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Abstract. We study several questions involving relative Ricci-flat Kähler metrics for families of
log Calabi–Yau manifolds. Our main result states that if p W .X; B/! Y is a Kähler fiber space
such that .Xy ; BjXy / is generically klt, KX=Y C B is relatively trivial and p�.m.KX=Y C B//
is Hermitian flat for some suitable integer m, then p is locally trivial. Motivated by questions in
birational geometry, we investigate the regularity of the relative singular Ricci-flat Kähler metric
corresponding to a family p W .X; B/ ! Y of klt pairs .Xy ; By/ such that �.KXy C By/ D 0.
Finally, we disprove a folkore conjecture by exhibiting a one-dimensional family of elliptic curves
whose relative (Ricci-)flat metric is not semipositive.

Keywords. Kähler fiber space, log Calabi–Yau manifolds, conic Kähler metrics, direct image of
log pluricanonical bundles

Introduction

In this article we continue our study of fiberwise singular Kähler–Einstein metrics started
in [19] in the following context.

Let p W .X;B/! Y be a Kähler fiber space, where B is an effective divisor such that
.Xy ; BjXy / is klt for all y 2 Y in the complement of some analytic subset of the base Y .
We are interested here in the curvature and regularity properties of the metric induced on
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KX=Y C B by the canonical metrics on the fibers Xy under the hypothesis

�.KXy C By/ D 0;

where By WD BjXy . The far-reaching goal we are pursuing here is a criterion for the bira-
tional equivalence of the fibers .Xy ; BjXy / of p in a geometric context inspired by results
due to E. Viehweg, Y. Kawamata and J. Kollár in connection with the Cnm conjecture. To
this end, the fiberwise Kähler–Einstein metrics play a crucial role. Due to some technical
difficulties – which we hope to overcome in a forthcoming paper – our most complete
results are obtained under the more restrictive hypothesis c1.KXy C By/ D 0, i.e. in the
absence of basepoints of the log-canonical bundles of the fibers.

Main results

Let p W .X; B/! Y be a proper, holomorphic fibration between two Kähler manifolds,
where B D

P
biBi is an effective Q-divisor on X whose coefficients bi 2 .0; 1/ are

smaller than 1. We assume that there exists Y ı � Y contained in the smooth locus of p
such that BjXy has snc support for y 2 Y ı and set Xı WD p�1.Y ı/. The fibers of p are
assumed to satisfy

c1.KXy C BjXy / D 0 for any y 2 Y ı:

If we fix a reference Kähler form ! on X , then we can construct a fiberwise Ricci-flat
conic Kähler metric �y , i.e. a solution of the equation´

Ric �y D ŒBy �;

�y 2 Œ!y �:

There exists a unique function ' 2 L1loc.X
ı/ such that´

�y D !y C dd
c'jXy ;R

Xy
' !ny D 0:

The closed .1; 1/-current �ıKE WD ! C dd c' on Xı is called a relative Ricci-flat conic
Kähler metric in Œ!�. As we shall soon see, the current �ıKE is not positive in general,
which marks an important difference with the case of Kähler fiber spaces whose generic
fiber is of (log) general type.

Nevertheless, we establish the following result (Theorem 1.2 for a complete version).

Theorem A. Let p W .X;B/! Y be a map as above, and let ! be a fixed Kähler metric
on X . Assume that the following conditions are satisfied:

.i/ For y 2 Y ı, the Q-line bundle KXy C By is numerically trivial.

.ii/ For somem large enough, the line bundle p�.m.KXı=Y ı CB// is Hermitian flat with
respect to the Narasimhan–Simha metric h on Y ı .see (1.7)/.

Then we can construct a .1; 1/-current �ıKE such that the restriction �y of �ıKE to Xy is
a representative of ¹!ºjXy and solves Ric �y D ŒBy �. Moreover:
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.�/ �ıKE is positive and it extends canonically to a closed positive current �KE 2 ¹!º

on X .

.�/ The fibration .X; B/ ! Y is locally trivial over Y ı. Moreover, if p is smooth in
codimension 1 and codimX .B XXı/ > 1, then p is locally trivial over the whole Y .

The result above has many geometric applications, like for instance a Kähler version
of a theorem of Ambro [1] (see Corollary 1.3 and its proof in Section 1.2).

Another striking consequence is the following positivity property of direct images of
pluri-log canonical bundles (see Section 1.2 for a proof). It can be seen as a logarithmic
version of Viehweg’s Qn;m-conjecture for families of log Calabi–Yau manifolds [53].

Corollary B. Let p W .X;B/! Y be a fibration between two compact Kähler manifolds
such that c1.KXy CBjXy /D 0 for a generic y 2 Y . Assume moreover that the logarithmic
Kodaira–Spencer map

TY ! R1p�.TX=Y .� logB// (0.1)

is generically injective. Then the bundle p�.m.KX=Y C B//�� is big.

We remark that, based on Corollary B and some deep tools, Y. Deng [26] proved
recently the hyperbolicity of bases of maximally variational smooth families of log
Calabi–Yau pairs.

We are next interested in the following setting:

�.KXy C BjXy / D 0;

which is more natural from the birational geometry point of view. The main result we
establish in this context is a regularity theorem for the relative Kähler–Einstein metric.
The point is that here we have no further assumptions on the basepoints of KXy C By or
the flatness of the direct image of some power of KX=Y C B (see the end of Section 3).

Theorem C. In the above framework, let ! be a fixed Kähler metric on X and assume
that for y generic the Kodaira dimension of KXy C By equals zero. Let E be an
effective Q-divisor such that KXy C By �Q Ey . Then there exists a .1; 1/-current �ıKE
whose restriction �y WD �ıKEjXy is a representative of ¹!ºjXy and solves the equa-
tion Ric �y D �ŒEy � C ŒBy �. In addition, the local potentials of �ıKE are Lipschitz on
Xı X Supp.B CE/.

One may wonder whether the assumptions concerning the flatness of the direct image
of the bundlem.KX=Y CB/ can be removed in Theorem A. Indeed, a folklore conjecture
asserts that the form �ıKE is semipositive provided that say B D 0 and c1.Xy/ D 0: By
using the results in the Appendix, we show that this is simply wrong.

Theorem D. There exists a smooth, proper fibration p W X ! Y between Kähler mani-
folds such that c1.Xy/D 0 for all y 2 Y and a Kähler form ! on X such that the relative
Ricci-flat metric �KE 2 Œ!� is not semipositive.
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The example we exhibit is constructed from a special K3 surface admitting a non-
isotrivial elliptic fibration as well as another transverse elliptic fibration. The construction
is detailed in Section 3.

Previously known results

In connection with Theorem A, the statements obtained so far are based on two different
types of techniques arising from algebraic geometry and complex differential geometry,
respectively. One can profitably consult the articles [53], [34] and [33] for results aimed
at the Iitaka conjecture. From the complex differential geometry side we refer to [4], [30],
[6] and the references therein.

The folklore conjecture that we disprove in Theorem D arose from a result of Schu-
macher [45] who proved the semipositivity of the relative Kähler–Einstein metric for
families of canonically polarized manifolds (see also the related works [2], [50]). He
also implicitly conjectured that an analogous semipositivity result should hold for famil-
ies of Calabi–Yau manifolds [45, p. 7], and this was explored in the thesis of Braun [10]
and in the papers [11,12] where positive partial results were obtained. The semipositivity
question for �KE also appeared in the work [27] on the Kähler–Ricci flow.

Main steps of the proof

We next outline the proof of Theorems A, C and D.

� The first item of Theorem A is established by using two ingredients. The first one
consists in showing that the conic Ricci-flat metric in ¹!Xy º on each fiber Xy is the nor-
malized limit of the unique solution of the family of equations of the type

Ric �" D ��" C "! C ŒB� (0.2)

on Xy where �" 2 "¹!Xy º. We show that !ıKEjXy is obtained as the limit of 1
"
�" as "! 0.

On the other hand, the main result of [28] shows that the family �" has psh variation for
each positive " > 0, and the result follows (the flatness of the direct image is crucial in
order to be able to use [28]).

The argument for the second item of Theorem A is more involved. We use a different
type of approximation of the conic Ricci-flat metric, by regularizing the volume element.
Let �ı be the resulting family of metrics. The heart of the matter is to show that the
horizontal lift with respect to �ı of any local holomorphic vector field on the base has a
holomorphic limit as ı! 0. This is a consequence of the estimates in [29] combined with
the PDE satisfied by the geodesic curvature of �ı [45]. Then we show that the geodesic
curvature tends to a (positive) constant and as a consequence we finally infer that the
horizontal lift of holomorphic vector fields with respect to !ıKE is holomorphic and tangent
to B .

� The equation Ric ! D �ŒE� C ŒB� translates into a Monge–Ampère equation where
the right hand side has poles and zeros. The poles are relatively manageable in the sense
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that they induce conic metrics, that is, we know relatively precisely the behavior of the
complex Hessian of the solution. The zeros, however, are much more complicated to deal
with for several reasons. First, it seems hard to produce a global degenerate model metric
that should encode the behavior of the solution. Next, regularized solutions of the Kähler–
Einstein equation do not satisfy a Ricci lower bound, hence it seems difficult to estimate
their Sobolev constant.

In Proposition 2.1, we establish a uniform (weak) Sobolev inequality where the meas-
ure on the right hand side picks up zeros. Then we study the regularity of families of
such metrics. Despite having a rather poor understanding of the fiberwise metrics, we
are still able to analyze the first order derivatives of the potentials in the transverse dir-
ections, leading to an L2 estimate, yet with respect to a more degenerate volume form
(Theorem 2.6). This is however enough to deduce the Lipschitz variation of the potentials
away from Supp.B CE/.

� The counterexample provided by Theorem D is built from an elliptic fibration p W
X ! P1 where X is a K3 surface. In the Appendix, it is shown that one can find such a
fibration with the following properties: its singular fibers are irreducible and reduced, it
is not isotrivial and it admits another transverse elliptic fibration. These properties allow
us to find a semiample, p-ample line bundle L! X with numerical dimension 1. Then
the relative Ricci-flat metric � 2 c1.L/jXı cannot be semipositive, for otherwise one can
show that it would extend to a positive current � 2 c1.L/ and as L is not big, results of
Boucksom show that

�2 � 0 on Xı:

Using horizontal lifts of � , one can finally conclude that the foliation Ker � is holo-
morphic, induced by a local trivialization of the family. This contradicts the non-isotrivi-
ality of p. Passing from the relative Ricci-flat metric in c1.L/ to one in a Kähler class can
be done using a limiting process.

Organization of the paper

§1: We prove Theorem 1.2, and then derive successively Corollary 1.3 and Corollary B.

§2: We obtain transverse regularity results for families of Monge–Ampère equations cor-
responding to adjoint linear systems having basepoints. This leads to Theorem C.

§3: We prove Theorem 3.1 using results from the Appendix.

1. Relative Ricci-flat conic metrics

1.1. Setting

Let p W X ! Y a holomorphic proper map of relative dimension n between Kähler mani-
folds. We denote by Y ı � Y the set of regular values of p, and letXı WD p�1.Y ı/ so that
pjXı W X

ı ! Y ı is a smooth fibration. For y 2 Y ı, one writes Xy WD p�1.Xy/, the fiber
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over y. Let B be an effective Q-divisor onX that has coefficients in .0; 1/ and whose sup-
port has snc. Our assumption throughout the current section will be that for each y 2 Y ı

we have
c1.KXy C By/ D 0 2 H

1;1.Xy ;Q/: (1.1)

Thanks to the log abundance in the Kähler setting (Corollary 1.18), we know that
KXy C By is Q-effective. Combining this with the Ohsawa–Takegoshi extension the-
orem in its Kähler version [18], one can assume that there exists m � 1 such that
m.KXy C By/ ' OXy for all y 2 Y ı.

In this context the main result we obtain here shows that the flatness of the direct
image p�.mKX=Y C mB/ implies the local isotriviality of the family p W .X; B/! Y .
By this we mean that there exists a holomorphic vector field v onXı whose flow identifies
the pairs .Xy ; By/ and .Xw ; Bw/ provided that y; w 2 Y ı are close enough. This is the
content of Theorem 1.2 below. Prior to stating our theorems in a formal manner, we need
to recall a few notions and facts.

Given a point y 2 Y ı, there exists a coordinate ball U � Y ı containing y and a
nowhere vanishing holomorphic section

� 2 H 0.XU ; m.KX=Y C B/jXU / (1.2)

by our assumption (1.1), where XU WD p�1.U /.
If fB is a local multivalued holomorphic function cutting out the Q-divisor B , then

the form .�y^�y/
1=m

jfB j2
induces a volume element on the fibers of p over U . We fix a Kähler

class ¹!º 2H 1;1.X;R/. Up to renormalizing !, one can assume that the constant function

Y ı 3 y 7!

Z
Xy

!n

is identically equal to 1. We also define

Vy WD

Z
Xy

.�y ^�y/
1=m

jfB j2
I

this is a Hölder continuous function of y 2 Y ı.
Let �y be the unique positive current onXy which is cohomologous to !y and satisfies

�ny D
.�y ^�y/

1=m

Vy jfB j2

(see [56]). One can write �y D !jXy C dd
c'y , where the function 'y is uniquely determ-

ined by the normalization Z
Xy

'y
.�y ^�y/

1=m

jfB j2
D 0: (1.3)

For each y 2 U � Y ı, the current �y is reasonably well understood: it has Hölder poten-
tials, and it is quasi-isometric to a metric with conic singularities along B [29].
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We next analyze its regularity properties in the “base directions”; this will allow us to
derive a few interesting geometric consequences.

The function ' defined on Xı by '.x/ WD 'p.x/.x/ is a locally bounded function
on Xı (by the family version of Kołodziej’s estimates [25]), hence it induces a .1; 1/-
current

� WD ! C dd c' (1.4)

onXı. Let��Y ı be a small, 1-dimensional disk. If� is generic enough, then the inverse
image X WD p�1.�/ is non-singular, and the restriction map p WX!� is a submersion.
We denote by t a holomorphic coordinate on the disk �. Following [46] we next recall
the expression of the horizontal lift of the local vector field @

@t
. For the moment, this is a

vector field v� with distribution coefficients on the total space X given by the expression

v� WD
@

@t
�

X
˛

�ˇ˛�tˇ
@

@z˛
; (1.5)

where the notations are as follows. We denote by .z1; : : : ; zn; t / a coordinate system
centered at some point of X, and �tˇ is the coefficient of dt ^ dzˇ . We denote by .�ˇ˛/
the entries of the inverse of the matrix .�˛ˇ /.

The reflexive hull of the direct image

Fm WD p�.m.KX=Y C B//
�� (1.6)

plays a key role in the study of the geometry of algebraic fiber spaces. It admits a pos-
itively curved singular metric whose construction we next recall (see [5, 42] and the
references therein).

Let � 2 H 0.U;FmjU / be a local holomorphic section of the line bundle Fm defined
over a small coordinate set U � Y ı. The expression

k�k2y WD V
m�1
y

Z
Xy

j� j2

j�y j
2m�1m

e��B (1.7)

defines a metric h on FmjY ı . It is remarkable that this metric extends across the singular-
ities of the map p, and it has semipositive curvature current; see [5,42] for more complete
statements.

1.2. Main results

In this subsection we aim to prove the following results.

Theorem 1.1. Let p W .X; B/! Y be a proper holomorphic map between Kähler man-
ifolds as in (1.1). Assume moreover that the curvature of Fm with respect to the metric
in (1.7) equals zero when restricted to Y ı. Then the .1; 1/-current � defined onXı by (1.4)
is semipositive and it extends canonically to a closed positive current onX in the cohomo-
logy class ¹!º.
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For example, if we assume that Y is compact, then the curvature of Fm will automat-
ically be zero if c1.Fm/ D 0 thanks to the properties of the metric (1.7) discussed above
[20, Thm. 5.2].

The word “canonically” in Theorem 1.1 means that the local potential ' of � is locally
bounded above across X XXı.

We also prove the next statement.

Theorem 1.2. Assume that the hypotheses in Theorem 1.1 are satisfied. Then p is locally
trivial over Y ı, that is, for every y 2 Y ı, there exists a neighborhood U � Y ı of y such
that

.p�1.U /; B/ ' .Xy ; BjXy / � U:

Moreover, if p is smooth in codimension 1, then p is locally trivial over the whole Y
provided that codimXXXı.B XXı/ > 0.

In particular, under the assumptions in the “moreover” part of Theorem 1.2 the map
p is automatically a locally isotrivial submersion.

As an application, we establish the following result; it partially generalizes to the
Kähler case a theorem of F. Ambro [1].

Corollary 1.3. Let p WX ! Y be a fibration between two compact Kähler manifolds. Let
B be a Q-effective klt divisor on X with snc support.

If �.KX C B/ is nef, then �KY is pseudo-effective. (1.8)

If c1.KX C B/ D 0 and c1.Y / D 0, then p is locally trivial, that is, for
every y 2 Y , there exists a neighborhood U � Y of y such that

.p�1.U /; B/ ' .Xy ; BjXy / � U:

In particular, if c1.KX C B/ D 0, the Albanese map p W X ! Alb.X/
is locally trivial. (1.9)

1.3. Proof of Theorem 1.1

We will proceed by approximation, mainly using the following lemma combined with the
results in [28].

The next statement will enable us to reduce the problem to canonically polarized pairs.

Lemma 1.4. Let X be a compact Kähler manifold and let B be an effective divisor such
that .X; B/ is klt. Assume that c1.KX C B/ D 0. Let ! be the Kähler form on X . For
every " > 0, let �" 2 "¹!º be the unique twisted conic Kähler–Einstein metric such that

Ric �" D ��" C "! C ŒB�: (1.10)

Let � 2 ¹!º be the unique conic Kähler–Einstein metric such that Ric � D ŒB�. Then

lim
"!0

1

"
�" D �

where the convergence is smooth outside Supp.B/.
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Proof. Let m 2 N be such that m.KX C B/ is effective. Let � 2 H 0.X; m.KX C B//

be a holomorphic section normalized so thatZ
X

.� ^�/1=m

jfB j2
D 1: (1.11)

There exists a unique function '" on X such that

�" D "! C dd
c'"; (1.12)

�n" D "
ne'"

.� ^�/1=m

jfB j2
: (1.13)

Now, set

 " WD
1

"
'":

One has 1
"
�" D ! C dd

c " and

.! C dd c "/
n
D e" "

.� ^�/1=m

jfB j2
(1.14)

As .�^�/1=m

jfB j2
and .1

"
�"/

n are probability measures and  " is !-psh, Jensen’s inequality

yields
R
X
." "/

.�^�/1=m

jfB j2
� 0, and thereforeZ

X

 "
.� ^�/1=m

jfB j2
� 0: (1.15)

As the measure .�^�/1=m

jfB j2
integrates every quasi-psh function, it follows from standard

results in pluripotential theory that there exists a constant C such that

sup
X

 " � C: (1.16)

By (1.14)–(1.16) and Kołodziej’s estimate [36], one gets

oscX  " � C: (1.17)

As .�^�/
1=m

jfB j2
and .1

"
�"/

n are probability measures again, (1.14) shows that

inf
X
 " � 0 � sup

X

 ":

Combining this information with (1.17), we obtain

k "kL1.X/ � C: (1.18)

Moreover, Jensen’s inequality applied to the equation .�^�/1=m

jfB j2
D e�" ".1

"
�"/

n yieldsZ
X

 ".! C dd
c "/

n
� 0: (1.19)
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From (1.14) and (1.18), we get uniform estimates at any order for  " outside B . If  is a
subsequential limit of the family . "/">0, it will satisfy

.! C dd c /n D
.� ^�/1=m

jfB j2
:

Combining this information with (1.15) and (1.19), we findZ
X

 
.� ^�/1=m

jfB j2
D 0:

Therefore  is uniquely determined, and the whole family . "/">0 converges to  . The
lemma is thus proved.

Proof of Theorem 1.1. We fix a reference Kähler form ! on X , and let U be some small
topological open set of Y ı. By hypothesis, the curvature of the bundle FmjU is identically
zero. By using parallel transport, this is equivalent to the existence of a section

s 2 H 0.XU ; mKX=Y CmBjXU / (1.20)

whose norm is a constant function on U , namely kskh.y/ D 1 for every y 2 U . Let

�y WD sjXy 2 H
0.Xy ; mKXy CmBy/

be the restriction of s to the fibers of p.
Since c1.KXy CBy/C "!jXy is a Kähler class for each " > 0 and each y 2 Y ı, there

exists a unique '" such that

."! C dd c'"/
n
D "ne'"

.�y ^�y/
1=m

jfB j2
on Xy :

Since y 2 U is a regular value, this is equivalent to

Ric �";y D ��";y C "! C ŒBy � on Xy ;

where �";y D "! C dd c'"jXy .
Next, the section s is holomorphic, hence the relative B-valued volume forms

.�y ^�y/
1=m induce a metric with zero curvature onKX=Y CB over p�1.U /. Because

of that,
�" WD "! C dd

c'"

coincides with the current studied in [28], and the content of the main theorem there is that
�" is positive on p�1.U /. Thanks to Lemma 1.4, � is the fiberwise weak limit on p�1.U /
of the fiberwise twisted Kähler–Einstein metrics 1

"
�"; moreover, the estimate (1.18) is

uniform over U , so that � is actually the global weak limit of the metrics 1
"
�" on p�1.U /.

In particular, � � 0 on p�1.U /, hence on Xı.
As for the extension property, it is proved in [28] that �" extends canonically to the

whole X as a positive current in ¹"!º. This means that given any small neighborhood U
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of a point x 2 X X Xı, one has supU\Xı  " < C1. In other words,  " extends to an
!-psh function on X . Now, let us fix U as above. The family . z "/">0 of !-psh functions
on U defined by

z " WD  " � sup
U

 "

is relatively compact. In particular, one can find a sequence "k! 0 and an !-psh function
z on U such that z "k ! z a.e. in U . Moreover, we know that  "k D z "k C supU  "k
converges to the !-psh function ' a.e. in U \ Xı. This implies that supU  "k converges
as k ! C1. By the Hartogs lemma, this implies that supU\Xı ' < C1, which was to
be proved.

1.4. Proof of Theorem 1.2

We will proceed in a few steps, roughly as follows.

�We start by approximating � by smoothing the volume element. Let �ı be the resulting
C1 form. Then we have limı �ı D � in the weak sense.

� We next analyze the behavior of the geodesic curvature of �ı . The main tools are the
Laplace equation satisfied by this quantity [45], and the C2 estimates for conic Monge–
Ampère equations [29]. As a consequence, we first show that we can extract a limit of
the horizontal lift vı (corresponding to �ı ) which is holomorphic on the fibers of p.
Afterwards we show that the geodesic curvature of �ı converges (on X X Supp.B/) to
a constant as ı ! 0. Finally, we infer that vı converges to v� uniformly on the comple-
ment of the divisor B .

� After completing the previous steps, we show that v� is in fact holomorphic on the total
space X by using a few arguments borrowed from [3].

� Finally, we show that v� extends across the singular locus of p provided that X is
compact and p is smooth in codimension 1.

1.4.1. Approximation. This is a fairly standard and widely used procedure, so we will be
very brief.

By hypothesis, we have B D
P
ajBj where aj 2 .0; 1/ and

S
Bj has simple normal

crossings. We consider a smooth metric e��j on the bundle associated to Bj ; it induces
a smooth metric e��B WD e�

P
aj�j on the Q-line bundle associated to B . For any ı � 0

we define the quantity Cı;y by

e�Cı;y D

Z
Xy

.�y ^�y/
1=mQ

j .jfj j
2 C ı2e�j /aj

:

Here� is a section of Fmj� whose norm is 1 at each point, and fj is a local holomorphic
function cutting out Bj . The expression

Q
j .jfj j

2 C ı2e�j /�aj is then a globally defined
smooth metric on the Q-line bundle associated to B . Finally, we let sj be the canonical
section of OX .Bj /, and we will denote by jsj j2 the squared norm of sj with respect
to e��j .
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Let us further define the smooth .1; 1/-form

�ı D ! C dd
cuı (1.21)

on Xı such that uı jXy is a solution of8<: .! C dd
cuı/

n D eCı;y
.�y^�y/

1=mQ
j .jfj j

2Cı2e
�j /

aj
;R

Xy
uı

.�y^�y/
1=mQ

j .jfj j
2Cı2e

�j /
aj
D 0:

(1.22)

By the family version of Kołodziej’s estimates [25], one can easily see that for any rel-
atively compact subset U b Y ı, there exists a constant C > 0 independent of ı 2 .0; 1/
such that

sup
y2U

kuıkL1.Xy/ � C: (1.23)

As a consequence, we get the following easy result (see (1.4) for the definition of � and ').

Lemma 1.5. When ı approaches zero, �ı converges weakly to � on Xı. More precisely,
uı ! ' in L1loc.X

ı/.

Proof. The convergence uı ! ' in L1loc.Xy/ follows from Kołodziej’s stability theorem
[37, Thm. 4.1] (one even gets uniform convergence). The convergence on the total space
then follows from Lebesgue’s dominated convergence theorem coupled with (1.23).

1.4.2. Uniformity properties of .�ı/ı>0. In this subsection we will only consider the
restriction of our initial family of manifolds above a disk in the complex plane

p W X ! � (1.24)

where we recall that � � Y ı is generic and X D p�1.�/.
The coordinate on� will be denoted by t . We recall that the geodesic curvature of the

form �ı is the function defined by the equality

�nC1
ı
D c.�ı/�

n
ı ^
p
�1 dt ^ dt: (1.25)

If vı is the horizontal lift of @
@t

with respect to �ı , then it is easy to verify that

c.�ı/ D hvı ; vıi�ı : (1.26)

For each ı > 0, the form �ı induces a metric hı on the relative canonical bundleKX=� as
follows. Let z1; : : : ; zn; znC1 be a coordinate system defined on the set W � X. Recall
that t is a coordinate on �. This data induces in particular a trivialization of KX=�, with
respect to which the weight of hı is given as follows:

e‰ı.z;t/dz1 ^ � � � ^ dznC1 D �
n
ı ^
p
�1 dt ^ dt: (1.27)

The curvature of .KX=�; hı/ is the Hessian of the weight,

‚ı.KX=�/jW D dd
c‰ı : (1.28)

We have the following result, relating the various quantities defined above.
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Lemma 1.6. Let �00
ı

be the Laplace operator corresponding to the metric �ı jXt . Then

��00ı .c.�ı// D j
N@vı j

2
�‚ı.KX=�/.vı ; vı/: (1.29)

We will not prove Lemma 1.6 in detail because this type of result appears in many
articles ([45] or [41]). The main steps are as follows: we have ‰ı D log det.g˛ˇ / where
we denote g˛ˇ WD �ı;˛ Ň and a few simple computations show that the Hessian of ‰ı
evaluated in the vı -direction equals

N@ log det.g˛ˇ /.vı ; vı/ D g
˛ˇgtt ;˛ˇ � g

˛
gıˇg
ı;tg˛ˇ;t

� g˛ˇg˛ˇ;
tg

�gt� � g

˛ˇg˛ˇ;t
g
�
g�t

C g˛ˇg˛ˇ;
�g

�g��gt�g�t : (1.30)

On the right hand side we recognize the beginning of �00
ı
.c.�ı// (cf. the 1st term), and in

the end this gives (1.29). Again, we refer to [21, pp. 18–19] for a detailed account.

Remark 1.7. Equation (1.29) can be seen as the analogue of the usual C2 estimates in
“normal directions”. By this we mean the following: the C2 estimates are derived by eval-
uating the Laplacian of the (log of the) sum of the eigenvalues of the solution metric with
respect to the reference metric. Vaguely speaking, in (1.29) we compute the Laplacian of
the normal eigenvalue.

The following result is an important step towards the proof of Theorem 1.2.

Proposition 1.8. Let t 2� be fixed. For any sequence ıj ! 0, there exists a holomorphic
vector field w on Xt X Supp.B/ such that, up to extracting a subsequence, the sequence
.vıj jXt /j�0 converges locally smoothly outside Supp.B/ to the vector field w.

Remark 1.9. At this point, it is not obvious that w is independent of the sequence ıj and
that it should coincide with the lift v of @

@t
with respect to �jXıXSupp.B/.

Before giving the proof of Proposition 1.8 we collect a few results concerning the
family .�ı/ı>0 of forms, taken from [29] and [28].

(a) It follows from [29, §5.2] that �ı jXy has “uniform regularized conic singularities”
in the sense that if on a small coordinate open set � � X, the divisor B is given be
BD

Pr
1 ajBj whereBj is defined by ¹zj D 0º, then there is a constantC independent

of ı such that for any y 2 U , we have

C�1
� rX
kD1

p
�1 dzk ^ dzk

.jzkj2 C ı2/ak
C

X
k�rC1

p
�1 dzk ^ dzk

�
� �ı jXy\� � C

� rX
kD1

p
�1 dzk ^ dzk

.jzkj2 C ı2/ak
C

X
k�rC1

p
�1 dzk ^ dzk

�
: (1.31)
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(b) The estimates [28, (3.13), Prop. 4.1&4.2] go through for uı , that is, for any integer
k � 0, there exists Ck > 0 independent of ı 2 .0; 1/ such that

sup
t2�

k@tuıkCk.�\Xt / � Ck (1.32)

and there exists a constant C > 0 such that the following global estimate holds:

sup
t2�

Z
Xt

jvı j
2
!�

n
ı � C: (1.33)

One also gets

lim
ı!0

sup
t2�

Z
Xt\

S
¹jsj j

2<ıº

jvı j
2
!�

n
ı D 0: (1.34)

Again, we will not reproduce the arguments for (1.32)–(1.34) here, but let us comment e.g.
on (1.33) for the comfort of the reader. The main observation is that in local coordinates
this amounts to obtaining a bound of jrı.@tuı/j2 with respect to the volume element
�n
ı

on Xt . Here j � j2 is measured with respect to the reference metric !, and rı is the
gradient corresponding to �ı . By (1.31) this is smaller than jrı.@tuı/j2ı up to a uniform
constant. This new quantity is controlled by taking the derivative of the Monge–Ampère
equation satisfied by �ı in normal directions and integration by parts. Of course, the real
proof is much more involved and we refer to loc. cit. for the details.

We see immediately that (1.33)–(1.34) imply the next statement.

Lemma 1.10. One has

lim
ı!0

sup
t2�

Z
Xt

�X
j

ı2

jsj j2 C ı2

�
jvı j

2
!�

n
ı D 0:

The proof of Lemma 1.10 is very elementary and we skip it.

Proof of Proposition 1.8. Recall that in local coordinates,

vı D
@

@t
�

X
˛;ˇ

�
Ň˛

ı
�ı;t Ň

@

@z˛
:

By (1.32), the family .vı jXt /ı>0 is relatively compact in the C1loc.Xt X Supp.B// topo-
logy. Let ıj be a sequence converging to zero such that .vıj jXt /j�0 converges locally
smoothly outside Supp.B/ to a vector field w.

Now, the geodesic curvature c.�ı/ of �ı satisfies

���ıc.�ı/ D k
N@vık

2
�‚ı.KX=�/.vı ; Nvı/ (1.35)

by Lemma 1.6. In our setting (see (1.21) and the definition of �ı ) the curvature term in
(1.35) becomes

@2Cı.t/

@t@t
�

X
j

aj ı
2

p
�1 h@sj ; @sj i.vı ; Nvı/

.jsj j2 C ı2/2
C

X
aj ı

2‚j .vı ; Nvı/

jsj j2 C ı2
(1.36)
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where‚j is the curvature of the hermitian line bundle .OX .Bj /; e��j /. Integrating (1.35)
against �n

ı
yields

lim
ı!0

sup
t2�

�Z
Xt

kN@vık
2�nı C

X
j

aj

Z
Xt

ı2
p
�1 h@sj ; @sj i.vı ; Nvı/

.jsj j2 C ı2/2
�nı

�
D lim
ı!0

sup
t2�

@2Cı.t/

@t@t
:

(1.37)
Indeed, thanks to Lemma 1.10 the third term in (1.36) vanishes as ı ! 0.

We next show that

lim
ı!0

sup
t2�

@2Cı.t/

@t@t
D 0I (1.38)

this will end the proof of Proposition 1.8. Recall that

Cı.t/ D � log
Z
Xt

.�y ^�y/
1=mQ

j .jfj j
2 C ı2e�j /aj

(1.39)

and since the norm of � is 1 at each point of �, we have

Cı.t/ D � log
�
1 �

Z
Xt

Q
j .jfj j

2 C ı2e�j /aj �
Q
j jfj j

2ajQ
j jfj j

2aj
Q
j .jfj j

2 C ı2e�j /aj
.�y ^�y/

1=m

�
: (1.40)

With the same notations as in (1.31), the restriction of the function under the integral sign
in (1.40) to a coordinate set W˛ reads

F˛;ı.z; t/ WD

Q
j .jzj j

2 C ı2e�j /aj �
Q
j jzj j

2ajQ
j jzj j

2aj
Q
j .jzj j

2 C ı2e�j /aj
(1.41)

and then the integral in (1.40) becomesX
˛

Z
W˛\Xt

�˛F˛;ı.z; t/e
f˛!n (1.42)

where �˛ is a partition of unity and the f˛ are given smooth functions. If v is the horizontal
lift of @

@t
with respect to the reference metric !, then we have the usual formula

@

@t

X
˛

Z
Xt

�˛F˛;ı.z; t/e
f˛!n D

X
˛

Z
Xt

v.�˛F˛;ı.z; t/e
f˛ /!n: (1.43)

Formula (1.39) shows that @F˛;ı
@t

converges to zero as ı ! 0 because only the weights �j
depend on t and the coefficients aj are strictly smaller than 1. Indeed, we have

@F˛;ı

@t
D

X
j

ı2e�j @t�j

.jzj j2 C ı2e
�j /1Caj

ajQ
i¤j .jzi j

2 C ı2e�i /ai
(1.44)

and our claim follows sinceZ
.C;0/

ı2

.jzj2 C ı2/1Ca
d�.z/! 0 as ı ! 0 for any a < 1.
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For terms involving @F˛;ı
@zi

we get the same conclusion (i.e. they tend to zero) by using
integration by parts, as we explain next. The corresponding terms in (1.43) have the fol-
lowing shape: Z

Xt

@F˛;ı

@zi
.z/�˛.z/ d�.z/ (1.45)

where �˛ is a smooth function with compact support in W˛ \ Xt . The integral (1.45) is
equal to

�

Z
Xt

@�˛

@zi
.z/F˛;ı.z/ d�.z/; (1.46)

and this tends to zero by dominated convergence.
The same type of argument applies for the second order derivatives of Cı.t/; the claim

(1.38) follows.
As vıj ! w in the C1loc.Xt X Supp.B// topology as j ! C1, it follows from the

identity (1.37) above that wjXtXSupp.B/ is holomorphic.

The next proposition is also important in the analysis of the uniformity properties of
.vı/ı>0.

Proposition 1.11. Let t 2 � be fixed. Then

lim
ı!0

�
c.�ı/ �

Z
Xt

c.�ı/�
n
ı

�
D 0 (1.47)

on Xt X Supp.B/.

Proof. Let Gı W Xt �Xt ! R be the Green function of .Xt ; �ı/. Let x 2 Xt X Supp.B/;
by definition, one has

c.�ı/.x/ �

Z
Xt

c.�ı/�
n
ı D

Z
Xt

���ıc.�ı/�Gı.x; � /�
n
ı : (1.48)

Clearly, Vol.Xt ; �ı/ D
R
Xt
�n
ı
D
R
Xt
!n D 1 is independent of ı. Moreover, by (1.31),

there exists a constant C1 > 0 independent of ı such that diam.Xt ; �ı/ � C2. Therefore,
it follows from [47, A.2] that

G.x; y/ � �C2 (1.49)

for some C2 > 0 independent of ı. Now recall thatGı.x;y/D
R C1
0

Gı.x;y; s/ds where

Gı.x; y; s/ �

´
C3s
�ne�d�ı .x;y/=.5s/ if 0 < s < 1;

C4s
�n for any 0 < s < C1;

where d�ı is the geodesic distance induced by �ı on Xt . This follows respectively by
[23, Thm. 16] and [47, p. 139] – recall that the Ricci curvature of �ı is uniformly bounded
below thanks to (1.31). Integrating the above inequalities, one gets

G.x; y/ � C3 d�ı .x; y/
2�2n (1.50)
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for some uniform C3 > 0. Let Iı.x/ WD c.�ı/.x/ �
R
Xt
c.�ı/�

n
ı

, and let C4 > 0 be large
enough so that˙‚ı � C4!. One has successively

jIı.x/j D

ˇ̌̌̌Z
Xt

���ıc.�ı/ � .Gı.x; � /C C2/�
n
ı

ˇ̌̌̌
�

Z
Xt

�
kN@vık

2
C C4

�X
j

ı2

jsj j2 C ı2

�
jvı j

2
!

�
� .Gı.x; � /C C2/�

n
ı

C

Z
Xt

�X
j

aj ı
2

p
�1 h@sj ; @sj i.vı ; Nvı/

.jsj j2 C ı2/2

�
� .Gı.x; � /C C2/�

n
ı

� C5

Z
Xt

�
kN@vık

2
C

�X
j

ı2

jsj j2 C ı2

�
jvı j

2
!

�
� d�ı .x; � /

2�2n�nı

C

Z
Xt

�X
j

aj ı
2

p
�1 h@sj ; @sj i.vı ; Nvı/

.jsj j2 C ı2/2

�
� d�ı .x; � /

2�2n�nı

We claim that the right hand side converges to 0 when ı ! 0, uniformly in x belonging
to a fixed compact subset of Xt X Supp.B/. To see this, it is enough to check that for
any sequence ıj ! 0, one has limj!C1 Iıj .x/ D 0 uniformly in x, up to extracting a
subsequence. Thanks to Lemma 1.8, one can assume that vıj converges locally smoothly
to a holomorphic vector field w on Xt X Supp.B/. Let us pick " > 0.

By the estimates and observations above, one can find a small neighborhood Ux b
Xt X Supp.B/ and a constant C D C.x/ > 0 such that

(i) jvı j2! � C , kN@vıj k
2 � ", and jsj j2 � C�1 on Ux for any j ;

(ii)
R
Ux
d�ı .z; � /

2�2n�n
ı
� C ;

(iii) d�ı .z; w/
2�2n � C for any w … Ux .

The rest of the proof is easy: we split the integral into two pieces, on Ux and its comple-
ment.

� On the complement of Ux we use item (iii) so that we can replace the function
d�ı .x; � /

2�2n in the inequalities above by a constant independent of ı. The proof of Pro-
position 1.8 shows that the integral of the remaining terms tends to 0 as ı ! 0.

� On Ux we are “far” from the support of B . Combined with items (i) and (ii) above, this
finishes the proof of Proposition 1.11.

In fact, Proposition 1.11 shows that the limit (1.47) is uniform on compact sets con-
tained in the complement of the divisor B . We intend to couple this with the elliptic
equation satisfied by c.�ı/ in order to obtain bounds for the derivatives of this function in
fiber directions. To this end, we need the following statement.

Proposition 1.12. There exists a constant C > 0 independent of ı > 0 such thatˇ̌̌̌Z
Xt

c.�ı/�
n
ı

ˇ̌̌̌
� C:
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Proof. This statement can be seen as a by-product of the considerations in [28, (5.3) &
Prop. 5.4]. Therefore we will content ourselves with highlighting the main steps.

To start with, we recall that the normalization of uı isZ
Xt

uı
.�y ^�y/

1=mQ
j .jfj j

2 C ı2e�j /aj
D 0; (1.51)

and this can be rewritten as Z
Xt

uıe
Fı!nı D 0 (1.52)

where !ı is a metric with conic singularities on X , whose multiplicities along the com-
ponents of B are 1 > bj � max.aj ; 1=2/ (notations as in (1.31)). Note that Fı in (1.52)
has an explicit expression, being the log of �n

ı
=!n

ı
.

Let Vı be the horizontal lift of @
@t

with respect to !ı . By applying the @2

@t@t
operator in

(1.52) we obtainZ
Xt

Vı.V ı.uı//e
Fı!nı

D �

Z
Xt

Vı.uı/V ı.Fı/e
Fı!nı �

Z
Xt

V ı.uı/Vı.Fı/e
Fı!nı

�

Z
Xt

uıVı.V ı.Fı//e
Fı!nı �

Z
Xt

uı jVı.Fı/j
2eFı!nı : (1.53)

Now the point is that, up to terms for which we have a uniform estimate already, the
function Vı.V ı.uı// is “the same” as c.�ı/. Hence the absolute value of the left hand
side of (1.53) is equivalent to j

R
Xt
c.�ı/�

n
ı
j.

The terms on the right hand side of (1.53) are uniformly bounded, as proved in the
reference indicated at the beginning of the proof.

We can now prove that the vector field v� is holomorphic when restricted to the fibers
of p.

Corollary 1.13. Let t 2 � be fixed. The family .vı jXt /ı>0 converges locally smoothly
outside Supp.B/ to the lift v of @

@t
with respect to �jXıXSupp.B/. In particular, vjXtXSupp.B/

is holomorphic.

Proof. Combining Propositions 1.11 and 1.12, one sees that c.�ı/ is locally uniformly
bounded on Xt X Supp.B/. Given the elliptic equation satisfied by c.�ı/, this implies
local bounds of any order (in fiber directions).

Let W � X be a coordinate open subset of X such that W \ Supp.B/ D ;. In local
coordinates, this implies that

@2uı

@t@t
(1.54)

is bounded on W by a constant independent of ı. Since we already have at our disposal
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this type of bound for any other mixed second order derivative of uı , we infer that

j�00uı j � CW (1.55)

where �00 is the Laplace operator corresponding to the flat metric on W , and CW is a
constant independent of ı.

This implies that the global function uı admits C 1;˛ bounds locally on X X Supp.B/
for any ˛ < 1. By the Arzelà–Ascoli theorem and Lemma 1.5, this implies that uı con-
verges to ' in C 1;˛loc .X X Supp.B//. In particular, ' is differentiable in t outside Supp.B/,
and on this locus, @t't D lim@tuı in the C˛loc topology. Now, (1.32) shows that the conver-
gence actually takes place in C1loc.Xt X Supp.B//. In particular, outside Supp.B/, v�jXt
is the smooth limit of vı jXt as ı ! 0. Corollary 1.13 is now a consequence of Proposi-
tion 1.8.

Corollary 1.14. Let t 2 � be fixed. Then dc.�ı/jXt converges locally uniformly to 0 on
compact subsets of Xt X Supp.B/.

Proof. Let K b Xt X Supp.B/. By the proof of Corollary 1.13 and given (1.29), c.�ı/jK
is bounded in L1 norm, hence in any Ckloc norm on K. This implies that the family
dc.�ı/jK is relatively compact in the smooth topology, and the conclusion follows from
Proposition 1.11.

Lemma 1.15. The vector field v on X X Supp.B/ is holomorphic and extends across
Supp.B/.

Proof. This first assertion follows from a simple computation in [3, Lem. 2.5]. In our
setting this yields, on Xt X Supp.Bt /,

N@tvı
: �ı D N@c.�ı/ �

p
�1 �ı.N@vı ; Nvı/: (1.56)

Since on Xt X Supp.Bt /, �ı and vı converge locally smoothly to � and v respectively,
one deduces from Corollary 1.14 above that v is holomorphic (hence smooth) in t outside
Supp.B/.

For the second assertion, first observe that �ın ^
p
�1 dt ^ d Nt dominates a smooth

volume form dV on X. Therefore, it follows from (1.33) thatZ
p�1.U /XSupp.B/

jvı j
2
! dV � C:

An application of the Fatou lemma givesZ
p�1.U /XSupp.B/

jvj2! dV < C1:

By the Hartogs theorem, v extends to a holomorphic vector field across Supp.B/.

Lemma 1.16. The vector field v preserves �, hence its flow preserves B .
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Proof. On X X Supp.B/, we obtain

Lv� D 0 (1.57)

as a consequence of (1.56).
We next show that (1.57) extends in the sense of currents on X. Indeed, if so then we

claim that the flow of v produces biholomorphic maps Ft W X0 ! Xt such that F0 is the
identity and F �t !t D !0. It is for this equality that we need (1.57) to hold on X in the
sense of currents: it gives

d

dt
F �t !t D 0 (1.58)

in the weak sense on X, but this is enough to conclude that F �t !t D !0.
If one pulls back the Kähler–Einstein equation satisfied by !t by Ft , one gets

RicF �t !t D �F
�
t !t C F

�
t ŒBt �

where ŒBt �D
P
k ak ŒBt;k � and Bt;k are the irreducible components of Supp.B/. Because

F �t !t D !0, we obtain
F �t ŒBt � D ŒB0�:

In particular, the local flow of v preserves Supp.B/.
Let us now prove that v : � is zero on X. First, observe that � being a positive current,

its coefficients are locally defined complex measures. We claim that these measures put
no mass on Supp.B/.

Indeed, by e.g. [24, Prop. 1.14] the “mixed terms” of � are dominated by the trace of �
(the sum of the diagonal coefficients). Therefore everything boils down to showing that if
! is a given smooth Kähler form on X, then the positive measure � ^ !n does not charge
Supp.B/. But it is easy to produce a family of cut-off functions �ı such that �ı tends to the
characteristic function of Supp.B/, and kr!�ıkL2.!nC1/ and k�!�ıkL1.!nC1/ tend to 0.
We refer e.g. to [15, §9] for this classical construction. Finally, let � be a smooth positive
function with compact support on X. One can assume that on Supp.�/, �D dd c admits
a local (bounded) potential. Performing an integration by parts, one obtainsZ

X

��ı� ^ !
n
D

Z
X

��ı dd
c ^ !n

D

Z
X

� dd c�ı ^ !
n
C

Z
X

� dd c� ^ !n C

Z
X

 d� ^ d c�ı ^ !
n

� k k1

�
k�k1 � k�!�ıkL1 C k��k1

Z
Supp.�ı/

!nC1 C kr�kL2 � kr�ıkL2

�
;

which tends to 0.
In conclusion, the coefficients of � and hence those of v : � are complex measures

which do not charge B . As v : � D 0 outside Supp.B/, this identity extends across
Supp.B/, which is what we wanted to prove.
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If we sum up the results obtained so far, we can find near any y 2 Y ı a sufficiently
small polydisk U � Y ı with coordinates .t1; : : : ; tm/ centered around y as well as holo-
morphic vector fields v1; : : : ; vm on p�1.U / lifting @

@t1
; : : : ; @

@tm
which are tangent to

Supp.B/. Up to shrinking U , one can assume that the flow of the vector fields va WDP
aivi for a D .a1; : : : ; am/ 2 Dm exists at least up to time 1. Here D is the unit disk

in C. Then one has a holomorphic map f W Xy � Dm ! p�1.U / which sends .x; a/ to
�
a
1 .x/ where .�at /t is the flow of va. It is easy to see that f is an isomorphism onto its

image (see e.g. [39]).
To conclude the proof of Theorem 1.2, we need to show that v� extends across the

singular locus of p provided that X is compact and p is smooth in codimension 1. The
argument goes as follows.

End of the proof of Theorem 1.2. Let n be the relative dimension of p and letm WD dimY .
Let Y ı�Y be the smooth locus of p, andXı WDp�1.Y ı/. Let�2H 0.X;m.KX=Y CB//.
Let � D ! C dd c be the positive current constructed in Theorem 1.1, and pick
y 2 Y X Y ı.

Let x 2 X be a generic point of p�1.y/. Take a small neighborhood U of x, and set
D WD p.U /. As p is smooth in codimension 1, p is smooth on U . We can thus fix a
coordinate system .t ; z1; : : : ; zn/ in U such that t represents the horizontal directions and
@
@zi

is in the fiber direction. The notation t means that t D .t1; : : : ; tm/. There is a slight
abuse of notation: the coordinate of the base is also t . But as p is smooth on U , we just
mean that p�. @@ti / D

@
@ti

, where the former is on X and the latter on Y . Finally, we set

p�.
p
�1 dt ^ dt/ WD

Vm
kD1

p
�1 dtk ^ dtk .

Let vk be the holomorphic vector field on Xı \ p�1.D/ constructed in the proof of
Theorem 1.2, attached to @

@tk
, where 1 � k � m. We have

�n ^ p�.
p
�1 dt ^ dt/ D

.� ^�/1=m

jfB j2
^ p�.

p
�1 dt ^ dt/ on U: (1.59)

We know that �vk� is proportional to d Ntk , from which it follows that

�v1; Nv1 � � � �vm; Nvm.�
n
^ p�.

p
�1 dt ^ dt// D �n: (1.60)

Combining (1.59) and (1.60), one gets

�v1; Nv1 � � � �vm; Nvm

�
.� ^�/1=m

jfB j2
^ p�.

p
�1 dt ^ dt/

�
D �n:

One can find a Kähler form !X on X such that .�^�/
1=m

jfB j2
^ p�.

p
�1 dt ^ dt/ � !nCmX .

Since !mX ^ Œ�v1; Nv1 � � � �vm; Nvm.!
nCm
X /� D .

Q
k jvkj

2
!X
/ � !nCmX (maybe up to some con-

stant), we eventually getZ
U\Xı

� mY
kD1

jvkj
2
!X

�
� !nCmX �

Z
U\Xı

�n ^ !mX
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and the right hand side is finite, dominated by
R
X
h�n ^ !mX i � ¹!º

n � ¹!Xº
m by [9,

Prop. 1.6 & 1.20], because � is a closed, positive current on X in the cohomology
class ¹!º.

As jvkj2!X is uniformly bounded below by a positive constant on p�1.D/ \ Xı, one
deduces that vk 2 L2.p�1.D/ \ Xı; !X /. By the Riemann extension theorem the holo-
morphic vector fields vk extend to holomorphic vector fields on p�1.D/ whose flow
provides the expected trivialization. Indeed, the vk are tangent to B on Xı, hence they
are tangent to B everywhere by the assumptions in Theorem 1.2.

As an application of Theorem 1.2 we can prove Corollary B.

Proof of Corollary B. Our proof follows the same line of arguments as in [34].
To reach a contradiction, assume that Fm is not big. In any case, this bundle can be

endowed with a metric (used several times in the current subsection) with semipositive
curvature form denoted by � , and smooth on a Zariski open subset V � Y as B is gener-
ically transverse to the fibers. Then we claim that

� j
dim.Y /
V D 0 (1.61)

at each point of V . Indeed, if (1.61) is not true, then there exists a point y0 2 V such
that all the eigenvalues of �y0 are strictly positive. By the singular version of holomorphic
Morse inequalities [8, Cor. 3.3] this implies that Fm is big, and we have assumed that this
is not the case.

It follows that the kernel of � is non-trivial at each point of V . Since � jV is smooth
and closed, locally near each point of V its kernel defines a foliation whose leaves are
analytic sets (see [34] and the references therein). We choose a smooth holomorphic disk
� contained in such a leaf; the restriction of p to p�1.�/ WD X� is a submersion, and the
curvature of the direct image of the relative pluricanonical bundle is identically zero. By
Theorem 1.2 the vector v� is holomorphic. On the other hand, N@v� is a representative of
the image of the tangent vector @

@t
2 T� by the map (0.1). Since by hypothesis this map is

injective, we obtain a contradiction.

Proof of Corollary 1.3. Statement 1.8 is a direct consequence of [28] applied to the right
hand side of the equality

�p�.KY / D KX=Y C .�KX � B/C B: (1.62)

By hypothesis the class �c1.KX C B/ is in the closure of the Kähler cone of X and one
can use loc. cit.

Given Theorem 1.2, it is enough to prove that p is smooth in codimension 1. We use
the following elegant argument due to Q. Zhang [59]. Assume that there exists some codi-
mension 1 subvarietyD �X such that p�.D/ is of codimension at least 2. Let � W Y 0! Y

be the composition of the blow-up of the closed analytic set p�.D/ with a resolution of
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singularities of the resulting complex space. There exists an effective divisor EY 0 whose
support is contained in the � -exceptional locus such that

KY 0 � EY 0 :

Let p0 W X 0 ! Y 0 be a resolution of indeterminacies of X Ü Y 0. As c1.KX C B/ D 0,
we have

.p0/�.�KY 0/CEX 0 �Q KX 0=Y 0 C B
0;

where EX 0 is supported in the exceptional locus of � W X 0 ! X . By [28], KX 0=Y 0 C B 0

is pseudo-effective. Therefore the direct image ��..p0/�.�KY 0/ C EX 0/ D ��.�EY 0/

is pseudo-effective as well. However, by construction we have ��.EY 0/ � ŒD�, and we
obtain a contradiction.

We next prove that the map p is reduced in codimension 1. Let E � Y be a divisor.
Its p-inverse image can be written as

p�1.E/ D
X
i

ai ŒDi �

where Di � X are irreducible divisors. It is well known (see [20, Thm. 2.4] or [48]) that

KX=Y C B �
X
i

.ai � 1/C � ŒDi �;

where .ai � 1/C WD max ¹ai � 1; 0º.
Therefore we must have ai D 1 for every i , since by assumption KX=Y C B �Q 0.

Corollary 1.3 is proved.

1.5. Log abundance in the Kähler setting

In this section, we briefly explain how to prove the log abundance for klt Kähler pairs
.X; B/ such that B has snc support. This is based on the following lemma, which is a
consequence of [13] and [54, Cor. 1.4] (cf. also [16, Lem. 1.1] and [17] and the references
therein). For the reader’s convenience, we recall briefly the proof.1

After this paper was written, J. Wang [55, Thm. D] proved a slightly more general
case of Corollary 1.18 below using similar arguments.

Lemma 1.17. Let X be a compact Kähler manifold and let � D
P
aiBi be an effective

klt Q-divisor with simple normal crossing support. Assume that� �Q L1 for some L1 2
Pic.X/. For each integer k � 0, define Lk WD kL1 � bk�c. Then for each k, i and q, the
set

V
q
i .Lk/ D ¹� 2 Picı.X/I hq.X;KX C Lk C �/ � iº

is a finite union of translates of complex subtori of Picı.X/ by torsion points.

1We thank Botong Wang for telling us the following nice application of his result.



J. Cao, H. Guenancia, M. Păun 656

Proof. Let N be the minimal number such that N � ai 2 N for every i . Let � W zX ! X

be the N -cyclic cover of L1 along the canonical section of NL1. One can check that zX
has analytic quotient singularities [52, Lem. 2], hence rational singularities by e.g. [14,
Prop. 4.1]. This implies in turn that for any resolution � W yX ! zX , one has ��O yX .K yX /D
O zX .K zX / thanks to e.g. [35, Thm. 5.10] and Ri��O yX .K yX / D 0 for i > 0 by Grauert–
Riemenschneider vanishing. Moreover, one has ��O zX .K zX /DOX .KX /˝

LN�1
kD0 Lk and

Ri��O zX .K zX /D 0 for i > 0 since � is finite. Therefore, if we define f WD � ı� W yX!X ,
we have

H q. yX;K yX C f
��/ '

N�1M
kD0

H q.X;KX C Lk C �/ (1.63)

for any line bundle � on X .
Let g W Picı.X/! Picı. yX/ be the natural morphism induced by f and set

V
q
i .f / WD ¹� 2 Picı.X/I hq. yX;K yX C f

��/ � iº;

V
q
i WD ¹� 2 Picı. yX/I hq. yX;K yX C �/ � iº:

Then
V
q
i .f / D g

�1.V
q
i /: (1.64)

Thanks to [54], V qi is a finite union of torsion translates of complex subtori of Picı. yX/.
Together with (1.64), this shows that V qi .f / has the same structure. Thanks to (1.63), we
have

V
q
i .f / D

[
i0C���CiN�1Di

N�1\
kD0

V
q
ik
.Lk/; (1.65)

where V qi .Lk/ WD ¹� 2 Picı.X/I hq.X;KX CLk C �/� iº. As V qi .f / is the finite union
of torsion translates of complex subtori, we infer from (1.65) that V qi .Lk/ has the same
structure [16, Lem. 1.1].

Corollary 1.18. Let .X;�/ be a klt pair where X is compact Kähler and�D
P
aiBi is

an effective Q-divisor. If c1.KX C�/ D 0 2 H 1;1.X;Q/, then KX C� is Q-effective.

Proof. Let � W X 0 ! X be a log resolution of .X; �/. Since Picı.X 0/ is a torus and
c1.KX C�/ D 0, we can find L 2 Picı.X 0/ such that ��.KX C�/ �Q L. We can also
find a klt divisor �0 on X 0 with normal crossing support such that

KX 0 C�
0
�Q ��.KX C�/CE

for some Q-effective divisor E supported in the exceptional locus of � having no com-
mon component with �0. Let m � 1 be the smallest integer such that mE has integral
coefficients. In particular, m.KX 0 C �0/ is equivalent to some line bundle on X 0 by the
formula above. Using the identity

m.KX 0 C�
0/ D KX 0 C

�
�0 C

m � 1

m
¹Eº

�
„ ƒ‚ …

DW�C

C.m � 1/.LC bEc/
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we get a pair .X 0; �C/ such that

� �C has snc support and coefficients in .0; 1/ \Q,

� �C �M for some line bundle M on X 0,

� KX 0 C�
C C � is effective for some � 2 Picı.X 0/.

The first two properties are obvious, and the third follows from the identityKX 0 C�C�L
D mE � .m � 1/bEc. By applying Lemma 1.17 to KX 0 C�C, we can assume that � is
torsion, hence h0.X 0; r.KX 0 C�C//� 1 for some integer r � 1 that we can choose so that
m j r . By doing so, one can ensure that r.KX 0 C�C/ D ��.r.KX C�//C F for some
effective, integral �-exceptional divisor F . This implies that h0.X; r.KX C�//¤ 0. The
corollary is proved.

2. Transverse regularity of singular Monge–Ampère equations

In this section our main goal is to prove Theorem C. This will be achieved as a con-
sequence of a few intermediate results which we state in a general setting.

The main source of difficulties in the proof of Theorem C is the fact that the set of
basepoints of pluricanonical sections may be non-empty. The determinant of the met-
ric adapted to this geometric setting vanishes along the said basepoints so in particular
the Ricci curvature of this metric is not bounded from below. Unfortunately, under these
circumstances we were not able to obtain a complete analogue of the Sobolev and Poin-
caré inequalities (which are needed for the study of the regularity properties of Monge–
Ampère equations). We will therefore start this section with a weak version of these
results.

2.1. Weak Sobolev and Poincaré inequalities

In this section we will derive a version of the usual Poincaré and Sobolev type inequalities
which are needed in our context. As is well known, they play a crucial role in the regularity
questions for the Monge–Ampère equations. The set-up is as follows: Let .X; !/ be a
compact Kähler manifold of dimension n, and let

E WD
X
˛2I

e˛E˛; B WD
X
ˇ2J

bˇBˇ (2.1)

be two effective divisors on X without common components such that e˛ 2 QC,
bˇ 2 Œ0; 1Œ and the support of E C B is snc. We assume that the manifold X is covered
by a fixed family .�j /j of coordinate sets such that

�j \ Supp.E C B/ D .z1j � � � z
d
j D 0/ (2.2)

where .zj / are coordinates on �j .
Let �i ; si be the canonical sections of the hermitian bundle .O.Ei /; hi / and

.O.Bi /; gi / respectively, where hi and gi are non-singular reference metrics. For each
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positive " � 0 and each multi-index q we introduce the volume element

d�."/q WD

Q
˛2I ."

2 C j�˛j
2/q˛Q

ˇ2J ."
2 C jsˇ j2/

bˇ
dV! (2.3)

where dV! is the volume element corresponding to the reference metric !. Also, for each
positive real number p � 2 we define the multi-index qp whose components are

.1 � p=2/q˛: (2.4)

Then we have the following statements.

Proposition 2.1. There exists a constant C > 0 independent of " .but depending on
everything else/ such that for every smooth function f on X we have�Z

X

jf j
2np
2n�p d�."/q

� 2n�p
2np

� C

�Z
X

jr"f j
p d�."/qp C

Z
X

jf jp d�."/qp

�1=p
(2.5)

where 1� p < 2 is a real number, and the gradientr" corresponds to the "-regularization
of a fixed metric with conic singularities along the divisor

P
ˇ2J bˇBˇ .

As we can see, there is an important difference between Proposition 2.1 and the stand-
ard weighted Sobolev inequalities: the volume element on the left hand side of (2.5) is not
the same as the one on the right hand side.

In a similar vein, we have the next version of the Poincaré inequality.

Proposition 2.2. There exists a constant C > 0 as above such that for any smooth func-
tion f on X we haveZ

X

jf � VM �.f /j
p d�."/q � C

Z
X

jr"f j
p d�."/qp (2.6)

where p � 1 is a real number, and where we use the notation

VM �.f / WD

Z
X

f d�."/q : (2.7)

We first prove Proposition 2.1; the arguments to follow have been borrowed from the
book [31, Chap. 15].

Proof of Proposition 2.1. We first assume that B D 0 because the arguments for the gen-
eral case are practically identical.

A first remark is that it is enough to consider the local version of the statement, as fol-
lows. Let � be one of the domains covering .X;E/ as in (2.2); we denote by .z1; : : : ; zn/
the corresponding coordinate system. We will assume that

� D
Y
j

.jzj j < 1/ (2.8)

and that the function f has compact support in �.
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In terms of this local setting, the quantity to be evaluated becomesZ
�

jf j
2np
2n�p

dY
˛D1

."2 C jz˛j
2/q˛ d� (2.9)

(since bi D 0). Let D WD .jt j< 1/�C be the unit disk in the complex plane. We consider
the function

F".t/ D
."2 C jt j2/q=2

.1C "2/q=2
t (2.10)

where q > 0 is a real number and t 2 D. It turns out that F" is a diffeomorphism and the
square of the absolute value of its Jacobian dF" ^ dF " satisfies the inequality

C�1."2 C jt j2/q �
dF" ^ dF "

dt ^ dt
� C."2 C jt j2/q (2.11)

where C is a constant independent of " (it can be explicitly computed). Let G" be the
inverse of F". The implicit function theorem shows that

jdG".t/j �
C

."2 C jt j2/q=2
: (2.12)

By the change of variables formula we haveZ
�

jf .z/j
2np
2n�p

dY
˛D1

."2 C jz˛j
2/q˛ d� � C

Z
�

j zf .w/j
2np
2n�p d�.w/ (2.13)

where by definition

zf .w/ WD f .G".w1/; : : : ; G".wd /; wdC1; : : : ; wn/I (2.14)

it is a function defined on the “same” polydisk �, and it has compact support.
Therefore, by the usual version of the Sobolev inequality we obtain�Z

�

j zf .w/j
2np
2n�p d�.w/

� 2n�p
2n

� C

Z
�

jr zf .w/jp d�.w/: (2.15)

We use (2.14) together with the change of coordinates w˛ D F".z˛/ for ˛ D 1; : : : ; d to
infer thatZ

�

jr zf .w/jp d�.w/ � C

Z
�

jrf .z/jp
dY
˛D1

."2 C jz˛j
2/q˛.1�p=2/ d�: (2.16)

In conclusion we have�Z
�

jf .z/j
2np
2n�p

dY
˛D1

."2 C jz˛j
2/q˛ d�

� 2n�p
2n

� C

Z
�

jrf .z/jp
dY
˛D1

."2 C jz˛j
2/q˛.1�p=2/ d�; (2.17)
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that is, we have established the local version of the inequality of Proposition 2.1. The
general case follows by a partition of unity argument which we skip.

The same scheme of proof applies to Proposition 2.2: we will first show that the local
version of the statement holds by using a change of coordinates and the classical version of
the Poincaré inequality, and then we show that the global version (2.6) is true by applying
a well-chosen covering of X .

Proof of Proposition 2.1. The inequality (2.6) is easily seen to follow provided that we
are able to establish thatZ

X�X

jf .x/ � f .y/jp d�."/q .x/ d�
."/
q .y/ � C

Z
X

jrf jp d�."/qp (2.18)

for any 1� p � 2. This is very elementary and we will not provide any additional explan-
ation.

Assume that we have a covering

X D
[
i

Ui (2.19)

where each Ui is a coordinate open set. In order to obtain a bound as in (2.18), it would
be enough to analyze the quantitiesZ

Ui�Uj

jf .x/ � f .y/jp d�."/q .x/ d�
."/
q .y/ (2.20)

for each couple of indices i; j , which we do next.
To start with, let � be one of the coordinate sets Ui ; we will show that the following

local version of (2.18) holds true:Z
���

jf .x/ � f .y/jp d�."/q .x/ d�
."/
q .y/ � C

Z
�

jrf jp d�."/q˛ : (2.21)

We proceed as in the previous proof: we haveZ
���

jf .x/� f .y/jp d�."/q .x/ d�
."/
q .y/ � C

Z
���

j zf .z/� zf .w/jp d�.z;w/ (2.22)

by a change of coordinates as indicated in (2.10). Now we have

zf .z/ � zf .w/ D

Z 1

0

d

dt
zf ..1 � t /z C tw// dt (2.23)

and it follows thatZ
���

j zf .z/ � zf .w/jp d�.z; w/

� C

Z 1

0

dt

Z
���

jr zf ..1 � t /z C tw//jp d�.z; w/; (2.24)
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where the constant C > 0 in (2.24) depends on the diameter of � measured with respect
to the Euclidean metric.

Then we invoke the usual trick: we split the integral in two, where the first part isZ 1=2

0

dt

Z
���

jr zf ..1 � t /z C tw//jp d�.z; w/ � C

Z
�

jr zf .z//jp d�.z/ (2.25)

with C only depending on the volume of�, up to a numerical constant. We have a similar
estimate for the integral corresponding to the interval [1/2, 1], so all in allZ

���

j zf .z/ � zf .w/jp d�.z; w/ � C

Z
�

jr zf .z//jp d�.z/: (2.26)

Changing the coordinates back, the considerations in the proof of the weak Sobolev
inequality show that (2.21) is proved.

The general case follows by choosing a covering .Uj / of X such that the following
properties are satisfied:

(1) If Up \Uq ¤ ; and if at least one of them intersects the support of the divisorE, then
the union Up [Uq is contained in a coordinate set endowed with coordinates adapted
to .X;E/ (as at the beginning of this section).

(2) If Up \ Uq ¤ ; and if neither Up nor Uq intersects Supp.E/, then Up [ Uq is con-
tained in a coordinate ball disjoint from Supp.E/.

(3) The d�."/q -volume of the coordinate sets containingUp [Uq in (1) and (2) is bounded
from above and below by constants which are independent of ".

It is clear that such a cover exists, and we fix one denoted by ƒ for the rest of the proof.
Note that this cover is independent of ". Next, given any couple Ui ; Uj of sets belonging
to ƒ, we consider a collection

„ij D .�1; : : : ; �N / (2.27)

of elements of ƒ such that the following properties are satisfied:

(a) �1 D Ui and �N D Uj , and all of the intermediate �’s are elements of ƒ.

(b) For any r D 1; : : : ; N � 1 we have �r \�rC1 ¤ ;.

Again, there are many choices for such „ij , but we just pick one of them for each pair of
indices .i; j /.

We are now ready to analyze the quantities (2.20): for each couple .i; j / we consider
the collection „ij . Given

.x1; : : : ; xN / 2 �1 � � � � ��N (2.28)

we have
jf .x1/ � f .xN /j

˛
� C

X
q

jf .xq/ � f .xqC1/j
˛ (2.29)

for some numerical constant C > 0.
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We now consider the expressionZ
�1������N

jf .x1/ � f .xN /j
p d�."/q .x1/ : : : d�

."/
q .xN /I (2.30)

on the one hand, up to a constant this is simply (2.20). On the other hand, (2.30) is bounded
from above by

C
X
q

Z
�1������N

jf .xq/ � f .xqC1/j
p d�."/q .x1/ : : : d�

."/
q .xN / (2.31)

The last observation is that each term of the sum (2.31) is (2.21) – here we are using prop-
erties (1)–(3) and (a), (b) above – for which we have already shown the desired Poincaré
inequality. This ends the proof of the case B D 0.

We will not detail the proof of the general statement, because the arguments are
identical to the ones already given. The only change is that we work with geodesics with
respect to the model conic metric

p
�1

X
˛2J

dz˛ ^ dz˛

."2 C jz˛j2/b˛
C
p
�1

X
˛ 62J

dz˛ ^ dz˛ (2.32)

instead of straight lines .1� t /x C ty. The same proof works because the Ricci curvature
of the metric (2.32) is bounded from below by some constant independent of ". For a
complete treatment of this point we refer to [44, pp. 177–179].

2.2. Lie derivative of fiberwise Monge–Ampère equations

In this subsection we consider the restriction of our initial family p to a generic disk
contained in the base, together with a family of Monge–Ampère equations of its fibers.
Let D � Y be a one-dimensional germ of submanifold contained in a coordinate set of Y ,
and let X WD p�1.D/ (setting as in Theorem C).

The resulting map p W X ! D will be a proper submersion, provided that D is gen-
eric. We recall that the total space .X; !/ of p is a Kähler manifold. We denote by t a
coordinate on the unit disk D, and let

v D
@

@t
C v˛

@

@z˛
(2.33)

be the local expression of a smooth vector field which projects into @
@t

.
Another piece of data is the fiberwise Monge–Ampère equation

.! C dd c'/n D e�'Cf !n (2.34)

on each Xt . Here � � 0 is a real number, and f is a smooth function on X. We can write
this globally as follows:

.! C dd c'/n ^
p
�1 dt ^ dt D e�'Cf !n ^

p
�1 dt ^ dt (2.35)

on X, where the meaning of dd c and of ' is not the same as in (2.34), but. . .
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We take the Lie derivative Lv of (2.35) with respect to the vector field v, and then
restrict to a fiber Xt . The Lie derivative of the left hand side of (2.35) equals

nLv.! C dd
c'/ ^ .! C dd c'/n�1 ^

p
�1 dt ^ dt (2.36)

because Lv.
p
�1 dt ^ dt/ D 0, given the expression (2.33).

The form ! C dd c' is closed, hence by the Cartan formula we have

Lv.! C dd
c'/ D d.iv � .! C dd

c'// (2.37)

where iv � ! is the contraction of ! with respect to the vector field v. We next evaluate the
quantity

d.iv � dd
c'/ ^

p
�1 dt ^ dt (2.38)

by a pointwise computation. In local coordinates as in (2.33), we write

dd c' D 'tt
p
�1 dt ^ dt C 't˛

p
�1 dt ^ dz˛ C 'ˇt

p
�1 dzˇ ^ dt

C 'ˇ˛
p
�1 dzˇ ^ dz˛I (2.39)

in the expression above we are using the Einstein convention. Then we have

d.iv � dd
c'/ � .'tˇ˛ C '
ˇ˛v



C '
˛v




ˇ
/dzˇ ^ dz˛ (2.40)

where � means that we are only considering the terms of type .1; 1/ which do not con-
tain dt or its conjugate.

On the other hand, the coefficients of the Hessian of the function

v.'/ D 't C '
v

 (2.41)

in the fiber direction are

v.'/ˇ˛ D 'tˇ˛ C '
ˇ˛v


C '
˛v




ˇ
C '
ˇv



˛ C '
v




ˇ˛
: (2.42)

The first three terms in the expression (2.42) are identical to those in (2.40). The last two
terms can be expressed intrinsically as follows:

.'
ˇv


˛ C '
v




ˇ˛
/dzˇ ^ dz˛ D @.N@v � '/: (2.43)

Here N@v is a .0; 1/-form with values in TXt
and so N@v � ' is a .0; 1/-form on Xt .

On the other hand, if we denote by�' D Tr '
p
�1 N@ the Laplace operator correspond-

ing to the metric !' WD ! C dd c' on the fibers of p, then we can rewrite equation (2.37)
as

.�'v.'/ � Tr '@.N@v � '/C‰';v/!n' ^
p
�1 dt ^ dt: (2.44)

Here Tr ' is the trace with respect to !' on Xt , and we denote by ‰';v the function on X

such that

‰';v !
n
' ^
p
�1 dt ^ dt D Lv.!/ ^ !

n�1
' ^

p
�1 dt ^ dt on X. (2.45)
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As for the right hand side of (2.35), its Lie derivative reads

.�v.'/C v.f /C‰v/!
n
' ^
p
�1 dt ^ dt (2.46)

where (as before) the function ‰v is defined by the equality

‰v !
n
^
p
�1 dt ^ dt D Lv.!/ ^ !

n�1
^
p
�1 dt ^ dt: (2.47)

In conclusion, for each t 2 D we obtain

�'v.'/ � Tr '@.N@v � '/C‰';v D �v.'/C v.f /C‰v; (2.48)

which is the identity we intended to obtain in this subsection.

2.3. Regularity in transverse directions

In this section we will apply the results above in order to analyze the transverse regularity
of the solution of the equation

.! C dd c't /
n
D e�'Cf

Q
i2I j�i j

2eiQ
j2J jsj j

2bj
!n (2.49)

on Xt . Here � � 0 is a real, and the parameters ei ; bj are chosen as above. In the case
� D 0, the normalization we choose for the solution isZ

Xt

't!
n
't
D 0: (2.50)

The function f in (2.49) is supposed to be smooth on the total space X.
We consider the family of approximations of (2.49),

.! C dd c'"/
n
D e�'"Cf

Q
i2I ."

2 C j�i j
2/eiQ

j2J ."
2 C jsj j2/

bj
!n (2.51)

on Xt . By general results in MA theory, the function '" obtained by glueing the fiberwise
solutions of (2.51) is smooth. In the next subsections we will analyze the uniformity with
respect to " of several norms of '".

We recall the following important result whose origins can be found in [57].

Theorem 2.3. For any strictly smaller disk D0 � D there exists a constant C > 0 such
that

k'"kC1.Xt /
� C (2.52)

for all t 2 D0, where the C1 norm above is with respect to a fixed metric which is quasi-
isometric to (2.32).
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If bj D 0, this is a consequence of [57], stating that

! C dd c'" � C!jXt
(2.53)

(cf. also the refinement later obtained in [40]). The conic case is much more involved and
we refer to Theorem 2.7 and the few lines following that statement. Note that inequality
(2.53) is still true provided that we replace the right hand side with C!B;"jXt

, where !B;"
is the regularization of a conic metric corresponding to .X; B/ which is quasi-isometric
to (2.32).

During the rest of the current subsection we assume that �D 0, which is anyway what
we need for the proof of Theorem C. We will explain along the way how to adapt our
method to the case � > 0.

2.3.1. Mean value of the t -derivative. Let v be a smooth .1; 0/-vector field on X, which
has the following properties.

.i/ It is a lifting of @
@t

, i.e.

dp.v/ D
@

@t
(2.54)

(with the usual abuse of notation).

.ii/ We write v locally as in (2.33); then on �j we have

jv˛.zj /j � C jz
˛
j j (2.55)

(we use the notations/conventions as in (2.2)) for all ˛ D 1; : : : ; d . This means that v
is a smooth section of the logarithmic tangent space of .X;Ered C Bred/.

Such a vector field v is easy to construct by a partition of unity from local lifts of @
@t

.
We consider the coordinate sets �j and the zj adapted to the pair .X; B C E/. Then the
particular form of the transition implies (ii).

In this context we have the following statement.

Lemma 2.4. There exists a constant C > 0 independent of " such thatˇ̌̌̌Z
Xt

v.'"/!
n
'"

ˇ̌̌̌
� C for any t 2 D0. (2.56)

Proof. We consider a covering of X by coordinate sets .Ui ; .zi ; t //i where the last
coordinate t is given by the map p. The normalization condition (2.50) can be written asX
i

Z
kzik<1

�i .zi ; t /'".zi ; t /

Q
˛2I ."

2 C jz˛i j
2e�˛.zi ;t//e˛Q

ˇ2J ."
2 C jz

ˇ
i j
2e ˇ.zi ;t//bˇ

eFi .zi ;t/ d�.zi / D 0 (2.57)

where �i is a partition of unity, I \ J D ; and eFi .zi ;t/ d�.zi / is the volume element !n

restricted to Xt . We take the t -derivative of (2.57) and obtainX
i

Z
kzik<1

�i .zi ; t /
@'".zi ; t /

@t

Q
˛2I ."

2 C jz˛i j
2e�˛.zi ;t//e˛Q

ˇ2J ."
2 C jz

ˇ
i j
2e ˇ.zi ;t//bˇ

eFi .zi ;t/ d�.zi / D O.1/

(2.58)
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where O.1/ is uniform with respect to t; " by the C0 estimates for '". Now by the con-
struction of the vector v above the left hand side of (2.58) is the same as in (2.56), so the
lemma follows.

2.3.2. L2 bound of the t -derivative. We rewrite the relation corresponding to (2.48) in
our setting; during the computations below, we denote

� WD v.'"/ (2.59)

and then

�'"� � Tr '"@.N@v � '"/C‰'";v

D �� C v.f /C
X
j

ej v.log."2 C j�j j2// �
X
i

biv.log."2 C jsi j2//C‰v: (2.60)

This equality will be used in order to establish the following statement.

Proposition 2.5. There exists a constant C > 0 such thatZ
Xt

jr"� j
2
" !

n
'"
� C

�
1C

Z
Xt

j� j!n'"

�
(2.61)

for any " > 0. The operator r" is the gradient corresponding to the metric !'" .

Proof. In order to establish (2.61) we multiply (2.60) with � and then we integrate the
result on Xt against the measure !n'" . A few observations are in order.

� We have

sup
Xt

�
jv.f /j C

ˇ̌̌X
j

ej v.log."2 C j�j j2//
ˇ̌̌
C

ˇ̌̌X
i

biv.log."2 C jsi j2//
ˇ̌̌
C j‰vj

�
� C

(2.62)

uniformly with respect to ", by property (ii) of the vector field v and the definition
(2.47) of the function ‰v .

� Since the constant � is positive, the L2 norm of
p
� � will be on the left hand side

of (2.61), hence the presence of a strictly positive � would reinforce the inequality we
want to obtain.

The terms
Tr '"@.N@v � '"/; ‰'";v (2.63)

are somewhat troublesome, because we do not have an L1 bound for them. Nevertheless,
we recall that we only intend to establish an inequality between Lp norms, and we will
use integration by parts to deal with (2.63).

For the first term in (2.63) we argue as follows: integration by parts givesZ
Xt

�@.N@v � '"/ ^ !
n�1
'"
D �

Z
Xt

@� ^ N@v � '" ^ !
n�1
'"

(2.64)
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and then we use Cauchy–Schwarz: the L2 norm of N@� is what we are after, but on the
right hand side we have it squared. The L2 norm of N@v � '" is completely under control,
because it only involves the fiber-direction derivatives of '".

The second term is tamed in a similar manner. By definition of ‰'";v we haveZ
Xt

�‰'";v !
n
'"
D

Z
Xt

�Lv.!/ ^ !
n�1
'"

(2.65)

and by the Cartan formula this is equal toZ
Xt

�d.iv � !/ ^ !
n�1
'"
D

Z
Xt

�@.iv � !/ ^ !
n�1
'"

: (2.66)

By the Stokes formula the right hand side of (2.66) is equal toZ
Xt

@� ^ .iv � !/ ^ !
n�1
'"

(2.67)

and now things are getting much better, in the sense that the .0; 1/-form iv � ! is clearly
smooth, so its L2 norm with respect to !'" is dominated by C

R
Xt
! ^ !n�1'"

� C 0 and
we use the Cauchy–Schwarz inequality.

All in all, we infer the existence of two constants C1 and C2 such thatZ
Xt

jr"� j
2!n'" � C1

Z
Xt

j� j!n'" C C2

�Z
Xt

jr"� j
2!n'"

�1=2
(2.68)

for any " > 0. The inequality (2.61) follows.

Theorem 2.6. There exists N 2 ZC and a positive constant C such thatZ
Xt

j� j2 d�
."/
Ne � C for every " > 0. (2.69)

Proof. The arguments which will follow are absolutely standard, by combining the
Sobolev and Poincaré inequalities with (2.61). Prior to this, we recall that

!" � C!B;" (2.70)

on each Xt for some constant C which is uniform with respect to " and with respect
to t 2 D0. On the right hand side of (2.70) we have !B;" which stands for any metric
quasi-isometric to (2.32). In particular, for any function f we have

jrf j � C jr"f j" (2.71)

where the symbols j � j;r and j � j";r" correspond to the metrics !B;" and !" respectively.
Now, the Poincaré inequality of Proposition 2.2 applied for ˛ D 1 combined with

Lemma 2.4 gives Z
Xt

j� j d�."/e � C

�
1C

Z
Xt

jr� j d�
."/

e=2

�
: (2.72)
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On the other hand,Z
Xt

jr� j d�
."/

e=2
� C

Z
Xt

jr"� j" d�
."/

e=2
� C

�Z
Xt

jr"� j
2
" d�

."/
e

�1=2
� C C C

�Z
Xt

j� j d�."/e

�1=2
where we have used Proposition 2.5 for the last inequality. When combined with (2.72),
this implies Z

Xt

j� j d�."/e � C for any " > 0. (2.73)

We next define the sequence of rational numbers

p1 D 1; pkC1 WD
2npk

2n � pk
(2.74)

as well as the sequence

q1 D e; qkC1 WD
2

2 � pk
qk : (2.75)

One can actually find a closed formula pk D 2n
2n�kC1

holding for 1 � k � 2n. It also fol-
lows that pk < 2 as long as 1 � k � n, which is thus the range of integers for which
qkC1 is defined; one can also check the formula qkC1 D

.2n/Š.n�k/Š
nŠ.2n�k/Š

� q. In particular,

qnC1 D
.2n/Š

nŠ2
� q. This is the factor N in the statement of the proposition.

We observe that for k D 1; : : : ; n the components of qk are positive rational numbers,
greater than the respective components of q.

The Sobolev inequality of Proposition 2.1 gives�Z
Xt

j� jpkC1 d�."/qkC1

�1=pkC1
� C

�Z
X

jr"� j
pk
" d�."/qk C

Z
Xt

j� jpk d�."/qk

�1=pk
(2.76)

We iterate (2.67) for k D 1; : : : ; n, and Proposition 2.6 is proved by observing that the
following hold.

�We have
R

Xt
jr"� j

2
"!

n
'"
� C , by Proposition 2.5 combined with (2.73) and the fact that

the quotient of the two measures
!n'" ; d�

."/
e (2.77)

is uniformly bounded from above and below.

� For each k D 1; : : : ; n we haveZ
Xt

jr"� j
pk
" d�."/qk � C

�Z
Xt

jr"� j
2
" d�

."/
2
pk
qk

�pk=2
� C (2.78)

where the first inequality is simply Cauchy–Schwarz, and the second one is due to the fact
that

d�
."/
2
pk
qk
� C!n'" (2.79)

because qk
pk
�
q
2

. This last inequality follows by induction given that qkC1
pkC1

D
2n�pk
2n�npk

�
qk
pk

.
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2.4. A gradient estimate in the conic case

Theorem 2.7. Let .X; !/ be a compact Kähler manifold, and let !' WD ! C dd c' be a
Kähler metric satisfying

!n' D e
�'CF !n

for some F 2 C1.X/ and � 2 R. Assume that there exists C > 0 and smooth functions
‰;ˆ such that:

.i/ supX j'j � C ,

.ii/ supX j‰j � C and for any ı > 0, there exists Cı such that

.a/ dd c‰ � ı�1d‰ ^ d c‰ � Cı!,

.b/ �!‰ � ı�1jrF j! � Cı ,

.iii/ i‚!.TX / � �.C! C dd c‰/˝ Id,

.iv/ !' � C!.

Then there exists a constant A > 0 depending only on C and n such that jr'j! � C .

As a corollary of this result, the gradient estimate (2.52) in Theorem 2.3 holds.

Proof of Theorem 2.3. Let us rewrite (2.51) as

.!" C dd
cu"/

n
D e�u"Cf"

Y
i2I

."2 C j�i j
2/ei!n"

where the reference metric !" 2 ¹!º is an approximate conic metric along the divisor B ,
and u" differs from '" by a function whose L1 norm as well as those of its gradient and
complex Hessian are uniformly bounded with respect to !". Therefore it is sufficient to
establish (2.52) for u". We check successively that conditions (i)–(iv) are satisfied.

The bound (i) follows from Kołodziej’s estimate. It is straighforward when � D 0,
and when � > 0, it requires an additional step easily achieved with the Jensen inequality.
Next, we choose ‰" WD C.

P
i .j�i j

2 C "2/� C
P
j .jsj j

2 C "2/�/ for C large enough and
� > 0 small enough. Condition (ii) (a) can be checked independently for each summand
‰˛" of ‰" in which case it follows from the fact that ‰˛" is uniformly quasi-psh (hence
C!"-psh). Condition (ii) (b) is an easy computation combined with [29, §5.2]. Condition
(iii) is shown in [29, §4], while (iv) is the content of [29, Prop. 1]. To be more precise,
op. cit. assumes an upper and lower bound on f" C

P
ei log.j�i j2 C "2/ in order to get

a two-sided inequality for !' ; however, one only needs an upper bound for the previous
quantity if one only wishes to prove the one-sided inequality (iv).

Proof of Theorem 2.7. Let ˇ WD jr'j2 (computed with respect to !) and ˛ WD

log ˇ � 
 ı ' where 
 is a function to be specified later. Without loss of generality, one
can assume inf' D 0, and we set sup' DW C0. We use the local notation .gi Nj / for !. We
work at a point y 2 X where ˛ C 2‰ attains its maximum, and we choose a system of
geodesic coordinates for ! such that gi Nj .y/D ıi Nj , dgi Nj .y/D 0, and 'i Nj is diagonal. We
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write ui Nj D gi Nj C 'i Nj for the components of the metric !' . As p̨ D p̌=ˇ � 

0 ı ' 'p

and p̨.y/ D �2‰p.y/, one has

p̌

ˇ
.y/ D .
 0 ı '.y//'p.y/ � 2‰p.y/: (2.80)

Moreover, some computations show that

p̨ Np D
1

ˇ

�
Rj Nkp Np'j' Nk C 2Re

X
j

up Npj' Nj C
X
j

j'jpj
2
C '2p Np

�
�
j p̌j

2

ˇ2
� 2� � 
 00j'pj

2
� 
 0'p Np:

Therefore at y, one gets from (2.80) the following inequality:

p̨ Np �
1

ˇ

�
Rj Nkp Np'j' Nk C 2Re

X
j

up Npj' Nj C
X
j

j'jpj
2
C '2p Np

�
� 2� � 
 00j'pj

2
� 
 0'p Np � j


0'p � 2‰pj
2; (2.81)

so at y, the right hand side is non-positive.

Step 1. The curvature term. By assumption (iii), for all a; b we have Rj Nkp Nqaj Nakbp Nbq �
�.C jaj j

2 C ‰j Nkaj Nak/jbj
2 and by symmetry of the curvature tensor, we get

Rj Nkp Nqaj Nakbp
Nbq ��.C jbpj

2C‰p Nqbp Nbq/jaj
2. Applying that to aDr' and b the vector

with only the p-th component non-zero, equal to
p
up Np , we get

up NpRj Nkp Np'k' Nl � �.Cu
p Np
C up Np‰p Np/jr'j

2:

As a consequence,

1

ˇ

X
p;j;k

up NpRj Nkp Np'j' Nk � �C
X
p

up Np �
X
p

up Np‰p Np: (2.82)

Therefore, (2.81) becomes, at y 2 X ,

�0.˛ C‰/ � .
 0 � C/ tr!' ! C
1

ˇ

X
p

up Np
�
2Re

X
j

up Npj' Nj C
X
j

j'jpj
2
�

� 
 00jr!'j2!' � n

0
�

X
p

up Npj
 0'p � 2‰pj
2
� C: (2.83)

Step 2. The gradient term. The next term to analyze is

1

ˇ

X
p

up Np
�
2Re

X
j

up Npj' Nj

�
D
2

ˇ
Re
X
j

Fj' Nj (2.84)

by [7, §1.13], and this term is dominated (in norm) by 2jrF jˇ�1=2; moreover, at the point
y, ˇ can always be assumed to be larger than 1 so that our term is bigger than �2jrF j.
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In particular, at y one gets

�0.˛ C‰/ � .
 0 � C/ tr!' ! C
X
p

up Np
�
1

ˇ

X
j

j'jpj
2
� j
 0'p � 2‰pj

2

�
� 
 00jr!'j2!' � n


0
� 2jrF j � C (2.85)

Step 3. Using the second derivatives. Recall that p̌ D
P
j 'jp' Nj C 'p.up Np � 1/. At y,

p̌=ˇ � 

0'p D �2‰p , so that at this point,X

j

'jp' Nj D .

0ˇ C 1 � up Np/'p � 2ˇ‰p;

hence j
P
j 'jp' Nj j D ˇj.
 0'p � 2‰p/ C ˇ

�1.1 � up Np/'pj. By the Cauchy–Schwarz
inequality, j

P
j 'jp' Nj j

2 � ˇ
P
j j'jpj

2 and therefore

1

ˇ

X
j

j'jpj
2
� j
 0'p � 2‰pj

2
� j.
 0'p � 2‰p/C ˇ

�1.1 � up Np/'pj
2
� j
 0'p � 2‰pj

2

� �2ˇ�1j1 � up Npj� j

0'p � 2‰pj� j'pj

and by (iv), j1 � up Npj � C , so thatX
p

up Np
�
1

ˇ

X
j

j'jpj
2
� j
 0'p � 2‰pj

2

�
� �C.tr!' ! C jr‰j

2
!'
/:

Combining this last inequality with (2.85) we get, at y,

0 � �0.˛ C 2‰/

� .
 0 � C/ tr!' ! � 

00
jr
!'j2!' � n


0
C .�0‰ � C jr‰j2!' � 2jrF j!/ � C:

As ‰ is quasi-psh and !' � C!, we have �0‰ � C�1�‰ � C tr!' ! so by (ii) (b),
�0‰ � 4jrF j! �C.1C tr!' !/. Using (ii) (a), one ends up with the following inequality
at y:

.
 0 � C/ tr!' ! � 

00
jr
!'j2!' � n


0
� C:

Choosing 
.t/ D .C C 1/t � k'k�11 t
2 enables to conclude just as in [7].

Proof of Theorem C. It is a combination of our preceding considerations. The equation
which gives !KE fiberwise is of the same type as (2.49) (with � D 0). We conclude by
using Theorems 2.3 and 2.6.

3. Existence of non-semipositive relative Ricci-flat Kähler metrics

Let p WX! Y be a holomorphic fibration between projective manifolds of relative dimen-
sion n � 1. Let Y ı be the set of regular values, and let Xı WD p�1.Y ı/. We assume that
for y 2 Y ı, c1.KXy / D 0, where Xy WD p�1.y/. Let L be a pseudo-effective, p-ample
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Q-line bundle on X . One can write L D H C p�M for some ample line bundle H on X
and some line bundleM on Y . In particular, one can find a smooth .1; 1/-form ! 2 c1.L/

on X such that for any y 2 Y ı, !y WD !jXy is a Kähler form on Xy .
By Yau’s theorem, there exists for any y 2 Y ı a unique function 'y 2 C1.Xy/ such

that

.i/ �y WD !y C dd c'y is a Kähler form,

.ii/
R
Xy
'y!

n
y D 0,

.iii/ Ric �y D �dd c log!ny D 0.

Moreover, one can use the implicit function theorem to check that the dependence of 'y
on y is smooth, so that � WD !C dd c' is a well-defined smooth .1; 1/-form onXı which
is relatively Kähler. It is a folklore conjecture that the form � is semipositive on X , say
whenL is globally ample. Building on the results in the Appendix, we are able to disprove
this conjecture.

Theorem 3.1. There exists a projective fibration p W X ! Y as in the setting above and
an ample line bundle L on X such that the relative Ricci-flat metric � on Xı associated
with L is not semipositive.

Remark 3.2. The counterexample is actually pretty explicit: X is a K3 surface and p is
an elliptic fibration onto Y D P1.

Proof of Theorem 3.1. We proceed in three steps, arguing by contradiction. That is, we
assume that the folklore conjecture recalled above is true for any such fibration p WX!Y .

Step 1. Choice of the fibration. We consider a K3 surfaceX provided by Proposition A.3.
Its (singular) fibers are irreducible and reduced. Moreover, X admits a semiample line
bundle L which is p-ample and has numerical dimension 1. Indeed, L can be chosen as
the pull-back of OP1.1/ by another elliptic fibration q W X ! P1. Moreover, one knows
that p is not isotrivial, in the sense that two general fibersXy ,Xy0 of p are not isomorphic.

Step 2. Reduction to the semiample case. Let us pick an ample line bundle A on X , a
Kähler form !A 2 c1.A/, and consider the relative Ricci-flat form �" on Xı associated
with the pair .L C "A; ! C "!A/. The line bundle L" is ample, hence our assumption
implies that for any " > 0, the relative Ricci-flat metric satisfies

�" � 0 on Xı:

We are going to show that �" converges weakly on Xı to the current � WD �0. As a result,
this will force � to be semipositive on Xı.

Let us write �"D!C "!AC dd c'" where '" is normalized such that for each y 2 Y ı,Z
Xy

'".! C "!A/ D 0:

If C" is the constant (converging to 0) defined by

eC" D
ŒXy � � c1.L/

ŒXy � � c1.LC "A/



Variation of singular Kähler–Einstein metrics 673

for any y 2 Y ı, then

! C "!A C dd
c'" D e

C" � .! C dd c'/ on Xy :

The family .'"jXy /";y of potentials is normalized in a smooth way with respect to " and y,
and satisfies linear equations depending smoothly on the parameters as well. It is not
difficult to see that the standard estimates hold uniformly in " and y (as long as y varies
in compact subsets of Y ı), hence uniqueness imposes that '" ! ' smoothly in each Xy ,
locally uniformly in y 2 Y ı. In particular, '" converges weakly to ' in L1loc.X

ı/.

Step 3. End of proof. Thanks to Step 2, the relative Ricci-flat metric

� D ! C dd c'

is semipositive onXı. Moreover, it follows from Proposition A.1 that ' is bounded above
near X X Xı, hence � extends to a semipositive current � 2 c1.L/ on the whole X .
Let F � TX be the holomorphic foliation induced by the fibration q W X ! P1. As the
semipositive current � is in the class of c1.L/ D q�.c1.OP1.1/// and q has connected
fibers, it follows that there exists a positive current 
 2 c1.OP1.1// such that � D q�
 .
In particular, if X1 � X denotes the locus where q is smooth and if � WD Xı \X1, then
F j� is contained in Ker � on�. As both foliations are smooth and have rank 1 on�, one
has

F j� D Ker � j�: (3.1)

Next, let us pick a trivializing open set U ' � � Y ı, and let V 2 C1.Xı; T
1;0
X /

be the lift of @
@t

with respect to � over U (see e.g. [28, Sect. 1.1]). One knows that in a
trivializing chart .z; t/ defined on a subset of p�1.U / such that p.z; t/ D t , the vector
field V can be written as

V D
@

@t
C a.z; t/

@

@z

for some smooth function a. The function c WD �.V; V / satisfies the identity �2 D c� ^
p
�1 dt ^ d Nt , hence it vanishes identically on p�1.U /, that is,

V 2 C1.p�1.U /;Ker �/:

Thanks to (3.1), this shows that for any x 2 p�1.U / \ �, one has C� V.x/ D Fx . In
particular, there exists a non-vanishing, smooth function f on p�1.U /\� such that f V
is holomorphic on p�1.U / \�. Now in local coordinates, this means that

0 D N@.f V / D N@f ˝
@

@t
C N@.fa/˝

@

@z
;

hence N@f D 0. As a result, the smooth vector field V on p�1.U / is holomorphic on
p�1.U / \ �, hence on the whole p�1.U /. Therefore, its flow induces a local biholo-
morphism between any two near fibers. In particular, any two smooth fibers over U would
be isomorphic, which contradicts the non-isotriviality of p.
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Valentino Tosatti
Appendix A

Let .Xn; !X / be a compact Kähler manifold, Y a compact Riemann surface, and f W
X ! Y a surjective holomorphic map with connected fibers. Let Y 0 be the locus of
regular values for f , whose complement in Y is a finite set, and X0 D f �1.Y 0/, which
is Zariski open in X , so that f W X0 ! Y 0 is a proper holomorphic submersion. We will
call the fibers over points in Y X Y 0 the singular fibers of f .

Suppose that for every y 2 Y 0 we have a smooth function �y on the fiber Xy D
f �1.y/ which satisfies

!X jXy C
p
�1 N@�y � 0;

Z
Xy

�y.!X jXy /
n
D 0: (A.1)

Proposition A.1. If all the singular fibers of f are reduced and irreducible, then there is
a constant C such that

sup
Xy

�y � C for all y 2 Y 0.

Proof. Let !y D !X jXy , and gy be its Riemannian metric, where in the following we fix
any y 2 Y 0. Thanks to (A.1), on Xy we have

�gy�y � �nC 1: (A.2)

We have Vol.Xy ; gy/ D c, a constant independent of y, and the Sobolev constant
of .Xy ; gy/ has a uniform upper bound independent of y thanks to the Michael–
Simon Sobolev inequality [38] (see the details e.g. in [49, Lemma 3.2]). Furthermore,
diam.Xy ; gy/ � C , a constant independent of y, thanks to [49, Lemma 3.3].

So far we have not used the assumptions that all singular fibers are reduced and irredu-
cible. This is used now to prove that the Poincaré constant of .Xy ; gy/ also has a uniform
upper bound independent of y, as shown by Yoshikawa [58] (see also the much clearer
exposition in [43, Proposition 3.2]).

At this point we can use a classical argument of Cheng–Li [22], which is clearly
explained in [47, Chapter 3, Appendix A, pp. 137–140], to deduce that the Green function
Gy.x; x

0/ of .Xy ; gy/, normalized byZ
Xy

Gy.x; x
0/!y.x

0/ D 0;

satisfies the bound
Gy.x; x

0/ � �A (A.3)

for all y 2 Y 0 and all x; x0 2 Xy , with a uniform constant A. The point of that argument
is that A only depends on the constant in the Sobolev–Poincaré inequality, which here is
controled uniformly, and on the dimension and on the bounds for the volume and diameter,
which we have.
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We can now apply Green’s formula on Xy . Choose a point x 2 Xy such that �y.x/ D
supXy �y . Then, using the fact that �y has average zero, together with (A.2) and (A.3), we
obtain

�y.x/ D �

Z
Xy

�gy�y.x
0/Gy.x; x

0/!y.x
0/

D �

Z
Xy

�gy�y.x
0/.Gy.x; x

0/C A/!y.x
0/

� .n � 1/

Z
Xy

.Gy.x; x
0/C A/!y.x

0/

� .n � 1/AVol.Xy ; gy/:

We now specialize to the setting where X is a K3 surface, Y D P1 and f W X ! P1

is an elliptic fibration. We further assume that �y is chosen so that !X jXy C
p
�1 N@�y > 0

is the unique flat metric on Xy cohomologous to !X jXy (and we still assume that �y has
fiberwise average zero). In this case �y varies smoothly in y 2 Y 0, and so it defines a
smooth function � on X0. Thanks to (1.48), we conclude that

sup
X0

� � C:

This, together with the Grauert–Remmert extension theorem, immediately gives:

Corollary A.2. In this setting, if !X C
p
�1 N@� � 0 on X0, then this extends to a closed

positive current on all of X , in the class Œ!X �.

Lastly, we need the following examples:

Proposition A.3. There exists a complex projective K3 surface X which admits two
elliptic fibrations, one of which is non-isotrivial and has only reduced and irreducible
singular fibers.

Proof. Let X � P2 � P1 be a general hypersurface of degree .3; 2/. It is known that X
has Picard number 2 [51, Section 5.8]. The projection to the P1 factor gives an elliptic
fibration on X , which is clearly not isotrivial provided X is general.

To obtain the other fibration we compose the first fibration with the automorphism �

of X obtained as follows. Projecting X to the P2 factor shows that X is a double cover
of P2 ramified along a sextic, and the covering involution of this cover is the � that we
want.

Explicitly, if we let LD OP2.1/jX andM D OP1.1/jX , then the first elliptic fibration
is defined by jM j and the second by j3L �M j (since ��M D 3L �M ).

Lastly, we show that every elliptic fibration onX has only reduced and irreducible sin-
gular fibers. Given an elliptic fibration f WX! P1, let j W J ! P1 be its Jacobian family
[32, Section 11.4]. Then J is also an elliptic K3 surface, every fiber of j is isomorphic
to the corresponding fiber of f , J has the same Picard number as X , but j always has a
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section. We can then apply the Shioda–Tate formula [32, Corollary 11.3.4] to j to obtain

2 D �.J / D 2C
X
t2P1

.rt � 1/C rank MW.j /;

where rt is the number of irreducible components of the fiber Jt and MW.j / is the
Mordell–Weil group of j . In particular we conclude that rt D 1 for all t , i.e. all fibers
of j (and therefore all fibers of f ) are irreducible. Lastly, all fibers of f are reduced by
[32, Proposition 3.1.6 (iii)].
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