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Abstract. A point p in a projective space is h-identifiable via a variety X if there is a unique way
to write p as a linear combination of h points of X . Identifiability is important both in algebraic
geometry and in applications. In this paper we propose an entirely new approach to study identifi-
ability, connecting it to the notion of secant defect for any smooth projective variety. In this way we
are able to improve the known bounds on identifiability and produce new identifiability statements.
In particular, we give optimal bounds for some Segre and Segre–Veronese varieties and provide the
first identifiability statements for Grassmann varieties.
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Introduction

The notion of identifiability or canonical form is ubiquitous in algebraic geometry and
applications. We say that an element p of a projective space PN is h-identifiable via a
varietyX if there is a unique way to write p as a linear combination of h elements ofX . In
the algebraic geometry setting this very often translates into the study of Cremona modi-
fications associated to linear systems with prescribed singularities [25, 35], and has con-
nections with geometric invariant theory, [27], using the dictionary of canonical forms. In
the applied setup one usually considers a tensor space or a space of distributions, and the
identifiability allows one to reconstruct a point of this set via a subset of special elements
defined by rank conditions or other special requirements. For applications ranging from
biology to Blind Signal Separation, data compression algorithms, quantum computing
and analysis of mixture models [22–24,28,34], uniqueness of decompositions allows one
to solve the problem once a solution is determined. For all these reasons it is interesting
and often crucial to understand identifiability with respect to different projective varieties.
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Over a decade ago the notion of h-weakly defective varieties and birational projective
geometry, with the maximal singularities method, have been connected to identifiability
of polynomials [33]. This provided the first systematic study of identifiability for Ver-
onese varieties. More recently with the work of Luca Chiantini and Giorgio Ottaviani
[19], weakly defective varieties have been substituted by h-tangentially weakly defective
varieties to study identifiability problems for tensor spaces. In both approaches, to provide
identifiability, one has to check the behavior of special linear systems and quite often this
is done by an ad hoc degeneration argument. As a consequence, identifiability has been
proved in very few cases and very often the results obtained are not expected to be sharp
[9, 12, 13, 19, 29].

In this paper, instead of looking at a specific projective variety X � PN and studying
its secant geometry, we aim to introduce a global approach to identifiability that can be
applied to any projective variety. For this reason we do not use the standard methods of
tensor analysis but provide, with birational projective geometry, a new viewpoint on iden-
tifiability. In this way we are able to recover the majority of identifiability results already
known and prove infinitely many new identifiability statements, meeting the conjectural
bounds in many cases.

Starting from the seminal paper [17], where the geometry of contact loci has been
carefully studied, and the improvement presented in [8], we derive identifiability state-
ments for non-secant defective varieties. With this new approach we are able to translate
all the literature on defective varieties into identifiability statements.

To do it we first provide a bridge between secant defectivity and identifiability. The
starting point of our analysis is the observation that, in all known examples, when a variety
X is not h-identifiable then any element in �hC1.X/ has infinitely many decompositions
[8, 11, 13, 18, 20]. Going back to the ideas in [33] we realize that the best way to use
this observation is to set a connection between the abstract secant map and the tangential
projection. This link is provided by the construction of a map from the Hilbert scheme
of points of the contact loci of h-tangentially weakly defective varieties to a suitable
Grassmannian. Under the right assumptions this map is proved to be of fiber type and it
allows us to connect defectivity and non-identifiability.

One of the technical results we prove in this direction is the following conditional
relation between identifiability and defectivity; we refer to Section 1 for the necessary
definitions.

Theorem. Let X � PN be an irreducible reduced variety. Assume that h > dimX , X is
not .h � 1/-tangentially weakly defective and it is not h-identifiable. Then X is .hC 1/-
defective.

This, together with an improvement of the contact loci geometry studied in [17]
and [8], leads us to derive identifiability from non-defectivity under a mild hypothesis.

Theorem. Let X � PN be a smooth variety. Assume that �X
k
W �k.X/! PN is gener-

ically finite and k > 2 dimX . Then X is .k � 1/-identifiable.
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Let us stress that if �X
k

is not generically finite then X is not k-identifiable. Therefore
the theorem gives an almost complete answer to the identifiability problem for any smooth
variety, under a very mild numerical hypothesis on the codimension.

Next we apply our strategy to some special projective varieties. As already mentioned,
identifiability issues are particularly interesting for tensor spaces. As a corollary we get
the best asymptotic identifiability result so far for Segre, Segre–Veronese, and Grassmann
varieties, that is, tensors and structured tensors (see Section 3). As a sample we state an
application to binary tensors. This class of tensors is particularly interesting for quantum
computing, being the geometrical version of qbits.

Theorem. The Segre embedding of n copies of P1, with n � 5, is h-identifiable for any
h � b 2

n

nC1
c � 1.

Recall that the generic rank of the Segre embedding of .P1/n is d 2
n

nC1
e, therefore our

result shows generic identifiability of all subgeneric binary tensors in the perfect case,
that is, when 2n

nC1
is an integer, and all but the last one for the other values, as predicted

by the conjecture posed in [12]. To show the flexibility of our method we deduce the
identifiability of the Gaussian moment variety (see Example 40), studied in [4].

The paper is structured as follows. In Section 2 we study the geometry of contact locus
and prove the main technical results about the connections between defectivity and non-
identifiability. In the final section we apply our techniques to varieties that are meaningful
for tensor decompositions.

1. Notation

We work over the complex field. A projective variety X � PN is non-degenerate if it is
not contained in any hyperplane.

Let X � PN be a non-degenerate reduced variety. Let X .h/ be the h-th symmetric
product of X , that is, the variety parameterizing unordered sets of h points of X . Let
UX
h
� X .h/ be the smooth locus, given by sets of h distinct smooth points.

Definition 1. A point z 2 UX
h

represents a set of h distinct points, say ¹z1; : : : ; zhº. We
say that a point p 2 PN is in the span of z, p 2 hzi, if it is a linear combination of the zi .

With this in mind we define

Definition 2. The abstract h-secant variety is the variety

sech.X/ WD ¹.z; p/ 2 UXh � PN j p 2 hziº � X .h/ � PN :

Let � W X .h/ � PN ! PN be the projection onto the second factor. The h-secant
variety is

�h.X/ WD �.sech.X// � PN ;

and �X
h
WD �jsech.X/ W sech.X/! PN is the h-secant map of X .
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The variety sech.X/ has dimension hn C h � 1. If the variety X is irreducible and
reduced we say that X is h-defective if

dim �h.X/ < min ¹dim sech.X/;N º:

Remark 3. If X is h-defective then the h-secant map is of fiber type.
Note that the image in PN of a general point in sech.X/ is a linear combination of h

points of X . Thanks to the non-degeneracy assumption the image of a general point in
�h.X/ ¨ PN is not a linear combination of fewer points on X .

The tricky part in studying secant varieties is the closure. Many different things can
happen: the h points can group in non-reduced clusters or positive-dimensional intersec-
tion can appear. As a matter of fact, these special loci are really difficult to control and the
main advantage to use birational geometry is the opportunity to get rid of them.

Definition 4. Let X � PN be a non-degenerate subvariety. We say that a point p 2 PN

has rank h with respect to X if p 2 hzi for some z 2 UX
h

, and p 62 hz0i for any z0 2 UX
h0

with h0 < h.

Remark 5. With this in mind it is easy to produce examples of limits of rank h points
with different rank. If we let one of the point degenerate to the span of the others we lower
the rank. If we let two points collapse to one point, in general the rank may increase.

Definition 6. A point p 2 PN is h-identifiable with respect to X � PN if p is of rank h
and .�X

h
/�1.p/ is a single point. The variety X is said to be h-identifiable if �X

h
is a

birational map, that is, the general point of �h.X/ is h-identifiable.

It is clear, by the above remark, that when X is h-defective, or more generally when
�X
h

is of fiber type, then X is not h-identifiable.
The next ingredient we need to introduce is the Terracini Lemma.

Theorem 7 (Terracini Lemma [16]). Let X � PN be an irreducible variety. Then

� for any x1; : : : ; xk 2 X and z 2 hx1; : : : ; xki,

hTx1
X; : : : ;Txk

Xi � Tz �k.X/;

� there is a dense open set U � X .k/ such that

hTx1
X; : : : ;Txk

Xi D Tz �k.X/

for a general point z 2 hx1; : : : ; xki with .x1; : : : ; xk/ 2 U .

The Terracini Lemma yields a direct consequence of h-defectiveness. If X is h-
defective then the general fiber of �X

h
has positive dimension. Therefore by Terracini

the general hyperplane tangent at h points of X is singular along a positive-dimensional
subvariety. This property does not characterize defective varieties.

Definition 8. Let X � PN be a non-degenerate variety. The variety X is said to be
h-weakly defective if the general hyperplane section singular along h general points is
singular along a positive-dimensional subvariety.
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There is a direct connection, proven in [16], between h-weak defectiveness and iden-
tifiability.

Theorem 9. If X is not h-weakly defective then it is h-identifiable.

The main problem is that it is quite hard in general to verify if a variety is h-weakly
defective.

To overcome this problem, the notion of tangentially weakly defective varieties has
been introduced [19]. Here we follow the notations of [8].

Let X be an irreducible and reduced non-degenerate variety. For a subset A D
¹x1; : : : ; xhº � X of general points we set

MA WD
D[
i

Txi
X
E
:

By the Terracini Lemma the space MA is the tangent space to �h.X/ at a general point
in hAi.

Definition 10. The tangential h-contact locus �h D �.A/ is the closure inX of the union
of all the irreducible components, which contain at least one point of A, of the locus of
points of X where MA is tangent to X . We will write 
h WD dim�.A/. We say that X is
h-twd (tangentially weakly defective) if 
h > 0.

Remark 11. It is clear that if X is h-twd then it is h-weakly defective, it is .h C 1/-
twd and �h � �hC1. Using scrolls it is not too difficult to produce explicit examples of
varieties that are h-weakly defective but are not h-twd; see also Remark 19.

For what follows it is useful to introduce also the notion of tangential projection.

Definition 12. Let X � PN be a variety and A D ¹x1; : : : ; xhº � X a set of general
points. The h-tangential projection (from A) of X is

�h W X Ü PM ;

the linear projection from MA, that is, by the Terracini Lemma, the projection from the
tangent space of a general point z 2 hAi of �h.X/ restricted to X .

2. Relation between twd and defectivity

We start by collecting properties of the tangential contact loci that will be useful for our
purpose.

Theorem 13. Let X � PN be an irreducible, reduced, and non-degenerate variety. Let
A � X be a set of h general points and � the associated contact locus. Assume that
�h�1.X/ ¨ PN . Then

(a) � is equidimensional and it is either irreducible .type I/ or reduced .type II/ with
exactly h irreducible components, each of them containing a single point of A [17,
Proposition 3.9],
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(b) h�i D �h.�/ and �i .�/ ¤ h�i for i < h [17, Proposition 3.9],

(c) for z 2 h�i general, �X
h
..�X

h
/�1.z// � h�i [17, Proposition 3.9],

(d) if we are in type I then 
h > 
h�1 [8, Lemma 3.5],

(e) if 
h D 
hC1, �hC1.X/ is not defective and does not fill up PN then we are in type II
and the irreducible components of both contact loci are linearly independent linear
spaces [8, Lemma 3.5],

(f) if we are in type I and �hC1.X/ is not defective and does not fill up PN then �hC1 is
of type I.

Proof. Points (a)–(e) are proved in the cited papers under the assumption that �h.X/
¨ PN . Points (a)–(d) are immediate when �h.X/ D PN and �h�1.X/ ¨ PN .

We have only to prove point (f). LetAD ¹x1; : : : ; xhº andB DA[ ¹xhC1º be general
sets in X . Assume that �.B/ is of type II. By definition �.A/ � �.B/; on the other
hand, by point (a) the irreducible component of �.B/ through x1 does not contain x2 and
therefore it cannot contain �.A/. This contradiction proves the claim.

From the point of view of identifiability the notions of weak defectiveness and twd
behave the same. The following proposition is well known to experts but we have not
been able to find a written version of it.

Proposition 14 ([15]). LetX � PN be an irreducible, reduced, and non-degenerate vari-
ety. Assume that X is not h-twd. Then X is h-identifiable.

Proof. Assume that X is not h-identifiable and let z 2 �h.X/ be a general point. Let
z 2 hx1; : : : ; xhi for xi general in X . The existence of a different decomposition yields
a new set ¹y1; : : : ; yhº � X such that z 2 hy1; : : : ; yhi. Moving the point z in the linear
space hx1; : : : ; xhi yields a positive-dimensional contact locus.

Remark 15. We want to stress that h-identifiability is not equivalent to non-h-twd. In [21]
and [11], examples are described of Segre and Grassmannian varieties that are h-identifi-
able but h-twd.

We aim to study the relation between twd and defectivity. The next lemma is a first
step in this direction.

Lemma 16. Let X � PN be an irreducible, reduced, and non-degenerate variety of
dimension n,

�Xk W seck.X/! PN

the k-secant map, �X
k�1
W X Ü PM the .k � 1/-tangential projection, and � WD

�.x1; : : : ; xk/ the k-contact locus associated to the general points x1; : : : ; xk .

(i) The map �X
k

is of fiber type if and only if �X
k�1

is of fiber type.

(ii) Let ¹x1; : : : ; xk ; y1; y2º be general points. Then

dim.�.x1; : : : ; xk ; y1/ \ �.x1; : : : ; xk ; y2// > 0
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in a neighborhood of xi only if either X is k-twd or �X
kC2

has positive-dimensional
fibers.

(iii) The map .�X
k�1

/j� W � Ü P 
k is either of fiber type or dominant.

Proof. (i) By the Terracini Lemma, �X
k

is of fiber type if and only if

Tz �k�1.X/ \ TyX ¤ ;

for y 2 X general. This condition is clearly equivalent to �X
k�1

being of fiber type.
(ii) Assume that X is not k-twd and dim.�.x1; : : : ; xk ; y1/\ �.x1; : : : ; xk ; y2// > 0

in a neighborhood of xi . Set

MAi
D hTx1

X; : : : ;Txk
X;Tyi

Xi:

Since the variety X is not k-twd,

MA1
\MA2

© hTx1
X; : : : ;Txk

Xi:

In particular,
.MA1

\MA2
/ \ Tyi

X ¤ ;;

and hence
hTx1

X; : : : ;Txk
X;Ty1

Xi \ Ty2
X ¤ ;:

This shows, by the generality of the points and point (i), that �X
kC2

is of fiber type.
(iii) Assume that .�X

k�1
/j� is not of fiber type. Then by Theorem 13 (b) we have

dim h�i D k.
k C 1/� 1. Hence .�X
k�1

/j� D �
�
k�1

and both maps are dominant onto P 
k .

Next we prove a general statement for type II contact loci.

Lemma 17. LetX �PN be an irreducible, reduced, and non-degenerate variety. Assume
that

(a) X is k-twd,

(b) X is not .k � 1/-twd,

(c) the k-contact locus is of type II.

Then �X
kC1

is of fiber type.

Proof. By Lemma 16 (i) it is enough to prove that �X
k

is of fiber type. Then by projection
it is enough to prove the latter for k D 2. Let ¹x1; x2; yº � X be a set of general points
and � D �.x1; x2; y/ the contact locus associated to ¹x1; x2; yº. To conclude the proof it
is enough to prove that hTx1

;Tx2
i \ TxX ¤ ; for x 2 � a general point.

For a general point p 2 � we let

� ip � �.xi ; p/

be the irreducible component of the contact locus �.xi ; p/ through p. The contact locus
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is of type II, therefore � ip 63 x1; x2. Note that for a general point x 2 �1p we have TxX �
hTx1

X;TpXi. Then by semicontinuity for any point w 2 �1p there is a linear space of
dimension n, say Aw � TwX , contained in the span.

Set
T .�1p / D hAwiw2�1

p
:

We may assume that X is not 2-defective (otherwise there is nothing to prove), that is,

Tx1
X \ Tx2

X D ;; (1)

and, since y is general,

codimT.�1
y /
.T .�1y / \ Tx1

X/ D nC 1: (2)

The variety X is not 1-twd, so there are points z 2 �1y with Az \ Tx1
X ¤ ;. Let z 2 �1y

be a point with
Az \ Tx1

X ¤ ;; (3)

The contact locus is of type II, therefore z ¤ x1. We stress that this is the only point in
the proof where we use the assumption that � is of type II.

If Az \ Tx2
X ¤ ;, by (1) and (2) we have

codimT.�1
y /
.T .�1y / \ hTx1

;Tx2
i/ � n

and we conclude TyX \ hTx1
;Tx2
i ¤ ;, that is, �X2 is of fiber type.

Assume that Az \ Tx2
X D ;. Then we consider the span hAz ;Tx2

i. By semicon-
tinuity, to this linear space is associated a contact locus and we let �2z be its irreducible
component passing through z. As before we have

codimT.�2
z /
.T .�2z / \ Tx2

/ D nC 1;

and by (1) and (3) we conclude that

codimT.�2
z /
.T .�2z / \ hTx1

;Tx2
i/ � n:

This yields
Aw \ hTx1

;Tx2
i ¤ ; (4)

for any point w 2 �2z . We have z ¤ y1, so the general choice of the points xi and the
assumption that X is not 2-defective ensure that

Aw \ Tx1
X D ; (5)

for general w 2 �2z .
We let �1w be the irreducible component through w of the contact locus associated

to hAw ;Tx1
Xi. Again z ¤ x1 and the general choice of the xi ensure that z 62 �1w . In

particular,
�1w ¤ �

2
z :
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Set
S2 WD

[
v2�1

y general

�2v :

Then �2z is in the closure of S2 and, for p 2 �1y general, �1y is in the closure of[
w2�2

p general

�1w :

Hence �1y is in the closure of

S1 WD
[

w2�2
z general

�1w :

In particular, the general point of S1 is a general point of X . By construction we have

codimT.�1
w/
.T .�1w/ \ Tx1

X/ � nC 1:

Equations (4) and (5) then give

codimT.�1
w/
.T .�1w/ \ hTx1

;Tx2
/i � n;

and this concludes the proof.

We are ready to prove our main result that connects twd and defectivity.

Theorem 18. Let X � PN be an irreducible, reduced, and non-degenerate variety of
dimension n. Assume that

(a) X is k-twd,

(b) X is not .k � 1/-twd,

(c) k > n and N � .k C 1/.nC 1/ � 1.

Then �X
kC1

is of fiber type.

Proof. Thanks to Lemma 17 we may assume that the contact locus is of type I. By hypo-
thesis the variety X is k-twd. Let A D ¹x1; : : : ; xkº � X be a set of general points and
� WD �.A/ the associated contact locus of dimension 
 > 0. Let z 2 hAi be a general
point, �k WD �Xk W X Ü PM the associated k-tangential projection, and y 2 X a general
point. For a general set Y WD ¹y1; : : : ; yk�1º � � let �.Y [ ¹yº/ be the contact locus
associated to ¹y1; : : : ; yk ; yº.

Assume that �X
kC1

is not of fiber type. Then, by Lemma 16 (i), �k is not of fiber
type, and by Lemma 16 (iii), �k.�.Y [ ¹yº/ is a linear space of dimension 
 through
z WD �k.y/. This gives a map

� W Hilbk�1.�/red Ü G.
 � 1;M � 1/:
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The point z is smooth, hence all these linear spaces sit in Tz�k.X/ Š Pn. In other
words, we have a map

� W Hilbk�1.�/red Ü G.
 � 1; n � 1/ � G.
 � 1;M � 1/:

Note that dimG.
 � 1;n� 1/D 
.n� 
/ and dimHilbk�1.�/D .k � 1/
 . By hypothesis
k > n and 
 > 0, hence

.k � 1/
 > 
.n � 
/:

Then the map � is of fiber type and fibers have dimension at least 
.k � nC 
 � 1/.
Let ŒY1�; ŒY2� 2 ��1.Œƒ�/ be general, for Œƒ� 2 �.Hilbk�1.�/red/ � G.
 � 1; n � 1/

a general point. The variety X is not .k � 1/-twd and we are assuming that �X
kC1

is not
of fiber type; therefore, by Lemma 16 (ii),

dim.� \ �.Yi [ ¹yº// D 0

in a neighborhood of yi . Since the fiber of � is positive-dimensional we have

�.Y1 [ ¹yº/ 6� Y2: (6)

The contact loci are irreducible, so, by (6), we conclude that

�.Y1 [ ¹yº/ ¤ �.Y2 [ ¹yº/:

Therefore, by Lemma 16 (iii), the positive-dimensional fiber of � induces a positive-
dimensional fiber of �k and we derive, by Lemma 16 (i), the contradiction that �X

kC1
is of

fiber type.

Remark 19. Both assumptions (b) and (c) alone are reasonable and not over-demanding.
Unfortunately, their combination is quite restrictive and narrows the range of applications
we are aiming at.

We believe the statement is not optimal with respect to assumption (c). But we are
not sure if it is true, in full generality, without any assumption of this kind. On the other
hand, we strongly believe that for many interesting varieties, like Segre, Grassmannian,
Veronese and their combinations, twd can occur only one step before the secant map
becomes of fiber type. This is not the case for weak defectiveness, as shown in [11]. In
[11, Theorem 1.1 (a)] it is proven that G.2; 7/ is 2- and 3- weakly defective without being
3-defective. Note that this variety is 3-twd but not 2-twd.

The next result generalizes the main result of [8] and it allows to avoid the bottleneck
introduced by conditions (b) and (c) of Theorem 18 in many interesting situations.

Lemma 20. LetX �PN be an irreducible, reduced, and non-degenerate variety. Assume
thatX is not 1-twd and �X

kC1
is generically finite, in particularX is not .kC 1/-defective.

If X is k-twd then 
k < 
kC1.
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Proof. The variety X is not 1-twd, so we may assume, without loss of generality, that


k�1 < 
k D 
kC1:

Then 
kC1 < n and �kC1.X/ ¨ PN , hence by Theorem 13 (e), the contact loci are of
type II and linearly independent linear spaces. Fix a set ¹x1; : : : ; xk ; yº � X of general
points and let

�.x1; : : : ; xk ; y/ D

k[
iD1

Pi [ Py

be the contact locus. Moreover, the assumption 
k D 
kC1 and Theorem 13 (a) force

�.x1; : : : ; xk�1; y/ D

k�1[
iD1

Pi [ Py ;

with the same Pi ’s. Then\
y2X

hTx1
X; : : : ;Txk�1

X;TyXi � hTzXiz2Pi ; iD1;:::;k�1

We are assuming that 
k�1 <
k , soPi 6��.x1; : : : ;xk�1/, and we have a proper inclusion

hTzXiz2Pi ; iD1;:::;k�1 © hTx1
X; : : : ;Txk�1

Xi:

Set
MAi

D hTx1
X; : : : ;Txk�1

X;Tyi
Xi;

for general points y1; y2 2 X . Then we have

MA1
\MA2

� hTzXiz2Pi ; iD1;:::;k�1 © hTx1
X; : : : ;Txk�1

Xi:

and we conclude that
.MA1

\MA2
/ \ Tyi

¤ ;:

This shows that
hTx1

X; : : : ;Txk�1
X;Ty1

Xi \ Ty2
X ¤ ;:

Hence the k-tangential projection �X
k

is of fiber type and by Lemma 16 we derive the
contradiction that �X

kC1
is of fiber type.

Remark 21. Let us recall that 1-twd varieties are classified in [26] and are essentially
generalized developable varieties. In particular, they are ruled by linear spaces and, with
the unique exception of linear spaces, they are singular.

We are ready to apply the above results to get non-tangential weak defectiveness and
hence identifiability statements.
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Corollary 22. Let X � PN be an irreducible, reduced, and non-degenerate variety that
is not 1-twd, for instance a smooth variety or a variety that is not covered by linear spaces.
Assume that �X

k
is generically finite and k � dimX .

Then X is not .k � dimX/-twd and it is not .k � dimX C 1/-twd if �X
k

is not dom-
inant. If moreover either k > 2 dimX or �X

k
is not dominant and k � 2 dimX then X is

not .k � 1/-twd.
In all the above cases X is h-identifiable.

Proof. By hypothesis, �h is generically finite for any h � k. Then by Theorem 20, if it is
j -twd then


j < 
jC1:

The contact locus is a subvariety ofX , hence 
k�dimX D 0. This proves the first statement.
If �X

k
is not dominant then the contact locus is a proper subvariety and we have


k�dimXC1 D 0.
Assume that k � 2dimX . Then by the first part, X is not j -twd for some j > dimX .

Then we apply Theorem 18 recursively to conclude the proof. We derive identifiability by
Proposition 14.

Remark 23. The first part of Corollary 22 extends the bounds in [8] to non-1-twd vari-
eties. The main novelty is the second part that allows one to derive identifiability from
non-defectivity for large enough secant varieties.

3. Application to tensor and structured tensor spaces

As already mentioned, identifiability is particularly interesting for tensor spaces. In this
section we use our main result to explicitly state identifiability of a variety of tensor
spaces. For this we will consider Segre, Segre–Veronese and Grassmannian varieties and
their h-twd properties.

We start with some notation.

Notation 24. The variety†.d1; : : : ; dr In1; : : : ; nr / is the Segre–Veronese embedding of

Pn1 � � � � � Pnr in P
Q
.niCdi

ni
/�1 via the complete linear system jO.d1; : : : ; dr /j.

When all di ’s are 1 we have the Segre embedding and we let

Xn1;:::;nr
WD †.1; : : : ; 1In1; : : : ; nr / and X rn WD †.1; : : : ; 1In; : : : ; n/ Š .P

n/r :

The expected generic rank is

gr.†.d1; : : : ; dr In1; : : : ; nr // D
� Q�niCdi

ni

�
.
P
ni /C 1

�
:

Using the notations in [2] we define

s.†.d1; : : : ; dr In1; : : : ; nr / WD

� Q�niCdi

ni

�
.
P
ni /C 1

�
:
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For simplicity in the case n1 D � � � D nr D n and d1 D � � � D dr D 1 we set

srn WD s.†.d1; : : : ; dr In1; : : : ; nr //

The variety G.k; n/ is the Grassmannian parameterizing k-planes in Pn embedded in
P .
VkC1

V / via the Plücker embedding. The expected generic rank is

gr.G.k; n// D
� �

nC1
kC1

�
.n � k/.k C 1/C 1

�
:

Remark 25. Note that we always have

s.†.d1; : : : ; dr In1; : : : ; nr / � gr.†.d1; : : : ; dr In1; : : : ; nr // � 1;

and equality occurs only when
Q
.niCdi

ni
/

.
P
ni /C1

is not an integer. In particular, for any h < s.X/
we have �h.X/ ¨ PN .

The defectivity of Segre and Segre–Veronese varieties is in general very far from being
completely understood [1, 2, 6], but it is still better understood than their identifiability.
For the latter the best asymptotic bounds we are aware of are in [8].

We start by proving the theorem of the introduction.

Theorem 26. Let X D Xk1 Š .P
1/k . Then X is not h-twd, and hence is h-identifiable, in

the following range:

� .k; h/ D .2; 1/; .3; 2/; .4; 2/; .5; 4/; .6; 9/,

� k � 7, h < s.X/.

Proof. For k � 5 this is well known, and can be easily checked also via a direct compu-
tation with commutative algebra software. For k D 6 this has been checked in [12] by a
computer aided computation. Let us fix k � 7. By [14, Theorem 4.1],X is never defective.
In particular, the morphism �X

h
is generically finite for h � sk1 . When k � 7 we have

2 dimX D 2k <
2k

k C 1
� 1 < sk1 ;

and we can apply Corollary 22.

Remark 27. The theorem confirms Conjecture 1.2 in [12] when the generic rank is an
integer, that is, 2k

kC1
2 N. For k � 6 the listed cases are the only identifiable ones.

For 3-factor Segre we plug [19] directly in Theorem 18 to get the following.

Theorem 28. Let X D X3n . Then X is h-identifiable for h < s.X/.

Proof. For n � 7 the statement is proved in [19, Theorem 1.2]. For n > 7, by [31], the
variety X is not h-defective for h � s3n and by the results in [19], X is not h-twd for
hD 3n: see the table in [19, Theorem 1.2] . Thus we are in a position to apply Theorem 18
recursively to prove that X is not h-twd, and hence is identifiable, for h < s3n.
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For general diagonal Segre varieties we have a similar statement using [2].

Theorem 29. Let X D Xkn with n � 2 and k � 4. Let

n � ı.X/ � skn mod .nC 1/:

Then X is not h-twd, and hence is h-identifiable, for h < s.X/ � ı.X/. In particular,
when ı.X/ D 0, X is h-identifiable for all h < s.X/.

Proof. Using the notations in [19, Theorem 6.7] let ˛ be the greatest integer such that
nC 1 � 2˛ . First we prove the statement for all but finitely many cases.

Claim 1. If

.k; n/ 62

²
.k; 6/ with k � 6, .k; 5/ with k � 5,
.k; 4/ with k � 5, .k; 3/ with k � 4

³
then X is h-identifiable for h < s.X/ � ı.X/.

Proof. By [2, Theorem 5.2] we know thatX is not h-defective as long as h�s.X/�ı.X/.
The variety Xkn is not h-twd for

h � 2.k�1/˛�.k�1/ D 2.k�1/.˛�1/

by [19, Theorem 6.7]. Let us assume that n ¤ 2. A short computation by hand shows that

2.k�1/.˛�1/ > dimX D kn

for every .k;n/ in the list. Then, using Theorem 18 recursively, we conclude the proof.

For n D 2 it is easy to check that the inequality

sk2 D

�
3k

2k C 1

�
� ı.Xk2 / > 4k D 2 dimXk2

is satisfied for every k � 5 and so we can use Corollary 22. When .k; n/ D .6; 6/; .5; 6/
we have the inequalities

s66 � ı.X
6
6 / > 2 � 36 D 2 dimX66 ;

s56 � ı.X
5
6 / > 2 � 30 D 2 dimX56 :

Then we use Corollary 22.
For all the remaining cases we have .nC 1/k � 15000 and we may use the computa-

tion in [20, Theorem 1.1] to deduce the required identifiability.

The next class of Segre varieties we treat in detail is given by

XŒk; n� WD Pk � .Pn/kC1:

For these varieties we have

gr.XŒk; n�/ D
.k C 1/.nC 1/kC1

.k C 1/nC k C 1
D .nC 1/k :
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In particular, gr.XŒk; n�/ D s.XŒk; n�/ is always an integer, that is, XŒk; n� is always
perfect. Thanks to this special condition we have the following.

Theorem 30. Let X D XŒk; n� with n odd and k > 1. Then X is h-identifiable for h <
gr.X/.

Proof. The proof is entirely similar to that of Theorem 29. Indeed, by [2, Theorem 5.11]
we know that all these Segre varieties are non-defective. If

.k; n/ ¤ .4; 1/; .3; 1/; .2; 1/; .2; 3/; .2; 5/

then
.nC 1/k > 2.k C knC n/ D 2 dimX

and we can use Corollary 22. For all the exceptional cases we have

.k C 1/.nC 1/kC1 � 15000;

hence we may apply [20, Theorem 1.1].

Remark 31. Defective Segre varieties are expected to be quite rare, besides the unbal-
anced ones: see the conjecture in [2]. This conjecture has been checked via a computer
in many cases [20, 36]. For all these special values our argument gives identifiability,
confirming the numerical computation in [20].

Next we apply the same strategy to Segre–Veronese varieties. For this class of varieties
the defectivity results are much weaker, and so are our bounds. Again the special case of
binary forms is more favorable. We start by recalling the terminology of [30].

Definition 32. We say that .d1; : : : ; dr In/ is special if

.d1; : : : ; dr In/ D .2; 2aI 2aC 1/; .1; 1; 2aI 2aC 1/; .2; 2; 2I 7/; .1; 1; 1; 1I 3/

for a � 1. Otherwise .d1; : : : ; dr In/ is called non-special.

Theorem 33. Let X D †.d1; : : : ; dr I 1; : : : ; 1/ with r D dimX . Assume .d1; : : : ; dr In/
is non-special and r � 6. Then X is h-identifiable for h < s.X/.

Proof. Since .d1; : : : ; dr I n/ is non-special, by [30, Theorem 2.1] the variety X is not
h-defective for h � gr.X/. Thanks to Theorem 26 we may assume, without loss of gen-
erality, that d1 > 1 and we have

s.X/ D

�
.d1 C 1/ � � � .dr C 1/

r C 1

�
�
3 � 2r�1

r C 1
� 1:

In particular,
3 � 2r�1

r C 1
� 1 > 2r D 2 dimX for every r � 6.

The variety X is not 1-twd and so we conclude the proof by using Corollary 22.
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For general Segre–Veronese varieties we have the following.

Theorem 34. Let X WD †.d1; : : : ; dr I n1; : : : ; nr / be a Segre–Veronese variety. Assume
r � 2,

n
blog2.d�1/c
1 � 2.n1 C � � � C nr /;

and set d D d1 C � � � C dr . Then X is h-identifiable for h � nblog2.d�1/c
1 � 1.

Proof. By [6, Theorem 1.1], X is not h-defective for

h � n
blog2.d�1/c
1 � .n1 C � � � C nr /C 1:

Under our numerical assumptions, �h.X/ ¨ PN and we may assume h � 2 dimX . Then
we apply Corollary 22.

Remark 35. For the Veronese variety of Pn, that is,†.d1In1/ it is easy, via Corollary 22
and [3], to re-prove the identifiability results of [33] and [21].

As in the Segre case, for special classes of Segre–Veronese varieties there are better
non-defectivity results. Here we recall the notation in [1]. Let X WD †.1; 2Im; n/ be the
Segre–Veronese variety Pm � Pn embedded by O.1; 2/ in PN where

N D .mC 1/
�
nC2
2

�
� 1:

Let

r.m; n/ D

´
m3 � 2m if m even and n odd;
.m�2/.mC1/2

2
otherwise;

and

s.X/ D

�
.mC 1/

�
nC2
2

�
mC nC 1

�
:

With this in mind we have the following.

Corollary 36. Let X D †.1; 2Im; n/. If n > r.m; n/ and�
.mC 1/

�
nC2
2

�
mC nC 1

�
� 2.mC n/

then X is not h-twd, and hence is h-identifiable, for h < s.X/.

Proof. In our range, X is not h-defective by [1, Theorem 1.1] and �h.X/ ¨ PN .
Moreover,

s.X/ D

�
.mC 1/

�
nC2
2

�
mC nC 1

�
� 2.mC n/ D 2 dimX

and we may apply Corollary 22.

Let us now consider the case of Pm � Pn embedded with O.1; d/ for d � 3.
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Corollary 37. Let X D †.1; d Im; n/ with d � 3 and m; n � 1. Let

s.X/ D max
²
s 2 N

ˇ̌̌̌
s is a multiple of mC 1 and s �

�
.mC 1/

�
nCd
d

�
mC nC 1

�³
:

If s.X/ > 2.mC n/ then X is not h-twd, and hence is h-identifiable, for h < s.X/.

Proof. By [10, Theorem 2.3], X is not h-defective for h � s.X/ and �h.X/ ¨
P .mC1/.

nCd
d /�1.

As X is smooth, in particular it is not 1-twd. Since

s.X/ > 2.mC n/ D 2 dimX

we can apply Corollary 22.

Remark 38. Similar statements about subgeneric identifiability of Pn � P1 embedded
with O.a; b/ can be derived from Corollary 22 using the non-defectivity results of [7].

Finally, we consider Grassmannian varieties. For this class of tensor spaces very little
is known about identifiability. To the best of our knowledge the following is the first non-
computer-aided result for them.

Theorem 39. Let X D G.k; n/ with 2k C 1 � n. Assume that��
nC 1

k C 1

�blog2.k/c
�
� 2.n � k/.k C 1/:

Then X is h-identifiable for

h �

�
nC 1

k C 1

�blog2.k/c

� 1:

Proof. By [32, Theorem 5.4], in our numerical range X is not h-defective and
�h.X/ ¨ PN . Then we use Corollary 22.

The technique we developed can be applied to many other classes of varieties, once
their defectivity behavior is known. As a sample we conclude the paper with the following
example.

Example 40. C. Améndola, J.-C. Faugère, K. Ranestad and B. Sturmfels [4, 5] studied
the Gaussian moment variety

G1;d � Pd

whose points are the vectors of all moments of degree � d of a 1-dimensional Gaussian
distribution. They proved that G1;d is a surface for every d and �h.G1;d / always has the
expected dimension. In [8, Example 5.8] it is shown that G1;d is not uniruled by lines, in
particular it is not 1-twd. As usual let

s.G1;d / D

�
d C 1

3

�
� gr.G1;d / � 1:

Then by Corollary 22, G1;d is h-identifiable for h < s.G1;d / when d � 14.
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