF, let B be the chain of K-definable balls
containing a.

Claim 6.16. No element of Kalg is in the intersection
T

B.

Proof. Suppose a0 2 Kalg \
T

B. First suppose a0 2 K. Then one can find a00 2 K such
that rv.a00 � a0/ D rv.a � a0/, by immediacy of M=K. But then the minimal closed ball
containing a and a00 is K-definable and fails to contain a0, contradicting the choice of a0.

So K \
T

B D ;. Now take a0 2 Kalg \
T

B minimizing ŒK.a0/ W K� DW d . We
claim K.a0/=K is an immediate extension. Indeed, any element of K.a0/ can be written
as P.a0/, for some P.X/ 2 KŒX� of degree d 0 < d . Over Kalg, one factors P.X/ as

P.X/ D ˛.x � ˇ1/.x � ˇ2/ � � � .x � ˇd 0/;
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with ˛ 2 K, ˇi 2 Kalg. Then by choice of a0, each of the ˇi fails to be in
T

B. This
ensures that

rv.a0 � ˇi / D rv.a � ˇi /;

and so

rv.P.a0// D rv.˛/ �
d 0Y
iD1

rv.a0 � ˇi / D rv.˛/ �
d 0Y
iD1

rv.a � ˇi / D rv.P.a//:

By immediacy of M=K, the right hand side is in RV.K/. We have shown K.a0/=K is an
immediate extension. This contradicts defectlessness of K.

By saturation ofN , we can find some a0 2N living in this intersection
T

B. Let f 0 be
the mapK.a/! f .K/.a0/ extending f and sending a to a0. By C -minimality, quantifier
elimination in ACVF, and Claim 6.16, there is a unique valuation onK.t/making t live in
each of the balls in B. Consequently, f 0 preserves the valuation structure. Also, vf 0D vf
because vM D vK.a/ D vK. So f 0 is a strictly bigger v-elementary map, contradicting
maximality.

Theorem 6.17. Let M and N be models of T . Let f be a partial v-elementary map
from M to N . Then f is a partial elementary map. In other words, if K is a common
subfield of M and N , and if vM and vN are elementarily equivalent over vK, then
M andN are elementarily equivalent overK. Consequently, T has quantifier elimination
relative to the value group.

Proof. If M and N are models of T , Zorn’s lemma applies to partial v-elementary maps
between M and N . So the previous lemma yields

Claim 6.18. LetM andN be models of T , andN be jM jC-saturated. Then every partial
v-elementary map from M to N can be extended to a total v-elementary map from M

to N .

Now suppose M , N , and K are as in the statement of the theorem. Build a sequence
N1;M2; N3;M4; : : : where

M �M2 �M4 � � � � ; N � N1 � N3 � � � � ;

and MiC1 is jNi jC-saturated and NiC1 is jMi j
C-saturated.

By repeatedly applying the lemma, we can find partial v-elementary maps

M ! N1 !M2 ! N3 !M4 ! � � �

extending the given embedding of K into N . These combine to yield an isomorphism
between

S
i Mi and

S
i Ni over K. Then by Tarski–Vaught,

M �K
[
i

Mi ŠK

[
i

Ni �K N:
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Recall the notation Intp for the maximal p-divisible convex subgroup of an ordered
abelian group (Definition 2.8).

Corollary 6.19. Let � be an ordered abelian group. If � D p � � , the theory of henselian
defectless valued fields .K; v/ of characteristic p with Kv ˆ ACFp and vK � � is com-
plete. If a 2 Intp � , the theory of henselian defectless mixed characteristic fields with
.vK; v.p// � .�; a/ and Kv ˆ ACFp is complete.

Proof. For pure characteristic p, let M1 and M2 be two models. Let K be Fp . Then vM1

and vM2 are elementarily equivalent over vK, soM1 andM2 are elementarily equivalent.
For mixed characteristic, takeK to be Q instead. If .vM1; v.p//� .vM2; v.p//, then

vM1 and vM2 are elementarily equivalent over vQ D Z � v.p/.

6.2. Dp-minimality

Fact 6.20 ([17, proof of Proposition 5.1]). Let .�;�;C/ be an ordered abelian group
such that �=n� is finite for all n > 0. Let M be the expansion of .�;�;C;�/ by the
following:

� Constants naming a countable submodel of � .

� A unary predicate naming each coset of n� in � .

� For each prime number p and a 2 � n p� , a unary predicate for the largest convex
subgroup Ha;p � � such that a … p� CHa;p .

Then M is a definitional expansion of .�;�;C/, and M has quantifier elimination.

In [17], this was proven in a context where � is @1-saturated. However, the general
case follows by passing to an elementary extension.

Lemma 6.21. Let � be an ordered abelian group such that �=n� is finite for all n > 0.
Then every definable subset of � is a boolean combination of cosets 
 C n� and definable
cuts .upward-closed sets/.

Proof. This follows from Fact 6.20. If U is a coset of n� , then any atomic relation
t .x/ 2 U is equivalent to a union of cosets of n� , because the class of x in �=n�
determines the class of t .x/ in �=n� . Any atomic relation of the form t1.x/ � t2.x/

or t .x/ 2 Ha;p defines a convex set. Any definable convex set is a boolean combination
of definable cuts.

Let .K; v/ be a valued field. We will call sets of the following forms round sets with
center c:

c C a � .K�/n for some a 2 K�;

c C v�1.„/ for some definable upward-closed subset „ � vK [ ¹C1º:

We will call sets of the first kind angular sets and sets of the second kind ball-like sets.
The class of round sets is closed under affine transformations.



W. Johnson 500

Proposition 6.22. Let K be a henselian defectless roughly p-divisible field such that
Kv ˆ ACFp and vK=n � vK is finite for all n 2 N. Then every unary definable set in K
is a finite boolean combination of round sets.

Proof. We may replace K with an elementary extension. First pass to an extension in
which every coset of

T
n n � vK is represented. Then pass to a spherical completion (which

is an elementary extension by quantifier elimination).
Now look at 1-types. It suffices to show that a 1-type is determined by which round

sets contain it. Let a be a singleton from an elementary extension of K. By spherical
completeness, some element ofK is maximally close to a. Translating a, we may assume
that element is 0. If a D 0, then the 1-type is determined by the assertion that v.x/ D1.
Otherwise, a … K, and rv.a/ is new (not in RV.K/). If v.a/ is new, then tp.v.a/=vK/
implies tp.a=K/. Indeed, if

v.a/ �vK v.a
0/;

then

� By C -minimality and quantifier elimination in ACVF, there is an isomorphism of val-
ued fields K.a/ ŠK K.a0/ sending a to a0.

� The induced map on value groups is a partial elementary map, because v.a/�vK v.a0/.

� By Theorem 6.17, the mapK.a/!K.a0/ is a partial elementary map, and so a�K a0.

But by Lemma 6.21, tp.v.a/=vK/ is implied by a collection of statements of the following
forms:

� v.a/C 
 is divisible by n.

� v.a/ is greater than some cut.

� v.a/ is less than some cut.

Each of these is a round set or the complement of a round set, by Proposition 6.4 (2).
If, on the other hand, v.a/ is old (in vK), then we may rescale a so that v.a/ D 0.

Then res.a/ is new (not in res.K/ D Kv), and tp.a=K/ is the generic type of the closed
unit ball, which is unique by a similar quantifier elimination argument.

Definition 6.23. Fix a complete theory T . Let B be an ind-definable family of unary
definable sets. In other words, there is a collection of formulas ˆ and for any model K,

B.K/ D ¹�.KI Ea/ W �.xI Ey/ 2 ˆ; Ea 2 K j Eyjº:

Say that B is a unary basis if it generates the family of all unary definable sets through
boolean combinations. More precisely, if K ˆ T and D � K is K-definable, then D is
in the boolean algebra generated by B.K/.

Say that B is a weak unary basis if every unary definable set is a boolean combination
of traces of externally definable sets in B. In other words, if K ˆ T , then

¹K \D0 W D0 2 B.K 0/; K 0 � Kº

generates a boolean algebra containing all definable subsets of K.
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In the setting of Proposition 6.22, round sets form a unary basis. Moreover, balls and
angular sets form a weak unary basis, because every ball-like round set is the trace of an
externally definable ball.

Lemma 6.24. Let T be a complete theory with infinite models. Let B be a weak unary
basis for T . Then T is not dp-minimal if and only if in some model of T , there are mutually
indiscernible sequences

: : : ; X�1; X0; X1; : : : ; : : : ; Y�1; Y0; Y1; : : :

of sets from B, and an element a such that

a 2 X0 6” a 2 X1; a 2 Y0 6” a 2 Y1:

Proof. If the given configuration occurs, it directly contradicts the characterization of dp-
minimality in terms of mutually indiscernible sequences (one of the two sequences of sets
must be a-indiscernible).

Conversely, suppose dp-minimality fails. Let BC be the closure of B under boolean
combinations. Let � D jT jC.

Claim 6.25. There is an ict-pattern made of sets from BC, with two rows .depth 2/ and
�-many columns.

Proof. Take a mutually indiscernible ict-pattern of depth 2 and stretch the two sequences
of sets to have length �. So we have sets X˛ and Yˇ and elements a˛;ˇ for ˛; ˇ < � such
that

a˛;ˇ 2 X˛0 ” ˛ D ˛0; a˛;ˇ 2 Yˇ 0 ” ˇ D ˇ0:

Let M be a small model defining the X ’s and Y ’s and containing the a’s. In some jM jC-
saturated elementary extension M � � M , we can find sets X 0˛ and Y 0˛ from BC.M �/

such that X˛ \M D X 0˛ \M and Y˛ \M D Y 0˛ \M . As the a˛;ˇ are in M ,

a˛;ˇ 2 X
0
˛0 ” ˛ D ˛0; a˛;ˇ 2 Y

0
ˇ 0 ” ˇ D ˇ0:

Because � > jT j, some length-� subsequence of hX 0˛i˛<� is uniformly definable. Passing
to this subsequence, and doing the same with hY 0

ˇ
iˇ<� , we get an ict-pattern of depth 2

in M �.

Write the resulting pattern as

hfi .B
1
i ; B

2
i ; : : : ; B

mi

i /ii2I ; hgi .C
1
i ; B

2
i ; : : : ; B

`i

i /ii2I ;

where the sets B and C are from B and fi ; gi are boolean combinations. As jI j > @0,
we can pass to a subsequence and arrange for fi ; mi ; gi ; `i to not depend on i . Then we
can extract a mutually indiscernible array, with columns indexed by Z. So we obtain an
ict-pattern of the form

: : : ; U�1; U0; U1; : : : ; : : : ; V�1; V0; V1; : : : ;
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where
Ui D f .B

1
i ; : : : ; B

m
i /; Vj D g.C

1
i ; : : : ; C

`
i /;

and the two sequences

hpUiqpB1i q � � � pB
m
i qii2Z; hpViqpC 1i q � � � pC

`
i qii2Z

are mutually indiscernible.
Because this is an ict-pattern, we can take an element a D a00 such that for all i 2 Z,

a 2 Ui ” a 2 Vi ” i D 0:

As a 2 U0 and a … U1, there must be some j such that a 2 Bj0 6, a 2 B
j
1 . Likewise,

there must be some k such that a 2 C k0 6, a 2 C k1 . Take Xi D B
j
i and Yi D Bki . Then

the Xi ’s and Yi ’s are mutually indiscernible, are sets in B, and satisfy

a 2 X0 6” a 2 X1; a 2 Y0 6” a 2 Y1;

completing the proof of the lemma.

Theorem 6.26. Let .K; v/ be a henselian defectless roughly p-divisible valued field with
vK=n � vK finite for all n 2 N, and Kv ˆ ACFp . Then .K; v/ is dp-minimal as a valued
field.

Proof. We may take .K; v/ to be a monster model.
If dp-minimality failed, then by Lemma 6.24 there would exist an element a and two

mutually indiscernible sequences of sets

: : : ; X�1; X0; X1; : : : ; : : : ; Y�1; Y0; Y1; : : :

such that
a 2 X0 6” a 2 X1; a 2 Y0 6” a 2 Y1

and each Xi is a ball or an angular set. (Here we are using the fact that balls and angular
sets form a weak unary basis, by Proposition 6.22.)

As v is henselian, there is a unique extension of v to Kalg. Consider the map � from
balls and angular sets in K to subsets of Kalg defined as follows:

� �.B/ is the ball in Kalg with the same center and radius as B if B is a ball in K.

� �.B/ D ¹cº if B is an angular set centered on c.

ACF and ACVF are dp-minimal, so .Kalg; v/ is dp-minimal and one of the two sequences

: : : ; �.X�1/; �.X0/; �.X1/; : : : ; : : : ; �.Y�1/; �.Y0/; �.Y1/; : : :

is a-indiscernible within .Kalg; v/. Without loss of generality, h�.Xi /ii2Z is a-indis-
cernible in Kalg.

If the Xi ’s are balls, then

a 2 X0 ” a 2 �.X0/ ” a 2 �.X1/ ” a 2 X1;

a contradiction. So the Xi ’s are angular sets.



Dp-minimal and dp-small fields 503

Write �i for the center of Xi . Then Xi � �i is a coset of .K�/n. As there are only
finitely many of these cosets, the indiscernible sequence hXi � �i ii2Z must be constant.
So Xi � �i is some fixed coset of .K�/n. By Proposition 6.4 (2), Xi � �i D v�1.S/ for
some set S � vK. Therefore, whether a 2 Xi depends solely on v.a � �i /. Consequently,

v.a � �0/ ¤ v.a � �1/:

Now inKalg, the sequence : : : ; ��1; �0; �1; : : : is a-indiscernible. So, perhaps after revers-
ing the sequence, we have

� � � < v.a � ��1/ < v.a � �0/ < v.a � �1/ < � � � :

This in turn implies that

v.a � �1/ D v.�2 � �1/ and v.a � �0/ D v.�2 � �0/:

Whether an element x is in Xi depends only on v.x � �i /, so

�2 2 X1 ” a 2 X1 6” a 2 X0 ” �2 2 X0:

ButX0 andX1 have the same type over �2 (the unique center ofX2), because the sequence
hXi ii2Z is indiscernible in K itself. So we have a contradiction.

7. The classification of dp-minimal fields

We can now prove Theorem 1.3. By [4, Corollary 8], we have

Fact 7.1. A henselian valued field .K; v/ with residue characteristic 0 is dp-minimal if
and only if vK and Kv are dp-minimal.

Theorem 1.31 asserts that certain theories are complete and dp-minimal. Except in the
case of positive residue characteristic, completeness follows by the Ax–Kochen–Ershov
principle, and dp-minimality follows by Fact 7.1, using the dp-minimality of character-
istic 0 local fields, plus the following characterization of dp-minimal ordered abelian
groups:

Fact 7.2 ([17, Proposition 5.1]). An ordered abelian group .�;�/ is dp-minimal if and
only if j�=n�j is finite for all n � 1.

Characteristic 0 local fields are dp-minimal by [1, Corollary 7.8] in the non-
archimedean case, and by VC-minimality in the case of C and R.

For the remaining case of positive residue characteristic, Corollary 6.19 provides com-
pleteness, and Theorem 6.26 establishes dp-minimality. Finally, Theorem 1.3 (2) follows
from a more general fact:

Theorem 7.3. Let K be a sufficiently saturated dp-minimal field. Then there is a
henselian defectless valuation v on K such that
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� The residue field Kv is algebraically closed, real closed, or a local field of character-
istic 0.

� The value group vK satisfies jvK=n � vKj < @0 for all n > 0.

� If Kv has characteristic p, then vK is p-divisible.

� If v has mixed characteristic, then v.p/ 2 Intp vK.

Proof. First we note that if v is any valuation on K, then vK=n � vK is finite for all n,
because K�=.K�/n is finite by [18, Theorem 1.5]. For the other points, we break into
cases.

Let v1 be the valuation from Theorem 4.7. First suppose that Kv1 is finite.
Then v1 is definable. By Theorem 2.11, v1 has mixed characteristic and the interval
Œ�v1.p/; v1.p/� is finite. Let � be the smallest convex subgroup of v1K contain-
ing v1.p/. Then � Š Z.

Let v be the coarsening of v1 by �. We get a decomposition of the henselian defect-
less place K ! Kv1 as a composition

K
v1K=�
�����! Kv

�
�! Kv1:

Because K is saturated and v1 is definable, countable chains of balls in .K; v1/ have
non-empty intersection, meaning thatK!Kv1 satisfies the countable intersection prop-
erty of Remark 2.10. ThusKv!Kv1 also satisfies this condition. But the value group�
of Kv ! Kv1 is isomorphic to Z, so the valuation Kv ! � is a mixed characteristic
complete discrete valuation with a finite residue field. Therefore Kv is a characteristic 0
local field. So v is a henselian (and defectless) valuation on K, and its residue field Kv is
local of characteristic 0. There is nothing else to show in this case, because v is equichar-
acteristic 0.

Otherwise, Kv1 is real closed or algebraically closed. In this case, we take v D v1.
It remains to show that v1 is roughly p-divisible (see Definition 2.9) ifKv1 has char-

acteristic p. By Remark 4.6 and the construction of v1, there is a definable valuation v1,
coarser than v1, such that Kv1 has characteristic p. The place K ! Kv1 decomposes
as

K ! Kv1 ! Kv1;

where K ! Kv1 is roughly p-divisible by Theorem 2.11, and Kv1 ! Kv1 is roughly
p-divisible by Lemma 2.5. So the composition is roughly p-divisible by Remark 2.10.

8. Dp-minimal valued fields

The above results easily yield a sharp characterization of dp-minimal valued fields, which
we give in the next two theorems:

Theorem 8.1. Let .K; v/ be a valued field with infinite residue field. Then .K; v/ is dp-
minimal .as a pure valued field/ if and only if the following conditions all hold:
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(1) The residue field Kv and value group vK are dp-minimal.

(2) The valuation v is henselian and defectless.

(3) In mixed characteristic, every element of Œ�v.p/; v.p/� is divisible by p.

(4) In pure characteristic p, the value group vK is p-divisible.

Proof. First suppose .K;v/ is dp-minimal. Both vK andKv are dp-minimal because they
are images of the dp-minimal fieldK. Theorem 3.15 (2) yields henselianity. Theorem 2.11
yields the divisibility conditions.

Conversely, suppose .K; v/ satisfies conditions (1)–(4). These conditions are first-
order, so we may assume .K; v/ is sufficiently saturated. As Kv is a dp-minimal field,
there is a place Kv ! k which is henselian, defectless, roughly p-divisible, and with k
algebraically closed or elementarily equivalent to a local field of characteristic 0. By
Remark 2.10, the composition K ! Kv ! k is also henselian, defectless, and roughly
p-divisible.

Recall that an ordered abelian group � is dp-minimal if and only if �=n � � is finite
for all n > 0 (Fact 7.2). If � is an ordered abelian group, and � is a convex subgroup,
then � is dp-minimal if and only if � and �=� are.

Therefore, the value group of K ! Kv! k is dp-minimal because the value groups
of K ! Kv and Kv ! k are.

In summary, the composite place K ! k is henselian, defectless, and roughly p-
divisible, its residue field is local of characteristic 0, or algebraically closed, and its value
group � has the property that �=n� is finite for all n. By Theorem 1.3 (1), the valued field
K! k is dp-minimal. The original valued fieldK!Kv is a coarsening ofK! k, so it
is definable in the Shelah expansion ofK!Kv (the expansion by all externally definable
sets). The Shelah expansion is still dp-minimal. Thus K ! Kv is dp-minimal.

Theorem 8.2. Let .K; v/ be a valued field with finite residue field. Then .K; v/ is dp-
minimal .as a valued field/ if and only if the following conditions all hold:

(1) The value group vK is dp-minimal.

(2) The valuation v is henselian.

(3) The valuation is finitely ramified, in the sense that Œ�v.p/; v.p/� is finite. .In partic-
ular, K has characteristic 0 if v is non-trivial./

Proof. First suppose .K; v/ is dp-minimal. Then henselianity follows by Theorem
3.15 (2), and dp-minimality of vK is immediate. Finite ramification follows by Theo-
rem 2.11.

Conversely, suppose .K; v/ satisfies conditions (1)–(3). These conditions are elemen-
tary, so we may assume K is saturated. If v is trivial, then K is finite, so it is dp-minimal.
Otherwise,K has characteristic 0. Letw be the coarsening of v by the convex subgroup�
generated by v.p/. As usual we get a decomposition K ! Kw ! Kv. The value group
of Kw ! Kv is �, which has rank 1 by finite ramification. By saturation of K ! Kv,
the countable chain condition of Remark 2.10 holds in K ! Kv, hence in Kw ! Kv.
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Thus Kw ! Kv is spherically complete. Also, � is isomorphic to Z. Thus Kw ! Kv

makes Kw into a complete mixed characteristic DVR with finite residue field. So Kw is
a local field of characteristic 0.

Now K ! Kw is henselian (because K ! Kv is). As K ! Kv has dp-minimal
value group, so does K ! Kw and Kw ! Kv. In particular, K ! Kw makes K into a
henselian valued field with dp-minimal value group and residue field local of characteris-
tic 0. So K ! Kw is dp-minimal by Theorem 1.3 (1a).

In characteristic 0 non-archimedean local fields, the valuation ring is always definable
from the pure field language. Consequently, the dp-minimal structureK!Kw interprets
K ! Kw ! Kv. Thus K ! Kv is also dp-minimal.

Question 8.3. Do the above theorems remain true when .K; v/ is expanded by additional
structure on vK and Kv .preserving the dp-minimality of each/?

9. Summary and future directions

We now know exactly which pure fields are dp-minimal, and we know a little bit about
dp-minimal expansions of fields.

Here is a summary of what can be said about a dp-minimal field .K;C; �; : : :/, perhaps
with other structure. Either K is strongly minimal (or finite), or all of the following facts
are true:

� There is a definable V-topology on K [18, Theorem 1.3].

� With respect to this topology, there are only boundedly many infinitesimal types, which
are all definable [18, Corollaries 7.5, 7.6].

� Any unary definable set has finite boundary [18, Theorem 1.3].

� Dp-rank of definable9 sets is definable in families, and agrees with “geometric dimen-
sion” [18, Corollary 8.4].

� Any definable valuation ring is henselian and defectless, and any two definable valua-
tion rings are comparable (Theorems 3.15 (2) and 2.11).

� For each n, K�=.K�/n is finite [18, Theorem 1.5].

� .K�/000 D .K�/0 D
T
n.K

�/n (Corollary 5.13).

� Any finite extension of K is dp-minimal as a pure field (but not as an expansion of K,
of course). This follows by inspecting the list of dp-minimal fields.

� There is at least one definable non-trivial valuation onK, unlessK is finite, real closed,
or algebraically closed (Theorem 4.7).

There are several obvious questions we have not addressed:

9One cannot hope to extend this to interpretable sets. For instance, 91 is not eliminated in the
value group of Qp .
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Question 9.1. If K is a dp-minimal field, is there always a definable valuation on K
whose residue field is algebraically closed, real closed, or finite?

Question 9.2. Which unstable dp-minimal fields fail to define valuations?

Question 9.3. If .K;C; �; : : :/ is a sufficiently saturated unstable dp-minimal field, not
necessarily pure, and O1 is the valuation ring from Theorem 4.7, is the expansion of K
by O1 still dp-minimal?

Question 9.4. Can any of the classifications be extended to fields of finite dp-rank?

9.1. Defining the canonical valuation, or not

In general, the answer to Question 9.1 is no, though we can characterize the failure modes.

Proposition 9.5. Let .K; v/ be a sufficiently saturated valued field as in Theorem 1.3 (1).
So .K; v/ is dp-minimal, and Kv is elementarily equivalent to F alg

p or a characteristic 0
local field.

Let O1 be the intersection of all valuation rings on K definable in the pure field
language. Let w be the associated valuation.

� If Kv is non-archimedean, then w is the composition of v with the canonical valuation
on Kv.

� If Kv is real closed or algebraically closed, then w is the coarsening of v by the maxi-
mal convex divisible subgroup of vK.

Proof. First we make a general observation.

Remark 9.6. Let K ! k be a place. It cannot be the case that one of K or k is finite and
the other is real closed or algebraically closed. Indeed, if K is finite then k is (obviously)
finite. If K is algebraically closed or real closed, then k is algebraically closed or real
closed (not respectively), by the Artin–Schreier theorem.

First suppose Kv is non-archimedean. Non-archimedean local fields define their val-
uation rings, so .K; v/ interprets the canonical valuation on Kv. Let K ! Kv ! Kv0

be the composition. Then v0 is a valuation on K, definable in .K; v/, with finite residue
field Kv0. We claim w D v0.

By Proposition 3.12 applied to the dp-minimal structure .K; v/, the valuations
v0 and w must be comparable. So we either have a place mapKw!Kv0 orKv0!Kw.
By Theorem 4.7, Kw is finite, real closed, or algebraically closed. By Remark 9.6,
Kw cannot be algebraically closed or real closed, so it is finite. Then Kw ! Kv0 or
Kv0 ! Kw is trivial, and w D v0.

Next suppose Kv is real closed or algebraically closed. Let v0 be the coarsening of v
by the maximal divisible convex subgroup of vK. In the sequence

K ! Kv0 ! Kv;
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the value group ofKv0!Kv is divisible, and the value group ofK!Kv0 has no convex
divisible subgroups. Also, K ! Kv0 is henselian, defectless, and roughly p-divisible.
Because Kv0 has a henselian defectless valuation with divisible value group and real or
algebraically closed residue field, Kv0 is itself real closed or algebraically closed.

So .K; v0/ is a model of one of the theories from Theorem 1.3 (1), though .K; v0/
need not be saturated. In the structure .K; v0/, the only definable valuation on the residue
field Kv0 is the trivial one.10

By Proposition 3.12, w and v0 must be comparable. If v0 were strictly coarser than w,
there would be a non-trivial valuation Kv0 ! Kw0, definable in the structure .K; v0/.

So w is coarser than v0, which is in turn coarser than v. Let�w and�v0 be the convex
subgroups of vK whose coarsenings yield w and v0. Then �w � �v0 . We want to show
wD v0, i.e., that�w D�v0 . Otherwise,�w >�v0 . As�v0 is the greatest convex divisible
subgroup, �w is not divisible. Then neither is �w=�v0 . So the place Kw ! Kv0 has a
value group that is not divisible.

Now Kv0 is real closed or algebraically closed, so Kw is not finite by Remark 9.6.
Therefore Kw is real closed or algebraically closed. But then any valuation on Kw
has divisible value group. This contradicts the non-divisibility of the value group of
Kw ! Kv0.

Theorem 9.7. Let .K;v/ be a dp-minimal valued field with residue fieldKv algebraically
closed or elementarily equivalent to a local field of characteristic 0. Suppose K is suffi-
ciently saturated. The following are equivalent:

� There is a valuation w, definable in the pure field language, such thatKw is finite, real
closed, or algebraically closed.

� Kv is non-archimedean or the maximal convex divisible subgroup of vK is definable
in the structure .vK;C;�/.

Proof. First suppose that Kv is non-archimedean. By Proposition 9.5, the canonical val-
uation on K (in the pure field language) has finite residue field (and so is definable by
Theorem 4.7). So there is a valuation ring onK, definable in the pure field language, with
finite residue field.

10One can show that in .K; v0/, the induced structure on Kv0 is the pure field structure. Pure
models of RCF and ACF do not admit non-trivial valuations. But here is an alternative proof that
Kv0 fails to have a definable non-trivial valuation, relying on known results. By the completeness
part of Theorem 1.3 (1), one can find a structure elementarily equivalent to .K; v0/ in which the
residue field is either F

alg
p , Qalg, or Qalg \R, by explicitly constructing a model using Hahn series

(or spherical completions in mixed characteristic). The field F
alg
p admits no non-trivial valuation.

The non-trivial valuations on Qalg \R fail to be NIP, by [21, Theorems 11.3.1, 11.5.1]. Finally, in
the case of Qalg, if some non-trivial valuation ring O on Qalg happens to be definable, then using the
Hahn series model one can show that �.O/ is definable for any � 2Aut.Qalg/. The p-adic valuation
on Q is not henselian for any p, so one can find � with �.O/ ¤ O. Then by [21, Theorems 11.3.1,
11.5.1] again, the residue field fails to be NIP.
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Next suppose that Kv is algebraically closed or real closed. If the maximal divisible
convex subgroup of vK is definable, let v0 be the coarsening, which is definable in .K; v/.
By the proposition, v0 is the canonical valuation of Theorem 4.7 on the pure field K.
Therefore the valuation ring of v0 is type-definable in the pure field K, and definable in
.K;v/, hence definable in the pure fieldK, by saturation of .K;v/. So v0 is definable in the
pure field language, andKv0 is finite, algebraically closed, or real closed, by Theorem 4.7.

Conversely, suppose thatKw is algebraically closed, real closed, or finite, for some w
definable in the pure field language.

Now w is coarser than the canonical valuation on the pure field K, which is coarser
than v by the proposition (applied to .K; v/). So there is a place Kw ! Kv. By
Remark 9.6, Kw is algebraically closed or real closed.

Then we can apply the proposition to .K;w/, seeing that the canonical valuation onK
is a coarsening of w. So w and the canonical valuation on K are coarser than each other,
hence equal.

Now by the proposition applied to .K; v/, w is the coarsening of v by the maximal
convex divisible subgroup of vK. This group must then be definable in .K; v/, because w
is definable. One can show11 that .K; v/ induces the pure ordered group structure on vK
(with v.p/ named as a constant in mixed characteristic), and so this group is definable
in vK.

Now let � be the lexicographic product

Z � ZŒ1=2� � ZŒ1=2; 1=3� � ZŒ1=2; 1=3; 1=5� � � � � :

For each number n, all but finitely many of the factors are divisible by n, and in fact �=n�
is finite for all n. So C..t�// is dp-minimal. But in a sufficiently saturated elementary
extension of � , the maximal divisible convex subgroup of � is not definable. In fact, it is

11If Kv has characteristic 0, this follows by Ax–Kochen–Ershov quantifier elimination. Other-
wise, .K;v/ is a model of the theory T of §6.1. Assume .K;v/ is equicharacteristic p for simplicity.
By a compactness argument, it suffices to prove the following: if E
 and Eı are two n-tuples in vK,
and E
 and Eı have the same type over ; in the pure structure .vK;C;�/, then E
 and Eı have the
same type over ; in .K; v/. Dropping redundant elements from the tuple, we may assume that
E
 is Q-linearly independent in vK. Then the same holds for Eı. Let Es and Et be tuples in K lifting
E
 and Eı, so v.si / D 
i and v.ti / D ıi . From the Q-linear independence, one can show that the Es
are algebraically independent over Fp . The same holds for Et . Therefore there is an isomorphism
of fields g W Fp.Es/ ! Fp.Et / mapping Es to Et . There is an automorphism � of the pure structure
.vK;C;�/ sending E
 to Eı. Using Q-linear independence, one sees that v.g.x// D �.v.x// for
x 2 Fp.Es/. (For example, it suffices to check the case where x D P.Es/ 2 Fp ŒEs�, when v.x/ and
v.g.x// are determined explicitly by the coefficients of the polynomial P .) It follows that g is
an isomorphism of valued fields, and even a partial v-elementary map from .K; v/ to .K; v/. By
Theorem 6.17, g extends to an automorphism � 0 of .K; v/. Then � 0 induces an automorphism of
.vK;C;�/, which must send E
 to Eı. Therefore E
 and Eı have the same type over ; in .K; v/. In
mixed characteristic, the proof is similar, except that Q takes the place of Fp , and one arranges for
.v.p/; 
1; : : : ; 
n/ to be Q-linearly independent rather than E
 alone.
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the intersection of the strictly decreasing sequence of definable subgroups:

Int2 � > Int3 � > � � � :

So this gives a dp-minimal field in which no definable valuation ring has a residue field
that is finite, algebraically closed, or real closed.

9.2. Unstable dp-minimal fields that define no valuations

We know that every unstable dp-minimal field K has a V-topology. This topology need
not come from a definable valuation, as exhibited by RCF. On the other hand, ifK admits
no definable valuation rings, then the ring O1 in Theorem 4.7 is trivial, so K must be
algebraically closed or real closed. So most dp-minimal fields admit a definable valuation,
which determines the canonical topology (by Lemma 3.9).

A natural open question is then:

Question 9.8. Are there dp-minimal unstable expansions of ACF which define no valua-
tion rings?

If the answer is no, the following conjecture is true:

Conjecture 9.9. Let K be an unstable dp-minimal field. Then the canonical topology on
K is induced by a definable ordering or a definable valuation.

9.3. Expanding by the canonical valuation

In many cases, the answer to Question 9.3 is yes, because the canonical valuation is defin-
able. (Whether this happens is more or less characterized by Proposition 9.5.) In the case
of pure fields, we know that the answer to Question 9.3 is yes, at least under saturation
assumptions—this is essentially the content of Theorem 7.3. When the residue field of O1
is real closed, Question 9.3 has been answered affirmatively by Jahnke [15, Theorem A].

9.4. Finite dp-rank fields

Strongly minimal fields are known to be algebraically closed by a theorem of Macintyre.
The proof yields a stronger result: fields of finite Morley rank are algebraically closed.

In contrast, the classification of dp-minimal fields given here does not directly reveal
anything about general fields of finite dp-rank. Nevertheless, it is natural to try generaliz-
ing the classification to fields of finite dp-rank.

In the years since dp-minimal fields were classified, a conjectural classification of
“dp-finite” fields has emerged. By work of Anscombe, Dolich, Farré, Goodrick, Halevi,
Hasson, Jahnke, and Sinclair,12 the crux of the matter is the following conjecture:

12In detail, the analogue of §6 is Sinclair’s thesis [26], which gives new examples of dp-finite
fields, among other things. The analogue of Fact 7.2 are the three papers [6, 8, 11], which classify
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Conjecture 9.10 (Shelah conjecture for dp-finite fields). IfK is a dp-finite field, then one
of the following holds:

� K is finite.

� K is algebraically closed.

� K is real closed.

� K has a definable henselian valuation.

For positive characteristic dp-finite fields, the Shelah conjecture is provable by a gen-
eralization of the techniques of [18] and the present paper. This has been carried out in
[19, 20], building off work of Sinclair [26]. This yields a full classification of dp-finite
fields of positive characteristic.

Several major hurdles arise in the generalization to dp-finite fields.

1. One needs a new definition of “infinitesimals” and the canonical topology. One can
form the intersection

IK
‹
D

\
¹X �X W X infinite and K-definableº;

but it is often trivial. For example, if M is C expanded by a predicate for R, then
dp-rk.K/ D 2, and for X D R and Y D iR we have

.X �X/ \ .Y � Y / D ¹0º:

Without adjusting the definition, the canonical topology would become the trivial dis-
crete topology. A more natural choice is

IK
‹
D

\
¹X �X W X is K-definable and dp-rk.X/ D dp-rk.M/º:

This plays off the intuition that sets of full rank should have interior. However, in order
to mimic the proofs of [18, §5], one needs to first consider the sets X �� X , where

X �� Y WD ¹ı 2M W dp-rk.X \ .Y C ı// D dp-rk.M/º:

Unfortunately, these sets X �� Y are not obviously definable, creating new problems.

2. After producing a good topology and a type-definable group of infinitesimals IK , one
cannot immediately get a valuation ring from IK because the comparability Lemma
6.1 in [18] fails to hold in higher rank. Nevertheless, a valuation ring can be obtained
by a complicated lattice-theoretic argument.

strongly dependent ordered abelian groups. The analogue of §3 is [13], which proves henselianity
of definable valuations, assuming Conjecture 9.10. Everything is assembled together in [12], which
uses an argument similar to §4 and §7 to control the residue field of the valuation in Conjecture 9.10,
proving that the field must be on Sinclair’s list. Moreover, the conjectural classification generalizes
to strongly dependent fields.
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3. One needs a new proof of henselianity. The argument used here relies in an essential
way on the fact that definable sets have finite boundary [18, Theorem 7.8], which in
turn holds because infinitesimal types are definable [18, Corollary 7.6]. Both facts
fail already in .C;C; �;R/. Luckily, a variant of Proposition 3.7 works in positive
characteristic dp-finite fields. But in characteristic 0, it remains unclear how to proceed.
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