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Abstract. In the present paper, we introduce two-dimensional categorified Hall algebras of smooth
curves and smooth surfaces. A categorified Hall algebra is an associative monoidal structure on the
stable co-category CohP(R.M) of complexes of sheaves with bounded coherent cohomology on a
derived moduli stack R.M. In the surface case, R.M is a suitable derived enhancement of the moduli
stack M of coherent sheaves on the surface. This construction categorifies the K-theoretical and
cohomological Hall algebras of coherent sheaves on a surface of Zhao and Kapranov—Vasserot. In
the curve case, we define three categorified Hall algebras associated with suitable derived enhance-
ments of the moduli stack of Higgs sheaves on a curve X, the moduli stack of vector bundles with
flat connections on X, and the moduli stack of finite-dimensional local systems on X, respectively.
In the Higgs sheaves case we obtain a categorification of the K-theoretical and cohomological Hall
algebras of Higgs sheaves on a curve of Minets and Sala—Schiffmann, while in the other two cases
our construction yields, by passing to Ko, new K-theoretical Hall algebras, and by passing to HEM,
new cohomological Hall algebras. Finally, we show that the Riemann—Hilbert and the non-abelian
Hodge correspondences can be lifted to the level of our categorified Hall algebras of a curve.
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1. Introduction

In this work we introduce two-dimensional categorified Hall algebras of smooth curves
and smooth surfaces. A categorified Hall algebra is an associative monoidal structure
“a la Hall” on the dg-category Coh®(R.M)' on a derived moduli stack RM. In the sur-
face case, R-M is a suitable derived enhancement of the moduli stack M of coherent
sheaves on the surface. This construction categorifies the K-theoretical Hall algebra of
zero-dimensional coherent sheaves on a surface S [85] and the K-theoretical and cohomo-
logical Hall algebras of coherent sheaves on S [25]. In the curve case, we define three
categorified Hall algebras associated with suitable derived enhancements of the moduli
stack of Higgs sheaves on a curve X, the moduli stack of flat vector bundles on X, and
the moduli stack of local systems on X, respectively. In the Higgs sheaves case, we obtain
a categorification of the K-theoretical and cohomological Hall algebras of Higgs sheaves
on a curve [40, 60], while in the other two cases we obtain, as a by-product, the con-
struction of the corresponding K-theoretical and cohomological Hall algebras. While the

'We mean the bounded derived category of complexes of sheaves with coherent cohomology. A
more classical notation would be Dgoh (RM). In the main body of the paper we will construct stable
oo-categories directly, without passing through explicit dg-enhancements. Moreover, associative
monoidal structure is to be technically understood as [Ej-monoidal structure.
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underlying K-theoretical and cohomological Hall algebras can also be obtained via per-
fect obstruction theories and are insensitive to the derived enhancements we use here, our
categorified versions depend in a substantial way on the existence of a sufficiently nat-
ural derived enhancement. To the best of our knowledge, it is not possible to obtain such
categorifications using perfect obstruction theories.

Before providing precise statements of our results, we shall briefly recall the literature
about K-theoretical and cohomological Hall algebras.

1.1. Review of the Hall convolution product

Let A be an abelian category and denote by M4 the corresponding moduli stack of
objects: M 4 is a geometric derived stack over C parameterizing families of objects in
. In particular, its groupoid of C-points M 4 (C) coincides with the groupoid of objects
of #A. Similarly, we can consider the moduli stack Mj:t parameterizing families of short
exact sequences in # and form the following diagram:

Mi:t 0—)E1—)E—)E2—>0
RN — \
Mg X My, My (E1, E2) E
(1.1)

When the maps p and g are sufficiently well behaved, passing to (an oriented) Borel—
Moore homology? yields a product map

G 0 Tt HN (M) ® HEM (M) — HZ(Mon),

which can then been proven to be associative. In what follows, we refer to the above mul-
tiplicative structure as a “cohomological Hall algebra” (CoHA for short) attached to +4.

The existence of the above product does not come for free. Typically, one needs a
certain level of regularity for p (e.g. smooth or Ici). In turn, this imposes severe restrictions
on the abelian category +. For instance, if 4 has cohomological dimension 1, then p is
smooth, but this is typically false when 4 has cohomological dimension 2. Quite recently,
there has been an increasing amount of research around two-dimensional CoHAs (see e.g.
[25,64-67,82,83]). We will give a thorough review of the historical development in §1.4,
but for the moment let us say that the first goal of this paper is to provide an approach
to the construction of the convolution product a la Hall that can work uniformly in the
two-dimensional setting. The key of our method is to consider a suitable natural derived
enhancements RM 4 and RM&" of the moduli stacks M4 and M, respectively.

The use of derived geometry is both natural and expected, and made an early explicit
appearance in [44]. The effectiveness of this method can be easily understood via the
following two properties:

2Examples of oriented Borel-Moore homology theories are the Gg-theory (i.e., the Grothen-
dieck group of coherent sheaves), Chow groups, elliptic cohomology.
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(1) the map
Rp:RME — RMp x RM 4

has better regularity properties than its underived counterpart. When + has cohomo-
logical dimension 2, R p is typically Ici, while p is not.

(2) Oriented Borel-Moore homology theories are insensitive to the derived structure,
hence yielding natural isomorphisms’

HM(M ) >~ HM(RM4).

These two properties constitute the main leitmotiv of the current paper. The upshot is that
we can use the map R p in order to construct the Hall product in a much more general
setting.

As announced at the beginning, the use of derived geometry has another pleasant
consequence: it allows us to categorify the CoHAs considered above. The precise formu-
lation of this construction, as well as the study of its first properties, is the second goal of
this work. More specifically, we show that the (derived) convolution diagram induces an
associative monoidal structure

®Hall: COhb(RM,A,) ® COhb(RMA) — COhb(RMA)

on the dg-category of complexes of sheaves with bounded coherent cohomology
on RM 4. We refer to this monoidal dg-category as the rwo-dimensional categorified Hall
algebra (Cat-HA) of A.

From the Cat-HA we can extract a certain number of CoHAs. Most notably, we
recover a CoHA structure on the spectrum of G-theory. Notice that this would be
impossible if we limited ourselves to consider Coh®(R.M4) as a triangulated category
— see e.g. [68, 80]. As a closing remark, let us emphasize that, unlike oriented Borel—
Moore homology theories, our Cat-HA is very sensitive to the derived structure of RM 4.
In other words, property (2) above fails in the categorified setting:

Coh®(RM,4) and Coh®(M4)

are no longer equivalent. Furthermore, the same difficulties encountered when trying to
construct the CoHA out of M4 prevent, in an even harsher way, endowing Coh®(M 4)
with an associative monoidal structure. Indeed, if one simply cares about the construction
of the CoHA, it would be possible to bypass the use of derived geometry by using one
of his shadows, i.e. perfect obstruction theories. However, the complexity of the higher
coherences involved in the construction of the Cat-HA leads us to believe that an approach
to categorification via perfect obstruction theories is highly unlikely.

3This is best seen in the case of the Go-theory — cf. Proposition A.5.
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1.2. Main results

We can summarize the main contributions of this paper as follows: on the one hand,
we construct many examples of two-dimensional categorified Hall algebras (Cat-HAs)
attached to curves and surfaces. On the other hand, we show that from these new Cat-
HAs one can extract the known constructions of K-theoretical Hall algebras of surfaces
and of Higgs sheaves on a curve. As a byproduct, our approach provides K-theoretical
and cohomological Hall algebras associated to flat vector bundles and local systems on a
curve.

Categorified Hall algebras. Let X be a smooth proper C-scheme. In §2 we introduce
a derived enhancement Coh(X) of the (classical) geometric derived stack of coherent
sheaves on X . Informally, its functor of points assigns to every affine derived C-scheme
S the space of S-flat perfect complexes on X x S. We show in Proposition 2.24 that
Coh(X) is a geometric derived stack which is locally of finite presentation.

Similarly, we introduce the derived stack Coh®!(X) which, roughly speaking, para-
meterizes extensions of S-flat of perfect complexes on X x S. These derived stacks can
be organized in the convolution diagram

Coh®™(X)

/ X) (1.2)

Coh(X) x Coh(X) Coh(X)

of the form (1.1). The main input to our construction is the computation of the tor-
amplitude of the cotangent complex of p:

Proposition 1.1 (see Proposition 3.10). The relative cotangent complex 1L, of
p: Coh®™ (X) — Coh(X) has tor-amplitude within [—1,n — 1], where n is the dimension
of X.

When X is a surface, the cotangent complex of p has tor-amplitude within [—1, 1].
This is to say that p is derived Ici, and in particular we obtain a well-defined functor

® = ¢4 0 p*:Coh®(Coh(X)) ® Coh®(Coh(X)) — Coh°(Coh(X)).
This implies
Theorem 1.2 (see Proposition 4.3). Let X be a smooth and proper complex surface. Then

the functor ® can be promoted to an E1-monoidal structure on the stable co-category

Coh®(Coh(X)).

We refer to Coh®(Coh(X)) together with its [E{-monoidal structure ® as the categor-
ified Hall algebra of the surface X . In a nutshell, the construction goes as follows. The
convolution diagram considered above is part of a richer combinatorial structure that can
be seen as a simplicial object in derived stacks

S.Coh(X): A — dSt.
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In low dimensions, the simplexes of $¢Coh(X) can be described as follows:
8oCoh(X) ~ Spec(C), 8;Coh(X) ~ Coh(X), 8,Coh(X) ~ Coh®™(X),

and the simplicial maps induce the maps p and g above. The simplicial object S, Coh(X)

is known as the Waldhausen construction of Coh(X), and one can summarize its main

properties by saying that it is a 2-Segal object in the sense of Dyckerhoff-Kapranov [11].
Its relevance for us is that [11, Theorem 11.1.6] provides a canonical co-functor

2-Seg(dSt) — Algg, (Corr™ (dSt)).

In other words, we can attach to every 2-Segal object an [E;-monoid object in the cat-
egory of correspondences in derived stacks. In order to convert these data into the higher
coherences of the Cat-HA, we make use of the Gaitsgory—Rozenblyum correspondence
machine [12]. Let

Corr™ (dGeom) ps i <> Corr™ (dSt)

be the subcategory whose objects are derived geometric (i.e. higher Artin) stacks, and
whose class of horizontal (resp. vertical) morphisms is the class of maps representable by
proper schemes (resp. Ici morphisms). Then the universal property of the (oo, 2)-category
of correspondences of Gaitsgory—Rozenblyum provides us with a lax monoidal functor

Coh®: Corr* (dGeom)ps i — Catsy,

with values in the co-category of stable co-categories. Being lax monoidal, this functor
preserves [E1-monoid objects, therefore delivering the Cat-HA.

Remark 1.3. If X is projective and H is an ample divisor, similar results hold for the
stack Coh®®?(™ (X) of Gieseker H -semistable coherent sheaves on X with reduced Hil-
bert polynomial equal to a fixed monic polynomial p(m) € Q[m]. Moreover, if X is
quasi-projective, the results above hold for the stack Cohggp (X) of coherent sheaves on
X with proper support and dimension of the support less than or equal to an integer d.
Finally, if the surface is toric, minimal variations in our construction (discussed in §4.3)
allow us to consider the toric-equivariant setting.

One can also extend the above construction to obtain Cat-HAs associated to derived
moduli stacks of Simpson’s semistable properly supported sheaves with fixed reduced
Hilbert polynomial on a smooth (quasi-)projective surface. An analysis of these Cat-HAs
has been carried out in [9] when the surface is the minimal resolution of a Kleinian sin-
gularity.

As we said before, our second main source of examples is the two-dimensional Cat-
HAs that can be attached to smooth projective complex curves X. There are three types
of such examples, coming respectively from local systems, flat vector bundles, and Higgs
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sheaves on X.* A uniform treatment of these Cat-HAs is made possible by Simpson’s
formalism of shapes. These are derived stacks attached to the curve X, written

Xs, Xgr, Xpo.

We refer to the compendium [50] for the precise definition of these derived stacks. How-
ever, let us say straight away that their usefulness lies in the fact that coherent sheaves on
Xg (resp. Xqr, Xpo) canonically coincide with local systems (resp. flat vector bundles,
Higgs sheaves) on X. Using these shapes, we can easily make sense of the derived
enhancements

Coh(Xg), Coh(Xgr), Coh(Xpy)

of the classical stacks of local systems, flat vector bundles and Higgs sheaves on X,
respectively.

The construction of the convolution diagram (and of the 2-Segal object) can be car-
ried out in this setting without any additional difficulty. The key computation of the
tor-amplitude of the map p in this context is discussed in §3.4. Every case has to be
analyzed on its own, because the proof relies on specific features of the type of sheaves
that are considered. From here, the same method discussed for surfaces yields

Theorem 1.4 (see Theorem 4.9). Let X be a smooth projective complex curve. The con-
volution diagram induces an E1-monoidal structure on the stable co-categories

Coh®(Coh(Xg)), Coh®(Coh(X4r)), Coh®(Coh(Xpy)).

We refer to these IE;-monoidal categories as the Betti, de Rham and Dolbeault Cat-
HAs. We denote their underlying tensor products as ®g, ®gr and ®p,, respectively. Our
formalism also allows considering the natural C*-action on Coh(Xp,) ~ T*Coh(X) that
“scales the fibers” and so we introduce the corresponding C*-equivariant version of the
Dolbeault Cat-HA (see §4.3).

It is a natural question to try to relate these three Cat-HAs attached to a curve. Our
first result in this direction, concerning the de Rham and the Betti Cat-HAs, is of analytic
nature. It can be informally stated by saying that the Riemann—Hilbert correspondence
respects the Hall convolution structure:

Theorem 1.5 (Cat-HA version of the derived Riemann—Hilbert correspondence). Let X
be a smooth projective complex curve. Then:

4Recall that a Higgs sheaf is a pair (E, ¢: E — Q)l( ® E), where E is a coherent sheaf on X

and ¢ a morphism of Oy -modules, called a Higgs field. Here, 2 }( is the sheaf of 1-forms of X. On

the other hand, by a flat vector bundle we mean a vector bundle endowed with a flat connection.
Finally, recall that a local system can be interpreted as a finite-dimensional representation of the
fundamental group of X.
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(1) The convolution diagrams for the analytifications Coh(Xqr)*" and Coh(Xg)®"
induce an E-monoidal structure on the stable co-categories Coh®(Coh(Xyg)?") and
Coh®(Coh(Xg)a"), written

(Coh®(Coh(X4r)™"), ®3R),  (Coh®(Coh(Xp)™"), ®").

(2) There is a natural diagram of stable [E1-monoidal oo-categories and monoidal func-
tors

(Coh®(Coh(Xz)). ®s) (Coh®(Coh(Xcr)). ®qr)

| |

(Coh®(Coh(Xp)®"), ®3") —— (Coh®(Coh(X4r)?"), ®3%

where the vertical functors are induced by analytification and the horizontal functor
is induced by the Riemann—Hilbert transformation ngu: X5 — X&" of [49]. Further-
more, the horizontal functor is an equivalence.

The new ingredient in this theorem is the use of derived complex analytic geometry,
first introduced by J. Lurie [34] and further expanded by the first-named author [22,48,52].
The key point is to prove that the Riemann—Hilbert correspondence of [49] can be lifted
to the [E;-monoidal setting, and this is achieved by the natural transformation ngy already
mentioned in the above statement.

The relation between the de Rham and the Dolbeault categorified Hall algebras is
more subtle. In order to state it, one has to use another shape of Simpson, the Deligne
shape Xpe — Al. Then the derived stack Coh /a1 (Xpel) is the derived moduli stack of
Deligne’s A connections on X . Such a stack interpolates the de Rham moduli stack with
the Dolbeault moduli stack: it naturally lives over A! and one has

COh/Al (XDeI) XAl {0} ~ COh(XDo|) and COh/Al (XDeI) XAl {1} ~ COh(XdR).

We restrict ourselves to the open substack C0h7= a1 (Xpe) C Coh 41 (Xpe) for which the

fiber at zero is the derived moduli stack CthS’O(X pol) Of semistable Higgs bundles on X
of degree zero. As before, this yields

Theorem 1.6 (Weak Cat-HA version of the non-abelian Hodge correspondence). Let X

be a smooth projective complex curve. Then the stable co-category Coh%* (Coh7 a1 (Xpel)
it .

has a natural Eq-monoidal structure. In addition, it is a module over Per
Perf([A(lC /Gnl) and we have monoidal functors

®: Coh? «(Coh7, | (Xoel)) ®peyit Perfc — Coh®(Coh(Xgg)).

W: Cohl.. (Coh7, 1 (Xpel) ®pein Perf" — Coh%.(Coh™ °(Xpy)),
where Perfd" := Perf(BG,).

Conjecture 1.7 (Cat-HA version of the non-abelian Hodge correspondence). The mor-
phisms ® and ¥V are equivalences.
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Decategorification. Now, we investigate what algebras we obtain after decategorifying
our Cat-HAs, i.e., after passing to the Grothendieck group. First, we introduce the finer
invariant Cohgro, which is more adapted to the study of non-quasi-compact stacks. Among
its features, there is the fact that for every derived stack Y there is a canonical equivalence
(cf. Proposition A.5)

K(Coh® (Y)) ~ K(Coh®_(°Y)),

pro pro

a property that fails if we simply use Coh® instead of Cohp.
relies on the machinery developed in §A.

First, our construction provides a categorification of the K-theoretical Hall algebras of
surfaces [25, 85] and the K-theoretical Hall algebras of Higgs sheaves on curves [40, 60]
(see §1.4 for a review of these algebras).

The construction of Coh,

Theorem 1.8. Let X be a smooth quasi-projective complex surface. There exists an
algebra isomorphism between mwoK (Cohgro(CohpSrgp(X ))) and the K-theoretical Hall
algebra of X as defined in [25, 85). Thus, the CoHA tensor structure on the stable oco-
category Cohgro(Cthd (X)) is a categorification of the latter.

Finally, if in addition X is toric, similar results holds in the equivariant setting.

Now, let X be a smooth projective complex curve. Our techniques provide a categor-
ification of the Dolbeault K-theoretical Hall algebra of X [40, 60]:

Proposition 1.9. Let X be a smooth projective complex curve. There exists an algebra
isomorphism between 1 K(Cohgro c+(Coh(Xpo)) and the K-theoretical Hall algebra of

Higgs sheaves on X introduced in [40,60). Thus, the CoHA tensor structure on the stable
oo-category Cohk';ro c+(Coh(Xpq)) is a categorification of the latter.

One of the consequences of our construction is the categorification® of a positive nil-
potent part of the quantum toroidal algebra U;',t (gl;). This is also known as the elliptic
Hall algebra of Burban and Schiffmann [4].

Proposition 1.10. There exists a Z[q, t]-algebra isomorphism

moK(Cohl ¢+ (Cohsd (C2))) =~ U, (al)).

prop

Here, the C* x C*-action on Cohpfrg'D

In the Betti case, Davison [7] defined the Betti cohomological Hall algebra of X by
using the Kontsevich—-Soibelman CoHA formalism and a suitable choice of a quiver with
potential. In [46], the author generalizes such a formalism in the G-theory case. Thus, by
combining the two one obtains a Betti K-theoretical Hall algebra. We expect that this is

(C?) is induced by the torus action on C2.

SA categorification of U;L,t (g';'[l) has also been obtained by Negut [43]: by means of (smooth)
Hecke correspondences, he defined functors on the bounded derived category of the smooth moduli
space of Gieseker-stable sheaves on a smooth projective surface, which after passing to G-theory,
give rise to an action of the elliptic Hall algebra on the K-theory of such smooth moduli spaces.
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equivalent to our realization of the Betti K-theoretical Hall algebra. Finally, our approach
defines the de Rham K-theoretical Hall algebra of X.

By using the formalism of Borel-Moore homology of higher stacks developed in [25]
and their construction of the Hall product via perfect obstruction theories, we obtain equi-
valent realizations of the COHA of a surface [25] and of the Dolbeault CoHA of a curve
[40,60]. Moreover, we define the de Rham cohomological Hall algebra of a curve.

1.3. DG-Coherent categorification

At this stage, we would like to clarify what kind of “categorification” we provide and
compare our approach to the other approaches to categorification known in the literature.

Let us start by recalling two well-known categorifications of the quantum group
Uy (ng), where ng is the positive nilpotent part of a simply laced Kac-Moody algebra
g@ and @ is the corresponding quiver. The first one is provided by Lusztig [37,38], and
we shall call it the perverse categorification of Uy (ng). Denote by Rep(@, d) the moduli
stack of representations of the quiver @ of dimension d. Then — in modern terms — Lusztig
introduced a graded additive subcategory C(Rep(@, d)) of the bounded derived category
DP(Rep(@, d)) of constructible complexes whose split Grothendieck group is isomorphic
to the d-weight subspace of Uy (ng). By using a diagrammatic approach, Khovanov—
Lauda [26-28, 30] and Rouquier [57] provided another categorification U, (11g), which
is a 2-category; we call this the diagrammatic categorification of Uy (ng). In addition,
they showed that U, (1g) is the Grothendieck group of the monoidal category of all pro-
jective graded modules over the quiver-Hecke algebra R of @. A relation between these
two categorifications of the same quantum group was established by Rouquier [58] and
Varagnolo—Vasserot [81]: they proved that there exists an equivalence of additive graded
monoidal categories between D, C(Rep(@, d)) and the category of all finitely generated
graded projective R-modules.

Let @ be the affine Dynkin quiver A(ll). In [70], the authors constructed another cat-
egorification of the quantum group Uy, (g ), which they call the coherent categorification.
They showed that there exists a monoidal structure on the homotopy category of the
C*-equivariant dg-category Coh'fc* (Rep(I1y4,)), where 14, is the so-called preprojective
algebra of the finite Dynkin quiver A; and Rep(Ily, ) is a suitable derived enhancement of
the moduli stack Rep(I14,) of finite-dimensional representations of I14, . Here, there is a
canonical C*-action on Rep(I14,) which lifts to the derived enhancement. By passing to
the G-theory we obtain another realization of the algebra U, (ng). In loc.cit. the authors
started to investigate the relation between the perverse categorification and the coherent
categorification of U, (ng) when @ = A;.

Since in our paper we do not work with monoidal structures on triangulated categories,
but rather with [E;-monoidal structures on dg-categories, our construction provides the
dg-coherent categorification of the K-theoretical Hall algebras of surfaces [25, 85], of the
K-theoretical Hall algebras of Higgs sheaves on curves [40, 60], and of the de Rham and
Betti K-theoretical Hall algebras of curves. At this point, one can wonder if there are
perverse categorifications of these K-theoretical Hall algebras.
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Since in general there is no clear guess what moduli stack to consider on the per-
verse side, it is not clear how to define the Lusztig category.® The only known case so
far is the perverse categorification of UZ, ((j[l), i.e., of the K-theoretical Hall algebra of
zero-dimensional sheaves on C2, due to Schiffmann. The latter is isomorphic to the K-
theoretical Hall algebra of the preprojective algebra ITgne.00p Of the one-loop quiver —
see §1.4.

In [61], Schiffmann constructed perverse categorifications of certain quantum loop
and toroidal algebras, in particular of UZt(QII). In this case, he defined the Lusztig
category C(Coh(X)) for the bounded derived category D°(Coh(X)) of constructible com-
plexes on the moduli stack Coh(X) of coherent sheaves on an elliptic curve and he proved
that the split Grothendieck group of C(Coh(X)) is isomorphic to U;f, (gf[l). Thus, for this
quantum group we have both a perverse and a dg-coherent categorification. Although it
would be natural to ask what is the relation between them, it seems that the question is
not well-posed since the former categorification comes from an additive category, while
the latter from a dg-category.

A viewpoint which can help us to correctly formulate a question about these two
different categorifications is somehow provided by [63]. In that paper, the authors pointed
out how the two different realizations of U;, ((_j'Il) should be reinterpreted as a G-theory
version of the geometric Langlands correspondence (see e.g. [1] and references therein):’

QCoh(Bun(X, I’l)dR) x>~ IndCohN”pG‘ob (Bun(XdR, n)),

where the Lusztig category arises from the left-hand side, while a K-theoretical Hall
algebra arises from the right-hand side. Here, X is a smooth projective complex curve
and n a non-negative integer.®

By interpreting [63] as a decategorified version of what we are looking for, we may
speculate the following:

Conjecture 1.11. Let X be a smooth projective complex curve. Then there exist an E -
monoidal structure on the dg-category Coh®(Bun(X)gr) and an E-monoidal equival-
ence between Coh®(Bun(X )gr) and the categorified Hall algebra’ Coh®(Coh(X4R)).

SNote that in the case treated in [70], the moduli stack considered on the perverse side is

fRep(Agl)), while on the coherent side it is Rep(IT4,). One evident relation between these two
stacks is that the quiver appearing on the former stack is the affinization of the quiver on the latter
stack.

7One usually expects on the left-hand side D-mod(Bun(X, 1)), but this is indeed by definition
QCOh(BUl‘l(X, }’l)dR).

80ne may notice that the K-theoretical Hall algebra considered in [63] is the one associated with
Ione-loop While our construction provides a de Rham K-theoretical Hall algebra of X; the relation
between them should arise from the observation that the moduli stack of finite-dimensional repres-
entations of ITone-loop is Some sort of “formal neighborhood” of the trivial D-module in Bun(XgyRr).

0r a version of it in which the complexes have fixed singular supports — see [1] for the defini-
tion of singular support in this context.
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It follows that the right “dg-enhancement” of Lusztig’s construction should be
Coh®(Bun(X)gg). In addition, one should expect that, when X is an elliptic curve, by
passing to the G-theory one recovers UZ, ((j[l).

Finally, one may wonder if there is a diagrammatic description of our categorified Hall
algebras in the spirit of Khovanov-Lauda and Rouquier. Let Y be either a smooth proper
complex scheme S of dimension < 2 or one of Simpson’s shapes of a smooth projective
complex curve X . Then Coh(Y') admits a stratification

Coh(Y) = | | Coh(Y.v)
vVEA

such that the Hall product is graded with respect to it, where A is the numerical Grothen-
dieck group of S in the first case and of X in the second case.

Now, we define'’ the following (0o, 2)-category U: it is the subcategory inside the
(00, 2)-category of dg-categories such that

e its objects are the dg-categories Coh®(Coh(Y, v)),

e the 1-morphisms between Coh®(Coh(Y, v)) and Coh®(Coh(Y, v')) are the functors of
the form — ® E for E € Coh®(Coh(Y,V’ —v)). Here, ® denotes the Hall tensor product.

The study of 2-morphisms in U should lead to an analogue of KLR algebras in this setting,
which will be investigated in a future work.

1.4. Historical background on CoHAs

For completeness, we include a review of the literature around two-dimensional CoHAs.

The first instances'' of two-dimensional CoHAs can be traced back to the works of
Schiffmann and Vasserot [63, 65]. Seeking for a “geometric Langlands dual algebra” of
the (classical) Hall algebra of a curve'?, the authors were led to introduce a convolution
algebra structure on the (equivariant) Go-theory of the cotangent stack T*Rep(@,). Here
Rep(@y) is the stack of finite-dimensional representations of the quiver @, with one
vertex and g loops. When g = 1, the corresponding associative algebra is isomorphic to
a positive part of the elliptic Hall algebra. A study of the representation theory of the
elliptic Hall algebra by using its CoHA description was initiated in [65] and pursued by
Negut [42] in connection with gauge theory and deformed vertex algebras.

The extension of this construction to any quiver and, at the same time, to Borel-Moore
homology theory and more generally to any oriented Borel-Moore homology theory was

10We thank Andrea Appel for helping us spelling out the description of U.

"o the best of the authors’ knowledge, the first circle of ideas around two-dimensional CoHAs
can be found in an unpublished manuscript by Grojnowski [17].

12By the (classical) Hall algebra of a curve we mean the Hall algebra associated with the abelian
category of coherent sheaves on a smooth projective curve defined over a finite field. As explained
in [62], conjecturally this algebra can be realized by using the Lusztig’s category (such a conjecture
is true in the genus 0 and 1 case, for example).
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shown e.g. in [82]. Note that T*Rep(@) is equivalent to the stack of finite-dimensional
representations of the preprojective algebra I1g of @. For this reason, sometimes this
CoHA is called the CoHA of the preprojective algebra of Q.

In the Borel-Moore homology case, Schiffmann and Vasserot gave a characterization
of the generators of the CoHA of the preprojective algebra of @ in [67], while a relation
to the (Maulik—Okounkov) Yangian was established in [8,66,83]. Again, when @ = @;, a
connection between the corresponding two-dimensional CoHAs and vertex algebras was
provided in [41,64] (see also [55]).

In [29], Kontsevich and Soibelman introduced another CoHA, in order to provide a
mathematical definition of Harvey and Moore’s algebra of BPS states [20]. It goes under
the name of three-dimensional CoHA since it is associated with Calabi—Yau categories
of global dimension 3 (such as the category of representations of the Jacobi algebra
of a quiver with potential, the category of coherent sheaves on a CY 3-fold, etc.). As
shown by Davison [56, Appendix] (see also [84]) using a dimensional reduction argu-
ment, the CoHA of the preprojective algebra of a quiver described above can be realized
as a Kontsevich—Soibelman one.

For certain choices of the quiver @, the cotangent stack T*Rep(Q) is a stack paramet-
erizing coherent sheaves on a surface. Thus the corresponding algebra can be seen as an
example of a CoHA associated to a surface. This is the case when the quiver is the one-
loop quiver @1: indeed, T*Rep(@;) coincides with the stack Cohy(C?) parameterizing
zero-dimensional sheaves on the complex plane C2. In particular, the elliptic Hall algebra
can be seen as an algebra attached to zero-dimensional sheaves on C2.

Another example of two-dimensional CoHA is the Dolbeault CoHA of a curve. Let X
be a smooth projective curve and let Higgs(X) be the stack'? of Higgs sheaves on X . Then
the Borel-Moore homology of the stack Higgs(X) of Higgs sheaves on X is endowed
with the structure of a convolution algebra. Such an algebra has been introduced by
the second-named author and Schiffmann [60]. In [40], independently Minets has intro-
duced the Dolbeault CoHA in the rank zero case. Thanks to the Beauville-Narasimhan—
Ramanan correspondence, the Dolbeault CoHA can be interpreted as the CoHA of torsion
sheaves on T* X such that their support is proper over X . In particular, Minets’ algebra is
an algebra attached to zero-dimensional sheaves on T* X. Such an algebra coincides with
Negut’s shuffle algebra [44] of a surface S when S = T*X.

Negut’s algebra of a smooth surface S is defined by means of Hecke correspond-
ences depending on zero-dimensional sheaves on §, and its construction comes from a
generalization of the realization of the elliptic Hall algebra in [65] via Hecke corres-
pondences. Zhao [85] constructed the cohomological Hall algebra of the moduli stack
of zero-dimensional sheaves on a smooth surface S and fully established the relation
between this CoHA and Negut’s algebra of S. A stronger, independently obtained result
is due to Kapranov and Vasserot [25], who defined the CoHA associated to a category of
coherent sheaves on a smooth surface S with proper support of a fixed dimension.

13Note that the truncation of the derived stack Coh(Xpo) is isomorphic to Higgs(X).
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1.5. Outline

In §2 we introduce our derived enhancement of the classical stack of coherent sheaves on a
smooth complex scheme. We also define derived moduli stacks of coherent sheaves on the
Betti, de Rham, and Dolbeault shapes of a smooth scheme. In §3 we introduce the derived
enhancement of the classical stack of extensions of coherent sheaves on both a smooth
complex scheme and on a Simpson’s shape of a smooth complex scheme. In addition,
we define the convolution diagram (1.2) and provide the tor-amplitude estimates for the
map p. §4 is devoted to the construction of the categorified Hall algebra associated with
the moduli stack of coherent sheaves on either a smooth scheme or a Simpson’s shape of
a smooth scheme; in §4.1 we endow such a stack of the structure of a 2-Segal space a la
Dyckerhoff—Kapranov, while in §4.2 by applying the functor Cohgm, we obtain one of our
main results, i.e., an [E;-monoidal structure on Cohgro (Coh(Y)) when Y is either a smooth
curve or surface, or a Simpson’s shape of a smooth curve; finally, §4.3 is devoted to the
equivariant case of the construction of the categorified Hall algebra. In §5, we show how
our approach provides equivalent realizations of the known K-theoretical Hall algebras of
surfaces and of Higgs sheaves on a curve. In §6 and §7 we discuss Cat-HA versions of the
non-abelian Hodge correspondence and of the Riemann—Hilbert correspondence, respect-
ively. In particular, in §7 we develop the construction of the categorified Hall algebra in
the analytic setting and we compare the two resulting categorified Hall algebras. Finally,
Appendix A is devoted to the study of the G-theory of non-quasi-compact stacks and the
construction of Coh? .

1.6. Notations and convention

In this paper we freely use the language of oo-categories. Although the discussion is
often independent of the chosen model for co-categories, whenever needed we identify
them with quasi-categories and refer to [32] for the necessary foundational material.

The notations § and Cat., are reserved for the co-categories of spaces and of oo-
categories, respectively. If € € Cats, we denote by €~ the maximal co-groupoid con-
tained in €. We let CatSl, denote the oo-category of stable co-categories with exact func-
tors between them. We also let £r- denote the co-category of presentable co-categories
with left adjoints between them. We let Pr>® be the oo-category of compactly gener-
ated presentable co-categories with morphisms given by left adjoints that commute with
compact objects. Similarly, we let Pr5, (resp. Pr's‘{w) denote the co-categories of stably
presentable oco-categories with left adjoints between them (resp. left adjoints that com-
mute with compact objects). Finally, we set

Cat;® := CAlg(Cat), Pr5® := CAlg(Prs).

Given an oco-category € we denote by PSh(€) the oo-category of §-valued presheaves.
We follow the conventions introduced in [51, §2.4] for co-categories of sheaves on an
oo-site.
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Since we only work over the field C of complex numbers, we reserve the notation CAlg
for the oo-category of simplicial commutative rings over C. We often refer to objects in
CAlg simply as derived commutative rings. We denote its opposite by dAff, and we refer
to it as the co-category of affine derived schemes.

In [36, Definition 1.2.3.1] it is shown that the étale topology defines a Grothendieck
topology on dAff. We denote by dSt := Sh(dAff, 7¢)" the hypercompletion of the co-topos
of sheaves on this site. We refer to this co-category as the co-category of derived stacks.
For the notion of derived geometric stacks, we refer to [51, Definition 2.8].

Let A € CAlg be a derived commutative ring. We let A-Mod denote the stable
oo-category of A-modules, equipped with its canonical symmetric monoidal structure
provided by [35, Theorem 3.3.3.9]. Furthermore, we equip it with the canonical 7-structure
whose connective part is its smallest full subcategory closed under colimits and extensions
and containing A. Such a z-structure exists in virtue of [35, Proposition 1.4.4.11]. Notice
that there is a canonical equivalence of abelian categories A-Mod® ~ mo(A)-Mod®.

We say that an A-module M € A-Mod is perfect if it is a compact object in A-Mod.
We denote by Perf(A) the full subcategory of A-Mod spanned by perfect complexes.'* On
the other hand, we say that an A-module M € A-Mod is almost perfect' if w; (M) = 0
for i <« 0 and for every n € Z the object T=" (M) is compact in A-Mod=". We denote by
APerf(A) the full subcategory of A-Mod spanned by sheaves of almost perfect modules.

Given a morphism f: A — B in CAlg we obtain an co-functor f*: A-Mod — B-Mod,
which preserves (almost) perfect modules. We can assemble these data into an co-functor

QCoh: dAff® — Pr5®.

Since the functor f* preserves (almost) perfect modules, we obtain well defined subfunc-
tors

Perf, APerf: dAff° — Cat':®.

Given a derived stack X € dSt, we denote by QCoh(X), APerf(X) and Perf(X) the
stable co-categories of quasi coherent, almost perfect, and perfect complexes respectively.
One has

QCoh(X) =~ ll(_m QCoh(Spec(A4)), APerf(X) >~ l(ln APerf(Spec(A)),
Spec(A)— X Spec(A)—> X
Perf(X) ~ l(in Perf(Spec(A)).
Spec(A)— X

141t is shown in [35, Proposition 7.2.4.2] that Perf(A) coincides with the smallest full stable
subcategory of A-Mod closed under retracts and containing A. In particular, Perf(A4) is a stable
oo-category which is furthermore idempotent complete.

15Suppose that A is almost of finite presentation over C. In other words, suppose that 7o (4) is
of finite presentation in the sense of classical commutative algebra and that each 7; (A) is coherent
over 7g(A). Then [35, Proposition 7.2.4.17] shows that an A-module M is almost perfect if and
only if 7r; (M) = 0 for i < 0 and each 7; (M) is coherent over g(A).
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The oo-category QCoh(X) is presentable. In particular, using [35, Proposition 1.4.4.11]
we can endow QCoh(X) with a canonical ¢-structure.

Let f: X — Y be a morphism in dSt. We say that f is flat if the induced functor
f*:QCoh(Y) — QCoh(X) is t-exact.

Let X € dSt. We denote by Coh(X) the full subcategory of Ox-Mod spanned by
F € Ox-Mod for which there exists an atlas {f;: U; — X};jes such that for every
i € 1,n eZ,the Oy,-modules 7, (f;* #) are coherent sheaves. We denote by Coh®(X)
(resp. Coh®(X), Coh™(X), and Coh™ (X)) the full subcategory of Coh(X) spanned
by objects cohomologically concentrated in degree 0 (resp. locally cohomologically
bounded, bounded below, bounded above).

2. Derived moduli stacks of coherent sheaves

Our goal in this section is to define derived enhancements of the classical stacks of coher-
ent sheaves on a proper complex algebraic variety X, of Higgs sheaves on X, of vector
bundles with flat connections on X, and of finite-dimensional representations of the fun-
damental group 71 (X) of X.

2.1. Relative flatness
We start by defining the objects that this derived enhancement will classify.

Definition 2.1. Let f: X — S be a morphism of derived stacks. We say that a quasi-
coherent sheaf ¥ € QCoh(X) has tor-amplitude within [a, b] relative to S (resp. tor-
amplitude < n relative to S) if for every § € QCoh%(S) one has

7 (F® f*6)=0, i¢la,b] (resp.i ¢][0,n]).

We let QCOh?n (X) (resp. APerf?" (X)) denote the full subcategory of QCoh(X) spanned
by those quasi-coherent sheaves (resp. sheaves of almost perfect modules) ¥ on X having
tor-amplitude < n relative to S. We write

Cohg(X) := APerfs’(X),

and we refer to Cohg(X) as the oo-category of flat families of coherent sheaves on X
relative to S.

Remark 2.2. The oo-category Cohg (X x §) is not stable. This is because in general the
cofiber of a map between sheaves of almost perfect modules in tor-amplitude < 0 is only
in tor-amplitude [1, 0]. When S is underived, the cofiber sequences ' — F — F” in
APerf(X x S) whose three terms are all coherent correspond to short exact sequences
of coherent sheaves. In particular, the map ¥’ — % is a monomorphism and the map
F — ¥ is an epimorphism.
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Remark 2.3. Let A € CAlg¢ be a derived commutative ring and let M € A-Mod. Then
M has tor-amplitude < 7 if and only if M ®4 7o(A) has tor-amplitude < n. In particular,
if A is underived and M € A-Mod®, then M has tor-amplitude < 0 if and only if M is
flat in the sense of the usual commutative algebra.

We start by studying the functoriality of Cohs(Y) in S
Lemma 2.4. Let

g/
XT —_—

r| lf

T £ .5

be a pullback square in dSt. Assume that T and S are affine derived schemes. If
F € QCoh(X) has tor-amplitude within [a, b] relative to S, then g™ (¥) € QCoh(XT)
has tor-amplitude within [a, b] relative to T.

Proof. Let ¥ € QCoh(X) be a quasi-coherent sheaf of tor-amplitude [, b] relative to S
and let § € QCoh¥(T). Since g is representable by affine schemes, so does g’. Therefore,
[50, Proposition 2.3.4] implies that g, is t-exact and conservative. Therefore, g"*(¥) ®
f'*(€) is in cohomological amplitude [a, b] if and only if g/, (¢"*(¥) ® f'*(§)) is. Com-
bining [50, Propositions 2.3.4 (1) and 2.3.6 (2)], we see that

£.&"(F)® f(9) = F ® g.(f(9)).
and using [50, Proposition 2.3.4 (2)] we can rewrite the last term as
FRg(f"9) =F & f*(g«(9)).

Since g« is 7-exact, we have g.(§) € QCoh(S). The conclusion now follows from the
fact that ¥ has tor-amplitude within [a, b]. |

Construction 2.5. Let X € dSt and consider the derived stack
APerf(X): dAffP — §

sending an affine derived scheme S € dAff to the maximal oco-groupoid APerf(X x §)~
contained in the stable co-category APerf(X x §) of almost perfect modules over X x S.

Lemma 2.4 implies that the assignment sending S € dAff to the full subspace
Cohg(X x S)= of APerf(X x S)= spanned by flat families of coherent sheaves on X
relative to S defines a substack

Coh(X): dAff® — §
of APerf(X). We refer to Coh(X) as the derived stack of coherent sheaves on X .

In this paper we are mostly interested in this construction when X is a scheme or
one of Simpson’s shapes Xg, Xqr or Xpo. We provide the following useful criterion to
recognize coherent sheaves:
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Lemma 2.6. Let f: X — S be a morphism in dSt. Assume that there exists a flat effective
epimorphism u:U — X. Then ¥ € QCoh(X) has tor-amplitude within [a, b] relative to
S if and only if u*(F) has tor-amplitude within [a, b] relative to S.

Proof. Let § € QCoh¥(S). Then since u is a flat effective epimorphism, we see that the
pullback functor

u*:QCoh(X) — QCoh(U)
is z-exact and conservative. Therefore 7; (¥ ® f*§) >~ 0 if and only if
wWmi(F Q) 2miu™ (F)Qu* f ) ~0.
The conclusion follows. u

As a consequence, we see that, for morphisms of geometric derived stacks, the notion
of tor-amplitude within [a, b] relative to the base introduced in Definition 2.1 coincides
with the most natural one:

Lemma 2.7. Let X be a geometric derived stack, let S = Spec(A) € dAff and let
f:X — S be a morphism in dSt. Then ¥ € QCoh(X) has tor-amplitude within [a, b]
relative to S if and only if there exists a smooth affine covering {u;: U; = Spec(B;) — X}
such that fixui(¥) has tor-amplitude within [a, b] as A-module'®, where f; = f ou;.

Proof. Applying Lemma 2.6, we can restrict ourselves to the case where X = Spec(B) is
affine. In this case, we first observe that f,: QCoh(X) — QCoh(S) is ¢-exact and con-
servative. Therefore, 7; (¥ ® f*g) >~ 0 if and only if 7; (fx(F ® f*F)) >~ 0. The
projection formula yields

HF RG> fuF)®F,

and therefore the conclusion follows. [

2.2. Deformation theory of coherent sheaves

Let X be a derived stack. We study the deformation theory of the stack Coh(X). Since

we are also interested in the case where X is one of Simpson’s shapes, we first recall the

following definition:

Definition 2.8. A morphism u: U — X in dSt is a flat effective epimorphism if

(1) it is an effective epimorphism, i.e. the map 7o(U) — mo(X) is an epimorphism of
discrete sheaves;

(2) itis flat, i.e. the pullback functor u*: QCoh(X) — QCoh(U) is ¢-exact.

16See [35, Definition 7.2.4.21] for the definition of tor-amplitude within [a, b].
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We have the following stability property:

Lemma 2.9. Let X — S be a morphism in dSt and let U — X be a flat effective epimor-
phism. If T — S is representable by affine derived schemes, then

UxsT —>XxsT
is a flat effective epimorphism.
Proof. Combine [32, Proposition 6.2.3.5] and [50, Proposition 2.3.16 (2)]. [

Example 2.10. (1) If X is a geometric derived stack and u: U — X is a smooth atlas,
then u is a flat effective epimorphism.

(2) Let X be a connected C-scheme of finite type and let x: Spec(C) — X be a closed
point. Then the induced map Spec(C) — Xp is a flat effective epimorphism. See
[50, Proposition 3.1.1 (3)].

(3) Let X be a smooth C-scheme. The natural map Ax: X — Xgg is a flat effective epi-
morphism. See [50, Proposition 4.1.1 (3, 4)].

(4) Let X be a geometric derived stack. The natural map xx: X — Xp, is a flat effective
epimorphism. See [50, Lemma 5.3.1].

Lemma 2.11. Let u: U — X be a flat effective epimorphism. Then the square

Coh(X) — Coh(U)

! !

APerf(X) —— APerf(U)

is a pullback square.

Proof. We have to prove that for every S € dAff, a sheaf ¥ € APerf(X x §S) of almost
perfect modules is flat relative to S if and only if its pullback to U x S has the same
property. Since u: U — X is a flat effective epimorphism, so is S x U — § x X by
Lemma 2.9. At this point, the conclusion follows from Lemma 2.6. n

Since Example 2.10 contains our main applications, we will always work under the
assumption that there exists a flat effective epimorphism U — X, where U is a geometric
derived stack locally almost of finite type. The above lemma allows us therefore to carry
out the main verifications in the case where X itself is geometric and locally almost of
finite type.

We start with infinitesimal cohesiveness and nilcompleteness. Recall that APerf(X)
is infinitesimally cohesive and nilcomplete for every derived stack X € dSt:

Lemma 2.12. Let X € dSt be a derived stack. Then APerf(X) is infinitesimally cohesive
and nilcomplete.

Proof. Combine [50, Propositions 2.2.3 (3) and 2.2.9 (4)] with [50, Theorem 2.2.10]. =
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In virtue of the above lemma, our task is reduced to proving that the map Coh(X) —
APerf(X) is infinitesimally cohesive and nilcomplete. Thanks to Lemma 2.11, the essen-
tial case is when X is affine:

Lemma 2.13. Let X € dAff be an affine derived scheme. Then the morphism
Coh(X) — APerf(X)

is infinitesimally cohesive and nilcomplete. As a consequence, Coh(X) is infinitesimally
cohesive and nilcomplete.

Proof. We start with infinitesimal cohesiveness. Let S = Spec(A4) be an affine derived
scheme and let M € QCoh(S)Z=! be a quasi-coherent complex. Let S[M] := Spec(A® M)
and let d: S[M] — S be a derivation. Finally, let S;[M [—1]] be the pushout

SIM] —%— §

dol lfo

s —L 5 s M[-1]]

where dy denotes the zero derivation. Since the maximal co-groupoid functor
(=)~ :Catee — S
commutes with limits, it is enough to prove that the square

COhSd[M[—l]](X X Sg[M[-1]]) — Cohg(X x S) XGohg[ar) (X xS[M]) Cohg(X x S)

| |

APerf(X x Sq[M[—1]]) ——— APerf(X X S) Xapert(xxS[M]) APerf(X x §)

is a pullback. Using [36, Theorem 16.2.0.1 and Proposition 16.2.3.1 (6)], we see that the
bottom horizontal map is an equivalence. As the vertical arrows are fully faithful, we
deduce that the top horizontal morphism is fully faithful as well. It is therefore enough to
check that the top horizontal functor is essentially surjective.

Let g, @o: X X § — X x S;[M [—1]] be the morphisms induced by f and fp, respect-
ively. Let ¥ € APerf(X x Sz[M [—1]]) be such that ¢*(F), ¢5 (F) € Cohg(X x §). We
want to prove that ¥ € Cohg, [pr[—1]](X x Sg[M [—1]]). This question is local on X, so
we can assume that X is affine. Let p: X x S — S and g: X x Sz[M[-1]] = Sz[M[-1]]
be the natural projections. Then

F5qu(F) = ps@™(F) and  f"qu(F) =~ paipg (F)

have tor-amplitude < 0. Since p is affine, ps is t-exact, and therefore the modules
px@*(¥F) and p.@g(F) are eventually connective. The conclusion now follows from
[36, Proposition 16.2.3.1 (3)].
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We now turn to nilcompleteness. Let S € dAff be an affine derived scheme and let
Sy = t<x(S) be its n-th truncation. We have to prove that the diagram

Cohg (X x §) —— lim, Cohg, (X x S,)

| |

APerf(X x §) —— lim, APerf(X x S;)

is a pullback. Combining [36, Propositions 19.2.1.5 and 2.7.3.2 (c)] we see that the bottom
horizontal map is an equivalence. As the vertical maps are fully faithful, we deduce that
the top horizontal map is fully faithful as well. Thus, it is enough to check that the top
horizontal map is essentially surjective. Given ¥ € APerf(X x §S) denote by ¥, its image
in APerf(X x Sj). We wish to show that if each ¥, belongs to Cohg, (X x S,) then ¥
belongs to Cohg (X x ). Since the squares

X xS — X x5,

| |

S — S,
are derived pullback, by using derived base change it suffices to check that the equivalence

QCoh®"(S) — liign QCoh®™"(S,)

respects tor-amplitude < 0, where QCoh?"(Y') denotes the full subcategory of QCoh(Y')
spanned by those quasi-coherent sheaves ¥ such that 7r; (¥) = 0 for i < 0. This follows
at once from [36, Proposition 2.7.3.2 (¢)]. [

Corollary 2.14. Let X € dSt be a derived stack. Assume that there exists a flat effective
epimorphism u: U — X, where U is a geometric derived stack. Then the map

Coh(X) — APerf(X)

is infinitesimally cohesive and nilcomplete. In particular, Coh(X) is infinitesimally cohes-
ive and nilcomplete.

Proof. Combining [50, Propositions 2.2.3 (2) and 2.2.9 (3)], we see that infinitesimally
cohesive and nilcomplete morphisms are stable under pullbacks. Therefore, the first state-
ment is a consequence of Lemmas 2.11 and 2.13. The second statement follows from
Lemma 2.12. ]

We now turn to study the existence of the cotangent complex of Coh(X). This is
slightly trickier, because APerf(X) does not admit a (global) cotangent complex. Never-
theless, it is still useful to consider the natural map Coh(X) — APerf(X). Observe that
it is (—1)-truncated by construction. In other words, for every S € dAff, the induced map

Coh(X)(S) — APerf(X)(S)
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is fully faithful. This is very close to asserting that the map is formally étale, as the fol-
lowing lemma shows:

Lemma 2.15. Let F — G be a morphism in dSt. Assume that

(1) for every S € dAff the map F(S) — G(S) is fully faithful;

(2) forevery S € dAff, the natural map F(S) — F(Sred) XG(S.q) CG(S) induces a surjec-
tion at the level of my.

Then F — G is formally étale.
Proof. First, consider the square

F(S) —— F(Sieq)

| |

G(S) —_— G(Sred)

Assumption (1) implies that the vertical maps are (—1)-truncated, hence so is the map
F(S) = F(Sted) XG(S,) G(S). Assumption (2) implies that it is also surjective on g,
hence it is an equivalence. In other words, the above square is a pullback.

We now show that F — G is formally étale. Let S = Spec(A4) be an affine derived
scheme. Let # € QCoh=? and let S[¥] := Spec(4 @ F) be the split square-zero exten-
sion of S by ¥ . Consider the lifting problem

S —— F

A
-
-
-
-
-

SM] — G
The solid arrows induce the following commutative square in §:
F(S[M]) — F(S)
G(S[M]) — G(S)

To prove that ' — G is formally étale is equivalent to proving that the square is a pull-
back.
Observe that the above square is part of the following naturally commutative cube:

/F((S[M])red) F(Sred)
F(S[M]) J F(S)
G((S[M])red) G(Sred)

" e

G(S[M]) G(S)
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The horizontal arrows of the back square are equivalences, and therefore the back square
is a pullback. The argument we gave at the beginning shows that the side squares are
pullbacks. Therefore, the conclusion follows. n

To check condition (1) of the above lemma for F = Coh(X) and G = APerf(X), we
need the following variation of the local criterion of flatness.
Lemma 2.16. Let f: X — S be a morphism in dSt and let ¥ € APerf(X). Assume that
(1) S is an affine derived scheme;
(2) there is a flat effective epimorphism u:U — X, where U is a geometric derived stack;

(3) for every pullback square

Xs Js X
Spec(K) —— §

where K is a field, j}(¥) € APerf(Xs) has tor-amplitude within [a, b] relative to
Spec(K).

Then ¥ has tor-amplitude within [a, b] relative to S.

Proof. Let Us := Spec(K) xgs U. Since u: U — X is a flat effective epimorphism, Lem-
ma 2.9 implies that the same goes for u;: Ug — X;. Therefore, Lemma 2.6 allows us to
replace X by U. Applying this lemma one more time, we can further assume U is an
affine derived scheme. At this point, the conclusion follows from the usual local criterion
for flatness [36, Proposition 6.1.4.5]. [

Corollary 2.17. Let X € dSt be a derived stack and assume there exists a flat effective
epimorphism u: U — X, where U is a geometric derived stack. Then the natural map
Coh(X) — APerf(X) is formally étale.

Proof. We apply Lemma 2.15. We already remarked that assumption (1) is satisfied,
essentially by construction. Let now S € dAff and let

JiX X Seg > X xS

be the natural morphism. Let ¥ € APerf(X x ). Then Lemma 2.16 implies that ¥ is flat
relative to S if and only if j*(F) is flat relative to Syeq. This implies that assumption (2)
of Lemma 2.15 is satisfied as well, and the conclusion follows. [

Since in many cases Perf(X) admits a global cotangent complex, it is useful to factor
the map Coh(X) — APerf(X) through Perf(X). The following lemma provides a useful
criterion to check when this is the case:

Lemma 2.18. Let f: X — S be a morphism of derived stacks. Let ¥ € APerf(X) be an
almost perfect complex and let a < b be integers. Assume that
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(1) S is an affine derived scheme;

(2) there exists a flat effective epimorphism u: U — X, where U is a geometric derived
stack locally almost of finite type;

(3) for every ladder of pullback squares
U — Xy —— Spec(K)
TN
v—tsx —L 45
where K is a field, uj j* (¥) € APerf(Us) has tor-amplitude within [a, b].

Then u*(¥) € APerf(U) has tor-amplitude within [a, b] and therefore ¥ belongs to
Perf(X).

Proof. Since u: U — X is a flat effective epimorphism, Lemmas 2.6 and 2.9 allow to

replace X by U. In other words, we can assume X to be a geometric derived stack locally

almost of finite type from the very beginning. Applying Lemma 2.6 a second time to an

affine atlas of X, we can further assume X is an affine derived scheme, say X = Spec(B).
Given a geometric point x: Spec(K) — X, we let B(y) denote the localization

B(x) = XCEOl}iéI}( Ox(U),

where the colimit ranges over all the open Zariski neighborhoods of the image of x
inside X. It is then enough to prove that for each such geometric point, ¥ ®p B(y) is
in tor-amplitude [a, b].

Given x: Spec(K) — X let s := f o x:Spec(K) — S. By assumption j*(¥) €
APerf(Xy) is in tor-amplitude [a, b]. Let X: Spec(K) — X be the induced point. Then
x = js o X, and therefore x*(F) ~ x*(j*(¥)) is in tor-amplitude [a, b]. Let k denote
the residue field of the local ring 7o (Bx)). Since the map ¥ — K is faithfully flat, we can
assume without loss of generality that K = «. In this way, we are reduced to the situation
of Lemma 2.16 with X = §.

Finally, we remark that since u is an effective epimorphism, the diagram

Perf(X) —“— Perf(U)

| |

APerf(X) —“ APerf(U)

is a pullback square. Therefore, an almost perfect complex ¥ € APerf(X) is perfect if and
only if u*(F) is. The proof is complete. ]

Corollary 2.19. Let X be a derived stack and assume there exists a flat effective epimor-
phismu:U — X, where U is a smooth geometric derived stack. Then for every S € dAff,
the subcategory Cohg (X x S) C APerf(X x S) is contained in Perf(X x S). In particular,
the natural map Coh(X) — APerf(X) induces a formally étale map

Coh(X) — Perf(X).
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Proof. Since u is a flat effective epimorphism, Lemmas 2.6 and 2.9 imply that it is enough
to prove the corollary for U = X. In this case, we have to check that if ¥ € APerf(X x §)
is flat relative to S, then it belongs to Perf(X x §S). The question is local on X, and
therefore we can further assume that X is affine and connected. As X is smooth, it is
of pure dimension n for some integer n. It follows that every § € Coh®(X) has tor-
amplitude < n on X. At this point, the first statement follows directly from Lemma 2.18.
As for the second statement, the existence of the factorization follows from what we have
just discussed. Corollary 2.17 implies that Coh(X) — Perf(X) is formally étale. |

Corollary 2.20. Let X be a derived stack and let u: U — X be a flat effective epi-
morphism, where U is a smooth geometric derived stack. If Perf(X) admits a global
cotangent complex, then so does Coh(X).

Proof. This is a direct consequence of Corollary 2.19. ]
We define

Bun(X) = ]_[ Map(X, BGL,).

n>0

It is an open substack of Coh(X). We call it the derived stack of vector bundles on X .

2.3. Coherent sheaves on schemes

We now specialize to the case where X is an underived complex scheme of finite type.
Our goal is to prove that if X is proper, then Coh(X) is geometric, and provide some
estimates on the tor-amplitude of its cotangent complex. Observe that in this case, X
has universally finite cohomological dimension. Corollary 2.14 shows that Coh(X) is
infinitesimally cohesive and nilcomplete. In virtue of Lurie’s representability theorem
[36, Theorem 18.1.0.2], in order to prove that Coh(X) is geometric it is enough to check
that it admits a global cotangent complex and that its truncation is geometric. Recall
that if X is smooth and proper, then Perf(X) admits a global cotangent complex: see
for instance [50, Corollary 2.3.28]. Therefore, Corollary 2.20 implies that under these
assumptions the same is true for Coh(X'). We can relax the smoothness by carrying out a
more careful analysis as follows:

Lemma 2.21. Let X be a proper, underived complex scheme. Then the derived stack
Coh(X) admits a global cotangent complex.

Proof. Let S = Spec(A) be an affine derived scheme and let x: § — Coh(X) be a mor-
phism. Let ¥ € Cohgpec(a) (X x Spec(A4)) be the corresponding coherent complex on
X x S relative to S. Let

F=S X Coh(X) S

be the loop stack based at x and let §,: S — F be the induced morphism. Since Coh(X)
is infinitesimally cohesive thanks to Lemma 2.13, [50, Proposition 2.2.4] implies that
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Coh(X) admits a cotangent complex at x if and only if F admits a cotangent complex
at 8 relative to S x S. We have to prove that the functor

Derr(A; —): A-Mod — §
defined by
Derp(A; M) = fib(F(S[M]) — F(S))

is representable by an eventually connective module. Here S[M] := Spec(A4 & M), and
the fiber is taken at the point x. We observe that

F(S[M]) ~ ﬂb(MapQCoh(XXS) (d(;‘ (F), d(? (7)) — Mapoooh(XxS)(?s F)),
the fiber being taken at the identity of ¥ . Unraveling the definitions, we therefore see that
Derp (A; M) =~ Mapgconxxs)(F, F ® p* M),

where p: X x § — § is the canonical projection. Since QCoh(S) and QCoh(X x §) are
presentable, the adjoint functor theorem shows that it is enough to show that the functor
Derr (A; —) commutes with arbitrary limits. Since Mapqcon(x xs)(F, —) commutes with
limits, it is enough to prove that the functor

F ® p*(—):QCoh(S) — QCoh(X x S)

commutes with limits. Since X is quasi-compact and quasi-separated, we know that
QCoh(X x S) is generated by a single perfect complex § € Perf(X x §). Since S is
affine, this implies that the functor

P« (Y ® —):QCoh(X x S)

is conservative. Since § is perfect, §¥ ® — commutes with arbitrary limits, and since
p* = px«, the same holds for p.. Therefore, it is enough to prove that

Px(8Y ® (F ® p*(—))):QCoh(S) — QCoh(S)
commutes with limits. Using the projection formula, we can rewrite this functor as
P+ (8Y ® F) ® — QCoh(S) — QCoh(S).

It is therefore enough to prove that p. (&Y ® F) is a perfect A-module. Since p is proper,
p«(8Y ® F) is almost perfect. In virtue of [35, Proposition 7.2.4.23 (4)], it is there-
fore enough to prove that it has finite tor-amplitude. Observe that ¥ ® F has finite
tor-amplitude relative to S: indeed, if M is a discrete A-module, then ¥ ® p*(M) is
again discrete because F is flat. Since § is perfect, we deduce that §¥ ® ¥ ® p*(M) has
uniformly bounded cohomological amplitude. Therefore, [50, Proposition 2.3.19] implies
that p«(§Y ® ¥) has finite tor-amplitude over S. In conclusion, we deduce that there
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exists an object & € A-Mod together with a natural equivalence
Map yoq (6. M) = Derp (4; M).

Now observe that, since ¥ is flat relative to S, for every eventually coconnective M €
A-Mod, the A-module

Mapacon(xxs)(F . F ® p*(M))

is again eventually coconnective. In other words, for every eventually coconnective M,
the A-module Map4_.q(&E, M) is eventually coconnective. This implies that & must be
eventually connective. As a consequence, & is a cotangent complex for F at §,, and
therefore Coh(X) admits a cotangent complex at the point x, given by &[—1].

We are left to prove that the cotangent complex is global. It is enough to prove that the
cotangent complex of F is global, that is, for every map f:T := Spec(B) — Spec(4),
the object f*(&) represents the functor Derg (B; —). Consider the derived fiber product

XxT -2, Xxx8S

TR

T —— §

Then for any M € B-Mod, we have

Mapp yoa(f €, M) = Map4oq(€, fx(M))
2~ Mapacon(x x5)(F - F ® p*(f«(M)))
> Mapacon(x xs5)(F - F ® g«(q™(M)))
2~ Mapacon(x x5) (F » &+(8*(F) ® ¢*(M)))
>~ Mapacon(x x7) (& (F), ¥ (F) ® ¢*(M)).

The conclusion therefore follows from the Yoneda lemma. [

Remark 2.22. In the setting of the above corollary, let x: S := Spec(A4) — Coh(X) be a
point representing a coherent sheaf  on X x S relative to S which is furthermore perfect
in QCoh(X x §) (this is always the case when X is smooth, see Corollary 2.19). In this
case, the cotangent complex is given explicitly by the formula p4 (¥ ® F)[1], where
p+ is the left adjoint to p*. The existence of p. is a consequence of the fact that p is
proper and flat [36, Proposition 6.4.5.3] (see also [50, Proposition 2.3.27]).

As for the truncation of Coh(X), we have

Lemma 2.23. Let X be a proper, underived complex scheme. Then the truncation
®'Coh(X) coincides with the usual stack of coherent sheaves on X.

Proof. Let S be an underived affine scheme. By definition, a morphism S — Coh(X)
corresponds to an almost perfect complex ¥ € APerf(X x S) which furthermore has tor-
amplitude < O relative to S. As S is underived, having tor-amplitude < O relative to S is
equivalent to asserting that % belongs to APerf”(X x S). The conclusion follows. ]
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In other words, the derived stack Coh(X) provides a derived enhancement of the
classical stack'” of coherent sheaves. We therefore get

Proposition 2.24. Let X be a proper, underived complex scheme. Then the derived stack
Coh(X) is geometric and locally of finite presentation. If furthermore X is smooth, then
the canonical map Coh(X) — Perf(X) is representable by étale geometric 0-stacks.'®

Proof. Lemma 2.23 implies that ®Coh(X) coincides with the usual stack of coherent
sheaves on X, which we know to be a geometric classical stack (cf. [31, Théoreme 4.6.2.1]
or [75, Tag 08WC]). On the other hand, combining Corollary 2.14 and Lemma 2.21
we see that Coh(X) is infinitesimally cohesive, nilcomplete and admits a global cotan-
gent complex. Therefore the assumptions of Lurie’s representability theorem [36, The-
orem 18.1.0.2] are satisfied and so we deduce that Coh(X) is geometric and locally
of finite presentation. As for the second statement, we already know that Coh(X) —
Perf(X) is formally étale. As both stacks are locally of finite type, it follows that this
mayp is étale as well. Finally, since Coh(X) — Perf(X) is (—1)-truncated, we see that for
every affine derived scheme S, the truncation of S Xperrx) Coh(X) takes values in Set.
The conclusion follows. ]

Remark 2.25. Let X be a smooth and proper complex scheme. In this case, the
derived stack Coh(X) has been considered to some extent in [79]. Indeed, in their work
they provide a geometric derived stack MFl,err'fg( X) classifying families of 1-rigid perfect
complexes (see §3.4 in loc. cit. for the precise definition). There is a canonical map
“Coh(X) — C'(MFI,;% x))- One can check that this map is formally étale. Since it is a map
between stacks locally almost of finite type, it follows that it is actually étale. Therefore,
the derived structure of MFl,err'f% x) induces a canonical derived enhancement of “Coh(X).
Unraveling the definitions, we can describe the functor of points of such derived enhance-
ment as follows: it sends S € dAff to the full subcategory of Perf(X x ) spanned by those
F whose pullback to X x @S is concentrated in cohomological degree 0. Remark 2.3
implies that it canonically coincides with our Coh(X). However, this method is somehow
non-explicit, and heavily relies on the fact that X is a smooth and proper scheme. Our
method provides instead an explicit description of the functor of points of this derived

enhancement, and allows us to deal with a wider class of stacks X.

Corollary 2.26. Let X be a smooth and proper complex scheme of dimension n. Then
the cotangent complex Lcon(x) is perfect and has tor-amplitude within [—1,n — 1]. In
particular, Coh(X) is smooth when X is a curve and derived Ici when X is a surface.

Proof. 1t is enough to check that for every affine derived S = Spec(A4) € dAff and
every point x: S — Coh(X), x*T¢en(x) is perfect and in tor-amplitude [1 — n, 1].

17The construction of such a stack is described, e.g., in [31, Chapitre 4], [75, Tag 08KA].
I8 After the first version of the present paper was released, there appeared on arXiv the second
version of [19] in which a similar statement was proved: cf. [19, Theorem 5.2.2].
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Let ¥ € APerf(X x Spec(A)) be the almost perfect complex classified by x and let
p: X x Spec(A) — Spec(A) be the canonical projection. Since X is smooth, Corollary
2.19 implies that ¥ is perfect. Moreover, Lemma 2.21 shows that

x*Teon(x) = p+End(F)[1].

Since p is proper and smooth, the pushforward p. preserves perfect complexes (see [36,
Theorem 6.1.3.2]). As End(F) ~ ¥ ® ¥V is perfect, we conclude that x*Tcon(x) is
perfect.

We are then left to check that it is in tor-amplitude [1 — n, 1]. Let

j:%(Spec(A) — Spec(A)

be the canonical inclusion. It is enough to prove that j*x*Tc¢on(x) has tor-amplitude
within [1 — 7, 1]. In other words, we can assume Spec(A) to be underived. Using Lem-
ma 2.18 we can further assume S is the spectrum of a field.

First note that for every pair of coherent sheaves §, &’ € Cohg(X), p«Homx (§,&")
is coconnective and has coherent cohomology. Since S is the spectrum of a field, it is a
perfect complex. By Grothendieck—Serre duality for smooth proper morphisms of relative
pure dimension between Noetherian schemes (see [6, §3.4], [2, §C.1], and references
therein), we have

(P«ENd(F))" = puJom(F ., ¥ ® pywx|[n]),

where wy is the canonical bundle of X, and py the projection from X x S to X. The
right-hand side is n-coconnective. This implies that

i ((p«€nd(¥))¥) ~ 0
fori < n. Since S is the spectrum of a field, 7; (p«(End(F))) is projective and

(7 (P« (End(5)))" = 7 ((p«End(F))").

This shows that p,&nd(¥) has tor-amplitude within [—#, 0], and therefore x* T con(x) has
tor-amplitude within [1 —n, 1]." n

2.3.1. Non- proper case. We can relax the properness assumption on X by working with
perfect complexes with proper support:

Definition 2.27. Let p: X — S be a morphism of derived schemes locally almost of
finite presentation and let ¥ € APerf(X) be an almost perfect complex. We say that
has proper support relative to S if there exists a closed subscheme Z < X such that
Z — S is proper and ¥ |x<z >~ 0.

Perfect complexes with proper support have the following property:

9This argument is borrowed from [18, Example 2.2.3].
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Proposition 2.28. Let p: X — S be a morphism between quasi-compact, quasi-separated
derived schemes locally almost of finite presentation and let ¥ € APerf(X) be an almost
perfect complex. If ¥ has proper support relative to S, then for every morphism T — S
and every perfect complex § € Perf(X xg T) one has

pr«(8Y ® F) € APerf(S).

In particular, if ¥ has proper support then p«(F) belongs to APerf(S).
The converse holds true provided that p is separated and ¥ has finite cohomological
amplitude and finite tor-amplitude relative to S.

Proof. To prove the first statement, it is enough to take 7 = S. Assume first that ¥ has
proper support relative to S. Let Z < X be a closed subscheme such that Z — S is proper
and ¥ |x~z =~ 0. Then for every perfect complex § € Perf(X), we have (§¥ ® F)|xz
>~ 0, and therefore ¥ ® ¥ has again proper support relative to S. It is therefore enough
to prove the statement when ¥ = Oy . Let € be the full subcategory of APerf(X) spanned
by those almost perfect complexes & such that p.(F') belongs to APerf(S). We want to
show that € contains all almost perfect complexes with proper support relative to S. Let
F be such an object, and assume furthermore that # € APerf”(X) ~ APerf” (X ). Then
the question only concerns the classical truncations of X and S. In this case, there exists a
nilthickening Z’ of Z together with amap j: Z’' — ©X , a coherent sheaf ' € APerf®(Z’)
and an isomorphism j.(F’) >~ ¥ . We can therefore compute the pushforward of ¥ along
X — S as the pushforward of ' along Z’ — S. As the latter map is again proper, we
deduce that p.(F) belongs to APerf(S). Since X is quasi-compact, it is straightforward
to deduce that whenever ¥ has bounded cohomological amplitude and proper support
relative to S, then p.(F) belongs to APerf(S). Finally, since X is quasi-compact and
quasi-separated, we see that the functor p. has finite cohomological dimension. It is then
possible to extend the result to the whole category of almost perfect complexes on X with
proper support relative to S.

Assume now that p is separated and let ¥ be a bounded almost perfect complex on X
such that for every § € Perf(X), one has p.(§Y ® F) € APerf(S). We want to prove
that it has proper support. Since ¥ is cohomologically bounded, it is enough to prove
that for every i € Z, m;(¥) has proper support. Since 7; (¥) belongs to APerf”(X) ~
APerfO(C'X ), we can assume that both X and S are underived, and that ¥ is discrete.
Let Z := supp(¥) and observe that since ¥ is coherent, this is a closed subset of X.
Since p is separated, it is enough to prove that the map Z — S is universally closed.
Since the assumptions on ¥ are stable under arbitrary base change along 77 — S, we
see that it is enough to prove that Z — S is closed. Let Z’ € Z be a closed subset.
Since ¥ is coherent, Z is closed in X and therefore so is Z’. Using [76], we can find a
perfect complex € on X such that the support of § coincides exactly with Z’. It follows
that ¥ ® ¥ is again supported exactly on Z’, and furthermore p.(§Y ® ¥) is almost
perfect. In particular, the support of p«(§Y ® ¥) is closed, and therefore it coincides
with the image of the support of ¥ ® ¥, which was Z’. This completes the proof. =
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Let now X be a quasi-projective (underived) scheme and let Perfy, (X ) be the derived
moduli stack parameterizing families of perfect complexes on X with proper support.
There is a natural map Perfyop(X) — Perf(X), and we set

Cohgop (X) := Perfiop (X) Xpertx) Coh(X).

This derived stack is infinitesimally cohesive and nilcomplete. Furthermore, we have

Proposition 2.29. The derived stacks Perfyo, (X ) and Cohgon(X) admit a global cotan-
gent complex.

Proof. 1t is enough to observe that in the proof of Lemma 2.21 one only needs to know
that for every affine derived scheme S and every § € Perf(X), the complex p«(§¥ ® ¥)
is almost perfect in QCoh(.S). This is true in this setting thanks to Proposition 2.28. ]

Remark 2.30. The derived stack Perf(X) does not admit a global cotangent complex.
Nevertheless, one can show that it admits a pro-cotangent complex in the sense of [13,
Definition 1.4.1.4]. The natural inclusion Perfy,,,(X) — Perf(X) then becomes formally
étale, in the sense that the relative pro-cotangent complex is zero.

Remark 2.31. Let X be a smooth compactification of X. Then there is a natural map
Cohyop(X) — Cohyop(X), which is furthermore representable by open Zariski immer-
sions.

The truncation of Cohy,q,(X) coincides with the classical stack of coherent sheaves
with proper support. As shown in [75, Tag ODLX], this moduli stack is a geometric clas-
sical stack. We deduce that Cohgp(X) is a geometric derived stack.

2.3.2. Other examples of moduli stacks. Let X be a smooth projective complex scheme
and let H be a fixed ample divisor. Recall that for any polynomial P (m) € Q[m] there
exists an open substack “Coh? (X) of ®Coh(X) parameterizing flat families of coherent
sheaves ¥ on X with fixed Hilbert polynomial P, i.e., forn > 0,

dim H%(X, ¥ ® Ox(nH)) = P(n).

We denote by Coh” (X) its canonical derived enhancement.2 Similarly, we define
Bun® (X).

For any non-zero polynomial P(m) € Q[m] of degree d, we denote by P (m)™ its
reduced polynomial, which is defined as P(m)/og, where oy is the leading coefficient
of P(m). Given a monic polynomial p, define

Coh”(X):= [] Con”(X) and Bun’(X):= ][] Bun®(X).
Pred:p Pred:p

20The construction of such a derived enhancement follows from [69, Proposition 2.1].
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Assume that deg(p) = dim(X). Recall that Gieseker H -semistability is an open prop-
erty.”! Thus there exists an open substack “Coh®>?(X) of “Coh?(X) parameterizing
families of H-semistable coherent sheaves on X with fixed reduced polynomial p;
we denote by Coh®?(X) its canonical derived enhancement. Similarly, we define
Bun®>? (X).

Finally, let 0 < d < dim(X) be an integer and define

Coh=?(X):= ][] Con”(x).
deg(P)=<d

Remark 2.32. Let X be a smooth projective complex curve. Then the assignment of a
monic polynomial p(m) € Q[m] of degree 1 is equivalent to the assignment of a slope
i € Q. In addition, in the one-dimensional case we have Bun®>#(X) ~ Coh*>*(X).

Finally, assume that X is only quasi-projective. As above, we can define the derived
moduli stack Cohpfrc‘fp (X) of coherent sheaves on X with proper support and dimension of
the support < d.

2.4. Coherent sheaves on Simpson’s shapes

Let X be a smooth and proper complex scheme. In this section, we introduce derived
enhancements of the classical stacks of finite-dimensional representations of 71 (X), of
vector bundles with flat connections on X and of Higgs sheaves on X. In order to treat
these three cases in a uniform way, we shall consider Simpson’s shapes Xg, Xgr, and
Xpo and coherent sheaves on them (cf. [50] for a small compendium of the theory of
Simpson’s shapes).

2.4.1. Moduli of local systems. Let K € $™ be a finite space. We let Kg € dSt be its Betti
stack, that is, the constant stack

KB: dst® — §

associated to K (cf. [50, §3.1]).
The first result of this section is the following:

Proposition 2.33. The derived stack Coh(Kp) is a geometric derived stack, locally of
finite presentation.

To prove this statement, we will apply Lurie’s representability theorem [36, The-
orem 18.1.0.2]. We need some preliminary results.
Set

Bun” (K3) := Map(Kg, BGL,) forn > 0, Bun(Kp) = ]_[ Bun” (K3).

n>0

21See [24, Definition 1.2.4] for the definition of H -semistability of coherent sheaves on project-
ive schemes and [24, Proposition 2.3.1] for the openness of H -semistability in families.
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Lemma 2.34. The truncation of Bun" (Kg) corresponds to the classical stack of finite-
dimensional representations of w1 (K).

Proof. This follows from [50, Proposition 3.1.1 (2) and Remark 3.1.2]. [
Lemma 2.35. The canonical map Bun(Kg) — Coh(Kp) is an equivalence.

Proof. We can view both Coh(Kp) and Bun(Kp) as full substacks of Perf(Kg). It is
therefore enough to show that they coincide as substacks of Perf(Kg). Suppose first that
K is discrete. Then it is equivalent to a disjoint union of finitely many points, and therefore

Kg =~ Spec(C)! ~ Spec(C) 1 --- LI Spec(C).
In this case
Perf(Kg) >~ Perf x - - - x Perf.

If S edAff, an S-point of Perf(K3p) is therefore identified with an object in Fun(/, Perf(S)).
Having tor-amplitude < 0 with respect to S is equivalent to having tor-amplitude < 0
on S7, and therefore the conclusion follows in this case. Using the equivalence S*¥*1 ~
¥ (S%), we deduce that the same statement is true when K is a sphere. We now observe
that since K is a finite space, we can find a sequence of maps

KOZQ—)K1—>--~—>K(=K,
such that each map K; — K;; fits in a pushout diagram

SMmi 5 %

l !

Ki —— Ki+
The conclusion therefore follows by induction. ]

Proof of Proposition 2.33. We can assume without loss of generality that K is connected.
Let x: * — K be a point and let

Uy:Spec(C) ~ xg — Kp

be the induced morphism. Then [50, Proposition 3.1.1(3)] implies that u, is a flat
effective epimorphism. Therefore, Corollary 2.14 implies that Coh(K3) is infinitesimally
cohesive and nilcomplete. Since Spec(C) is smooth, Corollary 2.20 implies that there is
a formally étale map

Coh(Kg) — Perf(Kp).

Since K is a finite space, Perf(Kp) is a geometric derived stack (cf. [50, §3.2]), and in
particular it admits a global cotangent complex. Therefore, so does Coh(Kg).
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We are left to prove that its truncation is geometric. Recall that the classical stack
of finite-dimensional representations of 71 (K) is geometric (cf. e.g. [72]). Thus, the
geometricity of the truncation follows from Lemmas 2.34 and 2.35. Therefore, Lurie’s
representability theorem [36, Theorem 18.1.0.2] applies. ]

Now let X be a smooth and proper complex scheme. Define the stacks
Cohg(X) := Coh(Xg) and Bung(X) := Bun(Xjs).

Lemma 2.35 supplies a canonical equivalence Cohg(X) ~ Bung(X) and Proposition 2.33
shows that they are locally geometric and locally of finite presentation. We refer to this
stack as the derived Betti moduli stack of X . In addition, we shall call

Bun (X) := Map(Xz, BGL,)

the derived stack of of n-dimensional representations of the fundamental group 7 (X)
of X. The terminology is justified by Lemma 2.34.

Example 2.36. (1) Consider the case X = P(é. We have
“Bunjj(P{) =~ BGL,.
However, Bung (]P’(lj) has an interesting derived structure. To see this, let
x: Spec(C) — Bun(Pl)

be the map classifying the constant sheaf (C . This map factors through BGL,, and it
classifies C" € Modc = QCoh(Spec(C)). The tangent complex of BGL,, at this point is
given by Endc (C")[1], and in particular it is concentrated in homological degree —1. On
the other hand, [50, Corollary 3.1.4 (2)] shows that the tangent complex of Bunj, (IP’ )atx
is computed by

RI(S?: €nd(Cp,))[1] ~ End(C™)[1] & End(C™)[-1].
C
In particular, Bunj; (IP’ ) is not smooth (although it is Ici), and therefore it does not coin-

cide with BGL,,.

(2) Assume more generally that X is a smooth projective complex curve. Then
Bun}, (X) can be obtained as a quasi-Hamiltonian derived reduction.”* Indeed, let X’ be
the topological space X' minus a disk D. Then one can easily see that X’ deformation
retracts onto a wedge of 2gx circles, where gy is the genus of X. We get

Bung (X) = Bung(X') Xpyp1(s1) Bung (D).

22See [59] for the notion of Hamiltonian reduction in the derived setting.
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Since Bunjj(S!) ~ [GL,/GLy] (see, e.g., [5, Example 3.8]), and Bun} (D) ~ Bunf(pt),
we obtain

Bung (X) >~ Bung(X’) XL, /cL,] [Pt/GLx].

Thus, Bung (X) is the quasi-Hamiltonian derived reduction of Bung (X'). By further using
Bunj(X’) ~ Bunj(S!)*28x the derived stack Bunj (X) reduces to

Bunf(X) ~ [GL} %X xg, pt/GLy].
Generalizing the above example (1), we have:

Corollary 2.37. Let X be a smooth and proper complex scheme of dimension n. Then
the cotangent complex Lcong(x) Is perfect and has tor-amplitude within [—1,2n — 1]. In
particular, Cohg(X) is derived Ici when X is a curve.

Proof. Recall that Corollary 2.20 provides a canonical formally étale map Cohg(X) —
Perf(Xg). Thus, the cotangent complex Lcong(x) at a point x: § — Cohg(X), where
S € dAff is an affine derived scheme, is isomorphic to the cotangent complex Lpere(xy) at
the point X: S — Cohg(X) — Perf(Xp).

Via [50, Proposition 3.1.1(2)], we see that X corresponds to an object £ in
Fun(X P, Perf(S)).”* On the other hand, [50, Proposition 3.1.3] allows one to further
identify this co-category with the co-category of local systems on X?". Since Xp is cat-
egorically proper (cf. [50, Proposition 3.1.1 (4)]), to check tor-amplitude of Lper(x,) at
the point X it is enough to assume that S is underived. In addition, since £ arises from
the point x, we see that it is discrete. Applying the characterization of the derived global
sections of any ¥ € QCoh(Xg) in [50, Corollary 3.1.4], we finally deduce that

Tcong(x).x =~ R (X?"; End(L))[1].

As this computes the (shifted) singular cohomology of X2" with coefficients in &End(£),
the conclusion follows. ]

2.4.2. Moduli of flat bundles. Let X be a smooth, proper and connected scheme over C.
The de Rham shape of X is the derived stack Xqr € dSt defined by

Xar(S) = X(°Sreq)

for any S € dAff (cf. [50, §4.1]). Here, we denote by T4 the underlying reduced scheme
of an affine scheme 7' € Aff.
Define the stacks

COhdR(X) = COh(XdR) and BundR(X) = Bun(XdR).

23Here, (—)"oP: dSch@t — § is the natural functor sending a (derived) C-scheme locally almost
of finite type to the underlying homotopy type of its analytification.
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Lemma 2.38. There is a natural equivalence
COhdR(X) ~ BundH(X).

Proof. First, recall that there exists a canonical map Ax: X — Xggr (see [50, §4.1]).

We can see both derived stacks as full substacks of Map(Xggr, Perf). Let S € dAff and
let x: S — Map(Xgr, BGL,). Then x classifies a perfect complex ¥ € Perf(Xqr x §)
such that § = (Ax x idg)*(¥) € Perf(X x S) has tor-amplitude < 0 and rank »n. Since
the map X x § — S is flat, it follows that § has tor-amplitude < O relative to S, and
therefore x determines a point in Cohgr(X).

Conversely, let x: S — Cohgr(X). Let ¥ € Perf(Xqr x S) be the corresponding per-
fect complex and let § := (Ay x ids)*(&). Then by assumption & has tor-amplitude < 0
relative to S. We wish to show that it has tor-amplitude < 0 on X x S. Using Lemma
2.18, we see that it is enough to prove that for every geometric point s: Spec(K) — S,
the perfect complex j*(§) € Perf(Xk) has tor-amplitude < 0. Here Xg := Spec(K) x X
and j: Xg — X is the natural morphism. Consider the commutative diagram

Xg —1— X xS

/\)(Kl llxxidg

(XK)dr ﬂ’ Xgp xS
Then
Jjs8 =~ )L;((Kjd*R‘(F'
We therefore see that j *§ comes from a K-point of Cohgr(X). By [23, Theorem 1.4.10],
j*§ is a vector bundle on X, i.e. that it has tor-amplitude < 0. The conclusion follows. =

Proposition 2.39. The derived stack Coh(XgR) is a geometric derived stack, locally of
finite presentation.

Proof. Consider the canonical map Ax: X — Xgr. Then [50, Proposition 4.1.1(3,4)]
shows that Ay is a flat effective epimorphism. Thus, Coh(Xgr) fits into the pullback
square (see Lemma 2.11 and Corollary 2.19)

COh(XdR) E— COh(X)

l |

Perf(Xqr) —— Perf(X)

and since Perf(X) and Perf(X4r) are geometric (see [79, Corollary 3.29] and [50, §4.2],
respectively) and Coh(X) is geometric because of Proposition 2.24, we conclude that
Coh(Xgg) is geometric as well. [

We shall call Cohyr(X) the derived de Rham moduli stack of X .
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2.4.3. Moduli of Higgs sheaves. Let X be a smooth, proper and connected complex
scheme. Let

TX := Specy (Symg, (Lx))

be the derived tangent bundle to X and let TX = Xar X(1X)qn TX be the formal comple-
tion of TX along the zero section. The natural commutative group structure of TX relative
to X (seen as an associative one) lifts to TX. Thus, we define the Dolbeault shape Xp
of X as the relative classifying stack

Xoo = BxTX,
while we define the nilpotent Dolbeault shape X[\, of X as
X0~ ByTX.
We define
Cohpy(X) := Coh(Xp,) and Cohl (X) := Coh(X[),
and
Bunp,(X) := Bun(Xp,) and Bun, (X) := Bun(XJ)).

Proposition 2.40. The derived stacks Cohpy(X), Cohl (X ), Bunpy (X ), Bunf (X) are
geometric and locally of finite presentation.

Proof. First, recall that there exist canonical maps kx: X — Xpo and k§': X — Xfb (cf.
[50, §5.1]).

By [50, Lemma 5.3.1], kx and «§' are flat effective epimorphisms. Thanks to
Lemma 2.11 and Corollary 2.19, we are left to check that Perf(Xp,) and Perf(X[) )
are geometric and locally of finite presentation (cf. [50, §5.4.2]). [

We call Cohpy(X) the derived Dolbeault moduli stack of X, while Cohl (X) is
the derived nilpotent Dolbeault moduli stack of X. The truncation “Cohpy(X) (resp.
c'Cohr[‘)i('),(X )) coincides with the moduli stack of Higgs sheaves (resp. nilpotent Higgs
sheaves) on X.

We denote by jx: Coh}y,(X) — Cohpy(X) and ;2" Bun), (X) — Bunpy(X) the

canonical maps induced by 1x: Xpo — X[

Remark 2.41. Let X be a smooth and proper complex scheme. Define the geometric
derived stack

Higgs""(X) := T*[0]Coh(X) = Speccon(x)(Sym(Tcon(x)))-
There is a natural morphism

Cohpo (X) — Higgs"™(X),
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which is an equivalence when X is a smooth and projective curve (see, e.g., [15]). In
higher dimensions, this morphism is no longer an equivalence. This is due to the fact that
in higher dimensions the symmetric algebra and the tensor algebra on Tcen(x) differ.

Let X be a smooth projective complex scheme. For any monic p(m) € Q[m], we set

Cohgo|(X) = Perf(XD0|) Xperf(X) Coh? (X),
Coh(” (X) := Perf(XJ) Xpert(x) Coh? (X),

and

Bunf (X) = Perf(Xpg) Xpert(x) Bun? (X),
Bunp;” (X) := Perf(X2) Xpers(x) Bun? (X),

These are geometric derived stacks locally of finite presentation.

As shown by Simpson [71, 72], the higher-dimensional analogue of the semistability
condition for Higgs bundles on a curve (introduced, e.g., in [45]) is an instance of the
Gieseker stability condition for modules over a sheaf of rings of differential operators,
when such a sheaf is induced by Q}( with zero symbol (see [71, §2] for details). This
semistability condition is an open property for flat families (cf. [71, Lemma 3.7]). Thus,
there exists an open substack “Cohg;;” (X) of “Cohj,(X) parameterizing families of

semistable Higgs sheaves on X with fixed reduced polynomial p(m); we denote by
Cohpg " (X)
its canonical derived enhancement. Similarly, we define Cohpy* ”(X), Bungy,” (X) and
Bung:,’lss’ P(X). These are geometric derived stacks locally of finite presentation.
Finally, for any integer 0 < d < dim(X), set

CohZ4 (X) := Perf(Xpo) Xpert(x) Coh=¢ (X)),
Cohp:=? (X) := Perf(X!) Xpers(x) COh=9 (X).

These are geometric derived stacks locally of finite presentation.

Remark 2.42. Let X be a smooth projective complex curve and let 4 € Q (which cor-
responds to a choice of a reduced Hilbert polynomial). Then Cohgy;/“(X) ~ Bung;“(X)

and Coh;°> " (X) ~ Bunp: > *(X).

3. Derived moduli stack of extensions of coherent sheaves

Our goal in this section is to introduce and study a derived enhancement of the moduli
stack of extensions of coherent sheaves on a proper complex algebraic variety X. As
usual, we also deal with the case of Higgs sheaves, vector bundles with flat connection and
finite-dimensional representation of the fundamental group of X. We will see in Section 4
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that the derived moduli stack of extensions of coherent sheaves is a particular case of
a more fundamental construction, known as the Waldhausen construction. If on the one
hand it is a certain property of the Waldhausen construction (namely, its being a 2-Segal
object) the main responsible for the higher associativity of the Hall convolution product at
the categorified level, at the same time the analysis carried out in this section of the stack
of extensions of coherent sheaves yields a fundamental input for the overall construction.
More specifically, we will show that when X is a surface, certain maps are derived Ici,
which is the key step in establishing the categorification we seek.

3.1. Extensions of almost perfect complexes

Let Al be the 1-simplex, and define the functor
APerf® A" gAfP — §
by
APerf2 A" (Spec(A4)) := Fun(A! x A1, APerf(4))=.

We let APerf® denote the full substack of APerf®' *A" whose Spec(A)-points corres-
ponds to diagrams

\(F]—)fz

|

?4—)$3

in APerf(A) which are pullbacks and where ¥4 >~ 0.
1 1
Observe that the natural map APerf®™ — APerf® *2" s representable by Zariski
open immersions. There are three natural morphisms

ev;: APerf®™ — APerf, i =1,2,3,
which at the level of functors of points send a fiber sequence
?71 — Tz — 373

to ¥1, ¥ and F3, respectively.
Let Y € dSt be a derived stack. We define

APerf> *2' (V) := Map(Y, APerf® *2"),
APerf®™ (Y) := Map(Y, APerf®").

Once again, the morphism

APerf®(Y) — APerf® *2' (v)
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is representable by Zariski open immersions. Moreover, the morphism ev; induces a mor-
phism APerf®"(Y) — APerf(Y ), which we still denote ev;.

Let now Y € dSt be a derived stack. In §2 we introduced the derived moduli stack
Coh(Y), parameterizing coherent sheaves on Y. It is equipped with a natural map
Coh(Y) — APerf(Y). We define Coh®™!(Y) as the pullback

Coh®™(Y) —— APerf®™(Y)
l leleev2er3 3.1
Coh(Y)*® —— APerf(Y)*3

and we refer to it as the derived moduli stack of extensions of coherent sheaves.

Remark 3.1. Let Y € dSt be a derived stack. Assume there exists a flat effective epi-
morphism u: U — Y from a geometric derived stack U. Then Corollary 2.17 implies
that the natural map Coh(Y) — APerf(Y) is formally étale. Since formally étale maps
are stable under pullback, the very definition of Coh®™(Y) shows that the natural map
Coh®™'(Y) — APerf®'(Y) is formally étale as well.

Analogous considerations can ble made for Perf(Y) instead of APerf(Y). In particular,
1
there are well defined stacks Perf® <2 (Y) and Perf®!(Y). The commutative diagram

Perf®™ (Y) —— APerf®'(Y)

l l (3.2)

Perf(Y)*3 —— APerf(Y)*3

is a pullback, and the horizontal arrows are formally étale. When there is a flat effective
epimorphism u: U — Y from a smooth geometric derived stack U, Corollary 2.19 shows
that the map Coh®™(Y) — APerf®(Y) factors through Perf®!(Y), and that the map
Coh®!(Y) — Perf®(Y) is formally étale as well.

Similarly, we define Bun®'(Y) as the pullback with respect to a diagram of the form
(3.1) with Coh(Y)*3 replaced with Bun(Y)*3.

3.2. Explicit computations of cotangent complexes

In this section we carry out the first key computation: we give explicit formulas for the
cotangent complexes of the the stack Perf®"(Y') and of the map evs x ev;: Perf*'(Y) —
Perf(Y) x Perf(Y'). We assume throughout this section that Y is a derived stack satisfying
the following assumptions:

(1) Y has finite local tor-amplitude [50, Definition 2.3.15].

(2) Y is categorically proper [50, Definition 2.3.21].

(3) There exists an effective epimorphism u: U — Y, where U is a quasi-compact derived
scheme.



Two-dimensional categorified Hall algebras 41

These hypotheses guarantee in particular the following: for every S € dAff let
ps:Y xS —> S
be the natural projection. Then the pullback functor
ps:Perf(S) — Perf(Y x S)

admits a left adjoint, which will be denoted psy. See [50, Proposition 2.3.27] for the
construction and the main properties of this functor.

Proposition 3.2. Let Y € dSt be a derived stack satisfying assumptions (1)—(3). Then
Perf®™ (Y) admits a global cotangent complex. Furthermore, let S = Spec(A) € dAff be
an affine derived scheme and let x: S — Perf®(Y) be a morphism. Write

fl e 5‘72 — ?’3
for the fiber sequence in Perf(Y x S) classified by x. Then x*Lpegex(y)[1] coincides with

the colimit in Perf(S) of the diagram

Ps+(F2 ® 7)) —— ps+(F3 ® 73)

l

Ps+(F1 ® 7)) —— ps+(F2 ® F) (3.3)

l

Ps+(F1 ® F7)

Proof. First of all, we consider the diagram

Perf®!(Y) — Perf® *2' (V)

| |

APerf®(Y) —— APerf® *2' (v)

Since (3.2) is a pullback, we see that the above square is a pullback. In particular, the
top horizontal morphism is a Zariski open immersion. It is therefore enough to compute
the cotangent complex of Perf2 <4 (Y) at the induced point, which we still denote by
x: S — PerfA' x4 Y).

Write

F:=8x S,

perfA ! xAl )

and let 8,: S — F be the diaglonall morphism induclzed 1by x. Using [50, Pr(l)posli-
tion 2.2.3 (1, 3)] we see that Perf® *2" and hence Perf® *2 (Y) := Map(Y, Perf® *2")
are infinitesimally cohesive. Thus, [50, Proposition 2.2.4] guarantees that

x*]LPerfAlXAl(Y) ~ §¥Lp[-1].
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We therefore focus on the computation of §}Lr. Given f, g: T = Spec(B) — S, write
fy and gy for the induced morphisms

fr.gv: Y xT —Y x8S.
We can identify F(T') with the co-groupoid of commutative diagrams
fyFr —— fyFo —— [y F3
(xll laz log
gyF1 —— gy F2 —— gy F3

in Perf(Y x T'), where a1, oz and a3 are equivalences. In other words, F(T') fits in the
following limit diagram:

F(T) O » Map~™(fy #3.8% F3)

| l

O ———— Map~(fy ¥2, 8y F2) —— Map(fy 72,8y F3)

| |

Map=( fy #1.gy F1) —— Map(fy 1.8y F2)

Here the mapping and isomorphism spaces are taken in Perf(Y x 7). We have to represent
the functor

Derr(S;—):QCoh(S) — §
which sends § € QCoh(S) to the space
fios, (F(S[S]) — F(S)).
Write Yg := Y x S and let ps: Ys — S be the natural projection, so that
(Ys)[p58) ~ ¥ x S[8].
Let do: Ys[p5§] — Ys be the zero derivation. Observe now that
{ids; } Xmap(7;,7;) Map(dg Fi, dg Fi) = {idg; } Xwap(7;,7;) Aut(dg F7).

We are therefore free to replace Aut(dj #;) by Map(dj ¥, dy ¥;) in the diagram com-
puting F(S[€]). Unraveling the definitions, we can thus identify Derg (S;§) with the
pullback diagram

Derr (S:§) O Map(¥3, F3 ® p5§)
0 ——— Map($2. %2 ® p§¥) —— Map(F2, F3 Q ps§)

| l

Map(F1, F1 ® p;g) —— Map(F1, F2 ® p;ﬁ)
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Since %71, ¥, and F3 are perfect, they are dualizable. Moreover, [50, Proposi-
tion 2.3.27 (1)] guarantees the existence of a left adjoint pg for pg. We can therefore
rewrite the above diagram as

Derp(S:9) O Map(ps+(F3 ® ¥37).9)

| | |

0 ————— Map(ps+(F2 ® #,7).9) — Map(ps+(F2 ® 737).9)

| l

Map(ps+(F1 ® #17).9) — Map(ps+(F1 ® F,7). )

where now the mapping spaces are computed in Perf(Y x S). Therefore, the Yoneda
lemma implies that Derg (S;§) is representable by the colimit of the diagram (3.3) in
Perf(Y x S). At this point, [50, Proposition 2.3.27 (2)] guarantees that Perf®'(Y") also
admits a global cotangent complex. ]

Remark 3.3. There are two natural morphisms
fib, cofib: Perf2' (Y) — Perf®(Y),
which send a morphism §: ¥ — § to the fiber sequence
fib(B) > F — § (resp. ¥ — § — cofib(B)).

Applying [32, Proposition 4.3.2.15] twice, we see that these morphisms are equivalences.
1 1
Let y: Spec(A) — Perf® X2 (Y) be a morphism classifying a diagram

?1—)$2
0_)373

Let x: Spec(4) — Perf?' (Y) be the point corresponding to ¥; — F5. Then we have a
canonical morphism
* *
X ]LPerfA] (Y)[l] -y ]LPerfA] xal (Y)[l]’

which in general is not an equivalence. When the point y factors through the open
substack Perf®!(Y), the above morphism becomes an equivalence.

Next, we compute the cotangent complex of evs x ev;. We start with a couple of
preliminary considerations:

Definition 3.4 ([50, Definition A.2.1]). Let Y be a derived stack and let ¥ € Perf(Y) be
a perfect complex on ¥ . The linear stack’* associated to ¥ over Y is the derived stack

24Note that sometimes in the literature this stack (or rather its truncation) is also called the cone
stack. See e.g. [25, §2.1].



M. Porta, F. Sala 44

Vy (¥) € dSt;y defined as
Vy (F) = Specy (Symo, (7).
In other words, for every f:S = Spec(A4) — Y, one has
Map,y (S, Vy (¥)) = Mapgyea( /™ (5), A).
Construction 3.5. Let Y € dSt be a derived stack satisfying assumptions (1)—(3). Let

Y x Perf(Y) x Perf(Y)

pry l pra
q

Y x Perf(Y) Perf(Y) x Perf(Y) Y x Perf(Y)

be the natural projections. Let ¥ € Perf(Y x Perf(Y)) be the universal family of perfect
complexes on Y and fori = 1,2 set

Fi = pr} (¥) € Perf(Y x Perf(Y) x Perf(Y)).
We set
G = Homy xpert(y)xperi(y) (F2, F1)[—1].
Using [50, Corollary 2.3.29] we see that the functor
q": Perf(Perf(Y) x Perf(Y)) — Perf(Y x Perf(Y) x Perf(Y))
admits a left adjoint g4. We can therefore consider the linear stack
Veert(y)xpert(v) (4+9),

equipped with its natural projection 7: Vperg(v)xpert(v)(q+§) — Perf(Y') x Perf(Y).

Proposition 3.6. Let Y € dSt be a derived stack satisfying assumptions (1)—(3). Keeping
the notation of the above construction, there is a natural commutative diagram

¢

Perf®'(Y) Vpert(y)xpert(¥) (4+)

evwk} /

Perf(Y) x Perf(Y)
where ¢ is furthermore an equivalence.

Proof. For any S € dAff and any point x: S — Perf(Y) x Perf(Y), we can identify the
fiber at x of the morphism

Mapys: (S, VPerf(Y)XPerf(Y)(q+g)) — Mapyg; (S, Perf(Y) x Perf(Y))
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with the mapping space
MapPerf(S) (X*q-i- (g) ’ OS)
Consider the pullback square

Y xS —2 Y x Perf(Y) x Perf(Y)

ol |

S —~  Perf(Y) x Perf(Y)

The base change for the plus pushforward (cf. [50, Corollary 2.3.29 (2)]) allows us to
rewrite
x*q+(9) = qs+y*(9).

Therefore, we have

Mappgri(s) (X *q+(9), O5) = Mappeq(s)(¢s+y™(§), Os)
=~ Mapperi(y xs5) (¥ (§), Oy xs)
= MapPerf(YxS)(OYxS» y*(g"))
o (Y x §, Homyxs (y*F1, y* F2)[1]).

[

We therefore see that any choice of a fiber sequence
yF > F >y

in Perf(Y x §) gives rise to a point S — Vperg(y)xpert(y) (¢+¥). This provides us with a
canonical map

Perf™(Y) — Vpert(y)xpert(v) (4+9).
which induces, for every point x: S — Perf(Y) x Perf(Y), an equivalence
MaPGSt pertcy ) scpertr) (S, Perf™(Y)) ~ MaPGStperry ) spert(r) (S, Vpert(y)xpert(v)(4+9))-
The conclusion follows. ]

Corollary 3.7. Let Y be a derived stack satisfying the assumptions of Proposition 3.6.
Then the cotangent complex of the map

evs x evy: Perf®™(Y) — Perf(Y) x Perf(Y)
is computed as

(ev3 X evy)™ (q+ (Homy xpert(y)xpert(v) (F2. F1)[—1])).

Proof. This is immediate from Proposition 3.6 and [35, Proposition 7.4.3.14]. ]
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3.3. Extensions of coherent sheaves on schemes

We now specify the constructions of the previous section to the case where Y is a
smooth and proper complex scheme. Assumptions (1)—(3) are satisfied in this case [50,
Example 2.3.1]. Our goal is to provide estimates on the tor-amplitude of the cotangent
complexes of Coh®™(Y) and of the map evs x ev;: Coh®!(Y) — Coh(Y) x Coh(Y):

Proposition 3.8. Let X be a smooth and proper complex scheme of dimension n. Then
the cotangent complex Lcoper(xy is perfect and has tor-amplitude within [—1,n — 1]. In
particular, Coh®™ (X)) is smooth when X is a curve and derived Ici when X is a surface.

Remark 3.9. Notice that Perf®(X) is not smooth, even if X is a smooth projective
complex curve.

Proof of Proposition 3.8. Let Spec(A) € dAff and let x: Spec(A4) — Coh®™'(X) be a point.
We have to check that x*T¢,pex(x) is perfect and in tor-amplitude [1 — 7, 1]. Since the
map Coh®(X) — Perf®(X) is formally étale, we can use Proposition 3.2 to compute
the cotangent complex, and hence the tangent one. Let

?1—)5""2—>373

be the fiber sequence in Perf(X x Spec(A)) corresponding to the point x. Let
p: X x Spec(A) — Spec(A) be the canonical projection. Using Remark 3.3 we see that
X* T coner(x) fits in the pullback diagram

X*Tcohext(x) _— p*(372v ® ?2)[1]

| |

(7 @ F)1] — p«(F" ® F2)[1]

Since X is smooth and proper, p. preserves perfect complexes. Therefore, x*Toper(x)
is perfect.

In order to check that it has tor-amplitude within [1 — n, 1], it is sufficient to check
that its pullback to Spec(my(A)) has tor-amplitude within [1 — n, 1]. In other words, we
can suppose from the very beginning that A is discrete. In this case, 7, ¥, and 3 are
discrete as well and the map ¥; — %5 is a monomorphism. Since X is an n-dimensional
scheme, the functor p. has cohomological dimension #. It is therefore sufficient to check
that 77—, (x* Toper(x)) = 0. We have a long exact sequence

SXtZ(\(Fl, 5‘71) (&) Sxt;’)(?z, ?2) — 8Xt;(.?1, ?2)
— n_n(x*Tcohext(X)) — 8XtZ+l(j71, Fl1) & 8Xt1n7+1($'2, F2).

By using Grothendieck—Serre duality (as in the second part of the proof of Corol-
lary 2.26), one can show that

SXtZH(fle, F1) =0 and SXtZH(‘(FZ’ F2) = 0.
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We are thus left to check that the map
Exty (F1, F1) @ Exty (F2, F2) — Exty(F1. F2)
is surjective. It is enough to prove that
Exty (F2, F2) — Exty(F1, F2)
is surjective. We have a long exact sequence
Exty (F2, F2) — Exty(F1, F2) — 8xt;’,+1(373, F2).

The same argument as above shows that & thH(f/G, F2) = 0. The proof is therefore
complete. ]

Proposition 3.10. Let X be a smooth and proper complex scheme of dimension n. Then
the relative cotangent complex of the map

evs x ev: Coh®™(X) — Coh(X) x Coh(X) (3.4)

is perfect and has tor-amplitude within [—1,n — 1]. In particular, it is smooth when X is
a curve and derived Ici when X is a surface.

Remark 3.11. When X is a curve, Corollary 2.26 and Proposition 3.8 imply that
Coh®!(X) and Coh(X) are smooth. This immediately implies that evs x ev; is derived
Ici, hence the above corollary improves this result.

Proof of Proposition 3.10. Let S € dAff and let x: S — Perf®'(X) be a point classifying
a fiber sequence

in Perf(X x §). If 7 and 3 have tor-amplitude < 0 relative to S, then so does 5. This
implies that the diagram

Coh*™(X) —— Perf®!(X)

evy Xevll lev»g Xevy

Coh(X) x Coh(X) —— Perf(X) x Perf(X)

is a pullback square. Smooth and proper schemes are categorically proper and have finite
local tor-amplitude [50, Example 2.3.1]. Therefore the assumptions of Proposition 3.6
are satisfied. Since the horizontal maps in the above diagram are formally étale, we can
use Corollary 3.7 to compute the relative cotangent complex of the morphism (3.4). This
immediately implies that this relative cotangent complex is perfect, and we are left to
prove that it has tor-amplitude within [—1, 7 — 1]. For this reason, it is enough to prove that
for any (underived) affine scheme S € Aff and any point x: S — Coh®'(X), the perfect
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complex x*LLey;xev, has tor-amplitude within [—1,n — 1]. Let 1 — F, — ¥3 be the
extension classified by x and let gs: Y x S — § be the canonical projection. Base change
for plus pushforward (see [50, Proposition 2.3.27 (2)]) reduces our task to computing the
tor-amplitude of

s+ (Homx s (F3, F1)[~1]) = (g5« (Homxxs(F1, F3)[1])) "
Moreover, since S is arbitrary, it is enough to prove that
mi (qs«(Homyxs (F1. #3)[1])) =~ 0
fori <1 — n. However,
7i (g« (Homx s (F1, F3)[1]) = Exty 1 (F1, F3).

Since S is undepived, F1 and F3 belong to QCohO(X x §). Since X has dimension 7, it
follows that & xt,JI (#1, F3) ~ 0 for j > n. The conclusion follows. ]

Corollary 3.12. Let X be a smooth and proper complex scheme of dimension n. Then the
relative cotangent complex of the map

evs x evy: Bun®(X) — Bun(X) x Bun(X)
is perfect and has tor-amplitude within [—1,n — 1].

Proof. The assertion follows by noticing that the diagram

Bun®(X) ——— Coh®™(X)

eviXev] l leV3 Xevy

Bun(X) x Bun(X) —— Coh(X) x Coh(X)

is a pullback square. ]

3.4. Extensions of coherent sheaves on Simpson’s shapes

In this section, we carry out an analysis similar to the one of the previous section in the
case where Y is one of Simpson’s shapes Xg, X4r, and Xpo, where X is a smooth and
proper scheme.

3.4.1. Betti shape. Let K be a finite connected space. By [50, Proposition 3.1.1 (4)], Kg
is categorically proper and it has finite local tor-amplitude. In addition, by [50, Propos-
ition 3.1.1(3)], the map Spec(C) ~ xg — Xp is an effective epimorphism. Thus, the
assumptions of Corollary 3.7 are satisfied. Therefore, the relative cotangent complex of
the map

evs x evy: Coh®™ (K3) — Coh(Kg) x Coh(Kp) (3.5)
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at a point § — Coh®™'(K3g) classifying an extension 1 — ¥ — %, in Perf(Kg x §) is
computed by the pullback along the projection S X con(kg)xCon(ks) CO™'(Kg) — S of

gs+(Homggxs (F2, F1)[-1]).
Here gs: Kg x S — S is the natural projection. In particular, we obtain:

Proposition 3.13. Suppose that Kg has cohomological dimension < m. The relative
cotangent complex of the map (3.5) has tor-amplitude within [—1, m — 1]. Furthermore,
if K is the space underlying a complex scheme X of complex dimension n, then we can
take m = 2n.

Proof. Itis enough to prove that for every unaffine derived scheme S € Aff and every point
x:S — Coh®™ (K, u) classifying an extension #; — ¥ — %, in Perf(Kg x S) of perfect
complexes of tor-amplitude < O relative to S, the complex gs (Homggxs (F2, F1)[—1])
has cohomological amplitude within [—1, m — 1]. Unraveling the definitions, this is
equivalent to checking that the complex gs«(Homg,xs(F1, F2)) has cohomological
amplitude within [—m, 0]. The latter follows from the assumption on the cohomological
dimension of Kg and from Lemma 2.35. [

Now let X be a smooth and proper complex scheme. Define the stacks

Coh'(X) := Coh®™(Xg®) and Bun'(X) := Bun®™(Xg").

These stacks are geometric and locally of finite presentation since the stacks Perf®'(X, g’p)

and Perf® ¥4 (Xéop) are so. By using similar arguments as in the proof of Proposi-
tion 3.8, we find that the cotangent complex LCothT(X) is perfect and has tor-amplitude
within [—1,2n — 1]. Finally, by Lemma 2.35 we get Coh$"(X) ~ Bung"(X).

Corollary 3.14. If X is a smooth projective complex curve and K = X'P, then the map
(3.5) is derived locally complete intersection.

3.4.2. De Rham shape. Let X be a smooth and proper complex scheme of dimension 7.
First note that, by [50, Proposition 4.1.1(6)], Xqr is categorically proper and it has
finite local tor-amplitude. Moreover, by [50, Proposition 4.1.1 (3)], the canonical map
Ax: X — Xgr is an effective epimorphism.

Define the stacks

Coh%Y(X) := Coh™(Xs) and BunZi(X) := Bun®™(Xg).

These stacks are geometric and locally of finite presentation since the stacks Perf®!(Xgg)
and Perf2' <2 (Xgr) are so.

Since Xg4gr satisfies the assumptions of Proposition 3.2, by using similar arguments as
in the proof of Proposition 3.8, we get that the cotangent complex Lcopgi(x) 18 perfect
and has tor-amplitude within [—1, 27 — 1]. Finally, by Lemma 2.38 we get Cohis(X) =~
BunSs(X).
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As in the case of the Betti shape, we deduce that the relative cotangent complex of the
map

evs x evy: Cohgi(X) — Cohgr(X) x Cohgr(X) (3.6)

at a point x: S — Coh®™(Xgyg) classifying an extension 1 — ¥ — %, in Perf(Xgr x S)
is computed by the pullback along the projection S X cohys(X)xCohgr(X) Cohg,x;%(X )—> S
of

qs+(Homy x5 (F2, F1)[—1]).
Here gs: Xgr X S — S is the natural projection. In particular, we obtain

Proposition 3.15. Suppose that X is connected and of dimension n. Then the relative
cotangent complex of the map (3.6) has tor-amplitude within [—1,2n — 1].

Proof. 1tis enough to prove that for every unaffine derived scheme S € Aff and every point
x: S — Cohii(X) classifying an extension #; — F — F, in Perfgr(X x S) of perfect
complexes of tor-amplitude < 0 relative to S, the complex gs + (Homy,.xs (F2, F1)[—1])
has cohomological amplitude within [—1, 2n — 1]. Unraveling the definitions, this is equi-
valent to gg«(Homyxs(F1, F2)) having cohomological amplitude within [—2#, 0]. In
other words, we have to check that

EXté(dRXS(fl ,F2)=0
for i > 2n. This follows from [23, Theorem 2.6.11] and [3, §11]. [

Corollary 3.16. If X is a smooth projective complex curve, then the map (3.6) is derived
locally complete intersection.

3.4.3. Dolbeault shape. Let X be a smooth and proper complex scheme. By [50, Lem-
mas 5.3.2 and 5.3.3], Xpy and X! are categorically proper and they have finite local
tor-amplitude. Moreover, by [50, Lemma 5.3.1], the canonical maps kx: X — Xpo and
k3 X — Xpu are effective epimorphisms.

Define the stacks

Coh(X) :== Coh®™(Xpy),  Bun®y(X) := Bun®™(Xp,),
Cohp ™ (X) := Coh®™ (Xp)). Bunpy®™(X) := Bun™(Xp)).

These stacks are geometric and locally of finite presentation since Perf®'(Xpy),
1 1 p 1 1 "
Perf® *" (Xpq) and Perf™ (Xgy), Perf® *" (Xg}) are so.
Since Xpo and X3! satisfy the assumptions of Proposition 3.2, by using similar argu-
ments as in the proof of Proposition 3.8 we get that the cotangent complexes Lcqpgt (x)

and L Cohll: ! (x) Are perfect and have tor-amplitude within [—1,2n — 1].
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As in the case of the Betti and de Rham shapes, we thus deduce that the relative
cotangent complex of the map

evs x evy: Coh (X) — Cohpy(X) x Cohpy(X) 3.7)

[o]

at a point x: S — Cohg (X) classifying an extension #; — F — F, in Perf(Xpy x S)

is computed by the pullback along the projection S X Cohpy (X)xCohgy (X) COhGe(X) — S
of

qs+(Homxy,xs(F2, F1)[—1]).
Here gs: Xpo X S — S is the natural projection. In particular, we obtain

Proposition 3.17. Suppose that X is connected and of dimension n. Then the relative
cotangent complex of the map (3.7) has tor-amplitude within [—1,2n — 1].

Proof. Ttis enough to check that for every unaffine derived scheme S € Aff and every point
x: 8 — Coh3y (X) classifying an extension 1 — F — %, in Perf(Xpy x S) of perfect
complexes of tor-amplitude < 0 relative to S, the complex gs 4 (Homx,, xs (F2, F1)[—1])
has cohomological amplitude within [—1, 2n — 1]. Unraveling the definitions, this is equi-
valent to checking that the complex ¢ s« Jomy, xs (1, F2) has cohomological amplitude
within [—2n, 0]. In other words, we have to check that

EXtS-(DmXS(}Tl’ F2)=0

for i > 2n. This follows from the BNR correspondence [72, Lemma 6.8] (cf. also [ 16, §4]
and [60, §2.3]). [ ]

Corollary 3.18. If X is a smooth projective complex curve, then the map (3.7) is derived
locally complete intersection.

4. Two-dimensional categorified Hall algebras

4.1. Convolution algebra structure for the stack of perfect complexes

Most of the results in this section are due to T. Dyckerhoff and M. Kapranov [11]. For the
convenience of the reader we briefly recall their constructions.
Let

T :=Homa ([1], -): A — Cateo,

where A is the simplicial category. We write T, instead of T([r]). Given any C-linear
stable co-category €, we let

S$.€: A% — Caty

be the subfunctor of Fun(7 (—), €) that sends [n] to the full subcategory S, € of €Tn :=
Fun(T,, €) spanned by those functors F: T, — € satisfying the following two conditions:
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(1) F(i,i) ~0forevery0 <i <n;

(2) forevery0 <i,j <n—1,i < j — 1, the square

F@G,j) —— F(i +1,))

l l

Fi,j+1) — FG@+1,j+1)

is a pullback in €.

We refer to S.€ as the oco-categorical Waldhausen construction on €. It follows from
[11, Theorem 7.3.3] that $,€ is a 2-Segal object in Cat,. Consider the functor

dAff®® x A%® — Cateo
defined by sending (Spec(A), [n]) to §,,APerf(A). We denote by

SeAPerf: A%® — Fun(dAff®, Catyo)

the corresponding functor. Since limits are computed objectwise in Fun(dAff°?, Cats),
we see that S,APerf is a 2-Segal object in Fun(dAff®, Cats,). The maximal co-groupoid
functor (—)~: Cat, — 8 is a right adjoint, and in particular it commutes with limits. We
let

SeAPerf: A — dSt

be the functor obtained by S.APerf by applying the maximal co-groupoid functor. The
above considerations show that S, APerf is a 2-Segal object in dSt.

Let now X be a derived stack. The functor Map(X, —): dSt — dSt commutes with
limits, and therefore the simplicial derived stack

SeAPerf(X) := Map(X, SeAPerf)

is again a 2-Segal object in dSt. The same construction can be performed using Perf
instead of APerf: thus we obtain 2-Segal objects SoPerf and S,Perf(X) in dSt.

As in Section 3, we extract a full substack of coherent sheaves as follows. For every
n >0, let N :=n(n+ 1)/2. Evaluation at (i, j) € T, induces a well defined map
SpAPerf(X) — APerf(X)"N. We define S, Coh(X) by the fiber product

$,Coh(X) —— S, APerf(X)

l !

Coh(X)¥Y —— APerf(X)V

Notice that for n = 2 this construction yields a canonical identification $;Coh(X) >~
Coh®'(X). We will prove

Lemma 4.1. The simplicial object SeCoh(X) is a 2-Segal object.
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Proof. Using [11, Proposition 2.3.2(3)], it remains to check that for every n > 3 and
every 0 <i < j < n, the natural morphism

SnCoh(X) — 8,—j+i+1Coh(X) x5, con(x) 8j—i Coh(X)

is an equivalence. Here the morphism is induced by the maps [n — j + i 4+ 1] — [r] and
[/ —i] — [n] corresponding to the inclusions

{0,1,...,i,j,j+1,...,n} C{0,...,n} and {i,i+1,...,j}C{0,...,n}.
We have the following commutative diagram:

$,Coh(X) ——— 8, j1i+1Coh(X) Xs,con(x) 8j—i Coh(X)

| |

SnAPerf(X) —— 8, ;1 1APerf(X) Xs, aperr(x) Sj—i APerf(X)

The bottom horizontal map is an equivalence. After evaluating on S € dAff, we see that the
vertical maps are induced by fully faithful functors. It is therefore enough to check that
the top horizontal functor is essentially surjective. Unraveling the definitions, we have
to check the following condition. Let : T,, — APerf(X x S) be a semigrid of length n
and write ¥, for the image of (a,b) € T,. Then if ¥, € Cohg(X x S) for a,b €
{0,1,...,i,j,j+1,....,n}orfora,be{i,i +1,..., j}, then ¥, € Cohg(X x §) for
all a, b. A simple induction argument reduces our task to proving the following statement:
Suppose that

go—)gl

L]

gz—)gj;

is a pullback square in Perf(X x §). Assume that §, §, and 95 belong to Cohg (X x §).
Then §; belongs to Cohg (X x S) as well. Since §, and §5 have tor-amplitude < 0 relative
to S, we see that, locally on X, for every § € Coho(S) one has

Tk (px (61 D G)®F) ~0

for k > 1, where p: X x § — § is the canonical projection. However, 7x (p«(92) ® §)
~ 0 because G, has tor-amplitude < 0 relative to S. Therefore 7% (p«(§1) ® §) ~ 0 as
well. The proof is therefore complete. ]

Recall now from [11, Theorem 11.1.6] that if 7 is a presentable oco-category then
there is a canonical functor

2-Seg(7') — Algg, (Corr™(7)).

Here Corr™(7) denotes the (oo, 2)-category of correspondences equipped with the sym-
metric monoidal structure induced from the cartesian structure on 7. See [12, §7.2.1 &
§9.2.1]. As E;-monoid objects in correspondences play a significant role for us, we intro-
duce the following terminology:
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Definition 4.2. Let 7 be an oo-category with finite products. We define the co-category
of E1-monoid objects in T as the oo-category Algg, (Corr™(7)).

Taking 7 = dSt, we therefore obtain the following result:

Proposition 4.3. Let X € dSt be a derived stack. The 2-Segal object SeAPerf(X) (resp.
SoPerf(X), S¢Coh(X)) endows APerf(X) (resp. Perf(X), Coh(X)) with the structure
of an E1-monoid object in dSt.

We conclude this section with an analysis of the geometricity of S, Coh(X). First, we
observe that §, Perf canonically coincides with Toén—Vaquié’s moduli of objects,

Sn Perf ~ Mgn Perf-

To show that §, Perf is locally geometric and locally of finite presentation, we use the
following two lemmas.

We will make use of the following notation: if € is an co-category, € denotes the
full subcategory spanned by compact objects of €.

Lemma 4.4. Let € € fPr'(Ew be a compactly generated C-linear stable co-category and
let I be a finite category. Then:

(1) The canonical map Ind(Fun(I, €?)) — Fun(I,€) is an equivalence.”

(2) Assume furthermore that the idempotent completion of I is finite. If € is of finite type
(resp. proper), then so is Fun(I, €).

Proof. The canonical functor
Fun(/,€“) — Fun(I,®)

is fully faithful. [32, Proposition 5.3.4.13] shows that it lands in the full subcategory
Fun(Z, €©)® of Fun(l, €) spanned by compact objects. Therefore, [32, Proposi-
tion 5.3.5.11(1)] shows that the induced map Ind(Fun(/, €®)) — Fun(/, €) is fully
faithful. We now observe that compact objects in Fun(/, €) coincide with Fun(/, €%).
We already saw one inclusion. For the converse, for every i € I consider the functor
given by evaluation at i,

ev;:Fun(1,€) — €.

Since € is presentable, we see that both left and right Kan extensions along {i } — [ exist,
providing a left adjoint L; and a right adjoint R; to ev;. Moreover, since [ is finite, the
functor R; is computed by a finite limit, and therefore R; commutes with filtered colimits.
Equivalently, ev; preserves compact objects. This implies that every object in Fun(Z, €)%

25When [ is a finite poset, this is a consequence of [32, Proposition 5.3.5.15]. Notice that Warn-
ing 5.3.5.16 there does not apply because for us / is a category, and not an arbitrary simplicial
set.
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takes values in €“. To complete the proof of statement (1), it is enough to prove that
Fun(7, €) is compactly generated. Let F' € Fun(/, €) be a functor. Our goal is to prove
that the canonical map

coim G — F
GEFun(I,‘C)‘/"F

is an equivalence. Since the functors ev; are jointly conservative and they commute with
colimits, it is enough to check that for every i € I the induced map

colim G(i) — F(i)
GEFun(I,‘(f)‘/"F

is an equivalence. We can factor this map as

colim G(i) - colim X — F(i).
GEFun(I,'C)‘/"F XE‘C;‘)F(I-)

Since € is compactly generated, the second map is an equivalence. Therefore, it is enough
to prove that the functor

evi: Fun(1,€)7r — €/

is cofinal. Let @: X — F(i) be a morphism with X € €“. We will prove that the co-
category

is filtered, hence contractible. Let J be a finite category and let A: J — & be a diagram.
For every j € J, we get a map

X = A;(1) = FQ).
Since L; - ev;, we see that A induces a diagram
AT — Fun(1,6)7. x),/F-

Let A: J” — Fun(I,%€) 1, (x)//F be the colimit extension of A. Since ev; commutes with
filtered colimits, L; commutes with compact objects, hence L;(X) is a compact object.
Since J is a finite category and since compact objects are closed under finite colimits, we
deduce that A factors through Fun(I, ‘6)1‘1’1_ X))/ F" Applying ev;, we obtain the required
extension J” — & of A. The proof of (1) is therefore complete.

To prove (2), we first observe that

Fun(Z,€) ~ Fun®(PSh(I)®,€) ~ PSh(I) ® €,

where the last equivalence follows from [35, Proposition 4.8.1.17]. We can further rewrite
it as

PSh(I) ® € >~ (PSh(I) ® C-Mod) ®c-med € =~ Fun(Z, C-Mod) ®c-mod €-
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It is therefore enough to prove that Fun(/, C-Mod) is smooth and proper. Observe that the
collection of objects {L; (C)};es of Fun(/,C-Mod) are compact objects and they generate
the category, because the evaluation functors ev; are jointly conservative. Since / is a
finite category, the object

E = Li(C)
iel
is a single compact generator for Fun(/, C-Mod). Moreover, the end formula for the map-
ping spaces in Fun(/, C-Mod) shows that for F, G € Fun(/, C-Mod)® >~ Fun({, Perf(C)),
Map(F, G) is perfect. In other words, Fun(Z, C-Mod) is proper. To prove that it is smooth
as well, it is enough to check that it is of finite type [79, Proposition 2.14]. Combining
Lemma 2.11 and Corollary 2.12 in loc. cit., it suffices to show that it is a compact object
in Pre”. Let {Dy} be a filtered diagram in Pre and let

D = coglim Dy
We have
Mapy,so (Fun([, C-Mod), colim :oa) ~ Map o (PSh(I), colim ;oa)
~ Mapcy,, (PSh(I)“’, co(lxim :O;’)

Now, PSh(/)® is the idempotent completion of /, which is finite by assumption. There-
fore, it is a compact object in Cat.,, and we can rewrite the above expression as

Map,?r(LC.w (Fun([, C-Mod), colim {Da) ~ colim Mapgy__ (1, Dy)
o o
~~ colim Map, .o (Fun(f, C-Mod), Dy ).
a C
This shows that Fun(/, C-Mod) is compact, and the proof is complete. |

Lemma 4.5. Let € be a C-linear stable k-linear co-category. If € is of finite type (resp.
proper) then $,°€ is of finite type (resp. proper).

Proof. There is a natural inclusion A"~! < T,,, sending [i] to the map (0,i + 1):
A' — A", Left Kan extension along this map provides a canonical map

Fun(A"1,€) — Fun(T,, €),

which factors through §,€. Proceeding by induction on n and applying [32, Proposi-
tion 4.3.2.15] we see that the induced functor

Fun(A"" !, €) - §,€

is an equivalence. Since A”~! is idempotent complete and finite, the conclusion follows
from Lemma 4.4. ]
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Corollary 4.6. Let X be a derived stack and assume that

(1) there exists a flat effective epimorphism u: U — X, where U is a smooth geometric
stack;

(2) the derived stack Perf(X) is locally geometric and locally of finite presentation.

Then for every n > 0, the derived stack S, Coh(X) is geometric and locally of finite
presentation.

4.2. Categorified Hall algebras

Having the 2-Segal object S.Coh(X) at our disposal, we now explain how to extract a
categorified Hall algebra out of it. As a first step, we endow

QCoh(Coh(X))

with the structure of an [E | -monoid object. The main technical idea involved is the univer-
sal property of the (0o, 2)-category of correspondences proved in [12, Theorem 7.3.2.2]
and [39, Theorem 4.4.6], which we will use below.

Since we are mostly interested in obtaining a convolution algebra structure on the G-
theory spectrum of Coh(X), we need to replace QCoh with Coh®. As the stack Coh(X)
is typically not quasi-compact, it is important for us to work within the framework of
Appendix A and to take some extra care in correctly defining the category of sheaves
Coh®(Coh(X)).

Let Corr* (dSch®®) be the symmetric monoidal (0o, 2)-category of correspondences
on quasi-compact and quasi-separated derived schemes. Combining [78, Proposition 1.4]
with [12, Theorem 7.3.2.2] we obtain a functor

QCoh: Corr(dSch®*) — Cat®...

Using [39, Theorem 4.4.6], we see that the above functor can be upgraded to a symmetric
monoidal functor

QCoh: Corr* (dSch®®) — Cat3.

Finally, using [12, Proposition 9.2.3.4] we can extend this to a right-lax symmetric mon-
oidal functor

QCoh: Corr™ (dGeom) ep,a1 — Catly,

where Corr™ (dGeom),ep, i is the full subcategory of Corr™ (dGeom) where vertical mor-
phisms are representable by derived schemes. Informally speaking, we can describe this
functor as follows:

e it sends a derived geometric stack F € Corr*(dGeom) to QCoh(F);
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e it sends a I-morphism

to the composition

QCoh(Xo) £ QCoh(Y) L QCoh(X):
e the right-lax symmetric monoidal structure is given by
X: QCoh(Z) ® QCoh(Y) — QCoh(Z x Y).
Denoting by prz: Z x Y — Z andpry: Z x Y — Y the two natural projections we have
FRE =pyF Qo,.y PyY.

Let X be a derived stack. As shown in Proposition 4.3, the stack Coh(X) defines
an E;-monoid object in Corr™ (dSt), the monoidal structure being canonically encoded in
the 2-Segal object S¢Coh(X). In the main examples considered in this paper, Coh(X) is
furthermore geometric: see Propositions 2.24, 2.33, 2.39, and 2.40. In this case, we can
apply QCoh and obtain a stably monoidal co-category

QCoh(Coh(X)) € Algg, (Catsh). 4.1)

Now, we would like to define an [E;-monoidal structure on Coh®(Coh(X)). This will
be achieved by restricting the functor QCoh to a right-lax monoidal functor Coh® from
the category of correspondences. As said before, since Coh(X) is typically not quasi-
compact, we need to work in the framework developed in Appendix A.

In Corollary A.2 we construct a fully faithful and limit-preserving embedding

(—)ing: dGeom — Ind(dGeom®).
Since (—)ing commutes with limits, we see that the simplicial object
($eCoh(X))ing € Fun(A°, Ind(dGeom™))

is a 2-Segal object, and therefore defines an E;-monoidal structure on Coh(X);,q in
Corr* (Ind(dGeom®)). When the context is clear, we drop the subscript (—)ing in the above
expression.

On the other hand, Corollary A.14 provides a right-lax symmetric monoidal functor

QCohpro: Corr™ (Ind(dGeom©)) ps a1 — Pro(Catdy,).
In particular, we obtain a refinement of (4.1), i.e., the stable pro-category

“lim” QCoh(U) € Pro(Cat®
U €Coh(X) w) (Cateo)
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acquires a canonical [E;-monoidal structure. The colimit is taken over all quasi-compact
open substacks of Coh(X) (but an easy cofinality argument shows that one can also
employ a chosen quasi-compact exhaustion of Coh(X)).

Now, we see how to replace QCoh by Coh®.

Definition 4.7. A morphism f: X — Y in Ind(dGeom®) is said to be ind-derived Ici if for
every Z € dGeom%® and any morphism Z — Y, the pullback X xy Z is a quasi-compact
derived geometric stack and the map X xy Z — Z is derived lci.

Lemma 4.8. Let f: X — Y € dGeom be a quasi-compact derived Ici morphism. Then
the induced morphism

Sind: Xing = Ying
is ind-derived Ici.
Proof. Using Lemma A.1 (1) we can choose an open Zariski exhaustion
B=Uy—> Uy > - —>Uy—>Uyyys = -+~
of Y, where each Uy, is a quasi-compact derived geometric stack. Set
Vo i= Uy xy X.

Since f is quasi-compact, the V, are quasi-compact derived stacks and they form an
open Zariski exhaustion of X. Let f,: Vy — Uy be the induced morphism, which is Ici.
Therefore, Lemma A.1 (3) implies that

Xing =~ “colim” Vy  and  Ying = “colim” Uy,

and fi,g >~ “colim” f,. Let Z € dGeom® be a quasi-compact derived geometric stack
and let g: Z — Y be a morphism. Using Lemma A.1 (2), we find an index « such that g
factors through Uy . In particular, the pullback Z xy X fits in the following ladder:

Zxy X — Vo — X

| L]

z —% U, Y

Since the morphism V, — U, is quasi-compact and derived Ici, so is Z xy X — Z. This
completes the proof. ]

Consider now the subcategory Corr™ (Ind(dGeom?)),gs i of Corr™ (Ind(dGeom®))rep i
where the horizontal arrows are taken to be ind-derived Ici morphisms and the vertical
arrows to be morphisms representable by proper schemes. Consider the restriction of
QCoh to this subcategory:

QCohpyo: Corr™ (Ind(dGeom®)),ps i — Pro(Catd,).
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Let f: X — Y be a morphism in Ind(dGeom®) which is representable by proper schemes.
Using Lemma A.1 (1), we can choose an open Zariski exhaustion

0=U0‘—>U1°—>---‘—>Ua‘—>Ua+1‘—)---

of Y, where each U, is a quasi-compact derived stack. Let V, := Uy Xy X and let
fa: Vo = Uy be the induced morphism. Since f is representable by proper schemes,
Ve is again quasi-compact and therefore we obtain a compatible open Zariski exhaus-
tion of X. Thanks to derived base change, we can therefore compute the pushforward in
Pro(Catl)) by

fv = "“lim” fy«: “lim” QCoh(V,) — “lim” QCoh(Uy).
o o o
Since each f, is representable by proper schemes, this functor restricts to a morphism
S “lim” Coh® (V) — “lim” Coh®(Uy).
o o

Using [78, Lemma 2.2], we similarly deduce that if f: X — Y is a morphism in
Ind(dGeom®) which is ind-derived Ici, then the pullback functor restricts to a morphism

f*:“lim” Coh®(Uy) — “lim” Coh® (V).
o o
This implies that QCohg,, admits a right-lax monoidal subfunctor

Coh®,: Corr™ (Ind(dGeom®)) s 1 — Pro(Catlh).

pro-
Applying the tor-amplitude estimates obtained in §3, we obtain the following result:

Theorem 4.9. Let X be one of the following derived stacks:
(1) a smooth proper complex scheme of dimension either 1 or 2;
(2) the Betti, de Rham or Dolbeault stack of a smooth projective curve.

Then the composition

Cohf,(Coh(X)) x Coh?  (Coh(X)) Z Coh® (Coh(X) x Coh(X))

pro

2°P . Coh® (Coh(X)),

pro

where the map on the right-hand side is induced by the 1-morphism in correspondences

Coh®™(X)

/ X} 4.2)

Coh(X) x Coh(X) Coh(X)

endows Coh® (Coh(X)) with the structure of an IE|-monoidal stable co-pro-category.

pro

Proof. By Proposition 4.3 we know that S¢Coh(X) is a 2-Segal object in dSt. Using
Corollary A.2, we see that (S¢Coh(X))ing is a 2-Segal object in Corr™ (dSt), and therefore
it defines an [E{-monoid object in Corr* (Ind(dGeom?)). Proposition 3.6 shows that the
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map p is quasi-compact. On the other hand, Proposition 3.10 shows that p is Ici when
X is a smooth and proper complex scheme of dimension 1 or 2, while Corollaries 3.14,
3.16 and 3.18 show that the same is true when X is the Betti, de Rham or Dolbeault stack
of a smooth projective curve. Therefore, Lemma 4.8 shows that in all these cases ping is
ind-derived Ici. Moreover, the morphism ¢ is representable by proper schemes: indeed,
one can show that g is representable by Quot schemes”® and it is known that these are
proper schemes. The 2-Segal condition therefore guarantees that (SeCoh(X))ing endows
Coh(X)nq with the structure of an E;-monoid object in Corr*(Ind(dGeom®))ps ici.
Applying the right-lax monoidal functor Cohzro: Corr* (Ind(dGeom®)),ps i — Pro(Catl,),

we conclude that Cohgm(Coh(X )) inherits the structure of an E;-monoid object in

Pro(Cats,). [

Since E;-monoid objects in Pro(Cats,) are (by definition) the same as E;-monoidal
categories in Pro(Cat2l), we refer to the corresponding tensor structure as the CoHA

tensor structure on Cohk’;ro (Coh(X)). We denote this monoidal structure by ®.

Remark 4.10. Let X be a smooth projective complex scheme of dimension either 1
or 2. Then the moduli stacks introduced in §2.3.2 are E;-monoid objects in
Corr™ (Ind(dGeom®))ps ei- If X is quasi-projective, then Cohpp(X) (resp. Cohpsrffp(X )
is an E1-monoid object in Corr™ (Ind(dGeom)) s i (resp. for any integer d < dim(X)).

Similarly, for the Dolbeault shape, a statement similar to that of Theorem 4.9 holds

for all the moduli stacks introduced in §2.4.3.

4.3. The equivariant case

The main results of §4.1 and of §4.2 carry over without additional difficulties in the
equivariant setting. Let us sketch how to modify the key constructions.

Let X € dStbe a derived stack and let G € Mon?E'ol (dSt™) be a grouplike E;-monoid in
derived stacks acting on X . Typically, G will be an algebraic group. Since the monoidal
structure on dSt is cartesian, we can use [35, Proposition 4.2.2.9] to reformulate the datum
of the G-action on X as a diagram

Ag.x: A® x A' — dst

satisfying the relative 1-Segal condition. Informally speaking, Ag,x is the diagram

—
-EszX:GxX:X

| | l

: g G* =——=} G —— Spec(k)

26Tn the de Rham and Dolbeault cases, one has to consider Quot schemes of A-modules 2 la
Simpson; cf. [71, proof of Theorem 3.8]. To show the properness of ¢ in the Betti case, one can
either use the global quotient description of the Betti moduli stack, e.g. in [47, §1.2], or apply
the derived Riemann—Hilbert correspondence of [49] and use the invariance of properness under
analytification.
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which encodes at the same time the IE-structure on G and the action on X. We denote
the geometric realization of the top simplicial object by [X/G], while it is customary to
denote the geometric realization of the bottom one by BG.

We now define

SePerfg(X): A® — dSt/pg
by setting
SePerfG (X) := Map 5 ([X/G], SePerf x BG).
We also write Perfg (X) for $1Perfg (X ). Notice that
Spec(k) xgg SePerfg (X) ~ Map(X, S.Perf).

We can therefore unpack the datum of the map S.Perfg (X) — BG by saying that G acts
canonically on S¢Perf(X). From this point of view, we have a canonical equivalence”’

SoPerfg (X) >~ [SoPerf(X)/G].
As an immediate consequence we find that
Coh®(Perfg (X)) ~ Coh% (Perf(X)).

The right-hand side is the G-equivariant stable co-category of bounded coherent com-
plexes on Perf(X). Since the functor

Map 56 ([X/G]. (=) x BG):dSt — dSt/gg
commutes with limits, we deduce

Proposition 4.11. The simplicial derived stack SJPerfg (X): A®® — dSt/gg is a 2-Segal
object.

Assume now that G is geometric (e.g. an affine group scheme) and that there exists a
geometric derived stack U equipped with the action of G and a G-equivariant, flat effect-
ive epimorphism u: U — X . Then the induced morphism [U/G] — [X/G] is an effective
epimorphism which is flat relative to BG. We define S,Cohg (X) € Fun(A, dSt/g) as
follows. Given an affine derived scheme S = Spec(A) and a morphism x: S — BG, we
set

Map /g (S, $eCohg (X)) := (SeCohs (S xgg [X/G]))™ € Fun(A®,S).
We immediately obtain

Corollary 4.12. Let X be a geometric derived stack. Then the simplicial derived stack
SeCohg (X): A®® — dSt/gg is a 2-Segal object.

27This is nothing but a very special case of the descent for co-topoi; see [32, Theorem 6.1.3.9
and Proposition 6.1.3.10].
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The above 2-Segal object endows Coh(X') with the structure of a G-equivariant -
convolution algebra in dSt.

Corollary 4.13. Let X € dSt be a derived stack and let u: U — X be a flat effective epi-
morphism from a geometric derived stack U. Assume that the 2-Segal object S«Coh(X)
endows Coh(X) with the structure of an E{-monoid object in Corr™ (dSt)ps,i. Let G be a
smooth algebraic group acting on both U and X, and assume that u has a G-equivariant
structure. Then the G-equivariant 2-Segal object S¢Cohg (X) induces an E1-monoidal

structure on Coh?  (Cohg (X)) =~ Cohgro’G (Coh(X)).

Proof. Similarly to the proof of Theorem 4.9, all we need to check is that the map
evs x evq: CohZ'(X) — Cohg (X) x Cohg (X)
is quasi-compact and derived Ici and that the map
evz: CohZ'(X) — Cohg(X)

is representable by proper schemes. Observe that for i = 1, 2, 3 the right and the outer
squares in the commutative diagram

Coh®'(X) —2— Coh(X) —— Spec(k)

| | |

Coh%'(X) - Cohg(X) —— BG

are pullback squares. Therefore so is the left one. The conclusion now follows because
Spec(k) — BG is a smooth atlas and from the analogous statements for Coh(X), which
have been proven in the proof of Theorem 4.9. |

5. Decategorification

Now, we investigate what happens to our construction when we decategorify, i.e., when
we pass to the G-theory (introduced in §A.2). A first consequence of our Theorem 4.9 is
the following:

Proposition 5.1. Let Y be one of the following derived stacks:
(1) a smooth proper complex scheme of dimension either 1 or 2;
(2) the Betti, de Rham or Dolbeault stack of a smooth projective curve.

The CoHA tensor structure on Cohgm(Coh(Y )) endows G(Coh(Y)) with the structure of
an E1-monoid object in Sp.

Remark 5.2. Up to our knowledge, the above result provides the first construction of a
Hall algebra structure on the full G-theory spectrum of Coh(Y'). Furthermore, the above
results hold also for the stack Cohﬁgp(S ), where S is a smooth (quasi-)projective complex
surface and 0 < d < 2 is an integer.
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Taking 7t of G(Coh(Y)), we obtain an associative algebra structure on Go(Coh(Y)).
When Y is the de Rham shape of a curve, this is a K-theoretical Hall algebra associated to
flat vector bundles on the curve, and it has not been previously considered in the literature.
On the other hand, in [25, 85] and in [60] the authors considered the cases of ¥ being
a surface or the Dolbeault shape of a curve, respectively. Below, we briefly review the
construction in [25] and prove that the two algebra structures on Go(Coh(Y)) obtained
using our method or theirs agree.

Let S be a smooth (quasi-)projective complex surface and let 0 < d < 2 be an integer.
To lighten the notation, write

Y := Coh=4(S), Y := CohS4®4(S),

prop prop

Yo = cIY’ Yoext . cyext
Proposition 3.6 implies that
Y = Specy xy (Symo, ., (€)).
where & € Perf(Y x Y) is a certain perfect complex on ¥ x Y. Let
i:YoxYy—>Y xY
be the natural inclusion and let &y := i *(&). Set
Yo = Specy,uy, (SYMoy, .y, (65))-

Consider the commutative diagram

ext t . yext J N ext
Y ' Y » Y

b

YoxYy —— Y xY

The right square is a pullback, by construction. Therefore, the diagram

Cohb(Yet) —L s Conb(y=?)

#] o

Coh®(Yp x Yo) —*— Coh®(Y x Y)

canonically commutes. Passing to G-theory, the functors i, and j, induce equivalences,
thereby identifying p* et p*.

We now compare (1 o 5*: G(Yp x Yo) — G(Y&") with the construction of the virtual
pullback po! by Kapranov—Vasserot. In [25, §3.3], they take as additional input an explicit
resolution of &y as a 3-term complex

. —1 4% Lo d'
=208 — 8 — 8 —>0—-...



Two-dimensional categorified Hall algebras 65

Let 85° be the 2-term complex &5 — &9 and set
E=" = Vypur, (E5°)Y) and  E' = Vyyuy, ((85)).

The canonical projection 7: ES® — Y, x Y is smooth and the differential d! induces a
section

s:E=* — n*E' := E' xy,xy, E=°
such that

Yext t E=<O

il E

ES® 2 n*E!
is a derived pullback square. Therefore, we can factor p: yet - Yo X Yy as

Yext t E=<O

S b

Y()XYO

As in loc.cit. the operation p(!) is defined as the composition s' o 7*: Go(Yy x Yy) —
Go(Y$"), to compare the two constructions it is enough to verify that

st =1 ot*
as functions Go(E=%) — Go(Y$). This follows at once by unraveling the definition of st
Thus our construction of the Hall product on Go(Y) ~ G¢(Yp) coincides with theirs, and

we obtain

Theorem 5.3. Let S be a smooth (quasi-)projective complex surface and let 0 < d < 2
be an integer. There exists an algebra isomorphism between

7o (lim K (Coh®_(Coh=2 (5))))

pro prop

and the K-theoretical Hall algebra of S as defined in [25, 85). Thus, the CoHA tensor
structure on the stable co-category Cohgro (Cohfd (S)) is a categorification of the latter.

Finally, if in addition S is toric, similar results holds in the equivariant setting.

5.1. The equivariant case

Let Cohy(C?) := Cohpfrgp (C?) be the geometric derived stack of zero-dimensional coher-

ent sheaves on C2. Note that the natural C* x C*-action on C2 lifts to an action on
Cohy(C?).
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A convolution algebra structure on the Grothendieck group ng*xc* (°Cohg(C?))
of the truncation of Cohg(C?) has been defined in [63, 65]. In those papers, the con-
volution product is defined by using an explicit presentation of “Cohg(C?) as disjoint
union of quotient stacks. Moreover, as proved in those papers, the convolution algebra on
Gg: **C* (Cohy (C?)) is isomorphic to a positive nilpotent part UZ,(&[l) of the elliptic
Hall algebra U ; (g::('Il) of Burban and Schiffmann [4].

In [25, Proposition 6.1.5], the authors showed that the convolution product defined
by using virtual pullbacks coincides with the convolution product defined by using the
explicit description of “Cohg(C?) in terms of quotient stacks. Thanks to this result
(which holds also equivariantly), by arguing as in the previous section, one can show
the following.

Proposition 5.4. There exists a Z[q, t]-algebra isomorphism
moK(Gohl, cxc+ (Cohg(C?))) = US (gly).

Thus, (Cohsm’c*xc* (Cohy(C?)), ®) is a categorification of U;L,t (gIl) Here, Cohy(C?)
:= Coh=? (C?).

prop

Let X be a smooth projective complex curve and let Higgs™™(X) := T*[0]Coh(X)
(see Remark 2.41). Recall that C* acts by “scaling the Higgs fields”.

The Grothendieck group G (“Higgs™ (X)) of the truncation of Higgs"(X) is
endowed with a convolution algebra structure as constructed in [60] and in [40] for the
rank zero case. In the rank zero case, the construction of the product follows the one in
[63, 65] discussed above, while in the higher rank case one uses a local description of
Higgs™(X) as a quotient stack; then the construction of the product is performed locally
and one glues suitably to get a global convolution product. By similar arguments and
thanks to Remark 2.41, we have the following

Proposition 5.5. Let X be a smooth projective complex curve. There exists an algebra
isomorphism between

mo(lim K (Coh? ¢« (Coh(Xpg)))

and the K-theoretical Hall algebra of Higgs sheaves on X introduced in [40, 60]. Thus,
the CoHA tensor structure on the stable oco-category Cohgm’ c+(Coh(Xpy)) is a categor-
ification of the latter.

Remark 5.6. The Betti K-theoretical Hall algebra of a smooth projective complex curve
X can be defined by using a K-theoretic analog of the Kontsevich—Soibelman CoHA
formalism due to Padurariu [46] for the quiver with potential defined by Davison [7]. We
expect that this algebra is isomorphic to our decategorification of the Betti Cat-HA.

Finally, it is relevant to mention that our approach defines the de Rham K-theoretical
Hall algebra of a smooth projective curve X . The nature of this algebra is at the moment
mysterious. Note that [63] gives an indication that the algebra should at least contain the
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K-theoretical Hall algebra of the preprojective algebra of the g-loop quiver, where g is
the genus of X.

Remark 5.7. By using the formalism of Borel-Moore homology of higher stacks
developed in [25] and their construction of the Hall product via virtual pullbacks, we
obtain equivalent realizations of the COHA of a surface by [25] and of the Dolbeault
CoHA of a curve [40, 60]. Moreover, we define the de Rham cohomological Hall algebra
of a curve.

6. A Cat-HA version of the Hodge filtration

In this section, we shall present a relation between the de Rham categorified Hall algebra
and the Dolbeault categorified Hall algebra, which is induced by the Deligne categori-
fied Hall algebra (Coh?c* (Coh(Xpe1)), ®per)- Deligne’s A-connections interpolate Higgs
bundles with vector bundles with flat connections, and they were used by Simpson [73]
to prove the non-abelian Hodge correspondence. For this reason, the relation we prove
in this section can be interpreted as a version of the Hodge filtration in the setting of
categorified Hall algebras.

6.1. Categorical filtrations

We let
Perf™ := Perf([A¢/Gn]), Perfd := Perf(BGy,).

The two morphisms

J i
BGn — [A(IC/Gm] < Spec(C) ~ [Gm/Gm]
induce canonical morphisms
j*:Perf — Perf¥,  Perf" — Perf.

The group structure on BG,, endows Perf® with a Kiinneth monoidal structure. The same
holds for Perff. With respect to these monoidal structures, the above functors are sym-
metric monoidal.

Definition 6.1. Let € be a stable C-linear co-category. A lax filtered structure on € is an
oo-category €° € Perf-Mod(Cats ) equipped with a functor

D:€° ®pgyit Perf — €.

We refer to the datum (€, €°, ®) as the datum of a lax filtered stable (C-linear)
oo-category. We say that a lax filtered co-category is filtered if ® is an equivalence.
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Definition 6.2. Let (€, €°, ®) be a lax filtered stable co-category. A lax associated
graded category is an co-category § € Perf¥-Mod(CatSl) together with a morphism

e & perffit Perfd — §.

We say that (¢, V) is the associated graded if the morphism W is an equivalence.

6.2. Hodge filtration

Let X be a smooth projective complex curve. We will apply the formalism in the previous
section with € = Coh,,(Coh(Xgr)) and § = Cohf | ... (Coh®°(Xpq)).

Let Xpe be the deformation to the normal bundle of the map X — Xgr as construc-
ted in [13, §9.2.4]. Then Xpe admits a canonical Gp-action and it is equipped with a
canonical G,-equivariant map Xpe — A'. We refer to Xpe as Deligne’s shape of X.
Furthermore, we let

Xoel, Gy = [Xpel/ Gl

be the quotient by the action of G,,. We refer to Xpg), G, as the equivariant Deligne shape
of X. See also [50, §6.1] for a more in-depth treatment of the Deligne shape. We define
Coh/ 51 (Xpe) as the functor

(dAff/41)® — §

sending S — A! to the maximal co-groupoid Cohs (S X o1 Xpe)™ contained in the co-
category of families of coherent sheaves on S x 41 Xpe that are flat relative to S. Simil-
arly, we define Coh,[41,G, 1(Xpe,G,,) as the functor

(dAff)(a1/G, )" = S

sending S — [A!/G,,] to the maximal oo-groupoid Cohg (S X[A1/Gy] XDel,Gr) ™ CON-
tained in the oo-category of families of coherent sheaves on S X[o1,g,] Xpel,G,, that are
flat relative to S.

Proposition 6.3. The derived stack Coh,,1(Xpel) (resp. Cohja1,6, 1(Xpel,G,,)) is a geo-
metric derived stack, locally of finite presentation in dSt, 51 (resp. dSt/[a1/G,])-

Proof. Given a morphism Y — § of derived stacks we write
Perf;s(Y) := Map (Y, Perf x S).

The canonical map X x A! — Xpg (resp. X x [A!/G] — Xpel,G,,) is a flat effective
epimorphism as an A'-map (resp. [A'/Gp]-map) (cf. [50, §6.1]). Thus, Coh, 41 (Xpe)
and Coh/41,g,1(Xpel,G,,) fit into the pullback squares (cf. Lemma 2.11 and Corol-
lary 2.19)

COh/Al (XDeI) — COh(X) X Al COh/[Al/Gm](XDel,Gm) — COh(X) X [Al/Gm]

l l | |

Pel'f/Al (XDeI) — Perf(X) X Al Pel'f/[Al/Gm] (XDel,Gm) — Perf(X) X [Al/Gm]
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Since Perf;;1(Xpe) and Perf(X) x A' (resp. Perf;(41 /G, 1(Xoel,G,,) and Perf(X) x
[A1/Gy]) are geometric as derived stacks over Al (resp. [A!/Gy]) by [50, §6.1.1]
and [79, Corollary 3.29] respectively, and Coh(X) x A! (resp. Coh(X) x [A!/G]) is
geometric in dSt/ 51 (resp. dSt/[o1/g,,]) because of Proposition 2.24, we conclude that
Coh 51 (Xper) and Coh 41,6, 1(Xbel, G,,) are geometric as well. ]

We have canonical maps Coh, 1 (Xpel) —Aland Coh[1/6,,1(Xbel, G,,) [A1/Gp).
Unraveling the definitions, we see that

COh/Al (XDeI) XAl {0} ~ COh(XDo|) and COh/Al (XDeI) XAl {1} ~ COh(XdR),
while

Coh41/6,1(Xpel,Gn) X[a1/G,] BGm = Cohc* (Xpol)

6.1)
Coh(Xpei, G,) X[a1/Gp] [Gm/Gm] = Coh(Xgr) X BGpy.

We also consider the open substack Coh;k o1 (Xpet) C Cohy 1 (Xper) for which the fiber

at zero is the derived moduli stack Coh®>®(Xp,) of semistable Higgs bundles on X of
degree zero (cf. [74, §7]).

Similarly, we can define the derived moduli stacks of extensions of Deligne’s A-
connections. Thus, we have the convolution diagram in dSt;41:

Coh® | (Xoe)

/ X
COh/Al(XDe|) XAl COh/Al(XDe|) COh/Al(XDe|)

and the convolution diagram in dSt;(41,g, 1

COh?[(kl /Gl (XDeI, Gm)
/ X‘
Coha1/6,1(X0el, Gn) X(a1/6,1 CONyfa1/G,1 (XDl 1) Coh41/G,,1(Xpel, G,n)
Because of Corollaries 3.16 and 3.18, it follows that the map p above is derived Ici.
A similar result holds when we restrict to the open substack Coh7 41 (Xper) and the cor-

responding open substack of extensions. Following the same arguments as in §4, we can
encode such convolution diagrams into 2-Segal objects, and obtain the following:

Proposition 6.4. Let X be a smooth projective complex curve. Then

o there is a 2-Segal object S¢Coh ;51 (Xpe) which endows Cohy1(Xpe) with the struc-
ture of an IE1-monoid object in Corr™ (dGeom a1 )ici,rps;

o thereis a?2-Segal object SeCoh a1 /G, 1(Xpel, G,,) which endows Coh a1, 1(Xpel, G,,)
with the structure of an IE1-monoid object in Corr (dGeom 41/, 1)ici,rps-

A similar result holds for C0h7A1 (Xpel) and C0h7[A1/Gm](XDeI,Gm)~
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Corollary 6.5. COhb (COh/Al(XDeO) and COhb (COh/[Al/Gm](XDeI,Gm)) are ]E]-

pro pro
monoid objects in Pro(CatL). A similar result holds for Coh}kAl(XDd) and

COh)/k[Al/Gm] (XDeI, Gm)~
By combining the results above with (6.1), we get

Theorem 6.6. Let X be a smooth projective complex curve. Then

pro

Cohy, ¢+ (Coh(?; (Xper)) = Cohf (Coh T | -\ (Xpel )
is a module over Perf™ and we have E-monoidal functors

d™- COhgro,C* (COh;Xl (Xpel)) ®peit Perfc — COhb(COh(XdR)),
W): CohB, ¢ (Coh'?, (Xou)) @pern Perf — Cohf.. (Coh™ ? (Xpy).

Following Simpson [74, §7], we expect the following to be true:

Conjecture 6.7 (Cat-HA version of the non-abelian Hodge correspondence). The
morphisms ®* and V* are equivalences, i.e., Coh® (Coh(X4g)) is filtered by

pro

Cohgro, C* (Coh;‘Al (Xpe1)) with associated graded Cohgro, c+(Coh® %(Xpo)).

7. A Cat-HA version of the Riemann—Hilbert correspondence

In this section we briefly consider a complex analytic analogue of the theory developed
so far. Thanks to the foundational work on derived analytic geometry [22,34,48,51] most
of the constructions and results obtained so far carry over in the analytic setting. After
sketching how to define the derived analytic stack of coherent sheaves, we focus on two
main results. The first is the construction of a monoidal functor between the algebraic
and the analytic categorified Hall algebras coming from non-abelian Hodge theory. The
second is to provide an equivalence between the analytic categorified Betti algebra and
the de Rham one. This equivalence is an instance of the Riemann—Hilbert correspondence,
and it is indeed induced by the main results of [22,49].

7.1. The analytic stack of coherent sheaves

We refer to [22, §2] for a review of derived analytic geometry. Using the notations intro-
duced there, we denote by AnPerf the complex analytic stack of perfect complexes (see
§4 in loc. cit.). Similarly, given derived analytic stacks X and Y, we let AnMap(X, Y)
be the derived analytic stack of morphisms between them.

Fix a derived geometric analytic stack X . We wish to define a substack of AnPerf(X)
:= AnMap(X, AnPerf) classifying families of coherent sheaves on X. The same ideas
of §2 apply, but as usual some extra care to deal with the notion of flatness in analytic
geometry is needed.

Definition 7.1. Let S be a derived Stein space and let f: X — S be a morphism of
derived analytic stacks. We say that an almost perfect complex ¥ € APerf(X) has tor-
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amplitude within [a, D] relative to S (resp. tor-amplitude < n relative to S) if for every
§ € APerf”(S) one has

7 (F® f*6)~0, i¢la,b] (resp.i > n).

We let APerf§" (X) denote the full subcategory of APerf(X) spanned by those sheaves of
almost perfect modules ¥ on X having tor-amplitude < n relative to S. We write

Cohs(X) := APerfs’(X),

and we refer to it as the oco-category of flat families of coherent sheaves on X relative
toY.

The above definition differs from [53, Definitions 7.1 & 7.2]. We prove in Lemma 7.3
that they are equivalent.

Lemma 7.2. Let X be a derived analytic stack, let S € dStnc and let f: X — S be a
morphism in dAnSt. Assume that there exists a flat™® effective epimorphism u: U — X.
Then ¥ € APerf(X) has tor-amplitude within [a, b] relative to S if and only if u*(F') has

tor-amplitude within [a, b] relative to S.

Proof. Let § € APerf’(S). Then since u is a flat effective epimorphism, we see that
the pullback functor u*: APerf(X) — APerf(U) is t-exact and conservative. Therefore
7 (¥ ® f*g) ~ 0if and only if

wW(mi(F Q@ f*9) 2 mi(u*(F)Qu* f*g) ~ 0.
The conclusion follows. [

Lemma 7.3. Let f: X — S be a morphism of derived analytic stacks. Assume that X
is geometric and that S is a derived Stein space. Then ¥ € QCoh(X) has tor-amplitude
within [a, b] relative to S if and only if there exists a smooth Stein covering {u;:U; — X}
such that T'(U;; u} ¥) has tor-amplitude within [a, b] as T'(S’; O;'g)-module.

Proof. Using Lemma 7.2, we can reduce the problem to the case where X is a derived
Stein space. Notice that ¥ ® o, f*§ € APerf(X). Therefore, Cartan’s theorem B applies
and shows that 7; (¥ ®¢, f*¥§) = 0if and only if 7; ( fx(F @0, f*F)) = 0. Observe
now that there is a canonical morphism

U?,ﬁif*(f) Rog 9 — fu(F Roy f*g)

When § = Og this morphism is obviously an equivalence. We claim that it is an equival-
ence for any § € APerf(S).

28 A morphism f:U — X of derived analytic stacks is said to be flar if the pullback functor
f*:APerf(X) — APerf(U) is t-exact.
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This question is local on S. Write Ag := T'(S; (‘)g'g). Using [22, Lemma 4.12] we
can restrict ourselves to the case where § ~ £ (M) for some M € APerf(As). Here
e’g: Ag-Mod — Og-Mod is the functor introduced in [22, §4.2]. In this case, we see that
since g ¢ is an equivalence when § = Og, it is also an equivalence whenever M (and
hence §) is perfect. In the general case, we use [35, 7.2.4.11 (5)] to find a simplicial object
P*® € Fun(A®, APerf(As)) such that

|P®| ~ M.
Write P° = 8’§(P'). Reasoning as in [53, Corollary 3.5], we deduce that
|P®| >~ eg(M) ~ 8.
It immediately follows that

F ®OX f*g x~ |‘?7 ®OX f*?.|s

and proving that ng ¢ is an equivalence is reduced to checking that f preserves the above
colimit. Since the above diagram as well as its colimit takes values in APerf(X), we can
apply Cartan’s theorem B. The descent spectral sequence degenerates, and therefore the
conclusion follows. u

Corollary 7.4. Let : X — S be a morphism as in the previous lemma. Let j:°S — S
be the canonical morphism and consider the pullback diagram

Xo ——— X
fol lf
s % S

Then an almost perfect complex ¥ € APerf(X) has tor-amplitude within [a, b] relative to
S ifand only if i*¥ has tor-amplitude within [a, b] relative to °S .

Proof. The map j is a closed immersion and therefore so is i. In particular, for any
g € APerf(°S) the canonical map

[T jx(8) = ix f5' (9)

is an equivalence.”” Moreover, the projection formula holds for i, and i, is z-exact. Sup-
pose that # has tor-amplitude within [a, b] relative to S. Let § € APerf”(°S). Then

(" F ®oy, f69) = F ®oy is fo9 = F oy [*jub.

Since J, is 7-exact, we have j,.§ € APerf(S), and therefore the above tensor product is
concentrated in homological degree [a, b]. In other words, i * ¥ has tor-amplitude within
[a, b] relative to S . For the converse, it is enough to observe that j induces an equival-
ence APerf”(°S) ~ APerf“(S). n

29Ultimately, this can be traced back to the unramifiedness of the analytic pregeometry Tan(C).
See [53, Lemma 6.1] for an argument in the non-archimedean case.
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Definition 7.5. Let S € dStnc and let f: X — S be a morphism in dAnSt. A morphism
u: U — X is said to be universally flat relative to S if for every derived Stein space
S’ € dSt and every morphism S’ — § the induced map S’ xs U — S’ xg X is flat.
We say that a morphism u: U — X is universally flat if it is universally flat relative to
Spec(C).

Remark 7.6. Let S be an affine derived scheme and let f: X — S and u: U — X be
morphisms of derived stacks. If f is flat, then for every morphism S’ — S of affine
derived schemes, the morphism S" xs U — S’ x5 X is flat; see [50, Proposition 2.3.16].
In the analytic setting, it is difficult to prove a similar result, because it essentially relies
on base change for maps between derived affine schemes (see [50, Proposition 2.3.4]),
which is not available in the analytic setting.

Corollary 7.7. Let X be a derived analytic stack and let S be a derived Stein space.
Assume that there exists a universally flat effective epimorphism u: U — X where U is
geometric and underived. Let f:S’ — S be a morphism of derived Stein spaces and
consider the pullback

XxS§ £ Xxx8§

ql lp

s —1 45
If ¥ € APerf(X x S) has tor-amplitude within [0, O] relative to S, then g*F has tor-
amplitude within [0, 0] relative to S’.

Proof. Since u: U — X is universally flat, the morphisms U x § — X x Sand U x S’ —
X x 8’ are flat. Therefore Lemma 7.2 shows that we can restrict ourselves to the case
X = U. Using Corollary 7.4, we can reduce the problem to the case where S and S’ are
underived. Since the question is local on X, we can furthermore assume that X is a Stein
space. At this point, the conclusion follows directly from [10, §8.3, Proposition 3]. ]

Using the above corollary, we can therefore define a derived analytic stack
AnCoh(X), which is a substack of AnPerf(X).

In what follows, we will often restrict ourselves to the study of AnCoh(X?"), where
now X is an algebraic variety. Combining [22, Proposition 5.2 & Theorem 5.5] we see

that if X is a proper complex scheme, then there is a natural equivalence™’

Perf(X)®" ~ AnPerf(X?"). (7.1)

We wish to extend this result to Coh(X)?" and AnCoh(X2"). Let us start by constructing
the map between them. The map Perf(X)2" — AnPerf(X?2") is obtained by adjunction
from the map

Perf(X) — AnPerf(X?") o (—)*",

30The derived analytification functor has been first introduced in [34, Remark 12.26] and studied
extensively in [48, §4]. For a review, see [22, §3.1].
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which, for S € dAfff®, is induced by applying (—)~: Cats, — $ to the analytification
functor

Perf(X x S) — Perf(X®" x §3").

It is therefore enough to check that this functor respects the two subcategories of families
of coherent sheaves relative to S and S2", respectively.

Lemma 7.8. Let f: X — S be a morphism of derived complex stacks locally almost of
finite presentation. Suppose that X is geometric and that S is affine. Then ¥ € APerf(S)
has tor-amplitude within [a, b] relative to S if and only if 3" € APerf(X?®") has tor-
amplitude within [a, b] relative to S®".

Proof. Suppose first that 2" has tor-amplitude within [a, b] relative to S?". Let § €
APerf®(S). Then we have to check that 7; (¥ ®oy f*8) =0fori ¢ [a,b]. As the ana-
lytification functor (—)2" is f-exact and conservative, this is equivalent to checking that
we have 7; (¥ ®oy f*§)*") = 0. But

(F ®ox [T = F* @oyan [H(5T), (7.2)

and the conclusion follows from the fact that 2" € APerf”(S2").

Suppose now that # has tor-amplitude within [a, b] relative to S = Spec(A4). We can
check that #2" has tor-amplitude within [a, b] relative to S2" locally on S2". For every
derived Stein open subspace ji: U C 2", write

Ay =T U; 0% |v).

Write ay: Spec(Ay) — S for the morphism induced by the canonical map A — Ay.
Consider the two pullback squares

Xy —2% s X xap U, yan
ful lf f;}”l lf"‘”
Spec(Ay) —2 S U _Ju_, gan

There is a natural analytification functor relative to U,
(—)3: APerf(Xy) — APerf(X).
Moreover, the canonical map
ig (H*) — (by (H)Y

is an equivalence for every # € APerf(X).
Fix now § € APerf(S"). If § ~ (§)®" for some § € APerf’(S), then the equivalence
(7.2) shows that

T (37an ®Oxan fan*(g)) =0
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for i ¢ [a, b]. In the general case, we choose a double covering {V; € U; € S"} by
relatively compact derived Stein open subspaces of $2". Using [22, Lemma 4.12] we can
find §; € APerf(Ay;) such that gy, ~ 8’{,1, (g,-). Here s"{,i is the functor introduced in [22,
§4.2]. At this point, we observe that Lemma 2.4 guarantees that by, (') has tor-amplitude
within [a, b] relative to Spec(Ay ). The conclusion then follows from the argument given
in the first case. ]

As a consequence, we find a morphism
Coh(X) — AnCoh(X?") o (—)",
which by adjunction induces
ux:Coh(X)*" — AnCoh(X?"),
which is compatible with the morphism Perf(X)2" — AnPerf(X?").
Proposition 7.9. If X is a proper complex scheme, the natural transformation
ux:Coh(X)®™ — AnCoh(X?®")
is an equivalence.

Proof. Reasoning as in the proof of the equivalence (7.1) in [22, Proposition 5.2], we
restrict ourselves to checking that for every derived Stein space U € dStnc and every
compact derived Stein subspace K of U, the natural morphism

“colim” Coh Spec(Ay) x X) — “colim” Cohy (V x X"

Keveu Spec(AV)( p ( V) ) KcVeU V( )
is an equivalence in Ind(Catl). Here the colimit is taken over the family of open Stein

neighborhoods V' of K inside U. Using [22, Lemma 5.13] we see that for every V, the
functor

Cohgpec(4y)(Spec(Ay) x X) — Cohy (V x X3")

is fully faithful. The conclusion now follows by combining [22, Proposition 5.15] and the
“only if” direction of Lemma 7.8. ]

7.2. Categorical Hall algebras in the C-analytic setting

Let X € dAnSt be a derived analytic stack. In the previous section, we have introduced the
analytic stack AnCoh(X) parameterizing families of sheaves of almost perfect modules
over X of tor-amplitude < O relative to the base. Similarly, we can define the derived
analytic stacks AnPerf®™, AnPerf®'(X), and AnCoh®™'(X). We deal directly with the
Waldhausen construction.

We define the simplicial derived analytic stack

S.AnPerf: dStnf’Cp — Fun(A®,S)
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by sending an object [1n] € A and a derived Stein space S to the full subcategory of”!
S, Perf(S) — Fun(T,, Perf(S)).

Since each T, is a finite category, [22, Corollary 7.2] and the flatness of the relative
analytification proven in [52, Proposition 4.17] imply that the natural map

(SePerf)® — S,AnPerf

is an equivalence. Moreover, [22, Proposition 7.3] implies that the analytification com-
mutes with the limits appearing in the 2-Segal condition. We can therefore deduce that
SeoAnPerf is a 2-Segal object in dAnSt. From this, we deduce immediately that for every
derived analytic stack X, AnMap(X, SosAnPerf) is again a 2-Segal object. At this point,
the same reasoning as for Lemma 4.1 yields

Proposition 7.10. Let X € dAnSt be a derived geometric analytic stack. Then
Se«AnCoh(X) is a 2-Segal object in dAnSt, and therefore it endows the derived analytic
stack AnCoh(X) with the structure of an IE1-monoid object.

The morphism (7.2) can be naturally upgraded to a natural transformation
§+.Coh(X) — SeAnCoh(X?®") o (—)*"
in Fun(A°, dSt). By adjunction, we therefore find a morphism of simplicial objects
(S«Coh(X))*" — SeAnCoh(X?®").

Remark 7.11. Suppose that X is such that each S, Coh(X) is geometric. Then [22, Pro-
position 7.3] implies that (S¢Coh(X))?" is a 2-Segal object in dAnSt.

Let Y € dAnSt be a derived analytic stack and let u: U — Y be a flat effective epi-
morphism from an underived geometric analytic stack U. As above, we are able to define
the derived stack AnCoh(Y'). Notice that AnCoh(Y') only depends on Y and not on U.
However, as in the algebraic case, the proof of the functoriality of AnCoh(Y) relies on
the existence of U and on Lemma 7.7. In addition, we have

AnCoh(Y) ~ AnPerf(Y) xspperty AnCoh(U).

This is the analytic counterpart of Lemma 2.11.
Similarly, we can define AnCoh®!(Y) and AnBun®'(Y) and more generally their
Waldhausen analogues SeAnCoh(Y) and S.AnBun(Y'). We immediately obtain

Proposition 7.12. Let Y € dAnSt be a derived analytic stack and let u:U — Y be a flat
effective epimorphism from an underived geometric analytic stack U. Then SeAnCoh(Y')
is a 2-Segal object and it endows AnCoh(Y') with the structure of an E-monoid object
in dAnSt.

31See §4.1 for the notations used here.
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As a particular case, let X be a smooth proper connected analytic space. Simpson’s
shapes Xg, Xdr, Xpol» and Xpe also exist in derived analytic geometry (as introduced e.g.
in [22, §5.2]). We have the following analytic analog of Proposition 4.3.

Corollary 7.13. Let X € dAnSt be a derived geometric analytic stack and let Y be one of
the following stacks: Xg, Xgr, or Xpo. Then SeAnCoh(Y) is a 2-Segal object in dAnSt,
and therefore it endows the derived analytic stack AnCoh(Y') with the structure of an
E{-monoid object.

Our next step is to construct the categorified Hall algebras in the analytic setting. The
lack of quasi-coherent sheaves in analytic geometry forces us to consider a variation of
the construction considered in §4.2. We start with the following construction:

Construction 7.14. Let T4s.(C) be the full subcategory of Schc spanned by finite-
dimensional affine spaces A¢.. Given an oo-topos X, sheaves on X with values in CAlgc
can be canonically identified with product preserving functors Tgsc(C) — X. We let
RTop(Tgisc(C)) denote the co-category of co-topoi equipped with a sheaf of derived com-
mutative C-algebras. The construction performed in [33, Notation 2.2.1] provides us with
a functor

I ("Top(Taisc(C)))*® — CAlge.

Equipping both co-categories with the cocartesian monoidal structure, we see that I' can
be upgraded to a right-lax symmetric monoidal structure. Composing with the symmet-
ric monoidal functor QCoh: CAlgc — CatSL we therefore obtain a right-lax symmetric
monoidal functor

(Top(Taise(C)))® — Catly,.

We denote the sheafification of this functor with respect to the étale topology on
RTop(Tuisc(C)) (see [33, Definition 2.3.1]) by

O-Mod: (R Top(T4isc(C)))® — Catsh .

Observe that O-Mod is canonically endowed with a right-lax symmetric monoidal struc-
ture.

Consider the natural forgetful functor
(—)*:dAnc — "Top(Taise(C)).

Equipping both oco-categories with the cartesian monoidal structure, we see that (—)9
can be upgraded to a left-lax monoidal functor. We still denote by O-Mod the composition

_)alg O-
(dAne)® 5 (Top(Taso(©))® 222 Catt

which canonically inherits the structure of a right-lax monoidal functor. Given X € dAnc,
we denote by Ox-Mod its image via this functor.
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This functor admits a canonical subfunctor
APerf: dAng’ — Cat3,

which sends a derived C-analytic space to the full subcategory of Ox-Mod spanned by
sheaves of almost perfect modules. Observe that sheaves of almost perfect modules are
closed under exterior product, and therefore APerf inherits the structure of a right-lax
monoidal functor. Moreover, if f: X — Y is proper, then [48, Theorem 6.5] implies that
the functor

fx: Ox-Mod — Oy-Mod

restricts to a functor
f«: APerf(X) — APerf(Y),

which is right adjoint to f*.

Lemma 7.15. Let

X 2o X

| l 5

Yy 2> vY
be a pullback square in dAnc. Assume that the truncations of X, X',Y and Y’ are separ-
ated analytic spaces. If f is proper then the commutative diagram

APerf(Y) —2 APerf(Y")

| I

APerf(X) —“— APerf(X")
is vertically right adjointable.

Proof. We adapt the proof of [53, Theorem 6.8] to the complex analytic setting. The key
input is unramifiedness for the pregeometry 7,(C), proven in [34, Proposition 11.6],
which has as a consequence Proposition 11.12 (3) in loc. cit. In turn, this implies that the
statement of this lemma holds true when g is a closed immersion. Knowing this, Steps 1
and 2 of the proof of [53, Theorem 6.8] apply without changes. Step 3 applies as well, with
the difference that in the C-analytic setting we can reduce to the case where Y’ = Sp(C)
is the C-analytic space associated to a point. In particular, the map Y’ = Sp(C) — Y is
now automatically a closed immersion, and therefore the conclusion follows. [

Let dAnzp denote the full subcategory of dAnc spanned by derived C-analytic spaces
whose truncation is a separated analytic space. Lemma 7.15 shows that the assumptions of
[12, Theorem 3.2.2(b)] are satisfied with horiz = all and vert = proper. As a consequence,
we can extend APerf to a functor

APerf: Corr(dAng®)son. ) — Cat,.
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Moreover, the considerations in [12, §3.3.1] show that this functor inherits a canonical
right-lax monoidal structure. Using [12, Theorem 8.6.1.5] we obtain (via right Kan exten-
sion) a right-lax monoidal functor

APerf: Corr(dAnSt)S"™  — Catl.

all,rps

Here rps denotes the class of 1-morphisms representable by proper derived C-analytic
spaces.

Given a derived C-analytic space X, we denote by Coh®(X) the full subcategory of
APerf(X) spanned by locally cohomologically bounded sheaves of almost perfect mod-
ules.

Lemma 7.16. Let f: X — Y be a morphism of derived geometric analytic stacks. If f
is Ici®? then it has finite tor-amplitude and in particular it induces a functor

f*:Coh®(Y) — Coh®(X).
Proof. The argument of [54, Corollary 2.9] applies. ]
As a consequence, we obtain a right-lax monoidal functor
CohP: Corr™ (dAnSt)ps ci — Catll.

Finally, we want to restrict ourselves to derived geometric analytic stacks. In partic-
ular, we need that AnCoh(Y) and the corresponding 2-Segal space to be geometric. So,
first note that if Y € dSt is a derived stack, then we obtain as before a natural transforma-
tion

S.Coh(Y)*" — S,AnCoh(Y) (7.3)
in Fun(A°P, dAnSt).

Let X be a smooth and proper complex scheme. By [22, Proposition 5.2],
AnPerf(X) is equivalent to the analytification Perf(X)2" of the derived stack Perf(X) =
Map(X, Perf). Thus, AnPerf(X) is a locally geometric derived stack, locally of finite
presentation.

Lemma 7.17. The map (7.3) induces an equivalence (SeCoh(X))®" >~ S,AnCoh(X?").
In particular, for each n > 0 the derived analytic stack §,, AnCoh(X?") is locally geomet-
ric and locally of finite presentation.

Proof. When n = 1, this is exactly the statement of Proposition 7.9. The proof of the
general case is similar, and there are no additional subtleties. ]

Let X be a smooth proper connected complex scheme. As proved in [22, §5.2], the
analytification functor commutes with Simpson’s shape functor, i.e., we have the follow-
ing canonical equivalences:

(Xer)™ = (X*Magr,  (Xp)™ =~ (X8)™,  (Xoa)™ = (X*")po.

32In this setting, it means that the analyfic cotangent complex IL;’(” Y introduced in [52] is perfect
and has tor-amplitude within [0, 1].
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Lemma 7.18. Let x € {B,dR, Dol}. Then (7.3) induces an equivalence (SeCoh(X))3" >~
SeAnCoh((X®")y). In particular, for each n > 0 the derived analytic stack
S,AnCoh((X2"),) is locally geometric and locally of finite presentation.

Proof. The proof of Proposition 7.9 applies, with the following caveat: rather than invok-
ing [22, Lemma 5.13 & Proposition 5.15], we instead use Propositions 5.26 (for the de
Rham case), 5.28 (for the Betti case) and 5.32 (for the Dolbeault case) in [22]. [

Finally, we are able to give the analytic counterpart of Theorem 4.9:

Theorem 7.19. Let Y be one of the following derived stacks:
(1) a smooth proper complex scheme of dimension either one or two;
(2) the Betti, de Rham or Dolbeault stack of a smooth projective curve.

Then the composition

Coh®(AnCoh(Y ")) x Coh®(AnCoh(Y ™)) <> Coh®(AnCoh(Y®") x AnCoh(Y ™))
L% . Coh®(AnCoh(Y ™)),

where the map on the right-hand side is induced by the 1-morphism in correspondences

AnCoh®*(Ya")

/ X
AnCoh(Y?") x AnCoh(Y?") AnCoh(Y?")

endows Coh®(AnCoh(Y)) with the structure of an E1-monoidal stable co-category.

Proof. The only main point to emphasize is how to use the tor-amplitude estimates for the
map p in the algebraic case (i.e., Proposition 3.10 and Corollaries 3.14, 3.16, and 3.18)
in the analytic setting. First of all, we use Lemmas 7.17 and 7.18 to identify the 2-Segal
object SeAnCoh(Y?") with (S.Coh(Y))2". Then it remains to check that p?" is derived
Ici, where now p is the map appearing in (4.2). This follows by combining Lemma 7.8
and [52, Theorem 5.21]. ™

Corollary 7.20. Let Y be as in Theorem 7.19. Then the derived analytification functor
induces a morphism in Algg  (Catg,),

Coh®(Coh(Y)) — Coh°(AnCoh(Y?3")).

Proof. By using Lemmas 7.17 and 7.18, we have Coh®(Coh(Y)3") ~ Coh®(AnCoh(Y @"))
as [E1-monoid objects. The analytification functor (—)3" promotes to a symmetric mon-
oidal functor

(—)?": Corr™ (dSt) — Corr™(dAnSt).

Combining Lemma 7.8 and [52, Theorem 5.21], we conclude that (—)2" preserves lci mor-
phisms. Moreover, [52, Lemma 3.1 (3)] and [51, Proposition 6.3], we see that (—)2" also
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preserves proper morphisms. Finally, using the derived GAGA theorems [48, Theorems
7.1 & 7.2] we see that (—)2" takes morphisms which are representable by proper schemes
to morphisms which are representable by proper analytic spaces.** Therefore, it restricts
to a symmetric monoidal functor

(—)": Corr™ (dSt)rps,ici — Corr™ (dANSt) rps -

The analytification functor for coherent sheaves induces a natural transformation of right-
lax symmetric monoidal functors

Coh® — Coh® o (—)?".

Here both functors are considered as functors dSt — Cats,. Using the universal property
of the category of correspondences, we can extend this natural transformation of right-
lax symmetric monoidal functors defined over the category of correspondences. The key
point is to verify that if p: X — Y is a proper morphism of geometric derived stacks
locally almost of finite presentation, then the diagram

Cont(X) “2%5 conb(xan)
lp* lpi"
Coht () 225 cohe(yany

commutes. This is a particular case of [48, Theorem 7.1]. The conclusion follows. [

7.3. The derived Riemann—Hilbert correspondence

Let X be a smooth proper connected complex scheme. In [49, §3] there is constructed a
natural transformation
NRH- X;S — Xgn’
which induces for every derived analytic stack Y € dAnSt a morphism
Nan: AnMap(X3R. Y) — AnMap(X3",Y).
It is then shown in [49, Theorem 6.11] that this map is an equivalence when ¥ = AnPerf.**
Taking Y = S.AnPerf, we see that nry induces a morphism of 2-Segal objects
Nan: SeAnPerf(X5R) — S.AnPerf(X3").

By applying the functor 2-Seg(dAnSt) — Algg, (Corr(dAnSt)), we therefore conclude
that
Nan: AnPerf(X3R) — AnPerf(X3")

acquires a natural structure of morphism between [E;-monoid objects:

3Using [51, Proposition 6.3] it is enough to prove that the analytification takes representable
morphisms with geometric target to representable morphisms. This immediately follows from [51,
Proposition 2.25].

34See [22, Corollary 7.6] for a discussion of which other derived analytic stacks ¥ see gy as an
equivalence.
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Proposition 7.21. The morphism

N SeAnPerf(X5R) — S.AnPerf(X3")
is an equivalence. Moreover, it restricts to an equivalence

Nan: SeAnCohgr(X) — SAnCohg(X).

Proof. Fix a derived Stein space S € dStnc. Then [49, Theorem 6.11] provides an equi-
valence of stable co-categories

Perf(XZp X S) ~ Perf(Xg" x S).
Therefore, for every n > 0 we obtain an equivalence

SnAnPerf(X35)(S) =~ Fun(Ty, Perf(X3E x S)) =~ Fun(T,, Perf(Xg" x §))
~ S, AnPerf(X3")(S).

The first statement follows at once. The second statement follows automatically given the
commutativity of the natural diagram

NRH
X3 Xg "

Theorem 7.22 (CoHA version of the derived Riemann—Hilbert correspondence). There
is an equivalence of stable E1-monoidal co-categories

(Coh®(AnCohgr(X)), ®3%) =~ (Coh’(AnCohg(X)), ®3"

Remark 7.23. In the algebraic setting we considered the finer invariant Cohgro,

more adapted to the study of non-quasi-compact stacks. Among its features, there is the
fact that for every derived stack Y there is a canonical equivalence (cf. Proposition A.5)

which is

K(Coh? (Y)) ~ K(Coh®_(°Y)).

pro pro

In the C-analytic setting, a similar treatment is possible, but it is more technically
involved. In the algebraic setting, the construction of CohEm relies on the machinery
developed in §A, which provides a canonical way of organizing exhaustion by quasi-
compact substacks into a canonical ind-object. In the C-analytic setting, one cannot
proceed verbatim, because quasi-compact C-analytic substacks are extremely rare and it
is not true that every geometric derived analytic stack admits an open exhaustion by quasi-
compact ones. Rather, one would have to use compact Stein subsets; see [22, Definition
2.14]. Combining [36, Corollary 4.5.1.10] and [22, Theorem 4.13], it would then be pos-
sible to compare the K-theory of the resulting pro-category of bounded coherent sheaves
on a derived analytic stack ¥ with the one of the classical trucation ®Y . We will not
develop the full details here.
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Appendix A. Ind quasi-compact stacks

The main object of study of the paper is the derived stack Coh(S) of coherent sheaves
on S, where S is a smooth and proper scheme or one of Simpson’s shapes of a smooth
and proper scheme. This stack is typically not quasi-compact, and this requires some
care when studying its invariants, such as the G-theory. For example, when X is a quasi-
compact geometric derived stack, the inclusion i: X < X induces a canonical equival-
ence

iv:G(°X) > G(X).

This relies on Quillen’s theorem of the heart and the equivalence Coh®(¢X ) =~ Coh®(X)
induced by i.. In particular, one needs quasi-compactness of X to ensure that the -
structure on Coh®(X) is (globally) bounded. In this appendix, we set up a general frame-
work to deal with geometric derived stacks that are not necessarily quasi-compact.

A.l1. Open exhaustions

Let j:dGeom < dSt be the inclusion of the full subcategory of dSt spanned by quasi-
compact geometric derived stacks. Left Kan extension along j induces a functor

W: dSt — PSh(dGeom).

Lemma A.1. Let X € dGeom be a locally geometric derived stack.

(1) There exists a ( possibly transfinite) sequence
@ZU()%UI;)---L)UO‘L)UOHJL)---

of quasi-compact Zariski open substacks of X whose colimit is X.

(2) Let Y € dGeom® be a quasi-compact geometric derived stack. For any exhaustion
of X by quasi-compact Zariski open substacks of X as in the previous point, the
canonical morphism

colim Mapgg, (Y, Ua) — Mapyg (Y, X)
o

is an equivalence.

(3) The object W(X) belongs to the full subcategory Ind(dGeom“) of PSh(dGeom®).

Proof. Let V — X be a smooth atlas, where V is a scheme. Let V' < V be the inclusion
of a quasi-compact open Zariski subset. Let

V=€V = X)
be the Cech nerve of V/ — X and set

U = \V].
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The canonical map U’ — X is representable by open Zariski immersions, and U’ is a
quasi-compact stack. Since this construction is obviously functorial in ¥/, we see that any
exhaustion of V' by quasi-compact Zariski open subschemes induces a similar exhaustion
of X, thus completing the proof of (1).

We now prove (2). Fix an exhaustion of X by quasi-compact Zariski open substacks
of X asin (1). For every index «, the map Uy, — U, 41 is an open immersion and therefore
itis (—1)-truncated in dSt. Using [32, Proposition 5.5.6.16], we see that

Mapyg; (Y, Uy) — Mapyg (Y, Ug+1)

is (—1)-truncated as well. The same holds for the maps Mapyg (Y, Uy) — Mapyg (Y, X).
As a consequence, the map

colim Mapyg, (Y, Uy) — Mapyg (Y, X)
o

is (—1)-truncated. To prove that it is an equivalence, we are left to check that it is surjective
on mp. Let f:Y — X be a morphism. Write Yy := Uy Xx Y. Then the sequence {Y,} is
an open exhaustion of Y, and since Y is quasi-compact there must exist an index o such
that Y, = Y. This implies that f factors through Uy, and therefore the proof of (2) is
achieved.

As for (3), this immediately follows from (2) and [32, Corollary 5.3.5.4 (1)]. ]

Corollary A.2. The functor WV restricts to a limit preserving functor

(—)ing: dGeom — Ind(dGeom?).

A.2. G-theory of non-quasi-compact stacks

As a consequence, when X is a locally geometric derived stack, we can canonically pro-
mote Coh®(X) to a pro-category

Coh®? (X) := Coh®(Xing) ~ “lim” Coh®(Uy) € Pro(Catl).
o

pro
In particular, we can give the following definition:

Definition A.3. Let X € dGeom be a locally geometric derived stack. The pro-spectrum
of G-theory of X is
Gpro(X) == K(Coh®,. (X)) € Pro(Sp).

pro

The spectrum of G-theory of X is the realization of Gy (X):
G(X) :=1im Gpo(X) € Sp.

Remark A 4. If X is quasi-compact, then Xjng is equivalent to a constant ind-object. As
a consequence, both Cohgro(X ) and Gpo(X) are equivalent to constant pro-objects and
G(X) simply coincides with the spectrum K(Coh®(X)).
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Proposition A.5. Let X € dGeom be a locally geometric derived stack. The inclusion
i:9X < X induces a canonical equivalence

Ty Gpro(C|X) :) Gpro(X)v
and therefore an equivalence
iv: G(°X) S G(X).

Proof. Choose an exhaustion {Uy} of X by quasi-compact open Zariski subsets as in
Lemma A.1 (1). Then {U o } is an exhaustion of X, and the map i+: Gpro(“X ) = Gpro(X)
can be computed as

“lim” K (Coh®(°U &)) — “lim” K(Coh®(Uy)).
o o

Since each U, is quasi-compact, this is a levelwise equivalence. Therefore, it is also an
equivalence at the level of pro-objects. The second statement follows by passing to real-
izations. ]

Definition A.6. Let X € dGeom be a locally geometric derived stack. We define
G()(X) = JT()G(X)

Remark A.7. In [25,60], the authors defined G of a non-quasi-compact geometric clas-
sical stack Y as the limit of the Go (V) for an exhaustion {V,} of Y by quasi-compact
Zariski open substacks.

The relation between the above two definitions is as follows. Let X € dGeom be a
locally geometric derived stack and let {U,} be an exhaustion of X by quasi-compact
Zariski open substacks. Then there exists a short exact sequence

0 — lim! 711G (Uy) — Go(X) — lim Go(Uy) — 0

in the abelian category of abelian groups.

Remark A.8. Now, we discuss the quasi-compactness of the moduli stacks of coherent
sheaves we deal with in the main body of the paper.

Let Y be a smooth projective complex variety. First, recall that the classical stack
°Coh(Y) decomposes into the disjoint union

“Coh(Y) = | | “Coh”(Y),
P

with respect to the Hilbert polynomials of coherent sheaves. Here, the stacks on the right-
hand side are introduced in §2.3.2. We have a corresponding decomposition at the level
of derived enhancements
Coh(Y) =| | Con”(¥). (A.1)
P
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Now, fix P(m) € Q[m]. As shown e.g. in the proof of [31, Théoreéme 4.6.2.1], there
exists an exhaustion {UnP tnen of Coh? (Y) by quasi-compact open substacks such that
the truncation U ? is a quotient stack by a certain open subset of a Quot scheme for any 7.
By [25, Proposition 4.1.1], a similar description holds for the moduli stack Cohgp(Y') of
coherent sheaves with proper support on a smooth quasi-projective complex variety Y.
Note that the decomposition (A.1) for the stack Cohy(Y) = Cohpsrgp(Y ) reduces to

Cohg(Y) = | | Cohf(¥).
ke€Zxo

By using the explicit description of the U,’f’s, one can show that C'Cohlg(Y) is a quasi-
compact quotient stack, hence the stack Cohlg (Y) is quasi-compact.

Now, let Y be a smooth projective complex curve. The moduli stack Cohp, () is not
quasi-compact. On the other hand, the moduli stacks Bung (Y') and Bunfjz(Y) are quasi-
compact quotient stacks. The truncations of these stacks are quotients by the Betti and de
Rham representation spaces respectively (cf. [72]). The derived stacks are quotients by
the derived versions of these representation spaces (see e.g. [47, §1.2]).

A.3. Correspondences

We finish this section by providing a formal extension of Gaitsgory—Rozenblyum cor-
respondence machine in the setting of not necessarily quasi-compact stacks. Let S be an
(00, 2)-category, seen as an (oo, 1)-category weakly enriched in Catso, in the sense of
[14,21]. We write Catg,) for Caty, thought as weakly enriched over itself in the natural
way (i.e. for the (00, 2)-category of (0o, 1)-categories). Consider the 2-categorical Yoneda
embedding
y:S — 2-Fun(S'P, Catgzo)).

Then [21, Corollary 6.2.7] guarantees that is 2-fully faithful. We let 2-Ind(S) be the full
2-subcategory of 2-Fun(S1-°P, Catg))) spanned by those functors that commute with finite
Catoo-limits. The fully faithful functor 8 — Cat induces a fully faithful embedding

Ind(S"*) — (2-Fun(S", Cat{P)) "

We let 2-Ind(S) be the full 2-subcategory of 2-Fun(S1-?, Catg,)) spanned by the essen-
tial image of the above functor.”> By construction, the 1-category underlying 2-Ind(S)
coincides with Ind(S1-°2).

Remark A.9. We are not sure about the intrinsic meaning of the above definition of
2-Ind(S) from a 2-categorical perspective. It is probably too little to be the correct 2-Ind
construction, and we are not aware whether it satisfies some 2-categorical universal prop-
erty. If “colim”y, x¢ and “colim”g yg are two objects in 2-Ind(S) in theabove sense, the

35We thank Andrea Gagna and Ivan Di Liberti for helping us conceiving this definition.
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mapping category is given by the formula
Fun,. ingcs) (“colim” X “co}gim” y,g) = lim co}}im Funs(xa, y8).
o o

This is all that is needed in what follows.

We now equip € with three markings Choriz, Crent and Cpym satisfying the condi-
tions of [12, §7.1.1.1]. We define three markings Ind(€)noriz, INd(€)yerr and INd(€)agm
on Ind(€) by declaring that a morphism f: X — Y in Ind(€) belongs to Ind(€)peri, (resp.
INA(€)yert, INA(€)qgm) if it is representable by morphisms in Cyorz (resp. Cyerts Cagm)- It
is then straightforward to check that the conditions of [12, §7.1.1.1] are again satisfied.
Next, we let

®: €% — Cato

be a functor and let @y, be its restriction to (€periz)°°. Passing to ind-objects, we obtain
a functor
®M: Ind(€)°P — Pro(Cate).

We let ®"9. be its restriction to (Ind(€)noriz)°. Before stating the next key proposition,
we recall the definition of bivariance:

Definition A.10. A functor ®: €% — Caty is said to be Cen-right bivariant if for every
morphism f: X — Y in €y, the functor &(f): ®(Y) — P(X) admit a right adjoint
D, (f). A €epn-right bivariant functor is said to have base change with respect to €z if
for every pullback diagram
w L X
Al
AN

where f € € and g € Coyiz, the square

oY) 28, o(7)

Y f)l lcb(f’)

o(x) 20, o)

is vertically right adjointable.

Remark A.11. In [12, Chapter 7], the above property is not directly considered. It rather
corresponds to the right Beck—Chevalley property (see Definition 7.3.2.2 in loc. cit.) for
functors with values in (Cat'2))2-°.

Proposition A.12. Keeping the above notation and assumptions, suppose furthermore
that

(1) © is Cen-right bivariant and has base change with respect to Cpyyiy.
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(2) Every object in Ind(€) can be represented as a filtered colimit whose transition maps
belong to Cpyiy-

Then ®1S.. is Ind(€)yen-right bivariant and has base change with respect to Ind(€)noriz.-

Proof. Let f: X — Y be a morphism in Ind(€). Choose a representation Y =~
“colim”y Yy, where the transition maps belong to €,i,. For every index «, we let

Xog =Yy xy X

and we let fy: Xo — Y4 be the induced morphism. By definition of Ind(€)yer, X belongs
to € and fy is a morphism in €. The morphism

D(fo): P(Yy) — P(Xq)

admits a left adjoint ®( f,). Since Ppori, satisfies the right Beck—Chevalley property with
respect to Cyert, the morphisms @y ( fo ) assemble into a morphism

Dy (f): “lim” ©(Xy) — “lim” ®(Yy)
o o
in 2—Pro(Cat((>%)). The triangular identities for the adjunction ®y( fy) 7 ®(fy) induce tri-
angular identities exhibiting ®,(f) as a left adjoint to ®(f) in the (oo, 2)-category
2—Pro(Catg,)). For every morphism Z — Y in Ind(€)noriz, We let Zy := Y, Xy Z. The

induced morphism Z, — Y, belongs to €, by definition. In this way, we can describe
the Beck—Chevalley transformation for the diagram

O(Y) —— B(X)

| !

D(Z) — (X xy Z)
in terms of the Beck—Chevalley transformation for the diagram

D(Yy) ——— D(Xq)

| l

D(Zy) — P(Xa Xv, Za)
which holds by assumption. ]

Seeing Pro(Cato) as the underlying 1-category of 2-Pro(Cat§,ﬁ)), we obtain

Corollary A.13. Keeping the above notation, assume Cyert C Choriz and Cyeny = Cagm. Then
under the assumptions of Proposition A.12, the functor

@M Ind(€)*® — Pro(Catoo)
uniquely extends to a functor

@ - Corr(Ind(€))e", . — 2-Pro(Cat?),

corr* vert,horiz
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and its restriction to Corr(Ind(€))verhoriz factors through the maximal (oo, 1)-category
Pro(Catso) of 2-Pro(Catg>)).

Proof. Tt is enough to apply [12, Theorem 7.3.2.2 (b)] to the (o0, 2)-category
S = 2—Pro(Cat§))2'°p.
See also [39, Theorem 4.2.6]. [
Corollary A.14. There exists a uniquely defined right-lax symmetric monoidal functor
QCohygyo: Corr™ (INd(dGeom™)) s a1 — Pro(Catso)-

Proof. Take € = dSch® and £ = dGeom®. For €, we take horiz = all and adm = vert =
proper. Observe that condition (5) in [12, §7.1.1.1] is satisfied. Consider the functor

QCoh: (dSch®)° — Cateo.
Applying [12, Theorem 7.3.2.2], we obtain a functor
QCoh: Corr(dSch®)P® . cat®.

proper,al

For €, D we now take horiz = all and vert = rps (morphisms that are representable by
proper schemes) and adm = isom. Then [12, Theorem 8.6.1.5] supplies an extension
of QCoh,

QCoh: Corr(dGeom®)®* | — cat®.

rps,all

Thanks again to [12, Theorem 7.3.2.2], the above functor is uniquely determined by its
restriction
QCoh: (dGeom®)°® — Cateo.

This is our ®. It satisfies the hypothesis of Proposition A.12. Thus, applying Corol-
lary A.13, we obtain a functor

QCoh: Corr(Ind(dGeom®™))>  — 2-Pro(Cat?),

rps,al

which we restrict to a functor
QCohpro: Corr(Ind(dGeom®©))es an — Pro(Catoo).

Combining [39, Theorem 4.4.6] and [12, Proposition 9.3.2.4] we conclude that we can
upgrade these constructions to right-lax symmetric monoidal functors. ]
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