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Abstract. We consider a model for elastic dislocations in geophysics. We model a portion of the
Earth’s crust as a bounded, inhomogeneous elastic body with a buried fault surface, along which
slip occurs. We prove well-posedness of the resulting mixed-boundary-value-transmission problem,
assuming only bounded elastic moduli. We establish uniqueness in the inverse problem of determin-
ing the fault surface and the slip from a unique measurement of the displacement on an open patch
at the surface, assuming in addition that the Earth’s crust is an isotropic, layered medium with Lamé
coefficients piecewise Lipschitz on a known partition and that the fault surface satisfies certain geo-
metric conditions. These results substantially extend those of the authors in [Arch. Ration. Mech.
Anal. 236, 71–111 (2020)].
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1. Introduction

The focus of this work is an analysis of both the forward or direct problem, as well as
the inverse problem, for a model of buried faults in the Earth’s crust. Specifically, we
prove well-posedness of the direct problem, assuming only L1 elastic coefficients, and
uniqueness in the inverse problem, under additional assumptions, which are motivated by
the ill-posedness of the inverse problem and are not overly restrictive for the applications
we are concerned about.

We model the Earth’s crust as a layered, inhomogeneous elastic medium, and the fault
as an oriented, open surface S immersed in this elastic medium and not reaching the
surface (the case of buried or blind faults), along which there can be slippage of the rock.
Faults can have any orientation with respect to the surface: horizontal, vertical, or oblique.
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When slip occurs, we speak of elastic dislocations. Mathematically, the slip is given by
a non-trivial jump in the elastic displacement across the fault, represented by a non-zero
vector field g on S . The surface of the Earth can be assumed traction free, that is, no load
is bearing on it, while on the fault itself one can assume that the jump in the traction is
zero, that is, the loads on the two sides of the fault balance out. (We refer the reader to
[15, 17] for instance for a mathematical treatment of elasticity.)

The direct or forward problem consists in finding the elastic displacement in the
Earth’s crust induced by the slip on the fault. The inverse problem consists in determining
the fault surface S and the slip g from measurements of surface displacement. The inverse
problem has important applications in seismology and geophysics. The surface displace-
ment can be inferred from Synthetic Aperture Radar (SAR) and from Global Positioning
System (GPS) arrays monitoring (see e.g. [20, 37, 45, 46]).

In the so-called interseismic period, that is, the (usually long) period between earth-
quakes, one can make a quasi-static approximation and work within the framework of
elastostatics. In seismology, the assumption of small deformations is generally a good
approximation away from active faults, and therefore linear elastostatics is typically
employed. Near active faults, and especially during earthquakes, the so-called co-seismic
period, more accurate models assume the rock is viscoelastic. However, a rigorous anal-
ysis of these more complex, non-linear models is still essentially missing. We plan to
address non-linear and non-local models in future work.

The study of elastic dislocations is classical in the context of isotropic, homogeneous,
linear elasticity, when the surface S is assumed to be of a particular simple form, that is, a
rectangular fault that has a not-too-big inclination angle with respect to the unperturbed,
flat Earth’s surface. (We refer to [16, 36] and references therein for a more in-depth dis-
cussion.) In this case, modeling the Earth’s crust as an infinite half-space, there exists
an explicit formula for the displacement field induced by the slip on the fault, due to
Okada [27] (see also [25]). To our knowledge, there are few works that tackle the for-
ward problem in the case of non-homogeneous regular coefficients and more realistic
geometries for the fault. Indeed, the problem is intrinsically singular along the fault, where
non-standard transmission conditions are imposed. A variational formulation of the prob-
lem for a bounded domain was introduced in [41].

In [9], we proved well-posedness of the direct problem for elastic dislocations, assum-
ing the Earth’s crust is an infinite half-space, the elastic coefficients are Lipschitz contin-
uous, and the surface S is also of Lipschitz class. We also established uniqueness in the
inverse problem from one measurement of surface displacement on an open patch, under
some additional assumptions on the geometry of the fault and the slip, namely we took
S to be a graph with respect to an arbitrary, but given, coordinate system, we assumed
that S has at least one corner singularity, and that g is tangential to S . The main difficul-
ties in that work were twofold. On the one hand, we had to work with suitably weighted
Sobolev spaces in order to control the slow decay of solutions at infinity. On the other, we
allowed slips that do not vanish anywhere on S . Then the solution at the boundary of the
fault may develop singularities, for instance in the case of constant slip and a rectangular
fault, for which logarithmic blow-up at the vertices exists, as noted already by Okada [27].
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These potential singularities are unphysical and do not allow for a variational approach
to well-posedness. Instead, owing to the regularity of the coefficients, we used a duality
argument for an equivalent source problem. We also established a double-layer-potential
representation for the solution. Uniqueness for the inverse problem was obtained using
unique continuation, again owing to the regularity of the coefficients.

The main focus of this work is to generalize the results in [9] to a more realistic set-up.
We model a portion of the Earth’s crust, where the fault is located, as a Lipschitz bounded
domain �, which includes the case of polyhedral domains, relevant to numerical imple-
mentations and applications. The direct problem consists in solving a mixed-boundary-
value-transmission problem for the elasticity system in �, given in equation (6). On the
buried part of the boundary of �, which we call †, we impose homogeneous Dirich-
let boundary conditions, that is, zero displacement. Such boundary conditions model the
situation where the relative motion of rock formations is small away from the fault as com-
pared to that near the fault itself, except at the surface of the Earth due to the traction-free
assumption there. This assumption implicitly includes that � is large enough compared
to the size of the active portion of the fault where the slippage occurred, so our model is
not well suited for large, active faults. A non-zero displacement on† can also be imposed
and other types of boundary conditions on † can be treated, such as inhomogeneous
Neumann boundary conditions, modeling the load bearing on the rock formations at the
boundary from nearby formations. We assume that the Earth’s crust is a layered elastic
medium, a common assumption in geophysics, that is, we assume that the elastic coeffi-
cients are piecewise regular, but may jump across a known partition of � (see Figure 1),
and impose standard transmission conditions at the interfaces of the partition. This set-up
has been considered in the literature to model dislocations in geophysics (see for example
[32, 35, 43]). Furthermore, posing the problem in a bounded domain lends itself natu-
rally to a numerical implementation that does not utilize boundary integral equations, but
instead uses a variational formulation for the problem [6, 7].

In this work, we assume that the slip g vanishes at the boundary of the fault. We
are therefore modeling the case of an unlocked fault patch on only a part of the fault. By
unlocked fault patch we mean a part of the fault surface where the rocks of the two sides of

Fig. 1. An example of the geometrical setting. A section of a layered medium with S , the dislocation
surface, and with †, the buried part of �.
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the fracture have slipped freely relative to one another. It is observed that most faults have
a distribution of locked and unlocked patches. The quasi-static approximation can be used
for so-called aseismic creeping faults, that is, faults where the rock slowly slips without
major seismic events. There are known creeping faults in major populated areas of Japan
and California, for instance. Creeping faults are also relevant for microseismicity, which
indicates frequent seismic activity of small amplitude. (Among the vast literature on the
subject, we refer the reader to [18, 26, 33, 34].) The support of g can still be the entire
fault surface, a situation that arises in the inverse problem. Then a variational solution
exists for problem (6), constructed by solving suitable auxiliary Neumann and mixed-
boundary-value problems, after [2]. For the direct problem, well-posedness holds if the
elasticity tensor C is an (anisotropic) bounded, strongly convex tensor.

For the inverse problem, we require more. On the one hand, we need to guarantee that
unique continuation for the elasticity system holds. This can be achieved by assuming
that � is partitioned into finitely many Lipschitz subdomains and assuming that C is
isotropic with Lamé coefficients that are Lipschitz continuous in each subdomain (see
[4, 11, 12, 14] where a similar approach has been used to determine internal properties
of an elastic medium from boundary measurements). On the other hand, the uniqueness
proof, which uses an argument by contradiction, can be guaranteed to hold when S is
a graph with respect to an arbitrary, but chosen, coordinate system. This assumption is
again not too restrictive in the geophysical context and allows for an arbitrary orientation
of the surface, horizontal, vertical, or oblique (see Remark 4.2). Differently than in [9],
however, due to the fact that the slip vanishes on the boundary of S , one does not need
to assume S has a corner singularity or assume a specific direction for the slip field g.
Therefore, the results presented here are a substantial generalization of known results for
both the well-posedness of the direct problem and the uniqueness of the inverse problem.

The inverse dislocation problem has been treated both within the mathematics com-
munity [44], as well as in the geophysics community (among the extensive literature
we mention [8, 29, 30] and references therein). Reconstruction has been tested primarily
through iterative algorithms [44], based on Newton’s methods or constrained optimization
of a suitable misfit functional, using either Boundary Integral methods or Finite Element
methods, as well as Green’s function methods to solve the direct problem. For stochastic
and statistical approaches to inversion we mention [24, 42] and references therein. We do
not address here the question of reconstruction and its stability (see [13, 40]). This is the
focus of future work, which we plan to conduct by using appropriate iterative algorithms
and solving the direct problem via discontinuous Galerkin methods (for example adapting
the methods in [6, 7]).

We close this introduction with a brief outline of the paper. In Section 2, we intro-
duce the relevant notation and the function spaces used throughout. In Section 3, we
discuss the main assumptions on the coefficients and the geometry, and we address the
well-posedness of the direct problem, while we discuss additional assumptions and prove
uniqueness for the inverse problem in Section 4.
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2. Notation and functional setting

We begin by introducing the needed notation and the functional setting for both the direct
and inverse problems.

Notation: We denote scalar quantities in italics, e.g. �; �; �, points and vectors in bold
italics, e.g. x;y;z and u;v;w, matrices and second-order tensors in boldface, e.g. A;B;C,
and fourth-order tensors in blackboard font, e.g. A;B;C.

The symmetric part of a second-order tensor A is denoted by bAD 1
2
.ACAT /, where

AT is the transpose matrix. In particular, bru represents the deformation tensor. We utilize
standard notation for inner products, that is, u � v D

P
i uivi and A W B D

P
i;j aij bij ;

jAj denotes the norm induced by the inner product on matrices:

jAj D
p

A W A:

Domains: Given r > 0, we denote the ball of radius r and center x by Br .x/ � R3 and
a circle of radius r and center y by B 0r .y/ � R2.

Definition 2.1 (C k;˛ regularity of domains). Let � be a bounded domain in R3. Given
k; ˛, with k 2 N and 0 < ˛ � 1, we say that a portion ‡ of @� is of class C k;˛ with
constants r0, E0 if for any P 2 ‡ , there exists a rigid transformation of coordinates
under which P is mapped to the origin and

� \ Br0.0/ D ¹x 2 Br0.0/ W x3 >  .x
0/º;

where xD .x1; x2; x3/, x0D .x1; x2; 0/ identified canonically with .x1; x2/ 2R2. Above,
 is a C k;˛ function on B 0r0.0/ � R2 such that

 .0/ D 0;

r .0/ D 0 for k � 1;

k kCk;˛.B0r0 .0//
� E0:

When k D 0; ˛ D 1, we also say that ‡ is of Lipschitz class with constants r0, E0.

Similarly, we define a surface S to be of class C k;˛ if it is locally the graph of a func-
tion  with the properties described above. For k D 0, ˛ D 1, the case we are interested
in, since the composition of Lipschitz maps is Lipschitz, we can define a Lipschitz curve
on a Lipschitz surface S (such as its boundary @S ) by lifting a Lipschitz curve on R2.

Given a bounded domain � � R3 such that � WD �C [��, where �C and �� are
bounded domains, we write f C and f � for the restrictions of a function or distribution f
to �C and ��, respectively. We denote the jump of a function or vector field f across
a bounded oriented surface S by Œf �S WD f CS � f

�
S , where˙ denote the non-tangential

limits from the two sides SC and S� of S , where SC is by convention the side where the
unit normal vector n points into and n is determined by the given orientation on S .
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Functional setting: We use standard notation to denote the usual function spaces, e.g.
H s.�/ denotes the L2-based Sobolev space with regularity index s 2 R, and C10 .�/ is
the space of smooth functions with compact support in �.

We will need to consider trace spaces on open bounded surfaces that have a good
extension property to closed surfaces containing them. (We refer to [23, 38] for an in-
depth discussion). In what follows, D is a given open bounded Lipschitz domain in Rn,
n D 2 or n D 3.

We recall that fractional Sobolev spaces on D can be defined via real interpolation,

and that H s
0 .D/ WD C

1
0 .D/

k�kHs.D/ , s � 0. We also recall that H s.D/ D H s
0 .D/, 0 �

s � 1=2. If s < 1=2, it is possible to extend an element of H s.D/ by zero in Rn n D
to an element of H s.Rn/. When s D 1=2 such an extension is possible for elements
that are suitably weighted by the distance to the boundary, since the extension operator
from H

1=2
0 .D/ to H 1=2

0 .Rn/ is not continuous. Following Lions and Magenes [23], we
introduce the space

H
1=2
00 .D/ WD ¹u 2 H

1=2
0 .D/ W ı�1=2u 2 L2.D/º; (1)

where ı.x/ D dist.x; @D/ for x 2 D. This space is equipped with its natural norm, i.e.

kf k
H
1=2
00

.D/
WD kf kH1=2.D/ C kı

�1=2 f kL2.D/;

which gives a finer topology than that of H 1=2.D/. Here ı can be replaced by a function
% 2 C1.D/ that is comparable to the distance to the boundary, in the sense that

lim
x!x0

%.x/

dist.x; @D/
D d ¤ 0; 8x0 2 @D; (2)

% > 0 inD and % vanishes on @D (see e.g. [47, Lemma 3.6.1]). We opted for the definition
above of H 1=2

00 .D/ as we do not need to consider higher-order traces. If v 2 H 1=2
00 .D/,

then its extension by zero to Rn nD is an element ofH 1=2.Rn/ and the extension operator
is bounded. In particular, v D 0 on @D in the trace sense. The space H 1=2

00 can also be
identified with a real interpolation space (see e.g. [1, Chapter 7]):

H
1=2
00 .D/ D .H

1
0 .D/; L

2.D//1=2;2:

We will also need to define H 1=2
00 .S/ where S is a Lipschitz surface. We can define

H
1=2
0 .S/ in a standard way using partitions of unity and coordinate charts (see e.g. [1,39]).

Then, we define H 1=2
00 .S/ as in (1), where ı is the distance induced by surface area on S .

In addition, Lipschitz domains are extension domains for Sobolev spaces [47], so that
using a local coordinate chart, we can prove the extension property from H

1=2
00 .S/ to

H 1=2.�/, where � is any closed surface containing S .
Let R be the space of infinitesimal rigid motions in R3. To study the well-posedness

of the direct problem, we introduce two variational spaces,

VH 1.D/ D

²
� 2 H 1.D/ W

Z
D

� � r dx D 0; 8r 2 R

³
; (3)

H 1
†.D/ D ¹� 2 H

1.D/ W �j† D 0º; (4)

where † denotes the closure of an open subset of @D.
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Finally, we denote the duality pairing between a Banach space X and its dual X 0 by
h�; �i.X 0;X/. When clear from the context, we will omit the explicit dependence on the
spaces, writing h�; �i. We will write h�; �iD for the pairing restricted to a domain D.

3. The direct problem

We first discuss the main assumptions on the dislocation surface S and the elastic ten-
sor C, used in the rest of the paper. Then, we study the well-posedness of the forward
problem. Below, � is a bounded Lipschitz domain.

Assumption 1 (elasticity tensor). The elasticity tensor C DC.x/ is a fourth-order tensor
satisfying the full symmetry properties

Cijkh.x/ D Cj ikh.x/ D Ckhij .x/; 81 � i; j; k; h � 3; and x 2 �;

is uniformly bounded, C 2 L1.�/, and is uniformly strongly convex, that is, C defines
a positive-definite quadratic form on symmetric matrices:

C.x/bA W bA � cjbAj2; a.e. in �;

for some c > 0.

Assumption 2 (dislocation surface). We model the dislocation surface S by an open,
bounded, oriented Lipschitz surface, with Lipschitz boundary, such that

S � �: (5)

We assume that S can be extended to a closed Lipschitz, orientable surface � satisfying

� \ @� D ;:

Moreover, we denote by�� the domain enclosed by � and set�C D� n��. We choose
the orientation on S so that the associated normal n coincides with the unit outer normal
to ��.

In this section, we study the following mixed-boundary-value problem:8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

div.Cbru/ D 0 in � n S;

.Cbru/� D 0 on @� n†;

u D 0 on †;

Œu�S D g;

Œ.Cbru/n�S D 0;
(6)

where † is the closure of an open subset in @�, n is the normal vector induced by the
orientation on S (see Assumption 2), and � is the unit outer normal vector on @�.
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� represents a portion of the Earth’s crust where the fault S lies and where both the
direct and inverse problems are studied. We assume that S does not reach the boundary
of �, which corresponds geophysically to the case of buried or blind faults. From the
point of view of the inverse problem, this is the most interesting case, as there is no direct
access to the fault from the boundary for monitoring. The set † models the buried part
of the boundary of �. Assuming that the rock displacement is zero on † is justified from
the geophysical point of view, as the relative motion of rock formations can be assumed
much slower than rock slippage along faults. In applications, one needs to assume that
� is large enough compared to the size of the fault for this justification to hold. The
complement of † models the part of the boundary on the Earth’s crust and hence can be
taken traction free. (See e.g. [43].)

The vector field g on S models the slip along the active patch of the fault. We assume
that

g 2 H
1=2
00 .S/: (7)

Recall that elements in this space have zero trace at the boundary.

Remark 3.1. By hypothesis (see Assumption 2), S is part of a closed Lipschitz sur-
face � . Then, g 2H 1=2

00 .S/ implies that g can be extended by zero in � n S to a function
zg 2 H 1=2.�/:

zg.x/ D

´
g.x/ if x 2 S;

0 if x 2 � n S:
(8)

Remark 3.2. As discussed in the introduction, there are geophysical motivations for con-
sidering a slip g that vanishes at the boundary of the surface S (a creeping unlocked fault
patch). There are also mathematical reasons for considering that class of slips. Given the
minimal regularity of the coefficients, a variational formulation of the problem is the most
natural one. However, it can be shown (see [9] for a discussion) that if g is an arbitrary
field inH 1=2.S/, then the solution u is not necessarily inH 1.� n S/. The spaceH 1=2

00 .S/

is then the optimal choice for the slip, because it consists precisely of those elements in
H 1=2.S/ that can be extended by zero to H 1=2.�/, where � is an arbitrary Lipschitz
closed surface containing S , with norm bounds on the extension and the restriction back
to S [38]. Moreover, we are also interested in implementing a reconstruction algorithm.
If an iterative algorithm is used, then we need to numerically solve the forward or direct
problem several times. For inhomogeneous media with discontinuous coefficients, as in
this work, a variational approach, such as that in FEM and DG methods, is practical. The
advantage of working with � instead of S is that Green’s formulas apply to � n � . By
working with H 1=2

00 .S/, we are then able to prove the equivalence of the problem formu-
lation using � and that using S at the level of weak solutions. In the extensive literature
concerning interface and boundary problems, other spaces have been considered, notably,
the space ¹g 2 H 1=2.�/ Wsupp g � Sº [2] (we need to be able to take suppg D S for
the inverse problem). It would be interesting and relevant to further investigate the rela-
tionship between this space and H 1=2

00 .S/. However, this analysis is not the focus of our
work.
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By a weak solution of (6) we mean that8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

div.Cbru/ D 0 in .H 1
†.�//

0;

.Cbru/� D 0 in H�1=2.@� n†/;

u D 0 in H 1=2.†/;

Œu�S D g in H 1=2
00 .S/;

Œ.Cbru/n�S D 0 in H�1=2.S/:

(9)

The strategy we follow here is an adaptation of the procedure described in [3] to solve
classical transmission problems. Given the closed surface � and the extension (8), we
decompose � into two domains �� and �C, as in Assumption 2. Then we construct
a weak solution of problem (6) by solving two boundary-value problems, one in ��

and one �C, imposing suitable Neumann conditions on � . The key step in this pro-
cedure consists in identifying the proper Neumann boundary condition on � such that
Œu�� D u

C

� � u
�
� D zg, where uC� and u�� are the traces on � of the solutions uC in �C

and u� in ��. In ��, the solution u� will be sought in the auxiliary space VH 1.��/

to ensure uniqueness. This choice imposes apparently artificial normalization conditions
in ��, which are not needed to solve the original problem (6). However, we can verify
a posteriori that such conditions are in fact satisfied by the unique solution to the original
problem.

We shall first prove some preliminary results.

Lemma 3.3. Let � D �C [��, where �C and �� are defined in Assumption 2. Let

zH WD ¹f 2 L2.�/ W f C 2 H 1.�C/; f � 2 H 1.��/; and Œf ��nS D 0º; (10)

where f C D f b�C and f � D f b�� . Then H 1.� n S/ Š zH .

This result is classical (see e.g. [2] for a proof using Green’s formula in Lipschitz
domains, obtained in [10]). We include the proof for the reader’s convenience.

Proof of Lemma 3.3. Let f 2 zH and let ' 2 C1.�/ with support in � n S . We apply
the Divergence Theorem in �C and ��, obtainingZ

��
rf � � ' dx D

Z
�

f �n � '� d�.x/ �

Z
��

f � div' dx;

where n is the unit outer normal vector to ��. SimilarlyZ
�C
rf C � ' dx D �

Z
�

f Cn � 'C d�.x/ �

Z
�C

f C div' dx:

Therefore, we findZ
��
rf � � ' dx C

Z
�C
rf C � ' dx D

Z
�nS

.f �'� � f C'C/ � n d�.x/

�

Z
�nS

f div' dx;
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noting in the terms on the right that ' and div' have compact support in� n S and, as an
L2 function, f D f C��C C f

���� . Moreover, ' is regular across � n S by hypothesis
and f C D f � on � n S , since f 2 zH , so thatZ

�nS

.f �'� � f C'C/ � n d�.x/ D

Z
�nS

' .f � � f C/ � n d�.x/ D 0:

Consequently,Z
�nS

f div' dx D �
Z
�C
rf C � ' dx �

Z
��
rf � � ' dx;

which means that the distributional gradient of f is an L2 function in � n S and agrees
with

rf C��C Crf
���� :

Reversing the argument gives the opposite implication.

For the next lemma, we follow [3, Proposition 12.8.2], adapting that result to the case
of the Lamé operator with discontinuous coefficients.

Lemma 3.4. Let C 2 L1.�/, and let � 2 H 1.� n S/ be a weak solution of the system
div.Cbr�/ D 0 in � n S . Then Œ.Cbr�/n��nS D 0 in H�1=2.� n S/.

Proof. We fix a point x0 2 � n S and we consider a ball Br .x0/ with r > 0 sufficiently
small so that Br .x0/ \ S D ; and Br .x0/ \ @� D ;. Let ' 2 H 1

0 .Br .x0//. Then

0 D hdiv.Cbr�/;'i D � Z
Br .x0/

Cbr� W br' dx: (11)

(This identity can be established by approximating ' with smooth fields supported
in Br .x0/.) Next we apply Green’s identities, which hold for H 1 functions, in DC D
Br .x0/ \�

C and D� D Br .x0/ \��. Therefore, for all ' 2 H 1
0 .Br .x0//,

0 D �

Z
DC

Cbr� W br' dx � h.Cbr�C/n;'Ci.H�1=2.�\@DC/;H1=2.�\@DC//; (12)

and analogously

0 D �

Z
D�

Cbr� W br' dx C h.Cbr��/n;'�i.H�1=2.�\@D�/;H1=2.�\@D�//: (13)

Since ' 2 H 1
0 .Br .x0//, we have 'Cb�\Br .x0/D '

�b�\Br .x0/DW 'b�\Br .x0/. Hence,
adding (12) and (13) gives

0 D �

Z
DC

Cbr� W br' dx
�

Z
D�

Cbr� W br' dx � hŒ.Cbr�/n�;'i.H�1=2.�\Br .x0//;H1=2.�\Br .x0///;
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where Œ ; � denotes the jump across � \ Br .x0/. Consequently,

0 D �

Z
Br .x0/

Cbr� W br' dx � hŒ.Cbr�/n�;'i.H�1=2.�\Br .x0//;H1=2.�\Br .x0///;
because, by hypothesis, both r' and r� exist as L2 functions in Br .x0/. From (11) it
follows that

hŒ.Cbr�/n�;'i.H�1=2.�\Br .x0//;H1=2.�\Br .x0/// D 0:
Since ' is an arbitrary function in H 1

0 .Br .x0//, we see that Œ.Cbr�/n��\Br .x0/ D 0 in
H�1=2.� n S/. We conclude by covering � n S with a finite number of balls Br .xi /,
i D 1; : : : ; N .

We are now ready to tackle the well-posedness of problem (6). We begin by addressing
the uniqueness of weak solutions.

Theorem 3.5 (Uniqueness). Problem (6) has at most one weak solution in H 1
†.� n S/.

Proof. Assume that there exist two solutions u1;u2 2H 1
†.� n S/. Let vD u1 � u2. From

the transmission conditions on S (see (6)), we have

Œv�S D 0; Œ.Cbrv/n�S D 0:
Hence, by Lemma 3.3, v 2 H 1

†.�/. It follows that v is a weak solution of the problem8̂̂<̂
:̂

div.Cbrv/ D 0 in �;

.Cbrv/� D 0 on @� n†;

v D 0 on †;

(14)

which has a unique solution, v D 0.

Theorem 3.6 (Existence). There exists a weak solution u 2 H 1
†.� n S/ to problem (6).

Proof. The strategy is to construct a weak solution of problem (6) from the solutions
of two auxiliary boundary-value problems, one in �� and one �C, that are connected
through a suitably chosen Neumann boundary condition on the interface � . Specifically,
we consider the following Neumann boundary-value problem in VH 1.��/ (the space is
chosen in order to avoid rigid motions in ��):´

div.Cbru�/ D 0 in ��:

.Cbru�/n D ' on �:
(15)

and the following mixed-boundary-value problem in H 1
†.�

C/:8̂̂̂̂
<̂
ˆ̂̂:

div.CbruC/ D 0 in �C;

.CbruC/� D 0 on @� n†;

uC D 0 on †;

.CbruC/n D ' on �;

(16)
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where �� and �C are defined in Assumption 2. We denote the traces of u˙ in H 1=2.�/

by u˙� . The key point of the proof is to identify ' in order to represent the solution u of (6)
as u D u���� C uC��C , where ��� and ��C are the characteristic functions of ��

and �C, respectively. To this end, we define the bounded Neumann–Dirichlet operators

NC W H�1=2.�/! H 1=2.�/; N� W H�1=2.�/! H 1=2.�/;

related to (16) and (15), respectively. Then, since NC' D uC� and N�' WD u�� , and
recalling that Œu�� D zg, where zg is the extension of g on � n S , as defined in (8), we
need to identify ' 2 H�1=2.�/ such that

uC� � u
�
� D .N

C
�N�/' D zg: (17)

The invertibility of the operator NC � N� guarantees that ' D .NC � N�/�1.zg/,
and follows from the continuity of both the Neumann-to-Dirichlet and the Dirichlet-to-
Neumann maps. The continuity is well known. We briefly outline the proof of invertibility
in our setting for the reader’s convenience.

First, by using the weak formulation of (15) in VH 1.��/ and (16) inH 1
†.�

C/, we find
a relation between the quadratic form associated to (15) and h';N�'i� , and between the
quadratic form associated to (16) and h'; NC'i� . Indeed, from the weak formulation of
problems (15) and (16), we find thatZ

�C
CbruC W brvC dx D �h'; vCi� ; 8vC 2 H 1

†.�
C/; (18)

as n points inwards into �C, and thatZ
��

Cbru� W brv� dx D h'; v�i� ; 8v� 2 H 1.��/: (19)

Next, we observe that we can extend any function v2H 1=2.�/ to functions vC2H 1
†.�

C/

and v� 2 H 1.��/, for instance by solving suitable Dirichlet problems for the Laplace
operator in �C and ��. Then the above identities imply

jh'; vi� j � C˙ku
˙
kH1.�˙/kv

˙
kH1.�˙/ � C˙ku

˙
kH1.�˙/kvkH1=2.�/:

Using the definition of the norm in H�1=2.�/ as the operator norm of functionals on
H 1=2.�/, it follows that

k'kH�1=2.�/ � C˙ku
˙
kH1.�˙/: (20)

Moreover, by choosing vC D uC in (18) and v� D u� in (19), we haveZ
�C

CbruC W bruC dx D �h'; NC'i� ;Z
��

Cbru� W bru� dx D h'; N�'i� :
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Then Assumption 1, Korn’s and Poincaré’s inequalities (see e.g. [28]) give

�h'; NC'i� D

Z
�C

CbruC W bruC dx � CkuCk2
H1.�C/

; (21)

h'; N�'i� D

Z
��

Cbru� W bru� dx � Cku�k2
VH1.��/

: (22)

Therefore, by using (20) in both (21) and (22), we can establish the coercivity of the
bilinear form associated to (17):

k'k2
H�1=2.�/

� C h'; .�NC CN�/'i� : (23)

The continuity of this form follows directly from the continuity of the solution operators
for (15)–(16) and the Trace Theorem. The Lax–Milgram Theorem then ensures that there
exists a unique solution ' 2 H�1=2.�/ such that

h ; .�NC CN�/'i� D h ;�zgi� ; 8 2 H
�1=2.�/; (24)

so the operator �NC CN� is invertible.
With this choice of ', problems (15) and (16) admit unique solutions u� 2 VH 1.��/

and uC 2 H 1
†.�

C/, respectively. Next, we let

u D u���� C u
C��C :

Then ub��D u� 2 H 1.��/, ub�CD u
C 2 H 1.�C/, u is a distributional solution of

div.Cbru/ D 0 in �C and ��. To conclude, we show that u is a weak solution of (6).
By construction, it satisfies the boundary conditions on @� in the trace sense. Again by
construction,

Œu�� D u
C

� � u
�
� D zg in H 1=2.�/:

That is, by (8),
Œu��nS D 0; Œu�S D g; (25)

hence, by Lemma 3.3, u 2 H 1.� n S/. Moreover,

Œ.Cbru/n�� D 0 in H�1=2.�/; (26)

which follows immediately by construction. In particular, Œ.Cbru/n�S D 0. Now, recalling
that u is a weak solution in �� and in �C and satisfies (26), reversing the steps in the
proof of Lemma 3.4 we find that u is a weak solution of div.Cbru/ D 0 in � n S . In
fact, we fix a point x0 2 � n S and we consider a ball Br .x0/ with r > 0 sufficiently
small such that Br .x0/ \ S D ;. Let ' 2 H 1

0 .Br .x0//. We apply Green’s identity in
DCDBr .x0/\�

C andD�DBr .x0/\��. Since u is a weak solution inDC andD�,
we get

0 D �

Z
DC

Cbru W br' dx � h.CbruC/n;'Ci.H�1=2.�\@DC/;H1=2.�\@DC// (27)
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for all ' 2 H 1
0 .Br .x0//, and analogously

0 D �

Z
D�

Cbru W br' dx C h.Cbru�/n;'�i.H�1=2.�\@D�/;H1=2.�\@D�//: (28)

As ' 2 H 1
0 .Br .x0//, we have 'Cb�\Br .x0/D '

�b�\Br .x0/DW 'b�\Br .x0/ in the trace
sense. Hence, adding (27) and (28) gives

0 D �

Z
DC

Cbru W br' dx
�

Z
D�

Cbru W br' dx � hŒ.Cbru/n�;'i.H�1=2.�\Br .x0//;H1=2.�\Br .x0///;
where Œ ; � denotes the jump across � \ Br .x0/. Then, using the fact that Œ.Cbru/n� D 0
on � \ Br .x0/ and bru 2 L2.Br .x0//, we find that

0 D

Z
Br .x0/

Cbru W br' dx:
Therefore, u is a weak solution in� n S , given that x0 and ' 2H 1

0 .Br .x0// are arbitrary.

We note that, from the proof of the existence theorem above, a weak solution is also
a variational solution in the following sense: u 2 H 1

†.�
C/, u 2 H 1.��/, Œu�� D zg in

H 1=2.�/ and, for every v 2 H 1
†.�/,Z

�C
Cbru W brv dx C Z

��
Cbru W brv dx D 0: (29)

We observe that a variational solution could also be obtained by a suitable lifting operator
of the jump on � to� n� , analogous to that utilized in the treatment of non-homogeneous
Dirichlet boundary conditions, reducing the problem to a source problem with homoge-
neous jump conditions on S (see for example [21, 43]).

Corollary 3.7. There exists a unique solution u 2 H 1
†.� n S/ to problem (6).

We observe that other types of boundary conditions can, in principle, be imposed on
the buried part† of @�. For example, one can impose a non-homogeneous traction there,
modeling the load of contiguous rock formations on � itself.

Remark 3.8. The approach to proving well-posedness for (6) can be adapted to other
boundary-value problems as well, such as Neumann problems with non-homogeneous
boundary conditions on @�. In fact, given h 2H�1=2.@�/, one can show that there exists
a unique solution uN 2 VH 1.� n S/ for the following problem:8̂̂̂̂

<̂
ˆ̂̂:

div.CbruN / D 0 in � n S;

.CbruN /� D h on @�;

ŒuN �S D g;

Œ.CbruN /n�S D 0:
(30)
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The proof of uniqueness in VH 1.� n S/ follows exactly as in Theorem 3.5. For the proof
of existence, we notice that due to the linearity property of (30), uN can be decomposed
as uN WD VuCw, where Vu 2 VH 1.� n S/ is the unique solution to8̂̂̂̂

<̂
ˆ̂̂:

div.Cbr Vu/ D 0 in � n S;

.Cbr Vu/� D 0 on @�;

Œ Vu�S D g;

Œ.Cbr Vu/n�S D 0;
(31)

and w 2 VH 1.�/ is a solution to8̂̂̂̂
<̂
ˆ̂̂:

div.Cbrw/ D 0 in � n S;

.Cbrw/� D h on @�;

Œw�S D 0;

Œ.Cbrw/n�S D 0:
(32)

The proof of the existence of a solution Vu 2 VH 1.� n S/ for (31) then follows the same
ideas as in Theorem 3.6, but with the simplification that both uC and u� belong now to
the same space VH 1. Problem (32) is reduced to a standard transmission problem, hence
the existence of a unique solution in VH 1.�/ follows easily.

4. The inverse problem: a uniqueness result

In this section we address the uniqueness for the inverse dislocation problem, which con-
sists in identifying the dislocation S and the slip g on it from displacement measurements
made at the surface of the Earth. Uniqueness will be proved under additional assump-
tions on the geometry and the data for problem (6). In particular, we consider a domain�
which is partitioned into finitely many Lipschitz subdomains, we assume that the elas-
ticity tensor is isotropic with Lamé coefficients that are Lipschitz continuous in each
subdomain, and we take the dislocation surface to be a graph with respect to a fixed, but
arbitrary, coordinate frame. Such assumptions are not unrealistic in the context of geo-
physical applications and underscore the ill-posedness of the inverse problems without
additional a priori information.

Specifically, in addition to Assumptions 1 and 2, we assume the following:

Assumption 3 (domain and partition). We denote by „ � @� n† an open patch of the
boundary where the measurements of the displacement field are given. Moreover, we
assume that

� D

N[
kD1

Dk ;

where Dk , for k D 1; : : : ; N , are pairwise non-overlapping bounded Lipschitz domains.
We assume, without loss of generality, that „ is contained in @D1.
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Assumption 4 (elasticity tensor). The elasticity tensor C D C.x/ is assumed to be iso-
tropic in each element of the partition of �, i.e.,

C.x/ D
NX
kD1

Ck.x/�Dk .x/; Ck.x/ WD �k.x/I˝ IC 2�k.x/I; (33)

where �k D �k.x/ and�k D�k.x/, for kD 1; : : : ;N , are the Lamé coefficients related to
the subdomainDk , and I and I are the identity matrix and the identity fourth-order tensor,
respectively. Each Lamé parameter, �k ; �k , for k D 1; : : : ; N , belongs to C 0;1.Dk/, that
is, there exists M > 0 such that

k�kkC0;1.Dk/ C k�kkC0;1.Dk/ �M; (34)

with k � kC0;1.Dk/ D k � kL1.Dk/ C kr � kL1.Dk/. Finally, there exist two positive con-
stants ˛0; ˇ0 such that

�k.x/ � ˛0 > 0; 3�k.x/C 2�k.x/ � ˇ0 > 0; 8x 2 Dk ; k D 1; : : : ; N: (35)

These conditions ensure the uniform strong convexity of �.

Assumption 5 (further assumptions on the fault S ). The surface S is assumed to be the
graph of a Lipschitz function with respect to a given coordinate frame.

Our main result for the inverse problem is the following theorem.

Theorem 4.1. Under Assumptions 3 and 4, let S1;S2 be as in Assumption 2 and such that
S1; S2 satisfy Assumption 5 with respect to the same coordinate frame. For i D 1; 2, let
gi 2H

1=2
00 .Si /, with suppgi D S i , and let ui be the unique solution of (6) inH 1

†.� n S/

corresponding to g D gi and S D Si . If u1b„D u2b„, then S1 D S2 and g1 D g2.

Remark 4.2. The assumptions that the surfaces Si , i D 1; 2, are graphs and that they are
graphs with respect to the same coordinate frame is not overly restrictive in the context
of faults in geophysics. In fact, in a given geographical region faults tend to be approx-
imately horizontal with respect to the surface of the Earth, as predominantly in dip-slip
faults, or approximately vertical, as predominantly in strike-slip faults, although oblique
faults can also occur, depending on the characteristics of the rock formations present (see
e.g. [19, 31]). Furthermore, these assumptions exclude a priori the existence of internal
faces common to both S1 and S2, when the faults enclose a bounded region of space
(see case (ii) below in the proof of the theorem). In the presence of such common faces,
it seems difficult to prove uniqueness and it is not at all clear, in fact, that uniqueness
does hold in this case. However, it is possible to prove uniqueness under other geometric
conditions on the faults that also exclude common internal faces, for example if the fault
surfaces are each a union of at most two rectangular faces. In the geophysical literature,
often the fault is taken to be a single rectangular face.

We denote byG the connected component of� n S1 [ S2 containing„. By definition
we have G � � n S1 [ S2. In addition, we define

G WD @G n @�: (36)
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Before proving Theorem 4.1, we recall the following lemma proved in [9] in the special
case where � is a half-space. However, this result is clearly true for bounded domains as
well.

Lemma 4.3. Let S1; S2 be as in Assumption 2 and such that S1; S2 satisfy Assumption 5
with respect to the same coordinate frame. Then G D S1 [ S2.

Proof of Theorem 4.1. We proceed by contradiction and assume that S1 ¤ S2. We first
show that w WD u1 � u2 is identically zero in G. We can assume, without loss of general-
ity, that „ is the graph of a Lipschitz function in some coordinate frame, say with respect
to the z-axis. In fact, it is enough to take a possibly small open subset of „ instead of the
entire„, and then this hypothesis is always satisfied as @� is assumed globally Lipschitz.
On „ we have

w D 0; .Cbrw/� D 0:
Then, fixing a point x0 2 „, we consider the ball BR.x0/, where R is so small that
BR.x0/\ @��„; and we denote B�R.x0/ WD BR.x0/\� and BCR .x0/D .B

�
R.x0//

C ,
the complementary domain. We define

zw WD

´
w in B�R.x0/;

0 in BCR .x0/:
(37)

We note that zw 2 H 1.BR.x0//.
We observe next that, since„ is the graph of a Lipschitz function, the restriction of C

on „ is Lipschitz as well. Then we can extend C to a Lipschitz elasticity tensor zC on
B�R.x0/ [ B

C

R .x0/ as follows: for each � on the graph of „, we extend C over BCR .x0/,
keeping the constant value C.�/ along the vertical direction of the coordinate frame. Note
that this argument can be applied for each component of the tensor. Consequently, arguing
as in [5], we find that zw is a weak solution of

div.zCbr zw/ D 0 in BR.x0/:

We now apply the weak continuation property [22]. In fact, since zw D 0 in BCR .x0/ and
since the weak continuation property holds in BR.x0/, it follows that

zw D 0 in BR.x0/:

In particular,wD 0 in B�R.x0/. Furthermore, again applying the weak continuation prop-
erty, we find that w D 0 in D1.

Next, thanks to the hypotheses on Si , i D 1; 2, there exists a path-connected open
subdomain of � that connects „ with every element of the partition which belongs to G.
Along this path, we can always assume that the boundary of the partition is Lipschitz.
Consequently, we can recursively apply the previous argument and we see that w � 0
in G. We then distinguish two cases:

(i) G D � n S1 [ S2;

(ii) G � � n S1 [ S2.
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Fig. 2. An example of the geometrical setting in case (i). Graphics generated using Wolfram
Mathematica©.

For case (i) (see Figure 2), by the hypothesis that the surfaces are Lipschitz and the fact
that S1 ¤ S2, without loss of generality, there exists a point y 2 S1 such that y … S2, and
a ball Br .y/ that does not intersect S2, where r is sufficiently small. Hence,

0 D Œw�Br .y/\S1 D Œu1�Br .y/\S1 D g1;

and this identity leads to a contradiction, as supp.g1/D S1. It follows that S1 D S2, and
consequently

0 D Œw�S1 D Œw�S2 H) Œu1�S1 D Œu2�S2 H) g1 D g2:

Next, we analyze case (ii) (see Figure 3). We recall that, by hypothesis, the two sur-
faces are Lipschitz graphs with respect to an arbitrary, but fixed, common frame. Then by
Lemma 4.3 we can assume, without loss of generality, that the complement of S1 [ S2

Fig. 3. An example of the geometrical setting in case (ii). The bounded connected domainD is such
that @D D S1 [ S2. Graphics generated using Wolfram Mathematica©.
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has only one bounded connected component, since if there are more than one, we can
treat each one separately. That is, we can assume that there exists a bounded connected
domain D such that @D D S1 [ S2. In this situation, in particular, S1 and S2 intersect
precisely only along their common boundary C D @S1 \ @S2, which is non-empty. If
there are other parts of their boundary that are not in common, they can be treated as in
case (i). ThenwD 0 in a neighborhood of @D in� nD, sincewD 0 inG. The continuity
of the tractions .Cbru1/n and .Cbru2/n in the trace sense across S1 and S2, respectively,
implies that

.Cbrw�/n D 0 (38)

in H�1=2.@D/ and hence a.e. on @D, where w� indicates the function w restricted to D
and n the outward unit normal to D. Moreover, w� satisfies

div.Cbrw�/ D 0 in D: (39)

We conclude from (38) and (39) that w� is in the kernel of the operator for elastostatics
in H 1.D/, i.e., it is a rigid motion:

w� D Ax C c;

where c 2 R3 and A 2 R3�3 is a skew matrix. We conclude the proof by showing that
this rigid motion can only be the trivial one. By construction w� D Œw�Si D gi on Si , so
in particular it must vanish along @Si , i.e., on C due to the hypothesis gi 2H

1=2
00 .Si /. On

the other hand, the set of solutions of the linear system Ax D c, for any given c 2 R3,
is a one-dimensional linear subspace of R3, since A is anti-symmetric, and therefore it
cannot contain a closed curve. It follows that necessarily AD 0 and c D 0. Consequently,
w� D 0 in D, hence Œw� D 0 on @D. In particular, Œw�S1 D 0 D Œu1� D g1 ¤ 0, by the
assumption that supp.gi /D Si . We reach a contradiction, and therefore case (ii) does not
occur.
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