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Abstract. We compute the effect of concordance surgery, a generalization of knot surgery defined
using a self-concordance of a knot, on the Ozsvath-Szab6é 4-manifold invariant. The formula
involves the graded Lefschetz number of the concordance map on knot Floer homology. The proof
uses the sutured Floer TQFT, and a version of sutured Floer homology perturbed by a 2-form.
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1. Introduction

Let X be a smooth, connected, closed, and oriented 4-manifold with b;’ (X) = 2. Sup-
pose that T C X is a smoothly embedded, homologically essential torus with trivial
self-intersection, and let K C S3 be a knot. Fintushel and Stern [4] defined the knot sur-
gery operation on X, resulting in the 4-manifold Xg . This is obtained by gluing X \ N(T')
and S! x (S \ N(K)) via an orientation-reversing diffeomorphism of their boundaries
that maps a meridian of 7" to a longitude of K. They showed that

SW(Xk) = Ax(z) - SW(X), (1.1)

where SW denotes the Seiberg—Witten invariant, and Ag(z) is the symmetrized Alexan-
der polynomial of K. The variable z corresponds to exp(2[T']), where [T'] is the homology
class induced by T in H»(Xg).

If 71 (X \ T) =1, then X and Xk are simply connected and have the same intersection
form, and are hence homeomorphic by Freedman’s theorem. Note that every symmetric
integral Laurent polynomial p(z) satisfying p(1) = %1 is the Alexander polynomial of
aknot in §3. Consequently, if SW(X) ## 0, then we obtain infinitely many pairwise non-
diffeomorphic smooth structures on X. When X is the K3 surface, SW(X) = 1, and hence
we obtain a different smooth structure on X for every such Laurent polynomial.
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Mark [20, Theorem 3.1] obtained a result analogous to equation (1.1) for the Ozsvath—
Szabd 4-manifold invariant [25], which is expected to coincide with the Seiberg—Witten
invariant. For a closed 4-manifold X with b;’ (X) = 2, Ozsvith and Szabd’s invariant
takes the form of a map

@y : Spin®(X) — TFy.

We write &y o for the value of @y on s. It is convenient to organize the invariants of
different Spin® structures into a single polynomial. Recall that Spin° (X) is an affine space
over H2(X), so the difference of two Spin® structures is a well-defined cohomology class.

If b = (by,...,by)is abasis of H2(X;R), we can arrange the 4-manifold invariant into
the element
Dy = Z Dy .Z§i*(s—90)ub1,[X]) _“Zr(li*(s—so)ubn,[x])
3€Spin€ (X)

of the n-variable Novikov ring over [F», where s¢ is some choice of base Spin® structure
on X, and iy: H*>(X) — H?(X;R) is induced by the map of coefficients Z — R. If
H?(X) is torsion-free, then @, completely encodes the map ®y. It is natural to view
®y.p as a perturbed version of the mixed invariant; see Proposition 4.3.

Concordance surgery is a generalization of knot surgery due to Fintushel and Stern;
see Akbulut [2, Section 2] and Tange [28]. Let K be a knot in a homology 3-sphere Y
(note that Akbulut only considered the case Y = S3). Given a self-concordance € =
(I xY,A) from (Y, K) to itself, we can construct a 4-manifold Xe as follows. We glue
the ends of A together to form a 2-torus Te embedded in S! x Y. After removing a neigh-
borhood of T, we get a 4-manifold Wi with boundary T 3. Viewing N(T) as T x D?, we
pick any orientation-preserving diffeomorphism ¢: d(X \ N(T)) — dN(Te) that sends
[{p} x dD?] to [{g} x £x], where p € T, g € S!, and {x is a longitude of K. We write
Xe for any manifold constructed as the union

Xe := (X \ N(T)) Uy We.

Fintushel and Stern asked in the late 90s whether a formula similar to equation (1.1)
relates SW(X) and SW(Xe); see Akbulut [2, Remark 2.2].

Our main result gives a formula relating the Ozsvath—Szab6 4-manifold invariants
of X and Xe in terms of the graded Lefschetz number of the concordance map

Fe:HFK(Y,K) — HFK(Y, K)

defined by the first author [8]. This map preserves the Alexander and Maslov gradings [10,
Theorem 5.18]. The graded Lefschetz number is the polynomial

Lef,(€) =) Lef(ﬁﬂﬁﬁ((Y,K,i): HFK(Y,K,i) — HFK(Y, K,i)) - 2"
i€Z

We note that the concordance map ﬁg on knot Floer homology depends on some extra
decorations that we are suppressing from the notation. Nonetheless, we will see that the
graded Lefschetz number is independent of these decorations.
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If [T] # 0 € Hy(X;R), then we can pick a basis b = (b1, ..., b,) of H*>(X;R) such
that
(b1, [T]) =1 and (b;,[T]) =0 fori > 1. (1.2)

There are natural isomorphisms H?(X;R) = H?(Xe:R) and Spin®(X) = Spin‘(Xe).
By a slight abuse of notation, we will use the same notation for corresponding second
cohomology classes and Spin® structures on X and Xe. In particular, the base Spin®
structure ¢ on X corresponds to a base Spin‘ structure ¢ on Xe, and we define the
4-manifold invariants ®x .5 and ®x...5 using this correspondence. We now state our main
result:

Theorem 1.1. Let X be a closed, oriented 4-manifold such that b;’ (X) > 2. Suppose that
T is a smoothly embedded 2-torus in X with trivial self-intersection such that [T] # 0
in Hy(X;R). Furthermore, let b = (b1, ..., b,) be a basis of H*(X;R) satisfying equa-
tion (1.2). If € is a self-concordance of (Y, K), where Y is a homology 3-sphere, then

Dxe:p = Lef;, ©)- Py .p.

If € is the product concordance (I x Y, I x K), then Fe is the identity of HFK (Y, K),
so Lef, (€) is the graded Euler characteristic of HFK (Y, K), which is Ak (t). Hence, as a
special case, we recover the formula of Mark [20, Theorem 3.1], i.e., the Heegaard Floer
version of the Fintushel-Stern knot surgery formula.

When 71(X \ T) = 1 and Y = S3, the manifold X¢e is homeomorphic to X. In
contrast, we have the following corollary to Theorem 1.1, which we prove in Section 5.1:

Corollary 1.2. If Lef,(€) # 1 and ®x.p # 0, the 4-manifold Xe is not diffeomorphic
to X.

Since Lef,(€) is always symmetric and satisfies Lef;(€)(1) = +£1, it is unclear
whether, using concordance surgery, we obtain any smooth structures not arising from
knot surgery. Nonetheless, in [12], we use the techniques of this paper to produce infinite
families of exotic orientable surfaces in B*.

We note that the proofs of the knot surgery formula (1.1) due to Fintushel and Stern for
the Seiberg—Witten invariant, and to Mark for the Ozsvath—Szabé invariant, are based on
the skein relation for the Alexander polynomial, and hence are only well-suited to knots
in §3. Our theorem applies to a more general setting, where K is allowed to be a null-
homologous knot in an arbitrary homology 3-sphere Y. Our proof of Theorem 1.1 also
extends to the situation where we consider a self-concordance (W, €) of a pair (Y, K)
such that W is an integer homology cobordism from Y to itself, though we restrict to
the setting where W = I x Y to simplify the notation. The key technical advancement
that led to this proof is our previous computation of the sutured Floer trace and cotrace
cobordism maps [11, Theorem 1.1].

Our Theorem 1.1 could be used to construct exotic smooth structures on 4-manifolds
with non-trivial fundamental group. Suppose that 71 (X \ T) = 1. If @y, # 0, and K
and K’ are knots in a homology 3-sphere Y such that Xx and Xk+ are homeomorphic
and Pyx.p - Ag(z) and Dy.p - Ag/(z) are not equivalent under the action of automor-
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phisms of H,(X), then Xg and Xk are non-diffeomorphic 4-manifolds with funda-
mental group 71(Y)/([K]), where ([K]) is the normal subgroup of 7;(Y) generated
by K.

After proving Theorem 1.1, we give an account of the naturality and functoriality of
the perturbed versions of sutured Floer homology and Heegaard Floer homology, since
these are more subtle than in the unperturbed setting, and many details are only sketched
in the literature.

Finally, we note that it might be possible to carry out our argument for the Seiberg—
Witten invariant using the work of Zhenkun Li [16] to construct gluing and cobordism
maps for Kronheimer and Mrowka’s sutured monopole Floer homology [14]. A key tech-
nical step which has not yet been completed in this program is the computation of the
induced maps by the trace and cotrace cobordisms, which we performed in the setting of
sutured Floer homology in [11, Theorem 1.1].

1.1. Organization

In Sections 2 and 3, we give an overview of the construction of the perturbed Floer homo-
logy groups, and the perturbed cobordism maps, and we state the properties that are most
relevant to the proof of Theorem 1.1. In Section 4, we give some background on the
Ozsvéith—Szab6 4-manifold invariant. In Section 5, we prove Theorem 1.1. In Sections 6
and 7, we give a proof of the naturality of the perturbed sutured Floer groups, the well-
definedness of the cobordism maps, and also several useful properties.

2. Perturbing sutured Floer homology by a 2-form

Ozsvéth and Szabd [21, Section 3.1] defined a version of Heegaard Floer homology for
closed 3-manifolds perturbed by a second cohomology class, which we now extend to
sutured manifolds. The unperturbed version of sutured Floer homology was defined by
the first author [7], and its naturality was shown by Thurston and the authors [13].

Let A denote the Novikov ring over [F, in a single variable z. Its elements are formal
sums erR nyz*, where n, € [y, and the set

{x € (—oo,c] :ny # 0}

is finite for every ¢ € R. Note that A is a field.
Suppose that (M, y) is a balanced sutured manifold, and w is a closed 2-form on M.
Then w induces an action of Fo[H (M, dM)] = F[H,(M)] on A, via the formula

e? . zX — X tho
for x € R and a € H,(M). We denote by A, the ring A viewed as a module over
Fo[HY (M, OM)).

For a sutured manifold (M, y), equipped with a closed 2-form  and a relative Spin®
structure s, we write SFH(M, y, s; A,) for the perturbed sutured Floer homology, which
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we describe in this section. Using the terminology of Baldwin and Sivek [3], the most
natural category for SFH(M, y, ; Ay) is the category of projective transitive systems.
See Section 2.1 for a precise definition. We state the following version of naturality for
perturbed sutured Floer homology:

Theorem 2.1. Suppose (M, y) is a sutured manifold, and w is a closed 2-form on M.

(1) If s € Spin®(M, y), then SFH(M, y, s, Ay) forms a projective transitive system of
A-modules, indexed by the set of pairs (K, J), where H is an admissible diagram
for (M, y), and J is a generic almost complex structure.

(2) If w = dn for a 1-form n, then SFH(M, y; A) (the sum over all Spin® structures)
forms a projective transitive system of A-modules, indexed by the set of pairs (¥, J),
as above.

We will prove Theorem 2.1 in Section 6, though we describe the construction of the
perturbed groups in Section 2.2.

Remark 2.2. Our construction of SFH(M, y; A,) gives neither a genuine transitive sys-
tem when we restrict to a single Spin® structure on M, nor a projective transitive system
when we sum over all Spin¢ structures. See Example 6.7 and Lemma 6.8 for counter-
examples.

2.1. Transitive systems and their morphisms

Definition 2.3. Suppose that € is a category and [ is a set. A transitive system in €,
indexed by I, is a collection of objects (X;);es, as well as a distinguished morphism
W; it X; = Xj foreach (i, j) € I x I, such that

(D) Vg oW =W 5, and

(2) ¥ = idy;.

Example 2.4. Transitive systems in the following categories are important to our present

paper.

(T-1) The category € = R-Mod of left modules over a ring R. The morphism set
Home (X1, X3) is equal to the set Homg (X1, X3) of R-module homomorphisms
from X; to X>.

(T-2) The projectivized category of A-modules € = P(A-Mod). The objects are
A-modules and the morphism set Home (X7, X3) is the projectivization of
Hom (X1, X2) under the action of elements of A of the form z* € A.

(T-3) The homotopy category € = K(R-Mod) of chain complexes over the ring R. The
objects are chain complexes over R. If X; and X, are two chain complexes,
the set of R-module homomorphisms Homg (X1, X2) is a chain complex with
differential dpom(f) = f o dx, — dx, o f for f € Homg (X, X»). The mor-
phism set Home (X7, X») in € is the homology H.(Homg (X1, X>)). Equivalently,
Home (X1, X») is the set of chain maps modulo chain homotopy.
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(T-4) The projectivized homotopy category € = P(K(A-Mod)). The objects of € are
chain complexes over A. The morphism set Home (X, X5) is the projectivization
of H.(Homy (X1, X5)) under the action of elements of A of the form z*.

The categories in (T-1) and (T-3) are preadditive (i.e., the morphism sets are abelian
groups), while the categories in (T-2) and (T-4) are not. In these latter categories, com-
position of projective morphisms is well-defined, though addition of morphisms is not.

Following the terminology of Baldwin and Sivek [3], we call a transitive system over
one of the categories (T-2) and (T-4) a projective transitive system. In category (T-2), given
morphisms f, g € Homy (X1, X3), we will use the notation f = g if f = z* - g for some
x € R. Similarly, in case (T-4), given chain maps ¢, ¥ € H,(Homy (X1, X3)), we write
¢ =y if ¢ >~ z* - for some x € R, where ~ denotes chain homotopy equivalence.
If ¢ =~ ¥, we say ¢ and ¥ are projectively equivalent. Finally, if X is a A-module and
a,be X,wewritea =bifa = z*-b for some x € R.

There is a natural notion of morphism between transitive systems:

Definition 2.5. If (C;);e; and (Dj)jes are two transitive systems in the category €,
a morphism of transitive systems is a collection of morphisms

F(,'gj)ﬁ C,’ — D_,'

in € such that
Vimjr o Fj o Yirsi = Fajry

foralli,i’ € I and j, j' € J.

Remark 2.6. If f:C;, — Dj, is an element of Home (C;,, Dj,) for some fixed iy € /
and jo € J, then f induces a unique morphism F{; ;) of transitive systems from (C;);es
to (D;);es, given by

Fajy = Yjo—j o f 0 Winsig-

If € is a category, then the collection of transitive systems over € itself forms a cat-
egory, for which we write 7 (€). Hence, we can define a transitive system of transitive
systems over €.

Remark 2.7. If X = ((Xij),eJ;)ier is a transitive system in 7 (€), we may naturally
view X as a transitive system over € indexed by K := |J;¢; Ji.

2.2. The perturbed chain complexes

In this section, we define the perturbed sutured Floer complexes. We use the cylindrical
reformulation of Heegaard Floer homology, due to Lipshitz [17]. Suppose (M, y) is a
balanced sutured manifold with a closed 2-form w. If # = (X, &, §) is an admissible
diagram, we pick an almost complex structure on X x I x R that is tamed by the split
symplectic form. The surface X splits M into two sutured compression bodies, for which
we write Uy and Ug. We let Dy and Dg be two choices of compressing disks for Uy
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and Ug, equipped with radial foliations, such that D, intersects X along e, and similarly
for Dg.

For generators x, y € T, N Tg, ahomotopy class ¢ € m»(x, y) of disks determines a
2-chain D(¢) on X, which has boundary on & U 8. We cone D(¢) along the compressing
disks D and Dg to obtain a 2-chain 35(¢). We note that the 2-chain !5((])) depends on the
choice of radial foliations on Dy and D g. The 2-chain 33((;5) is closed if and only if x = y.

We define

Ay (@) = /~ .

D(9)

When the choice of w is clear from the context, we just write A(¢).
There is a map H: ma(x, x) — H,(M), obtained by coning off the periodic
domain D(¢) for ¢ € m,(x, x); see [7, Definition 3.9]. In particular,

H($) = [D(9)].

The chain complex CF(#, s; A,) is the free A-module generated by intersection
points x € Ty N Tg which satisfy s(x) = . The differential is given by counting holo-
morphic curves in ¥ x I x R via the formula

ox =y > (IM($)/R|mod2) - z4@ . y

yeTaNTg pens(x,y)
wig)=1

for x € Ty N Tg. The fact that 3% = 0 follows by analyzing the ends of the 1-dimensional
moduli spaces M (¢)/R for classes ¢ with Maslov index 2. We set

SFH(H#,3; Ay) := H«(CF(H,3; Ay), 0).

The group SFH(H#,s; Ay) also depends on J and the compressing disks, though we omit
the extra data from the notation.

2.3. Perturbed sutured cobordism maps

In [8], the first author defined a notion of cobordism between sutured manifolds, and
constructed functorial cobordism maps.

Definition 2.8. A cobordism of sutured manifolds
W= (W, Z,I[§]): (Mo, yo) > (M1, 1)

is a triple such that
(1) W is a compact, oriented 4-manifold with boundary,

(2) Z is a compact, codimension 0 submanifold with boundary of W, and dW \ int(Z)
= —My U M,

(3) [£] is an equivalence class of positive contact structures on Z (see [8, Definition 2.3])
such that 0Z is a convex surface with dividing set y; on dM; for i € {0, 1}.
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In Section 7, we will define perturbed versions of the sutured manifold cobordism
maps. If W = (W, Z, [£]) is a sutured manifold cobordism from (Mo, yo) to (M1, y1),
and o is a closed 2-form on W, then we will define a chain map

Fw.o:SFH(Mo, y0: Aw|y,) = SFH(M1, y1: Aoy, )

which is only well-defined up to an ambiguity described in Proposition 2.9.
If # is a Heegaard diagram for (M, y), we can view

SFH(H:Ao) = @  SFH(H.3:Ay).
$€Spin© (M,y)
Consequently, there are inclusion and projection maps
is:SFH(H,5;ANp) = SFH(H;Ap) and ng:SFH(H;Ayp) — SFH(H, 3, Ap).

Proposition 2.9. Suppose W = (W, Z, [€]): (Mg, o) — (M1, y1) is a sutured manifold
cobordism, and w is a closed 2-form on W.

(1) Ifs; € Spin“(M;, y;) fori € {0, 1}, then the map
Tg, © Fy.p 0 igo:SFH(MO, Y0, So; AwIMO) — SFH(M1, y1.8;: Aw|M1)

is well-defined up to an overall factor of z*, for x € R.

(2) More generally, if [w|pm,] = O, then Fw,, o is, is well-defined up to an overall
factor of z*. If [w|m,] = O, then s, o Fy., is well-defined up to a factor of z*~.
If [wlm,] = 0 and [w|p,] = O, then the total map F., is well-defined up to an
overall factor of z*.

The main idea of the construction is to incorporate the coning construction of Ozsvath
and Szabd [21] at each step of the construction of the unperturbed sutured cobordism maps
in [8]. In Section 7, we describe the construction in detail, and prove Proposition 2.9. We
note that, to define the total cobordism map in of Proposition 2.9 (2), we use our formula
for the sutured trace cobordism map [11, Theorem 1.1]; see Section 7.6. In Section 7.7,
we will prove the following composition law for the perturbed sutured cobordism maps:

Proposition 2.10. Suppose the sutured manifold cobordism W = (W, Z, [£]) decomposes
as ‘W, o Wy, where

Wi =W, Z1.[E1]): (Mo, vo) — (My,y1), Wa= (W2, Z3,[6:]): (M1, y1) — (M2, y2).

Let w be a closed 2-form on W, and write w; = o|w, and w; = o|w,.

(1) If [w] restricts trivially to My, My, and M», then
Fy..o = Fw,:0, © F, 0, -
(2) More generally, if [w] restricts trivially to My and M», and s, € Spin® (Mo, yo), then
Fw.w 0lisy = Fwyiw, © Fw o) ©is,-

Similar formulas hold if [w] restricts trivially to both My and M, or just to M.
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2.4. Alexander gradings and perturbations on cylinders

We now state a simple formula for the sutured cobordism map for a perturbation of the
identity cobordism of a knot complement, which we need for our proof of Theorem 1.1.
Suppose that K is a knot in an integer homology sphere Y. Let Y (K) denote Y \ N(K),
decorated with two oppositely oriented meridional sutures. A sutured Heegaard diagram
(2, a, B) for Y(K) is equivalent to a doubly-pointed diagram for (Y, K): To obtain a
doubly-pointed diagram from (X, &, ), we collapse each of the boundary components
of ¥ to a basepoint. We let w denote the point where K intersects ¥ negatively, and z
denotes the point where K intersects X positively. There is a tautological isomorphism

HFK(Y,K) = SFH(Y(K)),

since the generators and differential coincide.

The relative Alexander grading on HFK (Y, K) is given as follows. If x, y € Ty, N Tg,
then we pick a class ¢ € ma(x,y) on (X, &, B, w, z) (possibly going over w and z). The
relative Alexander grading is given by the formula

A(x,y) =nz(p) —nw(g).

The relative Alexander grading admits an absolute lift, which can be specified by a sym-
metry requirement on HFK (Y, K); see [22, Section 3.5].
Let Sk be a Seifert surface of K. Let

ws, € Q3 x Y(K),dI x Y(K))
be a closed 2-form dual to {1/2} x Sk under Poincaré-Lefschetz duality
H?(I x Y(K),dI x Y(K)) = Hy(I x Y(K), I x dY(K)).
By definition, wg, vanishes on 0/ x Y (K).
Lemma 2.11. Up to an overall factor of z%, the map FIXY(K);wsK is given by

Frxy(Kysos, (z%-x) =240 .y,

where A(x) denotes the Alexander grading.

We will prove Lemma 2.11 at the end of Section 7.2.

2.5. Changing the 2-form on W
We now state another result which will be helpful for proving Theorem 1.1:

Lemma 2.12. Suppose that W = (W, Z, [£]): (Mo, o) — (M1, y1) is a sutured manifold
cobordism, w is a closed 2-form on W, and 0 is a 1-form that vanishes on a neighborhood
of My and M. If @] vanishes on My U My, then

F’W;w = FW;w+d77'
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If [w] is non-vanishing on My and My, then the above equation holds when restricted to
fixed Spin® structures on My and M.

We will prove Lemma 2.12 in Section 7.8.

3. Perturbed Heegaard Floer homology of closed 3-manifolds

We review some background on Heegaard Floer homology, due to Ozsvath and Szabd
[23], [25]. To a closed 3-manifold Y with a Spin® structure s, Ozsvéth and Szabé assign
F2[U]-modules HF~(Y,s), HF*°(Y,s), and HF T (Y, s) that fit into a long exact sequence

L HF(Y.s) > HF®(Y,s) - HF*(Y,5) 5> HF(Y,s) — ---.  (3.1)

There is also an [F,-vector space HF (Y, s).
If W is a cobordism from Yy to Y7, and s € Spin® (W) restricts to s¢ on Yy and to &4
on Yi, then there are maps

Fﬁ/,SZHFO(Yo, 50) — HFO(Yl, 91)

for o € {—, 00, 4+, A} that commute with the maps in the long exact sequence (3.1).

If w is a closed 2-form on Y, Ozsviéth and Szabé [21] described an F>[H ! (Y)]-module
denoted HF°(Y, s; Ay), using the same coning procedure we described in Section 2.2.
Similarly, if @ = (w1, ..., ®y,) is an n-tuple of closed 2-forms on Y, we can define the
Fo[H(Y)]-module HF°(Y, s; Ay,), which is also a A,[U]-module, where A, is the n-
variable Novikov ring over [F,. In this section, we focus on perturbing by a single 2-form,
to simplify the notation.

Ozsvéth and Szabé [21] defined perturbed versions of their cobordism maps (and more
generally, fully twisted versions in [25]). The naturality and functoriality results described
above for sutured Floer homology have analogues for the perturbed versions of the closed
3-manifold invariants, which we state here.

Theorem 3.1. (1) Suppose Y is a closed 3-manifold with a chosen basepoint and a
closed 2-form w. If s € Spin°(Y) and o € {—, 00, +, A}, then HF°(Y, s; Ay) forms
a projective transitive system of A[U]-modules, indexed by the set of pairs (¥, J),
where K is an s-admissible diagram of Y, and J is a generic almost complex struc-
ture.

(2) Suppose W is a connected, oriented cobordism from Yo to Y1, with a chosen path
connecting the basepoints of Yy and Y1, a Spin© structure s € Spin® (W), and a closed
2-form w on W. Then the cobordism map

F;V,g;a):HFO(YO’g|YQ;Aw|yo) - HFO(Y1s5|Y1;A(D|Y1)

due to Ozsvdth and Szabé [21] is well-defined up to overall multiplication by z* for
x eR.
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Ozsvéth and Szabd’s construction of the perturbed cobordism maps is similar to the
construction we describe in Section 7 for sutured Floer homology. One important dif-
ference is how the maps are associated to Spin¢ structures on W. If W is decomposed
as W1 U W, U W3, where W; is an index i handle cobordism, then the restriction map
Spin® (W) — Spin® (W>) is an isomorphism. If (Z, &, B, B’, w) is a triple for the 2-handle
attachment, Ozsvath and Szabé [25, Section 8.1.4] define a map

Sw:ma(x,y,z) — Spin®(W>).

The map FI?V,s; » counts only triangles with s,,(¥) = s|w,. Note that this construction
differs slightly from the Spin® restricted versions of the perturbed sutured cobordism maps
we gave in Section 2.3, which took the form 7, o Fw;p 0 s,

The Spin® composition law is slightly subtle in the perturbed setting, since we are
working in a projectivized category; see Example 2.4. The morphism sets in a projectiv-
ized category are not abelian groups, so sums of maps are not well-defined. Nonetheless,
a Spin® composition law can still be stated, as we now describe.

Suppose that © C Spin®(W) is a subset of Spin® structures. We suppose that each
s € @ has the same restriction to dW, unless [w|yw] = 0. If o € {—, co}, we must also
assume that there are only finitely many s € & such that F’ p‘}, S0 2 0. In this situation, we
may define a cobordism map

Fﬁ,’@;w:HF"(YO; Awlyo) — HF°(Yq; A“"Yl ),

which is well-defined up to multiplication by z* for some x € R. The 2-handle portion of
the map Fy, . counts triangles such that s, () is the restriction of an element of ®.
By construction, we may find representatives of the maps Fy, ., for s € @ such that

FI?V,G;w = Z FI?V,s;w'
s€@
The proof of the composition law given by Ozsvath and Szab6 [25, Theorem 3.4] extends

to give the following:

Proposition 3.2. Suppose W is a cobordism which decomposes as W, o Wy. Suppose
further that w is a closed 2-form on W, and ©; C Spin®(W;) and ©, C Spin® (W) are
subsets as above. Let

G(W,B1,5;3) ={s € Spin°(W) : s|w, € &1 and s|w, € ©,}.

Then
o - o o
FW,E(W’@1:62)§(U - FWz,@z;wlwz © FWl,@l;wlwl'

We have the following analogue of Lemma 2.12:

Lemma 3.3. Suppose that W: Yy — Y1 is a cobordism of 3-manifolds, © C Spin® (W)
is a set of Spin® structures as above,  is a closed 2-form on W, and n is a 1-form that
vanishes on a neighborhood of Yy and Y1. If [w] vanishes on Yo U Y1, then

o .
Fy ew = Fw.eo+dn-
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If [®] is non-vanishing on Yo and Y1, then the above equation holds when restricted to
fixed Spin® structures on Yo and Y.

Proof. This can be shown similarly to Lemma 2.12; see Section 7.8. n

Lemma 3.4. Let W be a cobordism from Y to Y1, and w a closed 2-form on W that van-
ishes on OW . Furthermore, let © C Spin® (W) be a set of Spin® structures. If o € {—, 0o},
we also assume there are only finitely many s € © for which Fv.i/,s # 0. If 59 € Spin“ (W)
is an arbitrary base Spin® structure, then

- Z Zix(s=s0)U[@],[W.0W]) | FI?V,g- (3.2)
F1e)

o
FW,@;w

We will prove Lemma 3.4 in Section 7.9.

Remark 3.5. As a consequence of Lemma 3.4, if w is a closed 2-form on W that vanishes
on oW, then FI?V, s = F;’V’ - We note that it is natural to normalize the perturbed maps
in this situation by defining

FI;’,s;w .= lix(5—=s0)U[],[W,0W]) | vai/,s
and
FVOV;w — Z FI?V,s;w — Z Zix(s=s0)U[@],[W,3W]) | FVOV,s
s€Spin¢ (W) s€Spin¢ (W)

for o € {A, +}. For o € {—, 0o}, we may take this convention in the case when Fy, _ is
non-vanishing for only finitely many s. It is straightforward to see that this normalization
convention is compatible with the composition law.

4. Background on the Ozsvath—-Szabé mixed invariants

For a closed 4-manifold X with b;r (X) = 2, Ozsvith and Szab6 defined a map
@y : Spin€(X) — TFy.

We write @y ¢ for the value of @y on s. The map Py is referred to as the mixed invariant
of X, because it uses both HF™ and HF ™.

The map ®y is defined by picking a connected, codimension 1 submanifold N C X
that cuts X into two pieces, Wi and W5, such that b; (W;) > 0, and such that the restriction
map

H?*(X) — H?*>(Wy) & H*>(W>)

is an injection. Such a cut is called admissible. If we view W; as a cobordism from S3

: 3 o0 o) :
to N, and W, as a cobordism from N to S°, the maps FWl slw, and FWLngZ vanish
[25, Lemma 8.2]. Consequently, F; Wy, MAy be factored to have codomain

HF (N, 5|y) := ker(HF™ (N, s|y) — HF®(N, 5|)),
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and F’ ;2 , may be factored to have domain

,S
HF (N, s|n) := coker(HF™°(N,sy) — HF T (N, s|n)).

The boundary map § in the long exact sequence (3.1) induces an isomorphism between
HF (N, s|n) and HF _4(N,s|n).

The invariant @y ¢ is defined as the coefficient of the bottom-graded generator ® 1 of
HF*(S3) in the expression

+ -1 p—
(FW2,g|W2 0§ "o FWl,%\W, )(1),

where 1 denotes the top-graded generator of HF~(S?) = F,[U]. Ozsvéth and Szabé prove
that this is independent of the admissible cut N.

We now describe how to compute the mixed invariants using the perturbed cobordism
maps. To do that, we will need the following two results:

Lemma4.1. Let X be a closed, oriented 4-manifold with b; (X)>2, andleth € H*(X).
Given an admissible cut X = Wy Un W, there is a closed 2-form w on X such that

(1) [w] =b € H*(X;R), and
(2) w|y =0.

Proof. Choose ¢ € Q2(X) such that [¢] = b. Since N gives an admissible cut, the
coboundary map H'(N) — H?(X) is zero. This is Poincaré dual to the inclusion
H,(N) — H,(X), so this is trivial as well. Hence, the restriction map from H?(X:R)
to H2(N;R) is trivial. In particular, [¢|y] = 0 in H?(N;R), and so there is a 1-form
n € QU(N) such that |y = dn.

Let v(N) be a tubular neighborhood of N in X, and write p: v(N) — N for the
projection. Choose a smooth function f on X that is 0 outside v(/N ), and is 1 on a neigh-
borhood of N contained in the interior of v(/N). We define

w:=¢—d(fpn).
Then w satisfies the required conditions. ]

Lemma 4.2. Let X be a closed, oriented 4-manifold with b;’ (X) > 1, and let X =
W1 Uy Wa be an admissible cut. If  is a tuple of closed 2-forms on X that vanish
on N, then Fp;l ol and FP—VFZ,u;w\WZ are non-zero for only finitely many t € Spin®(Wy)

and u € Spin® (W,).

Proof. By Lemma 3.4, it suffices to show this for the unperturbed maps F; Wit and F ;,2,11
Note that Fy,  has image in HF, (N) for every t € Spin®(W7). Let d € N be such that

red

U4 HF4(N) = {0}. If 1 is the generator of HF~(S?), then
Fy, (1) UY - HF4(N) = {0}

only for finitely many t € Spin®(W;) by [25, Theorem 3.3], and since HF _4(N, s) # 0

only for finitely many s € Spin® (N ). The same argument works for F Wtz ol ]
@I
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Recall from the introduction that if b = (by,. .., b,) is a basis of H 2(X ;R), we define
Z Dy - Z§i*(S—SO)Ub1>[X]) .”Z’(li*(g—go)ubn,[X])’

s€Spin€ (X)

@X;b =

where s € Spin®(X) is a choice of base Spin® structure. If H2(X) is torsion-free, then
®y .5 completely encodes the map s — Py . We now give a slight reformulation of &y 5,
which is well-suited for proving Theorem 1.1:

Proposition 4.3. Suppose X is a closed, oriented 4-manifold with b2+ (X)>1,and N
is an admissible cut, dividing X into cobordisms Wy and W,. Suppose b = (b1, ..., by)
is an n-tuple of classes in H*(X;R), represented by 2-forms @ = (w1, ..., wy,) that
vanish on N. Write 1 = @ |w, and > = ®|w,. Then the maps Fl;z;wz and FI;I 0, are
well-defined, and satisfy

Oxp = ((Fy,

Waw2

087 o Fy .y )(1).04). 4.1)

Proof. Well-definedness of FI;] ) and FW+,2; o> follows from Lemma 4.2, so we focus
on (4.1).

Let 3¢ be a fixed element of Spin®(X), and let tg = s¢|w, and 19 = $o|w,. Since
®1 and w, vanish on N, we apply a straightforward adaptation of Lemma 3.4 from the
single- to the multi-variable setting to obtain

VT/l o) - Z ZY*(t_tO)U[wl]s[Wl ,0W1]) .. Z’(li*(t—to)U[w;l],[Wl LW ) . FI/I_/I o
teSpin¢ (W7) 4.2)
;2;(,)2 - Z ZY*(U_gO)U[wl]9[W2’8W2]> .. Zr(li*(u—uo)U[wn],[Wz,BWZ]) . FV-Ii;Z’u. ’

u€&Spin¢ (W)

Equation (4.1) is obtained by inserting (4.2) into the right-hand side of (4.1), and using
the fact that if s € Spin®(X) restricts to t € Spin® (W) and u € Spin® (W), then

(i (t = t0) U [wr], [Wy. OWA]) + (in (1t — 1g) U [wr]. [Wa. 9W2])
= (ix(s —s0) U [w;]. [X]). =

Remark 4.4. In light of Proposition 4.3, it is natural to view ®yx.p as a perturbed version
of the mixed invariant.

5. Fintushel-Stern knot surgery and concordance surgery

Fintushel and Stern [4] described an operation on a 4-manifold X called knot surgery.
Given a knot K in S3 and an embedded torus 7 in X with zero self-intersection, we
define the 4-manifold

Xo =X\ N(T)

with boundary T3. A neighborhood of 7 can be identified with 7 x D2. We pick
any orientation-preserving diffeomorphism ¢: 9(T x D?) — S! x dN(K) such that
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¢« ([{p} x dD?]) = [{q} x Lk], where {k is a Seifert longitude on N (K), while p € T
and g € S'. We let
Xk :=Xo Ug (S' x (87 \ N(K)))

be the result of knot surgery on X using K and 7'. Note that there is some ambiguity
in the choice of ¢, so we write Xg for any 4-manifold constructed in this way. It is
straightforward to see that H*(Xg) and H*(X) are canonically isomorphic.

Fintushel and Stern described a generalization of this operation called concordance
surgery; see Akbulut [2]. Let K be a knot in a homology 3-sphere Y (note that Akbulut
only considered Y = §3). Given a self-concordance € = (I x Y, A) from (Y, K) to itself,
we can construct a 4-manifold Xe as follows. We take the annulus A, and glue its ends
together to form a 2-torus T embedded in S x Y. The quotient map I x ¥ — S! x Y
is given by (t, y) — (e?™'!, y) fort € I and Y € Y. After removing a neighborhood
of Te, we get a 4-manifold Wee with boundary T3. We pick any orientation-preserving
diffeomorphism ¢: 90Xy — N (Te) that sends [{p} x dD?] to [{1} x £x]. We write X¢
for any manifold constructed as the union

Xe 1= Xo Uy We.

It is easy to see that H*(Xe) and H*(X) are canonically isomorphic.

If € = (I x Y, A)is aself-concordance of the knot K in Y, and a is a pair of parallel
arcs on A connecting the two components of dA, then there is an induced map on knot
Floer homology

Feo: HFK(Y, K) — HFK(Y, K),

described by the first author [8]. The map ﬁe,a preserves the Alexander and Maslov
gradings according to Marengon and the first author [10, Theorem 5.18], and is non-
vanishing when Y = S3 by [9, Theorem 1.2].

Note that the group HFK (Y, K) only becomes natural once we choose a pair P of
basepoints on K, which we suppress from the notation. We require da to be disjoint
from P, and also to link da. We define Lef, (€) to be the polynomial

Lef; (€) := ) Lef(Fe.algzy k.. HFK(Y. K,i) — HFK(Y, K. i)) - 2/
i€Z
for any pair of parallel arcs a connecting the two boundary components of €. Although
the map Fe , depends on the arcs a, we have the following:

Lemma 5.1. The graded Lefschetz number of ﬁc’a is independent of the choice of arcs a.

Proof. Changing the arcs a by a proper isotopy that does not cross the basepoints P does
not change the cobordism map ﬁf’,a. Hence, it suffices to show that the Lefschetz number
is unchanged by applying a Dehn twist to a along one of the boundary components of
the annulus A. The action of a Dehn twist on HFK (Y, K) was computed by Sarkar [27]
when Y = S3, and by the second author [31, Theorem B] for a null-homologous knot in
a general 3-manifold Y. If r, denotes the action of a single Dehn twist, then

re =1id + O,
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where ® and W are two endomorphisms of HFK (Y, K) that satisfy
P*=02=0, OU=Ud

Since a Dehn twist on an annulus may be pulled to either boundary component, it
follows that if ¢’ differs from a by a single Dehn twist along one end of the annulus, then

Feu = Fego (id+ W) = (id + dW) o Fe 4.

Consequently, the map ﬁg’a o (OW) is nilpotent, so has Lefschetz number 0 in each Alex-
ander grading. ]

Lemma 5.2. The graded Lefschetz number Lef, (€) is symmetric with respect to the con-
1

jugation z «— z~ .
Proof. The proof follows easily from the conjugation symmetry of the knot Floer homo-
logy groups [22, Proposition 3.10], as well as the corresponding symmetry of the knot
cobordism maps [32, Theorem 1.3]. [

If X is a closed, oriented 4-manifold with a smoothly embedded 2-torus 7" such that
[T] # 0 € Hy(X:R), then we can pick a basis b = (b1, ..., b,) of H*(X:R) such that

(b1,[T]) =1 and (b;,[T]) =0 fori > 1. (5.1)
This induces a basis of H?(X¢:R) that we also denote by b. We restate our main theorem.

Theorem 1.1. Let X be a closed, oriented 4-manifold such that b;’ (X) = 2. Suppose that
T is a smoothly embedded 2-torus in X with trivial self-intersection such that [T] # 0
in Hy(X;R). Furthermore, let b = (b, . .., by) be a basis of H?*(X; R) satisfying (5.1).
If € is a self-concordance of (Y, K), where Y is a homology 3-sphere, then

(I)X*g;b = Lele (®)- CI)X;b~

In order to prove Theorem 1.1, we need to perform several computations. Let € be a
self-concordance of a knot K in the homology 3-sphere Y. On the torus Te € S! x Y,
we pick a pair of dividing curves, each intersecting {1} x K exactly once. Such dividing
curves are determined up to Dehn twists about {1} x K. The dividing set specifies an
isotopically unique, positive, S !-invariant contact structure £ on T3 = —9N(T¢), by the
work of Lutz [19]. Note that this contact structure is positive with respect to the boundary
orientation from We.

Proposition 5.3. Let we be a closed 2-form on the 4-manifold We, Poincaré dual to
{1} x Sk, where Sk is a Seifert surface for the knot K. If we view We as a cobordism
from —=T3 to @, and write e = we|aw,., then

Fie e (C(Ee; Te)) = Lef, (€)

as an element ofIfIF(ﬂ; A) = A, whereC(be; te) € FIF(—?P; A<e) is the contact class
of &e twisted by te.
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Proof. We consider the sutured manifold cobordism We := (We, T3, [E¢]) from the
empty sutured manifold to itself. In Section 7, we define the sutured cobordism map
as the composition of the contact gluing map for gluing (T3, £&¢) to the empty sutured
manifold and perturbed by te, followed by 4-dimensional 1-, 2-, and 3-handle maps.
The composition of the handle maps is the perturbed cobordism map F We e induced by
the cobordism We from T3 to @, as defined by Ozsvath and Szabé [25]. Since T3 isa
closed 3-manifold, the gluing map sends the generator of SFH (@; A) = A to the perturbed
contact element ¢(&e; te). Consequently, the perturbed sutured cobordism map Fyy,.we
satisfies

Fipeswe (1) = Feswe (C(Ees Te)).

Let us write Y (K) for the sutured manifold obtained by adding two meridional sutures
to ¥ \ N(K). We decompose We as

My (k) © ldy(xyu—yx) © (W(€,a) Uld_yx)) o Uy(x),

where
e Uy(k) is the cotrace cobordism from @ to Y (K) LU =Y (K),

e W(E€,a) is the sutured manifold cobordism from Y (K) to itself complementary to the
decorated concordance (€, a), and ld_y k) is the identity cobordism of —Y(K),

o ldy(x)u—r(k) is the identity cobordism of Y (K) U —Y(K), and
e My(k) is the trace cobordism from Y (K) U —Y(K) to @.

Since ‘We is a sutured cobordism from @ to @, it follows from Lemma 2.12 that replacing
we with we + dn for a 1-form 75 only changes F, ... (1) by an overall factor of z*.
Hence, we may assume that the 2-form we restricts trivially to Uy k), W(€,a) Uld_y(x),
and My (k). Its restriction o’ to ldy(x)u—y(k) is Poincaré—Lefschetz dual to {1/2} x Sk
for a Seifert surface Sy C Y (K).

By Lemma 2.11, and since Idy(g)u—y(k) is a disjoint union of two product cobor-
disms, we have

Fuay vy (X ® y) = 4. x®y).

up to an overall factor of z* for some x € R. By [11, Theorem 1.1], we know that Uy g,
and My (k) induce the canonical cotrace and trace maps, respectively. It follows that

(F@Y(K);O o Fvldy(K)u,y(K);a)/ o FW(‘C",a)LIId,y(K);() o F@y(K);O)(l)

is the graded Lefschetz number Lef,—1 (ﬁ‘c,a). By Lemma 5.2, this coincides with the
graded Lefschetz number Lef; (Fe 4), completing the proof. ]

The special case of the unknot U and the trivial concordance (I x S3,1 x U) is
important. In this case, the dividing set on the torus S Lw U C S x S§3 determines an S'!-
invariant, positive contact structure £ on T3 = —dN(S! x U). Consider the 4-manifold

Wo=S!x(S3\NU)) = S! xS x D2,
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Corollary 5.4. Let wg be a closed 2-form on the 4-manifold Wy such that [wo) is Poincaré
dual to {(1,1)} x D2. If we view Wy as a cobordism from —T?3 to @, and write 19 =
(1)0|3W0, then

FWO;aJo(/C\(EO; TO)) =1
as an element of I-ﬁ(@; A=A

A choice of dividing sets on S! x U in S! x §3 and Te in S! x Y induces a dif-
feomorphism between S! x U and T that maps {1} x U to {1} x K, well-defined up to
isotopy. We can extend this diffeomorphism to a D2-bundle map from (S x U) x D?
to Te x D2. We write T3 for both —N(S! x U) and —dN(T¢), identified via the
restriction of such a diffeomorphism. Furthermore, the contact structures & and &e are
identified by this diffeomorphism, and hence we will write & for both. Similarly, the
2-forms 79 = wo|y3 and e = we|3 are identified, so we write T € Q2(T?) for both.

Note that Spin®(Wp) = Spin® (We) 2 Z. We write t; € Spin® (W;) for the Spin® struc-
ture with

c1(te) = 2k - PD[{1} x Sy,

where Sy is a Seifert surface for U in S3 \ N(U), and we are using Poincaré duality
Hy(Wo, aWo) = H*(Wp).

Similarly, we write t, € Spin®(Wg) for the Spin® structure satisfying ci(t;) =

2k - PD[{1} x Sk], where Sk is a Seifert surface for K in Y \ N(K).

Corollary 5.5. As maps from HFT(=T3; A;) to HF(0; A) = A, we have

+
F We t(;0¢e = Lef;(€) - F Wo to;wo°

Furthermore, F}} vanish for every k € 7 \ {0}.

+
Wo,tx 300 and FW

ety swe
Proof. The contact element
ct(E:1) e HFY (=T Ay)
was defined by Ozsvath and Szab6 [24] as the image of ¢(£; T) under the natural map
L HE(=T3; A;) — HF T (=T?; A,).

Since ¢, commutes with the perturbed cobordism maps for W and We on HF and HF ™,
we have
Fifi o (T (E:7)) = Lef(€)
by Proposition 5.3, and
Frpwo €T ED) =1

by Corollary 5.4. Hence ¢t (£; 7) # 0, and

Fif e @ (1) = Lefs (€) - Fify o (T (6. 7). (52)
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Next, we use the well-known fact that if t is any non-vanishing, closed 2-form
on —T'3, then
HFT(=T3 A;) = A,

and HFT(—=T3; A;) is supported in the torsion Spin® structure on —T3; see Ai and
Peters [1, Theorem 1.3], Jabuka and Mark [6, Theorem 10.1], Lekili [15, Theorem 14],
and Wu [29]. It follows that Fy)._., and Fyy
must be constant multiples of each other. Equation (5.2) and the fact that ¢ (£; 7) # 0
now establish that the ratio is Lef, (€), up to an overall factor of z*.

Finally, the maps in the Spin® structures t; and t; for k € Z \ {0} vanish because they

have trivial domain. In particular,

, whose domains are thus rank 1 over A,

F =F and Fl. =F}

Weswe We t:0e Woswo Wo,tosw0’
completing the proof. ]

Corollary 5.6. If o = (w1, ...,wy) is a collection of closed 2-forms on X satisfying

/a)lzl and /a)l-zo fori > 1,
T T

and ®’ = (0}, ..., w}) is the induced collection on Xe under the canonical isomorphism
H?(Xe;R) = H2(X;R), then

F} = Lef,, (€) - F};

Wf,té;w’|W€ Wo,to;wlwo ’
and both maps vanish for all other Spin°® structures.

Proof. Let the 1-variable Novikov ring A act on the n-variable Novikov ring A, in the

variables zy, . . ., z, via multiplication by the first variable.l We write A, for A, viewed as
a module over F»[H,(M)] via the formula ¢ - z¥ = Z;H_/“ “ fora € Hy(M) and x € R.
Since the classes [ws], . . ., [w,] vanish on Wy and [w}], . . ., [w},] vanish on We, arguing as
in the proof of Lemma 4.1 we may assume the 2-forms w,, ..., ®, and wé, ...,y have

been chosen to vanish on W, and We. Hence, we see a canonical isomorphism
HF " (=T% Ay|_,3) = HFY (=T Ag) @4 Ap.
Immediately from the definitions, we see that, with respect to this decomposition,

®idy,,,

+ — F+
Woti;@lw Wo,tio1lw,
and similarly for F, , . The main result now follows from Corollary 5.5. ]
W‘@,i’k,(k) |W~€

We can now prove Theorem 1.1.

Proof of Theorem 1.1. As before, let Xo = X \ N(T'). Since b;r (X) = 2, by analyzing the
Mayer—Vietoris sequence for X = Xy U N(T) it is easy to see that b2+ (Xo) > 1. Hence,
there is a surface Q of positive self-intersection in the complement of 7. Let N denote
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the boundary of a tubular neighborhood of Q. The manifold N is an admissible cut of X
by [25, Example 8.4]. We write Wi = N(Q) and W, = X \ int(N(Q)).

By Lemma 4.1, there are 2-forms @ = (w1, . . .,®y,) such that [w;] = b; and w; |y = 0.
Furthermore, we can arrange that @i | y(ry = wo and w; |y(¢ry = 0fori > 1. We let w’ =
(.. .., ;) be an n-tuple of forms on X such that o} |n(r) = we and ]| y() = 0 for
i > 1, while o/ |x, = w;|x, fori € {1,...,n}.

By Proposition 4.3,

Ox;p = ((F+

WZ;(’)‘WZ

087" 0 Fypipy, ) (1), O4).

We now apply the composition law, Proposition 3.2, to the splitting W, = Wy Ups W/,
where Wy = N(T) and W' = W, \ int(N(T)), to obtain

F# = F% o F

Waiwlw, Wos@lw, Wiy -

Similarly, if W, := We U3 W', then
— ((FF -1 -
q)X‘thb - <(FW2/’(')/|W2’ of o FWl;w/lWl)(l)’ ®+ )»

where
Fl = F oF

+
Wyo/lyy " Wes@lwe W'y

By construction of @', we have »'|w, = @|w, and @’|w’ = |w-. Hence, it follows from
Corollary 5.6 that
Dye:p = Lefz, (€) - Dxz. (5.3)

Equality in (5.3) can be established using the conjugation symmetry of the Ozsvath—Szabd
4-manifolds invariants [25, Theorem 3.6]. [

5.1. Concordance surgery and diffeomorphism types of 4-manifolds

As an application of Theorem 1.1, we prove Corollary 1.2, which states that X and Xe
are not diffeomorphic if ®x,p # 0 and Lef, (€) # 1:

Proof of Corollary 1.2. Choose a basis b = (by, ..., b,) of H(X;R) that is induced by
a basis of H?(X)/ Tors. In this situation, the invariant ®y.; takes values in the integral

group ring [F [Z"]. It is convenient to use the group ring notation
e(@1san) . — 26111 cenz8n

where (ay,...,a,) € Z". If b = (b1, ..., by) is an n-tuple of cohomology classes, we
abbreviate

(ix(3 —50) Ub, [X]) := ({(ix(s —50) U by, [X]),..., {ix(3 —50) U by, [X])).
Performing a change of basis to Theorem 1.1, we obtain

Dx:p = Lef 6.1 (€) - Px 5. (5.4)
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On the other hand, if ¢: X — X were an orientation-preserving diffeomorphism,
then

Dx,s = Dxe p*(s) (5.5)
for all 5. Hence
Oy = Z olixG=s0UBX) g
seSpin© (X)
- Z (@7 ix(5—50)Ug™ (),[Xe])
€Spin€ (X)
- Z plix(5—0™ (50))Ug™ (B).[Xel) | Dxe s
s€Spin€ (Xe)
- Z elix(5—=50)Ud™ ().[Xel) | by s
s€Spin€ (Xe)
— M@M) Z plix(5=s0)Ub.[Xel]) Dy s
s€Spin€ (Xe)
- Dxeip. (5.6)
Here, M(¢*) denotes the element of GL,(Z) induced by ¢* after identifying

H?(X)/Tors and H?(Xe)/Tors with Z" via the basis b, and M(¢*)" denotes its trans-
pose. Also, we are writing e @) for the endomorphism of F[Z"] given by eM @) o =

“Dxe,¢*(5)

_ M)

eM ("5*)["‘, where we view a as a column vector.

Equation (5.6) is justified as follows. The first equality is a definition. The second
equality follows from (5.5), and the naturality of cohomology. The third equality follows
from rearranging the sum. The fourth equality follows since ®y.p is independent, up to
overall multiplication by a monomial, of the choice of base Spin® structure . The fifth
equality can be computed directly, and the final equality again holds by definition.

The ring F[Z"] is a UFD, since it is the localization of the polynomial ring
F[zy,...,z,] at monomials. Furthermore, the units are exactly the monomials. The map
M@ preserves the number of irreducible factors since

E3Y2 *)t *)t
MEV(f - g) = (MO )M,

the map eM©®™)" sends monomials to monomials, and eM @) is invertible.
In particular, if Lef, (€) # 1 and x5 # 0, (5.4) implies that ®x..., has more irredu-
cible factors than ®y.p, while (5.6) implies they have the same number, a contradiction.
[ ]

6. Naturality of perturbed sutured Floer homology

This section is devoted to defining transition maps on perturbed sutured Floer homology
for naturality, and proving Theorem 2.1.
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6.1. Changing the 2-form

We first describe transition maps for changing the 2-form by a boundary. Unlike the
transition maps for changing the Heegaard diagrams, we usually do not want to view
sutured Floer homology as a transitive system over closed 2-forms which represent the
same cohomology class. Nonetheless, the transition maps for changing the 2-form are
convenient to define.

Let # be an admissible diagram of the balanced sutured manifold (M, y), and let w
and ’ be closed cohomologous 2-forms on M. Suppose 7 is a 1-form such that dn =
@' — w. Then we may define a chain isomorphism

Vosawn: CFJ(H; Np) — CFy(H; Aw)
via the formula
Vyswiy(z¥ - x) = . X,

where we obtain yyx by connecting x to the centers of the disks D, and Dg along radii.
We orient yx from Dy to Dg. The map W, ;5 is a chain map by Stokes’ theorem, and
is an isomorphism since W, _, ;5 is its inverse.

Lemma 6.1. When restricted to a single Spin® structure, the map Wy, .y is independent
of the 1-form n satisfying dn = o' — w, up to an overall factor of z*.

Proof. Itis sufficient to show that if 7 is a closed 1-form, then W, ., is equal to overall
multiplication by z* for some x € R, when restricted to a single Spin® structure. Hence,
it is sufficient to show that if s(x) = s(y) and dn = 0, then

Lo=1
VYx Yy

The condition that s(x) = s(y) is equivalent to the condition that the integral 1-cycle
Yx — Yy is 05 for some integral 2-chain S. By Stokes’ theorem,

[0 foreo
Yx—Vy S

completing the proof. ]

In general, the map W, ,;y is not independent of n when working with multiple
Spin® structures at once, even if [w] = [@’] = 0; see Remark 7.3.

6.2. Change of almost complex structure maps

Suppose J is an admissible diagram of (M, y). If J and J' are two cylindrical almost
complex structures on ¥ x I x R, there is a standard Floer-theoretic construction that
gives a transition map from CF j (#; Ay) to CF j/(JH; Ay); see Lipshitz [17, Section 9].
Pick a generic almost complex structure Jon T x I xR such that
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J=J onZxIx(—00,d],
J=J on%xIx[b, o),

where a << 0 and b > 0. Define
Wy CFJ(%;A(») - CFJ/(J(; Aw)
via the formula

Vop@E@x)= Y Y (IMp(@)mod2). 4@ .y,
y€TaNTg pems(x,y)
u($)=0
Lemma 6.2. The map Vj_ j/ is a chain map, and is independent of J, up to chain
homotopy.

Proof. The claim that W _, ;- is a chain map is proven by counting the ends of the moduli
spaces of index 1, J- holomorphic curves. The claim that W;_, ;/ is independent of J is
proven by taking two generic choices Jo and J;, and connecting them via a path (J 2)tel-
A chain homotopy between the map which counts J~0—holomorphic curves and the map
which counts J~1—holomorphic curves is given by counting index —1 curves that are Ji-
holomorphic for some ¢ € . ]

6.3. Perturbed stabilization maps

Suppose that # = (X, e, B) is an admissible diagram of (M, y), and ¥’ = (X', U {c/'},
B U {B’}) is a stabilization of J, i.e., there is a 3-ball B in int(M ) such that
(1) BN X isadiskand B N ¥’ is a punctured 2-torus that contains the curves &’ and 8/,
and is disjoint from o U S8,
2) S\ B =3\ B,and
(3) o' and B’ intersect transversely at a single point c.
The stabilization map
0:CF(H) — CF(¥#')

is given by o(x) = x x ¢. According to [23, Theorem 10.2], for a sufficiently stretched
almost complex structure, the map o is a chain map. See Lipshitz [17, Section 12] for the
corresponding result in the cylindrical reformulation. We define the perturbed stabilization
map

0:CF(¥#;Ayp) — CF(H'; Ay)

via the formula o (z¥ - x) = z* - (x X ¢).

Lemma 6.3. For a sufficiently stretched almost complex structure, the perturbed stabil-
ization map 0. CF(#; Ay) — CF(H'; Ay) is a chain map.

Proof. If ¢ € mo(x, y) is a class on J, there is a unique class ¢’ € mo(x X ¢,y X ¢)
whose domain agrees with ¢ on X \ B. The class ¢’ has the same Maslov index as ¢.
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Ozsvith and Szabé showed that if u(¢) = 1, and if the almost complex structure on X’ is
sufficiently stretched, then

| M(¢)/R| = |M(¢)/R| mod 2. (6.1)

We note that the 2-chain 55(¢/ ) only differs from f)(d)) in the 3-ball B. Furthermore,
there is an integral 3-chain C3 (a sum of solid tori) such that

D@) +3Cs = D).

Hence A, (¢') = Ap(¢h), so (6.1) implies that ¢ is a chain map on the perturbed complex.
(]

6.4. Perturbed isotopy maps

Suppose that (¢;):cy is an isotopy of M satisfying ¢9 = idps. For convenience, assume
that ¢, is constant for ¢ in a neighborhood of d/. If # = (X, &, §) is an admissible
diagram for (M, y), write J’ for the diagram obtained by pushing forward X along ¢ .
Let J be a cylindrical almost complex structure on X x I x R, and let J’ denote its
pushforward along ¢;. Given a choice of compressing disks Dy and Dg for #, we use
¢1(Dg) and ¢ (Dg) for H'.

If x € Ty N Ty is an intersection point on #, let y, denote the 1-chain obtained by
coning the points of x into U, and Ug, and let I'y ¢, denote the 2-chain in M obtained
by sweeping out y, under ¢;. We define

(¢0)x: CFy(H: Ao) — CEp(H': Ao)

via the formula ,
2% ox s 2 e @ - p1(x).

Stokes’ theorem can be used to show that (¢b;)« is a chain map. We define the transition
map for the isotopy (¢;):ey from H to its image H#’ to be (¢;) «.

Remark 6.4. As a special case of the above construction, when ¢, fixes the Heegaard
surface pointwise for all z, the map (¢b;)« induces a map for transitioning between col-
lections of compressing disks that are related by an ambient isotopy fixing X pointwise.
A similar construction gives a map for transitioning between collections of compressing
disks that are instead only isotopic as maps from D? into Y, relative to dD2. The con-
struction also adapts to give a transition map for changing the choice of radial foliation
on the disks.

The map (¢;)« depends only on ¢, in the following sense:

Lemma 6.5. Suppose that (¢;)ie; and (Y¢)req are two isotopies of (M, y) such that
do = Yo =1dag,y), and ¢1 = V1. Then (¢:)« = (Y¢)+ on each Spin® structure. If [w] =0,
then (¢¢)« = (Y1)« on all of CF j(H; Ay).
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Proof. Suppose that x and y are two intersection points that represent the same Spin®
structure. This is equivalent to the condition that y, — y, = 0S for some integral
2-chain S in M. The isotopies ¢, and ; applied to S sweep out 3-chains Cy, and Cy,.
We have

0Cy, = Tx g, —Typ, =S + $1(5), (6.2)

and a similar formula holds for dCy,. Integrating dw = 0 on Cy, and Cy,, and using
(6.2) and Stokes’ theorem, we obtain

/ a)—/ a)=/ w—/ w. (6.3)
Fx.d); F.V.(bt Fx.\llr F.V.Wt

Equation (6.3) implies that ()« and (¢;)« differ only by an overall factor of z* when
restricted to a single Spin® structure.

Suppose now that [w] = 0, and let x and y be any two intersection points. Since
vx — Yy isa l-cycle, (I'x 4, — Iy 4,) — (x4, — 'y y,) is a 2-cycle, so w integrates to
zero over it, and (6.3) follows. ]

Let ¢ be an automorphism of (M, y). If # = (X, «, B) is an admissible diagram of
(M, y) with a cylindrical almost complex structure J on ¥ x I X R, and #’ = ¢(J) and
J' = ¢«(J) are their pushforwards, then there is a tautological chain isomorphism

¢ CF (K M) = CE1(H's A ()
obtained by sending z* - x to z* - ¢(x). If ¢p«(w) = w, we have the following relation
between the tautological map and the map from naturality:

Lemma 6.6. If (¢;):es is an isotopy of (M, y) such that ¢pg = id and (¢1)«(0) = o,
then

(@)« = (P1)5™"
on each Spin® structure.

Proof. By definition, (¢;)«(z* - x) = zx+frx~¢>t “ . x, where Iy, is the 2-chain swept
out by y, under ¢,. Hence, it is sufficient to show that if x and y represent the same Spin®

structure, then
/ w:/ o,
Tx,¢: Ty.,¢:

As in the proof of Lemma 6.5, write S for a 2-chain such that 35 = y, — y,. By (6.2),
and since dw = 0, we have

/ w—/ w:/w—/ o.
vaqﬁt Fy,dn N 91(S)

Since (¢1)+(@w) = w, we have f¢1(S) w = f¢1(S) (¢1)+(w) = [ w, and the result follows.
n
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6.5. Monodromy

In this section, we give several examples which illustrate the existence of monodromy
around loops of Heegaard diagrams.

Example 6.7. Suppose D, fort € I is a path of compressing disks that moves just one
of the compressing disks D;. Further, assume that the center of D; traces out a small
loop in U, that bounds a disk Dy. Following Remark 6.4, by modifying the transition
maps for isotopies, the path D ; induces a transition map. Write yx ; for the 1-chain
obtained by coning x using D ;, and write I'y for the 2-chain swept out by y, ; forz € I.
Then I'y U Dy is a closed 2-chain, which is a boundary since H,(U,) = {0}. Hence, the
monodromy of the transition maps around the loop D, is overall multiplication by

Zjl"x ® — Z_'/DO w’
which may be non-zero.

We now show that the perturbed isotopy maps can have projectively non-trivial mono-
dromy over loops of Heegaard diagrams if we consider multiple Spin® structures simul-
taneously.

Lemma 6.8. Suppose that ¥ is an admissible diagram for (M, y) and (¢¢)ieq is an
isotopy of M such that ¢o = ¢1 = id(p,y). Let

frHi{(M) — Hy(M)

denote the composition Hy(M) — Hy(M x S') — H,(M), where the first map is
obtained via the cross product with the fundamental class of S', and the second map
is induced by ¢;. If s, € Spin®(M, y) is a fixed Spin® structure, then the isotopy map
(summed over all Spin® structures)

(9s)x: CF(H; Ap) = CF(H; Ay)
is projectively equivalent to the map

¥ 1 Zlrense—sep @ |y

Proof. As in the proof of Lemma 6.5, let Iy 4, denote the 2-chain obtained by sweeping
out yx under ¢;. Let x( be some fixed intersection point on #, and let 5, = s(x¢). If x
is an arbitrary intersection point, then

PD[s(x) — 50| = ¥x — ¥xo

by [7, Lemma 4.7]. The claim now follows from the computation

f a)—/ w:/ w:/ w:[ 0. m
rx,ast Fxo,dat Fx,¢[ *FxOAd)f f(l’x*)’xo) f(PDE(x)*éo])
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Example 6.9. Let D C T2 be a closed disk, and set M = (T2 \ int(D)) x S'. Let the
sutures y € M be the images of two points in dD under the action of S!. The S!-action
induces a loop ¢; of automorphisms of (M, y) based at id(yy,,). The map f is non-zero
in this case, and hence (¢; )« is projectively non-trivial when considered over the whole
chain complex by Lemma 6.8.

6.6. Perturbed triangle maps

Suppose (X, &, B) is an admissible diagram for (M, y), and o’ is obtained from & by a
sequence of handleslides and isotopies. Suppose further that (X, &, e, B) is admissible.
Then there is an unperturbed holomorphic triangle map

Fyap:CF(Z,0',a) ® CF(Z,a,B) — CF(Z,a', B).

Pick compressing disks Dy, Dy, and Dg for o', o, and B, respectively. Note that
since U, = Uy, the disks D, and D, are compressing disks for the same handlebody.
If Y € ma(x, y, z) is a homology class of triangles, we may cone the domain of ¥ along
the compressing disks to obtain a 2-chain i)(lﬂ) in M. By integrating @ over i)(lﬁ) we
obtain a real number A, (). Hence, we obtain a perturbed version of the triangle map

Foy o0 CF(Z, o, a; Aoly,) ® CF(Z, a0, B; Ap) — CF(Z,d,B;Ay).

Some care is required in interpreting CF(X, &', &; Ay, ), as its definition differs slightly
from the other two complexes. If x, y € T,y N Ty and ¢ € 7,(x, y), we cone the class ¢
in Uy, using the compressing disks D, and D, . We define A, (¢) as the integral of w
over this 2-chain in U,.

Since H?(Uy) = 0, we may write |y, = dn for some 1-form n € Q1 (Uy). There is
a chain isomorphism

Yosolyy ' CFZ,0,a) ® A - CF(Z,d, a; Aol )

whose construction is analogous to the one in Section 6.1. The complex CF(Z, &', &) con-
tains a cycle ©4 o, whose homology class is the top-graded generator of SFH(XZ, o', o).
The cycle ©4 4 is unique up to adding a boundary. We define

QL , = \p0—>w|Ua;n(®a’,a ®1p) €CF(Z, o, a; Aw\ua)' (6.4)

o )

A simple modification of Lemma 6.1 implies that [©%, ] is independent of 1, up to overall
multiplication by z*.
If the triple (¥, &', &, B) is admissible, then the transition map

a_m/ :CF(Z,a,B;Ay) — CF(Z,0,B; Aw)
is defined via the formula

qj(f—)oc’ (=)= Fa’,a,ﬂ;w (®Z’,a’ -).
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If (X, o', &, B) is not admissible, we define ‘-I-'géa, by picking a collection e” such

that the triples (X, o, &”, B) and (X, &”, &, B) are both admissible, and setting \Iff_m/
to be the composition of the triangle maps for (X, a’, &”, B) and (2, &”, &, B). A similar
construction works for changes of the beta-curves.
If (Z,a,B) and (=, &', B’) are two admissible diagrams, then we define a transition
map
N GAREE L\ Tl (6.5)

a—a’ a—>a

As in the unperturbed setting, the right-hand side is chain homotopic to \115 b "o vf

a—a’”
A chain homotopy may be constructed by counting holomorphic quadrilaterals. More

generally, an associativity argument gives the following:

Proposition 6.10. The transition map W? 7P,

a—a’
overall multiplication by z*. Furthermore,

is well-defined up to chain homotopy and

\IJB/A)B// o \Ijﬂ*)ﬂ/ - lljﬂ‘)ﬁ”

o’ —a a—a’ — Ta—a’

6.7. Compatibility of the triangle and isotopy maps

We now address compatibility of the maps induced by isotopies with the maps induced
by counting holomorphic triangles.

Let (X, &, B) be an admissible diagram, and (e¢;);e; a small Hamiltonian isotopy with
og = o, which extends smoothly over ¢ € R and is constant outside /. Then there is a
continuation map

rOl[,J;w: CFJ(E5“0’ ﬂ’ Aw) - CFJ(E»‘!15 ﬂ5 Aw)
that counts index 0, J-holomorphic curves with boundary on the cylinders
Co, ={(p.0,t):pca;, tcR} and Cg:={(p,1.1):pep,tecR},

weighted by their w-area. The cylinder Cg is Lagrangian for the product symplectic form,
while Cy, is Lagrangian with respect to a symplectic form that has been deformed slightly
near X x {0} x R; see [18, (3.25)]. Finiteness of the counts contributing to I'y, , 7., follows
from the work of Ozsvath and Szabé [23, Lemma 7.4], using the admissibility assumption
on (X, a, B).

Compatibility of the triangle and continuation maps is given by the following lemma,
adapted from the work of Lipshitz [17, Section 11]:

Lemma 6.11. Suppose that (X, &, B) is an admissible diagram for (M, y), and o is
obtained from o by a small Hamiltonian isotopy o, (for some symplectic form on X)
such that | N o | = 28;;, where §;; denotes the Kronecker delta. Let J denote a cyl-
indrical almost complex structure on £ x I xR, and let Ty, j.o: CFj (2,0, B; A) —
CFj(Z,d, B; Ay) denote the continuation map. Then

Fa,,J;a)(_) =~ Fa’,a,ﬁ;w(GZ)’,av _)-
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Proof. The proof is an adaptation of the proof of the result in the unperturbed setting [17,
Proposition 11.4]. Lipshitz’s proof considers the moduli space of holomorphic monogons
associated to the isotopy o;, which are maps from a Riemann surface S to ¥ x [0, 00) x R
that have punctures asymptotic to an intersection point x € T, N T, and have boundary
mapping to the cylinder

Co, ={(p,0,t): p oy, t €R}.

Following Lipshitz’s proof, a deformation of the almost complex structure on
> x I x R gives a chain homotopy between I'y, 7., and the composition

Fo 850 (My,;0(1), ),

where My, ., is a map from A to CF(Z, &/, &; Aoy, ) that sums over the count of index 0
monogons at all intersection points x € T,s N Ty. If x € T,y N Ty, is an intersection point
and ¢ € 7, (x) is a class of monogons, then ¢ may be coned along a family of compressing
disks Dy, to obtain a 2-chain 35((]5), on which we may integrate w. According to [17,
Lemma 11.8], there are no index 0 classes ¢ € w»(x) with holomorphic representatives
unless x = Oy 4. Furthermore, a model computation involving a stabilized diagram of S3
can be used to show that My, ;0 (1) = z* - ©F), , for some x € R. We refer the reader to
[17, Proposition 11.4] for more details on the model computation. |

Next, we consider a diffeomorphism ¢: ¥ — X, which is near idyx, and is the time 1
flow of a Hamiltonian vector field for some symplectic form on X. Write ¢; for the time 7
flow of this Hamiltonian vector field. In particular, ¢; = ¢. By extending ¢; to an isotopy
of M, we obtain an isotopy map (¢, )« on the perturbed Floer homology, as in Section 6.4.

Proposition 6.12. Suppose (X, o, B) is an admissible diagram for a sutured manifold
(M, y) which is equipped with a closed 2-form w, and ¢;: ¥ — X is the flow of a
Hamiltonian vector field (for some symplectic form on X) as above. Write a; = ¢ (o)
and B, = ¢¢(B). Then the perturbed isotopy map (¢¢)s satisfies

(P)x = Vyp,. )0 wg:fll

Proof. The first step is to interpret the isotopy map (¢; )« as a continuation map. Consider
the two cylinders Cy, and Cg,, where o, and B, are the images of & and B under ¢,. Let
J denote the almost complex structure on £ X I x R obtained by pushing forward a
generic cylindrical almost complex structure J along the map ®(x,s,t) = (¢:(x), s, t).
For ¢; sufficiently small, J will be tamed by a product symplectic form, and achieve
transversality at index O holomorphic curves with boundary on C,, and Cg,. Hence, if
Fat’ 8T denotes the map that counts index 0, J -holomorphic curves with boundary on
Cy, and Cg,, we have

Fat,ﬁt,f;w(x) = (¢r)x(x). (6.6)

We now consider a 1-parameter family of cylinders Cyz, Cgr, and almost complex

structures J© for T € [0, 00), as follows. The cylinder C,r is obtained by translating Cy,
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downward in the R-direction by 7 units. The cylinder Cgr coincides with Cg, for all 7.
The almost complex structure J® is obtained by translating J upward in the R-direction
by t units.

A chain homotopy H is defined by counting index —1, J T-holomorphic curves with
boundary on C,r and Cgr for 7 € [0, 00), weighted by their w-area. Applying Gromov
compactness to the moduli space of index O, J T-holomorphic curves with boundary on
Cyr and Cgr for T € [0, 00), we obtain

Lo T T Visoun o Tp s 0Ta g =90 H + Hod. (6.7)

ar,Bt,

Indeed, at T = 0, we obtain Faz,ﬂt,f' At T — oo, we obtain Wy_,4, ()0 I'g, 70Ty, .
The only other way a curve may break is for a family to split into an index —1 curve,
giving H, and an index 1 curve, giving d. Combining (6.6) and (6.7) with Lemma 6.11,
the result follows. ]

6.8. Proof of naturality

We now prove Theorem 2.1, naturality of the perturbed invariants:

Proof of Theorem 2.1. Our proof follows the framework of [13]. Suppose that (M, y) is a
balanced sutured manifold with a closed 2-form w. We define a directed graph gy,
as follows. The vertices of §(as,,) consist of isotopy diagrams of (M, y), i.e., tuples
(2, A, B) consisting of an embedded Heegaard surface X, and isotopy classes A and B of
attaching curves. If # = (X, a, B) is a Heegaard diagram, we write [#] for the induced
isotopy diagram.

If H; and H are two isotopy diagrams, we define the set of edges in §(,y,,) connect-
ing H; and H; to be the union

Sy (Hy, Hy) := Gy (Hy, Ha) U §g(Hy, Ha) U Gyao(Hy, Ha) U S0 (Hy, Hy)  (6.8)

of sets defined as follows. The set §y(H1, H,) consists of a single arrow if H; and H,
share the same Heegaard surface, have isotopic beta-curves, and have alpha-curves that
are related by a sequence of handleslides and isotopies; and §, (H1, H») is empty other-
wise. The set §g(H1, H>) is defined similarly. The set ., (H1, H>) has a single arrow
if Hy and H, are related by a stabilization or destabilization, and is empty otherwise.
Finally, $%(H,, H>) is the set of all automorphisms of (M, y) which move H; to H>,
and are isotopic to the identity of (M, y). Write &, for the union over all pairs (H, H)
of 9y (Hi, H,), and define g, Gyp, and G, similarly.

If H is an isotopy diagram, write SFH(H ; A ) for the projective transitive system of
A-modules, indexed by pairs (#, J), where # = (X, &, B) is an admissible Heegaard
diagram with [#] = H, and J is a generic almost complex structure on ¥ X I x R.
The transition maps may be constructed using the holomorphic triangle maps, as in Sec-
tion 6.6, as well as change of almost complex structure maps from Section 6.2. Proposi-
tions 6.10 and 6.12 imply that this gives a projective transitive system of A-modules.
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We consider the following cycles in §(py,,):
(L-1) A loop formed by a stabilization followed by a destabilization.

(L-2) A rectangular subgraph
H, —< 5 H 2

7| ls

H3L>H4

of §(u,y), where one of the following holds:

(R-1) Bothe,h € §, and f, g € §5.

(R-2) Eithere, h € §, or e, h € §g. Furthermore, f, g € .
(R-3) Eithere, h € §,,ore, h € §g. Furthermore, f, g € ﬁ(?iff.

(R-4) The edges e, f, g, h are all in Gy,,. Furthermore, e and % correspond to
stabilizing in a 3-ball B, while f and g correspond to stabilizing in a 3-ball
B’,and BN B’ = @.

(R-5) Both e, h € Gy, while f, g € ﬁlﬁff. Furthermore, f and g may be induced
by the same diffeomorphism ¢ of (M, y), and the stabilization 3-ball for e
is pushed forward to the stabilization 3-ball for 4 by ¢.

(L-3) A loop formed by an edge in ﬁd?ﬁ(H, H).

(L-4) A simple handleswap loop; see Figure 6.1, which is [13, Figure 4], for an illustra-
tion.

Commutativity of the transition maps along the loops (L-1)—(L-4) corresponds to the
axioms for a strong Heegaard invariant [13, Definition 2.32]. According to [13, The-
orem 2.38], it suffices to prove that the perturbed transition maps have no monodromy
around loops (L-1)—(L-4).

As in Remark 2.7, to define a projectively transitive system indexed by all pairs
(#, J), itis sufficient to define a morphism of transitive systems for each edge of §(as ),
and show that there is only projective monodromy around loops (L-1)—(L-4).

We define chain maps for edges in §,(H1, H>) and §g(H1, H>) to be triangle maps,
as described in Section 6.6. Chain maps for stabilizations are described in Section 6.3.
Maps for edges in §(Hy, H,) are defined in Section 6.4. It is straightforward to see that
these chain maps induce morphisms of transitive systems between the transitive systems
associated to each isotopy diagram.

The main subtlety compared to the unperturbed setting is that the map associated to
a diffeomorphism ¢ in §2(Hy, H>) is defined with an auxiliary choice of an isotopy
¢ connecting ¢ to id(as,y). The induced map ¢ is only well-defined as a projective map
when restricted to each Spin® structure by Lemma 6.5, or when [@w] = 0. See Remark 6.8
for an example illustrating the subtlety.

We now verify that the monodromy around loops (L-1)—(L.-4) is of projective type.
The monodromy around loops of type (L-1) is clearly trivial. Similarly to the unper-
turbed setting, associativity of the holomorphic triangle maps, Proposition 6.10, implies
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diffeomorphism a-equivalence

f-equivalence
-

Fig. 6.1. A simple handleswap, which is a loop of diagrams consisting of an «-handleslide, a -
handleslide, and a diffeomorphism. The green curve is the boundary of the punctured genus 2
surface P that is obtained by identifying the circles marked with corresponding letters (namely,
B and D). We draw the a-curves in red and the B-curves in blue.

that loops of type (L-2) induce projectively trivial monodromy. Loops of type (L-3) induce
projectively trivial monodromy by Lemma 6.5 and Proposition 6.12, when restricted to
individual Spin® structures, or when [w] = 0. The main claim follows once we verify
that there is only projective monodromy around simple handleswap loops (L-4), which is
verified in Lemma 6.13 below. ]

Lemma 6.13. Suppose (M, y) is a balanced sutured manifold, with a closed 2-form w,
and s € Spin®(M, y). Suppose further that

H

~

91 Ho

o

H3
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is a simple handleswap loop, where H1, Ho, and H5 are admissible diagrams of (M, y),
and eq € Gy, eg € Gg, and (¢;):cr is an isotopy with ¢o = id(uy,y). Then

(¢s)x © \Ijeﬂ oW, ~ idCF(Jﬁ,g;Aw) .
The same statement holds for the total complex CF(J1; Ay) if [w] = O.

Proof. By definition, the diagrams #;, #>, and J¢3 are all 2-fold stabilizations of a fixed
diagram # = (X, e, B). If i € {1,2,3}, write K] = (2, a}, Bi, po) for the genus 2
portion of J#; in the handleswap region. With this notation, we think of #; as J # ],
where the connected sum is taken at pg € X and a point p € X. The diagrams J; are all
genus 2 diagrams for S3. Note that

B, =B, and af=a).

The map W,., may be computed as the composition of a triangle map for an alpha-
handleslide, followed by a continuation map to move the alpha-curves on # back to their
original position. Similarly, the map W., may be computed as the composition of the
triangle map for a beta-handleslide, followed by a continuation map to move the beta-
curves on J back to their original position. The map (¢;)« is the isotopy map described
in Section 6.4.

For a sufficiently stretched almost complex structure J(7) along the connected sum
tube of X # X, the proof of stabilization invariance implies that the unperturbed complex
for J¢; decomposes as a tensor product:

CF yr)(H;) = CF ;(#) ®F, (ci), (6.9)

where {c;} = Tal{ N Tﬂi/, and (c;) denotes the 1-dimensional vector space over [, gener-
ated by ¢; fori € {1,2,3}.
In the unperturbed setting, handleswap invariance [13, Theorem 9.30] is proven by
showing
Ve, = (Fy,,7 0 \pﬁ

o—>a

u) ®(c1 > c2) (6.10)

with respect to the chain isomorphism of (6.9), where a? is a small Hamiltonian translate

of &, and a; is a Hamiltonian isotopy moving a*’ back to a. A similar tensor product
description holds for the unperturbed version of We,.

For the perturbed versions, an extension of Lemma 6.3 to genus 2 stabilizations gives
an analog of (6.9) for the perturbed setting, namely

CFyry(Hi,s: Aw) = CFj(H#,3:Ay) ®F, (ci). (6.11)

We now show that a similar tensor product decomposition as in (6.10) holds for the per-
turbed versions of ¥,, and W, -
Firstly, if 1 # ¥ is a class of triangles on (X # Zo,a? U}, U/, B U B}), then

Ao (Y #Y0) = Ao () + A (Vo). (6.12)
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According to the proof of [13, Proposition 9.31], for a sufficiently stretched almost com-
BUBY

aUa)—af Udl, have

plex structure, all index O triangles v # ¥ that are counted by ¥
u(¥) = 0. Furthermore, if () = 0, then

M| = > | M(y # Yo)| mod 2. (6.13)
WOE”Z(@)a/Z,ag ,€1,€2)

npo (Yo)=np(¥)

Next, we claim that A,(1p) is independent of the triangle class ¥ in
712(@06,&/1 , €1, ¢2). This is established by observing that any two classes in
712(@06,0/1 ,€1, ¢3) differ by a sum of doubly periodic domains. Doubly periodic domains
on H; cone to closed 2-chains in C5 (S 3), and hence do not affect the w-area, so A, (V) is
independent of the triangle class. A similar claim holds for triangles in 2 (¢, ® BB} € 3).

Combining (6.12), (6.13), and the independence of A, (V) from vy, we find that the
perturbed transition maps satisfy

() 0 \peﬁ oW,
= (¢)x 0 ((Tp, o WE™P") @ (20> €3) o (T, 0 WP 1) ® (€1 1> €2)).  (6.14)

with respect to the tensor product decomposition from (6.11).
Since the isotopy ¢; is supported in the 3-ball of the handleswap, it follows that

(1)« = idcr(ge.s;0,,) ® (€3 > ¢1). (6.15)
Furthermore, by Lemma 6.11,
H . . ..
Tp, 0 WA™P" Zideresing and To 092 Zidergesing - (6.16)

Combining (6.14)—(6.16) yields the main statement. [

7. Perturbed sutured cobordism maps

In this section, we define the perturbed sutured cobordism maps, and prove that they are
well-defined in Proposition 2.9. Furthermore, we prove the composition law, Proposi-
tion 2.10, the effect of changing the 2-form on the cobordism, Lemma 2.12, and finally
compare the perturbed and unperturbed maps when the 2-form vanishes on the boundary
in Lemma 3.4.

7.1. The perturbed contact gluing map

We now describe a perturbed version of the Honda—Kazez—Mati¢ contact gluing map [5].
Suppose (M, y) is a sutured submanifold of (M’, y’) (i.e., M is a submanifold with
boundary of M’ such that M C int(M')), w and ' are closed 2-forms on M and M’,
respectively, such that @ = @’|ps, and & is a co-oriented contact structure on M’ \ int(M).
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Let s be a Spin® structure on M represented by a non-vanishing vector field v, and let s’
be the Spin® structure on M’ obtained by gluing v to £+. We will define a gluing map

®¢.p: SFH(—M, —y,5: Ayy) — SFH(—M',—y', 3", Aw)

by adapting the construction from the unperturbed setting. Our description will use the
reformulation of the gluing map given in [11] using contact handles. See [11, Defini-
tion 3.11] for background on contact handles in this setting.

Remark 7.1. We require that M’ should have no closed components, though we allow
M’ \ int(M) to have what Honda, Kazez, and Matié refer to as isolated components,
which are components of M’ \ int(M) that are disjoint from dM’. These are permitted
since the construction from [11] had a contact 3-handle map, which was not present in [5].

On Heegaard diagrams, adding a contact 0-handle has the effect of adding a disk D
to the Heegaard surface, with no alpha- or beta-curves. The contact 0-handle map is the
canonical chain isomorphism between CF (X, &, ) and CF(X U D, a, B). This extends
to the perturbed setting via the formula

Dy (z* - x) =2 x

for any closed 2-form on the O-handle.

Adding a contact 1-handle has the effect of attaching a band to the boundary of the
Heegaard surface. The contact 1-handle map is the canonical chain isomorphism between
CF(X,a,f) and CF(X U B, «a, B), which extends to a map on the perturbed complexes
with no complications.

The contact 2-handle map is slightly more involved. The effect on diagrams is to add
a band and a pair of new curves, @ and 8, which have a single intersection point ¢ in the
band. See [11, Figure 3.11] for the precise configuration. The contact 2-handle map is
defined via the formula

Qg (z¥ - x) =2"-x xc.

To see that this is a chain map on the perturbed complexes, note that all disks counted
by d(x x ¢) have homology class of the form ¢ # e., where ¢ € m,(x, y) is a homology
class, and e, is the constant class at c. However,

Aw (P H#ec) = Ap(P).

Hence, the contact 2-handle map is a chain map on the perturbed complexes.

Finally, a contact 3-handle is attached along a boundary component S € dM which
is a 2-sphere with a single suture s. Then pick a diagram (X, & U {oo}, B U {Bo}), where
ap and By are parallel to the boundary component of ¥ corresponding to s, and intersect
each other in a pair of points. The contact 3-handle map is obtained by filling s C 03 with
a disk D, and setting
X

-x if0=06",
0 it =67+,

(2% x x 0) = {Z
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where {07,077} = ag N By, with relative grading u(#*, 6~) = 1 induced by the Maslov
index on (—X, & U {ag}, B U {Bo}). (The formula is the same as the 4-dimensional 3-
handle map). Note that the contact 3-handle map is only defined if dM has at least one
other boundary component. Furthermore, either we must choose (2, & U {ap}, B U {Bo})
so that a9 and By are adjacent to another component of 0%, or we must stretch the
almost complex structure along a circle bounding oy and Bo. We focus on the case
when (X, & U {ap}, B U {Bo}) has been chosen so that 3% has an additional boundary
component adjacent to «g and B¢. (The more general case requires using a holomorphic
degeneration argument [26, Proposition 6.5], but follows similarly.) In this situation, an
index 1 class on (—X, & U {ap}, B U {Bo}) with holomorphic representatives has one of
the following forms:

o ¢ # ey, where ¢ is an index 1 class on (—X U D, &, f8), with zero multiplicity on D,
and ey is the constant class at 0 € ag N Po,

o ¢, # g, where ¢y is one of the two bigons between oo and By.

To see that the contact 3-handle map is a chain map, it suffices to show that the two bigons
have the same w-area. The difference of the bigons is a periodic domain, which cones to a
2-sphere bounding the $? boundary component of M which is filled in by the 3-handle.
Since w extends over the contact 3-handle, w must integrate to zero on this 2-sphere, and
hence have equal area on the cones of the two bigons.

As in the unperturbed case, the composition of the contact handle maps for a canceling
pair of contact i and i + 1 handles coincides with the transition map from naturality (up
to an overall factor of z*); see [11, Figures 3.13, 3.14]. By following our contact handle
proof of invariance of the contact gluing map in the unperturbed case [11, Theorem 3.14],
it follows that the perturbed contact gluing map is well-defined up to an overall factor
of z*, when restricted to each Spin® structure on (M, y). Furthermore, if [@’] = 0, then
the gluing map is well-defined on all Spin® structures, up to an overall factor of z*.

7.2. Perturbed maps for cylinders

We now define the 4-dimensional cobordism maps for W = I x M, equipped with a
closed 2-form w.

Recall that a sutured manifold cobordism is called special if it is a product along
the boundary, with an [-invariant contact structure compatible with the dividing sets;
see [8, Definition 5.1]. Suppose that W = (W, Z, [£]): (Mo, yo) — (M1, y1) is a special
cobordism which is equipped with a Morse function f with no critical points, and let v
be a gradient-like vector field for f.

To define the map for W, we first pick an admissible diagram #o = (X9, oo, B)
for (My, yo). The flow of v induces a diffeomorphism between My and M;, and we
write J; = (X1, a1, B,) for the pushforward of #, under this diffeomorphism. If
x € Ty, N Tp,, we write v«(x) € Ty, N Tg, for the corresponding intersection point.
Write 'y for the 2-chain traced out by the flow of v applied to yx € M.
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We define the perturbed cylinder map
Fwo,(f0): CF(Ho: Aw|py,) = CF(Hi: Awjyy,)

via the formula
Py (£ (25 - x) = 25T re @y (), (7.1)

As in Remark 2.6, for a choice of diagram H#y of (My, yo) and s € Spin®(My, yo),
(7.1) gives a morphism of transitive systems from CF(Mo, yo, $; Ay Mo) to
CF(M15 Y1, U*(é); AwlMl )

Lemma 7.2. Suppose that W = (W, Z,[€]) is a special cobordism with a Morse function
f with no critical points and gradient-like vector field v.

(1) The map Fw o, fv) is a chain map.

(2) The induced morphism of transitive systems is independent of the choice of Heegaard
diagram Ho for (Mg, yo).

(3) The induced morphism of transitive systems is independent of v.

Proof. Claim (1), that Fiy 4. ( £,v) is a chain map, follows from Stokes’ theorem.

We now consider claim (2), that the morphism induced by Fy 4. (s.y) is independent
of #o. This amounts to showing that the maps Fyy 4,.(s,y) commute with the transition
maps for changing diagrams, up to an overall factor of z*. We focus on the case when we
have two diagrams for (My, yo) that are related by a single beta-handleslide or isotopy.
We leave verification of claim (2) for other Heegaard moves to the reader.

Suppose that (o, ag, B¢, B) is an admissible Heegaard triple for a beta-handleslide
or isotopy in (Mo, yo). Set Ho = (Zo, &g, B) and H = (Zo, eto, By). Let Hy and H;
denote their images in M; under the flow of v.

It is sufficient to consider the claim when the top-graded generator of
SFH(Zo, By, By) is represented by a single intersection point ®ﬁo,ﬁ(’) €Tg, N Tﬁé, since a
general beta-isotopy or handleslide may be decomposed into a sequence of beta-isotopies
and handleslides which each satisfy this condition.

Let ¢ € ma(x, @ﬁo’ﬂé, z) be a homology class of triangles, where x € Ty, N Tg,
and z € Ty, N Tﬁ(f). Let ®: 1 x My — W denote the flow of v/v(f). Let C3 C W be

the 3-chain ®(/ x 5(1/;)), where ﬁ(w) C M, is the 2-chain constructed in Section 6.6.
Since _ 5
0Cs = ({1} x D(¥)) = PO} x DY) + Iz = Tx —Te, . (7.2)

it follows that @ evaluates trivially on the sum of the 2-chains on the right-hand side
of (7.2). The quantities [ 5yy) © A [g(1yx By @ are the area contributions of
W 30— (x)and Wy, _, % (v«(x)), respectively. The quantity frz o is the area contribu-
tion of ;e (£)(2), and [ w is the area contribution of Fyp;, (1) (x). Hence

Jre
OBOJS{)

- w
Fw.o,(5,0) (Wato— e, (X)) = 2 W, a0 (Fwso,(£0) (X))

Since f o w is independent of x and z, the result follows.
“Bo-B),
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We now consider claim (3), independence from the gradient-like vector field. Any
two v may be connected by a 1-parameter family (v;);cs. As before, let Ho=(Z¢, a0, 8¢)
denote a diagram for (My, yp). For ¢t € I, let ®;: I x My — W denote the flow of

v /e (f)-
Write ¢,: My — M, for the diffeomorphism (®; o CI>0_1)| M, - Claim (3) amounts to
showing
Fyw.w.(f)) = (@)% © Fwo.(f)s (7.3)

where (¢;)« denotes the isotopy map from Section 6.4.
Let Ty ; denote the 2-chain ®,(/ x yx) € W, and let '), € M; denote the 2-chain
swept out by @; ({1} x yy) as ¢ ranges over /. Equation (7.3) amounts to showing that

/ w — / w — / w (7.4)
Ty Tx.0 F:/c
is independent of x.

Write ®: 7 x I x My — W for the map 5(t, s,x) = ®,(s, x). Let C3 be the 3-chain
defined by applying Dol x1I x yx . The expression (7.4) is equal to fa(lxl)xyx * (w).
Since fC3 dw = 0, Stokes’ theorem implies that (7.4) is equal to flxlxayx o+ (w). Since
dyy is independent of x, it follows that the quantity (7.4) is also independent of x, com-
pleting the proof. ]

We are now ready to prove Lemma 2.11.

Proof of Lemma 2.11. By construction, leY(K);wsK sends z* - x to z¥t/rx @sk - X,
where I'y = I X yy. Itis sufficient to show that

/F - ws, = —A(x,y), (7.5)

where A(x, y) is the relative Alexander grading.
Since wg,- is the Poincaré-Lefschetz dual of {1/2} x Sk, we have

/ s, = #(7x — 1) N 8x).
[x—T,

If ¢ € ma(x, y) is a class of disks, then, by definition,

A(x,y) = nz($) —nw(9).

On the other hand,
ID(P) = yy — ¥x-
Using the Leibniz rule for intersections, we have
#((yx — vy) N Sk) = —#(0D(p) N Sk) = —#(D($) N 3Sk). (7.6)

Since 0§ = K, (7.6) gives

#((yx — vy) N Sk) = —#(D(p) N K),
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which is —(n,(¢) — ny(4)) = —A(x, y), because, by convention, K intersects X posit-
ively at z and negatively at w. ]

Remark 7.3. In Lemma 6.1, we described a transition map W, .., for changing
between cohomologous closed 2-forms @ and w’ when dn = @’ — w, though the map was
only independent of 7 when restricted to a fixed Spin® structure. Lemma 2.11 is a perfect
example of why this is important. The 2-form ws, is a boundary on / x Y (K). Write
ws, = dn, and write 1; := 1| xy (k). Note that wg,. restricts trivially to {i } x Y (K) for
i €{0,1}. An easy Stokes’ theorem argument shows that the diagram

0— no:no

1\
SFH(Y(K): Ag) ———2"0 4 SFH(Y(K): Ady,)
F[xY(K):wSKl lleY(I():O (7.7)
v 50—
SFH(Y(K): Ao) =" SFH(Y(K): Agy,)

commutes up to an overall factor of z*. Hence Fyxy(k);ws, = Wo—0:79—n, - but this does
not imply that Fr,y( K)iosy = id, since Lemma 6.1 only applies if we restrict to a single
Spin¢ structure.

7.3. Perturbed 1-handle and 3-handle maps

We now describe the cobordism maps for 1-handles and 3-handles. We focus on
1-handles, since the 3-handle maps are algebraically dual.
Suppose that
Wi = (W1, Z1, [61]): (Mo, yo) — (M1, y1)

is a special cobordism with a Morse function f that has a single index 1 critical point pyg.
Let v be a gradient-like vector field for /. We use f and v as auxiliary data to construct
the cobordism map for ‘W .

The stable manifold of v at pg intersects My in two points, p; and p,. Let Hy =
(X0, @0, By) be an admissible diagram for (Mo, yo) such that py, pa € Xo \ (o U By).
Let Dy and D, be two small disks in X, centered at p; and p,. The flow of v induces
an embedding of X¢ \ (D1 U D,) into M.

A Heegaard diagram (X, a1, B) for (M1, y1) is constructed as follows. The surface
31 is obtained by connecting the boundary components of the image of X¢ \ (D1 U D3)
under the flow of v with an annulus in the 1-handle region. The attaching curves a¢; and 8,
are given by a¢; U {@} and B, U {B}, where « and 8 are contained in the 1-handle annulus,
intersect transversely, are homologically essential therein, and satisfy | N §| = 2. Write
a N B =1{0",07}, where O has the larger relative Maslov grading.

If x € Ty, N Tg,, write v« (x) for the corresponding tuple of points on Xj. A set
of compressing disks in My may be pushed forward under the flow of v. By adding two
disks in the 1-handle region, we naturally obtain a set of compressing disks in (M7, y1).
If x € Ty, N Tg,, write I'y € W for the 2-chain traced out by applying the flow of v to
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Yx € My. We define the perturbed 1-handle map Fy, ., (£v) as
Figyso(fy (2% - x) 1= 25F e @y, () x 07

Lemma 7.4. Suppose that Wy = (W1, Z1, [£1]): (Mo, yo) — (M1, y1) is a special cobor-
dism and (f,v) is a Morse function and gradient-like vector field on Wy with a single
index 1 critical point.

(1) For an almost complex structure sufficiently stretched on the two boundary compon-
ents of the 1-handle annulus, the map Fuy, ., (f.v) is a chain map.

(2) The morphism of transitive systems induced by Fu, ., (1) is independent of the Hee-
gaard diagram for (M, yg).

(3) The morphism of transitive systems induced by Fyy, .., (f.v) is independent of v.

Proof. The proof of claim (1), that Fip, . (f,v) is a chain map, relies on the same holo-
morphic degeneration argument used in the unperturbed setting. See [25, Section 4.3] for
the original proof, as well as [8, Section 7], or [30, Section 8] for versions of the proof in
several related contexts. In the perturbed setting, one must also check that the cones of the
two bigons in the 1-handle region are assigned the same w-area. Note that the difference
between these two bigon classes is a periodic domain, which cones off to a 2-sphere S
that is homotopic to the belt sphere of the 4-dimensional 1-handle. Since w is defined on
all of W (in particular, on the co-core of the 1-handle), we must have f g =0.

To prove claim (2), that the morphism of transitive systems induced by Fy, o:(f.v)
is independent of the Heegaard diagram #, one repeats the standard proof of the well-
definedness of the 1-handle maps [25, Theorem 4.10], while keeping track of areas as in
the proof of Lemma 7.2.

Claim (3), independence from v, is proven as follows. Suppose that (v;);e; is a path
of gradient-like vector fields. We can pick an isotopy ¢; of My, and an admissible dia-
gram (X, atg, ) for (Mo, yo) such that the stable manifold of the critical point of f is
contained in ¢, (X¢ \ (o U By)) for all £. We can choose an isotopy ¥, of (M, y1) such
that the image of ¢;(2¢) under the flow of v; coincides with 1, (X;) outside the 1-handle
region. Write (X, ap, B) for the image of (2o, o, B) under ¢y, and write (X, &, B7)
for the image of (X1, a1, 8) under ;.

It suffices to show that the following diagram commutes, up to overall multiplication
by z*:

CF(Z0, 0. Bo: Awlyyy) ~22%5 CF(Sh.cth. By Awlyy,)
F, :w.(./lv())l lel ‘w.(fov1) (7.8)
CF(E1.a1. B1: Aol ) 225 CF(S. h. Bl Aulyy,)
We define
5:1x1xyx—>W1,
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where 5([, s, x) is the time s flow of ¢, (x) under v, /v;(f). Consider the 3-chain C3 =
®(1 x I x yx)in Wp. Then we have

9Cs = DI x I) x yx) + O(I x I x dyy). (7.9)

Write yg+ € M for the 1-chain obtained by coning 6 into the two handlebodies, and
let [y+ 4, € M denote the 2-chain swept out by the family (Y (g, ))rer- By definition,
the difference in area contributions from the two length 2 paths in (7.8) is

/ D*(w) + f . (7.10)
O(I xXI)Xyy r

0+ .y

Applying Stokes’ theorem to (7.9), we see that the sum (7.10) is equal to

—/ () +/ w,
IxIxdyx r

0t vy

which is independent of x. It follows that (7.8) commutes up to an overall factor of z*,
completing the proof. ]

The perturbed 3-handle maps are dual to the 1-handle maps. We leave the details of
the definition to the reader.

7.4. Perturbed 2-handle maps

Suppose that
W = (W2, Zs, [62]): (Mo, o) — (M1, y1)

is a special cobordism equipped with a Morse function f and gradient-like vector field v
such that f has only index 2 critical points, and the stable and unstable manifolds of v
are transverse.

Let S; € M, denote the intersection of the stable manifolds of (f,v) and M. Let
(Z, a, B, B’) be a Heegaard triple subordinate to a bouquet for Sy; see [8, Definition 6.3].
Let

Wap.8 = Wap.8s Za,p,p- [5a,8.8])

be the associated sutured manifold cobordism, as described in [11, Section 7]. The 4-
manifold W, g g’ is defined as follows. If A denotes a triangle with edges ey, eg, and eg-,
then

Wapp i=(ExA)U Uy xeqUUg xegUUg Xepr),

where Uy, Ug, and Ug/ are the sutured compression bodies corresponding to (X, a),
(Z.B),and (T, B’), respectively. We view the 4-manifold W, g g as having three sutured
manifold boundary components, Mo, Mg g/, and M.

From our choice of ( f, v), we obtain an embedding

Dy Wap,870 = Wa,
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which is well-defined up to isotopy, as follows. Let {b;, ..., b} € (0, 1) be the critical
values of f, and let € > 0 be chosen such thate < b; <1 —efori € {1,...,k}. Let N(X)
be a product neighborhood of X in My. We can view Mg as U, U N(X) U —Ug. We can
correspondingly view Wy g g/ as

(NZ)xT)U Uy x I)U (=Ug x[0,€]) U (=Ug x [1 —¢,1]).

The embedding ®( ) sends a point (x,?) € Ug x [0, €] to the point z € W, which is in
the flow line of v over x € Ug € M and has f(z) = ¢. The embeddings on the other
portions of W, g g are defined similarly. See Figure 7.1 for a schematic. We note also
that the boundary component Mg g € d'W,, g g may be naturally filled in with a sutured
manifold cobordism ‘Wpg g/ to obtain the sutured 2-handle cobordism W,. A description
of ‘Wg g/ may be found in [8, Proposition 6.6] (see also [11, Section 8]).

M,
i UB/X :
U1 —e 1] !
————— [}
]
Mg g/ i
e i
i N(Z) x I ;
1 Ug x[0,¢€] Uy x T 1
Mo

Fig. 7.1. The triple cobordism W, g g-.

A homology class ¥ € my(x,y,z) on (T, a, B, B’) induces a coned-off singular 2-
chain !5(1#) in W, g, as follows. Firstly, the class ¥ induces a singular 2-chain Dg (V)
in £ x A, which has boundary on (& x e4) U (B x eg) U (B’ x eg’), where dA = ey U
eg U egs. The 2-chain Do () is determined, up to addition of a boundary, by the property
that its projection to X is the domain of 1, and that the projection onto A is degree d,
where d = || = |B| = |B’|. We pick compressing disks Dy, Dg, and Dg/, and we let ¢q,
cp, and cgs denote the sets of center points of these compressing disks, respectively. We
cone Do (¥) into Uy x eq, Ug x eg, and Ups x eg/ to obtain a 2-chain DY) in Wa,8.8
that has boundary

—Yx —Vy tVz+cCa Xeq+cgXeg+cp Xepr.

We define A, (1) to be the integral of CDE"ﬁv) (w) over ﬂS(W). We write (Mg g/, Yg,p’)
for the sutured manifold defined by the diagram (X, 8, '), and wg g = w| Mg g

By counting index 0 holomorphic triangles weighted with z4« ™) we obtain a per-
turbed triangle map

Fappr0 CF(Z.0,BiAujy,) ® CF(Z.B.B" Awy ) = CF (2., B Ay, ). (7.11)
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Finally, the perturbed 2-handle map is given by the formula
Fypio (i) (25 %) = 25 Fap prio(x ® O35, (7.12)

where @Zﬁ;‘?’ € CF(Z,B,8'; A 4 ) 1s defined analogously to (6.4).

The domain and codomain of F,., (£v) do not form projective transitive systems
unless either we restrict to a single Spin® structure on (My, yo) and (M1, y1), or [®]|a, =0
fori € {0, 1}. However, if we fix s, € Spin® (Mo, yo) and g, € Spin° (M1, y1), we obtain
a morphism of projective transitive systems

s, © Fwyo,(f0) © sy CF(Mo, Y0, 891 Awlyy,) = CF(M1.y1:%1, Awly, )

Lemma 7.5. Suppose that W,: (My, yo) — (M1, y1) is a special cobordism with a Morse
function f and gradient-like vector field v with only index 2 critical points, which is
Morse—Smale. Let Sy denote the corresponding framed link in M.

(1) The morphism of transitive systems induced by Fu,., (fv) is independent of the
choice of bouquet for Sy, or the Heegaard triple subordinate to it.

(2) The morphism of transitive systems Fy, ., (f.v) is independent of v.

Proof. The proof of claim (1) is similar to the original proof given by Ozsvath and Szabd
[25, Proposition 4.6, Lemma 4.8], and follows from associativity of the perturbed holo-
morphic triangle maps. See also [8, Theorem 6.9] for a more detailed explanation of the
argument in the sutured setting.

Independence from v, claim (2), is proven as follows. The space of gradient-like vec-
tor fields of f is connected. Suppose (v;);es is a path of gradient-like vector fields.
Let S’l denote the intersection of the stable manifolds of v; with Mj. Generically, v,
is Morse—Smale at all but finitely many #, at which time a handleslide amongst two of the
components of S occurs.

We break [ into two types of subintervals: [a, b], where (f, v;) is Morse—Smale for
allt € [a, b]; and [ty — €, tg + €], where € > 0 is small, and a handleslide occurs at #y.

For the first type of subinverval [a, b], let (Z, a, B, B’) be subordinate to a bouquet
for S{. Let (¢¢):e[a,b] be an isotopy of M such that ¢, = idas, and the diagram

(Et,dt, ﬂt’ ﬂ/t) = ¢t(2’“’ ﬂ’ ﬂ/) g MO

is subordinate to S¥.

Using the abbreviation ®; for ®(r,,,), we obtain a family (®;);¢[4,5) of embeddings
of Wy g, into Wa. Let ;- My — M denote the map (®; o @, ')|ps,. We claim that the
following diagram commutes up to an overall factor of z*:

(¢1)x
CF(Za,@a, Bas Nolpy,) ——+ CF(Zp, e, Bpyi Awlry,)
FWz;w,(f,va)l lF'Wzlw.(./lvb) (7.13)

W)
CF(Ea’aaa ﬂ/b;AwlMl) —t> CF(Ebv‘xba ﬂ;);Aa)IMI)
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Suppose ¥ € m,(x, ©g g/, z) is a homology class of triangles on (X, e, B, B’), where
x € Ty NTg and z € Ty, N Tpr. Write I'y g, € Mo and I'; y,, S M, for the 2-chains
swept out by Yy and y, by ¢, and ¥, for ¢ € [a, b], respectively. Commutativity of (7.13)
up to an overall factor of z* amounts to showing that the integral of @ over

(DY) — Pp (DY) + Tz oy, — Ty (7.14)

is independent of ¥, x, and z.

The family ®; induces a map ®: [a,b] x Wy g g — Wa, and we let C3 C W, be the
3-chain 5([(1, b] x 55(1#)). Stokes’ theorem applied to dC3 implies that the integral of @
over the 2-chain in (7.14) is equal to the integral of w over

Toy .0, + Capp (7.15)

where ', /@, is the 2-chain 5([61, b] X ye, 4 ), and Co,pg g is defined as follows. Let
cq C Uy be the union of the centers of the alpha compressing disks, and let e, denote
the alpha side of the triangle A used to build W, g g-. Let cg, cg, eg, and eg: be defined
similarly. Then C, g g’ is the image under ® of [a,b] x (cq X eq Ucg xeg Ucgr X egr).
Since the sum (7.15) is independent of x, z, and v, it follows that the diagram (7.13)
commutes up to an overall factor of z*.

Next, we consider the case when the subinterval of I is of the form [t — €, to + €],
where a handleslide amongst the components of S/ occurs at 7 = fo. Adapting the proof
of Ozsvath and Szab6 [25, Lemma 4.14], we may pick a Heegaard triple (X, [2 B.B’) sub-
ordinate to a bouquet for S} f07€ such that there are attaching curves  and ﬁ on ¥, where
B is obtained from B and ﬂ is obtained from B’ via a sequence of handleslides and iso-
topies, and (=, e, 8. B /) is subordinate to a bouquet for St1°+€. The 4-manifold W, g g/ is
unchanged by isotopies and handleslides of the attaching curves. A straightforward asso-
ciativity argument shows that the two morphisms constructed with the embedding @,
and either of the triples (2, a, 8. B’) or (X, a, B, [_i/) coincide. Similarly, the previous
argument shows that the two morphisms computed using the triple (X, &, 8, 8 /) and either
of the embeddings ®;,_¢ or ®;,4¢ coincide, completing the proof. ]

7.5. Defining the Spin® restricted cobordism maps

In this section, we define the Spin® restricted versions of the perturbed sutured cobordism
maps. Suppose that

= (W, Z,[§]D: (Mo, yo) = (M1, y1)

is a cobordism of sutured manifolds equipped with a closed 2-form @ on W. We remove
a collection of tight 3-balls from Z, adding them to My or M, so that My U Z has no
closed components, and so that each component of W intersects My and M non-trivially.

We can decompose ‘W as W* o W9, where W? consists of I x (Mo U Z), viewed as
a cobordism from My to My U Z, and ‘W* consists of W, viewed as a special cobordism
from My U Z to M;.
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We choose a self-indexing Morse function f on ‘W*, with no index O or 4 critical
points, and a gradient-like vector field v for f. The pair ( f, v) induces a decomposition

WS=W3OW20W1,

where 'W; = (W}, Z;, [&;]) is a special cobordism that contains the index i critical points
of f.

Suppose g, € Spin® (Mo, yo) and s, € Spin® (M1, y1). The Spin® structure s, extends
uniquely over ‘Ws3. Write u for its restriction to the incoming boundary of ‘W;. We define

T, © Fyw,p 0lg,
= FW3;w|W3 O Ty © FWz;w|W2 ° FW1§0)|W1 °© q)E;wlM(,uz olg, (7.16)

where we have suppressed the dependence of the map Fy,,,|, on the Morse func-
tion f|w,. There is no dependence on the gradient-like vector field v|w, according to
Lemmas 7.2, 7.4, and 7.5.

We now prove that the Spin® restricted perturbed cobordism maps are well-defined:

Proof of Proposition 2.9 (1). The proof is similar to the proof of the corresponding claim
in the unperturbed setting; see [25, Section 4.4] and [8, Theorem 8.2]. Given two Morse
functions fy and f; on W, viewed as a special cobordism from My U Z to My, one may
pick a generic path ( f7)sey of smooth functions that are Morse at all but finitely many ¢
and connect fj to f1. Furthermore, using Cerf theory, one may assume that there are no
index O or 4 critical points, and that critical points of index i for i € {2, 3} have values
greater than the values of critical points of index less than i. Furthermore, at the finitely
many ¢t where f; fails to be Morse, an index 1/2 or 2/3 birth-death singularity occurs.

If f; is Morse for every ¢ € [a,b] C [0, 1], the decompositions of W* as ' W; o W, o W;
corresponding to f; and f are isotopic, so adaptations of Lemmas 7.4 and 7.5 show that
the composition is unchanged, up to an overall factor of z*.

Invariance under index 1/2 birth-death follows from Ozsvath and Szab6’s holomorphic
triangle computation [25, Lemma 4.16], with extra attention paid to areas. Invariance
under index 2/3 birth-deaths follows by the same argument. ]

7.6. Defining the total cobordism map

In this section, we define the total perturbed cobordism map Fyy.,, when [w] restricts
trivially to M and M. This addresses part (2) of Proposition 2.9.

As a first step, if [w] restricts trivially to My, and s, € Spin®(My, yo), we may define
the partially Spin® restricted map Fy;, o i, by omitting 7, from (7.16).

This strategy does not extend to the case when [w]|p, = 0, since we also need
[@]lmouz = O for the gluing map to be well-defined. Instead, when [w] restricts trivially
to My and M;, we make an alternative construction. Pick an open collar neighborhood
N C W of My. Set

N =(N.Z 0N [Ely).
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[\

Fig. 7.2. Decomposing W into N and w.

which we view as a sutured manifold cobordism from (M, yo) U (— My, yp) to the empty
set. Let us write
W=WA\N,Z\N.[E|z\n].

We view W as a cobordism from the empty set to (—My, yo) U (M1, y1). See Figure 7.2.
The previous case gives a map

F~

Wolw\n

tA — SFH(=Mo, yo: Awlpy,) @ SFH(M1, y1; Aoy, )- (7.17)

Implicitly, we are precomposing with the map s, where s, is the unique Spin® structure
on the empty set. We define the total cobordism map F., via the formula

Fyio = (Fy .oy ®idsrua)) © (dsere) @ Figug),,, ) (7.18)

If [w] restricts trivially to My U Z and M, then we may also define the total per-
turbed cobordism map by removing the projections and inclusions of Spin¢ structures
from (7.16). We claim that this more direct construction coincides with the construction
given in (7.18). To see this, we note that if W = (W, Z, [£]) is a sutured manifold cobor-
dism which decomposes as the composition of two cobordisms, W, = (W1, Z1, [§;1]) and
W, = (W, Z5, [£]), and w is a 2-form such that [w|p,uz] = 0 and [w|pr,] = O, then
the original proof of the sutured cobordism composition law [8, Theorem 11.3] (see also
[25, Theorem 3.4]) adapts to show that

FW;a) = F'Wz;a)z o le;wl , (7.19)

where the maps are defined using the construction in (7.16). When [w] restricts trivially
to My U Z and M, the right-hand side of (7.18) may be interpreted as a composition
satisfying these hypotheses, so the composition law of (7.19) implies that (7.18) coincides
with the construction obtained by removing the Spin® restrictions from (7.16).

7.7. The composition law
We now sketch a proof of the composition law, Proposition 2.10.

Proof of Proposition 2.10. We focus on part (1), as part (2) follows from a simple modi-
fication. Assume, as in the statement, that W = (W, Z, [€]) is a sutured cobordism from
(Mo, yo) to (M3, y»), which decomposes into Wy =(Wy, Z1,[£1]) and W, = (W3, Z,, [£2])
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that meet along a sutured manifold (My, y;). We are interested in the case when [w]
restricts trivially to Mo, My, and M>.

As a first step, we claim that, via the same argument that gives (7.19), if [w] restricts
trivially to My U Z, and M,, then

Fy.w 0ls = Fw,:0, © Fwy 0, ©ls, (7.20)

where g € Spin® (M, yo), and the maps Fyp,q, © is, F,.0,, and Fy, ., © iy are defined
using the appropriate modification of (7.16).

We now claim that the restricted composition law stated in (7.20) implies the full
version of part (1) of Proposition 2.10. We recall that the full version of Proposition 2.10
involves the maps defined in (7.18). Following the construction of Section 7.6, we decom-
pose W1 into sutured manifold cobordisms N; and 'Wl, and we decompose W, into N,
and "Wz We give W the analogous decomposition into N7 and W= W1 UM U 'Wz, see
Figure 7.3.

Fig. 7.3. Decomposing W = W, o ‘W into N7 and W = 'Wl UM U 'Wz.

Using the definition from (7.18), we have

)

° (FM,wIN ® idsra(my)) © (dsrr(mg) @ F Wrsolwy vy ). (7.21)

Fpyian © Fwiior 1= (Fapoly, ® idsrnny) © (dseran) @Fp, .

By commuting tensor factors, we see that the right-hand side of (7.21) coincides with the
composition of Fy, oly, ® idsrr(mM,) and

(idsrr(Mo) ® 1dsrr(-Mo) @ Fazoly, ® idsrui,))

o (idsrr(Mmo) ®le§wlw Wy ® sz;w\w W ). (7.22)

The hypotheses stated for the restricted version of the composition law from (7 20) are
satisfied for decomposing W into the composition of Id_pz, L N L Idps, and W1 LI "Wz
(note that we are implicitly precomposing with is , where s, is the unique Spin® structure
on the empty set). Hence (7.22) coincides with idgrnary) & Fip. It follows that
(7.21) coincides with

olw\ny

(Fnyoly, ®1dsrrms)) © (dsprg) @ Ww|W\N1)

which is the definition of Fyy.,, in (7.18). ]



A. Juhasz, I. Zemke 48

7.8. Changing the 2-form on W
We now prove Lemma 2.12.

Proof of Lemma 2.12. 'We investigate the diagram (7.7) from Remark 7.3. Suppose that
H1, ..., Hy is a sequence of sutured Heegaard diagrams such that

e Jf; is a diagram for (Mo, yo) and #, is a diagram for (M, y1),

e J; 41 is obtained from J; by either an elementary Heegaard move, the contact gluing
map, or is the result of applying a 1-handle, 2-handle, or 3-handle map.

Consider the case when #; and #; are diagrams for the boundaries of the 2-handle
submanifold ‘W, = (W,, Z,, [£2]) of W. Furthermore, assume #; and J; 1, are subdia-
grams of a triple which is subordinate to a bouquet for a framed link in the incoming
boundary of W,. Write @, for the restriction of @ to ‘W,. Write w; and w;+; for the
restrictions of @ to the manifolds defined by #; and #; 1, respectively. Define 75, n;,
and 7n;41 similarly. An argument using Stokes’ theorem implies that the following dia-
gram commutes up to an overall factor of z*:

Yo, —>w;+dn;n;

CF(J(I ; A(L)f)

FWziazl lFW2152+d?2
\pr +d . M.
i+1 Ni41:M 41 .
CFHig1. Ay) 2 RO 1 Ay vy

> CF(Hi; Ao, +-dn;)

In an analogous manner, we may relate #; and #; 1 by a similar commutative square
when J; 4+ is obtained from #; by an elementary Heegaard move, or a 1-handle or 3-
handle attachment. Stacking the n — 1 projectively commutative squares, we see that the
square

w]—w)+dnying

v,
CF(%l;Awl) CF(%I;Awl—i-dm)

FW;wl lFW:w+dn

Yon—won+dnn:mn

CF(H#y, Awn) ' CF(Jgn;Awn+d7]n)

commutes, up to an overall factor of z*. Since 1|y, = 11 = 0 and 5|y, = np, = 0, the
maps Yo, o, +dn:n a0d Yo, 0, +dn,;n, are the identity, completing the proof. m

7.9. Perturbed and unperturbed cobordism maps
We are finally ready to prove Lemma 3.4.

Proof of Lemma 3.4. Let us write W = W, U W, U W3, where W; is the i-handle part
of W.Let (Z,a, B, B, w) be a triple subordinate to a bouquet for the 2-handles of W, and
write Wy g g for the corresponding portion of W>. In particular, Wy := W \ int(W, g, p’)
is a boundary connected sum of copies of S1 x D3. As Hz(Wl, Yo; R) = 0 and
H?(W3, Y1;R) = 0, the restriction maps H2(W;;:R) — H?(Yp;:R) and H?(W3:R) —
H?(Y1;R) are both injective. Furthermore, H 2(Wp:R) = 0. Hence, since w |y = 0, we
have [w|w,] = 0, [w|w,] = 0, and [w|w,] = 0. So there is a 1-form n on W such that
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nlaw = 0, and @ — dn vanishes on W \ int(W, g g’); compare the proof of Lemma 4.1.
By Lemma 3.3, we have

o . o
FW,@;w - T W,G;w—dn"
Hence, we may assume that @ vanishes on Wy, W;, and W3. With this assumption, the

o o
maps FWl Blw, slw, and FWs,@IWS;w|W3 are unperturbed. Furthermore,

(ix(s —50) U], [W.0W]) = (ix(s]w, — Solwz) U [@|w,]. [W2, 0W2]).

So, without loss of generality, we can assume that W = W,.

Let x,x" € To NTg and y, y’ € Ty N Ty/. Furthermore, let Y € ma(x, y, ©g g/)
and ¥ € ma(x’, y’, ©p g/) be homology classes of triangles, where ®g g € Tg N Tp.
Note that

HE* (S, B. B Aulyy,) = HF*(S.B.8) ® A.

since w|gw, = 0. Then, the coned-off domain 5(1//) - f)(l/f’ ) represents the Poincaré
dual of sy, (V) — s (¥') € H?(W>). Hence

Ao (V) — Au(') = / o / © = (i (50 () — 50 () U []. [W, 3W]),
D) D)

and (3.2) follows. [
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