J. Eur. Math. Soc. 25, 1227-1251 (2023) DOI 10.4171/JEMS/1209

© 2022 European Mathematical Society
Published by EMS Press and licensed under a CC BY 4.0 license

JEMS

Yurii Belov - Alexander Borichev

The Newman—Shapiro problem

Received December 3, 2019

Abstract. We give a negative answer to the Newman—Shapiro problem on weighted approximation
for entire functions formulated in 1966 and motivated by the theory of operators on the Fock space.
There exists a function in the Fock space such that its exponential multiples do not approximate
some entire multiples in the space. Furthermore, we establish several positive results under different
restrictions on the function in question.
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1. Introduction and the main results
Let ¥ = ¥(j) be the classical Bargmann—Segal-Fock space, where
1
Fa) = {F € Hol(C) : |F|% = —/ |F(2)[2e™ 12 am(z) < oo},
T Jc

and m stands for the area Lebesgue measure. This space serves as a model of the phase
space of a particle in quantum mechanics and so plays an important role in theoretical
physics. Moreover, this space appears in time-frequency analysis, as a spectral model
of LZ(R) via the Bargmann transform (see, e.g., [15, Section 3.4]). Note also that the
complex exponentials e, where e, (z) = er? , are the reproducing kernels of ¥, i.e.,

(F,k,{)fZF(l), FE\(F,

where k) = me_j.

In 1966, D. J. Newman and H. S. Shapiro [20] posed the following problem about the
structure of the operator adjoint to the multiplication operator in Fock space. Let F be an
entire function such that, for every A > 0,

|F(2)| §C(A,F)exp(%|z|2—A|z|), zeC. (1.1)
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This condition is equivalent to e, - F being in ¥ for every A € C. Now we can define the
multiplication operator M : G +— F G on the linear span of the exponentials

£ = Span{e, : A € C}.
The natural domain of the operator MF is
RrF={Ge¥F:FGe¥F}

Thus, we can consider the adjoint operator My as well as the operator adjoint to the
restriction M |g, which we denote by F*( j—z) (following [20]). This notation is moti-
vated by the fact that when F = P is a polynomial, we have

P(A)G(A) = (MpG,me_35) = (G, P*(d/dz)(me,3)).

where P*(z) = P(Z) and P*(%) is understood in the usual sense as a differential oper-
ator. In this case it is easy to see that My = P*(%). The Newman—Shapiro problem
(related to a much earlier work of E. Fischer [13]) is whether M = F *(%) for all F
satisfying (1.1). In [20] (see also [22] and an extended unpublished manuscript [21]) New-
man and Shapiro proved that this is the case when F is an exponential polynomial (i.e.,
F = ZZ:I Pye;, , where Py are polynomials and A; € C) and for some other special
cases (i.e. F has no zeros or F(z) = (sinz)/z). Moreover, they revealed some connec-
tions of this problem with weighted polynomial approximation in ¥ . More precisely,
they proved the following result (to avoid inessential technicalities we assume that F has
simple zeros only). Denote by & the space of all entire functions.

Theorem 1.1 ([20, Theorem 1], [22]). For every F satisfying estimates (1.1) the follow-
ing statements are equivalent:

(1) Span{z"F :n >0} =6FN¥;
@ Mj = F*(b);
(3) Ker F*(%) = Span {e; : ej € Ker F*(j—z)} = Span {ej : F(1) = 0}.

The Newman—Shapiro problem has remained open since 1966. Several similar ques-
tions were studied, e.g., in [19] (see also [12, Chapter X.8]). For related questions on
Toeplitz operators on the Fock space see [11] and the references therein.

It should be mentioned that the Newman—Shapiro problem is closely related to the
spectral synthesis (hereditary completeness) problem for systems of reproducing kernels
in the Fock space (or of Gabor-type expansions with respect to time-frequency shifts of the
Gaussian). In the Paley—Wiener space setting, the spectral synthesis problem was solved
in [2], whereas for the reproducing kernels of the Fock space the solution (in general, also
negative) was recently given in [3].

In this article we prove that the answer to the Newman—Shapiro problem is in general
negative and establish several positive results under different restrictions on the growth
and regularity of the function F.
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The original Newman—Shapiro problem is formulated for the Fock spaces on C”",
n > 1. Here, we restrict ourselves to the case n = 1. The negative answer to the Newman—
Shapiro problem in the case n = 1 means the negative answer for every n > 1. It seems
that one should use different techniques to obtain positive results for n > 1.

Theorem 1.2. For any a € (1, 2), there exist entire functions F and G such that G, GF
are in ¥ and for every entire function h of order at most « we have hF € ¥, but

GF ¢ Span{pF : p € P} = Span{e, F : A € C}.

Thus, the equivalent conditions of Theorem 1.1 do not hold for F. Here and later on,
& is the space of the polynomials.

Next we establish that under more restrictive growth and regularity conditions on the
function F the answer to the Newman—Shapiro problem becomes positive.

Given o > 0, denote by &, o the class of all entire functions of type at most o for

order 2, that is,
log |F(2)]

limsup ———— <
|z]—>00 |Z|2

Set 82 = Ua<°o 82’05.
Given F € &5, consider its indicator function for order 2,

1 F i0
hr(0) = nmmp%;e)|
r

r—>o0

., 0el0,27].

We say that F € &, is of completely regular growth if log | F (re'?)|/r? converges uni-
formly in 6 € [0,27] to hp(0) as r — oo and r ¢ EF for some set Ef C [0, 00) of zero
relative measure, that is, . Er N[0, R]
lim =
R—o0
Theorem 1.3. Let F € &. Suppose that there exists G € &, of completely regular growth
and o < 1 suchthat (FG-8) N F) = FG - C, andinf| 2,1 hg > 0. Then F € ¥y for

everyy > «, and

0.

Span{e; F:AeC}=EFNF.
Thus, the equivalent conditions of Theorem 1.1 hold for such F.
The assumptions of the theorem mean that the zero set of F' can be complemented by
a set of positive angular density to a set A such that the system {kj } <5 is complete and
minimal in F(q).
When the zero set of F' is sufficiently regular and not very dense, we get the following
result.

Corollary 1.4. Let F € F be of completely regular growth. Suppose that the upper
Beurling—Landau density D}'( F) of the zero set Z(F) of F (with multiplicities taken
into account) is less than 1 /7 :

d(Z(f)N D(z, R 1
lim sup sup card(Z(/) > @ R) < —. (1.2)
R—oco zeC 7R T

Then
Span{e, F : AL e C}=&EFNF.
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Here and later on D(z, r) stands for the open disc centered at z of radius r.

Condition (1.2) is indispensable here as demonstrated by the example given in the
proof of Theorem 1.2.

When we restrict the growth of F, there are no more regularity restrictions on the
Zeros:

Theorem 1.5. There exists n > 0 such that if F' € &, then
Span{e; F : A€ C} =8FN¥.

Thus, the situation here could be compared to that of the cyclicity/invertibility prob-
lem in the Bergman space. Invertibility does not imply cyclicity there [9], but it does if we
impose additional growth restrictions. (Stronger lower estimates also imply cyclicity [7].)
The main difference is that Bergman space cyclic/invertible functions f* are zero free and
one works with harmonic log | f|, while in our situation Fock space functions have a lot
of zeros, which makes the problem much more complicated.

The Fock space does not possess a Riesz basis of reproducing kernels. Instead, we
have the system K = {ky, } ez, Which is complete and minimal in ¥ . Here and later on,
Z=7+iZ C Cand Zy = 2Z\ {0}. Let 0 be the Weierstrass sigma function associated
to Z, and 0¢(z) = o(z)/z. For more information about these functions see Section 2.
The system {gy }wez,, Where g, = 0o/(c}(w)(- — w)), is biorthogonal to K. One of
our main technical tools to get the completeness results is the following Parseval-type
relation: if Fy, F, € ¥ and u € Z(F3) \ Zg, then

Z(Fz,kw).(gw,ﬂ)[z_lw_}_ 1 ]

weZg w_M
_ (Fa, F1) +< 3

,F1> + 0(|Z|_1), |z] > 00,z € C\ Q,
z

for some thin set 2. Furthermore, we study related continuous Cauchy transforms corre-
sponding to pairs of Fock space functions, whose asymptotics gives their scalar product.
In particular, given Fy, F» € ¥, we have

1 <00(Z)F1—F1(Z)00 F>
0o(z) 2

Z — -

_ / F>(O)F1(0) el dma(t) — F(z) [ 00(&)F1(0) oIt dma(©)
C

z—¢ oo(z) Jc  z-¢

F, F
= w—i—oﬂzrl), |z]| > 00,z € C\ Q,
z

for some thin set 2. Finally, we establish and use a number of uniqueness results on Fock
space functions outside thin sets (thin lattice sets).

The plan of the paper is as follows. In Section 2 we introduce some notations and
prove three uniqueness results for functions in the Fock space. Section 3 contains several
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auxiliary results on interpolation formulas and the scalar product in the Fock space. The-
orem 1.3 together with some auxiliary lemmas is proved in Section 4. Theorem 1.5 and
Corollary 1.4 are proved in Section 5. Finally, Theorem 1.2 is proved in Section 6 using
techniques that are quite different from those in the previous part of the paper.

Notations

Throughout this paper the notation U(x) < V(x) for functions U, V' > 0 means that there
is a constant C such that U(x) < C V(x) for all x in the set in question. We write U(x) =<
V(x)ifboth U(x) < V(x) and V(x) < U(x).

2. Notations and some uniqueness results for the Fock space

In this section, after introducing some notations, we establish three uniqueness results for
Fock space functions.
Given a € C, the time-frequency shift operator 7 given by

(T F)(z) = ™ 31 p(z —a)
is unitary on the Fock space ¥ .
Put dv(z) = ezl dmy(2).
Given F € & we denote by Z(F) its zero set.
It is known [17, Theorem 5, Chapter 3] that if F, G € &, and F is of completely
regular growth, then
hre = hr + heg.
Together with ¥ we consider its subspace
Fo={Fe& . PFe¥}
Given F € ¥y, denote
[Flg = Span{P F}.
Following [3] we say that a measurable subset of C is thin if it is the union of a
measurable set €2 of zero (area) density,
. I’l’lz(Q] n D(O, R))
lim =0
R—o0 R2

s

and a measurable set £2, such that

/ dmy(z) o
, (Iz] + 1)?log(|z] +2) .

The union of two thin sets is thin. If €2 is thin, then its lower density
.. .ma(Q2N D0, R))
lim inf
R—o0 R2

is zero. In particular, C is not thin. If € is thin, then its translations z + €2 are thin for all
zeC.
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We start with the following Liouville type result. Although we do not use it directly in
the paper, it helps us to better understand how sparse thin sets are with respect to the small
value sets of Fock space functions. The lemma was originally formulated in [3, Lemma
4.2]. A corrected proof is given in [4]. Here we give an alternative proof.

Lemma 2.1. Let F be an entire function of finite order, bounded on C \ Q for some thin
set Q2. Then F is a constant.

Proof. Suppose that F is not a constant and that
log|F(2)] = O(lz|").  |z] — oo, 2.1
for some N < co. We can find w € C and ¢ € R such that the subharmonic function
u(z) =log|F(z —w)| +c

is negative on C \  for some open thin set &, and #(0) = 1. Given R > 0, consider
the connected component OF of @ N D(0, R) containing 0. By the theorem on harmonic
estimation [16, VIL.B.1], we have

1 = u(0) < (0,008 N 3D(0, R), OF) - max, u(z),
Z|l=

where w(z, E, O) is the harmonic measure at z € O of E C dO with respect to O. By
(2.1) we obtain

(0,908 N 3D, R), 0OR) > aR™N, R=>1, (2.2)

for some a > 0.
For some R > 1 to be chosen later we set

w(z,d0R N dD(0, R), OF), z e OR,
p(z) =11, zedORnNaD(,R),
0, ze(D(,R)\OR”) U®GDO,R)\IOR),

r) = max .
v(r) Jhax ¢

By the maximum principle, ¥ increases on [0, R].
We use the following radial version of Hall’s lemma (attributed to @ksendal in [14,
p. 125]): if E is a measurable subset of D(0, 1) \ D(0, 1/2), then

(0, E,D(0,1) \ E) > éma(E)

for some absolute constant § > 0.
Let0 <7 < (1 + &)r < R for some ¢ € (0, 1/2) and assume that

R me? ,
mz(O NDO,(1+¢&)r)\ D(O,r)) < Tr .
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Then by Hall’s lemma, applied in the discs
D(¢,er/2), ¢ €dD(,(1+¢/2)r),

we obtain
V() =1 =B)y (1 +e)r)

for some absolute constant 8 > 0. Choose & > 0 such that (1 + ¢)>Y (1 —f) = 1 and
assume that R = (1 + &)™ for some integer M. Put

N = {n >0:ma (2N DO, (1+&)"H)\ DO, (1+e)") > %82(1 + 5)2"},

and set Ny, = Z4 N[0, M)\ N. Then
Y((1+e)") <+ y((1+o)"h), ne Ny
By (2.2) we obtain
a(l+ &)™ < y(1) < (14 &Ny (R) = (1 4 )72V Vo),

and hence
M > 2card(Ny) —c, M >0.

In particular,
card([3°,3°TH) N N) = 3572, 5> . (2.3)

We have Q = Q1 U Q,, where €2, and €2, are open, and

. mz(Ql ﬂD(O, R)) dmz(z)
lim =0, < Q.
R—o0 R? Q5 (|Z| + 1)2 10g(|Z| +2)
Furthermore,

d
/ ;nz(z) 23, n>ng,neN,
Q,, (z[+ D?log(lz] +2) ~ n

for some ¢ > 0, where Q5 , = Q2 N D(0, (1 +&)"*t1)\ D(0, (1 + &)"). Thus,

> <o

nenN

which contradicts (2.3). This completes the proof. ]

We say that a subset A of the lattice Z = Z + i Z is lattice thin if for some (or equiv-
alently for every) ¢ > 0, the set
U D(w,c)

wezZ

is thin.
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Let o be the Weierstrass sigma function associated to Z,

2

o(z) =z 1_[ (1 — %)65)"'2?112,

weZg

where Zy = Z \ {0}. Set 09(z) = 0(z)/z. Since
lo(z)| = dist(z, Z)e™D2P ;e C,

we have 0 € &, /2, he = m/2 and Z is a uniqueness set for F .

Lemma 2.2. There exists B € (0, 1) such that if S € &, and Z is a subset of Z of lower
density at least 1 — B satisfying

inf S| < 1
AD(z,plog~2(1+|z])

forevery p € (0,1) and z € Z4, then S is a constant.
Proof. Forevery z € Z; put
A, ={w e D(z,log 2(1 + |z])) : |S(w)| < 1}.

Then every A, contains a finite family of intervals z + e'%.z J Zk with pairwise disjoint
J¥ C R of total length (1/2) log~2(1 + |z|). Set

a=cC\ | J A

z€Z)

Givenz € C and a > 0, set
Z2% ={w e Z;: Ay C D(z,a)\ D(z,a/2)}.

Next, given § € (0, 1) to be chosen later, if the lower density Z; is at least 1 — 8 with
0< B <B() <1,then

card(ZZ"%) > %82r2, z € dD(0,r), r > r(8). (2.4)
Now we are going to prove that, under condition (2.4), we have
a)(z, a2 N D(z,6]|z|), D(z,8]|z]) N Q) >y, |z| > r(), (2.5)

for some absolute constant y > 0.
Given z € C, sett = §|z| and

F={wep@O.h:z+wie [J Ay

wEZi'rS

H=c Z Hw =€ Z Zx(w+ei9kst1’I}—Z)/tm’

weZi’rs wEZi'rS k
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where m is one-dimensional Lebesgue measure and ¢ is a normalization constant such
that u is a probability measure.

Then, under condition (2.4), we have ¢ =< (log? t)/t for large ¢, and the logarithmic
energy of u is estimated from below as follows:

I = / / log &1 — &l diu(61) du ()
=—c? Z I(pw)

z.ré
wezZsy,

> > /[10g|§1 — &l dpw (§1) dpw, (82)

weZi " w ezl 8\ (w)

log? ¢
<0(1)+ g L. sup E /log
! ueD(0,1) s
wezZy

= |dﬂw(§) o).

Since supp u C F', the logarithmic capacity of F' is bounded below by an absolute constant
¢ > 0. Finally, [14, Theorem II1.9.1] yields (2.5).
Put
Y(r) = m(%x)log|S| r > 0.

Since S € &,, we have
v(r) = O(rz), r — o0. (2.6)

Under condition (2.4), by the theorem on harmonic estimation [16, VIL.B.1] and by (2.5),
we obtain

v(r) <y +r)(1—vy), r>r(). 2.7
If § is sufficiently small, 0 < § < (1 — y)_1/2 — 1, then (2.6) and (2.7) together imply that
¥ <0, and hence S is a constant. This completes the proof. ]

Lemma 2.3. Let F € $y N L°(Z). Then F is a constant.

Proof. By the Lagrange interpolation formula, for every k > 0 and z € C \ Z( we have

% F(2) _ Z wk F(w)

o(z) 2 0'(w)(z — w)’
and hence
*F(2)| Z wk F(w) Z [wl* - |F(w)]
o) | |mowE—w|~ Sl |z —wl’
Therefore,

wl*

)| dist(z, Z) > 1/3.

F@I 5 lo@)]-min Z y
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Thus,

UCIETE . m;3—|z|k > luffe e

=B m 20 Izlk/ i3 dims )

o0
Z|z)? : 1 k+1,—%r?
= 2me2 -min —— r*Te 2" dr
0

—kl ] -
oglz| + 5 log— 5

: [ 2 k+1  k+1 k+1]
< minexp| —|z|
k>0 2
<1+]z|, dist(z,Z)>1/3.

It remains to use the Liouville theorem. [

3. Interpolation formulas and duality in the Fock space

In this section we establish several results on relations between interpolation formulas,
expansions with respect to some fixed complete and minimal systems of reproducing
kernels and their biorthogonal systems, and the scalar product in the Fock space.

Lemma 3.1. Let F1, F, € ¥ and F3 € . Then

‘/ F2(§)F1(§) dl)(;) =o0(1), |Z| — 00,

c z—¢

‘/’ F(O)Fi(0) dv(@)| = o1 + 2D, |z| — oo,
c z-¢

dv(0)| = 0(z| M og"?|z]). |z] — oo.

’/ 00(§) F1(2)
c z-¢

Proof. We use the fact thatif F € ¥, then |F(z)| = 0(e”|z| /2) as |z| = oo. Furthermore,
F>(0)F1(©) dv(0) = ¢(¢) dmy (&) with ¢ € L'(C) N Cy(C). Therefore, for every R > 0,

we have
‘/ F2(8) F1(9) - [ @(§) dma(0)
c z—¢ “Jewber  z-¢

o(0) dms(0)
+ /D(z R) =%
< ||(‘DHL%_FR-O(I), |z = oo.

The proof of the second inequality is analogous.



The Newman—Shapiro problem 1237

To prove the third inequality, we verify that

‘/ 00(§) F1(8) dv(Z)'
c z-¢
00(8) F1(§) dm2({) 00(§) F1(§) dm2(8)
= /(C\D(z,l) z—¢ * /D(z,l) z—¢
dmy(©) )”2 ( s )
<IF 1””“)(/@\D(Z,D ariepe—2) TR
= 0(z| " 1og"? |z]). |z| > . .

Given F € ¥,z € C, set

F(§)oo(z) — F(2)00(8)

A(F.2)(E) = —

teC.

Then

A(F,z) = oo(z)FZ_—_F(Z) + F(Z)UO(ZZ)+UO e .

Given Fy, F, € ¥, set

J(F1. o)) = f@@w, 2. F)

:/ B0 Fi(§) du(g)—FZ(z) 00(§) F1(9)
C

z=¢ o0(2) Je  z-¢

dv(?).
Then og - d(Fy, F2) € &.
The following result is contained in [3, proof of Lemma 4.3].

Lemma 3.2. Let 1, F>, € . Then

(F2, F1)
z

J(F1, F2)(z) = + 0(|z|_1), |z]| = 00,z € C\ Q,

for some thin set 2.

The system K = {ky }wez, is a complete and minimal system in ¥, and the system
{gw twez,, Where gy = 09/ (0 (w)(- — w)), is biorthogonal to K (see [3,6]).
Lemmas 2.3 and 4.1 of [3] give us the following result:

Lemma 3.3. Let Fy, F> € . Define

F(w o
tw = (Farku) - (gu. Fr) = 2 )<—°,F1>, w e Zo.
og(w) \:—w
Then
log(1 + |wl) ’ '

weZg
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and for every . € Z(F,) \ Zo we have

ch[;—i- ! i|=J(F1,F2)(Z)+<f—2M,F1>, z € C\ Zo,

Z—W w —
wEZo /L

with the series converging absolutely in C \ Z.

The following lemma establishes some relations between orthogonality in the Fock
space and the corresponding discrete Cauchy transform.

Lemma 3.4. Let F», F5 € &, and Fy, FoF3 € ¥, and let F3 be of completely regular
growth with inf[o 2,1 hFy = 1 > 0. Suppose that

FF
F L 2—; A€ Z(F3),

and define

1 o
dy = (gw, F1) = ,—<—0,F1>, w € Zy.
op(w) \-—w

Fix distinct Ay, Ay € Z(F3) and set

_ dsz(w)Fg,(U))
6(2)— Z (Z_u))(w—kl)(w_AZ)'

wezg

Then for every € > 0,
€(z) =o(1), |z| = o0, dist(z, Zg) > «. (3.2)
SetU =09 -J(F1, F2). Then U € &, 55—y and

UF;3
(=A)(—2A2)
U(w) = dyoy(w)F2(w), w € Zo.

00-€=

Proof. By [3, Lemma 2.3], we have
ldw| S e 100122 4 Jw]),  w e Zo.

and hence

3 |[P2w)Fs(w)] - |dw| _

2
weZg |w|

This implies (3.2).
By the simple argument in [6, proof of Lemma 3.1], for any distinct A1, A5, A3 €
Z(F3) we have

_ F2F3 _ dsz(w)F3(w)
°T <(- — A= A= Az)’F1> - XZ: (W= AD@W = A2) W —A3)
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Hence, for fixed A1, A, € Z(F3) we obtain

Z dw F>(w) F3(w) _ F5(2)U(2)
(z —

€@ = W)W =AW —12) _ 50 -G —Aa)

weZg

for some entire function U. Next, since n = infjp 271 iF; > 0, we have U € & /2.
Comparing the residues, we conclude that U(w) = dy,04(w) F2(w) for w € Z,.
Finally, set
T=U — 00 J((Fl, Fz)

Then T € &, and by Lemma 3.3, T vanishes on Zg. Set T = T /op. We have = &, and
by Lemma 3.1, we deduce that 7 is of at most polynomial growth. Lemma 3.2 implies that
T =o0(l)as|z| > 00,z € C\ Q, for some thin set 2, andhence T =0and T =0. =

Lemma 3.5. Let Fy, F», € ¥, and suppose that Fy { F,, and for some E € & and P € P
we have

E
Jd(F1,F;) = — + P.
0o

Then, given y > 0, there exists a lattice thin set Z, such that E has at least one zero in
every disc D(w,y) with w € Zo \ Z;.

Proof. By Lemma 3.2,

J(FI,FZ)(Z)z%O(l), 2] > 00, 2 € C\ Q, (3.3)

for some a # 0 and some thin set . Set

ne = [P0 00, ne = [ 295w,

so that  (Fy, F2) = I1 — F>15/09. By Lemma 3.1, for some B < oo we have

a0 (§)F1 ()

log(2 + |z])
L)) <B—=—"""2 :eC. 3.4
[1>(2)]" < e z (3.4)
Lety € (0,1/2). Set
F,|? 2
Zi = {weZO: sup 2 > @] }
D(w,)\D(w,y/2)| 00 100B log(2 + |z])

If w € Zq, then

1
2 e —
/D(w,l)wz(m PO 2 e

and hence Z is lattice thin.
By (3.4),if w € Z\ Z4, then

Fz(Z)

N 00(2)

zeD(w,y)\D(w,y/2)

—D(z )' 3.5)
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Next we use the fact that 971 (z) = 7w F»(z) F; (z)e_”|z|2, and hence 31, € L1(C) N
L*°(C) N C°°(C). Furthermore, d/; is the Beurling—Ahlfors transform [1, Chapter 4] of
0, € L?(C), and hence 91; € L?(C). Set

jal?y? }

zo={wezo: VLGP dma(e) = A9
D(w,y)\D(w,y/2) 100w

Since VI, € L2((C), the set Z, is lattice thin. Furthermore, if w € Z \ Z,, then there
exists Q(w) C (y/2,y) such that T'(w) = UreQ(w) dD(w, r) satisfies m, (T (w)) > y?
and

oscr(w)(211(2)) < |al/4.

Here and later on,

osca(f) = sup [f(z1) = f(z2)].

z1,22€A

Now, if w € Z \ (Z1 U Z,), then, by (3.5), we have
oscr ) (24 (F1, F2)(2)) < |al/2. (3.6)
Set
Zz ={w e Zy\ (Z1U2Zy):|zd(Fy, F5)(z) —a| > 3|a|/4 for some z € T'(w)}.

By (3.3) and (3.6), the set Z3 is lattice thin.
Now, if w € Zy \ (Z1 U Z, U Z3)and r = r(w) € Q(w), then

|zd(Fy, F2)(z) —a| < 3|a|/4, z € dD(w,r).

Thus the total change of the argument of E/oq along dD(w, r) is 0 (consider first the case
P = 0, then the case P # 0), and hence E has one zero in D(w, r).

Finally, E has at least one zero in every disc D(w, y) for w € Z outside a lattice thin
set. |

4. Proof of Theorem 1.3
We start this section with four lemmas dealing with the closed polynomial span [F]# of
F € ¥ . Then we pass to the proof of the theorem.

Lemmad4.1. Let F € &, and suppose that for every A > 0, the function F satisfies (1.1).
Then
Span{e, F : A € C} = [Fly.

Proof. By (1.1), we have

[|F(z)|2(ZM)2dV(z)<oo LeC
C k! ’ '

k>0
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Therefore,
eAFE[F]y,', AeC.

In the opposite direction, let H € ¥ be orthogonal to all ey F', A € C. Set

an =f E"FQQOH&)dv(), n=>0.
C

By (1.1), the series ano anz™/n! converges in the whole plane and equals the zero
function. Hence, a,, = 0 for n > 0. By the Hahn—Banach theorem, we conclude that

PF C Span{e, F : A € C}. L]

Lemma 4.2, Let F € ¥y and H € [Fg. Then for every A € Z(H) \ Z(F) we have

% € [F]{p

Proof. If P € P and |H — PF| < &, then

|[P(A)| <e-C(F, ).

Hence,
IH — (P —PA)F| <e-Ci(F.2),
H P—-P(A
Thus, H/(- — L) can be approximated by elements in [F]. L]

Lemma 4.3. Let F € ¥y and let H € &, be of completely regular growth. Suppose that
inflo on) Ay > 0, H has simple zeros, Z(F) N Z(H) = @, and FH € [F]g. Next, let
W € & be such that FW € ¥ and

FW L [Fls.

Then

H(z)/c%g)gwwdu(;):/(:F@)H(ZQFE(K)W@)

dv(0). 4.1)
Proof. Denote

Az) = [C F@f%ﬁﬂé‘)d”@, B(z) = [C F(é)H(f)_F;;)W(o

Since d(AH — B) = 0, AH — B is an entire function; this function vanishes on Z(H)
because of Lemma 4.2. Denote T = A — B/H. We have T € &§. Applying Lemma 3.1
to A and B we find that maxge[o 2] |T(rei0)| — 0 as r tends to 0o, outside a set of r of
zero relative measure, and hence 7 = 0. n

dv(Q).
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Lemma 4.4. Let F € ¥y and let H € &, be of completely regular growth. Suppose that
n =inflo 27 hy > 0, H has simple zeros, Z(F)NZ(H) =9, (FH -§)N¥ = FH -C,
and FH € [Flg. Then

[Flgp =E6FNF. 4.2)

Proof. Without loss of generality, we can assume that F' has infinitely many zeros. Shift-
ing F and H by an operator 7, if necessary, we can assume that Z(FH) N Zo = 0.
Suppose that (4.2) does not hold and choose V' € & \ {0} such that FV € ¥ and

FV L [Flg.
By Lemma 4.2,

FH

FVJ_—A, Ae Z(H).
Set
1 (o))
ay = Fw)V(w), dy=—F—(——FV), we2Z,.
og(w) \- —w

Fix distinct A1, A, € Z(H) and set U = o - J(FV, F). By Lemma 3.4 (applied to F; =
FV,F,=F,F3=H),wehave U € &, 5/,—y, and

. dy F(w)H(w) B H((z)U(z)
€= ) @ity ~ @G A)GE =)

weZg

Furthermore,
U(w) = dyoy(w)F(w), w € 2o,

and for every ¢ > 0,
€1(z) = o(1), |z| = oo, dist(z, Zg) > «. 4.3)
Fix u € Z(FV) and set

&) = Zawdw[ﬁ+ : }

w —
weZg M

uv
R=—-%06,. 4.4)
0o

By Lemma 3.3 (applied to F; = F> = FV), the series €, converges absolutely in C \ Z.
By (3.1), for every € > 0,

€(z) = o(log|z]), |z| = oo, dist(z, Zg) > &. 4.5)

Comparing the residues, we conclude that R € &.
Next, choose distinct 1, o € Z(F') and write the Lagrange interpolation formula
Fw)V(w F2)V(z
en=3 - (w)V(w) _ Ve
S o) —ww—pw—p2) 0o — ) — p2)
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Since FV € ¥, the series converges absolutely in C \ (Zo U {u1, n2}), and for every
>0,

€3(z) = o(1), |z| — oo, dist(z, Zg) > «. (4.6)
Now,
_ H(z)U(z) . F(z)V(z)
GOS0 = OG- G -T2 5@ —aE — o)
_F@H@) R(z) + €5 (2)

oo(z) (=A@ —A2)(z —p1)(z — p2)’

By (4.3), (4.5), (4.6), and the maximum principle, FHR belongs to #-% . Furthermore,
FH(R — 1) € P-¥ . Since the only entire multiples of FH in ¥ are the constant ones,
we conclude that R is a polynomial.
By Lemma 3.3 (applied to F'; = F> = FV) and (4.4) we have
uv / IFOVE)P
c t-u

— L = J(FV.FV)+
0o

dv(¢) + R.

By Lemma 3.5 (applied to F; = F, = FV), we see that UV has at least one zero in every
disc D(w, 1/10) for w € Z outside a lattice thin set. Since R is a polynomial, (4.4) and
(4.5) show that UV € P-F. Since U € &) /2y, a subset of Z(V') of positive lower
density is contained in | J, ¢ , D(w, 1/10). Repeating the above argument for 77/, (F)
and 77/2(V), we obtain U € &5 5/>, such that W = T7,,(V)U; has at least one zero
in every disc D(w, 1/10) for w € Z, outside a lattice thin set. Since W € £ - ¥, and
a subset of Z(W) of positive lower density is contained in C \ | J,, ez, D(w, 1/10), we
obtain a contradiction. Thus, relation (4.2) does hold. [

Proof of Theorem 1.3. Suppose that
Span{e) F : A€ C} #EFNF.

Set V(z)=G(z)o((1 —)/2z). We have V € &;,4 for some g > 1. Furthermore, FV e¥ .
Without loss of generality, we can assume that F'V has simple zeros: otherwise, we can
shift the zeros of F and G a bit without changing our hypothesis and conclusions. By
Lemmas 4.1 and 4.4,

FV ¢[Flg.

Next, let
Vs(z) =V(sz), O0<s<l1.

Since F' € €, 5/»—p for some B > 0, FV € ¥, and V is of completely regular growth
with infjg 2,1 hy > 0, we find that FVs € ¥,0 <5 < 1.

LetO<n<n < \/Mando <t <n.Let P,,n > 0, be the n-th partial sum of the
Taylor series of V;. Then

sup | Py (z) — Vt(z)|e_”%‘1’|2|2 —-0, n—oo.
zeC
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Hence, P, F — V;F in ¥ as n — oc. Thus,
FV, e[Flg, O0<t=<n.
Hence, there exist § € (0, min(1 — 7, n?>(1 —a)/(2q))) and s € [, 1 — §] such that
FVse[Flg, FViis €[Fls.

Once again, without loss of generality, we can assume that F Vs has simple zeros and
Z(FVsis)NZy = 0.
Choose W € & such that

FWe¥, FW L[Flg. FW [ FVys.

By Lemma 4.2,

F
FW L V;, Ae Z(Vy). 4.7)

Set
ay = F(w)Vsts(w),

1
w = = < % ,FW>, w € Zy.
op(w) \ —w

Furthermore, set
U=oy-J(FW,F). 4.8)

By (4.7) and by Lemma 3.4 (applied to F} = FW, F, = F, F3 = Vy), we have U €

E2,7a/2 and U(w) = dyoy(w) F(w) for w € Z,.
Fix u € Z(FVsys) \ Zo and define

1 1
C(z) = Z awdwl:m‘f‘ o :|,
weZg /J,
_UVsis

0o

S €. (4.9)

Comparing the residues we see that S € &. By Lemma 3.3 (applied to F; = FW, F, =
FVss), the series defining € converges absolutely in C \ Z¢, and

UVs+8
0o

FV,
= J(FW, FVy,4) +< s+ FW> + 8.
TTH
As in the proof of Lemma 4.4, we deduce that for every ¢ > 0,
€(z) = o(log|z]), |z| = oo, dist(z, Zg) > e. (4.10)

By (4.8), Uy
s+8

0o

= Viss - J(FW, F).
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Hence,

Sy = - [c FOVars OFOWE) ;0

z—=¢

iate) [ FOFQOWE) ;o < Voss FW> win
C z=¢ — K
By Lemma 4.3 applied with H = V; we have
s(e) = - [ FOVs OFOWD) <FVs+s FW>
C z—¢ U
4 V@) [ FOVOFOWO) , o

Vi(z) Jc z—=¢

Therefore, S € &, 4(s45)2—qs2 C €2,245- Hence, S = S2qs)-1/2 € F.
Next, by (4.11) and by Lemma 3.1, S is bounded on Z(V;s), and hence S is bounded
on a lattice of density at least 72(1 — «)/(2¢8) > 1. By Lemma 2.3, S = S is a constant.

Thus,
U Vs+8

00
By (4.9) and (4.10), UVsys € & - ¥ . By Lemma 3.5 (applied to FW and F Vi), we
conclude that U Vs has at least one zero in every disc D(w, 1/10) for w € Zg outside a
lattice thin set. However, shifting F and Vs we see that a subset of Z(Vss) of positive
density is contained in C \ UweZo D(w, 1/10). We get a contradiction, which completes
the proof. ]

FViis

= J(FW, FVyys) +< FW> + S(0).

5. Proof of Theorem 1.5 and Corollary 1.4

Proof of Corollary 1.4. Choose an integer N such that

sup card(Z(F) N Q. n) < N2,

zeC
where Q n is the square centered at z of sidelength /7 N.Let M € NN be a number
to be chosen later. Choose A C C disjoint from Z(F') in such a way that

card(T,) =aM?, zeZM =MZxMZ,

for some o < 1, where I'; = (Z(F) U A) N Q2 p. Without loss of generality Z(F) U A
is disjoint from | J,conm 002 1.

We can choose large M and place the points of A in such a way that the measures
aM?§, - rer. Sa,Z € ZM  have the first three moments equal to 0. Then, arguing as in
[8, Section 4.4] (see also [18]), we conclude that the canonical product H corresponding
to the set Z(F') U A satisfies the estimate

dist(w, Z(H))Be P2 < |Hw)| <e™@P2 yec, (5.1)
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for some B > 0. Indeed, choose w € C and z € ZM, and denote L(¢) = log(1 — w/?).
We have aM?2 = card T, and

> (1o -2))

A€l
’ 1 " —1 ]
<|L'(z)|- )Agz(z —A)‘ + §|L 2)|- ‘Agl;z(z —1)2) +C - (|w 2 + W)

lw lo
A’ g

Since the first two sums on the right hand side are zero, summing over z € ZM we arrive
at (5.1).

Choose A1,A, € Aandset Hy = H/[(- —A1)(- —Az)]and G = H;/F. Then G is of
completely regular growth, ig = ¢ > 0, and (FG - &) N F() = FG - C. It remains to
apply Theorem 1.3. |

Lemma 5.1. There exists K € (1,00) such thatifn >0, F € &,V €&and FV € ¥,
then'V € 82,”/24_1(,7.

Proof. See [17, Chapter I, Sections 8§, 9]. n

Proof of Theorem 1.5. Suppose that n < 7/(8K), where B € (0, 1) is as in the statement
of Lemma 2.2 and K is as in the statement of Lemma 5.1. Choose ¢ € (2Kn/x, B/4) and
set H(z) = o((1 — €)'/2z). Clearly, FH € [F]g. Without loss of generality, we can
assume that Z(H) N Z(F) = @.

Suppose that the claim of the theorem does not hold. Choose V' € & suchthat FV € ¥
and FV L [FlandsetU =0¢-J(FV, F). By Lemma 3.4 (appliedto F;y = FV,F, = F,
Fs = H),we getU € &, ;./». Next, arguing as in the proof of Lemma 4.4, we obtain

u =J(FV,FV)+ S
0o
for some S € €. Since V € &; 524Ky, We have S € €3 7.
Replacing F and V by F, = T4 (F) and V,, = T4(V), respectively, we find

Uy Va
0o

= J(FyVy, FyVy) + Sa.

If Sy and Sy, are polynomials for some «, oy € C such that « — oy & Z, then we
choose y > 0 such that D(e — a1, y) N Z = @. By Lemma 3.5 we find that both U, V,,
and Uy, V4, have at least one zero in every disc D(w, y) for w € Z outside a lattice thin
set. Then the lower density of the set

{weZ:Dw+a,y)NZV) #£0}

is at least 3/4. The same is true with o replaced by 8. This contradicts the fact that the
upper density of Z(V') is at most 5/4.

Thus, for some ag and every o € C \ (ap + Z), S is not a polynomial. We can find
o €ag+ Z and Z; C Z of lower density at least 1 — ¢ such that V,, has no zeros in
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Uez, D(z, log~2(1 + |z|)). Accordingly, for some Z, C Z of lower density at least
1 — 2¢ the function Uy Ve has no zeros in | J,cz, D(z, log~2(1 + |z])). By Lemma 3.1,
Uy Vy /00 — Sy has at most polynomial growth. By the Rouché theorem, for some C > 0
and N < oo we obtain
inf [Se| < Clz|V
D (z.plog—2(1+]z|))

for every 0 < p < 1 and every z € Z,. Dividing Sy by several zeros (and possibly adding
a polynomial), we arrive at the conditions of Lemma 2.2. Thus, we conclude that Sy is a
polynomial. This contradiction completes the proof. ]

6. Proof of Theorem 1.2

The main idea of the proof goes back to [10].

Step 1: Construction of F. We choose 8 such that
l<a<fB<2.

Consider the function

f(z) = exp(%z2 —Zﬁ), zeQ={re"? :r>0, 10| <nr/4},

with the principal branch z# (1) = 1. The function f is bounded on 3. Moreover,

log| f(re'®)| = %COS(ZQ)F2 —cos(BO)rP, re'f e Q,

10g|f(x+iy)|=gx2—xﬂ+0(l), x — o0, |y <1,
log |f(reii”/4)| = —cos(%)rﬂ, r >0,

log| f/(re*™/*)| = _(COS(%) + 0(1))”'3, r — 00.

Next, set
1 f(w)dw

. eC\Q.
27wl Jao z—w

fi(z) =
It is well known that f; extends to an entire function. Indeed, f; is analytic in C \ Q. Put

1 w) dw —
o= [ TN e
Tl JaQr Z—W

Qr=QN{z| > R}

The function fR is an analytic continuation of f; to C \ Qg. Thus, when R — oo,
f1 extends to an entire function.
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By the Sokhotskii—Plemelj theorem we get

|f1(rei9)| = exp[% cos(26)r? —COS(,B@)F'B1| + 0(1), ré? € Q, r > oo,

s i) = exp( 52 =57 ) 4 0. x> o0, Iyl < 1.
We fix § such that 8 < § < 2 and define
F(2) = file ™0z2) + fi(e7/@V2).
Claim 6.1. For every entire function h of order at most « we have
hF e 7.

Proof. By (6.1),

T2 rBy+0(1), 6elJ,

log|[F(re'®| < { 2
Ecos(l/S)rz, 0¢dJ,
where
7= T 1 T n 1 U T 1 n n 1
L 28 100 28 10 28 10728 10
Therefore,

/ |hF(2)[2e ™2 dma(z) < oo.
C

Step 2: Key estimate. Choose y € (8, §).
Claim 6.2. Let P be the family of polynomials P such that
[PFls < 1.
Then for some C > 0 we have
sup |P(x)] < Cexp(x¥), x=>0.
Pef
Proof. The estimates (6.2) and (6.3) yield
/ |P((x + iy)el™ @) 22" gy dy < C, P e .
x>0,|y|<1
In the same way,
/ |P((x + iy)e i@ 2e=2" gy gy < C, P e
x>0, |y[<1

By the Fubini theorem, for every P € $; we can find y(P) € [—1, 1] such that

o0
/ |P((x % iy(P))e*™/C))2e=2" gy < ¢,
0

6.1)

(6.2)

(6.3)
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Since point evaluations are locally uniformly bounded in the Fock space, by the maximum
principle we obtain
sup  |P(2)| < Cs.

PePy,|z|<2

Note that the lines {(x + iy (P))e!™ 28 : x e R} and {(x —iy(P))e "/ . x e R}

intersect at the point —y (P)/sin Z. Therefore, if we set

28
0() =P(z— y.(P,B),
Sln2_8

then we have o
/ |Q(te:|:i7r/(28))|2€—2tﬂ dt < Cs.
0

Put
Q1(re®y = 0(r'/?e’¥) exp[-Lr7/%e7/] r > 0,10 < /2.

Then Q; is bounded and analytic in the right half-plane, and

f 101Gy dy < C.
R

Therefore,
|01(x)] < Cs5, x>1,

and as a result,
[P(x)] < Csexp(x”), x>0. "

Step 3: Construction of G. Next we fix o and 1 such that § < n < o < 2. We consider
the function

g(z) =exp(z?), zeQ;= {reie r>0,10]| < 21},
n

with the principal branch z° (1) = 1. Then

log |g(re'?)| = cos(a0)r?, re’ e Q,
log[g(x)| = x?, x>0,
log |g (re®™/@m)| = COS(Z—G)FU, r>0,
n

log |g/(reiin/(2n))| - (cos(%) + 0(1));’“, r — 00.

Set

1 d _
G(Z):—,/ swidw — c\qy
2ni Jaq, z—w

Then G extends to an entire function,

|G(x)| = exp(x?) + O(1), x>0, (6.4)
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and
exp(cos(00)r?) + O(1), 0 € [—5, 521,

o), 8e€l[-mn]\[-55, 5

» 201

1G(re'?)| = { 6.5)

Claim 6.3. FG € ¥.

Proof. By (6.1) and (6.5) we have

log |(FG)(rei®)| — %rz

+
T T T
< Xn/(28)—n/4,7/(28)+7/4] (9)[005(29 - E) . 572 - COS(,BQ - _/25 ) 'Vﬂ}

+
a\ m T
+ X[—n/28)—n/4,—m/@28)+m/4](0) [005(20 + 5) . Erz - cos(ﬁ@ + %) -rﬂi|

T
+ X[/ 20),m/(20)](8) (cos(a0)r7) — Erz +0(), r—o0,0e€[-mun].

Hence, for some ¢ = ¢(0,8) > 0 and d = d(B,0,8) > 0, we have

10g|(FG)(rei9)| — %r2
Pl by =1 U —e 55 +el,
—dr?, 0 e[-n,m]\J,
andso FG € ¥. [

Step 4: End of the proof. Now, we argue as in [10]. Suppose that P, are polynomials
such that
7
P, F — FG.

Then for some C; > 0 we have
{Pn/Cilnz1 € P1,
and by Claim 6.2 we get
|Py(x)] < CCrexp(x?), n>1,x>0. (6.6)

Since P, F tend to F'G uniformly on compact subsets of the complex plane, (6.6) contra-
dicts (6.4), and
FG & Clos #{P F}.
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