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Abstract. We show that, for the Möbius function �.n/, we haveX
x<n�xCx�

�.n/ D o.x� /

for any � > 0:55. This improves on a result of Motohashi and Ramachandra from 1976, which is
valid for � > 7=12. Motohashi and Ramachandra’s result corresponded to Huxley’s 7=12 exponent
for the prime number theorem in short intervals. The main new idea leading to the improvement
is using Ramaré’s identity to extract a small prime factor from the n-sum. The proof method also
allows us to improve on an estimate of Zhan for the exponential sum of the Möbius function as well
as some results on multiplicative functions and almost primes in short intervals.
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1. Introduction

Let ƒ.n/ and �.n/ denote the von Mangoldt and Möbius functions. In 1972 Huxley [9]
proved that the prime number theorem holds on intervals of length H � x7=12C", i.e.X

x<n�xCH

ƒ.n/ D .1C o.1//H for H � x7=12C". (1.1)

Soon after Huxley’s work, Motohashi [17] and Ramachandra [18] independently adap-
ted the proof to the case of the Möbius function. In fact, Ramachandra handled a larger
class of sequences arising as Dirichlet series coefficients of products of Dirichlet L-
functions, their powers, logarithms, and derivatives (a class of sequences whose most
notable representatives are �.n/ and ƒ.n/), showing that for such sequences we have an
asymptotic formula for their sums over short intervals Œx; x CH� of length H � x� for
any � > 7=12 D 0:5833 : : : :
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The only improvement to the results of Huxley and Motohashi and Ramachadra is
Heath-Brown’s [7] result that one can obtain an asymptotic formula for intervals of length
H � x7=12�".x/ for any ".x/ tending to 0 at infinity.

In this paper we show that in various instances, including the Möbius function but not
the von Mangoldt function, the exponent x7=12C" can be improved to x0:55C". For the
Möbius function our result is

Theorem 1.1. Let � > 0:55 and " > 0 be fixed. Then, for x large enough and H � x� ,
we have X

x<n�xCH

�.n/ D O

�
H

.log x/1=3�"

�
: (1.2)

Note that even under the Riemann hypothesis, one can only get such results for
� > 1=2 (see e.g. [13, Section 10.5]), so our theorem moves a long-standing record signi-
ficantly closer to a natural barrier.

The main new idea leading to the improvement is using an identity attributed to
Ramaré (see [4, Chapter 17.3] and formula (3.3) below) to extract a small prime factor
from the n-sum. We will discuss the proof ideas, limitations of different methods etc. in
more detail in Section 2.

Like Ramachandra’s method, ours works for a wide class of multiplicative functions.
In particular, we can strengthen a result proved by Ramachandra [18] (and obtained in
unpublished work of Hooley and Huxley) on sums of two squares in short intervals, which
again involved the exponent 7=12.

Theorem 1.2. Let N0.x/ denote the number of integers � x that can be written as the
sum of squares of two integers. Then for � > 0:55 and " > 0 fixed, x large enough and
H � x� , we have

N0.x CH/ �N0.x/ D .C CO..log x/�1=6C"//
H

.log x/1=2
;

where C D 1p
2

Q
p�3 .mod4/.1 � 1=p

2/�1=2 is the Landau–Ramanujan constant.

We can also apply our method to the k-fold divisor functions �k . For k � 5, short sums
of �k.n/ over an interval Œx; x C x�kC"� are well-understood by directly applying the fact
that one obtains a large power saving in the corresponding long sums (see [10], [14], [11,
Theorem 13.2] for the exponents �2 D 131=416, �3 D 43=96 and �k D .3k � 4/=.4k/,
4 � k � 8, respectively).

However, for large k, understanding �k in short intervals is closely connected to the
problem of understanding the von Mangoldt function ƒ in short intervals, which one
can currently asymptotically estimate only on intervals around x of length � x7=12Co.1/.
Therefore, the best value of �k for k � 6 in the literature is �k D 7=12C ", coming from
Ramachandra’s theorem [18]. Our next theorem says that we can in fact do better for the
divisor functions than for the primes.
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Theorem 1.3. Let �k.n/ denote the k-fold divisor function. Then for � > 0:55 and " > 0
fixed, x large enough and H � x� , we haveX

x<n�xCH

�k.n/ D Pk�1.log x/H CO.H.log x/.2=3C"/k�1/;

where Pk�1 is a polynomial of degree k � 1 that can be be calculated explicitly .see
[20, formula (5.36) in Section II.5.4]/.

The proof of Theorem 1.3 works for non-integer values of k as well (including
complex values), and although in those cases the function Pk�1.log x/ will not be a
polynomial anymore, it can still be expressed as a linear combination of the functions
.log x/k�1�j for j � 0.

The proof of Theorem 1.1 is not applicable to the corresponding problem for the von
Mangoldt function, since one cannot extract small prime factors from numbers n in the
support ofƒ.n/. Nevertheless, the proof does work forE2 almost primes, that is, numbers
if the form p1p2 with p1; p2 primes. We are able to obtain an asymptotic for the count of
E2 numbers in intervals of length x0:55C".

Theorem 1.4. Let � > 0:55 be fixed. Then for x large enough and H � x� we haveX
x<n�xCH
n2E2

1 D H
log log x

log x
CO

�
H

log log log x
log x

�
:

Our method can also be used for twisted sums. We demonstrate this by proving the
following theorem.

Theorem 1.5. Let � > 3=5 and " > 0 be fixed. Then for x large enough and H � x� we
have, uniformly for ˛ 2 R,X

x<n�xCH

�.n/e.˛n/ D O

�
H

.log x/1=3�"

�
:

Previously �.n/e.˛n/ was known to exhibit cancellations in intervals of length
H D x� with � > 5=8, due to work of Zhan [21, Theorem 5] from 1991.

2. Discussion of results, methods, and their limitations

2.1. The case of the Möbius function

The 7=12 exponent in Huxley’s as well as in Motohashi’s and Ramachandra’s works is a
very natural barrier: A crucial piece of information needed in Huxley’s, Motohashi’s and
Ramachandra’s proofs is a bound of the form N.�; T /� T B.1��/ (where N.�; T / is the
number of zeros of the Riemann zeta function in the rectangle Re.s/� � , jIm.s/j � T ) for
T � 2, � 2 Œ1=2; 1�, with B as small as possible. The best value of B to date is Huxley’s
B D 12=5C o.1/, which is the reason for the appearance of the 7=12 exponent.
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Huxley’s prime number theorem (1.1) was proved differently by Heath-Brown [6], but
that proof also runs into serious difficulties when one tries to lower � below 7=12. Heath-
Brown does not use zero density results but rather uses a combinatorial decomposition
(Heath-Brown’s identity) and mean and large value estimates for Dirichlet polynomials,
but since zero density estimates are based on these, the difficulty one runs into is actually
essentially the same.

Our proof of Theorem 1.1 manages to avoid the lack of improvements to Huxley’s zero
density estimate by means of Ramaré’s identity, which allows a more flexible combinat-
orial factorization of the Möbius function than what arises from applying Heath-Brown’s
identity from [6] alone: We will first apply Ramaré’s identity to extract a small prime
factor and then Heath-Brown’s identity to the remaining long variable.

Starting with [16], Ramaré’s identity has been successfully applied to many problems
involving multiplicative functions. In particular, connected to our problem it was shown
in [16] that �.n/ has a sign change on every interval of the form .x; x C Cx1=2� with
x � 1 and C > 0 a large enough constant. Problems of the typeX

x<n�xCH

1�.n/D�1 > 0 or
X

x<n�xCH

ƒ.n/ > 0 (2.1)

are of course easier than their asymptotic counterparts (1.2) and (1.1), and there are indeed
various results establishing a positive lower bound for the count of primes in intervals
shorter than x7=12; see [12], [8], [1] and [2], among others. The record to date is due
to Baker, Harman and Pintz [2] with the exponent 0:525, and an earlier result of Heath-
Brown and Iwaniec [8] established the exponent 0:55 C " that we obtain here for the
asymptotic problem (1.2) rather than for the lower bound problem (2.1). It is no coincid-
ence that we obtain the same exponent, as our work draws a crucial lemma from theirs to
handle type I/II information (see Lemma 4.4 below), and the proof of that lemma is not
continuous in � but crucially uses that � > 0:55.

The ultimate reason why the exponent 0:55 is in fact the limit of our method is that
when one applies Heath-Brown’s identity to the Möbius function, one needs to bound
mean values of various products of Dirichlet polynomials (which are either partial sums
of the Riemann zeta function or very short polynomials), and the particular case where we
have five polynomials of length x1=5Co.1/ is a case where it seems that the large values
sets of the polynomials “corresponding to the 3=4-line” can no longer be shown to be
small enough for � < 0:55 if one uses existing mean value theorems for the Riemann zeta
function (such as the fourth moment or twisted moment results).

In the case of Huxley’s 7=12-result, the worst case is having six Dirichlet polynomials
of length x1=6Co.1/ but, thanks to Ramaré’s identity, in the case of � we can extract
an additional small prime factor so that this particular configuration of polynomials can
simply be dealt with a pointwise estimate, Cauchy–Schwarz and the mean value theorem
for Dirichlet polynomials (see Lemma 4.3 below for this argument). For primes, such a
trick of extracting a small prime factor is not available.

The proof of Theorem 1.5 concerning the twisted Möbius function follows simil-
arly using Ramaré’s identity to introduce a small prime variable before running Zhan’s
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argument (which involves again Heath-Brown’s identity and mean values of Dirichlet
polynomials), and we will outline the proof in Section 4.4. The reason that one cannot go
beyond 3=5 in Theorem 1.5 is again the case where Heath-Brown’s identity leads to five
factors of size x1=5Co.1/.

As we need to restrict to numbers with a small prime factor, we have to content
ourselves with a rather small saving in (1.2) (although the 1=3 � " exponent can be
improved; see Remark 5.2 below). In contrast, the previous methods give, for some c > 0
and any H � x� with � > 7=12, the boundX

x<n�xCH

�.n/ D O

�
H exp

�
�c

�
log x

log log x

�1=3��
(see e.g. [18, Remark 4]), and a similar bound holds e.g. for the error term in Huxley’s
prime number theorem.

2.2. The case of multiplicative functions and almost primes

When trying to generalize Theorem 1.1 to more general multiplicative functions, one
needs to be careful: In contrast to the case of almost all short intervals handled in [16], in
general the short averages of multiplicative functions do not always match long averages;
for more discussion on this, see Remark 5.1 below.

Despite such limitations, we can prove the following general result from which The-
orems 1.2 and 1.3 immediately follow since the class of multiplicative functions under
consideration in particular includes the generalized divisor functions �z.n/ for any com-
plex z, as well as the indicator of those integers that can be represented as the norm of an
element in a given abelian extension K=Q.

Proposition 2.1. Let f WN!C be a multiplicative function which is eventually periodic
on the primes in the sense that, for some integers n0; D � 1, we have f .p/ D f .q/

whenever p � q .mod D/ and p; q � n0. Suppose further that jf .n/j � ��.n/ for some
integer � � 1. Then, for " > 0 fixed and H � x0:55C" we haveX

x<n�xCH

f .n/ D
H

x

X
x<n�2x

f .n/CO

�
H

log x

Y
p2Œ1;x�nŒP;Q�

�
1C
jf .p/j

p

��
;

where P D exp..log x/2=3C"=2/ and Q D x1=.log logx/2 .

The proof goes along similar lines to that of Theorem 1.1, and we will discuss the
differences in Section 5.1. The class of multiplicative functions is chosen so that a Heath-
Brown type combinatorial decomposition is possible – the same class was recently con-
sidered by Drappeau and Topacogullari [3] in the context of the generalized Titchmarsh
divisor problem.

In the proof of Theorem 1.4 on E2 numbers the crucial fact that we use about E2
numbers is that almost all of them have a small prime factor. There is a slight com-
plication though: the small prime factors that almost all E2 numbers have are in fact
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so small that we do not necessarily have the Vinogradov–Korobov bound for the corres-
ponding Dirichlet polynomials, and this requires using slightly more delicate estimates
for Dirichlet polynomials than in the proof of Theorem 1.1. We will describe the proof of
Theorem 1.4 in Section 5.2.

The novelty in Theorem 1.4 is that there we get an asymptotic formula for the number
of all E2 numbers in short intervals – if one only considered E2 numbers whose prime
factors are of specific sizes (say a set of the form ¹n � x W n D p1p2; x˛ < p1 � x˛C"º
with ˛ suitably chosen), one could prove an asymptotic formula for the number of these
in shorter intervals.

3. Extracting a small prime factor

We begin by proving the combinatorial identity that we need and that is based on Ramaré’s
identity. This identity allows us to introduce a small prime variable to our sum, which will
turn out to be crucial in what follows. One could alternatively use a Turán–Kubilius type
argument to introduce a small prime variable but that would lead to much weaker error
terms.

Lemma 3.1. Let " > 0 be fixed, let x be large enough, and let .log x/4 � P < Q �

xo.1=log logx/ and x" � H � x. ThenX
x<n�xCH

�.n/ D �
X

x<prn�xCH
P<p�Q

r�x"=2

ar�.n/CO

�
H

logP
logQ

�
; (3.1)

with ar being an explicit sequence .given by (3.5)/ that satisfies jar j � �.r/.

Note that the coefficients ar here will be harmless, due to the restrictions on their size
and support.

Proof of Lemma 3.1. By a standard application of the linear sieve (e.g. [13, Corol-
lary 6.2]), X

x<n�xCH
pjn)p 62.P;Q�

1 D O

�
H logP

logQ

�
;

so we may add to the sum on the left-hand side of (3.1) the condition .n;
Q
P<p�Q p/ > 1,

obtaining X
x<n�xCH

�.n/ D
X

x<n�xCH

�.n/1.n;
Q
P<p�Q p/>1

CO

�
H logP

logQ

�
: (3.2)

We then apply Ramaré’s identity

�.n/1.n;
Q
P<p�Q p/>1

D

X
P<p�Q

X
pmDn

�.p/�.m/

!.P;Q�.m/C 1
CO.1p2jn;p2.P:Q�/; (3.3)
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where !.P;Q�.m/ is the number of distinct prime divisors of m in .P; Q�; this identity
follows directly since � is multiplicative and the number of representations n D pm with
P < p �Q is !.P;Q�.n/. The contribution of theO.�/ term, after summing over x < n �
x CH , is trivially bounded by

�

X
P<p�Q

H

p2
�

H

P
;

which can be included in the error term.
In order to decouple the p and m variables, we write m uniquely as m D m1m2

with m1 having all of its prime factors in .P;Q� and m2 having no prime factors in that
interval. Then we see thatX
x<n�xCH

�.n/ D
X

P<p�Q

X
x=p�m1m2�.xCH/=p
p0jm1)p

02.P;Q�
p00jm2)p

00 62.P;Q�

�.p/�.m1/�.m2/

!.P;Q�.m1/C 1
CO

�
H

logP
logQ

�
:

We wish to restrict the support of them1 variable. By writing kDpm1m2 (and noting that
any k has at most !.k/ such representations) and recalling that Q < x"=.10A log logx/ for
A� 10 fixed and x large enough, we see that the contribution of the terms withm1 > x"=4

is bounded by

�

X
x<k�xCH

!.k/�10A=4�log logx

!.k/� .log x/2�10A=4�log logx
X

x<k�xCH

2!.k/ �
H

.log x/A
;

say, by Shiu’s bound [19, Theorem 1]. This is certainly an admissible error term.
Next, we need to dispose of the coprimality condition on m2 in the sums above. For

this we use the fundamental lemma of the sieve (see e.g. [13, Chapter 6]). Let �C
d

and ��
d

be the linear upper and lower bound sieve coefficients with level of distribution y WD Qs

with s D 100 log log x. Write P .P;Q/ D
Q
P<p�Q p. Then, by [13, (6.19)], we haveˇ̌̌

1.m2;P .P;Q//D1 �
X

d j.m2;P .P;Q//

�C
d

ˇ̌̌
D

X
d j.m2;P .P;Q//

�C
d
� 1.m2;P .P;Q//D1

�

X
d j.m2;P .P;Q//

�C
d
�

X
d j.m2;P .P;Q//

��d :

Hence X
x<n�xCH

�.n/ D
X

x<pm1dn�xCH

P<p�Q;m1�x
"=4

p0jdm1)p
02.P;Q�

�C
d

�.p/�.m1/�.dn/

!.P;Q�.m1/C 1
CO

�
H

logP
logQ

�

CO
� X
x<pm1dn�xCH

P<p�Q;m1�x
"=4

p0jdm1)p
02.P;Q�

.�C
d
� ��d /

�
: (3.4)
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In the last error term we can sum first over n to deduce that it is at most of orderX
P<p�Q

m1�x
"=4

p0jm1)p
02.P;Q�

H

m1p

� X
d jP .P;Q/

�C
d

d
�

X
d jP .P;Q/

��
d

d

�
CO.yQx"=4/:

Now, by the fundamental lemma of the sieve (see e.g. [13, Theorem 6.1]), the difference
in the parentheses is O.e�s/ D O..log x/�100/, which leads to an admissible error term
after summing over m1 and p.

In the main term on the right-hand side of (3.4) we have �.dn/ D �.d/�.n/ unless
.d; n/ > 1, and if the latter condition holds, there must exist a prime q 2 .P;Q� such that
q j d and q j n. Writing k D pm1dn, and applying Shiu’s bound, the contribution of the
case .d; n/ > 1 is

�

X
P<q�Q

X
x<k�xCH

q2jk

�4.k/�
X

P<q�Q

H

q2
.log x/3 �

H

P logP
.log x/3 �

H

log x
;

which is small enough. Thus we may replace �.dn/ in (3.4) by �.d/�.n/. Defining

ar WD .�
C� � w�/.r/; where w.r/ WD

1r�x"=41pjr)p2.P;Q�

!.P;Q�.r/C 1
; (3.5)

we see that the sequence ar is supported on r � x"=4Qs � x"=2 and jar j � �.r/ (since
j�C
d
j � 1), so we obtain (3.1).

Remark 3.2. Let f W N ! C be any multiplicative function satisfying jf .n/j � ��.n/
for some fixed � � 1, and let P and Q be as above, with the additional constraint that
P � .logx/A� forA� a large enough constant. Since Shiu’s bound is applicable for jf .n/j,
it is clear from the above proof that the analogous statementX
x<n�xCH

f .n/ D
X

x<prn�xCH
P<p�Q

r�x"=2

arf .p/f .n/CO

�
H

log x

Y
p2Œ1;x�nŒP;Q�

�
1C
jf .p/j

p

��

holds when � is replaced by f in the definition of ar in (3.5).

4. The Möbius function in short intervals

4.1. Applying Heath-Brown’s identity

In what follows, we fix the choices

P D exp..log x/2=3C"=2/; Q D x1=.log logx/2 ; H D x� ; � D 0:55C "; k D 20:

It suffices to prove (1.2) with H � x0:55C", since the case H � x0:55C" then follows by
splitting the sum into short sums.
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With Lemma 3.1, we can introduce a short prime variable into the sum of �.n/
over a short interval, and we now apply Heath-Brown’s identity [6]. Let M.s/ DP
m�.2x/1=k �.m/m

�s . Then we have the Dirichlet series identity

1

�.s/
D

X
1�j�k

.�1/j�1
�
k

j

�
�.s/j�1M.s/j C

1

�.s/
.1 � �.s/M.s//k ;

which on taking the coefficient of n�s on both sides for n � 2x gives Heath-Brown’s
identity for the Möbius function:

�.n/ D
X
1�j�k

.�1/j�1
�
k

j

�
1.�/.j�1/ � .�1Œ1;.2x/1=k �/

.�/j ;

where f .�/j is the j -fold Dirichlet convolution of f . Applying this to the n variable on
the right-hand side of (3.1), we see thatX
x<prn�xCH
P<p�Q

ar�.n/ D

kX
jD1

.�1/j�1
�
k

j

� X
x<prn1���n2j�1�xCH

P<p�Q

i�j)ni�.2x/
1=k

ar�.nj / � � ��.n2j�1/:

Further splitting all the variables into dyadic intervals and adding dummy variables,
we end up with a linear combination of� .log x/2kC2 sums of the formX

x<prn1���n2k�1�xCH
p2.P1;2P1�;r2.R;2R�;ni2.Ni ;2Ni �

p�Q

ara1.n1/ � � � a2k�1.n2k�1/; (4.1)

where
P1 2 ŒP;Q�; R 2 Œ1=2; x"=2�; N1; : : : ; Nk�1 2 Œ1=2; x�;

Nk ; : : : ; N2k�1 2 Œ1=2; .2x/
1=k �; P1RN1 � � �N2k�1 � x;

(4.2)

and for each i we have

ai .n/ �

´
1 or 1nD1; i � k � 1;

�.n/1n�.2x/1=k or 1nD1; k � i � 2k � 1:

Recall that k D 20. What we wish to establish is a comparison principle, which states
that X

x<prn1���n2k�1�xCH
p2.P1;2P1�;r2.R;2R�;ni2.Ni ;2Ni �

p�Q

ara1.n1/ � � � a2k�1.n2k�1/

D
H

y1

X
x<prn1���n2k�1�xCy1

p2.P1;2P1�; r2.R;2R�; ni2.Ni ;2Ni �
p�Q

ara1.n1/ � � � a2k�1.n2k�1/COA

�
H

.log x/A

�
;

(4.3)
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with y1 D x exp.�3.log x/1=3/ for any choices of P1; R; Ni in (4.2). Indeed, once we
have this, we can recombine these� .logx/2kC2 sums into the single sum (3.1) to obtainX

x<n�xCH

�.n/ D
H

y1

X
x<n�xCy1

�.n/CO

�
H

logP
logQ

�
; (4.4)

and by the prime number theorem for the Möbius function with the Vinogradov–Korobov
error term (or by Ramachandra’s result [18]) this becomes the statement of Theorem 1.1.

4.2. Arithmetic information

Our first lemma towards establishing comparisons of the form (4.3) is the type I informa-
tion arising from the case where one of the Ni corresponding to a smooth variable is very
long.1

Lemma 4.1. Suppose that in the sum (4.1) we have Ni � x0:45C2" for some i � k � 1.
Then (4.3) holds.

Proof. The difference of the two sums on different sides of (4.3) is of the typeX
x<mn�xCH
n2.Ni ;2Ni �

bm �
H

y1

X
x<mn�xCy1
n2.Ni ;2Ni �

bm

with H � x0:55C", Ni � x0:45C2", y1 D x exp.�3.log x/1=3/, and with bm a divisor-
bounded sequence. Thus the result follows trivially by summing over the n variable first
(cf. [5, p. 128]).

When the above type I information is not applicable, we move to Dirichlet polyno-
mials in order to obtain type II and type I/II information. As usual (see for instance [5,
Chapter 7]), we may apply Perron’s formula to reduce to Dirichlet polynomials.

Lemma 4.2. Let T0 D exp..log x/1=3/ and define the Dirichlet polynomials P.s/ DP
P1<p�min¹2P1;Qº p

�s , R.s/ D
P
R<r�2R arr

�s , Ni .s/ D
P
Ni<n�2Ni

ai .n/n
�s . Sup-

pose thatZ x1C"=10=H

T0

jP.1=2C i t/R.1=2C i t/N1.1=2C i t/ � � �N2k�1.1=2C i t/j dt

�A x
1=2.log x/�A (4.5)

for all A > 0. Then (4.3) holds.

Proof. This is a standard application of Perron’s formula detailed in [5, Lemma 7.2].

1As pointed out by the referee, this lemma would actually follow from Lemmas 4.3 and 4.4
below. We have chosen to keep Lemma 4.1 here only because it gives a more elementary way of
obtaining type I information.
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The following lemma gives us type II information where the small prime p arising
from Ramaré’s identity is crucial. In that lemma and later, for a positive integerK, we use
the notation ŒK� D ¹1; : : : ; Kº.

Lemma 4.3. Let the notation be as in Section 4.1. Suppose that there is a subset I �
Œ2k � 1� with

Q
i2I Ni 2 Œx

0:45�"=2; x0:55C"=2�. Then (4.3) holds.

Proof. By Lemma 4.2, it suffices to show (4.5). Note first that writing � D

1=.logX/2=3C"=3, by the Vinogradov–Korobov zero-free region, for any jt j � x2 we have

jP.1C i t/j � P�� .log x/3 C
log x
jt j C 1

(see e.g. [15, proof of Lemma 2]). Recalling that P � exp..log x/2=3C"=2/, this gives

jP.1C i t/j �A .log x/�A

for any A > 0 and jt j 2 ŒT0; x1C"=10=H�. Now we can bound the left-hand side of (4.5)
by applying this bound to P.s/, the trivial bound to R.s/, and Cauchy–Schwarz and the
mean value theorem [13, Theorem 9.1] to the remaining Dirichlet polynomials, obtaining,
for any A > 0, a bound of

�A R
1=2 logR �.log x/�A

�

�Z x1C"=10=H

T0

ˇ̌̌Y
i2I

Ni .1=2C i t/
ˇ̌̌2
dt

Z x1C"=10=H

T0

ˇ̌̌ Y
i2Œ2k�1�nI

Ni .1=2C i t/
ˇ̌̌2
dt

�1=2
� R1=2P 1=2.log x/�A

�
x1C"=10=HC

Y
i2I

Ni

�1=2�
x1C"=10=HC

Y
i2Œ2k�1�nI

Ni

�1=2
� x1=2.log x/�A;

as desired.

Finally, we have the following type I/II information for trilinear sums with one smooth
variable.

Lemma 4.4 (Heath-Brown–Iwaniec). Let the notation be as in Section 4.1. Suppose that
there exists an index r such that Œ2k � 1� n ¹rº can be partitioned into two sets I and J
such that

Q
i2I Ni � x0:46C"=8 and

Q
i2J Ni � x0:46C"=8. Then (4.3) holds.

Proof. Since k D 20 and Nr � x=
Q
i2Œ2k�1�n¹rº Ni � x0:079, we must have r �

k � 1 in (4.1), so the polynomial Nr .s/ is a partial sum of the zeta function of the
form

P
Nr<n�2Nr

n�s . Then we may apply a lemma of Heath-Brown and Iwaniec
[8, Lemma 2] (alternatively see [5, Lemma 10.12]) to conclude.

There is a lot more arithmetic information available: see e.g. [5, Section 10.5]. How-
ever, none of this handles for � < 0:55 the case where one has five smooth variables of
size x1=5Co.1/, so this additional information would not help us.
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4.3. Combining the results

Let Ni D x˛i in (4.1) for some real numbers 0 � ˛i � 1. Combining Lemmas 4.1, 4.3
and 4.4 (the first is actually included in the other two), it clearly suffices to prove the fol-
lowing combinatorial lemma, after which we obtain the comparison (4.3) for all choices
of the Ni , and thus obtain (4.4).

Lemma 4.5. Let " > 0 be small, and let K be a positive integer. Let ˛1; : : : ; ˛K 2 .0; 1�
be such that

PK
iD1 ˛i 2 Œ1 � "; 1�. Then either

(1) there exists a subset I � ŒK� such that
P
i2I ˛i 2 Œ0:45; 0:55�, or

(2) there exists a partition ŒK� D I1 [ I2 [ ¹rº such that
P
i2Ij

˛i � 0:46 for j D 1; 2.

Proof. We can assume that there is no subset I � ŒK� for which
P
i2I ˛i 2 Œ0:45; 0:55�

since otherwise we are in case (1).
Let then I � ŒK� be the subset with the largest

P
i2I ˛i � 0:55 (which actually must

be < 0:45). Now, for any r 2 ŒK� n I one has ˛r C
P
i2I ˛i > 0:55 since otherwise we

contradict I having the largest sum. Consequently, we are in case (2) with I1 D I and
I2 D ŒK� n .I [ ¹rº/ (since

P
i2I2

˛i < 1 � 0:55 < 0:46).

Remark 4.6. As pointed out by the referee, instead of Heath-Brown’s identity we could
apply the Vaughan type identity

1

�.s/
D

�
1

�.s/
�M.s/

�
.1 � �.s/M.s//C 2M.s/ � �.s/M.s/2

with M.s/ D
P
n�x0:45 �.n/n

�s as this gives rise only to terms that can be handled
through Lemmas 4.3 and 4.4. However, in the proof of the more general Proposition 2.1,
we will anyway have to use a decomposition that leads to similar terms to those in Heath-
Brown’s identity.

4.4. The twisted case

In this section we outline how our argument can be combined with that of Zhan to prove
Theorem 1.5. Like Zhan, we start by introducing a rational approximation

˛ D
a

q
C �; .a; q/ D 1; j�j �

1

q�
; 1 � q � � D H 2x�1.log x/�B

for some large B > 0. Zhan has already proved Theorem 1.5 in the minor arc case q >
.logx/B (see [21, Theorem 2] which is stated for the von Mangoldt function but the same
proof works for the Möbius function). Hence we can concentrate on the major arc case
q � .log x/B .

We have, similarly to Lemma 3.1,X
x<n�xCH

�.n/e.˛n/ D �
X

x<prn�xCH
P<p�Q

r�x"=2

ar�.n/e.˛prn/CO

�
H

logP
logQ

�
:
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As in the proof of Theorem 1.1, we use Heath-Brown’s identity to decompose this into
� .log x/2kC2 sums of the formX

x<prn1���n2k�1�xCH

i�k)ni�.2x/
1=k

p2.P1;2P1�; r2.R;2R�; ni2.Ni ;2Ni �
P<p�Q

ara1.n1/ � � � a2k�1.n2k�1/e.˛prn1 � � �n2k�1/;

with the same notation and conditions on the variables as in Section 4.1.
Now, we would like to show the comparison principle (4.3) with both main terms twis-

ted by e.˛prn1 � � �n2k�1/. The argument Zhan uses in the minor arc case (see [21, proof
of Theorem 2]) reduces this to mean values of Dirichlet polynomials through moving into
character sums and using partial integration, Perron’s formula and the first derivative test.

To state the required mean value result, we introduce the notation

T1 D 4�.j�jx C x=H/ and F.s; �/ D P.s; �/R.s; �/N1.s; �/ � � �N2k�1.s; �/;

where the Dirichlet polynomials are as in Lemma 4.2 but twisted by �. Then, slightly
modifying Zhan’s argument from [21, Section 3, in particular (3.11)–(3.12)], noting that
we have somewhat different notation, we see that it suffices to prove that, for all A > 0,

X
� .modq/

Z TCx=H

T

jF.1=2C i t; �/j dt �A .qx/
1=2.log x/�A for T 2 ŒT0; T1� (4.6)

and X
� .modq/

Z 2T

T

jF.1=2C i t; �/j dt �A

T

x=H
� .qx/1=2.log x/�A for T � T1:

The second claim is easier than the first since all the bounds one uses to prove (4.6) depend
at most linearly on the length of the integration interval.

Zhan proves (4.6) for q > .log x/B . As in our proof of Theorem 1.1, he splits into
three cases: type I sums, type I2 sums and type II sums. Zhan’s type I and type I2 estimates
[21, Propositions 1 and 2] based on second and fourth moments of L-functions in short
intervals work directly also for q � .log x/B .

Hence it suffices to show that also Zhan’s type II bound [21, Proposition 3] holds in
our situation, with the upper bound in [21, (3.16)] replaced byHx�"=10 (this replacement
can be done since we only aim for intervals of length x3=5C" rather than x3=5.log x/A).
But here we can utilize the short polynomial by using the pointwise estimate

jP.1=2C i t/R.1=2C i t/j �A .PR/
1=2.log x/�A:

Then we can use Cauchy–Schwarz and the mean value theorem for Dirichlet polynomials
exactly as Zhan who got his saving from the estimate 1� q1=2.logx/�A which holds only
in the minor arc case.
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5. Multiplicative functions and almost primes in short intervals

In this section we describe how the proof of Theorem 1.1 has to be modified to prove
Proposition 2.1 and Theorem 1.4.

5.1. Eventually periodic multiplicative functions

Proof of Proposition 2.1. The first difference compared to proof of Theorem 1.1 is that
instead of Lemma 3.1 we apply Remark 3.2 that generalizes it to multiplicative functions.
This gives usX
x<n�xCH

f .n/ D
X

x<prn�xCH
P<p�Q

r�x"=2

f .p/arf .n/CO

�
H

log x

Y
p2Œ1;x�nŒP;Q�

�
1C
jf .p/j

p

��
;

where ar D .�Cf � wf /.r/.
Next we provide a Heath-Brown type combinatorial decomposition for f .n/ (Drap-

peau and Topacogullari [3] also provide combinatorial decompositions for f .n/, but we
show an alternative way to obtain a suitable decomposition). Letting

K D b1000 log log xc and w D x1=K ;

we may writeX
x<prn�xCH
P<p�Q

r�x"=2

f .p/arf .n/

D

X
0�`�60
0�k�K

1

`ŠkŠ

X
x<prmp1���pkq1���q`�xCH

P<p�Q

w<pi�x
1=60

qi>x
1=60

p0jm)p0�w

arf .p/f .p1/ � � � f .pk/f .q1/ � � � f .q`/f .m/

CO.H=w/: (5.1)

Note that we can restrict the m variable above to be � x"=2 in size, adding an acceptable
error O.H=.logx/10/ (cf. the proof of Lemma 3.1), so rm plays just the same role as the
r variable in the case of the Möbius function.

For each b .modD/, let ab be such that f .q/D ab for every prime q > n0 with q � b
.mod D/. Then, for every prime q > max ¹D;n0º,

f .q/ D
X

� .modD/

�
1

'.D/

X
b .modD/

ab�.b/

�
�.q/ D

X
� .modD/

c��.q/;

say, where jc�j � 1.
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We use this expansion for each variable qi in (5.1). Thus it remains to obtain the
comparison principle for sums of the formX
0�`�60
0�k�K

1

`ŠkŠ

X
x<prmp1���pkq1���q`�xCH

P<p�Q

w<pi�x
1=60

qi>x
1=60

p0jm)p0�w

arf .p/f .p1/ � � � f .pk/�1.q1/ � � ��`.q`/f .m/;

with �i any Dirichlet characters modulo D.
For the qi variables, we introduce the von Mangoldt weight and then apply Heath-

Brown’s identity (e.g. with k D 20). We split the resulting sums as well as sums over p
and r dyadically, getting� .log x/39`C2 sums. Note that for the ` D 0 terms one does
not need to use Heath-Brown’s identity, since in those terms all the variables already have
length � x1=60.

If for a while we ignore the issue that k (the number of primes pi ) is sometimes large,
then we end up with sums essentially of the form (4.1), with the ai .n/ being slightly differ-
ent but having the crucial property that any sequence ai .n/ supported outside Œ1; .2x/1=20�
is of the form �.n/ with � a Dirichlet character modulo D.

All of the lemmas we applied in the proof of Theorem 1.1 are readily available for
sums of the form

P
N�n�2N �.n/n

�s in addition to their unweighted counterparts. Fur-
thermore, in the analogue of (4.4) for the function f one can use on the right-hand side
for example Ramachandra’s result [18], since any f that we consider can be expressed
as the Dirichlet series coefficients of a function of the form

Q
� .modD/ L.s; �/

˛�F0.s/,
with F0.s/ an absolutely convergent Dirichlet series for Re.s/ > 1=2 (see e.g. [3, proof
of Lemma 2.3]), and hence f is in Ramachandra’s class of functions.

One can deal with k being large by grouping the variables pi into� 30 products whose
sizes are in Œx1=30; x1=20�: We take i0 D 0, and then define, for j � 1, ij recursively so
that, for each j , we let ij be the first index for which pij�1C1 � � �pij � x

1=30. We continue
recursion until step h for which pih�1C1 � � � pk < x

1=30 and write ih D k (note that we
might have ih�1 D k as well). Necessarily h � 30, so there are less than K30 D o.log x/
possibilities for the tuple .i1; : : : ; ih�1/. We can write

1

kŠ

X
nDp1���pk
w<pi�x

1=60

f .p1/ � � � f .pk/ D

30X
hD1

X
0Di0<i1<����ihDk

.i1� i0/Š.i2� i1/Š � � � .ih� ih�1/Š

ihŠ

�

X
nDv1���vh
vj�x

1=20

v1;:::;vh�1�x
1=30>vh

bi1�i0;v1bi2�i1;v2 � � � bih�ih�1;vh ; (5.2)

where

br;v WD
X

p1���prDv

w<pi�x
1=60

p1���pr�1<x
1=30

f .p1/ � � � f .pr /

rŠ
;
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and we have
jbr;vj D O.�

r / D O..log x/1000 log �/

– this bound is sufficient since we show the comparison principle with saving .log x/�A

for any A > 0. Inserting (5.2) into (5.1) and splitting each vi dyadically deals with the
problem of k large, which was the only remaining issue in the proof of Theorem 1.2.

Remark 5.1. The proof above crucially used the eventual periodicity of f .p/, and actu-
ally some conditions on f must be imposed – for any � 2 .0; 1/ and any large x, there
are multiplicative functions such that the relation

1

H

X
x<n�xCH

f .n/ D .1C o.1//
1

x

X
x<n�2x

f .n/ (5.3)

does not hold for H D x� .
This can be demonstrated for instance by letting, for j D 1; 2, fj D fj;x be the mul-

tiplicative function defined at prime powers by

fj .p
k/

D

´
.�1/j�.m/ if pk � H and mpk 2 .x; x CH� for some (necessarily unique) m;

�.pk/ otherwise.

Then X
x<n�xCH

.f2.n/ � f1.n// D
X

x<pkm�xCH

pk�H

.f2.p
km/ � f1.p

km//

�

X
m�x"

�.m/2
X

x=m<p�.xCH/=m

1�� H

at least for � � 7=12C 2" by Huxley’s prime number theorem. If � < 7=12C 2", in turn,
we may split an interval around x of length � x7=12C2" into intervals of length x� and
note that by the pigeonhole principle we have in any caseX

x0<n�x0CH

.f2.n/ � f1.n//� H

for some x0 � x. On the other hand, by Halász’s theorem (see e.g. [20, Theorem 4.5,
Section III.4.3]), for j D 1; 2 and any x0 � x,X

x0<n�2x0

fj .n/ D o.x
0/;

so (5.3) cannot hold for both f1 and f2. If one restricts the support of f to H -smooth
numbers, then one can hope to prove (5.3) and this is subject of an on-going work of
Granville, Harper, Radziwiłł and the first author.
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5.2. Almost primes

The proof of Theorem 1.4 mostly follows the arguments of the proof of Theorem 1.1, but
starts with the following simple decomposition for E2 numbers:X

x<n�xCH
n2E2

1 D
X

x<p1p2�xCH

exp..log logx/2/�p1�x"

1CO

�
H

log log log x
log x

�
CO"

�
H

log x

�
: (5.4)

The validity of this is seen simply by using the Brun–Titchmarsh inequality to estimate
the number of those p1p2 2 .x; x CH� with p1 < exp..log log x/2/ or p1 > x". Here
we think of " > 0 as being fixed.

Note that an additional complication compared to the proof of Theorem 1.1 is that
the p1 variable may be as small as exp..log log x/2/, and thus we do not have the
Vinogradov–Korobov zero-free region for the corresponding Dirichlet polynomial. There-
fore, we will need to modify some steps in the proof of Theorem 1.1 for the current proof.

On the right-hand side of (5.4), we replace the indicator function of the prime p2 by
the von Mangoldt weight ƒ.p2/ for which we have Heath-Brown’s identity. We apply
Heath-Brown’s identity to ƒ.p2/ with k D 20. As in Section 4.1, we obtain a linear
combination of � .log x/2kC2 sums of the form (4.1) (with 2k � 1 replaced by 2k),
where now R D 1=2,

ai .n/ �

´
1 or logn or 1nD1; i � k;

�.n/1n�.2x/1=k or 1nD1; k C 1 � i � 2k;
(5.5)

and with the difference that P D exp..log log x/2/ and Q D x" in (4.2).
We apply the Perron formula (Lemma 4.2) with the slight modification that T0D x0:01

and y1 D x0:99 (the proof works verbatim with these choices). We are then left with
showing first thatX

x<n�xCy1
n2E2

1 D y1
log log x

log x
CO

�
y1

log log log x
log x

�
; y1 D x

0:99; (5.6)

and secondly thatZ x1C"=10=H

T0

jP.1=2C i t/N1.1=2C i t/ � � �N2k.1=2C i t/j dt �A x
1=2.log x/�A;

(5.7)

where P.s/ D
P
P1<p�min ¹2P1;Qº p

�s , P1 2 Œexp..log log x/2/; x"� and Ni .s/ DP
Ni<n�2Ni

ai .n/n
�s with ai .n/ as in (5.5). Furthermore, we have the constraint

P1N1 � � �N2k � x.
To prove (5.6), we can for example apply Huxley’s prime number theorem, summing

first over the p2 variable in the representation n D p1p2 with p2 � p1.
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For (5.7), we split the integration range ŒT0; x1C"=10=H� into two sets: the set

T1 WD ¹t 2 ŒT0; x
1C"=10=H� W jP.1=2C i t/j > P

1=2
1 .log x/�10Aº

and its complement, which we call T2. The integral over T2 can be bounded precisely as
in Section 4.2, since then we obtain a sufficient pointwise saving in jP.1=2C i t/j.

For the integral over T1, we must proceed differently. To boundZ
T1

jP.1=2C i t/N1.1=2C i t/ � � �N2k.1=2C i t/j dt; (5.8)

we first note that if all the Ni satisfy Ni � .2x/
1=k , then we can apply the same

argument as in Lemma 4.3 to obtain the desired bound. (Let j be such that Nj D
max1�i�2k Ni . Then we group ¹N1; : : : ; N2kº n ¹Nj º into two almost equal products
of size 2 Œx0:45�"=3; x1=2� and apply Cauchy–Schwarz to the Dirichlet polynomials cor-
responding to these two products and a pointwise bound to Nj .s/.) Assume then that
some Nj0 satisfies Nj0 > .2x/

1=k ; so that Nj0.s/ is a partial sum of �.s/ or �0.s/. In that
case, we bound (5.8) by

� .log x/2kjT1jP
1=2
1

Y
i2Œ2k�n¹j0º

N
1=2
i � sup

t2T1

jNj0.1=2C i t/j:

By Weyl’s method for bounding exponential sums (see e.g. [13, Corollary 8.6]) and the
fact thatNj0 � x1=k , we have for t 2 T1 the bound jNj0.1=2C i t/j �N

1=2�
0
j0

for some
constant 
0 > 0. Thus, it suffices to show that

jT1j D x
o.1/

to obtain (5.7) and hence to finish the proof. From a moment estimate given by [16,
Lemma 8], we indeed obtain such a bound for jT1j (and in fact the stronger bound jT1j �
exp.10A log x=log log x/). This concludes the proof.

Remark 5.2. A similar manoeuvre as in the proof of Theorem 1.4 to handle Dirich-
let polynomials of length exp..log log x/2/ would enable us to take the smaller value
P D exp..log log x/2/ in the proof of Theorem 1.1. This then produces the better error
term O.H.log log x/4=log x/ in (1.2). Similar improvements could be made to our other
results. We leave the details to the interested reader.
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