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Abstract. We show that the largest prime factor of n2 C 1 is infinitely often greater than n1:279.
This improves the result of de la Bretèche and Drappeau (2020) who obtained this with 1:2182 in
place of 1:279: The main new ingredients in the proof are a new Type II estimate and using this
estimate by applying Harman’s sieve method. To prove the Type II estimate we use the bounds of
Deshouillers and Iwaniec on linear forms of Kloosterman sums. We also show that conditionally on
Selberg’s eigenvalue conjecture the exponent 1:279 may be increased to 1:312:
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1. Introduction

An outstanding open problem in number theory is to prove that there are infinitely many
primes of the form n2 C 1. To approximate this we may consider the largest prime factor
of integers of the form n2 C 1; as was done by Chebyshev already in the 19th century
(cf. the introduction in [7] for the prehistory of this problem). In 1967 Hooley [7] proved
that the largest prime factor of n2 C 1 is infinitely often at least n1:10014::: by applying the
Weil bound for Kloosterman sums. Deshouillers and Iwaniec [2] showed in 1982 that the
largest prime factor of n2 C 1 is at least n1:202468::: infinitely often. Their improvement
came as an application of their bounds for linear forms of Kloosterman sums [3]. In 2020
de la Bretèche and Drappeau [1] improved the exponent to 1.2182 by making use of the
result of Kim and Sarnak [10, Appendix 2] towards Selberg’s eigenvalue conjecture.

We will show a new Type II estimate (Proposition 2 below) and use this by applying
Harman’s sieve method to improve the previous results:

Theorem 1. The largest prime factor of n2 C 1 is greater than n1:279 for infinitely many
integers n.

Remark 1. The proof of Theorem 1 uses the deep bound of Kim and Sarnak [10,
Appendix 2]. Using just Selberg’s classical 3=16-Theorem our argument gives a result
with the exponent 1:279 replaced by 1:23.
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We also obtain a new conditional result (improving the exponent
p
3=2� � � 1:2247

of Deshouillers and Iwaniec [2, Section 8]):

Theorem 2. Assuming Selberg’s eigenvalue conjecture the exponent 1:279 in Theorem 1
may be increased to 1:312.

Remark 2. As is usual with Harman’s sieve, the exact limit of the method is hard to
determine and would require extensive numerical computations. The exponents in both of
the above theorems could still be slightly improved by optimizing the sieve more carefully
but we do not pursue this issue here for the sake of simplifying the presentation.

Remark 3. By using similar arguments to those in [1], [4], and [7] it should be possible to
generalize our result from n2 C 1 to polynomials n2 � d where d is not a perfect square.

1.1. Sketch of the proof

Similarly to [1], [2], and [7], we will use Chebyshev’s device to detect large prime factors,
that is, we use the elementary fact thatX

m

ƒ.m/
X
`�x

`2C1�0 .m/

1 D
X
`�x

X
mj`2C1

ƒ.m/ D
X
`�x

log.`2 C 1/ D 2x log x CO.x/

so that if Px denotes the largest prime factor of `2 C 1 for ` � x, thenX
p�Px

logp
X
`�x

`2C1�0 .p/

1 � .2C o.1//x log x:

Hence, to get a lower bound for Px we require upper bounds for sums of the typeX
p�P

X
`�x

`2C1�0 .p/

1; (1.1)

where P � x$ with $ corresponding to the exponent in Theorem 1.
Deshouillers and Iwaniec [2] use a linear sieve upper bound for the sum (1.1), and

the main point in their work is to obtain strong Type I information, that is, asymptotic
formulas for sums of the formX

d�D

�d
X
m�P
m�0 .d/

X
`�x

`2C1�0 .m/

1;

where �d are bounded coefficients. The level of distribution obtained in [2, Section 7]
is D D x1��P�1=2, which improved the level D D x1��P�3=4 in Hooley’s work [7]
(the conditions m � P and ` � x need to be replaced by smooth coefficients but let us
ignore this detail for the moment). De la Bretèche and Drappeau [1] improve the level of
distribution to D D x1=.2�4�/��P��=.1�2�/, where � � 0 is any admissible exponent in
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the Ramanujan–Selberg conjecture. Note that from Selberg’s 3=16-Theorem we know
� D 1=4 is admissible, which gives the same level of distribution as in the work of
Deshouillers and Iwaniec [2]. The exponent 1.2182 in [1] follows from using the result of
Kim and Sarnak [10] that � D 7=64 is admissible.

We will use a combination of Harman’s sieve method [6] and the linear sieve to give
an improved upper bound for (1.1) for some ranges of P (see the beginning of Section 2.4
for a heuristic explanation of Harman’s sieve). Our sieve has similarities also to the sieve
used by Duke, Friedlander, and Iwaniec [4]. For the sieve we need to obtain Type II
information, that is, an asymptotic formula for sums of the formX

m�M
n�N

ambn
X
`�x

`2C1�0 .mn/

1; (1.2)

where MN D P and am and bn are bounded coefficients. Type II sums of this form
are also considered in the works of Iwaniec [8], Lemke Oliver [11] and more recently
in [1, Théorème 5.2], but they are not applied to the problem of the largest prime factor
of n2 C 1. Our Proposition 2 gives an improvement on [1, Théorème 5.2]. The proof of
our Type II estimate is given in Section 3. The sieve argument is carried out in Section 2,
using the Type I information proved in [1].

Our proof of the Type II information is inspired by the arguments in [2] and [4]. The
key ingredient in the proof is an estimate for linear forms of Kloosterman sums of the
form X

r

X
m�M
n�N

Am;rBn;r
X

.c;r/D1

g.m; n; c; r/S.mr;˙nI c/ (1.3)

for some nice smooth function g. Unfortunately, both of the coefficients Am;r and Bn;r
depend on r , so that we are unable to make use of the average over the ‘level variable’
r (cf. [3, Theorem 10] for such a result). Similarly to [1], our Type II information will
depend on the smallest eigenvalue �1.r/ D 1=4 � �2r for the Hecke congruence sub-
groups �0.r/ (see [3, Section 1] for precise definitions). Selberg’s eigenvalue conjecture
famously states that �1.�/ � 1=4 for any congruence subgroup � . The current best lower
bound is the result of Kim and Sarnak [10, Appendix 2] that �1.�/ � 1=4 � .7=64/2,
which we will apply with the estimate of Deshouillers and Iwaniec [3, Theorem 9] to
obtain a bound for the sum (1.3) individually for each r .

For a more detailed sketch of the proof of the Type II estimate we refer to the beginin-
ning of Section 3. Unfortunately, we can handle Type II sums only in the range P <

x153=128, so that for x153=128 < P < x$ we cannot improve on the upper bound of [1].
Note that even for P D x1C� a good upper bound for (1.1) is highly non-trivial, in fact,
for P D x1C� the linear sieve upper bound is off by a factor of 4CO.�/.

In the last section we outline some open problems whose resolution would lead to
further progress on the largest prime factor of n2 C 1.
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1.2. Notations

We use the following asymptotic notations: for functions f and g with g positive, we
write f � g or f DO.g/ if there is a constantC such that jf j �Cg: The notation f � g
means g � f � g: The constant may depend on some parameter, which is indicated in
the subscript (e.g.��). We write f D o.g/ if f=g ! 0 for large values of the variable.
For variables we write n � N meaning N < n � 2N .

It is convenient for us to define

A �� B

to mean A �� x
�B: A typical bound we use is �k.n/ �� 1 for n � x, where �k is

the k-fold divisor function. We say that an arithmetic function f is divisor bounded if
jf .n/j � �k.n/ for some k.

We let � > 0 denote a sufficiently small constant, which may be different from place
to place. For example, A� x��B means that the bound holds for some � > 0:

For a statement E we denote by 1E the characteristic function of that statement. For
a set A we use 1A to denote the characteristic function of A:

We also define P.w/ WD
Q
p�w p; where the product is over primes.

We let e.x/ WD e2�ix and eq.x/ WD e.x=q/ for any integer q � 1. For integers a; b,
and q � 1 with .b; q/ D 1 we define eq.a=b/ WD e.ab=q/. For Kloosterman sums we use
the standard notation

S.a; bI c/ WD
X
n .c/

.n;c/D1

ec.anC b=n/:

2. The sieve

In this section we will state the arithmetical information (Propositions 1 and 2 below) and
apply them with Harman’s sieve method [6] and the linear sieve to give a proof of Theo-
rem 1. We also sketch the proof of Theorem 2 by indicating how the proof of Theorem 1
needs to be modified.

2.1. Set up

Our notations will be mostly similar to those of [2]. For x � 1, let b denote a non-negative
C1-smooth function, supported on Œx; 2x�, whose derivatives satisfy

b.j /.x/�j x
�j for all j � 0:

For any integer d � 1; define

jAd j WD

X
n2C1�0 .d/

b.n/ and X WD

Z
b.�/ d�:
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If Px denotes the greatest prime factor of
Q
x�n�2x.n

2 C 1/, then by using the
Chebyshev–Hooley method similarly to [2, Section 2] we find

S.x/ WD
X

x<p�Px

jApj logp D X log x CO.x/: (2.1)

Therefore, we require an upper bound of S.x/ to get a lower bound for Px . We first split
the sum using a smooth dyadic partition of unity similarly to [2, Section 3],

S.x/ D
X

x�P�Px
PD2j x

S.x; P /CO.x/;

where

S.x; P / D
X

P�p�4P

 P .p/jApj logp

for some C1-smooth functions  P supported on ŒP; 4P � satisfying  .`/P .�/�` P
�` for

all ` � 0:
Compared to [1] and [2], we will improve on their upper bound for S.x; P / but only

for x � P < x153=128. This is because only in this range we are able to prove a new
bilinear estimate (Proposition 2). To see how to use this new arithmetic information, we
first note that in [1] and [2] the upper bound for S.x/ is obtained by using the linear
sieve. Since the linear sieve is neutral with respect to applications of Buchstab’s identity,
we may apply Buchstab’s identity as we please to obtain Type II sums which we now
have an asymptotic formula instead of just upper and lower bounds of the linear sieve,
thus improving on the linear sieve bound. A similar principle also appears in the sieve of
Duke, Friedlander, and Iwaniec [4]. By applying Harman’s sieve method the use of the
linear sieve can be completely avoided in some ranges (see [6, Sections 3.5 and 3.8] for
further discussion on the relation between Harman’s sieve and the linear sieve).

For P � x153=128 we are unable to obtain new information and we just apply the same
argument as in [2, Section 8] to get an upper bound for S.x; P /. In the end we sum over
the dyadic ranges x � P � x$ to determine the largest $ for which we can show thatX

x<p�x$

jApj logp � .1 � �/X log x:

As usual with Harman’s sieve method, we have to calculate numerical upper bounds
for multi-dimensional integrals. These integrals are computed using Python 3.7, and the
links to the codes can be found at the end of this section.

2.2. Arithmetic information

Let us define

�.m/ WD j¹� 2 Z=mZ W �2 C 1 � 0 .m/ºj:
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Remark 4. In [2] this is denoted by !.m/ but we reserve the symbol ! for the Buchstab
function.

From the work of de la Bretèche and Drappeau we know the following linear estimate
[1, Section 8.4] (it is stated there for bounded coefficients �d but the same holds also for
coefficients which are divisor bounded since the saving in the error term is a power of x).

Proposition 1 (Type I information, de la Bretèche–Drappeau). Let � D 7=64. Let x �
P D x˛ � x2�� and

D WD x1=.2�4�/��P��=.1�2�/ D x.1�2�˛/=.2�4�/�� D x.32�7˛/=50��:

Suppose that D � x2��=P: Let �d be any divisor bounded coefficients. ThenX
d�D

�d
X

m�0 .d/

jAmj P .m/ logm D X
X
d�D

�d
X

m�0 .d/

�.m/

m
 P .m/ logmCO.x1��/:

Remark 5. We use � to denote a positive constant which can be taken to be arbitrarily
small and which may be different from place to place (similarly to [6]). Hence, the above
proposition says that for every small �1 > 0 there exists �2 > 0 such that if P � x2��1

and D D x.32�7˛/=50��1 � x2��1=P , then the claimed asymptotic formula holds with
an error term O.x1��2/. The exact dependence between the various �’s which appear is
irrelevant in our arguments.

In Section 3 we will show the following bilinear estimate which improves on [1,
Théorème 5.2]:

Proposition 2. (Type II information). Let � D 7=64: Let P D x˛ for some ˛ � 1, and let
MN D P for M;N � 1. Let am and bn be divisor bounded coefficients such that bn is
supported on square-free integers. ThenX
m�M
n�N

ambnjAmnj P .mn/ logmn D X
X
m�M
n�N

ambn�.mn/

mn
 P .mn/ logmnCO.x1��/:

if one of the following holds:

(i) we have
x˛�1C� � N � x.2�2��˛/=3�� D x.57�32˛/=96��:

(ii) (Duke–Friedlander–Iwaniec C de la Bretèche–Drappeau) bn is supported on primes
and

x2.˛�1/C� � N � x.4�.3C2�/˛/=.3�6�/ D x.128�103˛/=75��:

Remark 6. Part (i) gives a non-trivial range for N if ˛ < 5=4 � �=2 D 153=128 D

1:195 : : : :

Remark 7. The exponent � D 7=64 corresponds to the smallest eigenvalues �1.q/ on
the Hecke congruence subgroups �0.q/; q � 1; by �1.q/ D 1=4 � �2q (see [3, Section 1]
for precise definitions). Under Selberg’s eigenvalue conjecture we could set � D 0: That
�q � 7=64 follows from a deep result of Kim and Sarnak [10, Appendix 2].
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Remark 8. Part (ii) is almost a direct consequence of combining the argument in [4,
Section 5] with [1, Lemme 8.3, part 1]. The upper limit is better than (i) only in the range
˛ < 2671=2496 D 1:070 : : :. Notice that for � D 0 our part (i) gives a better result in the
full range.

Remark 9. By similar arguments to [8] and [11], in [1, Théorème 5.2] de la Bretèche and
Drappeau use the dispersion method to handle Type II sums for

x˛�1C� � N � x˛.1�2�/=.7�6�/��

but this is weaker than Proposition 2 (i).

2.3. Fundamental proposition

For integers d � 1 denote

S.A.P /d ; z/ WD
X

.n;P.z//D1

jAdnj P .dn/ log.dn/; (2.2)

so that (writing A.P / D A.P /1 when d D 1)

S.x; P / D S.A.P /; 2
p
P /:

Let us also define the expected value of S.A.P /d ; z/,

S.B.P /d ; z/ WD X
X

.n;P.z//D1

�.dn/

dn
 P .dn/ log.dn/: (2.3)

For d D 1 denote B.P / D B.P /1.
For the next proposition we note that .2 � 2� � ˛/=3 > 2.˛ � 1/ exactly if ˛ <

249=224 D 1:11 : : : : We can combine Propositions 1 and 2 by using a variant of the
argument in [6, Chapter 3] to get

Proposition 3 (Fundamental Proposition I). Let P D x˛ for 1 � ˛ < 249=224� 2�: Let
D be as in Proposition 1 and set

U WD Dx1�˛�� D x.1�2�˛/=.2�4�/�˛C1�2�;

and

� WD max
²
2 � 2� � ˛

3
� �;

4 � .3C 2�/˛

3 � 6�
� �

³
:

Let �u be divisor bounded coefficients. ThenX
u�U

�uS.A.P /u; x
� / D

X
u�U

�uS.B.P /u; x
� /CO.x1��/:
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Proof. Using the Möbius function to detect .n; P.x� // D 1, we haveX
u�U

�uS.A.P /u; x
� / D

X
u�U

X
d jP.x� /

X
n

�u�.d/jAudnj P .udn/ log.udn/

D †I .A.P //C†II .A.P //;

where

†I .A/ WD
X
u�U

X
d jP.x� /

d�x˛�1C�

X
n

�u�.d/jAudnj P .udn/ log.udn/;

†II .A/ WD
X
u�U

X
d jP.x� /

d>x˛�1C�

X
n

�u�.d/jAudnj P .udn/ log.udn/:

Similarly, we can writeX
u�U

�uS.B.P /u; x
� / D †I .B.P //C†II .B.P //:

For the first pair of sums, since du � x˛�1C�U D D; by Proposition 1 we have

†I .A.P // D †I .B.P //CO.x
1��/:

In the second pair of sums we have (writing d D q1 � � � qk)

†II .A.P //

D

X
k�logx

.�1/k
X
u�U

X
qk<���<q1�x

�

q1���qk>x
˛�1C�

�ujAuq1���qknj P .uq1 � � � qkn/ log.uq1 � � � qkn/:

For every q1 � � � qk there exists a unique ` � k such that

q1 � � � q` � x
˛�1C� and q1 � � � q`�1 < x

˛�1C�:

Hence, writing n0 WD q1 � � � q` and m WD unq`C1 � � � qk , and using Perron’s formula to
remove the cross-condition q` < q`C1 (cf. [6, Chapter 3.2]), we can partition†II .A.P //
into X

k�logx

.�1/k
X
`�k

X
m

X
n0Dq1���q`�x

˛�1C�

q1���q`�1<x
˛�1C�

q`<���<q1�x
�

ambn0 jAmn0 j P .mn
0/ logmn0

with bn0 supported on square-free integers. A similar partition applies to †II .B.P //.
If `D 1, then x˛�1C� � q1 � x� , so that we have an asymptotic formula by combining

Proposition 2 (i, ii) if ˛ < 2671=2496, and for ˛ � 2671=2496 simply using part (i).
If `> 1, then we have q1 � � �q` � x˛�1C�q` � x.2�2��˛/=3�� (since q` <q1 <x˛�1C�

and 2.˛ � 1/ < .2 � 2� � ˛/=3 � 3� for ˛ < 249=224 � 2�), so that we may apply
Proposition 2 (i) to get an asymptotic formula. Summing over ` and k we obtain

†II .A.P // D †II .B.P //CO.x
1��/:
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We note that .2� 2� � ˛/=3 > ˛ � 1 precisely if ˛ < 153=128: By a similar argument
we obtain the following variant of the previous proposition.

Proposition 4 (Fundamental Proposition II). Let P D x˛ for 1 � ˛ < 153=128� 2�: Let
D be as in Proposition 1 and set

U WD Dx1�˛�� D x.1�2�˛/=.2�4�/�˛C1�2�;


 WD
2 � 2� � ˛

3
� ˛ C 1 � 2�:

Let �u be divisor bounded coefficients. ThenX
u�U

�uS.A.P /u; x

 / D

X
u�U

�uS.B.P /u; x

 /CO.x1��/:

Proof. The only difference to the proof of Proposition 3 is that this time in †II .A.P //
combining

q1 � � � q` � x
˛�1C� and q1 � � � q`�1 < x

˛�1C�

with q` < x
 we get q1 � � � q` < x˛�1C�C
 < x.2�2��˛/=3�� , so that we may use Propo-
sition 2 (i) to get an asymptotic formula.

We also need a lemma for transforming sums over almost-primes into integrals which
can be evaluated numerically. Let !.u/ denote the Buchstab function (see [6, Chapter 1]
for the properties below, for instance), so that by the Prime Number Theorem for y� <
z < y, X

y<n�2y

1.n;P.z//D1 D .1C o.1//!

�
logy
log z

�
y

log z
: (2.4)

Note that for 1 < u � 2 we have !.u/ D 1=u: In the numerical computations we will use
the following bounds for the Buchstab function (see [9, Lemma 20]):

!.u/

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

D 0; u < 1;

D 1=u; 1 � u < 2;

D .1C log.u � 1//=u; 2 � u < 3;

� 0:5644; 3 � u < 4;

� 0:5617; u � 4;

� 0:5607; u � 2:47:

(2.5)

In the lemma below we assume that the range U � Œx�; P x���k is sufficiently well-
behaved, e.g. an intersection of sets of the type ¹u Wui<uj º or ¹u WV <f .u1; : : : ;uk/<W º
for some polynomial f and some fixed V;W:
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Lemma 1. Let U � Œx�; P x���k and P D x˛ . ThenX
.q1;:::;qk/2U

S.B.P /q1;:::;qk ; qk/

D .1C o.1//X

Z
 P .u/

du

u
˛

Z
!.˛;ˇ/

dˇ1 � � � dˇk

ˇ1 � � �ˇk�1ˇ
2
k

;

where the integral is over the range ¹ˇ W .xˇ1 ; : : : ; xˇk / 2 Uº, and

!.˛;ˇ/ WD !

�
˛ � ˇ1 � � � � � ˇk

ˇk

�
:

Proof. By definition the left-hand side in the lemma is equal toX
.q1;:::;qk/2U

X
X
m

1.m;P.qk//D1
�.q1 � � � qkm/

q1 � � � qkm
 P .q1 � � � qkm/ log.q1 � � � qkm/:

Note that the function �.m/ is multiplicative and �.p/ D 2 � 1p�1 .4/ for primes p > 2:
Hence, for .m;P.x�// D 1 we can replace �.m/ by 1 with negligible error by equidistri-
bution of primes in arithmetic progressions. Therefore, by (2.4) and by the Prime Number
Theorem we haveX
.q1;:::;qk/2U

S.B.P /q1;:::;qk ; qk/

D

X
.q1;:::;qk/2U

X
X
m

1.m;P.qk//D1
1

q1 � � � qkm
 P .q1 � � � qkm/ log.q1 � � � qkm/

D .1C o.1//X

Z
 P .u/ logu

du

u

X
.q1;:::;qk/2U

1

q1 � � � qk log qk
!

�
log.P=.q1 � � � qk//

log qk

�
D .1C o.1//X

Z
 P .u/ logu

du

u

�

X
.n1;:::;nk/2U

1

n1 � � �nk.logn1/ : : : .lognk�1/ log2 nk
!

�
log.P=.n1 � � �nk//

lognk

�
D .1C o.1//X

Z
 P .u/ logu

du

u

�

Z
U

!

�
log.P=.u1 � � �uk//

loguk

�
;

du1 � � � duk

u1 � � �uk.logu1/ : : : .loguk�1/ log2 uk

D .1C o.1//X

Z
 P .u/

du

u
˛

Z
!.˛;ˇ/

dˇ1 � � � dˇk

ˇ1 � � �ˇk�1ˇ
2
k

by the change of variables uj D x ǰ and by inserting logu D .1C o.1//˛ log x.

Remark 10. We refer to the factor ˛
R
!.˛;ˇ/ dˇ1���dˇk

ˇ1���ˇk�1ˇ
2
k

as the deficiency of the corre-

sponding sum.
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For the linear sieve (see [5, Chapter 11]) we let F.s/; f .s/ denote the continuous
solution to the system of delay-differential equations´

.sF.s//0 D f .s � 1/;

.sf .s//0 D F.s � 1/;

with the initial condition ´
sF.s/ D 2e
 if 1 � s � 3;

sf .s/ D 0 if s � 2:

Here 
 is the Euler–Mascheroni constant. We require the following

Lemma 2 (Linear sieve upper bound). LetD be as in Proposition 1. For P D x˛ and for
any x� < z < D we have

S.A.P /; z/ � .1C o.1//X

Z
 P .u/

du

u

˛ log x
e
 log z

F

�
logD
log z

�
:

Proof. Let �d denote the sieve weights of the upper bound linear sieve [5, Chapter 11])
with level of distribution D. Then

S.A.P /; z/ �
X
d�D
d jP.z/

�d
X

m�0 .d/

jAmj P .m/ logm

D X
X
d�D

�d
X
d�D
d jP.z/

�.m/

m
 P .m/ logmCO.x1��/

by Proposition 1. The sum on the right-hand side can now be evaluated by using [5,
Theorem 11.12] and the same argument as in [2, Section 8], which leads to the result.

2.4. Buchstab decompositions

The general idea of Harman’s sieve is to use Buchstab’s identity to decompose the sum
S.C.P /; 2

p
P / (in parallel for C.P / D A.P / and C.P / D B.P /) into a sum of the

form
P
k �kSk.C.P //; where �k 2 ¹�1; 1º; and Sk.C.P // � 0 are sums over almost-

primes. Since we are interested in an upper bound, for C.P / D A.P / we can insert the
trivial estimate Sk.A.P // � 0 for any k such that the sign �k is �1I these sums are
said to be discarded. For the remaining k we will obtain an asymptotic formula by using
Propositions 2 and 3 (in some cases with �k D 1 we will use the linear sieve upper bound
(Lemma 2) but let us ignore this for now). That is, if K is the set of indices that are
discarded, then

S.A.P /; 2
p
P /D

X
k

�kSk.A.P //�
X
k…K

�kSk.A.P //D .1Co.1//
X
k…K

�kSk.B.P //

D .1Co.1//S.B.P /; 2
p
P /C

X
k2K

Sk.B.P //:
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By the Prime Number Theorem we have

S.B.P /; 2
p
P / D .1C o.1//X

Z
 P .u/

du

u
:

The remaining sum
P
k2K Sk.B.P // can be estimated using Lemma 1. Thus, we will

obtain an upper bound of the form

S.A.P /; 2
p
P / � .1CG.˛//X

Z
 P .u/

du

u
(2.6)

for some non-negative function G measuring the deficiency at range P D x˛:
To relax the notations we will ignore factors of x� in the ranges of variables in this

section, since their contribution toG.˛/will beO.�/which can be made arbitrarily small.
We consider five cases: 1 � ˛ � 758=733; 758=733 � ˛ < 249=224, 249=224 � ˛ <

182=157, 182=157 � ˛ < 153=128; and ˛ > 153=128.

Remark 11. The range ˛ < 249=224 is where we can apply Proposition 3. For ˛ <
182=157 we will use Proposition 4. For 182=157 � ˛ < 153=128 we will use a combi-
nation of Proposition 2 (i) and the linear sieve upper bound. For ˛ > 153=128 we do not
have any new information so that we just use the linear sieve similarly to [1] and [2] to
get an upper bound.

2.4.1. Case 1 � ˛ < 758=733. Let

� WD
4 � .3C 2�/˛

3 � 6�
� �

(for ˛ < 758=733 part (ii) of Proposition 2 is stronger than (i)). Define � by setting (recall
Proposition 3)

U D Dx1�˛�� D x.1�2�˛/=.2�4�/�˛C1�2� DW x� :

Let C 2 ¹A;Bº. By Buchstab’s identity we have

S.C.P /; 2
p
P / D S.C.P /; x� / �

X
x�<q�2

p
P

S.C.P /q; q/:

By Proposition 3 we have an asymptotic formula for the first term. In the second sum we
note that the implicit variable in S.C.P /q; q/ (cf. n in (2.2) and (2.3)) is of size x˛=q, so
that for q � x˛�2� the implicit variable runs over primes of size < x2� : HenceX

x˛�2��q�U

S.C.P /q; q/ D
X

x˛�2��q�U

S.C.P /q; x
� /;

so that we have an asymptotic formula by Proposition 3 in this range. We note that this
range is non-trivial precisely if

˛ < 758=733 D 1:034 : : : :
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The remaining part we just discard, which by Lemma 1 gives us a deficiency

˛

Z ˛�2�

�

!.˛=ˇ � 1/
dˇ

ˇ2
C ˛

Z ˛=2

�

!.˛=ˇ � 1/
dˇ

ˇ2
: (2.7)

2.4.2. Case 758=733 � ˛ < 249=224. Let

� WD max
²
2 � 2� � ˛

3
� �;

4 � .3C 2�/˛

3 � 6�
� �

³
:

By Buchstab’s identity we have

S.C.P /; 2
p
P / D S.C.P /; x� / �

X
x�<q�2

p
P

S.C.P /q; q/:

By Proposition 3 we have an asymptotic formula for the first term. The second sum we
just discard, which by Lemma 1 gives us a deficiency

˛

Z ˛=2

�

!.˛=ˇ � 1/
dˇ

ˇ2
:

Summing over the dyadic ranges x < P D 2jx < x249=224 we obtainX
x�P�x249=224

PD2j x

S.x; P / � .25=224CG1 CG2 C o.1//X log x;

where by (2.7),

G1 WD

Z 758=733

1

˛

�Z ˛�2�

�

!.˛=ˇ � 1/
dˇ

ˇ2
C

Z ˛=2

�

!.˛=ˇ � 1/
dˇ

ˇ2

�
d˛ < 0:01745

and

G2 WD

Z 249=224

758=733

˛

Z ˛=2

�

!.˛=ˇ � 1/
dˇ

ˇ2
d˛ < 0:11478:

2.4.3. Case 249=224 � ˛ < 182=157. From now on we let � WD .2 � 2� � ˛/=3 (for
˛ � 249=224 part (i) of Proposition 2 is stronger than (ii)). Recall that in Proposition 4,


 WD
2 � 2� � ˛

3
� ˛ C 1 � 2�:

By applying Buchstab’s identity we get

S.A.P /; 2
p
P / D S.A.P /; x
 / �

X
x
<q�2

p
P

S.A.P /q; q/:

For the first term we have an asymptotic formula by Proposition 4. In the second sum we
get an asymptotic formula by Proposition 2 (i) in the part x˛�1 < q < x� . We discard the
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part with x� < q < x˛=2, which gives us a deficiency

˛

Z ˛=2

�

!.˛=ˇ � 1/
dˇ

ˇ2
:

For the remaining part x
 < q � x˛�1 we apply Buchstab’s identity twice to get

�

X
x
<q�x˛�1

S.A.P /q; q/ D�
X

x
<q�x˛�1

S.A.P /q; x

 /

C

X
x
<q2<q1�x˛�1

S.A.P /q1q2 ; x

 /

�

X
x
<q3<q2<q1�x˛�1

S.A.P /q1q2q3 ; q3/:

Since ˛ < 182=157, we have x2.˛�1/ <U so that for the first two sums we have an asymp-
totic formula by Proposition 4. In the last sum we use Proposition 2 (i) to get an asymptotic
formula whenever any combination of q1; q2; q3 is in the Type II range Œx˛�1; x� � and we
discard the rest. Thus,X

x249=224�P�x182=157

PD2j x

S.x; P / �

�
182

157
�
249

224
CG3 CG4 C o.1/

�
X log x;

where

G3 WD

Z 182=157

249=224

˛

Z ˛=2

�

!.˛=ˇ � 1/
dˇ

ˇ2
d˛ < 0:093754;

G4 WD

Z
f4.˛;ˇ/˛!

�
˛ � ˇ1 � ˇ2 � ˇ3

ˇ3

�
dˇ1 dˇ2 dˇ3

ˇ1ˇ2ˇ
2
3

d˛ < 0:0057

with f4 the characteristic function of the four-dimensional set²
249

224
< ˛ <

182

157
; 
 < ˇ3 < ˇ2 < ˇ1 < ˛ � 1;

ˇ1 C ˇ2; ˇ1 C ˇ3; ˇ2 C ˇ3; ˇ1 C ˇ2 C ˇ3 … Œ˛ � 1; ��

³
:

2.4.4. Case 182=157 � ˛ < 153=128. By applying Buchstab’s identity we get

S.A.P /; 2
p
P / D S.A.P /; x˛�1/ �

X
x˛�1<q�2

p
P

S.A.P /q; q/

� S.A.P /; x˛�1/ �
X

x˛�1<q�x�

S.A.P /q; q/:

For the first term we use the linear sieve upper bound (Lemma 2), while for the second
term we have an asymptotic formula by Proposition 2. Hence, by Lemmata 1 and 2 we
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get an upper bound

S.A.P /; 2
p
P / � .G5.˛/ �G6.˛/C o.1//X

Z
 P .u/

du

u
;

so that X
x182=157�P�x153=128

PD2j x

S.x; P / � .G5 �G6 C o.1//X log x;

where

G5 WD e
�


Z 153=128

182=157

˛

˛ � 1
F

�
1 � 2�˛

.2 � 4�/.˛ � 1/

�
d˛

D 4.1 � 2�/

Z 153=128

182=157

˛

1 � 2�˛
d˛ < 0:17877;

G6 WD

Z 153=128

182=157

˛

Z �

˛�1

!.˛=ˇ � 1/
dˇ

ˇ2
d˛ > 0:016329:

Remark 12. Here also we could apply Buchstab’s identity multiple times to generate
more Type II sums, much as we did for ˛ < 182=157. However, for ˛ > 182=157 the
width of our Type II information is 
 < 0:048 so that the gain from this would be fairly
small (certainly less than G6), so we ignore this to simplify the argument.

2.4.5. Case ˛ > 153=128. In the range P � x153=128 we do not have any new informa-
tion, so that just using the linear sieve upper bound (Lemma 2) we obtainX

x153=128�P�x$

PD2j x

S.x; P / �

�
4.1 � 2�/

Z $

153=128

˛

1 � 2�˛
d˛ C o.1/

�
X log x: (2.8)

2.5. Conclusion of the proof of Theorem 1

Summing over the estimates we getX
x�P�x153=128

PD2j x

S.x; P / � .25=157CG C o.1//X log x;

where

25=157CG D 25=157CG1 CG2 CG3 CG4 CG5 �G6 < 0:553361:

Combining this with (2.8), we have

1

X log x

X
x�P�x1:279

PD2j x

S.x; P / < 0:553361C 4.1 � 2�/

Z 1:279

153=128

˛

1 � 2�˛
d˛

D 0:997 : : : < 1;
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which proves Theorem 1 since otherwise we reach a contradiction with the asymp-
totic (2.1).

Remark 13. In comparison, just using the linear sieve upper bound givesX
x�P�x153=128

PD2j x

S.x; P / �

�
4.1 � 2�/

Z 153=128

1

˛

1 � 2�˛
d˛ C o.1/

�
X log x

< 0:8213 �X log x:

Remark 14. The method in [1] and [2] gives an asymptotic formula for S.x; P / for
P � x, but for P D x1C� the upper bound is off by a factor of 4 C O.�/. In contrast,
we get the correct upper bound for P D x1C� . As P D x˛ varies from x to x153=128 our
method can be enhanced to give an upper bound which continuously increases from an
asymptotic formula to the linear sieve upper bound (this would require a more careful
handling of the part 182=157 � ˛ < 153=128). This is in accordance with the general
principle of Harman’s sieve method that our sieve bounds should depend continuously on
the quality of the arithmetic information.

The Python 3.7 codes for computations of the Buchstab integrals are available at

G1 http://codepad.org/e2RiL3TM
G2 http://codepad.org/i2BOT07g
G3 http://codepad.org/vMlImNKm
G4 http://codepad.org/DOxewic3
G6 http://codepad.org/IKZNttfN

2.6. Proof of Theorem 2

The sieve follows the same recipe as the proof of Theorem 1. Assuming Selberg’s con-
jecture we may set � D 0, so that D D x1=2, U D x3=2�˛ D x� , and � D .2 � ˛/=3.
The reader will verify that now the ranges corresponding to the five ranges in the proof of
Theorem 1 are 1 � ˛ < 17=16, 17=16 � ˛ < 8=7, 8=7 � ˛ < 7=6, 7=6 < ˛ < 5=4 and
˛ � 5=4: By a similar application of Buchstab’s identities we getX

x�P�x5=4

PD2j x

S.x; P / � .1=6C F C o.1//X log x;

where

1=6C F D 1=6C F1 C F2 C F3 C F4 C F5 � F6 < 0:679914

with

F1 WD

Z 17=16

1

˛

�Z ˛�2�

�

!.˛=ˇ � 1/
dˇ

ˇ2
C

Z ˛=2

�

!.˛=ˇ � 1/
dˇ

ˇ2

�
d˛ < 0:0287;

F2 WD

Z 8=7

17=16

˛

Z ˛=2

�

!.˛=ˇ � 1/
dˇ

ˇ2
d˛ < 0:08622;

http://codepad.org/e2RiL3TM
http://codepad.org/i2BOT07g
http://codepad.org/vMlImNKm
http://codepad.org/DOxewic3
http://codepad.org/IKZNttfN
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F3 WD

Z 7=6

8=7

˛

Z ˛=2

�

!.˛=ˇ � 1/
dˇ

ˇ2
d˛ < 0:03107;

F4 WD

Z
f4.˛;ˇ/˛!

�
˛ � ˇ1 � ˇ2 � ˇ3

ˇ3

�
dˇ1dˇ2dˇ3

ˇ1ˇ2ˇ
2
3

d˛ < 0:00011;

F5 WD 4

Z 5=4

7=6

˛ d˛ D 29=72;

F6 WD

Z 5=4

7=6

˛

Z �

˛�1

!.˛=ˇ � 1/
dˇ

ˇ2
d˛ > 0:035631;

with f4 the characteristic function of the four-dimensional set

¹8=7 < ˛ < 7=6; 
 < ˇ3 < ˇ2 < ˇ1 < ˛ � 1;

ˇ1 C ˇ2; ˇ1 C ˇ3; ˇ2 C ˇ3; ˇ1 C ˇ2 C ˇ3 … Œ˛ � 1; ��º:

By the linear sieve (Lemma 2) we also haveX
x5=4�P�x$

PD2j x

S.x; P / �

�
4

Z $

5=4

˛ d˛ C o.1/

�
X log x:

Combining the two estimates we obtain

1

X log x

X
x�P�x1:312

PD2j x

S.x; P / < 0:679914C 4

Z 1:312

5=4

˛ d˛ D 0:997 : : : < 1;

which implies Theorem 2.

3. Type II information

In this section we give a proof of Proposition 2. Let us first give a non-rigorous sketch of
the argument.

3.1. Sketch of the argument

Similarly to [8] and [11], in [1, Théorème 5.2] de la Bretèche and Drappeau obtain
asymptotic formulas for Type II sums by using the dispersion method of Linnik (cf.
[1, Section 8.3.3]).

Our argument is more direct. We begin by applying the Poisson summation formula
to evaluate jAmnj. For simplicity, let us assume that .m; n/ D 1 in the Type II sum in
Proposition 2. Then by the Poisson summation formula (Lemma 4) we can reduce the
claim to showing that for H D x�P=x and for any bounded coefficients ch we have

1

H

X
1�jhj�H

ch
X
m�M
n�N

.m;n/D1

ambn
X
� .mn/

�2C1�0 .mn/

emn.�h�/ � x1��:
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Remark 15. Note that the length of the exponential sum is MN D P; while we need a
bound that is a bit less than x. Thus, we need to save a power of x, the more the bigger
P is. Since we need to apply the Cauchy–Schwarz inequality in the proof, all savings are
essentially halved. For this reason we are unable to get an estimate for large P .

Remark 16. For a fixed h this sum is the same bilinear sum as in the work of Duke,
Friedlander and Iwaniec [4, Proposition 2]. Note that in their work only a small saving
over the trivial bound is required, that is, a bound� P 1�� . In this case their method gives
unconditionally the same range as one gets assuming Selberg’s conjecture (i.e. x��N �

x1=3��). Our argument has a similar flavour to their proof, but in contrast we also make
use of the average over the frequencies h.

When we apply Cauchy–Schwarz we would like to simplify matters by keeping the
sum over �2 C 1 � 0 .mn/ ‘outside’ while keeping the sum over n ‘inside’. To facilitate
this, recall that bn is supported on square-free integers. Hence, if we denote

Q WD Q.m/ WD
Y

2�p�2N
p�1;2 .4/
p −m

p;

then by the Chinese Remainder Theorem we have (for .m; n/ D 1)X
�2C1�0 .mn/

emn.�h�/ D
�.n/

�.Q/

X
�2C1�0 .mQ/

emn.�h�/:

Let  M .m/ denote a C1-smooth majorant of 1m�M : By the Cauchy–Schwarz
inequality and by expanding the square afterwards we obtainX

m�M

am
1

�.Q/

X
�2C1�0 .mQ/

1

H

X
1�jhj�H

ch
X
n�N

.m;n/D1

bn�.n/emn.�h�/

��M 1=2

�X
m

 M .m/
1

H 2

X
1�jh1j;jh2j�H

ch1ch2

X
n1;n2�N
.m;n1n2/D1

bn1bn2

�
�.n1/�.n2/

�.Q/

X
�2C1�0 .mQ/

emn1.�h1�/emn2.h2�/

�1=2
��M 1=2

�
1

H 2

X
1�jh1j;jh2j�H

ch1ch2

X
n0�N

�.n0/
X

n1;n2�N=n0
.n1;n2/D1

bn0n1bn0n2

�

X
.m;n0n1n2/D1

 M .m/
X

�2C1�0 .mn0n1n2/

emn0n1n2..h2n1 � h1n2/�/

�1=2
by denoting n0 D .n1; n2/ and by using the Chinese Remainder Theorem to collapse the
sum over �2 C 1 � 0 .mQ/ back to a sum over �2 C 1 � 0 .mn0n1n2/.
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In the diagonal part h1n2 � h2n1 D 0 we use a trivial estimate to get a bound

��M 1=2

�
1

H 2
HNM

�1=2
�MN 1=2H�1=2 � x1=2P 1=2N�1=2 < x1��;

since H > P=x and N � x˛�1C� .
For the off-diagonal h1n2 � h2n1 ¤ 0 we can introduce Kloosterman sums by a sim-

ilar argument as in [2, Section 5] to get a sum of the typeX
r

X
m�M
n�N

Am;rBn;r
X

.c;r/D1

g.m; n; c; r/S.mr;˙nI c/

where g.m; n; c; r/ is a C1-smooth function. Here r corresponds to n0n1n2, n corre-
sponds to h1n2 � h2n1, and m is the frequency parameter that arises from completing an
incomplete Kloosterman sum by using Lemma 5. Unfortunately, both of the coefficients
Am;r and Bn;r depend on r , so that we are unable to make use of the average over the
‘level variable’ r (as in [3, Theorem 10]). By combining the bound � � 7=64 of Kim and
Sarnak [10, Appendix 2] with the estimate of Deshouillers and Iwaniec [3, Theorem 9]
we can bound X

m�M
n�N

Am;rBn;r
X

.c;r/D1

g.m; n; c; r/S.mr;˙nI c/

for each r individually, which gives a sufficient bound as long as N � x.2�2��˛/=3 for
� D 7=64.

3.2. Sizes of various quantities in the proof

In the proof of Proposition 2 (i) below there will appear numerous quantities. Here we
have collected their sizes and relations to one another:

P D x˛; MN D P; x˛�1C� � N � x.2�2��˛/=3�� D x.57�32˛/=96��;

H D x�P=x; k �M; 1� R; S �
P 1=2N 1=2

k1=2n
1=2
0

;

T D x�
SıN 2

Rn0
; H1;H2 � H; % D ık2n0n1n2 � ıN

2=n0;

M � T; N �
HN

kn0
; C � S:

3.3. Preliminaries

We have collected here some basic estimates which will be needed in the proof.

Lemma 3. Let L � 1: For any integer q ¤ 0 we haveX
1�`�L

.`; q/ � �.q/L:
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Proof. We have X
1�`�L

.`; q/ �
X
d jq

X
1�`�L

1d j` � �.q/L:

The following lemma is easily proved from [2, Lemma 1] by using integration by
parts multiple times.

Lemma 4 (Truncated Poisson summation formula). Let  be a fixed C1-smooth com-
pactly supported function and let x � 1. Let q � 1 be an integer. Then for any A; � > 0,X
n�a .q/

 

�
n

x

�
D
1

q

Z
 

�
�

x

�
d� C

x

q

X
1�jhj�x�q=x

b �hx
q

�
e

�
�
ah

q

�
COA;�; .x

�A/;

where Of .h/ WD
R
f .�/e.h�/ d� is the Fourier transform.

Applying the above lemma we immediately infer

Lemma 5 (Completion of sums). Let  be a fixed C1-smooth compactly supported
function and let x� 1. Let q � 1 be an integer. Suppose that F W N ! C is a q-periodic
function. Then for any A; � > 0,X
n

 

�
n

x

�
F.n/

D
x

q

X
0�jhj�x�q=x

b �hx
q

� X
a2Z=qZ

F.a/eq.�ah/COA;�; 

�
x�A

X
a2Z=qZ

jF.a/j
�
:

To state the next lemma, for any sequence am and any M > 0 define the `2-norm

kaMk2 WD
� X
m�M

jamj
2
�1=2

:

Let �1.q/ denote the smallest eigenvalue of the Laplacian on �0.q/nH (see [3, Section 1]
for precise definitions). The Selberg eigenvalue conjecture famously states that for every
congruence subgroup � the smallest eigenvalue �1.�/ is at least 1/4. The current best
result towards this is the result of Kim and Sarnak [10, Proposition 2 in Appendix 2],
which gives the lower bound �1.�/ � 1=4 � .7=64/2. By combining this with [3, Theo-
rem 9] of Deshouillers and Iwaniec, we get

Lemma 6 (Deshouillers–IwaniecC Kim–Sarnak). Let � D 7=64; and let r be a positive
integer. Let C;M;N > 0 and let g.m; n; c/ be a C1-smooth function, supported in

ŒM; 2M� � ŒN; 2N � � ŒC; 2C �

and satisfyingˇ̌̌̌
@jCkC`

@mj @nk@c`
g.m; n; c/

ˇ̌̌̌
�M�jN�kC�` for 0 � j; k; ` � 2:
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Then for any coefficients am and bn we haveX
m;n;c
.c;r/D1

ambng.m; n; c/S.mr;˙nI c/ ��

�
1C

p
r C

p
MN

�2�
L kaMk2kbN k2;

where

L D
.
p
r C C

p
MN C

p
MC/.

p
r C C

p
MN C

p
N C/

p
r C C

p
MN

:

Remark 17. In the statement of [3, Theorem 9] there is a typographical error: the factor
.1C

p
rC

p
MN

/ should be .1C
p
r C

p
MN

/.

To apply the above lemma we need an upper bound for the average value of kbN k2:

Lemma 7. Let H1;H2; N;K � 1 and H1 � H2. Then

S WD
X

k1;k2�K

�X
n�N

ˇ̌̌ X
h1�H1
h2�H2

1h1k2�h2k1Dn

ˇ̌̌2�1=2
� N 1=2 max ¹KH1; K3=2H

1=2
1 º:

Proof. If H1 � K, then trivially S � N 1=2KH1, since the number of solutions .h1; h2/
to h1k2 � h2k1D n is�H1=k1C 1�H1=K. IfH1 <K, then by the Cauchy–Schwarz
inequality

S � K

� X
h1;h

0
1
�H1

h2;h
0
2
�H2

X
k1;k2�K

h1k2�h2k1�N

1k2.h1�h01/Dk1.h2�h
0
2
/

�1=2

� KH1

� X
j`1j�H1
j`2j�H2

max
h1�H1
h2�H2

X
k1;k2�K

h2k1�h1k2�N

1n2`1Dn1`2

�1=2

� KH1

�
max
h1�H1
h2�H2

X
n�N

X
k1;k2�K

1h1k2�h2k1Dn

�1=2
� KH1

�
N
K

H1

�1=2
D N 1=2K3=2H

1=2
1 :

For the proof of Proposition 2 (ii) we require the following lemma of de la Bretèche
and Drappeau [1, Lemme 8.3, part 1] (applied with r D d D 1 and D D �1), which
makes explicit the dependence on � of the result of Duke, Friedlander and Iwaniec [4,
Proposition 4] (for � D 1=4 they give essentially the same result).

Lemma 8. Let � D 7=64 and fix an integer q � 1. Suppose that jhj � q,M � 1, and let
 be a fixed C1-smooth compactly supported function. ThenX

.m;q/D1

 .m=M/
X

�2C1�0 .mq/

emq.h�/ �� jhj C .q; h/�q1=2��M 1=2C� :
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3.4. Evaluation of jAmnj by Poisson summation

We are now in a position to begin the proof of Proposition 2. We will first show part (i)
and in the end part (ii). By the truncated Poisson summation formula (Lemma 4) we have,
for any � > 0,

jAmnj D

X
`2C1�0 .mn/

b.`/ D
X
� .mn/

�2C1�0 .mn/

X
`�� .mn/

b.`/

D
�.mn/

mn
X C r.A; mn/COA;�.x

�A/;

where, for  .z/ WD b.xz/ and H WD x�P=x, we have

r.A; mn/ D
x

mn

X
1�jhj�H

b � hx
mn

� X
� .mn/

�2C1�0 .mn/

emn.�h�/:

The smooth ‘cross-conditions’ b .hx=mn/ and  P .mn/ logmn may be removed by
applying Mellin transform (similarly as one can use Perron’s formula to remove cross-
conditions in [6, Chapter 3.2]). Hence, Proposition 2 follows once we show

Proposition 5. Let ch be any bounded coefficients. Adopting the assumptions of Propo-
sition 2, for H WD x�P=x we have

†.M;N/ WD
1

H

X
1�jhj�H

ch
X
m�M
n�N

ambn
X
� .mn/

�2C1�0 .mn/

emn.�h�/ � x1��: (3.1)

Our proof of Proposition 2 (i) actually gives the following general bound, which we
state only in the case H � N for simplicity.

Proposition 6. LetM;N;H � 1 withH � N and let am, bn and ch be divisor bounded
coefficients. Assume that bn is supported on square-free integers. Then

1

H

X
1�jhj�H

ch
X
m�M
n�N

ambn
X
� .mn/

�2C1�0 .mn/

emn.�h�/

��
MN 1=2

H 1=2
C
p
HMN CH 1=2M 1=4N CM 3=4N 1=2

C
M 3=4C�=2N 3=2C�=2

H 1=2C�=2
:

3.5. Application of the Cauchy–Schwarz inequality

Let us write k D .m; n/ and make the change of variables m 7! km and n 7! kn to get

†.M;N/ D
X
k�N

†k.M;N /

for
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†k.M;N / WD
X

m�M=k

akm
1

H

X
1�jhj�H

ch
X

n�N=k
.n;km/D1

bkn
X

�2C1�0 .k2mn/

ek2mn.�h�/:

We will show that †k.M;N / �� x1��=k (in the first pass the reader may wish to restrict
to the case k D 1). Before applying the Cauchy–Schwarz inequality we note that by the
Chinese Remainder Theorem for any coprime integers a; b the solutions to �2 C 1 �
0 .ab/ are in one-to-one correspondence to the solutions to the pair of equations ˛2C 1�
0 .a/, ˇ2 C 1 � 0 .b/. Thus, denoting

Q D Q.km/ WD
Y

2�p�2N
p�1;2 .4/
p −km

p;

we have X
�2C1�0 .k2mn/

ek2mn.�h�/ D
�.n/

�.Q/

X
�2C1�0 .k2mQ/

ek2mn.�h�/

by using the fact that bn is supported on square-free integers. Inserting this and applying
the Cauchy–Schwarz inequality we get

†k.M;N /

��

p
M
p
k

�X
m

 M .km/

�
1

�.Q/

X
�2C1�0 .k2mQ/

ˇ̌̌̌
1

H

X
h

ch
X
n�N

.n;m/D1

bkn�.n/ek2mn.�h�/

ˇ̌̌̌2�1=2

D

p
M
p
k

�
1

H 2

X
1�jh1j;jh2j�H

ch1ch2

X
m

 M .km/
X

n1;n2�N=k
.n1n2;m/D1

bkn1bkn2

�
�.n1/�.n2/

�.Q/

X
�2C1�0 .k2mQ/

ek2mn1.�h1�/ek2mn2.h2�/

�1=2
: (3.2)

Denote n0 WD .n1; n2/; and make the change of variables nj 7! n0nj in the above sum.
Since n0n1n2 is square-free and coprime to km, by the Chinese Remainder Theorem we
obtain

�.n0n1/�.n0n2/

�.Q/

X
�2C1�0 .k2mQ/

ek2mn0n2.h2�/ek2mn0n1.�h1�/

D
�.n0n1/�.n0n2/

�.Q/

X
�2C1�0 .k2mQ/

ek2mn0n1n2..h2n1 � h1n2/�/

D �.n0/
X

�2C1�0 .k2mn0n1n2/

ek2mn0n1n2..h2n1 � h1n2/�/:
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Hence, we obtain †.M;N/2
k
�� .M=k/ �„k.M;N /, where

„k.M;N / WD
1

H 2

X
1�jh1j;jh2j�H

ch1ch2

X
n0�N

�.n0/
X

n1;n2�N=kn0
.n1;n2/D1

bkn0n1bkn0n2

�

X
.m;n0n1n2/D1

 M .km/
X

�2C1�0 .k2mn0n1n2/

ek2mn0n1n2..h2n1 � h1n2/�/:

We immediately note that the contribution from the diagonal h1n2 � h1n2 D 0 to
„k.M;N / is trivially bounded by

��
M

kH 2

X
n0�N

X
1�jh1j;jh2j�2H

X
n1;n2�N=kn0

1h1n2Dh2n1 ��
MN

kH
;

which contributes to †k.M;N / at most

��
1

k
M 1=2

�
MN

H

�1=2
D
MN 1=2

kH 1=2
�

1

k
x1=2P 1=2N�1=2 � x1��=k (3.3)

by using H D x�P=x and the assumption N � x˛�1C� . Therefore, we may assume
below that h1n2 � h2n1 ¤ 0.

3.6. Introducing Kloosterman sums

We expand the condition .m; n0n1n2/ D 1 by using the Möbius function to getX
.m;n0n1n2/D1

D

X
ıjn0n1n2

�.ı/
X
m
ıjm

:

In the first pass the reader may wish to pretend that ı D 1 below. Let us denote ` WD
mk2n0n1n2; so that the condition ı jm can be written as ık2n0n1n2 j ` and

„k.M;N /

D
1

H 2

X
1�jh1j;jh2j�H

ch1ch2

X
n0�N

�.n0/
X

n1;n2�N=kn0
.n1;n2/D1

h1n2�h2n1¤0

bkn0n1bkn0n2

X
ıjn0n1n2

�.ı/

�

X
`�0 .ık2n0n1n2/

 M

�
`

kn0n1n2

� X
�2C1�0 .`/

e`..h2n1 � h1n2/�/CO.MN=kH/:

The variable ` is of size PN=kn0: To proceed we require the following lemma of Gauss
(cf. [2, Lemma 2]):
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Lemma 9. If the equation �2 C 1 � 0 .`/ has a solution, then ` has a representation as
a sum of two squares

` D r2 C s2; .r; s/ D 1; r; s > 0:

Furthermore, there is a one-to-one correspondence between such representations and the
solutions to �2 C 1 � 0 .`/; and we have

�

`
�

r

s.r2 C s2/
�
r

s
.mod 1/:

Applying this lemma we get

e`..h2n1 � h1n2/�/ D es

�
h1n2 � h2n1

r

��
1CO

�
Hr

P s

��
:

The contribution from the O-term to †k.M;N / is trivially bounded by

p
M
p
k

�
H

P

X
n0�N

X
n1;n2�N=kn0

X
ıjn0n1n2

max
t

X
s�.PN=kn0/1=2

1

s

X
r�.PN=kn0/

1=2

r�t .ık2n0n1n2/

r

�1=2

��

p
M
p
k

�
H

P

X
n0�N

X
n1;n2�N=kn0

X
ıjn0n1n2

P 1=2N 1=2

.n0k/1=2

�
P 1=2N 1=2

k5=2ın
3=2
0 n1n2

C 1

��1=2
��

1

k
.M 1=2H 1=2N 1=2

CM 1=2H 1=2N 5=4P�1=4/

D
x�=2

k
.Px�1=2 C P 3=4N 3=4x�1=2/� x1��=k (3.4)

since from the assumptions it follows that ˛ < 3=2 � � and N < x2�˛��:

Hence, we have „k.M;N / D z„k.M;N /CO.E/; where .M=k/1=2E1=2 < x1��=k
and

z„k.M;N /

WD
1

H 2

X
1�jh1j;jh2j�H

ch1ch2

X
n0�N

�.n0/
X

n1;n2�N=kn0
.n1;n2/D1

h1n2�h2n1¤0

bkn0n1bkn0n2

X
ıjn0n1n2

�.ı/

�

X
r;s>0
.r;s/D1

r2��s2 .ık2n0n1n2/

 M

�
r2 C s2

kn0n1n2

�
es

�
h1n2 � h2n1

r

�
:
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3.7. Completing the sum

By a smooth dyadic partition of unity for the variables r and s, we can split z„k.M;N /
into� log2 x sums of the form

‰k.R; S/

WD
1

H 2

X
1�jh1j;jh2j�H

ch1ch2

X
n0�N

�.n0/
X

n1;n2�N=kn0
.n1;n2/D1

h1n2�h2n1¤0

bkn0n1bkn0n2

X
ıjn0n1n2

�.ı/

�

X
.r;s/D1

r2��s2 .ık2n0n1n2/

g.r; s; n0n1n2/es

�
h1n2 � h2n1

r

�
:

where

g.r; s; n0n1n2/ WD  R.r/ S .s/ M

�
r2 C s2

kn0n1n2

�
with  R.r/ (similarly for  S .s/) a C1-smooth function supported on ŒR; 2R� and satis-
fying  .i/R .r/�i R

�i for all i � 0, where

1� R; S �
P 1=2N 1=2

k1=2n
1=2
0

and max ¹R; Sº �
P 1=2N 1=2

k1=2n
1=2
0

:

For each R and S we can now complete the sum over r by using the Poisson summa-
tion formula (Lemma 5), similarly to [2, Section 5]. The modulus of the sum is of size
Sık2n0n1n2 � SıN

2=n0, and the length of the sum is R; so that for

T WD x�
SıN 2

Rn0

we get, by Lemma 5,X
r

.r;s/D1

r2��s2 .ık2n0n1n2/

g.r; s; n0n1n2/es

�
h1n2 � h2n1

r

�
COA;�.x

�A/

D
x�

T

X
jt j�T

G.t; s; n0n1n2/
X

u .sık2n0n1n2/
.u;s/D1

u2��s2 .ık2n0n1n2/

es

�
h1n2 � h2n1

u

�
esık2n0n1n2.�tu/;

(3.5)

where

G.t; s; n0n1n2/ D
RT

x�sık2n0n1n2
bf s;n0;n1;n2.tR=sık2n0n1n2/
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for

fs;n0;n1;n2.x/ WD g.Rx; s; n0n1n2/

(so that the functionG is bounded). By writing uD˛sC ˇık2n0n1n2 (note that .u; s/D1
implies .s; ık2n0n1n2/ D 1) the right-hand side in (3.5) is equal to

x�

T

X
jt j�T

G.t; s; n0n1n2/
X

˛2C1�0 .ık2n0n1n2/

eık2n0n1n2.�t˛/

�

X
ˇ .s/

.ˇ;s/D1

es

�
h1n2 � h2n1

ık2n0n1n2ˇ
� tˇ

�
:

By a standard bound for Ramanujan’s sums the contribution from t D 0 to ‰k.R; S/
is bounded by (using Lemma 3)

��
1

TH 2

X
h1;h2

X
n0�N

X
n1;n2�N=kn0
.n1;n2/D1

h1n2�h2n1¤0

X
s

.h1n2 � h2n1; s/

��

X
n0�N

SN 2

T k2n20
� P 1=2N 1=2k�2:

The contribution from this to †k.M;N / is

��M 1=2P 1=4N 1=4=k D P 3=4N�1=4=k � x1��=k (3.6)

since N � x˛�1C� � x3˛�4C� for ˛ < 3=2.
Therefore, the sum‰k.R;S/ is up to a negligible error term equal to a sum of Kloost-

erman sums of the form

z‰k.R; S/ WD
x�

TH 2

X
1�jh1j;jh2j�H

ch1ch2

X
n0�N

�.n0/
X

n1;n2�N=kn0
.n1;n2/D1

h1n2�h2n1¤0

bn0n1bn0n2

�

X
ıjn0n1n2

�.ı/
X

˛2C1�0 .ık2n0n1n2/

X
1�jt j�T

eık2n0n1n2.�t˛/

�

X
.s;ık2n0n1n2/D1

G.t; s; n0n1n2/S.�tık2n0n1n2; h1n2 � h2n1I s/:

3.8. Application of the Deshouillers–Iwaniec bound

We split the sum over h1 and h2 dyadically into parts with h1 � H2 and h2 � H2. By
symmetry we may assume H1 � H2: We now fix n0; n1; n2; ı; ˛, and write

% WD ık2n0n1n2 � ıN
2=n0
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and (denoting m WD t and n WD h1n2 � h1n2)

Am D Am.%; ˛/ WD e%.�m˛/ and Bn D Bn.n1; n2/ WD
X
h1�H1
h2�H2

nDh1n2�h2n1

ch1ch2 :

Remark 18. Since both Am and Bn depend on the level r , we are unable to make use of
the average over r as in [3, Theorem 10].

Since t ¤ 0 ¤ h1n2 � n2h1, by a smooth dyadic decomposition in the variables m
and n we can partition z‰k.R; S/ into� log2 x sums of the form

‡k

WD
1

TH 2

X
n0�N

�.n0/
X

n1;n2�N=kn0

X
ıjn0n1n2

max
˛ .%/

ˇ̌̌ X
m;n;c
.c;%/D1

AmBnF.m; n; c/S.m%;˙nI c/
ˇ̌̌
;

where it is easily verified that F satisfies the assumptions of Lemma 6 in the range

.m; n; c/ 2 ŒM ; 2M � � ŒN ; 2N � � ŒC; 2C �

for

M � T D x�
SıN 2

Rn0
; N � HN=kn0; and C � S �

P 1=2N 1=2

k1=2n
1=2
0

:

By Lemma 6 we get, for � WD 7=64,ˇ̌̌ X
m;n;c
.c;%/D1

AmBnF.m; n; c/S.m%;˙nI c/
ˇ̌̌
��

�
1C

p
%C

p
MN

�2�
L kAMk2kBNk2

for

L D
.
p
%C C

p
MN C

p
M C/.

p
%C C

p
MN C

p
N C/

p
%C C

p
MN

D
p
%C C

p
MN C

p
M C C

p
N C C

p
MNC 2

p
%C C

p
MN

�
p
%C C

p
M C C

p
MN �

p
ı=n0NS C

p
T S C

p
THN=kn0;

where the last bound follows from N � %. We have kAMk2 �
p
M , and by Lemma 7,X

n1;n2�N=kn0

kBNk2 �
p
N max

²
NH1

kn0
;
N 3=2H

1=2
1

k3=2n
3=2
0

³
:
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Hence, by using H � N we have

‡k �� max
ı

X
n0�N

1

TH 2

�
1C

p
%C

p
MN

�2�
.
p
ı=n0NS C

p
T S C

p
THN=kn0/

�
p
MN max

²
NH1

kn0
;
N 3=2H

1=2
1

k3=2n
3=2
0

³
�� max

ı

X
n0�N

1

TH 2

�
1C

p
kı NS
p
THN

�2�
.
p
ı=n0NS C

p
T S C

p
THN=kn0/

�
p
T

HN 2

k3=2n
3=2
0

� max
ı

X
n0�N

1

kn
3=2
0

�
1C

p
ı NS

p
THN

�2��pı=n0 SN 3

p
T H

C
SN 2

H
C

N 5=2

p
Hn0

�
;

since the first bound is increasing as a function ofM andN : Inserting T D x�SıN 2=Rn0
we obtain

‡k ��
X
n0�N

1

kn
3=2
0

�
1C

p
n0RS
p
HN

�2��p
RS N 2

H
C
SN 2

H
C
N 5=2

p
H

�
��

1

k

�
1C

p
P
p
H

�2��
P 1=2N 5=2

H
C
N 5=2

p
H

�
;

since R; S � P 1=2N 1=2n
�1=2
0 : By using H D x�P=x this yields

‡k ��
x1C�N 5=2

kP 1=2
; (3.7)

so that the contribution to †k.M;N / is

��M 1=2x1=2C�=2N 5=4P�1=4=k D x1=2C�=2P 1=4N 3=4=k � x1��=k (3.8)

by using the assumption N � x.2�2��˛/=3�� .

3.9. Proof of Proposition 2 (i)

By combining the bounds (3.3), (3.4), (3.6), and (3.8) we obtain †k.M;N /� x1��=k.
Summing over k �M we get †.M;N/� x1�� , which by Section 3.4 proves Proposi-
tion 2 (i).

3.10. Proof of Proposition 2 (ii)

We need to prove (3.1) under the assumptions in Proposition 2 (ii). We use a similar
argument to that in [4, Section 5] with Lemma 8. Inserting the condition .m; n/ D 1 to
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†.M;N/ gives an error term (since bn are supported on primes)

��

X
n�N

X
m�M

1njm ��M � x1��;

so that we may restrict to the part .m; n/ D 1. Applying the Cauchy–Schwarz inequality
similarly to Section 3.5 but with the sum over h ‘outside’ we get †.M; N/ �� M 1=2 �

„.M;N/1=2 for

„.M;N/ WD
1

H

X
1�jhj�H

X
n0�N

�.n0/
X

n1;n2�N=n0
.n1;n2/D1

bn0n1bn0n2

�

X
.m;n0n1n2/D1

 M .m/
X

�2C1�0 .mn0n1n2/

emn0n1n2.h.n1 � n2/�/:

The diagonal part n1 D n2 is ��MN , whose contribution to †.M;N/ is ��MN 1=2 <

x1�� by using N � x2.˛�1/C� . For the remaining part „0.M;N / with n0 D 1 we use
Lemma 8 with q D n1n2 to get

„0.M;N /

WD
1

H

X
1�jhj�H

X
n1;n2�N
.n1;n2/D1

bn1bn2

X
.m;n1n2/D1

 M .m/
X

�2C1�0 .mn1n2/

emn1n2.h.n1 � n2/�/

�

X
n1;n2�N
.n1;n2/D1

1

H

X
1�jhj�H

�
HN C .n1n2; h.n1 � n2//

�N 1�2�M 1=2C�
�

��HN 3
CM 1=2C�N 3�2�

by computing the sum over h with Lemma 3. The contribution from this to †.M;N/ is

��M 1=2H 1=2N 3=2
CM 3=4C�=2N 3=2��

D x�=2PNx�1=2 C P 3=4C�=2N 3=4�3�=2

� x1��;

since N � x.4�.3C2�/˛/=.3�6�/�� < x3=2�˛�� . Hence, †.M;N/� x1�� .

4. Remarks on the arithmetic information

For ˛ D 1C o.1/ Proposition 2(i) gives Type II information forN � x1=3�2�=3�� , while
part (ii) works for N � x1=3�� . The reason for this discrepancy is that we were unable
to use the average over the level variable r in Section 3.8. If we could use it, we expect
that the dependence on the parameter � would be as in [1, Lemme 8.3, part 3], that is,
M �Q�� ; where Q corresponds to N 2 (note that by a more careful argument we know
that the coefficient ch is a nice smooth function of h). Therefore, instead of (3.7), our
bound for ‡k would read xM �N 5=2�2�P�1=2=k, which yields
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Conjecture 1. Suppose that ˛ <3=2� �. LetH D x�P=x and let chD .h=H/ for some
fixed compactly supported C1-smooth function  . Then for bn supported on square-free
integers we have

†.M;N/ �� x1=2M 1=2
C x1=2M 1=4C�=2N 1��

C x1��:

This gives a bound †.M;N/� x1�� as soon as

x˛�1C� � N � x.2�.1C2�/˛/=.3�6�/��:

Note that this is better than the combined bound of Proposition 2 (i, ii), and for ˛ D
1 C o.1/ the upper limit is x1=3�� . Assuming the above bound with � D 7=64 we can
improve the exponent in Theorem 1 from 1:279 to 1:286.

The main reason why the Type II estimate is restricted to small values of P is that we
have to use the Cauchy–Schwarz inequality, which means that all savings are essentially
halved. Therefore, for large P one should attempt to obtain some other type of arithmeti-
cal information where the Cauchy–Schwarz inequality is not necessary, e.g. an asymptotic
for Type I2 sums X

d�D2

�d
X

m�M;n�N
mn�0 .d/

jAmnj P .mn/ logmn

where the most important range would be M D N D
p
P . Even for D2 D 1 this is an

open problem.
Currently we have an asymptotic formula for S.x; P / only in the range P D x1Co.1/

(this follows already from the work of Duke, Friedlander, and Iwaniec [4]). To get an
asymptotic formula for S.x;P / with P up to x1Cˇ for some fixed ˇ > 0 it seems that we
would need to handle also Type I3 sums of the formX

d�D3

�d
X

`�L;m�M;n�N
`mn�0 .d/

jA`mnj P .`mn/ log `mn:

This is because in Section 2.4.1 the sums that we cannot handle areX
x�<q�x˛�2�

S.A.P /q; q/ and
X

U<q�x˛=2

S.A.P /q; q/;

where the first sum corresponds to a sum of three primes all of size x˛=3CO.ˇ/, and the
second sum is a sum over two primes of size x˛=2CO.ˇ/.
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