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Abstract. We study quantum particles in interaction with a force-carrying field, in the quasi-
classical limit. This limit is characterized by the field having a very large number of excitations
(it is therefore macroscopic), while the particles retain their quantum nature. We prove that the
interacting microscopic dynamics converges, in the quasi-classical limit, to an effective dynamics
where the field acts as a classical environment that drives the quantum particles.
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1. Introduction and main results

This paper is devoted to the study of the quasi-classical dynamics of a coupled quantum
system composed of finitely many non-relativistic particles interacting with a bosonic

Michele Correggi: Dipartimento di Matematica, Politecnico di Milano,
Piazza Leonardo da Vinci, 32, 20133 Milano, Italy; michele.correggi@gmail.com

Marco Falconi: Dipartimento di Matematica, Politecnico di Milano,
Piazza Leonardo da Vinci, 32, 20133 Milano, Italy; marco.falconi@polimi.it

Marco Olivieri: Fakultät für Mathematik, Karlsruher Institut für Technologie, 76128 Karlsruhe,
Germany; marco.olivieri@kit.edu

Mathematics Subject Classification (2020): Primary 81Q20, 81T10; Secondary 81V10, 81Q10

https://creativecommons.org/licenses/by/4.0/
mailto:michele.correggi@gmail.com
mailto:marco.falconi@polimi.it
mailto:marco.olivieri@kit.edu


M. Correggi, M. Falconi, M. Olivieri 732

field. The quasi-classical regime is concretely realized by taking a suitable partial semi-
classical limit, introduced by the authors in [16,17] to derive external potentials as effect-
ive interactions emerging from the particle-field coupling. The physical meaning of such
limit is discussed in §1.1.

Our analysis clarifies, both mathematically and physically, the role played by external
macroscopic classical force fields acting on quantum systems, and in which regime such
macroscopic fields provide an accurate description of the interaction between an open
quantum system and its environment (bosonic field).

In order to study the dynamical quasi-classical limit, we develop a mathematical
framework of infinite-dimensional quasi-classical analysis, in analogy with the semi-
classical scheme initially introduced in [6–9], and further discussed in [22, 23]. Such a
framework allows us to characterize the quasi-classical behavior of quantum states which
are not factorized, i.e., in which the degrees of freedom of the quantum particles and the
bosonic field are entangled. Although our mathematical scheme is more general, we are
going to focus our attention on three concrete models of interaction between particles and
force-carrying fields: the Nelson, Pauli–Fierz, and Fröhlich polaron models (see §1.4).
Note that partial semiclassical limits have already been studied, with somewhat differ-
ent purposes, in [10–12, 32], as well as in the context of adiabatic theories (see, e.g.,
[48, 53–55]).

The paper is organized as follows. In the rest of §1 we introduce the paper’s math-
ematical framework, and we formulate and motivate our results. In §2 we develop the
main technical tools for the subsequent analysis, which we call quasi-classical analysis,
in analogy with the more familiar semiclassical analysis. In fact, quasi-classical analysis
is semiclassical analysis on a bipartite system, where only one part is semiclassical, and
the other is quantum. In §3 we describe the relevant features of the microscopic Nelson
model, which we use as a reference to explain the strategy of the proof of Theorem 1.6
below. We then take the limit as "! 0 of the microscopic integral equation of motion
in §4, while in §5 we discuss the uniqueness of solutions to the quasi-classical equa-
tion obtained by performing the aforementioned limit. In §6 we put together the results
obtained in §§2 to 5, and prove Theorem 1.6 for the Nelson model, and thus consequently
also Corollary 1.14 and Theorem 1.16. In §7, we provide the technical modifications
needed to prove the aforementioned theorems for the Pauli–Fierz and polaron models.

1.1. Physical motivation

The quasi-classical description, combining a quantum system with a classical force field,
is often used in physics to model external macroscopic forces acting on a quantum particle
system. The best known examples are atoms and electrons in a classical electromag-
netic field (see, e.g., [15]), and particles subjected to external potentials, such as systems
of trapped atoms and of particles in optical lattices. Since these external force fields
are macroscopic, they are heuristically taken as classical, and inserted in the particles’
Hamiltonian in the same way their microscopic counterparts would appear. Note that in
the literature the terminology “quasi-classical” is often used as synonymous with semi-
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classical, while here we use it to stress that the classical limit we consider is not complete,
but applies only to a part (radiation field or environment) of the microscopic system.

In this paper we provide a detailed analysis of the quasi-classical dynamical scheme,
and discuss its validity as an approximation of a more fundamental microscopic model,
thus justifying and completing the above heuristic picture. The basic idea is the following:
in experiments, the external force fields are considered macroscopic because they live
on an energy scale much larger than the ones of the quantum particles under study: the
number of field’s excitations is much larger than the number of quantum particles in the
system. Let us denote by N the number of particles in the system. The force field is itself
a quantum object, and its excitations are created and annihilated by the interaction with
the particles. Let us denote the field’s number operator by

dG .1/ D

Z
dk a�.k/a.k/; (1.1)

where G stands for the second quantization functor. Therefore, the field is macroscopic
if the state ‰ of the coupled system particles+field is such that h‰jdG .1/j‰i � N . The
number of particlesN is fixed, and therefore of order 1. In other words, the quasi-classical
configurations are the ones for which

h‰jdG .1/j‰i � 1: (1.2)

We thence introduce a quasi-classical parameter ", playing the role of a semiclassical
parameter but only for the field’s degrees of freedom: when "! 0, the system becomes
quasi-classical. We quantify " as follows: a quasi-classical state ‰" is a state such that

h‰"jdG .1/j‰"i � 1=":

In other words, " is proportional to the inverse of the average number of excitations of the
force-carrying field. It follows that on quasi-classical states,

h‰"j"dG .1/j‰"i D

Z
dk h‰"j"a�.k/a.k/j‰"i

D

Z
dk h‰"ja�" .k/a".k/j‰"i � C; (1.3)

where a#
". � / WD

p
" a#. � /. The creation and annihilation operators a#

" satisfy "-dependent
semiclassical canonical commutation relations:

Œa".k/; a�" .k
0/� D "ı.k � k0/: (1.4)

It is therefore clear that a quasi-classical state is a state that behaves semiclassically only
with respect to the field’s degrees of freedom.

It remains to understand which microscopic dynamics would yield, in the quasi-
classical limit, an external potential acting on the particles and generated by the macro-
scopic field. In concrete applications, the macroscopic field is not affected by the quantum
system and acts as an environment. Therefore, the coupling should be such that the
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particles do not back-react on the environment, at least to leading order in " and for times
of order 1. In addition, we may think that the environment itself either evolves freely, or
remains constant in time. The absence of back-reaction is determined by the "-scaling of
the microscopic interaction, while the dynamical behavior of the environment is determ-
ined by the "-scaling of the field’s free part. It turns out that it is indeed possible to tune
the scaling of the interaction in such a way that, in the limit as "! 0, the latter is precisely
weak enough to make the system decouple only partially: the classical field obeys a linear,
unperturbed, evolution, while the quantum system’s dynamics is driven by the classical
field itself. The scaling yielding such a behavior is introduced in §1.4, and discussed in
§1.5. Let us stress that, in contrast to a complete semiclassical limit, in the quasi-classical
regime the aforementioned partial decoupling prevents any nonlinearity from appearing
in the effective dynamics of both the classical field and the quantum system.

In §1.5 we prove that the quasi-classical description can be rigorously obtained from
microscopic models of particle-field interaction in the limit "! 0 of a very large number
of average field’s excitations. Since such limit is a semiclassical limit on the field only,
the resulting structure of quasi-classical systems is that of a hybrid quantum/classical
probability theory. The quantum system is driven by the classical environment, whose
configuration is a classical probability with values in the quantum states for the particles.
This mathematical structure is described in detail in §1.3.

1.2. Notation

Since we are going to consider a tensor product Hilbert space of the form H ˝K", we
will distinguish between the full trace Tr. � / of operators on H˝K" and the partial traces
trH. � / and trK". � / with respect to H and K", respectively.

We adopt the following convenient notation: an operator acting only on the particle
space H is denoted by a calligraphic capital letter (e.g., T or T"), whereas an operator
on the full space H ˝ K" is identified by an italic capital letter (e.g., H"). Given an
operator T on H, we also conveniently denote its extension to H˝K", i.e. T D T ˝ 1,
by the italic counterpart T .

Given a Hilbert space X, we denote by Lp.X/, p 2 Œ1;1�, the p-th Schatten ideal
of B.X/, the space of bounded operators on X. More generally, the set L.X/ consists of
all linear operators on X. We also denote by L

p
C.X/ and BC.X/ the cones of positive

elements, and by L
p
C;1.X/ the set of positive elements of norm 1. The corresponding

norms are denoted by keeping track of the space, except for the case of the operator norm,
for which we use the short notation k � k WD k � kB.X/.

The space of finite measures on a measure space .X;†/ is denoted by M.X;†/, while
the subset of probability measures is P.X;†/. If X is a Hausdorff topological space and
† is the Borel � -algebra, we denote by M.X/ the finite Radon Borel measures on X , and
by P.X/ the subset of probability measures.

Throughout the paper, given a set S we denote by 1S its indicator function. The
symbol C also stands for a finite positive constant, whose value may vary from line to
line.
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1.3. Quasi-classical system

We consider a microscopic system consisting of two parts in interaction. The first one
contains objects whose microscopic nature remains relevant, while the second is a semi-
classical environment. For the sake of clarity, we focus on a specific class of systems: non-
relativistic quantum particles in interaction with a semiclassical bosonic force-carrying
field (electromagnetic, vibrational, etc.). It is not difficult to adapt the techniques to other
coupled systems as well, consisting of a quantum and a semiclassical part. We denote by
H the Hilbert space of the quantum part, and by K" the Hilbert space of the semiclassical
part, which carries an "-dependent, semiclassical, representation of the canonical com-
mutation relations as in (1.4). Therefore, the microscopic theory is set in the Hilbert space
H˝K".

We restrict our attention to Fock representations of the canonical commutation rela-
tions. Therefore, we assume that

K" D G".h/ D

1M
nD0

h˝sn;

the symmetric Fock space constructed over a separable Hilbert space h. The space h is
the space of classical fields.1 The canonical commutation relation (1.4) in K" reads, for
any z; w 2 h,

Œa".z/; a
�
" .w/� D "hzjwih;

and the quasi-classical limit corresponds to the limit as "! 0.
According to the notation above, a microscopic Fock-normal state is thus described

by a density matrix
�" 2 L1C;1.H˝K"/: (1.5)

The dynamics is generated by a self-adjoint and bounded-from-below Hamiltonian on
H˝K", which we denote by H". Given the unitary dynamics e�itH" , the evolved state
is

�".t/ WD e
�itH"�"e

itH" : (1.6)

Let us now turn our attention to the effective quasi-classical system in the limit as
"! 0. This is a hybrid quantum-classical system, in which the classical part acts as an
environment for the quantum part. In fact, as we will see, the classical field affects the
quantum particles, but the converse is not true: the interaction is not strong enough to
cause a back-reaction of the particles on the classical field.

The basic observables for the classical fields are the elements z 2 h, or, more precisely,
the real vectors of the form z C Nz. Scalar observables in a generalized sense are functions
z 7! f .z/ 2 C semiclassically called symbols. In addition to scalar or field observables,

1Strictly speaking, the space h should be the Hilbert completion of the set of test functions
for the classical fields, but in the following we are going to restrict our attention to classical fields
belonging to such space.
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there are more general observables involving both subsystems, which are thus represented
by operator-valued functions z 7! F .z/, where F .z/ is a linear operator on the particle
Hilbert space H. Note that one can easily associate an operator-valued function to a scalar
symbol as well, by simply setting F .z/D f .z/ �1, where 12B.H/ stands for the identity
operator.

A state of the classical field (environment) is a Borel probability measure � 2 P.h/,
while a state of the quantum particles is a density matrix  2 L1C;1.H/. Since in the quasi-
classical regime the environment affects the behavior of the quantum particle system, a
quasi-classical state is a state-valued probability measure

m 2 P.hIL1C.H//: (1.7)

A state-valued measure thus takes values in L1C.H/, but it can also be conveniently
described by its norm Radon–Nikodým decomposition (see Proposition 2.2): a pair
.�m; m.z// consisting of a scalar Borel (probability) measure �m, and a �m-integrable,
almost everywhere defined function m.z/ 2 L1C;1.H/ taking values in normalized dens-
ity matrices, i.e.,

dm.z/ D m.z/d�m.z/: (1.8)

In other words, a generic normalized quasi-classical state consists of a measure �m

describing the environment, and a function m.z/ describing how (almost) each config-
uration of the field affects the quantum particles’ state. The quasi-classical equivalent of
taking the partial trace with respect to the field’s degrees of freedom is integrating with
respect to the quasi-classical state-valued measure, i.e., for any operator-valued function
F .z/ 2 B.H/, Z

h

dm.z/F .z/ D

Z
h

d�m.z/ m.z/F .z/: (1.9)

Note that when integrating against the state-valued measure, it is a priori relevant to keep
the order as in the above expression, since F .z/ might not commute with m.z/.

The quasi-classical evolution also consists of two parts: an evolution of the envir-
onment’s probability measure �m, and one of the quantum system for (almost) every
configuration of the classical field. The evolution of the environment depends on the
choice of a scaling parameter for the field’s part in H", and we consider two cases: either
the environment is stationary, e.g., it is at equilibrium, or it evolves freely. Concretely, the
environment is evolved by a unitary, linear, flow e�it�! W h! h, t 2 R, of classical fields,
where ! is a positive self-adjoint operator on h (typically, a multiplication operator by
the dispersion relation of the field), and � 2 ¹0; 1º, depending on the chosen scaling. This
flow pushes forward the measure �m, yielding

�m;t WD .e
�it�!/?�m: (1.10)

The explicit action of the pushforward, as is well-known, is as follows: for all measurable
Borel sets B � h,

Œ.e�it�!/?��.B/ WD �.e
it�!B/; (1.11)
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where eit�!B stands for the preimage of B with respect to the map e�it�! . The quantum
part of the evolution is generated by a map from field configurations to two-parameter
groups of unitary operators z 7! .Ut;s.z//t;s2R, and it acts as

m;t;s.z/ WD Ut;s.z/m.z/U
�
t;s.z/: (1.12)

Let us remark that the pushforward of the measure does not affect the Radon–Nikodým
derivative m;t;s.z/, but only the integrated functions.

The quantum evolution is unitary for (almost) all configurations of the field. However,
a measurement on the classical system modifies the quantum state in a non-unitary, but
explicit, way. Let f .z/ be a scalar field’s observable and suppose it is �m-measurable.
For � 2 C, let us define the level set of f as

B� D ¹z 2 h j f .z/ D �º:

Then the conditional quantum state m;t;sjfD� 2 L1C;1.H/ at time t 2 R, describing the
state of the quantum system conditioned on an observed value � of the classical observ-
able f , is given by

m;t;sjfD� D

Z
h

d�m;�;t�s.z/ m;t .z/1B�.z/

D

Z
ei.t�s/�!B�

d�m;�.z/Ut;s.z/m.z/U
�
t;s.z/;

where .�m;�/�2C is the disintegration of �m with respect to the function f . The con-
ditional evolution .t; s/ 7! m;t;sjfD� is clearly non-unitary but it preserves positivity:
the dynamics is in general non-Markovian, unless either B� D ¹z�º or �m D ız0 , i.e.,
the group property might not be satisfied. One should not indeed expect that, for any
t; s; � > 0, there exists some two-parameter unitary group Wt;s 2 B.H/ such that

m;t;sjfD� D Wt;�m;�;sjfD�W
�
t;� :

The quantum state at time t 2 R, conditioned on the fact that f (or any other observ-
able) is observed, irrespective of its value, is denoted by m;t;s , is independent of f , and
is given by

m;t;s D

Z
C

d�
Z
ei.t�s/�!B�

d�m;�.z/Ut;s.z/m.z/U
�
t;s.z/

D

Z
h

d�m.z/Ut;s.z/m.z/U
�
t;s.z/:

Again the conditional evolution .t; s/ 7! m;t;s preserves both positivity and the trace,
but it is still non-Markovian in general. It would be interesting to study the states of
the environment, if any, not concentrated in a single field configuration, that make the
conditional evolution Markovian, and possibly non-unitary. Such measures would yield a
quasi-classical evolution on the open quantum system of Lindblad type (see e.g. [40,44]).
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1.4. The concrete models: Nelson, Pauli–Fierz, and polaron

Let us define more concretely the three models of interaction between non-relativistic
particles and bosonic force carrier fields that we consider throughout the paper: the Nel-
son, Pauli–Fierz, and polaron models.

1.4.1. Nelson model. The Nelson model describes quantum particles (e.g., nucleons),
interacting with a force-carrying scalar field (e.g., a meson field), and was the first to
be rigorously studied [46]. In this paper, we restrict our attention to the regularized Nel-
son model, where the interaction is smeared by an ultraviolet cutoff. We consider N ,
d -dimensional, non-relativistic, spinless particles, and therefore HDL2.RdN /. The clas-
sical fields are usually taken to be in hDL2.Rd /, but other choices may be possible, e.g.,
a cavity field, whose classical space would then be `2.Zd /. The Hamiltonian H" has the
form

H" D K0 C �."/dG".!/C

NX
jD1

Œa�" .�.xj //C a".�.xj //�;

where K0 D K0 ˝ 1, with K0 self-adjoint and bounded from below on H; ! is a pos-
itive operator on h and dG".!/ its second quantization, i.e., the Wick quantization of the
symbol

�.z/ WD hzj!jzihI (1.13)

and � 2 L1.Rd I h/ is the coupling factor.
If one naively replaces the quantum canonical variables a# with their classical coun-

terparts, i.e., z#, one can easily deduce that the quasi-classical effective potential for the
model above is given by the symbol z 7! V.z/, where (see also [16, §2.2])

V.z/ D

NX
jD1

2Re hzj�.xj /ih 2 B.H/: (1.14)

In most practical applications �.xI � / 2 h D L2.Rd / has the following explicit form:

�.xIk/ D �0.k/e�ik�x; �0 2 L
2.Rd /:

This leads to the effective potential V.z/ being the Fourier transform of an integrable
function, and thus continuous and vanishing at infinity. In order to obtain more singular
potentials, it is necessary to consider microscopic states whose measures are not concen-
trated as Radon measures in h [16, §2.5]. This would, however, make the analysis more
involved. We thus restrict our attention to states whose measures are indeed concentrated
in h (see Remark 1.11 for additional details).

1.4.2. Pauli–Fierz model. We consider the class of Pauli–Fierz models describing N
non-relativistic, spinless, extended d -dimensional charges moving in Rd , d � 2, inter-
acting with electromagnetic radiation in the Coulomb gauge. Adding spin, adopting a
different gauge, or constraining particles to an open subset of Rd would not affect the
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results, but make the analysis more involved. The particles’ Hilbert space is thus H D

L2.RdN /, while the classical fields are in h D L2.Rd ICd�1/. The Hamiltonian H" is
customarily written as

H" D

NX
jD1

.�irj C A".xj //2 CW.x1; : : : ; xN /C �."/dG".!/;

with
A".x/ D a�" .�.x//C a".�.x//:

In the above, W D W1 C W2 is a multiplicative potential describing the interaction
among charges, with W1 2 L

1
loc.R

dN I RC/ and W2.��C 1/
�1=2

2 B.H/; ! is the
field’s dispersion relation, a positive multiplication operator on h such that !�1 is also
a positive self-adjoint operator on h, e.g., !.k/ D jkj; and � D .�1; : : : ; �d / with
�` 2 L

1.Rd ID.!�1=2C !1=2// for all ` 2 ¹1; : : : ; dº and r ��.x/D 0, is the particles’
charge distribution. We denote by D.!�1=2 C !1=2/ � h the intersection of the self-
adjointness domains of !�1=2 and !1=2.

In this case, we have K0 D ��CW and the effective potential can be easily seen to
be [17, §1.2]

V.z/ D 4

NX
jD1

�
�i Re hzj�.xj /ih � rj C .Re hzj�.xj /ih/2

�
: (1.15)

Notice that the interaction term in H" is not the Wick quantization of the above symbol
V.z/, because H" is not normal ordered and an additional term is missing, i.e.,

"

NX
jD1

dX
`D1

k�`.xj /k2h D O."/;

but such a contribution vanishes as "! 0. Similarly to the Nelson model, the effective
interaction V.z/ describes the minimal coupling of the particles with a magnetic potential
that is continuous and vanishing at infinity.

1.4.3. Polaron. Fröhlich’s polaron [29] describes electrons moving in a quantum lattice
crystal. The N d -dimensional electrons are modeled as non-relativistic spinless particles,
and thus again H D L2.RdN /. For the phonon vibrational field, h D L2.Rd /. The
Hamiltonian H" is formally written as

H" D ��C a
�
" .�.xj //C a".�.xj //CW.x1; : : : ; xN /C �."/dG".1/;

with the particles’ potentialW satisfying the same assumptions as in §1.4.2 for the Pauli–
Fierz model. In addition,

�.xIk/ WD ˛
e�ik�x

jkj.d�1/=2
;
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with ˛ 2 R, is the polaron’s form factor and, for all x 2 Rd , it does not belong to h.
Hence, H" as written above is only a formal expression. However, it makes sense as
a closed and bounded-from-below quadratic form: one can find a parameter r 2 RC, a
splitting � D �r C �r with

�r .xIk/ WD 1¹jkj�rº.k/�.xIk/;

and some �r 2 L
1.Rd I hd / such that, as a quadratic form,

H" D ��C a
�
" .�r .xj //C a".�r .xj //C Œ�irj ; a".�r .xj // � a

�
" .�r .xj //�

CW.x1; : : : ; xN /C �."/dG".1/;

where the commutator between two vectors of operators involves a scalar product.
In the polaron model K0 D��CW , and the effective potential is given by [16, §2.3]

V.z/ D 2

NX
jD1

Re hzj�r .xj /ih C Œ�irj ; Imh�r .xj /jzih�:

Notice that one could formally resum the two terms above, obtaining the same expression
(1.14) as in the Nelson model. In the case of the polaron, the potential V.z/ is not neces-
sarily bounded, but still relatively form bounded with respect to ��. In fact, V.z/ can be
any function in PH .d�1/=2.Rd / \ L2loc.R

d /.
Let us also remark that in the polaron case, the quasi-classical limit is mathematic-

ally analogous to the strong coupling limit. Strongly coupled polarons have been widely
studied in the mathematical literature both from a dynamical and a variational point of
view (see, e.g., [25–28, 33, 34, 36, 41–43]). Compared to the available dynamical results
[25, 27, 33, 41], our quasi-classical approach has the advantage of being applicable to a
very general class of microscopic initial states. However, we have no control on the errors
and we are not able to derive the higher order corrections to the effective dynamics, i.e.,
the ones given by the Landau–Pekar equations.

1.5. Main results

Before stating our main results, we provide more technical details about the general struc-
ture of the models we are considering in this paper, by specifying some assumptions that
are sufficient to prove our main results, and that are satisfied in the above concrete models.
We do not strive for the optimal assumptions nor for the most general setting.

First of all, we remark that all the Hamiltonians introduced in §1.4 can be cast in the
form

H" DK0 ˝ 1C �."/ 1˝ OpWick
" .�/C OpWick

" .V/CO."/; (1.16)

where K0 is self-adjoint and bounded from below on H, and describes the particle’s
system when it is isolated; �."/ is a quasi-classical scaling factor such that

� D lim
"!0

"�."/ 2 ¹0; 1º; (1.17)
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and the two relevant scalings are �."/D 1, yielding an environment that remains constant
in time, and �."/D 1=", yielding an environment that evolves freely; � is the symbol given
by (1.13) for a densely defined, positive operator ! on h. Given a symbol z 7! F .z/, we
denote by OpWick

" .F / its Wick quantization, so that in particular OpWick
" .�/ D dG".!/.

The symbol z 7! V.z/ is operator-valued and polynomial, and it describes the interaction
between the particles and the environment. The possible concrete choices of V have been
presented in §1.4. Finally, O."/ is a bounded particle operator of order ".

To study the limit as "! 0 of the evolved states �".t/, we make the following very
general assumption on2 �".0/ D �":

9ı > 0; 9Cı < C1 W Tr
�
�".dG".1/C 1/

ı
�
� Cı ; (A1)

which is for instance satisfied if the state scales with " as in (1.3), or if it is formed by a
coherent superposition of vectors with a finite number of force carriers. This assumption
is sufficient to prove the existence of a subsequence ¹"nºn2N! 0 such that �"n converges
to a quasi-classical state m in the sense of Definition 1.1 below. For the polaron and Pauli–
Fierz models, an additional assumption is necessary to study the limit as "! 0 of �".t/,
due to the fact that such models are “more singular” than the Nelson model:

9C < C1 W Tr
�
�".K0 C dG".!//

�
� C: (A10)

Finally, in order to ensure that no loss of mass occurs along the weak limit, or equivalently,
that the quasi-classical limit point m is still normalized and km.h/kL1.H/ D 1, we also
need control of the particle component of the state �". We thus define the reduced density
matrix for the particles as

" WD trK" �" 2 L1C;1.H/; (1.18)

and impose the following alternative conditions on ":

9A > 0;A�1 2 L1.H/ W trH.A"/ � C < C1; (A2)

or
9 2 L1C.H/ W " � : (A20)

We are going to comment further on the above conditions in Remarks 1.9 and 1.10, but we
point out here that the second is stronger than the first, in the sense that (A20) implies (A2).
A simple but relevant case in which (A20) is trivially satisfied is given by product states
of the form  ˝ &" with  2 L1C;1.H/ independent of ". By contrast, the more general
assumption (A2) seems at first glance to be also more arbitrary, but it could be put in
relation to the physics of the model (see Remark 1.10).

Let us denote by y�" the non-commutative Fourier transform or generating map of a
state �" 2 L1C;1.H˝K"/, i.e.,

y�".�/ WD trK".�"W".�// 2 L1.H/ (1.19)

2For simplicity, we set the initial time s equal to 0.
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for any � 2 h, where W".�/ is the Weyl operator on K":

W".�/ WD e
i.a
�
" .�/Ca".�//: (1.20)

Analogously, to any state-valued measure m 2M.hIL1C.H// there corresponds the Four-
ier transform

ym.�/ WD

Z
h

d�m.z/ m.z/e
2i Re h�jzih 2 L1.H/ (1.21)

for � 2 h.

Definition 1.1 (Quasi-classical convergence). Let �" 2 L1C;1.H ˝ K"/ and m 2

M.hIL1C.H//. We say that

�"
qc
���!
"!0

m (1.22)

if y�".�/
w�
���!
"!0

ym.�/ pointwise for all � 2 h in the weak-� topology in L1.H/, i.e., when

testing against compact operators in L1.H/.

This definition is given in terms of the Fourier transforms in order to completely char-
acterize the limit quasi-classical measure m. On the other hand, from the physical point
of view, it is relevant to study the convergence of expectation values of quantum observ-
ables, which is discussed in §2 and specifically in Theorem 1.16. Note that in light of
Proposition 2.3, assumption (A1) guarantees that any such �" admits at least one limit
point in the sense of Definition 1.1.

In the following, we may omit the superscript qc in �"
qc
�! m if it is clear from the

context that we are considering the quasi-classical convergence of Definition 1.1 (and not
its stronger counterpart of Definition 1.4 below).

Remark 1.2 (Reduced density matrix). We point out that the reduced density matrix "
for the particle system given in (1.18) can be obtained by evaluating the non-commutative
Fourier transform (1.19) at � D 0, i.e.,

" WD trK" �" D y�".0/:

Hence, the convergence �"k �����!
k!C1

m can be easily seen to imply that

"k
w�

�����!
k!C1

Z
h

d�m.z/ m.z/; (1.23)

where we have denoted by w� the weak-� operator topology.

Remark 1.3 (Product states). As a special case, we observe that if �" is a physical product
state,3 i.e., there exist  2 L1C;1.H/ and &" 2 L1C;1.K"/ such that �" D  ˝ &", then

�"
qc
���!
"!0

m ” &" ���!
"!0

�m and m.z/ D : (1.24)

3Product states are the mathematical formulation of the fact that the two parts of the system are
independent. Since " characterizes only the behavior of the field, it is not physically relevant to put
an "-dependence on the particle part.
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The proper definition of convergence of scalar measures was given in [16], but it coincides
with Definition 1.1 when H D C.

A stronger notion of quasi-classical convergence can be given, lifting the weak-� con-
vergence of the Fourier transform in Definition 1.1 to weak convergence, i.e., by testing
with bounded operators B 2 B.H/. This leads to the following definition.

Definition 1.4 (Bounded quasi-classical convergence). Let �" 2 L1C;1.H˝K"/ and m 2

M.hIL1C.H//. Then we write

�"
bqc
���!
"!0

m (1.25)

if y�".�/
w
���!
"!0

ym.�/ pointwise for all � 2 h in the weak topology in L1.H/, i.e., when

testing against bounded operators in B.H/.

Remark 1.5 (Mass conservation). Bounded convergence ensures that no mass is lost in

the quasi-classical limit: in fact, if L1C;1.H˝K"/ 3 �"
bqc
��! m, then

trH

Z
h

dm.z/ D trH. Om.0// D lim
"!0

trH. O�".0// D 1; (1.26)

and therefore m 2 P.hI L1C.H//. By contrast, there are normalized states �" 2

L1C;1.H ˝ K"/ that converge to a quasi-classical measure with mass less than 1, and
possibly zero, thus occurring in a loss of mass phenomenon. For example, let us consider
a state similar to the one defined in Remark 1.3, where however  D " also depends on ",

" D jen."/ihen."/j;

¹enºn2N being an orthonormal basis in H, and n."/�!
"!0
C1. Then "˝ &"! 0, the zero

state-valued measure, and thus all the mass is lost in the limit.

Our main result (see Theorem 1.6 and Corollary 1.14 below) is that initial conver-
gence is propagated in time: for all t 2R, �"n.t/ converges to the quasi-classical state mt

defined by the norm Radon–Nikodým decomposition

dmt D Ut;0.z/m.z/U
�
t;0.z/d..e

�it�!/?�m/; (1.27)

where Ut;s.z/ is the above mentioned quasi-classical two-parameter unitary group of
evolution, which turns out to be weakly generated by the time-dependent Schrödinger
operator

Kt WDK0 C Vt .z/ (1.28)

with
Vt .z/ WD V.e�it�!z/: (1.29)

Notice again that the pushforward in (1.27) does not affect the Radon–Nikodým deriv-
ative Ut;0.z/m.z/U

�
t;0.z/. The interplay between the quasi-classical limit and the time



M. Correggi, M. Falconi, M. Olivieri 744

evolution can be summed up in the following commutative diagram involving the Radon–
Nikodým derivatives:

�" �".t/

m.z/d�m.z/ Ut;0.z/m.z/U
�
t;0.z/d..e

�it�!/?�m/

e�iH"t

"!0 "!0

(1.27)

(1.30)

where we have decomposed the initial state-valued measure as dm.z/ D m.z/d�m.z/

with m 2 L1C;1.H/ and �m 2M.h/, and the convergence is always along a given sub-
sequence ¹"nºn2N .

We now state the first result in detail. Recall that we say that m 2 M.hIL1C;1/ is a
probability measure, and thus m 2 P.hIL1C;1/ whenever km.h/kL1.H/ D 1.

Theorem 1.6 (Quasi-classical evolution in the Schrödinger picture). Let �."/ be such
that "�."/ ! � 2 ¹0; 1º as " ! 0, and let �" 2 L1C;1.H ˝ K"/ be a state satisfying
assumption (A1). Let also (A10) be satisfied for the polaron and Pauli–Fierz models. Then
there exist a subsequence ¹"nºn2N and a measure m 2M.hIL1C;1.H// such that

�"n
qc

�����!
n!C1

m; (1.31)

and if (1.31) holds, then for all t 2 R,

�"n.t/
qc

�����!
n!C1

mt ; (1.32)

where mt is given by (1.27).

Corollary 1.7 (Mass conservation). If in addition �" satisfies assumption (A2) or (A20),
then m 2 P.hIL1C;1.H// and thus mt 2 P.hIL1C;1.H// for all t 2 R. Furthermore, if
(A2) also holds for ".t/ for any t 2 Œ0; T /, T 2 RC, then for all t 2 Œ0; T /,

�"n.t/
bqc
�����!
n!C1

mt :

Remark 1.8 (Extraction of a subsequence). Let us point out that, as anticipated above, the
limit measure m at initial time, according to Definition 1.1, might depend on the choice of
the subsequence ¹"nºn2N ! 0. However, we stress that the convergence at time t stated
in (1.32) occurs along the same subsequence.

Remark 1.9 (Loss of mass). Theorem 1.6 holds irrespective of any possible loss of mass
for the initial-time convergence. The quasi-classical evolution preserves the mass, thus
proving that the same amount of mass is lost at any time. Conditions (A2) and (A20) ensure
that no mass is lost at initial time, and thus at any further time. Another sufficient condition
to ensure no loss of mass is the so-called (PI) condition, which will be discussed in detail
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in §1.6. However, as suggested by the fact that physical factorized states  ˝ &" do not
lose mass, this peculiar loss of mass phenomenon is due either to a “bad” correlation
between the field and particle subsystems, or to a somewhat artificial dependence of the
particle subsystem on the quasi-classical parameter in an uncorrelated state (see §1.6 for
a more detailed discussion).

Remark 1.10 (Assumptions (A2) and (A20)). The implications and the meaning of
assumptions (A2) and (A20) are a priori quite different. For instance, (A20) provides uni-
form control on the reduced density matrix " but has little physical motivation, unless the
two subsystems in the state are uncorrelated (i.e., the state has a tensor product structure).
Assumption (A2) on the other hand implies the stronger convergence of �" to m in the
bounded quasi-classical sense of Definition 1.4. Such a stronger convergence holds true
however only at initial time, and its propagation along the time evolution is typically very
difficult to prove. A notable exception is given by trapped particle systems, i.e., when K0

has compact resolvent and thus one can take A D .K0 C 1/
ı , for some ı > 0, in (A2).

Thus, in this case the assumption Tr.�".K0 C dG".!//
ı/ � C on the initial state is suffi-

cient to strengthen the convergence at any time (see, e.g., [3, Lemma 3.4] for the Nelson
model and §7.2 for the polaron and Pauli–Fierz models). As already remarked, the two
assumptions are in fact related, because (A20) implies (A2).4 However, due to the different
physical implications (particles’ trapping on the one hand, isolation of the subsystems on
the other), we preferred to keep the two separated.

Remark 1.11 (Rougher potentials). As already remarked in §1.4, states satisfying (A1)
yield effective potentials Vt that are “regular”. For example, no confining potential can
be obtained with such quasi-classical states. It is possible to obtain more general effective
potentials relaxing assumption (A1) to accommodate states whose limit are cylindrical
measures [23], but the analysis becomes more complicated. In the polaron model, for
coherent states, whose cylindrical measure is concentrated in a single “singular” point
(a suitable tempered distribution), the analysis has been carried out in [14] to obtain an
effective (time-dependent) point interaction.

Before proceeding further we discuss in some detail the scaling factor �."/ that
appears in front of the free energy of the field in the Hamiltonian H". Physically, one
should distinguish between two relevant situations: �."/D 1 and �."/D 1="; all the other

4The inference (A20))(A2) can be proved as follows. Since  is a positive trace class oper-
ator, it can be decomposed as  D

P
j2N j'j ih'j j, where .'j /j2N is an orthonormal basis of

H and �j � 0 are the singular values satisfying
P
j2N �j < C1. Therefore, there exists a non-

negative sequence .�j /j2N such that �j ! C1 and
P
j2N �j�j < C1. In fact, if there are

only a finite number of nonzero �j s, then the existence is trivial, while if the number of nonzero
�j s is infinite, one can set, for all k 2 N, Jk D min ¹J 2 N j

P
J�j �j < 2�kº, and �j D 1

for j < J0, and �j D 2k=2 for Jk � j < JkC1. Then, by construction, the inverse of the operator

A WD
P
j2N �j j'j ih'j j is compact and trH.A"/D trH.A

1=2
 "A

1=2
 /� trH.A

1=2
 A

1=2
 /DP

j2N �j�j < C1, so that " satisfies assumption (A2).
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possibilities are physically less relevant, and yield the same qualitative results, up to res-
caling of the parameters. Let us remark first, however, that despite the fact that the two
cases yield different evolutions for the classical field, the interaction is always too weak to
cause a back-reaction of the particles on the field when "! 0. Thus, the quasi-classical
field can indeed be seen as an environment.

Remark 1.12 (� D 0). When �."/DO."�ı/, ı < 1, the quasi-classical field remains con-
stant in time. In fact, in that case � D lim"!0 "�."/D 0, and therefore Ut;s.z/DUt�s.z/

is the strongly continuous group generated by the self-adjoint operator K0 C V.z/, with,
e.g., V.z/ D

PN
jD1 2Re h�.xj /jzih for the Nelson model. Also, the measure �t is con-

stant: �t D � for all t 2 R. Therefore, in the scaling determined by �."/ D O."�ı/ the
radiation field does not evolve. Let us remark that, in the case of the polaron, this is the
scaling equivalent, up to suitable rescalings, to the well-known strong coupling regime.

Remark 1.13 (� D 1). When � D 1, e.g., if �."/ D 1=", the quasi-classical radiation
field evolves in time in a non-trivial way, obeying a free field equation, and therefore the
effective evolution operator for the particles Ut;s.z/ has a time-dependent generator. For
the regularized Nelson model, such a free evolution is given by the Klein–Gordon-like
equation

.@2t C !
2.D//A D 0; (1.33)

where !.D/ is the pseudodifferential operator defined by the Fourier transform of the
function !; for the Pauli–Fierz model it is given by the free Maxwell equations in the
Coulomb gauge, and for the polaron by the equation .@2t C 1/A D 0. Here, for clarity,
we have written such equations in the usual form, which involves the real field A and its
time derivatives. Throughout the paper, however, we use the complex counterpart of that
real field, denoted by z, and which is given in terms of A, e.g., in the regularized Nelson
model, by

z D 1
2

�
!1=2.D/AC i!�1=2.D/@tA

�
;

Hence, the evolution equation for z becomes i@tz D !z.

A consequence of Theorem 1.6 is that, for any compact operator B 2 L1.H/, its
Heisenberg evolution satisfies

Tr.�"ne
itH"nBe�itH"n / �����!

n!C1

Z
h

d�m.z/ trHŒm.z/U
�
t;0.z/BUt;0.z/�: (1.34)

There is also a counterpart of the above statement for the particle degrees of freedom
alone: for any �" as in Theorem 1.6, the following weak-� convergence holds in L1.H/:

trK".e
�itH"n�"ne

itH"n /
w�

�����!
n!C1

Z
h

d�m.z/Ut;0.z/ m.z/U
�
t;0.z/; (1.35)

i.e., the particle state obtained by tracing out the field degrees of freedom evolves as
"! 0 into the right hand side of the above expression. When the state is a product state,
the above result can be made more explicit (see also Remark 1.3):
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Corollary 1.14 (Quasi-classical evolution of product states). Let &" 2 L1C;1.K"/ be a
field’s state such that for all  2 L1C;1.H/,  ˝ &" satisfies assumption (A1), and (A10)
for the polaron and Pauli–Fierz models, so that there exists � 2M.h/ such that

&"n �����!
n!C1

�: (1.36)

Then, for all B 2 L1.H/ and all t 2 R,

trK"n .&"ne
itH"nBe�itH"n /

w
�����!
n!C1

Z
h

U0;t .z/BUt;0.z/ d�.z/: (1.37)

Remark 1.15 (Bounded operators). It would obviously be more satisfactory to extend
the above result to bounded operators B 2 B.H/. However, this cannot be done in full
generality because the convergence in Definition 1.1 holds in the weak-� topology. As
explained in Remark 1.10 and §1.6, one can lift the convergence to the weak topology,
and thus extend the statement above to bounded observables, if an additional regularity
on the initial state is assumed and such a regularity can be propagated by the dynamics,
which can be done for example whenever the particle system is trapped.

The analogue of Corollary 1.14 for non-product states and more complicated observ-
ables, i.e., self-adjoint operators acting on the full Hilbert space, is more involved to state
and holds true only for a subclass of such operators. We indeed introduce a class of oper-
ators on H ˝K", consisting of polynomials with m creation and n annihilation normal
ordered operators, with arguments possibly depending on the particle’s positions: expli-
citly, we consider operators OpWick

"n
.F / obtained as the Wick quantization of symbols

F 2 Sn;m, i.e., of the form

F .z/ D

NX
jD1

hzj�1.xj /ih � � � hzj�`.xj /ihh�`C1.xj /jzih � � � h�`Cm.xj /jzih; (S`;m)

where �j 2 L1.Rd I h/, j D 1; : : : ; mC `.
To state the result, we also need to make more restrictive assumptions on the initial

state �":8̂̂<̂
:̂
9ı > 1

4
; 9Cı < C1 W Tr.�".d�".1/C 1/2ı/ � Cı ; Nelson model,

ı D 1; 9C < C1 W Tr.�"H 2
" / � C�."/

2; Pauli–Fierz model,

9ı 2 N�; 9Cı < C1 W Tr.�"H 2ı
" / � Cı�."/

2ı ; polaron.

(Aı )

Theorem 1.16 (Quasi-classical evolution in the Heisenberg picture). Let �" 2

L1C;1.H ˝ K"/ be a state satisfying assumption (Aı ), so that there exists m 2

M.hIL1C.H// such that

�"n
qc

�����!
n!C1

m: (1.38)
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Then, for all F 2 S`;m with .`Cm/=2 < 2ı, all t 2 R and all � ; T 2 B.H/ such that
either � or T is in L1.H/,

Tr.�"n.t/TOpWick
"n

.F /S/ �����!
n!C1

trH

�Z
h

dmt .z/ T F .z/�

�
D trH

�Z
h

d�m.z/Ut;0.z/m.z/U0;t .z/ T F .e�it�!z/�

�
: (1.39)

Remark 1.17 (Regularity assumptions for the Pauli–Fierz model). The constraint ı D 1
for the Pauli–Fierz model is due to some technical difficulties in propagating in time
higher order regularity of the number operator, due to the fact that the number operator
and the field’s kinetic term are not comparable in that case, since the field carriers may be
massless.

1.6. Semiclassical analysis and sketch of the proof

In this section we present a short sketch of the proof and discuss some of the key features
of semiclassical analysis for infinite-dimensional systems, which is the core tool of our
analysis. This discussion is meant to clarify the role of our assumptions and propose
alternative approaches.

One of the main points in our investigation is the convergence of a family of quantum
states as "! 0 to a quasi-classical Wigner measure in the sense of either Definition 1.1 or
Definition 1.4. The latter is clearly preferable but there are known obstructions. Indeed, in
infinite-dimensional semiclassical analysis with no additional degrees of freedom (which
we refer to as the scalar case), i.e., when the limit Wigner measure is a conventional scalar
measure, there can be two types of defects of convergence for a given family ¹�"º"2.0;1/
of normalized states:

� a loss of mass, as in the finite-dimensional case, i.e., the limit measure may not be a
probability measure and have a total mass strictly less than 1;

� a dimensional loss of compactness that is characteristic of the infinite-dimensional set-
ting (see [6, §7.4]), where the mass is preserved but the expectation values of operators
obtained as Wick quantizations of non-compact symbols do not converge to their limit
expressions.

These defects are prevented by formulating conditions that are both sufficient and reas-
onable to verify in a relevant class of concrete examples: the loss of mass is prevented
by imposing an "-uniformity condition on the expectation of some power of the number
operator, analogous to assumption (A1) given above (see also [6, §6.1]); loss of compact-
ness is prevented by the so-called (PI) sufficient condition [2, 8], which reads as follows:
for all k 2 N,

lim
"!0

Tr.dG".1/
k�"/ D

Z
d�.z/ kzk2k :

If the above condition holds, then the expectations of all Wick polynomial bounded sym-
bols converge.
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A key difference of our quasi-classical setting compared to the scalar case is that
assumption (A1) is not sufficient to ensure that no mass is lost in the limit: the correlation
with the H-degrees of freedom may cause a new type of mass defect, as exemplified by
the product state "˝ &" introduced above in Remark 1.5, which satisfies assumption (A1)
and converges to the state-valued measure 0 with no mass. Assumptions (A2) and (A20)
are both conditions on the H-degrees of freedom that are sufficient to prevent this quasi-
classical defect and whose usefulness has been discussed in Remark 1.10. Note, however,
that the defect of compactness mentioned above may also occur: it is indeed not difficult
to produce examples of states with no loss of mass but a defect of compactness, simply
tensoring any scalar example of such defect with an H-state that is independent of the
quasi-classical parameter ". In order to overcome the defect of compactness in the quasi-
classical limit, a straightforward analogue of the scalar (PI) condition can be formulated:

lim
"!0

Tr.dG".1/
k�"/ D

Z
h

d�m.z/ kzk
2k
h ; 80 � k � K; (PIK)

so that the scalar condition (PI) of [2, 8] corresponds here to condition (PI1). We allow
for a possibly finite index K for a motivation to be explained in detail below, related to
the propagation in time of the condition.

Restricting to states that satisfy condition (PIK), for suitable K 2 N�, allows one
to use some powerful tools of infinite-dimensional semiclassical analysis (see, e.g., [2,
Appendix B]) that make the study of quasi-classical dynamics less involved, and allow one
to obtain stronger results. In particular, the convergence in Theorem 1.6 can be lifted to
bounded quasi-classical convergence of Definition 1.4, and Theorem 1.16 holds for a more
general class of symbols. There are, however, also some drawbacks. The most relevant
one is that there are states of physical relevance that do not satisfy condition (PIK), or
that are defined by abstract and a priori considerations, in a way that does not provide
enough information to test the validity of such a condition. The primary examples of this
kind are states satisfying suitable variational problems (e.g., ground states of physical
problems related to the ones under study, perhaps with an additional external potential
that is removed at the initial time, or states belonging to some minimizing sequence of the
model). In addition, there is a technical difficulty: condition (PIK) is in general difficult
to propagate in time. As will be explained later, to prove its propagation one has to rely
on a propagation estimate for the number operator up to powerK. This is possible for the
Nelson model for all K 2 N� [20], and for the Pauli–Fierz model, at least for K � 2 [5].
However, it does not seem feasible for the polaron model.

In view of the above considerations, in this paper we mainly focus on the more general
class of states satisfying only assumption (A1), which can thus be defective both in mass
and compactness, as in the main results presented in §1.5. Let us remark that, in order
to consider more general states, a finer technical analysis on our part is required; this,
however, makes the proofs also slightly more involved. We believe that it is interesting to
present the results in such generality, both from a physical and a mathematical standpoint.
Nonetheless, we also believe that it makes sense to informally present the proof of our
results that can be obtained using condition (PIK), for arbitrary K 2 N� in the Nelson
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model, and for K � 2 in the Pauli–Fierz model. The purpose of the outline is twofold: on
the one hand it serves as a summary of the semiclassical strategies used throughout the
paper, on the other hand it allows us to emphasize the simplifications obtained by using
condition (PIK), and thus also the subtleties we had to face otherwise.

Let us thus assume, only in this section, that (PIK) holds true, so that the statement
of Theorem 1.6 takes the following stronger form: there exist a subsequence ¹"nºn2N and
a probability measure m 2 P.hIL1C;1.H// such that

�"n
bqc
�����!
n!C1

m; (1.40)

and if (1.40) holds, then for all t 2 R,

�"n.t/
bqc
�����!
n!C1

mt ; (1.41)

where mt is given by (1.27). In addition,

TrŒ�"n.t/TOpWick
"n

.hz˝`j Qbz˝mih˝s`/S� �����!
n!C1

trH

�Z
h

dmt .z/ T hz˝`j Qbz˝mih˝s` �

�
D trH

�Z
h

d�m.z/Ut;0.z/m.z/U0;t .z/T h.e
�it�!z/˝`j Qb.e�it�!z/˝mih˝s`�

�
for all T ; � 2 B.H/ and all Qb 2 B.H˝ h˝sm;H˝ h˝s`/ with .mC `/=2 < K.

The main steps of the proof of the above results are the following:

(i) First of all, we pass to the interaction representation, setting

‡".t/ WD e
it.K0C�."/dG".!//�".t/e

�it.K0C�."/dG".!//;

and write Duhamel’s formula for the time evolution of its Fourier transform:

Œ y‡".t/�.�/ D Œ y‡".s/�.�/

� i

NX
jD1

Z t

s

d� ei�K0 trK"
�
Œ'".e

�i�"�."/!�.xj //; ‡".�/�W".�/
�
e�i�K0 ; (1.42)

where '".z/ WD a
�
" .z/C a".z/ is the field operator.

(ii) Now, the goal is to extract a common subsequence of ‡"n.t/ that converges for
all times t 2 R. Hence, one first needs to show that, at any time t 2 R, ‡"n.t/ converges
along a suitable subsequence. In order to do that, we need to verify that condition (PIK)
(resp. (A1), in the case of Theorem 1.6) is satisfied for any t 2 R, which guarantees
convergence in the sense of Definition 1.4 (resp. Definition 1.1) at all times. Let us sketch
how it is possible to propagate (PIK) in the Nelson model: the Duhamel formula

Tr.dG".1/
k‡".t// D Tr.dG".1/

k‡".0//

� i

Z t

0

Tr
�
ŒdG".1/

k ; '".e
�i�"�."/!�.xj //�‡".�/

�
d�
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yields

kŒdG".1/
k ; '".e

�i�"�."/!�.xj //�‡".�/kL1.H˝K"/
� "Ckk.dG".1/C 1/

k‡".�/kL1.H˝K"/
:

The trace norm on the right hand side is uniformly bounded with respect to " (see, e.g.,
Proposition 3.2 below), yielding

Tr.dG".1/
k‡".t// D Tr.dG".1/

k‡".0//COk;t ."/:

This implies that condition (PIK) holds for all times provided it holds at the initial time.
Let us remark again that such propagation estimate (more precisely, the "-uniform number
estimate) is not available for the polaron model, nor for the Pauli–Fierz model whenever
k � 3.

(iii) Once convergence of ‡"n.t/ is obtained, one has to prove that ¹ O‡"º"2.0;1/ is
uniformly equicontinuous as a family of functions of time. This can be done by exploiting
(PIK) once more:

Tr
�
Œ'".e

�i�"�."/!�.xj //; ‡".t/�W".�/
�

D Tr
�
‡".t/.dG".1//

ı.dG".1//
�ı ŒW".�/; '".e

�i�"�."/!�.xj //�
�
D O."ı/:

(iv) After the extraction of a subsequence ‡"nk .t/ converging at all times, we take the
limit as "nk ! 0 of (1.42); by (PIK), the convergence follows by a direct generalization to
operator-valued symbols of the analysis done in the scalar case, e.g. in [2, Appendix B].
On the other hand, to study the limit under assumption (A1) alone, we have to develop
a specific quasi-classical calculus for the symbols appearing in the energy functionals of
the three models. We take advantage of an approximation by simple functions that allows
one to separate the two types of degrees of freedom, at the same time making the symbol
compact and thus convergent without additional assumptions (see §2).

(v) The equation obtained in the limit from the Duhamel equation is a transport equa-
tion for the Fourier transform of the quasi-classical measures in interaction picture nt :

ynt .�/ D yns.�/ � i

Z t

s

d�
Z

h

d�n� .z/ Œ
zV� .e

�i��!z/; n� .z/�e
2i Re h�jzih :

We prove that this equation has a unique solution, given by

nt D
�
�m; zUt;0.z/m.z/ zU

�
t;0.z/

�
I

once the interaction representation is removed, that yields

dmt D Ut;0.z/m.z/U
�
t;0.z/ d..e�it�!/?�m/;

as expected (see §5).

(vi) The aforementioned uniqueness allows one finally to extend the convergence to
the original sequence ‡"n.t/.
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2. Quasi-classical analysis

In this section we introduce the quasi-classical asymptotic analysis, needed to study the
dynamical limit of quasi-classical systems. In particular, we have to develop a semiclas-
sical theory for operator-valued symbols, since the latter are crucial to characterize the
interaction part of the dynamics. The key tools presented here are

� the convergence of regular states to state-valued measures in the quasi-classical limit
(Proposition 2.3) in the sense of Definition 1.1;

� the convergence of the expectation values of suitable classes of operators to their clas-
sical counterparts (Proposition 2.6).

Note that, in the context of finite-dimensional semiclassical analysis, operator-valued
symbols corresponding to additional degrees of freedom have already been studied [13,
24, 30, 31] (see also [56, Appendix B] and references therein), although with different
applications in mind.

We start by clarifying the notion of state-valued measure.

Definition 2.1 (State-valued measure). An additive measure m on a measurable space
.X;†/ is H-state-valued if

� m.S/ 2 L1C.H/ for any S 2 †;

� m.;/ D 0;

� m is unconditionally � -additive in the trace norm.

An H-state-valued measure is a probability measure if km.X/k
L1
D 1. We denote by

M.X; †IL1C.H// and P.X; †IL1C.H// and by M.X IL1C.H// and P.X IL1C.H// the
spaces of H-state-valued measures and probability measures, respectively, with respect
to either a generic or the Borel � -algebra, in case X is a topological space.

Using the Radon–Nikodým property and positivity, there is a simple characterization
of state-valued measures:

Proposition 2.2 (Radon–Nikodým decomposition). For any m2M.X;†IL1C.H//, there
exists a scalar measure �m 2M.X;†/ with

�m.X/ D km.X/kL1.H/

and a �m-a.e. defined measurable function m W X ! L1C;1.H/ such that for any S 2 †,

m.S/ D

Z
S

d�m.z/ m.z/; (2.1)

with the right hand side meant as a Bochner integral. In addition, m 2M.X;†IL1C.H//

is an H-state-valued probability measure iff �m is a probability measure. We call
.�mI m.z// the Radon–Nikodým decomposition of m.



Quasi-classical dynamics 753

Proof. First of all we point out that the separable Schatten space L1.H/ of trace class
operators has the Schatten space L1.H/ of compact operators as predual, and therefore
it has the Radon–Nikodým property (see, e.g., [18,19]). In addition, since m takes values
in positive operators, we can define its “norm” measure as

m. � / WD km. � /kL1.H/: (2.2)

In fact, m is a scalar measure such that m � m � m, i.e., m and m are absolutely
continuous with respect to each other. The latter property can indeed be easily seen as
follows: m.S/ D 0, as an element of the vector space L1C.H/, if and only if m.S/ D
km.S/k

L1.H/
D 0.

Moreover, the Radon–Nikodým property guarantees the existence of the Radon–Niko-
dým derivative dm

d� 2 L
1.X; d�IL1C.H// such that

m.S/ D

Z
S

d�.z/
dm

d�
.z/ (2.3)

for any measurable S 2 † and any scalar measure � such that m is absolutely continuous
with respect to �.

In our setting, compared to the more general case of Banach-space-valued vector
measures, there is an additional notion of positivity, as discussed above. That notion natur-
ally singles out a given scalar measure, with respect to which m is absolutely continuous.
The measure is the “norm” measure m defined in (2.2). Indeed, combining the mutual
absolute continuity of m and m with the existence of the Radon–Nikodým derivative, we
deduce that, for any measurable S � h,

m.S/ D

Z
S

dm.z/
dm

dm
.z/; (2.4)

and that, m-a.e.,
dm

dm
¤ 0:

Therefore, we can rewrite

m.S/ D

Z
S

dm.z/
dm

dm
.z/


L1.H/

dm

dm
.z/

dm

dm
.z/

�1
L1.H/

; (2.5)

and setting

d�m.z/ WD

dm

dm
.z/


L1.H/

dm.z/; (2.6)

m.z/ WD
dm

dm
.z/

dm

dm
.z/

�1
L1.H/

; (2.7)

we obtain the sought Radon–Nikodým decomposition.
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Let now F WX!B.H/ be a measurable function with respect to the weak-� topology
on B.H/. It is then natural to define the (L1-Bochner) integrals of f with respect to m as
follows: for any S 2 †,Z

S

dm.z/ F.z/ WD

Z
S

d�m.z/ m.z/F.z/; (2.8)Z
S

F.z/ dm.z/ WD

Z
S

d�m.z/ F.z/m.z/: (2.9)

Notice that one has to keep track of the order inside the integral, i.e., putting the measure
on the right or on the left of the integrand is not the same, because m might not commute
with F.z/, since both are operators on H.

State-valued measures are important since they are the quasi-classical counterparts
of quantum states (see [23] for a detailed discussion). Operator-valued symbols, such as
the aforementioned F , are correspondingly the quasi-classical counterparts of quantum
observables. From a general point of view, we can summarize the main objective of quasi-
classical analysis as follows.

Let Op".F / be a “quantization” of F acting on H˝K", where the space K" carries
a semiclassical representation of the canonical commutation relations corresponding to a
symplectic space .V; �/ of test functions, and let �" be a quantum state converging to the
Borel state-valued measure m on the space V 0 of suitably regular classical fields. Then
we would like to prove that

lim
"!0

trK".�"Op".F // D
Z
V 0

dm.z/F .z/;

lim
"!0

trK".Op".F /�"/ D
Z
V 0

F .z/ dm.z/; (2.10)

where the convergence holds in a suitable topology of L1.H/.
It is however difficult to obtain such results for general symbols and quantum states.

The most important obstruction is indeed the difficulty of defining a proper quantization
procedure for symbols acting on infinite-dimensional spaces. However, for the theories
of particle-field interaction under consideration (Nelson, polaron, Pauli–Fierz), the inter-
action terms in the quasi-classical Hamiltonians contain only symbols of a specific form.
We can therefore restrict our analysis to such type of symbols.

Let us recall that we are considering the following concrete setting: H D L2.RdN /,
where d is the spatial dimension on which the particles move and N is the number of
quantum particles; K" D G".h/, the symmetric Fock space over the complex separable
Hilbert space h, carrying the standard "-dependent Fock representation of the canonical
commutation relations

Œa".z/; a
�
" .�/� D "hzj�ih:

Finally, we are interested in the case V 0 D h, i.e., the space of test functions coincides
with the space of classical fields. The type of symbols F is given by the class defined
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in (S`;m), i.e.,

F .z/ D

NX
jD1

hzj�1.xj /ih � � � hzj�`.xj /ihh�`C1.xj /jzih � � � h�`Cm.xj /jzih;

where the functions �j 2 L1.Rd Ih/ for any j 2 ¹1; : : : ; `Cmº should be considered as
fixed “parameters”, and F .z/ acts as a multiplication operator on L2.RdN /.

Since F is a polynomial symbol with respect to z and Nz, it is natural to quantize it by
the Wick quantization rule. For such simple symbols the Wick rule has a very simple form:
substitute each z with a" and each Nz with a�" , and then put the expression so obtained in
normal order, by moving all the creation operators to the left of the annihilation operators.
Then we obtain

OpWick
" .F / D

NX
jD1

a�" .�1.xj // � � � a
�
" .�`.xj //a".�`C1.xj // � � � a".�`Cm.xj //; (2.11)

as a densely defined operator on L2.RdN /˝ G".h/.
In order to prove weak convergence as in (2.10) for TOpWick

" .F /S with � ;T 2B.H/,
we need suitable hypotheses on the quantum state �", and some preparatory results. The
following condition ensures that all the quasi-classical Wigner measures corresponding
to a state �" 2 L1C;1.H ˝ K"/ are concentrated as Radon L2-state-valued probability
measures on h. Recall the definition (1.20) of the Weyl operator W".�/, � 2 h, and the
Fourier transform (1.21) of a measure m 2M.hIL1C.H//. Recall that in this section and
the rest of the paper we consider only the convergence defined in Definition 1.1 and so
we simply write �" ���!

"!0
m instead of �"

qc
���!
"!0

m.

Proposition 2.3 (Convergence of quantum to classical states). Let �" 2 L1C;1.H˝K"/

be such that there exists ı > 0 such that

Tr.�".dG".1/C 1/
ı/ � C: (2.12)

Then there exists at least one subsequence ¹"nºn2N and an H-state-valued cylindrical
measure m (which may depend on the sequence) such that

�"n �����!
n!C1

m (2.13)

in the sense of Definition 1.1. Furthermore, all cluster points m of �" are state-valued
Radon measures on h, and, for any 0 � ı0 � ı, there exists Cı0 � Cı , with C0 D 1, such
thatZ

h

d�m.z/ m.z/.kzk
2
h C 1/

ı0

L1.H/

D

Z
h

d�m.z/ .kzk
2
h C 1/

ı0
� Cı0 : (2.14)

If in addition �" satisfies either assumption (A2) or (A20), then m is a probability meas-
ure, i.e., Z

h

d�m.z/ m.z/


L1.H/

D

Z
h

d�m.z/ D 1: (2.15)
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In order to prove the last part of the above proposition, we need a couple of preparatory
results that will be useful in §7.1 as well.

Lemma 2.4. Let T be a densely defined self-adjoint operator on H, and 1m.T / its spec-
tral projection on the interval Œ�m;m�, m 2 N. Then the set of operators

K WD ¹Bm WD 1m.T /B 1m.T / j B 2 L1C .H/; m 2 Nº (2.16)

separates the points in L1C.H/ with respect to the weak-� topology.

Proof. Let  2 L1C.H/ be such that, for all Bm 2 K,

trH.Bm/ D 0:

Let
P
j �j j j ih j j be the decomposition of  . ThenX

j2N

�j h j jBmj j iH D 0 H) h j jBmj j iH D 0; 8j 2 N;

by positivity of B. Taking the limit m!C1 of the last equation, one finds that for any
B 2 L1C .H/ and j 2 N,

h j jBj j iH D 0; (2.17)

but, taking in particular B D j j ih j j, we get  j D 0 for any j 2 N, and therefore
 D 0.

Proposition 2.5 (Convergence of general state sequences). Let �" 2 L1C;1.H ˝K"/ be
such that

� assumption (A1) is satisfied,

� �"n �����!
n!C1

m,

� jtrH.T "T /j � C for some self-adjoint T 2 L.H/, where " is given by (1.18).

Then
T �"nT �����!

n!C1
T mT ; (2.18)

where the latter is defined by the Radon–Nikodým decomposition .�m; T m.z/T /.

Proof. Since jtrH.T "T /j � C , T �" T is a quasi-classical family of states and thus there
exists a generalized subsequence .�"n˛ /˛2A of �"n and a cylindrical state-valued measure
n such that (see [23] for additional details)

� T �"n˛T converges to n when tested on the Weyl quantization of smooth cylindrical
symbols,

� trH.T y�"n˛ .�/T B/ converges to trH..�/B/ for all � 2 h and B 2 L1.H/, where
.�/ 2 L1.H/ has yet to be determined.
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Now, let K 2 K. Then T KT 2 L1.H/ and therefore

lim
˛2A

trH.T y�"n˛ .�/T K/ D lim
˛2A

trH.y�"n˛ .�/ T KT / D trH. ym.�/ T KT /

D trH.T ym.�/ T K/:

However, the set K separates points by Lemma 2.4, and therefore we can conclude that

.�/ D T ym.�/T :

On the other hand, an analogous reasoning when testing with the Weyl quantization
of smooth cylindrical symbols yields

n D T mT :

Therefore, we conclude that T �"n˛T ���!
˛2A

T mT . Finally, let �"n˛0 be any generalized

subsequence such that for any � 2 h and B 2 L1.H/,

lim
˛02A0

trH.T y�"n˛0 .�/T B/ D trH. 0.�/B/:

Then, repeating the above reasoning it follows that  0.�/D T ym.�/T . In other words, the
cluster point is unique, and therefore T �"nT �����!

n!C1
T mT .

Proof of Proposition 2.3. The key result about the weak-� convergence in the semiclas-
sical case is proven in [6, Theorem 6.2]. The generalization to the quasi-classical setting
is trivial: for all compact operators B 2 L1.H/ and all � 2 h, one immediately gets

lim
n!1

Tr.�"nW"n.�/B/ D trH

�Z
h

d�m.z/ m.z/e
2i Re h�jzihB

�
D trH. ym.�/B/; (2.19)

where B WDB ˝ 1. Moreover, the Fourier transform ym W h! L1.L2/ identifies uniquely
the measure m by Bochner’s theorem [23]. The bound (2.14) is also an immediate exten-
sion of [6, Theorem 6.2] to the quasi-classical case.

It remains to prove that under either assumption (A2) or (A20), m 2 P.hIL1C.H//.
Let us start by assuming (A2). Then, by Proposition 2.5, for any bounded B 2 B.H/, and
� 2 h,

lim
n!C1

trH.y�"n.�/B/ D lim
n!C1

trH.A1=2y�"n.�/A
1=2A�1=2BA�1=2/

D trH.A1=2
ym.�/A1=2A�1=2BA�1=2/ D trH. ym.�/B/:

In particular, for � D 0 and B D 1,

1 D lim
n!C1

trH."n/ D lim
n!C1

trH.y�"n.0// D trH. ym.0// D trH.m.h//:

If we instead assume (A20), the proof goes as follows. Since �"n �����!
n!C1

m, it follows

that "n converges in the weak operator topology to Om.0/, by compactness of rank-one



M. Correggi, M. Falconi, M. Olivieri 758

operators. Let ¹mj ºj2N be the eigenvalues of ym.0/, and ¹ j ºj2N the corresponding
eigenvectors. By the aforementioned weak operator convergence, it follows that for any
j 2 N,

lim
n!C1

h j j"n j j iH D h j j ym.0/j j iH D mj : (2.20)

On the other hand, by (A20), we can apply Lebesgue’s dominated convergence theorem to
the series

C1X
jD0

h j j"n j j iH;

since h j j"n j j iH � h j j j j iH, and

trH./ D
C1X
jD0

h j j j j iH < C1:

Therefore,

1 D lim
n!C1

C1X
jD0

h j j"n j j iH D

C1X
jD0

lim
n!C1

h j j"n j j iH D

C1X
jD0

mj D trH. ym.0//:

It is clear that together with Proposition 2.3, all the other results that hold in semiclas-
sical analysis for infinite dimensions can be adapted to quasi-classical analysis, consider-
ing the semiclassical symbols and corresponding quantizations in tensor product with
the identity acting on H, replacing Wigner scalar measures with state-valued Wigner
measures, and replacing convergence of the trace with L1.H/-weak-� convergence of the
partial trace, i.e., one should test the partial traces and integrals with compact operators.

Proposition 2.6 (Convergence of expectation values). Let F 2 S`;m, and let �" 2
L1C;1.H˝K"/. Assume that there exist ı > .nCm/=2 such that

Tr
�
�".dG".1/C 1/

ı
�
� C: (2.21)

If �"n �����!
n!C1

m, then for any � ; T 2 B.H/, B 2 L1.H/ and � 2 h,

lim
n!C1

Tr
�
�"nTOpWick

"n
.F /S.B ˝W"n.�//

�
D trH

�Z
h

d�m.z/ m.z/T F .z/�e2i Re h�jzihB

�
; (2.22)

with an analogous statement with �"n and TOpWick
"n

.F /S interchanged.

To prove Proposition 2.6, we need the following preparatory lemma, which introduces
approximation of F by simple functions.

Lemma 2.7. Let F 2 S`;m. Then there exists a sequence ¹FM ºM2N of operator-valued
functions FM W h! B.H/ such that



Quasi-classical dynamics 759

� for all z 2 h,
lim

M!1
kF .z/ � FM .z/kH D 0I (2.23)

� FM .z/ acts as the multiplication operator by

FM .z/D

NX
jD1

J.M/X
kD1

hzj'k;1ih � � � hzj'k;`ihh'k;`C1jzih � � � h'k;`Cmjzih1Bk .xj /; (2.24)

where J W N ! N, 'j;l 2 h, l 2 ¹1; : : : ; `Cmº, and 1Bj is the characteristic function
of the Borel set Bj � Rd and the Bj are pairwise disjoint.

Proof. It is sufficient to prove the convergence in the caseN D 1, nD 1,mD 0, since the
case N D 1, n D 0, m D 1 is perfectly analogous, and the general one, N 2 N, n 2 N,
m 2 N, can be obtained by combining the approximation for each term of the product
within each term of the sum and possibly reordering the sum.

So let us restrict to the case F .z/ D hzj�.x/ih, x 2 Rd , acting as a multiplication
operator on H D L2.Rd /. Since both F .z/ and

FM .z/ D

J.M/X
kD1

hzj'kih1Bk .x/ DW hzj�M .x/ih (2.25)

are multiplication operators, we have

kF .z/ � FM .z/kL.L2.Rd // D ess sup
x2Rd

jhzj�.x/ � �M .x/ihj:

Now, let us fix z 2 h and consider F .z/ D Fz.x/ only as a function of x 2 Rd . We
can decompose Fz.x/ D FR.x/ C iFC.x/, and split both the real and imaginary parts
as FR=C.x/D FR=C;C.x/�FR=C;�.x/. SettingK WD k�k

L1.Rd ;h/
, we can partition the

positive real half-line as

RC D A [
M[
mD1

Am;

where
A WD ŒKkzkh;1/; Am WD K

�
m�1
M
kzkh;

m
M
kzkh

�
: (2.26)

Let us now focus on the positive real part FR;C.x/. We can introduce the measurable sets

DC WD F �1R;C.A/; DCm WD F �1R;C.Am/:

By construction, DC D ;, while, for all m 2 ¹1; : : : ;M º, there exists �Cm 2 h such that

h�Cmjzih 2 Am:

For any given x 2 Rd , there is a single Qm 2 ¹1; : : : ; 2M º such that FR;C.x/ 2 ACQm. There-
fore, uniformly with respect to x 2 DC

Qm
,

jFR;C.x/ � h�Cmjzihj < Kkzkh=M: (2.27)
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Repeating the same procedure for the real negative and complex positive and negative
parts, we obtain collections of sets and elements, respectively,

¹D�mº
M
mD1; ¹�

�
mº
M
mD1I ¹E

˙
m º

M

mD1; ¹�
˙
m º

M

mD1;

approximating FR;� and FC;˙.
Let us now define a collection ¹Bkº

M4

kD1 of disjoint Borel sets of Rd for simple approx-
imation of F .z/. We first identify k 2 ¹1; : : : ; M 4º with the image |.m1; m2; m3; m4/
with respect to some fixed set bijection | W ¹1; : : : ;M º4 ! ¹1; : : : ;M 4º, and set

Bk WD D
C
m1
\D�m2 \E

C
m3
\E�m4 : (2.28)

Then we define 'k WD �Cm1 � �
�
m2
C i.�Cm3 � �

�
m4
/ and

FM .z/ D

M4X
kD1

hzj'kih1Bk .x/

D

MX
m1;m2;m3;m4D1

hzj�Cm1 � �
�
m2
C i.�Cm3 � �

�
m4
/ih1B|.m1;m2;m3;m4/.x/: (2.29)

By construction,
kF .z/ � FM .z/kL.L2.Rd // � 4Kkzkh=M; (2.30)

and thus the convergence is proved.

Corollary 2.8. The approximating function FM .z/ can be rewritten as

FM .z/ D

NX
jD1

hzj�M;1.xj /ih � � � hzj�M;`.xj /ihh�M;`C1.xj /jzih � � � h�M;`Cm.xj /jzih;

(2.31)
where �M;j 2 L1.Rd I h/, j 2 ¹1; : : : ; `Cmº, and

lim
M!C1

k�j � �M;j kL1.Rd Ih/ D 0: (2.32)

Proof. Again, it is sufficient to prove the corollary for N D 1, n D 1, m D 0, the other
cases being direct consequences. The function �M approximating � is defined in (2.25)
in the proof of Lemma 2.7, i.e.,

�M .x/ WD
J.M/X
kD1

'k1Bk .x/:

From the same proof it also follows that, for all z 2 h and all x 2 Rd ,

jhzj�.x/ � �M .x/ihj � 4Kkzkh=M:
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Therefore,

ess sup
x2Rd

k�.x/ � �M .x/kh D ess sup
x2Rd

sup
kzk

h
D1

jhzj�.x/ � �M .x/ihj � 4K=M;

and the convergence is proved.

Proof of Proposition 2.6. Let us prove (2.22). Let us approximate F .z/ with FM .z/, as
dictated by Lemma 2.7. The advantage of FM .z/ is that its dependence on the z and x
variables is separated, and thus its Wick quantization is a finite sum of tensor products of
operators:

OpWick
" .FM / D

NX
jD1

J.M/X
kD1

1Bk .xj /˝ a
�
" .'k;1/ � � � a

�
" .'k;`/a".'k;`C1/ � � � a".'k;`Cm/

D

NX
jD1

a�" .�M;1.xj // � � � a
�
" .�M;`.xj //a".�M;`C1.xj // � � � a".�M;`Cm.xj //: (2.33)

Next we exploit the linearity of Wick quantization to split

Tr
�
�"nTOpWick

"n
.F /S.B ˝W"n.�//

�
D Tr

�
�"nTOpWick

"n
.F � FM /S.B ˝W"n.�//

�
C Tr

�
�"nTOpWick

"n
.FM /S.B ˝W"n.�//

�
: (2.34)

The first term on the right hand side can be estimated using well-known estimates for cre-
ation and annihilation operators, the hypothesis on the expectation of the number operator,
and Corollary 2.8:ˇ̌
Tr
�
�"nTOpWick

"n
.F � FM /S.B ˝W"n.�//

�ˇ̌
� N kBkkT kk�kTr.�"ndG".1/

.`Cm/=2/

�

`CmX
pD1

k�1kL1.Rd ;h/ � � � k�p � �M;pkL1.Rd ;h/ � � � k�M;`CmkL1.Rd ;h/

� CN.`Cm/ max
p2¹1;:::;`Cmº

k�p � �M;pkL1.Rd Ih/;

where we have used the fact that the k�M;pkL1.Rd ;h/ are all uniformly bounded with
respect to M by (2.32). The right hand side of the above expression then converges to
zero as M !C1 by Corollary 2.8, uniformly in "n.

Let us now discuss the limit as n! C1 of the second term on the right hand side
of (2.34): for any B 2 L1.L2.RNd //, using the first identity of (2.33), we obtain

Tr
�
�"nTOpWick

"n
.FM /S.B ˝W"n.�//

�
D

NX
jD1

J.M/X
kD1

trH
�
trK"

�
�"na

�
"n
.'k;1/ � � � a".'k;`Cm/W"n.�/

�
1Bk .xj /�BT

�
:



M. Correggi, M. Falconi, M. Olivieri 762

Now, on the one hand we know that �"n ! m by Proposition 2.3, and on the other hand

a�"n.'k;1/ � � � a".'k;`Cm/ D OpWick
"n

.hzj'k;1ih � � � h'k;`Cmjzih/;

where the scalar symbol on the right hand side is polynomial and cylindrical. There-
fore, since 1Bk .xj /�BT 2 L1.L2.RNd //, by the quasi-classical analogue of [6, The-
orem 6.13],

lim
n!C1

Tr
�
�"nTOpWick

"n
.FM /S.B ˝W"n.�//

�
D

NX
jD1

J.M/X
kD1

trH

�Z
h

d�m.z/ e
2i Reh�jzihhzj'k;1ih � � � h'k;`Cmjzihm.z/1Bk .xj /�BT

�
:

The proof is then concluded by taking the limit as M !1 of the last expression, which
by dominated convergence yields the sought result.

3. The microscopic model

Our aim is to study systems of non-relativistic particles in interaction with radiation. As
discussed previously, the techniques developed in this paper allow one to study some
well-known classes of explicit models (Nelson, polaron, Pauli–Fierz). Here we carry out
the detailed analysis only for the simplest example, the Nelson model, in order to convey
the general strategy without too many technical details. The main adaptations needed for
the polaron and Pauli–Fierz systems are outlined in §7.

Let H˝K" D L
2.RdN /˝ G".L

2.Rd // be the Hilbert space of the theory. Then the
Nelson Hamiltonian H" is explicitly given by

H" D K0 C �."/d�".!/C
NX
jD1

a�" .�.xj //C a".�.xj //; (3.1)

whereK0 DK0˝ 1 is the part of the Hamiltonian acting on the particles alone, such that
K0 is self-adjoint on D.K0/ � L

2.RdN /, �."/ > 0 is a quasi-classical scaling factor to
be discussed in detail below, ! is the operator on L2.Rd / acting as multiplication by the
positive dispersion relation of the field !.k/, and � 2 L1.Rd IL2.Rd // DW L1x L

2
k is the

interaction’s form factor. In addition, let us define the set of vectors with a finite number
of field’s excitations C10 .dG".1//:

C10 .dG".1// D ¹ 2 L
2.RNd /˝ G".h/ j 9M 2 N W a".f1/ � � � a".fM 0/ D 0;

8M 0 > M;8¹fj º
M 0

jD1 � L
2.Rd /º: (3.2)

The question of self-adjointness ofH" has already been addressed in the literature and
indeed the following proposition holds:



Quasi-classical dynamics 763

Proposition 3.1 (Self-adjointness of H" [21, Theorem 3.1]). The operator H" is essen-
tially self-adjoint on D.K0/ \D.dG".!// \ C

1
0 .dG".1//.

Therefore, there exists a unitary evolution generated by H",

U".t/ D e
�itH" : (3.3)

Now for any normalized density matrix �" 2 L1C;1.H ˝ K"/, we denote by �".t/ its
unitary evolution by means of U".t/, i.e.,

�".t/ D U".t/�"U
�
" .t/: (3.4)

The main aim of this paper is to characterize the asymptotic behavior as "! 0 of

".t/ WD trK".�".t// D trG".L2.Rd //.�".t//: (3.5)

As stated in Definition 1.1 and characterized in Proposition 2.6, the quasi-classical limit
of a sufficiently regular state is determined by the weak convergence of its vector-valued
non-commutative Fourier transform y�".t/ W h! L1.H/ defined in (1.19):

� 7! Œy�".t/�.�/ WD trK".�".t/W".�// D trK".�".t/e
i.a
�
" .�/Ca".�///:

Note that consequently ".t/ D Œy�".t/�.0/.
The regularity of the state is given by (2.12), which should be satisfied at any time.

It is therefore necessary to ensure a proper propagation in time of such a regularity. An
estimate of that kind is however readily available for the Nelson model with cutoff:

Proposition 3.2 (Regularity propagation [20, Proposition 4.2]). For any " > 0, t 2R and
ı 2 R,

Tr
�
�".t/.dG".1/CN

2
C "/ı

�
� e

cı=2."/
p
" jıj jt j k�k

L1x L2k Tr
�
�".dG".1/CN

2
C "/ı

�
; .3:6/

Tr
ˇ̌
�".t/.dG".1/CN

2
C "/ı

ˇ̌
� e

cı."/
p
" jıj jt j k�k

L1x L2k Tr
ˇ̌
�".dG".1/CN

2
C "/ı

ˇ̌
; .3:7/

where cı."/ WD max ¹2C "; 1C .1C "/ıº.

Since the exponential in the above inequality is bounded uniformly with respect to
" 2 .0; 1/, it follows that the bound (2.12) is satisfied by the state at any time with a
suitable time-dependent constant, provided it is satisfied by the state at t D 0: using the
fact that, for any ı 2 RC,

.dG".1/C 1/
ı
� .dG".1/CN

2
C "/ı � .dG".1/CN

2
C 1/ı

� .N 2
C 1/ı.dG".1/C 1/

ı ;
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we can use (3.6) to obtain

Tr
�
�".dG".1/C 1/

ı
�
� Cı H)

Tr
�
�".t/.dG".1/C 1/

ı
�
� Cı.N

2
C 1/ıe

cı=2.1/jıj jt j k�k
L1x L2k � C.ı; t/; (3.8)

which guarantees that the a priori bound (2.12) is preserved by the time evolution.
In analogy with the dynamical semiclassical limit for bosonic field theories (see, e.g.,

[3, 4, 9]), the quasi-classical dynamics is characterized by studying the limit "! 0 of the
integral equation of evolution for the microscopic system. Let us sketch the main ideas.
Consider the family of states

¹�".t/º"2.0;1/; t2R

at time t D 0, satisfying the bound (2.12). Then for each fixed t 2 R, there exists a
subsequence "n ! 0 such that �"n.t/ �����!

n!C1
mt in the sense of Definition 1.1 by Pro-

positions 2.3 and 3.2. In the next section we prove that it is actually possible to extract a
common subsequence "nk ! 0 such that for all t 2 R,

�"nk .t/ �����!k!C1
mt :

Hence one only needs to characterize the map t 7! mt , and this is done by studying the
associated transport equation, obtained by passing to the limit in the microscopic integral
equation of evolution. Let us provide some intuition on that strategy. For later convenience
let us pass to the interaction representation and set

z�".t/ WD e
�i�."/tdG".!/�".t/e

i�."/tdG".!/: (3.9)

Then the microscopic evolution can be rewritten as an integral equation, using Duhamel’s
formula:

z�".t/ D �" � i

Z t

0

d� Œ zH".�/; z�".�/�; (3.10)

where
zH".t/ WD e

�i�."/tdG".!/.H" � �."/dG".!//e
i�."/tdG".!/: (3.11)

In addition, H" � �."/dG".!/ is the Wick quantization of an operator-valued symbol
K0 C V.z/. Therefore, the quasi-classical analysis developed in §2 suggests that the
integral equation (3.10) converges, as "! 0, to an equation for the measure zmt , obtained
by replacing

z�".t/ zmt ;

H" � �."/dG".!/ K0 C V.z/;

and substituting the quantum flow e�i�."/tdG".!/ in the phase space h D L2.R3/ by its
classical counterpart, i.e.,

z 7! e�i�t!z; 8z 2 L2.R3/: (3.12)
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In conclusion, we get the equation

d zmt .z/ D d zm.z/ � i
Z t

0

d� d� zm� .z/ ŒK0 C V.e�i�t!z/;  zm� .z/�; (3.13)

and the classical measure mt associated with the original state �".t/ is simply given by
the pushforward of zmt through the flow (3.12), i.e.,

�".t/ mt D .e
�i�t!/? zmt : (3.14)

Such an equation is the integral form of a Liouville-type equation. Once the con-
vergence of the microscopic to the quasi-classical integral equation has been established
(see §4), the crucial point is to prove that (3.13) has a unique solution that satisfies some
properties, given by the a priori information that we have on the quasi-classical measure
(see §5). As a final step (§6), we show that the convergence is in fact at any time t � 0
along the same subsequence ¹"nºn2N . Let us remark that in order to make this heuristic
strategy rigorous, some technical modifications are necessary, in particular it is necessary
to pass to the full interaction representation.

We conclude the section with the rigorous derivation of the microscopic integral
evolution equation for the Fourier transform of �".t/. By definition, for any � 2 h, the
Fourier transform Œy�".t/�.�/ is a reduced microscopic complex state for the particles,
and therefore if �" is regular enough, its time evolution can be described by means of
the microscopic generator H". It is technically convenient to use the evolved state in the
interaction picture, i.e.,

‡".t/ WD e
it.K0C�."/dG".!//�".t/e

�it.K0C�."/dG".!//; (3.15)

in place of �".t/, and therefore study the integral equation for y‡".t/.

Remark 3.3 (Regularity propagation for ‡"). Since eit.K0C�."/dG".!// commutes with
dG".1/, one can easily realize that the results stated in Proposition 3.2, and consequently
the bound propagation in (3.8), also hold true for the density matrix ‡".t/ in the interac-
tion picture with the same constants.

Lemma 3.4. Let �" 2 L1C;1.H˝K"/ be such that

Tr
�
�".dG".1/C 1/

1=2
�
� C:

Then, for any s; t 2 R,

Œ y‡".t/�.�/ D Œ y‡".s/�.�/

� i

NX
jD1

Z t

s

d� ei�K0 trK"
�
Œ'".e

�i�"�."/!�.xj //; ‡".�/�W".�/
�
e�i�K0 ; (3.16)

weakly in L1.L2.RNd /, where '".�/ D a
�
" .�/C a".�/ is the Segal field.
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Proof. The proposition is an adaptation of [3, Proposition 3.5], and the proof follows
accordingly. The differences here are only the presence of an arbitrary bounded particle
observable, and that the Weyl operator acts only on the field’s degrees of freedom. There-
fore, we omit the details.

4. The quasi-classical limit of time evolved states

In this section we focus on the quasi-classical limit as " ! 0 of the Fourier transform
y‡".t/ of time evolved states in the interaction picture. The first and most relevant step is
the proof that it is possible to extract a common subsequence for the convergence of y‡".t/
at any time (Proposition 4.3), which in turn follows from the uniform equicontinuity of
y‡" (Proposition 4.2). Finally, we show (Proposition 4.5) that the limit measure satisfies
the transport equation of Lemma 3.4.

Let us start with a preparatory lemma.

Lemma 4.1 ([6, Lemma 3.1]). For any 0 < ı � 1=2, there exists a finite constant cı such
that for all �; � 2 h,

k.W".�/�W".�//.dG".1/C1/
�ı
kB.K"/

� cı.min ¹k�k2ıh ; k�k
2ı
h ºC1/k���k

2ı
h : (4.1)

We are now able to prove uniform equicontinuity of Œ y‡".�/�.�/.

Proposition 4.2 (Equicontinuity of y‡"). Let �" 2 L1C;1.H˝K"/ be such that

Tr
�
�".dG".1/C 1/

1=2
�
� C:

Then Œ y‡".�/�.�/ W R � h! L1.H/ is uniformly equicontinuous with respect to " 2 .0; 1/
on bounded subsets of R � h if we endow L1.H/ with the weak-� topology.

Proof. Let us fix B 2 L1.H/ and .t; �/; .s; �/ 2 R � h with 0 � s � t . Thenˇ̌
trH

��
Œ y‡".t/�.�/ � Œ y‡".s/�.�/

�
B
�ˇ̌

�
ˇ̌
trH

��
Œ y‡".t/�.�/ � Œ y‡".s/�.�/

�
B
�ˇ̌

C
ˇ̌
trH

��
Œ y‡".s/�.�/ � Œ y‡".s/�.�/

�
B
�ˇ̌
DW .I /C .II/: (4.2)

Let us consider the two terms separately. Making use of Lemma 3.4, we obtain

.I / �

NX
jD1

Z t

s

d�
ˇ̌
Tr
�
Œ'".�.xj //; �".�/�. zB.�/˝W".e�i�"�."/!�//

�ˇ̌
;

where zB.�/ WD e�i�K0Bei�K0 . Therefore,

.I / � 2N kBk k.dG".1/C 1/
�1=4'".�.�//.dG".1/C 1/

�1=4
kB.H˝K"/

�

Z t

s

d� k.dG".1/C 1/
1=4W".e

�i�"�."/!�/.dG".1/C 1/
�1=4
kB.K"/

� Tr
�
�".�/.dG".1/C 1/

1=2
�
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where we have used the identity

k.dG".1/C 1/
�1=4�".dG".1/C 1/

�1=4
kL1.H/ D Tr

�
�".�/.dG".1/C 1/

1=2
�
: (4.3)

Next, we apply [3, Corollary 6.2 (ii)] and (3.8), which follows from Proposition 3.2, to
deduce

.I / � CC1=2N.N
2
C 1/1=2k�k

L1x L2k
kBk

Z t

s

d� exp
®
3
2
k�

L1x L2k

j� jº

� C
ˇ̌
exp

®
3
2
k�k

L1x L2k
t
¯
� exp

®
3
2
k�k

L1x L2k
s
¯ˇ̌
: (4.4)

The second term .II/ is bounded by using again Proposition 3.2 and Lemma 4.1, and
the fact that eit.K0C�."/dG".!// commutes with dG".1/:

.II/ � kBk k.dG".1/C 1/
�1=4.W".�/ �W".�//.dG".1/C 1/

�1=4
k

� Tr
�
‡".s/.dG".1/C 1/

1=2
�

� kB kk.dG".1/C 1/
�1=4.W".�/�W".�//.dG".1/C 1/

�1=4
kTr

�
�".s/.dG".1/C 1/

1=2
�

� c1=4C1=2.N
2
C 1/1=2kBk.min ¹k�k1=2h ; k�k

1=2

h ºC 1/e
3
2 k�kL1x L2k

jsj

k�� �k
1=2

h :

This concludes the proof.

By means of Proposition 4.2, we are now in a position to prove the existence of a
common subsequence, convergent for all times.

Proposition 4.3 (Existence of a converging subsequence). Let �" 2 L1C;1.H ˝ K"/ be
such that there exists ı � 1=2 satisfying

Tr
�
�".dG".1/C 1/

ı
�
� C:

Then, for any sequence ¹"nºn2N with "n ! 0, there exists a subsequence ¹"nk ºk2N with
"nk ! 0 and a family ¹ntºt2R of state-valued probability measures indexed by time such
that for all t 2 R,

‡"nk .t/ �����!k!C1
nt : (4.5)

Furthermore, for any T > 0, there exists C.T / > 0 such that, for any t 2 Œ�T;T � and any
ı0 � ı, Z

h

d�nt .z/ .kzk
2
h C 1/

ı0

� C.T /: (4.6)

Proof. Let E WD ¹tj ºj2N � R be a dense countable subset of R, and let "n ! 0. Using
a diagonal extraction argument, and Propositions 2.3 and 3.2 (see also Remark 3.3 and
(3.8)), there exists a subsequence "nk ! 0 such that for all tj 2 E,

‡"nk .tj / �����!k!C1
ntj :
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In addition, since kŒ y‡".tj /�.�/kL1.H/ � 1 for any � 2 h and tj 2 E, it follows that
kyntj .�/kL1.H/ � 1, by Banach–Alaoglu’s theorem. Furthermore, by Proposition 4.2, for
any tj ; t` 2 E and any B 2 L1.H/,ˇ̌

trH
��
Œ y‡"nk .tj / �

y‡"nk .t`/�.�/
�
B
�ˇ̌
� C jecjtj j � ecjt`j j;

where the constants on the right hand side are independent of k. Therefore, we can take
the limit as k !C1 of the above inequality, obtaining, for all B 2 L1.H/,

j trHŒ.yntj .�/ � ynt`.�//B�j � C je
cjtj j � ecjt`j j: (4.7)

Now, let t 2 R be arbitrary. By density of E � R, there exists a sequence ¹tj ºj2N

of times in E such that tj ! t . It follows that, for any � 2 h, ¹yntj .�/ºj2N is a weak-�
Cauchy sequence in the ultraweakly compact unit ball of the uniform space L1.H/. Thus,
it converges when tj ! t . Hence, we define

ynt .�/ WD w-lim
j!C1

yntj .�/; (4.8)

where the limit is meant in the weak-� topology. For any t 2 R, � 7! ynt .�/ is an ultra-
weakly continuous function such that

� kynt .0/kL1.H/ D 1;

� � 7! ynt .�/ is a function of completely positive type (see, e.g., [23, Definition A.7]).

Therefore, by Bochner’s theorem for cylindrical vector measures [23, Theorem A.17],
ynt is the Fourier transform of a unique state-valued cylindrical probability measure nt .

Furthermore, by approximating‡"nk .t/with‡"nk .tj / and using the uniform equicon-
tinuity of the non-commutative Fourier transform, one can prove that

‡"nk .t/ �����!k!C1
nt :

Here, we have used Proposition 2.6 to lift the convergence from the weak-� to the weak
topology. This in particular implies that nt is a probability Radon measure on h, because
it is a Wigner measure of ‡".t/, satisfying the hypotheses of Proposition 2.3, thanks to
Proposition 3.2.

To summarize, we have defined the common subsequence, and the family of state-
valued probability measures obtained in the limit at any time. The last inequality (4.6) is
finally proved by again combining Propositions 2.3 and 3.2.

Once rewritten for the density matrix �".t/, the result of Proposition 4.3 reads as
follows:

Corollary 4.4. If lim"!0 "�."/ D � 2 R, then, under the hypotheses of Proposition 4.3,
there exists a common subsequence ¹nkºk2N such that, for any t 2 R,

�"nk .t/ �����!k!C1
mt WD e

�itK0..e�it�!/?nt /e
itK0 ; (4.9)



Quasi-classical dynamics 769

where .e�it�!/?nt is the measure obtained by pushing forward nt by means of the unitary
map e�it�! W h! h. Furthermore, for any T > 0, any t 2 Œ�T; T � and any ı0 � ı,Z

h

d�mt
.z/ .kzk2h C 1/

ı0
� C.T /; (4.10)

where C.T / is as in (4.6).

Proof. The result trivially follows from Proposition 4.3 by identifying eitK0Be�itK0

with B 2 B.H/, as the bounded operator for the weak convergence, and using a very
general result for linear symplectic maps, and their quantization as maps on algebras of
canonical commutation relations [23, Proposition 6.1].

Thus, we have obtained a common convergent subsequence, and a map t 7! nt of
quasi-classical Wigner measures. The next step is to characterize that dynamical map
explicitly by means of a transport equation, and study the uniqueness properties of the lat-
ter. To do that, we study the convergence of the integral equation provided in Lemma 3.4.

Proposition 4.5 (Transport equation for n.t/). Under the assumptions of Proposition 4.3,
the family ¹ntºt2R of state-valued probability measures as in (4.5) satisfies in the weak
sense, i.e., when tested against any B 2 B.H/, the integral equation

ynt .�/ D yns.�/ � i

Z t

s

d�
Z

h

d�n� .z/ Œ
zV� .e

�i��!z/; n� .z/�e
2i Re h�jzih ; (4.11)

indexed by � 2 h, where

zV� .�/ WD e
i�K0V.�/e�i�K0 D

NX
jD1

ei�K02Re h�.xj /j�ihe�i�K0 (4.12)

is meant as a map from h to B.H/.

Proof. The existence of a common subsequence ¹"nk ºk2N , "nk ! 0, such that (4.5) holds
true is guaranteed by Proposition 4.3. Let us now fix s; t 2 R; given the convergence
along the subsequence at any time, it is possible to let k ! 1 separately in all terms
of the microscopic integral equation of evolution given in Lemma 3.4, traced against an
arbitrary operator B 2 B.H/.

For the integral term (second term on the right hand side of (3.16)), we make use
of Propositions 2.6 and 3.2, where the latter is used to prove that ‡".�/ satisfies the
hypotheses of the former for all � 2 Œs; t �, using e�i�K0Bei�K0 as test operators. In order
to do that, it is necessary to take the limit within the time integral. That is possible thanks
to a dominated convergence argument, which makes use of the regularity assumption
on �": for any bounded operator B, consider the integrand function

I.�/ WD

NX
jD1

Tr
�
Œ'".e

�i�"�."/!�.xj //; ‡".�/�.e�i�K0Bei�K0 ˝W".�//
�
:
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Its absolute value is bounded, using standard Fock space estimates, as

jI.�/j � 2N k�k
L1.Rd I;h/

kBkTr
�
‡".�/.dG".1/C 1/

1=2
�
:

Using Proposition 3.2 (see (3.8) and Remark 3.3) and the regularity assumption on �", it
follows that the right hand side of the above expression is uniformly bounded by a finite
constant. Hence, I.�/ is integrable on any finite interval Œs; t �, uniformly in ".

5. Uniqueness for the quasi-classical transport equation

In this section we study the properties of the transport equation for state-valued measures
obtained in Proposition 4.5 as the quasi-classical limit of the microscopic evolution of
states.

The first technical point is discussed in Lemma 5.1 below, where it is proven that it is
possible to exchange freely the two integrals of the aforementioned equation, which reads

dnt .z/ D dn.z/ � i

Z t

s

d� d�n� .z/ Œ
zV� .e

�i��!z/; n� .z/�; (5.1)

or equivalently, using the Radon–Nikodým decomposition nt D .�nt ; nt .z//,

nt .z/d�nt .z/ D ns .z/d�ns .z/ � i

Z t

s

d� d�n� .z/ Œ
zV� .e

�i��!z/; n� .z/�: (5.2)

Let us discuss the Bochner integrability of Œ zV� .e�i��!z/; n� .z/� and justify the above
statement.

Lemma 5.1. Let ¹ntºt2R be the family of state-valued measures as in Proposition 4.3.
Then Œ zVt .e�it�!z/; nt .z/� is Bochner �nt -integrable for any t 2 R, and the norm of the
integral is uniformly bounded with respect to t on compact sets.

Proof. By (4.6), we immediately see thatZ
h

d�nt .z/kzkh � C.t/ (5.3)

for all t 2 R and some C.t/ < C1. Moreover, for �nt -almost all z 2 h, knt .z/kL1.H/
D 1, so that

kŒ zVt .e
�it�!z/; nt .z/�kL1.H/ � 2k

zVt .e
�it�!z/k � 4N k�kL1.Rd Ih/kzkh;

which implies the result via (5.3).

From now on, we assume that we are considering a solution t 7! nt that satis-
fies (4.11). Let us introduce some terminology: a family of measures t 7! nt solving
(4.11) in Proposition 4.5 for all � 2 h is called a weak or weak-� Fourier solution if
(4.11) holds true when tested against bounded or compact operators, respectively. Note
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that every weak or weak-� Fourier solution is also a weak or weak-� solution of (5.2),
respectively, where the latter are solutions obtained by testing with smooth cylindrical
scalar functions instead of Fourier characters. Let us further specify these last features.
We first have to properly define the set of test cylindrical functions.

Definition 5.2 (Cylindrical functions). A function f W h ! C is a smooth and com-
pactly supported cylindrical function over Ph, where P is an orthogonal projector and
dim Ph <1, if there exists g 2 C10 .Ph/ such that for all z 2 h,

f .z/ D g.Pz/:

We denote by C10;cyl.h/ the set of all smooth cylindrical functions.

Now, let f 2 C10;cyl.h/ and let yf W h! C be its Fourier transform, also cylindrical
over Ph, defined as

yf .�/ D

Z
Ph

dPz e�2�i Re h�jPzif .z/ D

Z
Ph

dPz e�2�i Re h�jPzig.Pz/ D yg.P�/; (5.4)

where dPz stands for the Lebesgue measure on Ph. By testing (4.11) against a cylindrical
function yg.P�/, we getZ

Ph

dP� yg.P�/ynt .P�/ D

Z
Ph

dP� yg.P�/yns.P�/

� i

Z
Ph

dP� yg.P�/

Z t

s

d�
Z

h

dn� .z/ Œ zV� .e
�i��!z/; n� .z/�e

2�i Re hP�jzih :

Hence, it follows that, for any f 2 C10;cyl.h/,Z
h

dnt .z/f .z/D

Z
h

dns.z/f .z/� i

Z t

s

d�
Z

h

dn� .z/f .z/Œ zV� .e
�i��!z/;n� .z/�: (5.5)

Now, fix s 2 R as the initial time, and the corresponding ns � n as the initial datum.
Then the following map t 7! nt is easily checked to be both a weak and weak-� solution
of (5.2):

t 7! .�nt ; nt .z// WD .�n; zUt;s.z/n.z/ zU
�
t;s.z//; (5.6)

where zUt;s.z/ is the two-parameter unitary group on H generated by the time-dependent
generator zV� .e�it�!z/ 2 L.L2/. Note that this evolution two-parameter group exists for
all z 2 h and t 2 R, since the zVt .e�it�!z/ are bounded operators on H (see, e.g., [49]).
Furthermore, the solution given by (5.6) satisfies (5.3) at all times, provided the inequality
is satisfied by the initial datum.

It just remains to prove the solution in (5.6) is actually unique. This of course might
depend on the notion of solution we adopt, but proving weak-� uniqueness, we also get
uniqueness for stronger solutions (weak, Fourier weak-�, and Fourier weak). As a matter
of fact, the proof of uniqueness is actually independent of the notion of solution con-
sidered.
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Proposition 5.3 (Uniqueness for the transport equation for nt ). Let s 2 R be the fixed
initial time, and let ns � n 2M.hIH/ be a Borel state-valued measure such thatZ

h

d�n.z/ kzkh < C:

Then the integral transport equation (5.1) admits a unique weak-� solution nt that satis-
fies (5.3), defined by its norm Radon–Nikodým decomposition

.�nt ; nt .z// D .�n; zUt;s.z/n.z/ zU
�
t;s.z//: (5.7)

This solution is continuous and differentiable on every Borel set in the strong topology
of L1.H/ and its derivative @tnt is a self-adjoint but in general not positive state-valued
measure.

Proof. Any weak solution nt of the transport equation (5.1) or (5.2) satisfying (5.3) is
continuous and can be weakly differentiated with respect to time on Borel sets. However,
given the structure of equation (5.2), it is easy to realize that the derivative actually exists
in the strong topology of L1.H/ and reads

d@tnt .z/ D �i Œ zVt .e�it�!z/; nt .z/�d�nt .z/: (5.8)

To prove uniqueness, suppose that nt is a solution satisfying (5.3). Since we already
know that (5.6) solves the equation, it is sufficient to prove that nt admits the Radon–
Nikodým decomposition (5.6) (recall Proposition 2.2). In order to do that, let us set

dznt .z/ WD zU
�
t;s.z/nt .z/

zUt;s.z/d�nt .z/;

so that, using (5.2) once more, we get

id@t Qnt .z/ D zU
�
t;s.z/Œ

zVt .e
�it�!z/; nt .z/�

zUt;s.z/d�nt .z/

� zU
�
t;s.z/Œ

zVt .e
�it�!z/; nt .z/�

zUt;s.z/d�nt .z/ D 0:

Hence, Qnt D Qns D n. Therefore, nt has indeed the norm Radon–Nikodým decomposi-
tion (5.6).

6. Putting it all together: Proof of Theorem 1.6

It is now possible to combine the results obtained in §§2 to 5, and thus prove Theorem 1.6.
We first state and prove the result for the evolution in the interaction picture and under a
stronger assumption on the initial datum, and then complete the proof by relaxing it and
going back to the evolution for �".t/.

Proposition 6.1 (Quasi-classical evolution in the interaction picture). Let �" 2

L1C;1.H˝K"/ be such that there exists ı > 1=2 satisfying

Tr
�
�".dG".1/C 1/

ı
�
� C:
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If �"n ! m, then
‡"n.t/ �����!

n!C1
nt ; 8t 2 R; (6.1)

where
nt D .�m; zUt;0.z/m.z/ zU

�
t;0.z//:

Proof. By Proposition 4.3, there exists a common subsequence "nk ! 0 such that for all
t 2 R,

‡"nk .t/ �����!k!C1
nt :

Clearly, n0 D m. Moreover, by Proposition 4.5, nt is also a weak solution of (5.2) satis-
fying Lemma 5.1 and (5.3). The weak solution of (5.2) satisfying (5.3) is however unique
by Proposition 5.3, and therefore nt has the Radon–Nikodým decomposition

.�m; zUt;0.z/m.z/ zU
�
t;0.z//:

We now show that the convergence holds at any time along the original subsequence
¹"nºn2N . Let us take a convergent subsequence of ‡"n.t/ at an arbitrary time t , i.e.,

‡"nj .t/ �����!j!C1
n0t : (6.2)

Then, by convergence at time t D 0, we immediately see that

‡"nj .0/ �����!j!C1
m:

Hence, we can proceed as in the proof of Proposition 4.3 and extract a subsequence
¹"njk

ºk2N of ¹"nj ºj2N such that we have convergence at any time. Furthermore, again by
Proposition 4.5, the limit points n0t are weak solutions of the transport equation. There-
fore, by uniqueness of the solution, n0t D nt . Hence, all the convergent subsequences of
‡"n.t/ have the same limit point, which implies that ‡"n.t/ �����!

n!C1
nt .

The analogue for �" of Proposition 6.1 is

Corollary 6.2. Under the hypotheses of Proposition 6.1, for any t 2 R,

�"n.t/ �����!
n!C1

mt D e
�itK0..e�it�!/?nt /e

itK0 : (6.3)

Proof. In view of Proposition 6.1, this is a direct consequence of Corollary 4.4.

The proof of Theorem 1.6 is almost complete; it remains only to extend the result
to states �" 2 L1C;1.H ˝K"/ satisfying the weaker condition that there exist ı > 0 and
C < C1 such that

Tr
�
�".dG".1/C 1/

ı
�
� C: (6.4)
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This is done by standard approximation techniques, using an argument originally pro-
posed in [8, §2] (see also [3, §4.5]). Let us briefly reproduce the key ideas here. Let �"
satisfy (6.4), and define

�.r/" WD
�r .dG".1/C 1/�"�r .dG".1/C 1/

Tr.�r .dG".1/C 1/�"�r .dG".1/C 1//
2 L1C;1.H˝K"/; (6.5)

where r > 0 and �r .�/D �.�=r/, �2C10 .R/, with 0� �� 1 and �D 1 in a neighborhood
of zero. By functional calculus and (6.4), for any t 2 R,

k�".t/ � �
.r/
" .t/k

L1
C;1

.H˝K"/
D k�" � �

.r/
" kL1

C;1
.H˝K"/

D or .1/ as r !1;

uniformly in " 2 .0; 1/. In addition, �.r/" satisfies the assumptions of Proposition 6.1.
Suppose now that �"n !m, and for all r > 0, let "nk.r/! 0 be a subsequence and m.r/ a
state-valued measure such that �.r/"nk.r/!m.r/. Then, by Corollary 6.2, �.r/"nk.r/.t/!m

.r/
t

for any t 2R, where the latter is defined by Theorem 1.6 with m.r/ in place of m. Finally,
let us extract a subsequence "nk` .r;t/ ! 0 such that �"nkl .r;t/

.t/! � t . By adapting the
argument in [8, Proposition 2.10] to state-valued measures, we find that for any fixed
t 2 R, Z

h

dj��t � �m
.r/
t
j D or .1/;

where j��t � �m
.r/
t
j is the scalar measure in the norm Radon–Nikodým decomposition

of the total variation of the signed state-valued measure � t �m
.r/
t [23, §A.3], i.e., the

sum of its positive and negative parts. Hence, denoting by mt the measure appearing in
Theorem 1.6, we haveZ

h

dj��t � �mt
j �

Z
h

dj��t � �m
.r/
t
j C

Z
h

dj�
m
.r/
t
� �mt

j D or .1/:

Therefore, � t � mt . Since any subsequence extraction yields the same result, it follows
that, for all t 2 R, �"n.t/! mt , thus concluding the proof of Theorem 1.6.

Corollary 1.14 is then a trivial application of the definition of w-� convergence and so
we omit the proof. It only remains to prove Corollary 1.7 and Theorem 1.16.

Proof of Corollary 1.7. We first of all remark that the quasi-classical evolution t 7! mt

preserves the mass, i.e.,

8t; t 0 2 R; kmt .h/kL1.H/ D kmt 0.h/kL1.H/:

Therefore, for the first part of the statement, it suffices to prove that, under assumption
(A2) or (A20), km.h/k

L1.H/
D 1.

In the case of assumption (A2), we can actually show that quasi-classical convergence
can be lifted to bounded quasi-classical convergence. In fact, let B 2 B.H/ and consider

trH. O�".�/B/ D trH. O�";A.�/A�1=2BA�1=2/;
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where
O�";A.�/ D trK".A

1=2�"A
1=2W".�//

is the Fourier transform of the state A1=2�"A1=2 2 L1C.H˝K"/ by (A2). Therefore, on
the one hand, by Proposition 2.5, if �"n ! m, then

A1=2�"A
1=2
! A1=2mA1=2

I

on the other hand, since A�1=2BA�1=2 2 L1.H/, Theorem 1.6 guarantees that

trH. O�"n.�/B/ D trH. O�"n;A.�/A
�1=2BA�1=2/

�����!
n!C1

Z
h

d�m e
2i Reh�jzih trH.A1=2m.z/A

1=2A�1=2BA�1=2/

D trH. Om.�/B/: (6.6)

Choosing � D 0 and B D 1 one concludes that km.h/k
L1.H/

D 1.
The proof assuming (A20) uses a dominated convergence argument. Let us denote by

¹Pkºk2N � L1.H/ the projections onto the eigenspaces of m.h/, i.e.,

m.h/ D
X
k2N

mkPk ;

mk 2 RC being the associated eigenvalues. Then, for any k 2 N, we can apply The-
orem 1.6 to get

Tr.�"nPk/ D trH."nPk/ �����!
n!C1

trH.m.h/Pk/ D ˛kmk ; (6.7)

where ˛k 2 N is the multiplicity of the eigenvalue mk of m.h/. Hence, by (A20),

1 D Tr.�"/ D trH."/ D
X
k2N

trH."Pk/

�

X
k2N

trH.Pk/ D trH./ < C1:

Therefore, by dominated convergence,

1 D lim
n!C1

Tr.�"n/ D lim
n!C1

X
k2N

trH."nPk/ D
X
k2N

lim
n!C1

trH."nPk/

D

X
k2N

˛kmk D km.h/kL1.H/:

Proof of Theorem 1.16. First of all, assumption (Aı ) is propagated in time by means of
Proposition 3.2. In addition, the measure mt is characterized by Theorem 1.6 at any time
t 2 R. Finally, the convergence of the expectations of the Wick quantizations of sym-
bols F 2 S`;m, under condition (Aı ), is given by Proposition 2.6. Combining the above
ingredients proves Theorem 1.16.
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7. Technical modifications for Pauli–Fierz and polaron models

Theorem 1.6 is stated not only for the regularized Nelson model, but also for the Pauli–
Fierz and polaron models. The strategy of the proof for these cases is identical to the
one followed above for the Nelson model. However, one has to overcome some technical
difficulties related to the fact that such models are “more singular”. In particular, the
major difficulty is due to the presence of terms of type r � a#

".�.x// and their adjoints
in the microscopic Hamiltonian H". In this connection, one needs to propagate in time
some further regularity of quantum states, in addition to what is done in Proposition 3.2
for the Nelson model. Finally, some care has to be taken in defining the effective limit
dynamics Ut;s.z/. We comment below on the technical adaptations needed to take care
of such difficulties.

7.1. Quasi-classical analysis of gradient terms

In order to deal with terms of the form r � a#
".�.x// with � 2 L1.Rd I hd /, one needs

to extend the convergence proven in Proposition 2.6 to such observables. This is done in
two steps: first, it is possible to restrict the set of test observables using the set K defined
in Lemma 2.4, for it separates points, and then prove that with that restriction the expect-
ation values indeed converge (Proposition 7.1). In particular, Lemma 2.4 is used below
for the convergence of gradient terms, to solve possible domain ambiguities whenever the
gradient acts on the test operator: we end up with a form of the integral transport equation
for the measure that holds only when tested with particle observables in K (recall (2.16)),
setting T D K0, where K0 is the self-adjoint free particle Hamiltonian. With such test-
ing it still makes sense to study uniqueness of the solution, since the aforementioned set
separates points.

Let us now consider the convergence of the expectation value of the gradient term. Let
us recall that a#

".f / stands for either a".f / or a�" .f /, and correspondingly hf jzi#h stands
for either hf jzih or hzjf ih. Let us recall that in all the concrete models considered,
K0 � p > �1, and

jrj.K0 C 1 � p/
�1=2
2 B.H/: (7.1)

Proposition 7.1 (Convergence of expectation values of gradient terms). Let �" 2
L1C;1.H˝K"/ be such that there exists ı > 1 such that

Tr
�
�".K0 � p C .dG".1/C 1/

ı/
�
� C: (7.2)

If �"n �����!
n!C1

m, then for any B 2 K, any ˛; ˇ 2 R and all � 2 h,

lim
n!C1

Tr
�
�"n

�
˛r � a#

"n
.�.x//C ˇa#

"n
.�.x// � r

�
.B ˝W"n.�//

�
D trH

�Z
h

d�m.z/ m.z/
�
˛r � h�.x/jzi#h C ˇh�.x/jzi

#
h � r

�
e2i Re h�jzihB

�
; (7.3)
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lim
n!C1

Tr
��
˛r � a#

"n
.�.x//C ˇa#

"n
.�.x// � r

�
�"n.B ˝W"n.�//

�
D trH

�Z
h

d�m.z/
�
˛r � h�.x/jzi#h C ˇh�.x/jzi

#
h � r

�
e2i Re h�jzihm.z/B

�
: (7.4)

Proof. We prove the result for �".r � a".�.x// C a".�.x// � r/, the other cases being
perfectly analogous.

First of all, we observe that .K0 � p/1=2�"n.K0 � p/
1=2 is a positive operator and

we can consider its quasi-classical convergence as n!C1: by Proposition 2.5,

.K0 � p/
1=2�"n.K0 � p/

1=2
�����!
n!C1

.K0 � p/
1=2m.K0 � p/

1=2: (7.5)

The term �"a".�.x// � r, in which the gradient acts directly on B, converges by
Proposition 2.6, since @jB 2 L1.H/ for all j D 1; : : : ; d and B 2 L1.H/.

It remains to discuss the term �"r � a".�.x//. This term requires suitable approxima-
tions. First of all, let us approximate each operator-valued symbol

F
.�/
j .z/ WD h�j .x/jzih; j D 1; : : : ; d;

by means of Lemma 2.7, and denote its approximation by F .�/j;M . It follows that, using
estimates analogous to the ones used in the proof of Proposition 2.6,ˇ̌̌ dX
jD1

Tr
�
�"@j Œa".��.x// � OpWick

" .F
.�/
j;M /�.B ˝W".�//

�ˇ̌̌
� CkBk

dX
jD1

kF
.�/
j � F

.�/
j;Mk;

and the right hand side does not depend on ", and converges to zero as M ! C1. In
addition, let us recall that the symbol F .�/j;M has the form

F
.�/
j;M D

J.M/X
kD1

h'j;kjzih1Bk .x/;

where J.M/ 2 N, 'j;k 2 h, and Bk � Rd is a Borel set. Let us consider the convergence
as "n ! 0 of each term of the above sums separately, for M fixed. In other words, let us
consider the convergence of

Tr
�
�"n@ja"n.'j;k/1Bk .x/.B ˝W"n.�//

�
D trH

®
trK" Œ�"na"n.'j;k/W"n.�/�@j1Bk .x/B

¯
:

The operator a".'�;k/W".�/ is the product of the Weyl quantizations of two cylindrical
albeit not compactly supported symbols, over the complex Hilbert subspace spanned by
'j;k and �. Therefore, by finite-dimensional pseudodifferential calculus, for all M there
exists a smooth compactly supported scalar symbol F .j;k;�/� 2 C10;cyl.h/ such that, for any
ı0 > 1=2,

kŒa".'j;k/W".�/ � OpWeyl
" .F .j;k;�/� /�.dG".1/C 1/

�ı0
kB.K"/

D o� .1/ C o".1/: (7.6)
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Hence, the Cauchy–Schwarz inequality, (7.2) and (7.1) yieldˇ̌
Tr
�
�"n@j .a"n.'j;k/ � OpWeyl

" .F .j;k;�/� //1Bk .x/.B ˝W"n.�//
�ˇ̌

� CkBkkŒa".'j;k/W".�/ � OpWeyl
" .F .j;k;�/� /�.dG".1/C 1/

�ı0
kB.K"˝H/

�
ˇ̌
tr
�
.K0 C 1 � p/

1=2.dG".1/C 1/
ı0�"n

�ˇ̌
� CkŒa".'j;k/W".�/ � OpWeyl

" .F .j;k;�/� /�.dG".1/C 1/
�ı0
kB.K"˝H/

�
ˇ̌
tr
��

K0 C 1 � p C .dG".1/C 1/
2ı0
�
�"n

�ˇ̌
D o� .1/C o".1/: (7.7)

In addition, for all ı0 > 1=2,

.h'j;kjzihe
2i Re h�jzih � F .j;k;�/� .z//.kzk2h C 1/

�ı0
D o� .1/ (7.8)

uniformly in z 2 h. We can now take the limit as "n ! 0 of the remaining term

Tr
�
�"n@jOpWeyl

" .F .j;k;�/� /1Bk .x/B
�

D trH
�

tr�s

�
.K0 � p/

1=2�"n.K0 � p/
1=2OpWeyl

" .F .j;k;�/� /
�
.K0 � p/

�1=2@j1Bk .x/

�B.K0 � p/
�1=2

�
:

Since the symbol F .j;k;�/� is in C10;cyl.h/, this converges to (see [23] for further details)

trH

�Z
h

d�m.z/ .K0 � p/
1=2m.z/.K0 � p/

1=2F .j;k;�/� .z/.K0 � p/
�1=2@j1Bk .x/

�B.K0 � p/
�1=2

�
D trH

�Z
h

d�m.z/ m.z/.K0 � p/
1=2F .j;k;�/� .z/.K0 � p/

�1=2@j1Bk .x/B
�
:

The limit as � ! C1 can then be taken by dominated convergence, at fixed M , thanks
to the uniform bound for ı > 1,Z

h

d�m.z/
�
trH.m.z/.K0 � p//C .kzk

2
h C 1/

ı
�
� C; (7.9)

which also allows us to take the limit as M !C1.

7.2. Propagation estimates and the pull-through formula

In this section we discuss the so-called pull-through formula, needed to characterize the
dynamics in the quasi-classical limit for the polaron model; as we are going to see, the
pull-through formula is key to propagate the a priori bounds on the initial state at later
times. The formula holds for the massive Nelson and the polaron model, therefore H" in
this section stands for any of the Hamiltonians defined above, although it is not needed
for the Nelson model with ultraviolet cutoff, as considered in this paper. Indeed, in that
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case, one can simply use the propagation estimates of Proposition 3.2, valid also in the
massless case.

Before discussing the formula, let us remark that the Pauli–Fierz and polaron Hamilto-
nians are self-adjoint and bounded from below. There is an extensive literature concerning
the self-adjointness of the Pauli–Fierz Hamiltonian (see, e.g., [21, 37–39, 45, 52] and ref-
erences therein), which, under our assumptions, is self-adjoint on D.K0/ \D.dG".!//.
The polaron Hamiltonian is also self-adjoint [27,35], but its domain of self-adjointness is
not explicitly characterized. On the other hand, its form domain is known, and it coincides
with the form domain of K0 C �."/dG".1/.

We do not prove the pull-through formula, since it is discussed in detail for the massive
renormalized Nelson model in [1], and its independence of the semiclassical parameter
has been shown in [4]. The models we consider here are “contained” in the massive
renormalized Nelson model, in the sense that all the terms in the Hamiltonians contained
here are parts of or are analogous to some parts of the renormalized Nelson Hamiltonian.
Therefore, they have already been discussed in the aforementioned papers.

Proposition 7.2 (Pull-through formula). There exist finite constants a; b, independent
of ", such that for any " 2 .0; 1/ and any ‰" 2 D.H"/,

kdG".1/‰"kH˝K" �
a

�."/
k.H" C b/‰"kH˝K" : (7.10)

To study the quasi-classical limit of the (massless) Pauli–Fierz model, we cannot use
the pull-through formula; we use instead the following propagation result (see [5] for a
detailed proof).

Proposition 7.3 (Propagation estimate). Let H" be the Pauli–Fierz Hamiltonian with
either �."/ D 1 or �."/ D 1=". Then there exist finite constants C1; C2, independent of ",
such that for any " 2 .0; 1/, any ‰" 2 D.K0/ \D.dG".!// \D.dG".1// and any t 2 R,

kdG".1/e
�itH"‰"kH˝K"

� C1ŒkdG".1/‰"kH˝K" C k.K0 C dG".!/C 1/‰"kH˝K" �e
C2jt j : (7.11)

In addition, there exist finite constants c; C > 0, independent of ", such that for any
" 2 .0; 1/ and any ‰" 2 D.H"/ D D.K0/ \D.dG".!//,

ck.H" C 1/‰"kH˝K"

� k.K0 C �."/dG".!/C 1/‰"kH˝K" � Ck.H" C 1/‰"kH˝K" : (7.12)

Let us now outline in more detail how one can use the pull-through formula in the
adaptations of the arguments to cover the polaron model. The main technicality is the
propagation of the a priori bound and regularity of the state. This can be achieved by a
direct application of Proposition 7.2: one can simply restrict the proof of Theorem 1.6 to
states satisfying

Tr
�
�"..K0 C dG".!/C 1/

2
C dG".1/

2/
�
� C; (7.13)

Tr.�"H 2
" / � C�."/

2; (7.14)
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for any " 2 .0; 1/. Let us remark that the regularity assumptions above are not propagated
in time as they are, but they are rather used to control the following expectations at any
time t 2 R:

� Tr.�".t/K0/;

� Tr.�".t/.dG".1/C 1/
2/.

The first expectation is bounded uniformly in " as in [14, Lemma 3.4], using the assump-
tion (7.13). The second expectation is bounded using Proposition 7.2 and assumption
(7.14). Once the bounds for the two quantities above are established at any time, it is pos-
sible to use Proposition 7.1 for the quasi-classical convergence of the interaction terms
appearing in the integral equation. The result is then extended to general states satisfy-
ing (A1) by means of the procedure outlined in §6.

For the Pauli–Fierz model one proceeds similarly, using Proposition 7.3 instead of the
pull-through formula. Theorem 1.6 is first proved for initial states such that

Tr
�
�".K0 C dG".!/C .dG".1/C 1/

2/
�
� C (7.15)

for " 2 .0; 1/. The needed regularity of the expectation of the number operator at any time
is then obtained thanks to Proposition 7.3. To bound the free particle part, one proceeds as
for the polaron model in [14, Lemma 3.4], the only difference being that instead of using
KLMN-smallness, which would be true only for small values of the particles’ charge, one
uses again the number estimate of Proposition 7.3 to close the argument (see [47] for addi-
tional details). Therefore, it is possible to apply Proposition 7.1 to get the quasi-classical
convergence of the gradient terms appearing in the integral equation, and Proposition 2.6
to get the convergence of quadratic terms in the creation and annihilation operators. The
proof can then be completed exactly as for the polaron model.

7.3. Quasi-classical evolution

In this section we briefly discuss the well-posedness of the effective evolution equation
for the polaron and Pauli–Fierz models with �."/D 1=". In fact, when �."/D 1 or � D 0,
the generator of Ut;s.z/, K0CV.z/, does not depend on time and therefore the evolution
is defined by Stone’s theorem, and the interaction picture zUt;s.z/ is weakly generated by
t 7! zVt .z/.

If however �."/ D 1=", we need to prove the existence of a two-parameter group
.Ut;s.z//t;s2R of unitary operators satisfying

i@tUt;s.z/ s D .K0 C Vt .z//Ut;s.z/ s;

i@sUt;s.z/ s D �Ut;s.z/.K0 C Vs.z// s;

Us;s.z/ s D  s;

for any  2D.K0/, where D.K0/ is also the domain of self-adjointness for K0CVt .z/

for all t 2 R.
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For the Pauli–Fierz model, it is easy to prove that the map t 7!K0CVt .z/ is strongly
continuously differentiable on D.K0/. Therefore, a result of [50] guarantees the existence
of .Ut;s.z//t;s2R. Again, QUt;s.z/ is then defined by zUt;s.z/D e

itK0Ut;s.z/e
�isK0 , and

it is weakly generated by zVt .z/. For the polaron model, on the other hand, the existence
of the quasi-classical dynamics follows from a general result concerning the evolution
generated by time-dependent closed quadratic forms with a time-independent common
core, proved, e.g., in [51, Theorem II.27 & Corollary II.28].
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