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Abstract. We consider the defocusing cubic nonlinear Schrödinger equation (NLS) on the two-
dimensional torus. The equation admits a special family of elliptic invariant quasiperiodic tori called
finite gap solutions. These are inherited from the integrable 1D model (cubic NLS on the circle) by
considering solutions that depend only on one variable. We study the long-time stability of such
invariant tori for the 2D NLS model and show that, under certain assumptions and over sufficiently
long time scales, they exhibit a strong form of transverse instability in Sobolev spaces H s.T2/
(0 < s < 1). More precisely, we construct solutions of the 2D cubic NLS that start arbitrarily close
to such invariant tori in the H s topology and whose H s norm can grow by any given factor. This
work is partly motivated by the problem of infinite energy cascade for 2D NLS, and seems to be
the first instance where (unstable) long-time nonlinear dynamics near (linearly stable) quasiperiodic
tori is studied and constructed.

Keywords. Nonlinear Schrödinger equation, quasiperiodic, KAM, stability, growth of Sobolev
norms

1. Introduction

A widely held principle in dynamical systems theory is that invariant quasiperiodic tori
play an important role in understanding the complicated long-time behavior of Hamilto-
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nian ODE and PDE. In addition to being important in their own right, the hope is that
such quasiperiodic tori can play an important role in understanding other, possibly more
generic, dynamics of the system by acting as islands in whose vicinity orbits might spend
long periods of time before moving to other such islands. The construction of such invari-
ant sets for Hamiltonian PDE has witnessed an explosion of activity over the past thirty
years after the success of extending KAM techniques to infinite dimensions. However, the
dynamics near such tori is still poorly understood, and often restricted to the linear theory.
The purpose of this work is to take a step in the direction of understanding and construct-
ing nontrivial nonlinear dynamics in the vicinity of certain quasiperiodic solutions for the
cubic defocusing NLS equation. In line with the above philosophy emphasizing the role
of invariant quasiperiodic tori for other types of behavior, another aim is to push forward
a program aimed at proving infinite Sobolev norm growth for the 2D cubic NLS equation,
an outstanding open problem.

1.1. The dynamical system and its quasiperiodic objects

We start by describing the dynamical system and its quasiperiodic invariant objects at
the center of our analysis. Consider the periodic cubic defocusing nonlinear Schrödinger
equation (NLS),

i@tuC�u D juj2u (2D-NLS)

where .x;y/ 2T2DR2=.2�Z/2, t 2R and u WR�T2!C. All the results in this paper
extend trivially to higher dimensions d � 3 by considering solutions that only depend on
two variables.1 This is a Hamiltonian PDE with conserved quantities: (i) the Hamiltonian

H0.u/ D

Z
T2

�
jru.x; y/j2 C 1

2
ju.x; y/j4

�
dx dy; (1.1)

(ii) the mass

M.u/ D

Z
T2
ju.x; y/j2 dx dy; (1.2)

which is just the square of the L2 norm of the solution, and (iii) the momentum

P.u/ D i
Z

T2
u.x; y/ru.x; y/ dx dy: (1.3)

We also remark that the equation is locally well-posed for data in H s.Td / for all
s > 0 [6]. Thanks to the conservation of energy (and the subcritical nature of the local
well-posedness result), one directly obtains global well-posedness in H s.Td / for s � 1.
This global existence can be pushed further down to at least s > 2=3 using almost conser-
vation inequalities (see for instance [15]). All the solutions constructed in this manuscript
are infinitely smooth, and hence their global-in-time existence is guaranteed.

1We expect that the results also extend to the focusing sign of the nonlinearity (�juj2u on the
R.H.S. of (2D-NLS)). The reason we restrict to the defocusing sign comes from the fact that the
linear analysis around our quasiperiodic tori has only been established in full detail in [43] in this
case.
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Now, we describe the invariant objects around which we will study and construct
our long-time nonlinear dynamics. Of course, such a task requires a very precise under-
standing of the linearized dynamics around such objects. For this reason, we take the
simplest nontrivial family of invariant quasiperiodic tori admitted by (2D-NLS), namely
those inherited from its completely integrable 1D counterpart

i@tq D �@xxq C jqj2q; x 2 T : (1D-NLS)

This is a subsystem of (2D-NLS) if we consider solutions that depend only on the first
spatial variable. It is well known that equation (1D-NLS) is integrable and its phase space
is foliated by tori of finite or infinite dimension with periodic, quasiperiodic, or almost
periodic dynamics. The quasiperiodic orbits are usually called finite gap solutions.

Such tori are Lyapunov stable (for all time!) as solutions of (1D-NLS) (as will be
clear once we exhibit its integrable structure) and some of them are linearly stable as
solutions of (2D-NLS), but we will be interested in their long-time nonlinear stability (or
lack of it) as invariant objects for the 2D equation (2D-NLS). In fact, we shall show that
they are nonlinearly unstable as solutions of (2D-NLS), and in a strong sense, in certain
topologies and after very long time. Such instability is transversal in the sense that one
drifts along the purely 2-dimensional directions: solutions which are initially very close
to 1-dimensional become strongly 2-dimensional after some long time.2

1.2. Energy cascade, Sobolev norm growth, and Lyapunov instability

In addition to studying long-time dynamics close to invariant objects for NLS, another
purpose of this work is to make progress on a fundamental problem in nonlinear wave
theory, which is the transfer of energy between characteristically different scales for a
nonlinear dispersive PDE. This is called the energy cascade phenomenon. It is a purely
nonlinear phenomenon (energy is static in frequency space for the linear system), and
will be the underlying mechanism behind the long-time instability of the finite gap tori
mentioned above.

We shall exhibit solutions whose energy moves from very high frequencies towards
low frequencies (backward or inverse cascade), as well as ones that exhibit a cascade
in the opposite direction ( forward or direct cascade). Such cascade phenomena have
attracted a lot of attention in the past few years as they are central aspects of various
theories of turbulence for nonlinear systems. For dispersive PDE, this goes by the name
of wave turbulence theory which predicts the existence of solutions (and statistical states)
of (2D-NLS) that exhibit a cascade of energy between very different length scales. In the
mathematical community, Bourgain drew attention to such questions of energy cascade
by first noting that it can be captured in a quantitative way by studying the behavior of the

2The tranversal instability phenomenon was already studied for solitary waves of the water
waves equation [51] and the KP-I equation [52] by Rousset and Tzvetkov. However, their instability
is a linear effect, in the sense that the linearized dynamics is unstable. In contrast, our result is a
fundamentally nonlinear effect, as the linearized dynamics around some of the finite gap tori is
stable.
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Sobolev norms of the solution,

kukH s D
�X
n2Z2

.1C jnj/2sjbunj2�1=2:
In his list of problems on Hamiltonian PDEs [9], Bourgain asked whether there exist solu-
tions that exhibit a quantitative version of the forward energy cascade, namely solutions
whose Sobolev H s norms, with s > 1, are unbounded in time,

sup
t�0

ku.t/kH s D C1; s > 1: (1.4)

We should point out here that such growth cannot happen for s D 0 or s D 1 due to
the conservation laws of the equations. For other Sobolev indices, there exist polynomial
upper bounds for the growth of Sobolev norms (see [7, 10, 11, 13, 14, 44, 53–56, 60]).
Nevertheless, results proving actual growth of Sobolev norms are much more scarce. After
seminal works by Bourgain himself [7] and Kuksin [37,39,40], the landmark result in [12]
was of fundamental importance in the recent progress, including this work: It showed that
for any s > 1, ı � 1, K � 1, there exist solutions u of (2D-NLS) such that

ku.0/kH s � ı and ku.T /kH s � K (1.5)

for some T > 0. Even if not mentioned in that paper, the same techniques also lead to the
same result for s 2 .0; 1/. This paper induced a lot of activity in the area [26–28, 31–33]
(see also [16, 22–24, 42, 45, 46] on results about growth of Sobolev norms with differ-
ent techniques). Despite all that, Bourgain’s question about solutions exhibiting (1.4)
remains open on Td (however, a positive answer has been given for the cylindrical
domain R � Td [32]).

The above-cited works revealed an intimate connection between Lyapunov instability
and Sobolev norm growth. Indeed, the solution u D 0 of (2D-NLS) is an elliptic critical
point and is linearly stable in all H s . From this point of view, the result in [12] given
in (1.5) can be interpreted as a strong form of Lyapunov instability (see item (6) in Sec-
tion 1.4) inH s , s ¤ 1, of the elliptic critical point uD 0 (the first integrals (1.1) and (1.2)
imply Lyapunov stability in the H 1 and L2 topology). It turns out that this connection
goes further, particularly in relation to the question of finding solutions exhibiting (1.4).
As was observed in [31], one way to prove the existence of such solutions is to prove
that, for sufficiently many � 2 H s , an instability similar to that in (1.5) holds, but with
ku.0/� �kH s � ı. In other words, proving long-time instability as in (1.5) but with solu-
tions starting ı-close to �, and for sufficiently many � 2 H s , implies the existence (and
possible genericness) of unbounded orbits satisfying (1.4). Such a program (based on a
Baire category argument) was applied successfully for the Szegő equation on T in [24].

Motivated by this, one is naturally led to studying this strong form of Lyapunov
instability for more general invariant objects of (2D-NLS) (or other Hamiltonian PDEs),
or equivalently to investigate whether one can achieve Sobolev norm explosion starting
arbitrarily close to a given invariant object. The first work in this direction is by one
of the present authors [31]. He considers the plane waves u.t; x/ D Aei.mx�!t/ with
! D m2 C A2, periodic orbits of (2D-NLS), and proves that there are orbits which start
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ı-close to them and undergo H s Sobolev norm explosion, 0 < s < 1. This implies that
the plane waves are strongly Lyapunov unstable in these topologies. Stability results for
plane waves in H s , s > 1, on shorter time scales are provided in [20].

1.3. Statement of results

Roughly speaking, we will construct solutions to (2D-NLS) that start very close to finite
gap tori in appropriate topologies, and exhibit either a backward cascade of energy from
high to low frequencies, or a forward cascade from low to high frequencies. In the former
case, the solutions that exhibit backward cascade start in an arbitrarily small vicinity of a
finite gap torus in a Sobolev space H s.T2/ with 0 < s < 1, but grow to become larger
than any pre-assigned K � 1 in the same H s (higher Sobolev H s norms with s > 1

decrease, but they are large for all times). In the latter case, the solutions that exhibit a
forward cascade start in an arbitrarily small vicinity of a finite gap torus in L2.T2/, but
their Sobolev H s norm (for all s > 1) exhibits growth by a large multiplicative factor
K � 1 after a large time. We shall comment further on those results after we state the
theorems precisely.

To do that, we need to introduce the Birkhoff coordinates for equation (1D-NLS).
Grébert and Kappeler showed in [25] that there exists a globally defined map, called the
Birkhoff map, such that for all s � 0,

ˆ W H s.T /! hs.Z/ � hs.Z/; q 7! .zm; zm/m2Z; (1.6)

such that equation (1D-NLS) is transformed in the new coordinates .zm; zm/m2Z D ˆ.q/

to
i Pzm D ˛m.I /zm (1.7)

where I D .Im/m2Z and Im D jzmj
2 are the actions, which are conserved in time

(since ˛m.I / 2 R). Therefore in these coordinates, called Birkhoff coordinates, equation
(1D-NLS) becomes a chain of nonlinear harmonic oscillators. Of course the solutions of
(1.7) live on finite- and infinite-dimensional tori with periodic, quasiperiodic or almost
periodic dynamics, depending on how many of the actions Im (which are constant!)
are nonzero and on the properties of rational dependence of the frequencies. Hence the
(1D-NLS) equation admits a family of finite-dimensional integrable subsystems, denoted
by G� , where � runs through the nonempty, finite subsets of Z; G� is contained inT
n�0 H

n.T ;C/ and its elements are called �-gap solutions. In particular, G� is foli-
ated by T I

�
WD ˆ�1.T I

�
/ where

T I
� WD ¹z 2 `

2
W jzmj

2
D Im for m 2 � ; jzmj

2
D 0 for m 62 �º

is a torus of dimension j� j parametrized by the action variables I D .Ij /j2� 2 R�
>0. This

torus, as an invariant object of equation (1D-NLS), is stable for all times in the sense of
Lyapunov.

We will abuse notation, and identify H s.T / with the closed subspace of H s.T2/

of functions depending only on the x variable. Consequently, T I
�

is a closed torus in
H s.T / � H s.T2/ which is invariant for the (2D-NLS) dynamics.
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The main result of this paper will show the instability (in the sense of Lyapunov) of
many of these invariant objects under the dynamics of (2D-NLS). Roughly speaking, we
show that, under certain assumptions on the choices of modes � and actions I , these tori
are unstable in the H s.T2/ topology for s 2 .0; 1/. Even more, there exist orbits which
start arbitrarily close to these tori and undergo an arbitrarily large H s norm explosion. In
order to state our result precisely, we introduce the definition of generic set � :

Definition 1.1 (L-genericity). Given L 2 N, we say that � D ¹m1; : : : ; mdº is L-generic if
it satisfies the condition

dX
iD1

`imi ¤ 0 for all ` 2 Zd with 0 < j`j WD
dX
iD1

j`i j � L; (1.8)

where d is the cardinality of � .

Our main result is the following:

Theorem 1.2. Fix a positive integer d � 2 and a sufficiently large L 2 N. Assume that �0
has cardinality d and is L-generic. Then there exists "� > 0 such that for any " 2 .0; "�/
there exists a positive measure Cantor-like set I � ."=2; "/d such that the torus T I

�0
with

I D .Ij /j2�0 2 I has the following properties:

(1) (Long-time instability of �0-gap solutions in H s.T2;C/ for 0 < s < 1) For any
s 2 .0; 1/, ı > 0 small enough, and K > 1 sufficiently large, there exists a smooth
solution u.t/ of (2D-NLS), u W R!

T
n�0H

n.T2;C/, and a time 0 < T � e.K=ı/
ˇ

such that
dist.u.0/; T I

�0
/H s.T2/ � ı and ku.T /kH s.T2/ � K:

Here the exponent ˇ > 1 can be chosen independently of K; ı. In particular, the
�0-gap solutions in T I

�0
are Lyapunov .orbitally/ unstable.

(2) (Long-time instability of �0-gap solutions inH s.T2;C/ for s > 1) For any s > 1 and
anyK > 1 sufficiently large, there exists a smooth solution u WR!

T
n�0H

n.T2;C/
of (2D-NLS) and a time 0 < T � eK

�
such that

dist.u.0/; T I
�0
/L2.T2/ � K

�� 0 and ku.T /kH s.T2/ � Kku.0/kH s.T2/:

Here �; � 0 > 0 depend on s, but not on K. Note that dist.u.0/; T I
�0
/H s.T2/ might not

be small.

1.4. Comments and remarks on Theorem 1.2

(1) The relative measure of the set I of admissible actions can be taken as close to 1 as
desired. Indeed, by taking smaller "�, the relative measure satisfies

j1 �meas.I/j � C"��

for some constant C > 0 and 0 < � < 1 independent of "� > 0. The genericity condition
on the set �0 and the actions .Im/m2�0 2 I ensure that the linearized dynamics around
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the resulting torus T I
�0

is stable for the perturbations we need to induce the nonlinear
instability. In fact, a subset of those tori is even linearly stable for much more general
perturbations as we remark below.

(2) Why does the finite gap solution need to be small? To prove Theorem 1.2 we need to
analyze the linearization of equation (2D-NLS) at the finite gap solution (see Section 4).
Roughly speaking, this leads to a Schrödinger equation with a quasi-periodic potential.
Luckily, such operators can be reduced to constant coefficients via a KAM scheme. This
is known as reducibility theory which allows one to construct a change of variables that
transforms the linearized operator into an essentially constant coefficient diagonal one.
This KAM scheme was carried out in [43], and requires the quasi-periodic potential, given
by the finite gap solution here, to be small for the KAM iteration to converge. That being
said, we suspect a similar result to be true for nonsmall finite gap solutions.

(3) To put the complexity of this result in perspective, it is instructive to compare it with
the stability result in [43]. In that paper, it is shown that a proper subset I0 � I of the
tori considered in Theorem 1.2 are Lyapunov stable in H s , s > 1, but for shorter time
scales than those considered in this theorem. More precisely, all orbits that are initially
ı-close to T I

�0
in H s stay Cı-close for some fixed C > 0 for time scales t � ı�2. The

same stability result (with a completely identical proof) holds if we replace H s by F `1
norm (functions whose Fourier series is in `1). In fact, by trivially modifying the proof,
one could also prove stability on the ı�2 time scale in F `1 \H

s for 0 < s < 1. What
this means is that the solutions in the first part of Theorem 1.2 remain within Cı of T I

�0

up to times � ı�2 but can diverge vigorously afterwards at much longer time scales.
It is also worth mentioning that the complementary subset I n I0 has a positive meas-

ure subset where tori are linearly unstable since they possess a finite set of modes that
exhibit hyperbolic behavior. In principle, hyperbolic directions are good for instability, but
they are not useful for our purposes since they live at very low frequencies, and hence can-
not be used (at least not by themselves alone) to produce a substantial growth of Sobolev
norms. We avoid dealing with these linearly unstable directions by restricting our solution
to an invariant subspace on which these modes are at rest.3

(4) The growth in part (1) of the theorem is the result of the so-called inverse cascade of
mass from high frequencies towards smaller ones, whereas the growth for s > 1 in part (2)
is the result of a forward cascade of kinetic energy from low to high frequencies. Both
phenomena are predicted by the physical theory of wave turbulence but their rigorous
justification is highly nontrivial from a mathematical viewpoint as we discussed earlier.
For part (1), initially the mass of the perturbation is concentrated on the “high frequency
set”ƒ03 in Theorem 7.3, but becomes concentrated on the “low frequency set”ƒ0;g�1 at
time T . This leads to the inflation of the H s norm for 0 < s < 1 (cf. (7.5)) whereas the
Sobolev norms for s > 1 actually contract. In contrast, in part (2), the initial kinetic energy

3We expect that such hyperbolic directions should imply a transverse instability result similar
to the one obtained by Rousset and Tzvetkov [51, 52] for solitary waves.
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of the perturbation is concentrated on the set ƒ0;g�1 and ends up being concentrated on
the “high frequency set” ƒ03, which yields the growth of Sobolev norms for s > 1. It is
here that the dependence of the solution on s starts to make a difference in the proof (cf.
Sections 7 and 8).

(5) It is expected that a similar statement to the first part of Theorem 1.2 is also true
for s > 1. This would be a stronger instability compared to that in the second part (for
which the initial perturbation is small in L2 but not inH s). Nevertheless, this case cannot
be tackled with the techniques considered in this paper. Indeed, one of the key points in
the proof is to perform a (partial) Birkhoff normal form up to order 4 around the finite
gap solution. The terms which lead to the instabilities in Theorem 1.2 are quasi-resonant
instead of being completely resonant. Working in the H s topology with s 2 .0; 1/, such
terms can be considered completely resonant with little error on the time scales where
instability happens. However, this cannot be done for s > 1, for which one might be able
to eliminate those terms by a higher order normal form (s > 1 gives a stronger topology
and can thus handle worse small divisors). This would mean that one needs other resonant
terms to achieve growth of Sobolev norms. The same difficulties were encountered in [31]
to prove the instability of the plane waves of (2D-NLS).

(6) The first part of the result of Theorem 1.2 can be interpreted as a strong form of Lya-
punov instability in H s norm (0 < s < 1) of the tori T I

�0
where the �0-gap solutions are

supported. Indeed, for an invariant subset X of the phase space, being Lyapunov stable
means that for all � > 0 there exists ı > 0 such that all solutions that are ı-close to X at
time t D 0 stay �-close to X for all times. Thus, Lyapunov instability of X means that
there existsK > 0 such that for all ı > 0 there exist a solution u.t/ and a time T such that
dist.u.0/; X/ < ı and dist.u.T /;X/ > K. In the first part of Theorem 1.2, we prove that
for X D T I

�0
such an instability property holds true for all ı > 0 and for all K > 0 in H s

norm (with s 2 .0; 1/). Thus, a stronger form of instability holds: one can start as close to
T I

�0
as desired but still end up as far as desired from T I

�0
after some time T D T .K;ı/ > 0.

(7) For finite-dimensional Hamiltonian dynamical systems, proving Lyapunov instability
for quasi-periodic Diophantine elliptic (or maximal-dimensional Lagrangian) tori is an
extremely difficult task. Actually all the results obtained [30, 59] deal with C r or C1

Hamiltonians, and not a single example of such instability is known for analytic Hamilto-
nian systems. In fact, there are no results of instabilities in the vicinity of nonresonant
elliptic critical points or periodic orbits for analytic Hamiltonian systems (see [17,18,34]
for results on the C1 topology). The present paper proves the existence of unstable Dio-
phantine elliptic tori in an analytic infinite-dimensional Hamiltonian system. Obtaining
such instabilities in infinite dimensions is, in some sense, easier: having infinite dimen-
sions gives “more room” for instabilities.

(8) It is well known that many Hamiltonian PDEs possess quasiperiodic invariant tori
[1,3–5,8,19,21,38,47–50,57,58]. Most of those tori are normally elliptic and thus linearly
stable. It is widely expected that the behavior given by Theorem 1.2 also arises in the
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neighborhoods of (many of) those tori. Nevertheless, it is not clear how to apply the
techniques of the present paper to these settings.

1.5. Scheme of the proof

Let us explain the main steps to prove Theorem 1.2.

(1) Analysis of the 1-dimensional cubic Schrödinger equation. We express the 1-dimen-
sional cubic NLS in terms of the Birkhoff coordinates. We need a quite precise knowledge
of the Birkhoff map (see Theorem 3.1). In particular, we need that it “behaves well” in `1.
This is done in [41] and summarized in Section 3. In Birkhoff coordinates, the finite gap
solutions are supported in a finite set of variables. We use such coordinates to express the
Hamiltonian (1.1) in a more convenient way.

(2) Reducibility of the 2-dimensional cubic NLS around a finite gap solution. We reduce
the linearization of the vector field around the finite gap solutions to a constant coefficients
diagonal vector field. This is done in [43] and explained in Section 4. In Theorem 4.3 we
give conditions leading to full reducibility. In effect, this transforms the linearized oper-
ator around the finite gap into a constant coefficient diagonal (in Fourier space) operator,
with eigenvalues ¹� E| º E|2Z2n�0 . We give the asymptotics of these eigenvalues in Theorem
4.4, which roughly speaking look like

� E| D j E| j
2
CO.J�2/ (1.9)

for frequencies E| D .m; n/ satisfying jmj; jnj � J . This seemingly harmless O.J�2/
correction to the unperturbed Laplacian eigenvalues is sharp and will be responsible for
the restriction to s 2 .0; 1/ in the first part of Theorem 1.2 as we shall explain below.

(3) Degree 3 Birkhoff normal form around the finite gap solution. This is done in [43],
but we shall need more precise information from this normal form that will be crucial for
Steps (5) and (6) below. This is done in Section 5 (see Theorem 5.2).

(4) Partial normal form of degree 4. We remove all degree 4 monomials which are not
(too close to) resonant. This is done in Section 6, and leaves us with a Hamiltonian with
(close to) resonant degree 4 terms plus a higher degree part which will be treated as a
remainder in our construction.

(5) We follow the paradigm set forth in [12, 28] to construct solutions to the truncated
Hamiltonian consisting of the (close to) resonant degree 4 terms isolated above, and then
to the full Hamiltonian by an approximation argument. This construction will be done
at frequencies E| D .m; n/ such that jmj; jnj � J with J very large, and for which the
dynamics is effectively given by the following system of ODEs:8̂̂̂̂
<̂
ˆ̂̂:

i Pa E| D �ja E| j2a E| C
P

R. E|/ a E|1a E|2a E|3e
i�t ;

R. E|/ WD ¹. E|1; E|2; E|3/ 2 Z2 n �0 W E|1; E|3 ¤ E|; E|1 � E|2 C E|3 D E|;

j E|1j
2 � j E|2j

2 C j E|3j
2 D j E| j2º;

� WD � E|1 �� E|2 C� E|3 �� E| :
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We remark that the conditions of the set R. E|/ are essentially equivalent to saying that
. E|1; E|2; E|3; E|/ form a rectangle in Z2. Also note that by the asymptotics of � E| mentioned
above in (1.9), one obtains � D O.J�2/ if all the frequencies involved are in R. E|/ and
satisfy jmj; jnj � J . The idea now is to reduce this system to a finite-dimensional system
called the “Toy Model”, which is tractable enough for us to construct a solution that
cascades energy. An obstruction to this plan is the presence of the oscillating factor ei�t

for which � is not zero (in contrast to [12]) but rather O.J�2/. The only way to proceed
with this reduction is to approximate ei�t � 1which is only possible provided J�2T � 1.
The solution coming from the Toy Model is supported on a finite number of modes E| 2
Z2 n �0 satisfying jj j � J , and the time it takes for the energy to diffuse across its modes
is T � O.��2/ where � is the characteristic size of the modes in `1 norm. Requiring
the solution to be initially close in H s to the finite gap solution would necessitate that
�J s . ı, which gives T &ı J�2s , and hence the condition J�2T � 1 translates into
s < 1. This explains the restriction to s < 1 in the first part of Theorem 1.2. If we only
require our solutions to be close to the finite gap solution in L2, then no such restriction
on � is needed, and hence there is no restriction on s beyond being s > 0 and s ¤ 1, which
is the second part of the theorem.

This analysis is done in Sections 7 and 8. In the former, we perform the reduction to the
effective degree 4 Hamiltonian taking into account all the changes of variables performed
in the previous sections; while in Section 8 we perform the above approximation argument
allowing us to shadow the Toy Model solution mentioned above with a solution of
(2D-NLS) exhibiting the needed norm growth, thus completing the proof of Theorem 1.2.

In Appendix B we give a list of notations and parameters used throughout the paper.

2. Notation and functional setting

2.1. Notation

For a complex number z, it is often convenient to use the notation

z� D

´
z if � D C1;
Nz if � D �1:

For any subset � � Z2, we denote by hs.�/ the set of sequences .a E| / E|2� with norm

kakhs.�/ D
�X
E|2�

h E|i2sja E| j
2
�1=2

<1:

Our phase space will be obtained by an appropriate linearization around the finite
gap solution with d frequencies/actions. For a finite set �0 � Z � ¹0º of d elements,
we consider the phase space X D .Cd � T d/ � `1.Z2 n �0/ � `

1.Z2 n �0/. The first
part .Cd � T d/ corresponds to the finite gap sites in action-angle coordinates, whereas
`1.Z2 n �0/ � `

1.Z2 n �0/ corresponds to the remaining orthogonal sites in frequency
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space. We shall often denote the `1 norm by k � k1. We shall denote variables on X by

X 3 .Y; �; a/ W Y 2 Cd; � 2 T d; a D .a; Na/ 2 `1.Z2 n �0/ � `
1.Z2 n �0/:

We shall use multi-index notation to write monomials like Yl and m˛;ˇ D a
˛ Naˇ where

l 2 Nd and ˛; ˇ 2 NZ2n�0 . Oftentimes, we will abuse notation, and simply write a 2 `1

to mean a D .a; Na/ 2 `1.Z2 n �0/ � `
1.Z2 n �0/, and kak1 D kak`1.Z2n�0/.

Definition 2.1. For a monomial of the form ei`��Ylm˛;ˇ , we define its degree to be 2jl j C
j˛j C jˇj � 2, where the modulus of a multi-index is given by its `1 norm.

2.2. Regular Hamiltonians

Given a Hamiltonian function F.Y; �; a/ on the phase space X, we associate to it the
Hamiltonian vector field

XF WD ¹�@�F; @YF;�i@ NaF; i@aF º;

where we have used the standard complex notation to denote the Fréchet derivatives of F
with respect to the variable a 2 `1.

We will often need to complexify the variable � 2 T d into the domain

T d
� WD ¹� 2 Cd

W Re.�/ 2 T d; jIm.�/j � �º

and consider vector fields which are functions

Cd
� T d

� � `
1
! Cd

�Cd
� `1; .Y; �; a/ 7! .X .Y/; X .�/; X .a/; X . Na//;

which are analytic in Y; �; a. Our vector fields will be defined on the domain

D.�; r/ WD T d
� �D.r/ where D.r/ WD ¹jYj � r2; kak1 � rº: (2.1)

For the vector fields, we use the norm

jjjX jjjr WD jX
.�/
j C
jX .Y/j

r2
C
kX .a/k1

r
C
kX . Na/k1

r
:

All Hamiltonians F considered in this article are analytic, real-valued and can be expan-
ded in Taylor Fourier series which are well defined and pointwise absolutely convergent,

F.Y; �; a/ D
X

˛;ˇ2NZ2n�0 ; `2Zd; l2Nd

F˛;ˇ;l;`e
i`��Ylm˛;ˇ : (2.2)

Correspondingly we expand vector fields in Taylor Fourier series (again well defined and
pointwise absolutely convergent)

X .v/.Y; �; a/ D
X

˛;ˇ2NZ2n�0 ; `2Zd; l2Nd

X
.v/

˛;ˇ;l;`
ei`��Ylm˛;ˇ ;

where v denotes the components �i ;Yi for 1 � i � d or a E| ; Na E| for E| 2 Z2 n �0.
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To a vector field we associate its majorant

X .v/� ŒY; a� WD
X

`2Zd; l2Nd; ˛;ˇ2NZ2

jX
.v/

˛;ˇ;l;`
je� j`jYlm˛;ˇ

and require that this is an analytic map on D.r/. Such a vector field is called majorant
analytic. Since Hamiltonian functions are defined modulo constants, we give the follow-
ing definition of the norm of F :

jF j�;r WD sup
.Y;a/2D.r/

jjj .XF /�
jjj
r
:

Note that the norm j � j�;r controls j � j�0;r 0 whenever �0 < �, r 0 < r .
Finally, we will also consider Hamiltonians F.�I �; a; Na/ � F.�/ depending on an

external parameter � 2 O � Rd. For those, we define the inhomogeneous Lipschitz norm

jF jO�;r WD sup
�2O

jF.�/j�;r C sup
�1¤�22O

jF.�1/ � F.�2/j�;r

j�1 � �2j
:

2.3. Commutation rules

Given two Hamiltonians F andG, we define their Poisson bracket as ¹F;Gº WD dF.XG/;
in coordinates,

¹F;Gº D �@YF � @�G C @�F � @YG C i
� X
E|2Z2n�0

@ Na E|F@a E|G � @a E|F@ Na E|G
�
:

Given ˛; ˇ 2 NZ2n�0 we denote m˛;ˇ WD a˛ Naˇ . To the monomial ei`��Ylm˛;ˇ with
` 2 Zd, l 2 Nd we associate various numbers. We denote

�.˛; ˇ/ WD
X
E|2Z2n�0

.˛ E| � ˇ E| /; �.`/ WD

dX
iD1

`i : (2.3)

We also associate to ei`��Ylm˛;ˇ the quantities �.˛; ˇ/ D .�x ; �y/ and �.`/ defined by

�.˛; ˇ/ D

�
�x.˛; ˇ/

�y.˛; ˇ/

�
D

X
E|D.m;n/2Z2n�0

�
m

n

�
.˛ E| � ˇ E| /; �.`/ D

dX
iD1

mi`i : (2.4)

The above quantities are associated with the mass M and momentum P D .Px ;Py/

functionals given by

M WD

dX
iD1

Yi C
X
E|2Z2n�0

ja E| j
2;

Px WD

dX
iD1

miYi C
X

.m;n/2Z2n�0

mja.m;n/j
2;

Py WD
X

.m;n/2Z2n�0

nja.m;n/j
2;

(2.5)

via the following commutation rules: given a monomial ei`��Ylm˛;ˇ ,
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¹M; ei`��Ylm˛;ˇ º D i.�.˛; ˇ/C �.`//ei`��Ylm˛;ˇ ;

¹Px ; e
i`��Ylm˛;ˇ º D i.�x.˛; ˇ/C �.`//ei`��Ylm˛;ˇ ;

¹Py ; e
i`��Ylm˛;ˇ º D i�y.˛; ˇ/ei`��Ylm˛;ˇ :

Remark 2.2. An analytic Hamiltonian function F (expanded as in (2.2)) commutes with
the mass M and the momentum P if and only if the following selection rules on its
coefficients hold:

¹F ;Mº D 0 ” F˛;ˇ;l;` .�.˛; ˇ/C �.`// D 0;

¹F ;Pxº D 0 ” F˛;ˇ;l;` .�x.˛; ˇ/C �.`// D 0;

¹F ;Pyº D 0 ” F˛;ˇ;l;` .�y.˛; ˇ// D 0;

where �.˛; ˇ/; �.`/ are defined in (2.3) and �.˛; ˇ/; �.`/ are defined in (2.4).

Definition 2.3. We will denote by A�;r the set of all real-valued Hamiltonians of the form
(2.2) with finite j � j�;r norm and which Poisson commute with M, P . Given a compact
set O � Rd, we denote by AO

�;r the Banach space of Lipschitz maps O ! A�;r with the
norm j � jO�;r .

From now on, all our Hamiltonians will belong to A�;r for some �; r > 0.

3. Adapted variables and Hamiltonian formulation

3.1. Fourier expansion and phase shift

Let us start by expanding u in Fourier coefficients,

u.x; y; t/ D
X

E|D.m;n/2Z2

u E| .t/e
i.mxCny/:

Then the Hamiltonian H0 introduced in (1.1) can be written as

H0.u/ D
X
E|2Z2

j E| j2ju E| j
2
C
1

2

X
E|i2Z2

E|1�E|2CE|3�E|4D0

u E|1 Nu E|2u E|3 Nu E|4

D

X
E|2Z2

j E| j2ju E| j
2
�
1

2

X
E|2Z2

ju E| j
4
C 2

M.u/2‚ …„ ƒ�X
E|2Z2

ju E| j
2
�2
C
1

2

X?

E|i2Z2

E|1�E|2CE|3�E|4D0

u E|1 Nu E|2u E|3 Nu E|4

where
P? means the sum over the quadruples E|i such that ¹ E|1; E|3º ¤ ¹ E|2; E|4º.

Since the mass M.u/ in (1.2) is a constant of motion, we make a trivial phase shift
and consider an equivalent Hamiltonian H.u/ D H0.u/ �M.u/2,

H.u/ D

Z
T2
jru.x; y/j2 dx dy C

1

2

Z
T2
ju.x; y/j4 dx dy �M.u/2 (3.1)
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corresponding to the Hamilton equation

i@tu D ��uC juj2u � 2M.u/u; .x; y/ 2 T2: (3.2)

Clearly the solutions of (3.2) differ from the solutions of (2D-NLS) only by a phase shift.4

Then

H.u/ D
X
E|2Z2

j E| j2ju E| j
2
�
1

2

X
E|2Z2

ju E| j
4
C
1

2

X?

E|i2Z2

E|1�E|2CE|3�E|4D0

u E|1 Nu E|2u E|3 Nu E|4 : (3.3)

3.2. The Birkhoff map for the 1D cubic NLS

We devote this section to gathering some properties of the Birkhoff map for the integrable
1D NLS equation. These will be used to write the Hamiltonian (3.3) in a more convenient
way. The main reference for this section is [41].

We shall denote by Bs.r/ the ball of radius r and center 0 in the topology of
hs � hs.Z/.

Theorem 3.1. There exist r� > 0 and a symplectic, real analytic map ˆ with dˆ.0/ D I
such that for all s � 0 one has the following:

(i) ˆ W Bs.r�/ ! hs . More precisely, there exists a constant C > 0 such that for all
0 � r � r�,

sup
kqkhs�r

k.ˆ � I/.q/khs � Cr
3:

The same estimate holds for ˆ�1 � I or with hs replaced by `1.

(ii) Moreover, if q 2 hs for s � 1, then ˆ introduces local Birkhoff coordinates for
(1D-NLS) in hs as follows: the integrals of motion of (1D-NLS) are real analytic
functions of the actions Ij D jzj j2 where .zj /j2Z D ˆ.q/. In particular, the
Hamiltonian H1D-NLS.q/ �

R
T j@xq.x/j

2 dx �M.q/2 C 1
2

R
T jq.x/j

4 dx, the mass
M.q/ WD

R
T jq.x/j

2 dx and the momentum P.q/ WD �
R

T Nq.x/i@xq.x/ dx have the
form

.H1D-NLS ıˆ
�1/.z/ � h1D-NLS..jzmj

2/m2Z/

D

X
m2Z

m2jzmj
2
�
1

2

X
m2Z

jzmj
4
CO.jzj6/; (3.4)

.M ıˆ�1/.z/ D
X
m2Z

jzmj
2;

.P ıˆ�1/.z/ D
X
m2Z

mjzmj
2:

4To show the equivalence we consider any solution u.x; t/ of (3.2) and consider the invertible
map

u 7! v D ue�2iM.u/t with inverse v 7! u D ve2iM.v/t :

Then a direct computation shows that v solves (2D-NLS).
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(iii) Define the (1D-NLS) action-to-frequency map I 7! ˛1D-NLS.I / by ˛1D-NLS
m .I / WD

@h1D-NLS
@Im

for m 2 Z: Then one has the asymptotic expansion

˛1D-NLS
m .I / D m2 � Im C

$m.I /

hmi
(3.5)

where $m.I / is at least quadratic in I .

Proof. Item (i) is the main content of [41], where it is proved that the Birkhoff map is
majorant analytic between some Fourier–Lebesgue spaces. Item (ii) is proved in [25].
Item (iii) is [36, Theorem 1.3].

Remark 3.2. Theorem 3.1 implies that all solutions of (1D-NLS) have Sobolev norms
uniformly bounded in time (as it happens for other integrable systems, like KdV and Toda
lattice, see e.g. [2,35]). On the contrary, the Szegő equation is an integrable system which
exhibits growth of Sobolev norms [24].

3.3. Adapted variables

The aim of this section is to write the Hamiltonian (3.1), the mass M (1.2) and the
momentum P (1.3) in the local variables around the finite gap solution corresponding
to ´

jzmj
2 D Im; m 2 �0;

zm D 0; m 2 Z n �0:

We start from the Hamiltonian in Fourier coordinates (3.3), and set

qm WD u.m;0/ if m 2 Z; a E| D u E| if E| D .m; n/ 2 Z2; n ¤ 0:

We rewrite the Hamiltonian accordingly in increasing degree in a, obtaining

H.q; a/ D
X
m2Z

m2jqmj
2
�
1

2

X
m2Z

jqmj
4
C
1

2

X?

mi2Z
m1�m2Cm3�m4D0

qm1 Nqm2qm3 Nqm4

C

X
E|2Z2nZ

j E| j2ja E| j
2
C 2

X?

E|iD.mi ;ni /; iD3;4; ni¤0
m1�m2Cm3�m4D0

n3�n4D0

qm1 Nqm2a E|3 Na E|4

C Re
X

E|iD.mi ;ni /; iD2;4; ni¤0
m1�m2Cm3�m4D0

n2Cn4D0

Nqm1a E|2 Nqm3a E|4 C 2Re
X

E|iD.mi ;ni /; iD2;3;4; ni¤0
m1�m2Cm3�m4D0
�n2Cn3�n4D0

qm1 Na E|2a E|3 Na E|4

C
1

2

X?

E|iD.mi ;ni /; iD1;2;3;4; ni¤0

E|1�E|2CE|3�E|4D0

a E|1 Na E|2a E|3 Na E|4 �
1

2

X
E|2Z2nZ

ja E| j
4

DW H1D-NLS.q/CH
II.q; a/CH III.q; a/CH IV.a/:
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Step 1. First we make the following change of coordinates, which amounts to introducing
Birkhoff coordinates on the line Z � ¹0º. We set

..zm/m2Z; .a E| / E|2Z2nZ/ 7! ..qm/m2Z; .a E| / E|2Z2nZ/;

.qm/m2Z D ˆ
�1..zm/m2Z/; a E| D u E| ; E| 2 Z2 n Z:

In those new coordinates, the Hamiltonian becomes

H.z; a/ D H1D-NLS.ˆ
�1.z//CH II.ˆ�1.z/; a/

CH III.ˆ�1.z/; a/CH IV.a/;

where
H1D-NLS.ˆ

�1.z// D h1D-NLS..jzmj
2/m2Z/:

Step 2. Next, we go to action-angle coordinates only on the set

�0 D ¹m1; : : : ; md º � Z � ¹0º

and rename zm for m … �0 as a.m;0/, as follows:

.Yi ; �i ; a E| / 1�i�d
E|2Z2n�0

7! .zm; a E| /m2Z; E|2Z2nZ,

zmi D

q
Imi C Yi e

i�i ; mi 2 �0;

zm D a.m;0/; m 2 Z n �0;

a E| D a E| ; E| 2 Z2 n Z:

In those coordinates, the Hamiltonian becomes (using (3.4))

H .Y; �; a/ D h1D-NLS
�
Im1 C Y1; : : : ; Imd C Yd; .ja.m;0/j

2/m…�0

�
(3.6)

CH II�ˆ�1.pIm1 C Y1 e
i�1 ; : : : ;

p
Imd C Yd e

i�d ; .a.m;0//m…�0/; .a.m;n//n¤0
�

(3.7)

CH III�ˆ�1.pIm1 C Y1 e
i�1 ; : : : ;

p
Imd C Yd e

i�d ; .a.m;0//m…�0/; .a.m;n//n¤0
�

(3.8)

CH IV..a.m;n//n¤0/: (3.9)

We first remark that T I
�0

is described in the .Y; �; a/ coordinates by Y D 0, a D 0. Fur-
thermore, it is proved in [43, Proposition 4.2] that a neighborhood of .0; �; 0/ corresponds
in the original variables to a neighborhood of the torus T I

�0
; in particular

jYj � r2; kakhs.Z2n�0/ � r H) dist.u.Y; �; a/; T I
�0
/H s.T2/ � cr (3.10)

for some c > 0 and any sufficiently small r � 0.

Step 3. Now, we expand each line separately. By Taylor expanding around the finite gap
torus corresponding to .Y; �; a/ D .0; �; 0/ we obtain, up to an additive constant,
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h1D-NLS.Im1 C Y1; : : : ; Imd C Yd; .ja.m;0/j
2/m…�0/

D

dX
iD1

@mih1D-NLS.Im1 ; : : : ; Imd ; 0/Yi C
X

m2Zn�0

@mh1D-NLS.Im1 ; : : : ; Imd ; 0/ja.m;0/j
2

�
1

2
.jYj2 C

X
m2Zn�0

ja.m;0/j
4/CO

�
jI j
° dX
jD1

Yj C
X
m…�0

ja.m;0/j
2
±2�

CO
�° dX
jD1

Yj C
X
m…�0

ja.m;0/j
2
±3�

;

where we have used formula (3.4) in order to deduce that @
2h1D-NLS
@Im@In

.0/ D �ımn where ımn
is the Kronecker delta.

The following lemma follows easily from Theorem 3.1 (particularly formulae (3.4)
and (3.5)):

Lemma 3.3 (Frequencies around the finite gap torus). Denote

@Imj
h1D-NLS.Im1 ; : : : ; Imd ; 0/ � ˛

1D-NLS
mj .Im1 ; : : : ; Imd ; 0/ D m2j � z�j .Im1 ; : : : ; Imd/:

Then:

(1) The map .Im1 ; : : : ; Imd/ 7!
z�.Im1 ; : : : ; Imd/ D .

z�i .Im1 ; : : : ; Imd//1�i�d is a diffeomor-
phism from a small neighborhood of 0 in Rd to a small neighborhood of 0 in Rd.
Indeed, z� D Identity C .quadratic in I /. More precisely, there exists "1d > 0 such
that if 0 < " < "1d and

z�.Im1 ; : : : ; Imd/ D "�; � 2 .1=2; 1/d;

then .Im1 ; : : : ; Imd/D "�CO."
2/. From now on, and to simplify notation, we will use

the vector � as a parameter as opposed to .Im1 ; : : : ; Imd/, and we write

!i .�/ D m2i � "�i ; 1 � i � d;

for the frequencies at the tangential sites in �0.

(2) For m 2 Z n �0, denoting �m.�/ WD @Imh1D-NLS.Im1.�/; : : : ; Imd.�/; 0/, we have

�m.�/ WD m
2
C
$m.I.�//

hmi
with sup

�2.1=2;1/d
sup
m2Z
j$m.I.�//j � C"

2:

With this in mind, line (3.6) becomes

h1D-NLS
�
Im1 C Y1; : : : ; Imd C Yd; .ja.m;0/j

2/m…�0

�
D !.�/ � Y C

X
m2Zn�0

�m.�/ja.m;0/j
2
�
1

2

�
jYj2 C

X
m2Zn�0

ja.m;0/j
4
�

CO
�
jI j
° dX
jD1

Yj C
X
m…�0

ja.m;0/j
2
±2�
CO

�° dX
jD1

Yj C
X
m…�0

ja.m;0/j
2
±3�

:
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We now analyze (3.7). This is given by

(3.7) D
X
E|2Z2nZ

j E| j2ja E| j
2
C 2

X?

E|iD.mi ;ni /; iD3;4; ni¤0
m1�m2Cm3�m4D0

n3�n4D0

qm1 Nqm2a E|3 Na E|4

C Re
X

E|iD.mi ;ni /; iD2;4; ni¤0
m1�m2Cm3�m4D0

n2Cn4D0

Nqm1a E|2 Nqm3a E|4

where we now think of qm as a function of Y; �; a. By Taylor expanding it at Y D 0 and
a D 0, we get

qm D qm.�IY; �; .a.m1;0//m12Zn�0/

D

DWq
fg
m.�I�/‚ …„ ƒ

qm.�I 0; �; 0/C

dX
iD1

@qm

@Yi
.�I 0; �; 0/Yi

C

X
m12Zn�0

�
@qm

@a.m1;0/
.�I 0; �; 0/a.m1;0/ C

@qm

@ Na.m1;0/
.�I 0; �; 0/a.m1;0/

�
C

X
m1;m22Zn�0
�1;�2D˙1

Q�1�2
m;m1m2

.�I �/a
�1
.m1;0/

a
�2
.m2;0/

CO.Y2;Ya; a3/; (3.11)

where we have denoted by .qfg
m.�I �//m2Z the finite gap torus (which corresponds to

Y D 0, a D 0), O.Y2;Ya; a3/ are terms that invoke Y2, Ya or a3, and

Q�1�2
m;m1m2

.�I �/ D
1

2

@2qm

@a
�1
m1@a

�2
m2

.�I 0; �; 0/:

Therefore, we obtain

(3.7) D
X
E|2Z2nZ

j E| j2ja E| j
2
C 2

X?

E|iD.mi ;ni /; iD3;4; ni¤0
m1�m2Cm3�m4D0

n3�n4D0

qfg
m1
.�I �/ Nqfg

m2
.�I �/a E|3 Na E|4

C Re
X

E|iD.mi ;ni /; iD2;4; ni¤0
m1�m2Cm3�m4D0

n2Cn4D0

Nqfg
m1
.�I �/a E|2 Nq

fg
m3
.�I �/a E|4

C

²
2

X?

E|iD.mi ;ni /; iD3;4; ni¤0
m1�m2Cm3�m4D0

n3�n4D0

X
m0
2
2Zn�0

@ Nqm2
@ Na.m0

2
;0/

.�I 0; �; 0/qfg
m1
.�I �/ Na.m0

2
;0/a E|3 Na E|4

C similar cubic terms in .a; Na/
³

C (3.7).2/ C (3.7).�3/
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where (3.7).2/ are degree 2 terms (cf. Definition 2.1), and (3.7).�3/ are those of degree
� 3. More precisely,

(3.7).2/ D 2
X?

E|iD.mi ;ni /; iD3;4; ni¤0
m1�m2Cm3�m4D0

n3�n4D0
1�i�d

qfg
m1
.�I �/

@ Nqm2
@Yi

.�I 0; �; 0/Yia E|3 Na E|4 C similar terms

C

X?

E|iD.mi ;ni /; iD3;4; ni¤0
m1�m2Cm3�m4D0

n3�n4D0
�1;�2D˙1;m

0
1
;m0
2
2Zn�0

L
�1;�2
m1;m2;m

0
1
;m0
2

.�I �/a
�1
.m0
1
;0/
a
�2
.m0
2
;0/
a E|3 Na E|4 C similar terms;

(3.12)

for some uniformly bounded coefficients L�1;�2
m1;m2;m

0
1
;m0
2

.
Next, we move on to (3.8), for which we have, using (3.11),

(3.8) D 2Re
X

E|iD.mi ;ni /; iD2;3;4; ni¤0
m1�m2Cm3�m4D0
�n2Cn3�n4D0

qfg
m1
.�I �/ Na E|2a E|3 Na E|4

C 2Re
X

E|iD.mi ;ni /; iD2;3;4; ni¤0
m1�m2Cm3�m4D0
�n2Cn3�n4D0

@qm1
@a.m0

1
;0/

.�I 0; �; 0/a.m0
1
;0/ Na E|2a E|3 Na E|4 C similar terms

„ ƒ‚ …
(3.8).2/

C (3.8).�3/; (3.13)

where (3.8).2/ are terms of degree 2 and (3.8).�3/ are terms of degree � 3.
In conclusion, we obtain

H .�IY; �; a/ D N CH .0/.�I �; a/CH .1/.�I �; a/CH .2/.�IY; �; a/

CH .�3/.�IY; �; a/; (3.14)

where

N D

dX
iD1

!mi .�/Yi C
X
m…�0

�m.�/ja.m;0/j
2
C

X
E|D.m;n/2Z2

n¤0

j E| j2ja E| j
2; (3.15)

H .0/.�I �; a/ D 2
X?

E|iD.mi ;ni /; iD3;4; ni¤0
m1�m2Cm3�m4D0

n3�n4D0

qfg
m1
.�I �/ Nqfg

m2
.�I �/a E|3 Na E|4

C Re
X

E|iD.mi ;ni /; iD2;4; ni¤0
m1�m2Cm3�m4D0

n2Cn4D0

Nqfg
m1
.�I �/a E|2 Nq

fg
m3
.�I �/a E|4 ; (3.16)
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H .1/.�I �; a/

D 2Re
X

E|iD.mi ;ni /; iD2;3;4; ni¤0
m1�m2Cm3�m4D0
�n2Cn3�n4D0

qfg
m1
.�I �/ Na E|2a E|3 Na E|4

C 2
X?

E|iD.mi ;ni /; iD3;4; ni¤0
m1�m2Cm3�m4D0

n3�n4D0

X
m0
2
2Zn�0

@ Nqm2
@ Na.m0

2
;0/

.�I 0; �; 0/qfg
m1
.�I �/ Na.m0

2
;0/a E|3 Na E|4

C similar cubic terms in .a; Na/; (3.17)

H .2/.�I �; a/ D H IV..a.m;n//n¤0/ �
1

2

�
jYj2 C

X
m2Zn�0

ja.m;0/j
4
�

CO
�
"
° dX
jD1

Yj C
X
m…�0

ja.m;0/j
2
±2�
C (3.7).2/ C (3.8).2/; (3.18)

where (3.7).2/ and (3.8).2/ were defined in (3.12) and (3.13) respectively. Finally, H .�3/

collects all remainder terms of degree � 3.
For short we write N as N D !.�/ � Y CD where D is the diagonal operator

D WD
X

E|D.m;n/2Z2n�0

�
.0/

E|
ja E| j

2

and the normal frequencies �.0/
E|

are defined by

�
.0/

E|
WD

´
j E| j2 if E| D .m; n/ with n ¤ 0;

�m.�/ if E| D .m; 0/; m … �0:
(3.19)

Proceeding as in [43], one can prove the following result:

Lemma 3.4. Fix � > 0. There exists "� > 0 and for any 0� "� "� there exist r� �
p
"=4

and C > 0 such that H .0/;H .1/;H .2/ and H .�3/ belong to AO
�;r�

and for 0 < r � r�,

jH .0/
j
O
�;r �C"; jH

.1/
j
O
�;r �C

p
"r; jH .2/

j
O
�;r �Cr

2; jH .�3/
j
O
�;r �C

r3
p
"
: (3.20)

4. Reducibility of the quadratic part

In this section, we review the reducibility of the quadratic part N CH .0/ (see (3.15) and
(3.16)) of the Hamiltonian, which is the main part of [43]. This will be a symplectic linear
change of coordinates that transforms the quadratic part into an effectively diagonal, time
independent expression.
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4.1. Restriction to an invariant sublattice Z2N

For N 2 N, we define the sublattice Z2N WD Z � NZ and remark that it is invariant for
the flow in the sense that the subspace

EN WD ¹a E| D Na E| D 0 for E| … Z2N º

is invariant for the original NLS dynamics and that of the Hamiltonian (3.14). From now
on, we restrict our system to this invariant sublattice, with

N > max
1�i�d

jmi j: (4.1)

The reason for this restriction is that it simplifies (actually eliminates the need for) some
genericity requirements that are needed for [43] as well as some of the normal form cal-
culations that we will perform later.

It will also be important to introduce the following two subsets of Z2N :

S WD ¹.m; n/ W m 2 �0; n 2 NZ; n ¤ 0º; Z D Z2N n .S [ �0/: (4.2)

4.2. Admissible monomials and reducibility

The reducibility of the quadratic part of the Hamiltonian will introduce a change of vari-
ables that modifies the expression of the mass M and momentum P as follows. Let us
set

zM WD

dX
iD1

Yi C
X

.m;n/2Z

jaj j
2;

zPx WD

dX
iD1

miYi C
X

.m;n/2Z

mja.m;n/j
2;

zPy WD
X

.m;n/2Z2
N

nja.m;n/j
2:

(4.3)

These will be the expressions for the mass and momentum after the change of
variables introduced in the following two theorems. Notice the absence of the termsP
1�i�d; n2NZ ja.mi ;n/j

2 and
P
1�i�d; n2NZ mi ja.mi ;n/j

2 from the expressions of zM
and zPx above. These terms are absorbed in the new definition of the Y and a variables.

Definition 4.1 (Admissible monomials). Given j D . E|1; : : : ; E|p/ 2 .Z2N n �0/
p , ` 2 Zd,

l 2 Nd, and � D .�1; : : : ; �p/ 2 ¹�1; 1º
p , we say that .j; `; �/ is admissible, and

denote .j; `; �/ 2 Ap , if the monomial m D ei� �`Yl a
�1
E|1
: : : a

�p

E|p
Poisson commutes with

zM; zPx ; zPy . We call a monomial ei� �`Yla
�1
E|1
: : : a

�p

E|p
admissible if .j; `; �/ is admissible.

Definition 4.2. We define the resonant set at degree 0 by

R2 WD ¹. E|1; E|2; `; �1; �2/º 2 A2 W ` D 0; �1 D ��2; E|1 D E|2º: (4.4)
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Theorem 4.3. Fix "0 > 0 sufficiently small. There exist positive �0; 
0; �0; r0;L0 .with L0
depending only on d/ such that the following holds true uniformly for all 0 < " � "0: For
an L0-generic choice of the set �0 .in the sense of Definition 1.1/, there exist a compact
domain O0 � .1=2; 1/

d, satisfying j.1=2; 1/d n O0j � "0, and Lipschitz .in �/ functions
¹� E| º E|2Z2

N
n�0

defined on O0 .described more precisely in Theorem 4.4 below/ such that:

(1) The set

C .0/ WD ¹� 2 O0 W j! � `C �1� E|1.�; "/C �2� E|2.�; "/j � 
0"=h`i
�0 ;

8. E|; `; �/ 2 A2 n R2º (4.5)

has positive measure. In fact jO0 n C .0/j . "
�0
0 for some �0 > 0 independent of "0.

(2) For each � 2 C .0/ and all r 2 Œ0; r0�, � 2 Œ
�0
64
; �0�, there exists an invertible symplectic

change of variables L.0/ that is well defined and majorant analytic fromD.�=8; �0r/

to D.�; r/ .here �0 > 0 is a constant depending only on �0;max jmkj2/ and such that
if a 2 h1.Z2N n �0/, then

.N CH .0// ıL.0/.Y; �; a/ D ! � Y C
X

E|2Z2
N
n�0

� E| ja E| j
2:

(3) The mass M and the momentum P .defined in (2.5)/ in the new coordinates are given
by

M ıL.0/
D zM; P ıL.0/

D zP ; (4.6)

where zM and zP are defined in (4.3).

(4) The map L.0/ maps h1 to itself and has the form

L.0/
W a 7! L.�I �; "/a; Y 7! Y C .a;Q.�I �; "/a/; � 7! �:

The same holds for the inverse map .L.0//�1.

(5) The linear maps L.�I �; "/ and Q.�I �; "/ are block diagonal in the y Fourier
modes, in the sense that L D diagn2NN.Ln/ with each Ln acting on the sequence
¹a.m;n/; a.m;�n/ºm2Z .and similarly forQ/. Moreover, L0 D Id and Ln is of the form
IdC Sn where Sn is a smoothing operator in the following sense: with the smoothing
norm d�c�;�1 defined in (4.7) below,

sup
n¤0

dSn ı P¹jmj�.mdC1/ºc�;�1 . ";

where P¹jmj�Kº is the orthogonal projection of a sequence .cm/m2Z onto the modes
jmj � K.

The above smoothing norm is defined as follows: Let S.�I �; "/ be an operator act-
ing on sequences .ck/k2Z through its matrix elements S.�I �; "/m;k . Let us denote by
S.�I `; "/m;k the � -Fourier coefficients of S.�I �; "/m;k . For �; � > 0 we define

dS.�I �; "/c�;� WD sup
kck

`1
�1




�X
k2Z
`2Zd

e�j`jjSm;k.�I `; "/jhki
��ck

�



`1
: (4.7)
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This definition is equivalent to the more general norm used in [43, Definition 3.9].
Roughly speaking, the boundedness of this norm means that, in terms of its action on
sequences, S maps hki�`1 ! `1. As observed in [43, Remark 3.10], thanks to the con-
servation of momentum this also means that S maps `1 ! hki��`1.

Proof of Theorem 4.3. The result follows from [43], by applying first the change of vari-
ables in Theorem 5.1 and then the one in Theorem 7.1 to the quadratic part of the
NLS Hamiltonian (hence ignoring the terms zH .1/; zH .�2/ in [43, (5.2)] and the terms
K.1/;K.�2/ in [43, (7.3)]). Note that in [43] the results are proved in hs norm with s > 1,
for instance in (4.7) the `1 norm is substituted with the hs norm. However, the proofs
only rely on momentum conservation and on the fact that hs is an algebra with respect to
convolution, which holds true also for `1. Hence the proof of our case is identical and we
do not repeat it.

We are able to describe quite precisely the asymptotics of the frequencies � E| of The-
orem 4.3.

Theorem 4.4. For any 0 < " � "0 and � 2 C .0/, the frequencies � E| � � E| .�; "/, E| D
.m; n/ 2 Z2N n �0, introduced in Theorem 4.3 have the following asymptotics:

� E| .�; "/ D

8̂̂<̂
:̂
z� E| .�; "/C

$m.�; "/

hmi
; n D 0;

z� E| .�; "/C
‚m.�; "/

hmi2
C

‚m;n.�; "/

hmi2 C hni2
; n ¤ 0;

(4.8)

where

z� E| .�; "/ WD

8̂̂<̂
:̂
m2; E| D .m; 0/; m … �0;

m2 C n2; E| D .m; n/ 2 Z; n ¤ 0;

"�i .�/C n
2; E| D .mi ; n/ 2 S ; n ¤ 0;

where Z and S are the sets defined in (4.2).
Here the ¹�i .�/º1�i�d are the roots of the polynomial

P.t; �/ WD

dY
iD1

.t C �i / � 2

dX
iD1

�i
Y
k¤i

.t C �k/;

which is irreducible over Q.�/Œt �.
Finally, �i .�/, ¹$m.�; "/ºm2Zn�0 , ¹‚m.�; "/ºm2Z and ¹‚m;n.�; "/º.m;n/2Z2

N
n�0

ful-
fillX
1�i�d

j�i .�/j
O0C sup

"�"0

1

"2

�
sup

m2Zn�0

j$m.�; "/j
O0C sup

m2Z
j‚m.�; "/j

O0C sup
.m;n/2Z2

N

n¤0

j‚m;n.�; "/j
O0
�

� M0 (4.9)

for some M0 independent of ".
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Theorem 4.4 follows from [43, Theorem 2.10 and Corollary 7.5)], together with
the observation that the set C defined in [43, Definition 2.3] satisfies C \ Z2N D ; if
N > maxi jmi j.

We conclude this section with a series of remarks.

Remark 4.5. Notice that the ¹�i .�/º1�i�d depend on the number d of tangential sites
but not on ¹miº1�i�d.

Remark 4.6. The asymptotic expansion (4.8) of the normal frequencies does not con-
tain any constant term. The reason is that we canceled such a term when we subtracted
the quantity M.u/2 from the Hamiltonian at the very beginning (see the footnote in
Section 3.1). Of course if we had not removedM.u/2, we would have had a constant cor-
rection to the frequencies, equal to kq.!t; �/k2

L2
. Since q.!t;x/ is a solution of (2D-NLS),

it enjoys mass conservation, and thus kq.!t; �/k2
L2
D kq.0; �/k2

L2
is independent of time.

Remark 4.7. In the new variables, the selection rules of Remark 2.2 become (with H

expanded as in (2.2))

¹H ; zMº D 0 ” H˛;ˇ;` .z�.˛; ˇ/C �.`// D 0;

¹H ; zPxº D 0 ” H˛;ˇ;` .z�x.˛; ˇ/C �.`// D 0;

¹H ; zPyº D 0 ” H˛;ˇ;` .�y.˛; ˇ// D 0;

where �.`/ is defined in (2.3), �y.˛; ˇ/; �.`/ in (2.4), while

z�.˛; ˇ/ WD
X
E|2Z

.˛ E| � ˇ E| /; z�x.˛; ˇ/ WD
X

E|D.m;n/2Z

m.˛ E| � ˇ E| /:

5. Elimination of cubic terms

If we apply the change L.0/ obtained in Theorem 4.3 to the Hamiltonian (3.14), we obtain

K.�IY; �; a/ WD H ıL.0/.�IY; �; a/

D ! � Y C
X

E|2Z2
N
n�0

� E| ja E| j
2
CK.1/

CK.2/
CK.�3/;

K.j /
D H .j /

ıL.0/ .j D 1; 2/; K.�3/
D H .�3/

ıL.0/:

(5.1)

As a direct consequence of Lemma 3.4 and Theorem 4.3, estimates (3.20) hold also for
K.j /, j D 1; 2, and K.�3/.

We now perform one step of Birkhoff normal form change of variables which cancels
out K.1/ completely. In order to define such a change of variables we need to impose third
order Melnikov conditions, which hold true on a subset of the set C .0/ of Theorem 4.3.

Lemma 5.1. Fix 0 < "1 < "0 sufficiently small and �1 > �0 sufficiently large. There exist
constants 
1 > 0 and L1 > L0 .with L1 depending only on d/ such that for all 0 < " � "1
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and for an L1-generic choice of the set �0 .in the sense of Definition 1.1/, the set

C .1/ WD ¹� 2 C .0/ W j! � `C �1� E|1.�; "/C �2� E|2.�; "/C �3� E|3.�; "/j � 
1"=h`i
�1 ;

8. E|; `; �/ 2 A3º;

where A3 is introduced in Definition 4.1, has positive measure. More precisely, we have
jC .0/ n C .1/j . "

�1
1 for some constant �1 > 0 independent of "1.

This lemma is proven in [43, Appendix C].
The main result of this section is the following theorem.

Theorem 5.2. Assume the hypotheses and the notation of Lemma 5.1. Consider the con-
stants L1, 
1, �1 given by Lemma 5.1, the associated set C .1/, and the constants "0, �0
and r0 given in Theorem 4.3. There exist 0 < "1 � "0, 0 < �1 � �0=64, and 0 < r1 � r0
such that the following holds true for all 0 < "� "1. For each � 2 C .1/ and all 0 < r � r1
and 0 < � � �1, there exists a symplectic change of variables L.1/ that is well defined
and majorant analytic fromD.�=2; r=2/ toD.�; r/ and such that applied to the Hamilto-
nian K in (5.1) it leads to

Q WDK ıL.1/.�IY; �; a/ D ! � Y C
X

E|2Z2
N
n�0

� E| .�; "/ja E| j
2
CQ.2/

CQ.�3/; (5.2)

where:

(i) The map L.1/ is the time-1 flow of a cubic Hamiltonian �.1/ such that j�.1/jC
.1/

�=2;r=2

. r=
p
".

(ii) Q.2/ is of degree 2 .in the sense of Definition 2.1/, it is given by

Q.2/
DK.2/

C
1
2
¹K.1/; �.1/º; (5.3)

and satisfies jQ.2/j�=2;r=2 . r2 .

(iii) Q.�3/ is of degree at least 3 and satisfies

jQ.�3/
j
C.1/

�=2;r=2 . r3=
p
": (5.4)

(iv) L.1/ satisfies zM ıL.1/ D zM and zP ıL.1/ D zP .

(v) L.1/ maps D.�=2; r=2/ \ h1 ! D.�; r/ \ h1, and if we denote . zY; z�; za/ D
L.1/.Y; �; a/, then

kza � ak`1 . kak2
`1
: (5.5)

To prove this theorem, we use the following lemma, which is proved in [43].

Lemma 5.3. For every �; r > 0 the following holds true:

(i) Let h; f 2 AO
�;r . For any 0 < �0 < � and 0 < r 0 < r , one has

j¹f; gºjO�0;r 0 � �
�1C jf jO�;r jgj

O
�;r :
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where � WD min.1 � r 0=r; � � �0/. If ��1jf jO�;r < � is sufficiently small then the
.time-1 flow of the/Hamiltonian vector fieldXf defines a close-to-identity canonical
change of variables Tf such that

jh ı Tf j
O
�0;r 0 � .1C C�/jhj

O
�;r for all 0 < �0 < �; 0 < r 0 < r:

(ii) Let f;g 2AO
�;r be of minimal degree respectively df and dg .see Definition 2.1/ and

define the function

Ti.f I h/ D

1X
lDi

.adf /l

lŠ
h; ad.f /h WD ¹h; f º: (5.6)

Then Ti.f Ig/ is of minimal degree df iC dg and

jTi.f I h/j
O
�0;r 0 � C.�/�

�i.jf jO�;r /
i
jgjO�;r ; 80 < �

0 < �; 0 < r 0 < r:

Proof of Theorem 5.2. We look for L.1/ as the time-1 flow of a Hamiltonian �.1/. With

bN WD ! � Y C X
E|2Z2

N
n�0

� E| .�; "/ja E| j
2 and Tj .�

.1/
I �/ D

X
k�j

ad.�.1//k�1Œ¹�; �.1/º�
kŠ

;

we have

K ıL.1/
D bN C ¹bN ; �.1/º CK.1/ (5.7)

C T2.�
.1/
I bN /C ¹K.1/; �.1/º C T2.�

.1/
I K.1// (5.8)

CK.2/
C T1.�

.1/
I K.2//CK.�3/

ıL.1/ (5.9)

We choose �.1/ to solve the homological equation ¹bN ; �.1/º CK.1/ D 0. Thus we set

K.1/
D

X
`;j;E�2 A3

K E�`;j.�; "/ e
i� �`a

�1
E|1
a
�2
E|2
a
�3
E|3
; �.1/ D

X
`;j;E�2 A3

�E�`;j.�; "/ e
i� �`a

�1
E|1
a
�2
E|2
a
�3
E|3

with

�E�`;j.�; "/ WD
iK E�
`;j.�; "/

! � `C �1� E|1.�; "/C �2� E|2.�; "/C �3� E|3.�; "/
:

Since � 2 C .1/, we have
j�.1/jC

.1/

�=2;r . r=
p
";

since the terms qfg
m appearing in H .1/ (and hence K.1/) are O.

p
"/. We turn to the terms

of line (5.8). First we use the homological equation ¹bN ; �.1/º CK.1/ D 0 to get

T2.�
.1/
I bN / D

X
k�2

ad.�.1//k�1Œ¹bN ; �.1/º�

kŠ
D �

1

2
¹K.1/; �.1/º �

X
k�2

ad.�.1//k ŒK.1/�

.k C 1/Š
:



Sobolev instability near finite gap tori in 2D NLS 1523

Therefore, we define Q.2/ as in (5.3) and

Q.�3/
D T2.�

.1/
I K.1//C T1.�

.1/
I K.2//CK.�3/

ıL.1/
�

X
k�2

ad.�.1//k ŒK.1/�

.k C 1/Š
:

By Lemma 5.3, Q.�3/ has degree at least 3 and fulfills the quantitative estimate (5.4). To
prove (iv), we use the fact that ¹ zM; �.1/º D ¹ zP ; �.1/º D 0 since K.1/ commutes with zM
and zP , hence its monomials fulfill the selection rules of Remark 4.7. By the explicit
formula for �.1/ above, the same selection rules hold for �.1/, and consequently L.1/

preserves zM and zP .
It remains to prove the mapping properties of the operator L.1/. First we show

that it maps D.�=2; r=2/ ! D.�; r/. Let . zY; z�; za/ D L.1/.Y; �; a/. Then . zY; z�; za/ D
. zY.s/; z�.s/; za.s//jsD1 where . zY.s/; z�.s/; za.s// is the Hamiltonian flow generated by �.1/

at time 0 � s � 1. Using the identity

. zY.t/; z�.t/; za.t// D .Y; �; a/C
Z t

0

X�.1/.
zY.s/; z�.s/; za.s// ds

where X�.1/ is the Hamiltonian vector field associated with �.1/ above, and a standard
continuity (bootstrap) argument, we conclude that . zY; z�;za/ 2D.�; r/. Similarly, one also
deduces estimate (5.5). Finally, to prove that L.1/ mapsD.�=2; r=2/\ h1! h1, we note
that bN is equivalent to the square of the h1 norm, and

bN ıL.1/
D bN C T1.�

.1/
I bN / D bN �X

k�0

ad.�.1//k ŒK.1/�

.k C 1/Š
D bN CO.p" r3/;

and this completes the proof.

6. Analysis of the quartic part of the Hamiltonian

At this stage, we are left with the Hamiltonian Q given in (5.2). The aim of this section
is to eliminate nonresonant terms from Q.2/. First note that Q.2/ contains monomials of
one of the following two forms:

ei� �` a
�1
E|1
a
�2
E|2
a
�3
E|3
a
�4
E|4

or ei� �` Yla
�1
E|1
a
�2
E|2

with jl j D 1:

In order to cancel out the terms quadratic in a by a Birkhoff normal form procedure, we
only need the second Melnikov conditions imposed in (4.5). In order to cancel out the
quartic tems in a we need the fourth Melnikov conditions, namely to control expressions
of the form

!.�/ � `C �1� E|1.�;"/C �2� E|2.�;"/C �3� E|3.�;"/C �4� E|4.�;"/; �i D˙1: (6.1)
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We start by defining the following set R4 � A4 (see Definition 4.1):

R4 WD
®
.j; `; �/W ` D 0 and E|1; E|2; E|3; E|4 … S form a rectangle, or

` D 0; E|1; E|2 … S ; E|3; E|4 2 S form a horizontal rectangle (even degenerate), or

` ¤ 0; E|1; E|2; E|3 2 S ; E|4 62 S and jm4j < M0; where M0 is a universal constant, or

` D 0; E|1; E|2; E|3; E|4 2 S form a horizontal trapezoid
¯

(6.2)

where S is the set defined in (4.2). Here a trapezoid (or a rectangle) is said to be hori-
zontal if two of its sides are parallel to the x-axis.

Fig. 1. The black dots are the points in �0. The two rectangles and the trapezoid correspond to cases
1, 2, 4 inR4. In order to represent case 3, we have highlighted three points in � . To each such triple
we may associate at most one ` ¤ 0 and one E|4 2 Z, which form a resonance of type 3.

Proposition 6.1. Fix 0 < "2 < "1 sufficiently small and �2 > �1 sufficiently large. There
exist 
2 > 0 and L2 � L1 .with L2 depending only on d/ such that for all 0 < " � "2 and
for an L2-generic choice of the set �0 .in the sense of Definition 1.1/, the set

C .2/ WD
®
� 2 C .1/ W j! � `C �1� E|1.�; "/C �2� E|2.�; "/C �3� E|3.�; "/C �4� E|4.�; "/j

� 
2"=h`i
�2 ; 8. E|; `; �/ 2 A4 n R4

¯
;

has positive measure and jC .1/ n C .2/j . "
�2
2 for some �2 > 0 independent of "2.

The proof of the proposition, being quite technical, is postponed to Appendix A.
An immediate consequence, following the same strategy as for the proof of The-

orem 5.2, is the following result. We define…R4 as the projection of a function inD.�; r/
onto the sum of monomials with indices in R4. Abusing notation, we define analogously
…R2 as the projection onto monomials ei`��Yla

�1
E|1
a
�2
E|2

with jl j D 1 and . E|1; E|2; `; �1; �2/
2 R2.

Theorem 6.2. There exist 0 < r2 � r1 and 0 < �2 � �1 such that for all 0 < " � "2, all
� 2 C .2/ and all r 2 Œ0; r2�, � 2 Œ�2=2; �2� there exists a symplectic change of variables
L.2/ well defined and majorant analytic from D.�=2; r=2/ to D.�; r/ such that

Q ıL.2/.Y; �; a/ D ! � Y C
X
E|2Z2n�0

� E| .�; "/ja E| j
2
CQ

.2/
Res C

zQ.�3/; (6.3)
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where
Q
.2/
Res D …R4Q

.2/
C…R2Q

.2/ (6.4)

with R4 defined in (6.2), R2 defined in (4.4) and

jQ
.2/
Resj�=2;r=2 . r2; j zQ.�3/

j�=2;r=2 . r3=
p
":

Moreover, L.2/ maps D.�=2; r=2/ \ h1 ! D.�; r/ \ h1, and if we denote . zY; z�; za/ D
L.2/.Y; �; a/, then

kza � ak`1 . kak3
`1
:

Proof. The proof is analogous to the one of Theorem 5.2, and we skip it.

7. Construction of the toy model

Once we have performed (partial) Birkhoff normal form up to order 4, we can start apply-
ing the ideas developed in [12] to the Hamiltonian (6.3). Note that throughout this section
" > 0 is a fixed parameter. Namely, we do not use its smallness and we do not modify it.

We first apply the (time dependent) change of variables to rotating coordinates

a E| D ˇ E|e
i� E| .�;"/t ; (7.1)

to the Hamiltonian (6.3), which leads to the corrected Hamiltonian

Qrot.Y; �; ˇ; t/ D Q ıL.2/.Y; �; ¹ˇ E|e
i� E| .�;"/tº

E|2Z2
N
n�0
/ �

X
E|2Z2

N
n�0

� E| .�; "/jˇ E| j
2:

(7.2)

We split this Hamiltonian as a suitable first order truncation G plus two remainders,

Qrot.Y; �; ˇ; t/ D G .Y; �; ˇ/C J1.Y; �; ˇ; t/CR.Y; �; ˇ; t/

with

G .Y; �; ˇ/ D ! � Y CQ
.2/
Res.Y; �; ˇ/;

J1.Y; �; ˇ; t/ D Q
.2/
Res.Y; �; ¹ˇ E|e

i� E| .�;"/tº
E|2Z2

N
n�0
/ �Q

.2/
Res.Y; �; ˇ/;

R.Y; �; ˇ; t/ D zQ.�3/.Y; �; ¹ˇ E|e
i� E| .�;"/tº

E|2Z2
N
n�0
/; (7.3)

where Q
.2/
Res and zQ.�3/ are the Hamiltonians introduced in Theorem 6.2.

For the rest of this section we focus on the truncated Hamiltonian G . Note that the
remainder J1 is not smaller than G . Nevertheless it will be smaller when evaluated on the
particular solutions we consider. The term R is smaller than G for small data since it is
the remainder of the normal form obtained in Theorem 6.2. Later in Section 8 we show
that including the dismissed terms J1 and R barely alters the dynamics of the solutions
of G that we analyze.
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7.1. The finite set ƒ

We now start constructing special dynamics for the Hamiltonian G with the aim of treating
the contributions of J1 and R as remainder terms. Following [12], we do not study the
full dynamics of G but we restrict the dynamics to invariant subspaces. Indeed, we shall
construct a set ƒ � Z WD .Z �NZ/ n .�0 [S /, for some large N , in such a way that it
generates an invariant subspace (for the dynamics of G ) given by

Uƒ WD ¹ˇ E| D 0 W E| 62 ƒº: (7.4)

Thus, we consider the following definition.

Definition 7.1 (Completeness). We say that a set ƒ � Z is complete if Uƒ is invariant
under the dynamics of G .

Remark 7.2. It can be easily seen that if ƒ is complete, then Uƒ is also invariant under
the dynamics of G C J1.

We construct a complete set ƒ � Z (see Definition 7.1) and we study the restriction
on it of the dynamics of the Hamiltonian G in (7.3). Following [12], we impose several
conditions on ƒ to obtain dynamics as simple as possible.

The setƒ is constructed in two steps. First we construct a preliminary setƒ0 �Z2 on
which we impose numerous geometrical conditions. Later on we scale ƒ0 by a factor N
to obtain ƒ � NZ �NZ � Z.

The set ƒ0 is “essentially” the one described in [12]. The crucial point in that paper
is to choose carefully the modes so that each mode in ƒ0 only belongs to two rectangles
with vertices in ƒ0. This allows one to simplify the dynamics considerably and makes
it easier to analyze. Certainly, this requires imposing several conditions on ƒ0. We add
some extra conditions to adapt the set ƒ0 to the particular setting of the present paper.

We split ƒ0 into g disjoint generations, ƒ0 D ƒ01 [ � � � [ƒ0g. We call a quadruplet
. E|1; E|2; E|3; E|4/2ƒ

4
0 a nuclear family if E|1; E|3 2ƒ0k , E|2; E|4 2ƒ0;kC1, and the four vertices

form a nondegenerate rectangle. Then, we require the following conditions.

� Property Iƒ0 (Closure): If E|1; E|2; E|3 2 ƒ0 are three vertices of a rectangle, then the
fourth vertex of that rectangle is also in ƒ0.

� Property IIƒ0 (Existence and uniqueness of spouse and children): For each 1 � k < g

and every E|1 2 ƒ0k , there exists a unique spouse E|3 2 ƒ0k and unique (up to trivial
permutations) children E|2; E|4 2 ƒ0;kC1 such that . E|1; E|2; E|3; E|4/ is a nuclear family
in ƒ0.

� Property IIIƒ0 (Existence and uniqueness of parents and siblings): For each 1 � k < g

and every E|2 2 ƒ0;kC1 there exists a unique sibling E|4 2 ƒ0;kC1 and unique (up to
permutation) parents E|1; E|3 2 ƒ0k such that . E|1; E|2; E|3; E|4/ is a nuclear family in ƒ0.

� Property IVƒ0 (Nondegeneracy): A sibling of any frequency E| is never equal to its
spouse.
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� Property Vƒ0 (Faithfulness): Apart from nuclear families, ƒ0 contains no other rect-
angles. In fact, by the closure property Iƒ0 , this also means that it contains no right
angled triangles other than those coming from vertices of nuclear families.

� Property VIƒ0 : There are no two elements in ƒ0 such that E|1 ˙ E|2 D 0. There are no
three elements inƒ0 such that E|1 � E|2 C E|3 D 0. If four points inƒ0 satisfy E|1 � E|2 C
E|3 � E|4 D 0 then either the relation is trivial or such points form a family.

� Property VIIƒ0 : There are no points in ƒ0 with one of the coordinates equal to zero,
i.e.

ƒ0 \ .Z � ¹0º [ ¹0º � Z/ D ;:

� Property VIIIƒ0 : There are no two points in ƒ0 which form a right angle with 0.

Property Iƒ0 is just a rephrasing of the completeness condition introduced in Defin-
ition 7.1. Properties IIƒ0 , IIIƒ0 , IVƒ0 , Vƒ0 correspond to being a family tree as stated
in [12].

Theorem 7.3. Fix K� 1 and s 2 .0; 1/. Then there exist g� 1, A0 � 1, � > 0, and a
set ƒ0 � Z2 with

ƒ0 D ƒ01 [ � � � [ƒ0g;

which satisfies conditions Iƒ0–VIIIƒ0 and alsoP
E|2ƒ0;g�1

j E| j2sP
E|2ƒ03

j E| j2s
�
1

2
2.1�s/.g�4/ � K2: (7.5)

Moreover, for any A � A0, there exists a function f .g/ satisfying

eA
g

� f .g/ � e2.1C�/A
g

for g large enough, (7.6)

such that each generation ƒ0k has 2g�1 disjoint frequencies E| satisfying

C�1f .g/ � j E| j � C3gf .g/; E| 2 ƒ0k ; (7.7)

and P
E|2ƒ0k

j E| j2sP
E|2ƒ0i

j E| j2s
� Cesg (7.8)

for any 1 � i < k � g and some constant C > 0 independent of g.

The construction of such sets was first done in [12] (see also [26–29]) where the
authors construct sets ƒ satisfying Properties Iƒ–Vƒ and estimate (7.8). The proof of
Theorem 7.3 follows the same lines. Indeed, Properties VIƒ–VIIIƒ can be obtained
through the same density argument. Finally, the estimate (7.7), even if not stated explicitly
in [12], is an easy consequence of the proof in that paper (in [27–29] a slightly weaker
estimate is used).
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Remark 7.4. Note that s 2 .0; 1/ implies that we are constructing a backward cascade
orbit (energy is transferred from high to low modes). This means that the modes in each
generation ofƒ0 are just labeled in reverse orderƒ0j $ ƒ0;g�jC1 compared to the ones
constructed in [12]. The second statement of Theorem 1.2 concerns s > 1 and therefore
a forward cascade orbit (energy transferred from low to high modes). For this result, we
need a set ƒ0 of the same kind as that of [12], which thus satisfiesP

E|2ƒ0;g�1
j E| j2sP

E|2ƒ03
j E| j2s

�
1

2
2.s�1/.g�4/ � K2

instead of estimate (7.5).

We now scale ƒ0 by a factor N satisfying (4.1) and we denote ƒ WD Nƒ0. Note that
the listed properties Iƒ0–VIIIƒ0 are invariant under scaling. Thus, if they are satisfied by
ƒ0, they are satisfied by ƒ too.

Lemma 7.5. There exists a setƒ satisfying all statements of Theorem 7.3 .with a different
f .g/ satisfying (7.6)/ and also the following additional properties.

(1) If two points E|1; E|2 2 ƒ form a right angle with a point .m; 0/ 2 Z � ¹0º, then

jmj �
p
f .g/:

(2) ƒ � NZ �NZ with N D f .g/4=5.

Proof. Consider any of the sets ƒ obtained in Theorem 7.3. By Property VIIIƒ0 one has
m ¤ 0. Define E|3 D .m; 0/. The condition for orthogonality is either

.i/ . E|1 � E|2/ � . E|3 � E|2/ D 0 or .ii/ . E|1 � E|3/ � . E|2 � E|3/ D 0:

Taking E|i D .mi ; ni /, i D 1; 2, condition (i) implies (after some computations) that

m D
.n1 � n2/n2 C .m1 �m2/m2

m1 �m2
:

Then since jm1 �m2j � 2Cf .g/3g and the numerator is not zero, we have

jmj �
1

4Cf .g/3g
�

1

f .g/3=2
: (7.9)

Now we consider condition (ii). One finds that m is a root of the quadratic equation

m2 � .m1 Cm2/mC .m1m2 C n1n2/ D 0:

First we note that m1m2 C n1n2 ¤ 0 by Property VIIIƒ0 , since m D 0 cannot be a solu-
tion. Now consider the discriminant�D .m1Cm2/2 � 4.m1m2C n1n2/. If�< 0, then
no right angle is possible. If � D 0, then clearly jmj � 1=2, since once again m D 0 is
not a solution. Finally, let � > 0. Then

m D
m1 Cm2

2

�
1˙

s
1 �

4.m1m2 C n1n2/

.m1 Cm2/2

�
:
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Denoting 
 WD 4.m1m2Cn1n2/

.m1Cm2/2
, the condition�> 0 implies that�1< 
 < 1. Splitting

in two cases: j
 j � 1 and 
 < �1 one can easily see that in either case m satisfies (7.9).
Now it only remains to scale the set ƒ by a factor f .g/4. Then, taking as new f .g/,
zf .g/ WD f .g/5, the resulting set ƒ satisfies all statements of Theorem 7.3 and also the

statements of Lemma 7.5.

7.2. The truncated Hamiltonian on the finite set ƒ and the toy model of [12]

We use the properties of the set ƒ given by Theorem 7.3 and Lemma 7.5 to compute the
restriction of the Hamiltonian G in (7.3) to the invariant subset Uƒ (see (7.4)).

Lemma 7.6. Consider the set ƒ � NZ �NZ obtained in Theorem 7.3. Then the set

Mƒ D ¹.Y; �; ˇ/ W Y D 0; ˇ 2 Uƒº

is invariant under the flow associated to the Hamiltonian G . Moreover, G restricted to Mƒ

can be written as
G jMƒ

.�; ˇ/ D G0.ˇ/C J2.�; ˇ/ (7.10)

where
G0.ˇ/ D �

1

2

X
E|2ƒ

jˇ E| j
4
C
1

2

X?

. E|1; E|2; E|3; E|4/2ƒ
4

E|i form a rectangle

ˇ E|1
Ň
E|2
ˇ E|3
Ň
E|4

(7.11)

and the remainder J2 satisfies

jJ2j�;r . r2f .g/�4=5: (7.12)

Proof. First we note that, since Y D 0 on Mƒ,

G jMƒ
D Q

.2/
ResjMƒ

D …R4Q
.2/
jMƒ

where Q
.2/
Res is the Hamiltonian defined in Theorem 6.2. We start by analyzing the Hamilto-

nian Q.2/ introduced in Theorem 5.2, which is defined as

Q.2/
DK.2/

C
1
2
¹K.1/; �.1/º:

We analyze each term. Here it plays a crucial role thatƒ�NZ�NZ withN D f .g/4=5.
In order to estimate K.2/, defined in (5.1), we recall that ƒ does not have any mode

in the x-axis and therefore the original quartic Hamiltonian has not been modified by the
Birkhoff map (1.6) (this is evident from the formula for H .2/ in (3.18)). Thus, it is enough
to analyze how the quartic Hamiltonian has been modified by the linear change L.0/

analyzed in Theorems 4.3 and 4.4. Using the smoothing property of the change of coordin-
ates L.0/ given in Theorem 4.3(5), one obtains

…R4K
.2/
jMƒ
D �

1

2

X
E|2ƒ

ja E| j
4
C
1

2

X
Rectangles�ƒ

a E|1 Na E|2a E|3 Na E|4 CO

�
r2

N

�
:
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Now we deal with the term ¹K.1/; �.1/º. Since we only need to analyze
…R4¹K

.1/; �.1/ºjMƒ
, we only need to consider monomials in K.1/ and in �.1/ which

have at least two indices in ƒ. We represent this by setting

�.1/ D �
.1/
#ƒ�1 C �

.1/
#ƒ�2;

where #ƒ � 2 means that we restrict to those monomials which have at least two indices
in ƒ. We then have

¹K.1/; �.1/ºjMƒ
D ¹K.1/; �

.1/
#ƒ�2ºjMƒ

:

We estimate the size of �.1/#ƒ�2. As explained in the proof of Theorem 5.2, �.1/#ƒ�2 has
coefficients

�
.1/

`;j;E� D
iK.1/

`;j;E�

! � `C �1� E|1.�; "/C �2� E|2.�; "/C �3� E|3.�; "/
(7.13)

with E|2; E|3 2 ƒ.
We first estimate the tails (in `) of �.1/ and then we analyze the finite number of cases

left. For the tails, it is enough to use Theorem 5.2 to deduce the following estimate for
any � � �1=2, where �1 is the constant introduced in that theorem:ˇ̌̌ X

j`j>
4
p
N

�
.1/

`;j;E�e
i� �`a

�1
E|1
a
�2
E|2
a
�3
E|3

ˇ̌̌C.1/
�;r

. e�.�1��/
4
p
N
j�.1/jC

.1/

�1;r
� re�.�1��/

4
p
N :

We restrict our attention to monomials with j`j � 4
p
N . We take E|2; E|3 2 ƒ and we

consider different cases depending on E|1 and the properties of the monomial. In each case
we show that the denominator of (7.13) is larger than N .

Case 1: E|1 … S . The selection rules are (according to Remark 4.7)

�.`/C �1C �2C �3D 0; Em � `C �1m1C �2m2C �3m3D 0; �1n1C �2n2C �3n3D 0;

and the leading term in the denominator of (7.13) is

Em2 � `C �1j E|1j2 C �2j E|2j2 C �3j E|3j2 (7.14)

where Em2 D .m21; : : : ; m
2
d/. We consider the following subcases:

A1: �3 D �1 DC1, �2 D�1. In this case E|1 � E|2C E|3 � vD 0, where v WD .�Em � `; 0/.
We rewrite (7.14) as

Em2 � `C .Em � `/2 � .Em � `/2C j E|1j2 � j E|2j2C j E|3j2 D Em2 � `C .Em � `/2 � 2.v� E|3; E|3 � E|2/:

Assume first E|2 ¤ E|3. Since the set ƒ satisfies Lemma 7.5 (1), and jEm � `j . 4
p
N .

f .g/1=5, we can ensure that E|2 and E|3 do not form a right angle with v, thus

.v � E|2; E|3 � E|2/ 2 Z n ¹0º:
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Actually by Lemma 7.5 (ii), E|3 � E|2 2 NZ2 and hence, using also j`j � 4
p
N ,

jEm2 � `C .Em � `/2 � 2.v � E|3; E|3 � E|2/j � 2N �N=8 > N:

Now there remains the case E|2 D E|3. Such monomials cannot exist in H .1/ in (3.17)
since the monomials with two equal modes have been removed in (3.3) (it does not sup-
port degenerate rectangles). Naturally a degenerate rectangle may appear after we apply
the change L.0/ introduced in Theorem 4.3. Nevertheless, the map L.0/ is identity plus
smoothing (see statement (5) of that theorem), which leads to the needed N�1 factor.

B1: �3 D �2 DC1, �1 D�1. Now the selection rule reads�E|1C E|2C E|3 � vD 0, with
again v D .�Em � `; 0/. We rewrite (7.14) as

Em2 � `C .Em � `/2 � .Em � `/2 � j E|1j2 C j E|2j2 C j E|3j2 D Em2 � `C .Em � `/2 � 2.v� E|3;v� E|2/:

By Lemma 7.5 (1), .v � E|2; v � E|3/ ¤ 0. By Property VIIIƒ and Lemma 7.5 (2), one has
j. E|2; E|3/j � N

2 and estimate (7.7) implies j E|2j; j E|3j � N 3=2. Then

j.v � E|2; v � E|3/j � j. E|2; E|3/j � j.v; E|2 C E|3/j � jvj2 � N 2=4

and one concludes as in A1.

C1: �1 D �3 D �2 D C1. The denominator (7.14) satisfiesˇ̌
Em2 � `C j E|1j2 C j E|2j2 C j E|3j2

ˇ̌
� 2N � jEm2 � `j � 2N �N=8 � N:

This completes the proof of Case 1.

Case 2: E|1 2 S . The selection rules are

�.`/C �2 C �3 D 0; Em � `C �2m2 C �3m3 D 0; �1n1 C �2n2 C �3n3 D 0;

and the leading term in the denominator is

Em2 � `C �1n21 C �2j E|2j
2
C �3j E|3j

2; (7.15)

where Em2 D .m21; : : : ; m
2
d/. We can reduce Case 2 to Case 1.

B2: �2 D �3 D C1, �1 D �1. We can assume that E|1 D .m1; n1/. Define Q̀ D `C e1,
and deduce from the selection rules and (7.15) that

Em � Q̀ � m1 Cm2 Cm3 D Em � `Cm2 Cm3 D 0:

Then the leading term in the denominator becomes

Em2 � Q̀ � .m21 C n
2
1/C j E|2j

2
C j E|3j

2

and one proceeds as in case B1 with Q̀ in place of `.

Cases A2 and C2, defined analogously to A1 and C1 in Case 1, are completely equivalent.
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In conclusion, we have proved thatˇ̌
�
.1/
#ƒ�2jMƒ

ˇ̌C.1/
�;r
� rN�1: (7.16)

Item (i) of Lemma 5.3, jointly with estimate (7.16), implies that, for �0 2 .0; �=2� and
r 0 2 .0; r=2� ˇ̌

¹K.1/; �
.1/
#ƒ�2ºjMƒ

ˇ̌C.1/
�0;r 0

. r2N�1:

This completes the proof of Lemma 7.6.

The Hamiltonian G0 in (7.11) is the Hamiltonian that the I-team derived to construct
their toy model. A posteriori we will check that the remainder J2 plays a minor role in
our analysis.

The properties of ƒ imply that the equation associated to G0 reads

i P̌ E| D �ˇ E| jˇ E| j
2
C 2ˇ E|child1

ˇ E|child2
ˇ E|spouse

C 2ˇ E|parent1
ˇ E|parent2

ˇ E|sibling
(7.17)

for each E| 2 ƒ. In the first and last generations, the parents and children are set to zero
respectively. Moreover, the particular form of this equation implies the following corol-
lary.

Corollary 7.7 ([12]). Consider the subspace

zUƒ D ¹ˇ 2 Uƒ W ˇ E|1 D ˇ E|2 for all E|1; E|2 2 ƒk for some kº;

where all the members of a generation take the same value. Then zUƒ is invariant under
the flow associated to the Hamiltonian G0. Therefore, equation (7.17) restricted to zUƒ
becomes

i Pbk D �b2kbk C 2bk.b
2
k�1 C b

2
kC1/; k D 1; : : : ;g; (7.18)

where
bk D ˇ E| for any E| 2 ƒk : (7.19)

The dimension of zUƒ is 2g, where g is the number of generations. In [12] and [28],
the authors construct certain orbits of the toy model (7.18) which shift its mass from being
localized at b3 to being localized at bg�1. These orbits will lead to orbits of the original
equation (2D-NLS) undergoing growth of Sobolev norms.

Theorem 7.8 ([28]). Fix a large 
 � 1. Then for any large enough g and � D e�
g,
there exist an orbit of system (7.18) and T0 > 0 such that

jb3.0/j > 1 � �;

jbi .0/j < � for i ¤ 3;

jbg�1.T0/j > 1 � �;

jbi .T0/j < � for i ¤ g � 1:

Moreover, there exists a constant C > 0 independent of g such that

0 < T0 < Cg ln.1=�/ D C
g2:

This theorem is proven in [12] without time estimates. The time estimates were
obtained in [28].
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8. The approximation argument

In Sections 4–6 we have applied several transformations and in Sections 6 and 7 we have
removed certain small remainders. This has allowed us to derive a simple equation, called
the toy model in [12]; then, in Section 7, we have analyzed some special orbits of this
system. The last step of the proof of Theorem 1.2 is to show that when incorporating back
the removed remainders (J1 and R in (7.3) and J2 in (7.10)) and undoing the changes of
coordinates performed in Theorems 4.3 and 5.2, in Proposition 6.2 and in (7.1), the toy
model orbit obtained in Theorem 7.8 leads to a solution of the original equation (2D-NLS)
undergoing growth of Sobolev norms.

Now we analyze each remainder and each change of coordinates. From the orbit
obtained in Theorem 7.8 and using (7.19) one can obtain an orbit of the Hamiltonian
(7.11). Moreover, both (7.11) and (7.18) are invariant under the scaling

b�.t/ D ��1b.��2t /: (8.1)

By Theorem 7.8, the solution b.t/ is thus defined on the interval Œ0; T �, where

T D �2T0 � �
2C
g2; (8.2)

where T0 is the time obtained in Theorem 7.8.
Now we prove that one can construct a solution of the Hamiltonian (7.2) “close” to

the orbit ˇ� of the Hamiltonian (7.11) defined as

ˇ�
E|
.t/ D

´
��1bk.�

�2t / for E| 2 ƒk ;

0 for E| 62 ƒ;
(8.3)

where b.t/ is the orbit given by Theorem 7.8. Note that this implies incorporating the
remainders in (7.3) and (7.10).

We take a large � so that (8.3) is small. In the original coordinates this will correspond
to solutions close to the finite gap solution. Taking J D J1 C J2 (see (7.3) and (7.10)),
the equations for ˇ and Y associated to the Hamiltonian (7.2) can be written as

i P̌ D @ˇG0.ˇ/C @ˇJ.Y; �; ˇ/C @ˇR.Y; �; ˇ/;

PY D �@�J.Y; �; ˇ/ � @�R.Y; �; ˇ/:
(8.4)

Now we estimate the closeness of the orbit of the toy model obtained in Theorem 7.8
and orbits of (7.2).

Theorem 8.1. Fix 0 < s1 < s2 < 1. Consider a solution

.Y; �; ˇ/ D .0; �0; ˇ
�.t//

of the Hamiltonian (7.11) for any �0 2 T d, where ˇ�.t/D ¹ˇ�
E|
.t/º

E|2Z2
N
n�0

is the solution
given by (8.3). Assume

f .g/s1 � � � f .g/s2 : (8.5)
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Then there exists � .depending on s1, s2 but independent of g and 
/ such that any solu-
tion .Y.t/; �.t/; ž.t// of (7.2) with initial condition ž.0/ D ž0 2 `1, Y.0/ D Y0 2 Rd

with k ž0 � ˇ�.0/k`1 � �
�1�4� and jY0j � ��2�4� and any �.0/ D �1 2 T d satisfies

k žE| .t/ � ˇ
�
E|
.t/k`1 � �

�1�� ; jY.t/j � ��2�� ;

for 0 < t < T , where T is the time defined in (8.2).

The proof is deferred to Section 8.1. Note that the change to rotating coordinates in
(7.1) does not alter the `1 norm and therefore a similar result can be stated for orbits of
the Hamiltonian (6.3) (the modulus in (6.3) adding the rotating phase).

Proof of Theorem 1.2. We use Theorem 8.1 to obtain a solution of the Hamiltonian (3.14)
undergoing growth of Sobolev norms. Then the same property will hold true for the cor-
responding solution of the Hamiltonian (3.3), by applying the inverse of the Birkhoff
map ˆ in Theorem 3.1, which leaves untouched the modes a.m;n/ with n ¤ 0. We con-
sider the solution .Y�.t/; ��.t/; a�.t// of the former Hamiltonian with initial condition

Y� D 0;

�� D �0;

a�
E|
D

´
��1bk.0/ for E| 2 ƒk ;

0 for E| 62 ƒk ;

(8.6)

for an arbitrary choice of �0 2 T d. Since this initial condition has finite support, it follows
by applying (the inverse of) the Birkhoff map ˆ in Theorem 3.1 that the corresponding
initial condition in the original coordinates u E| belongs to hs for all s � 0. Then the well-
posedness properties of equation (2D-NLS) imply that the solution u.t; x/with this initial
condition belongs to

T
s�0H

s.T2;C/ for all times. Also, note that the distance from u.0/

to the torus T I
�0

is measured by the amplitude of ¹a�
E|
º (see (3.10)).

We need to prove that Theorem 8.1 applies to this solution with � satisfying (8.5).
To this end, we perform the changes of coordinates given in Theorems 4.3, 5.2 and 6.2,
keeping track of the `1 norm.

For L.j /, j D 1; 2, Theorems 5.2 and 6.2 imply the following. For .Y; �;a/ 2D.�; r/
define �a.Y; �; a/ WD a. Then

k�aL.j /.Y; �; a/ � ak`1 . kak2
`1
: (8.7)

This estimate is not true for the change of coordinates L.0/ given in Theorem 4.3. Never-
theless, this change is smoothing (see Theorem 4.3 (5)). This implies that if all E| 2 supp¹aº
satisfy j E| j � J then

k�aL.0/.Y; �; a/ � ak`1 . J�1kak`1 : (8.8)

Thanks to Theorem 7.3 (more precisely (7.7)), we can apply this estimate to (8.6) with
J D Cf .g/. Using the fact that ka�k`1 . ��1g2g and the condition on � in (8.5) (which
implies f .g/�1 � ��1), one can check

k�aL.0/.0; ��; a�/ � a�k`1 . ��1g2gf .g/�1 . ��3=2:
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Therefore,
k�a.L

.2/
ıL.1/

ıL.0/.0; ��; a�// � a�k`1 . ��3=2:

We define . zY�; z��; za�/ to be the image of the point (8.6) under the composition of these
three changes. We apply Theorem 8.1 to the solution of (7.2) with this initial condition.
Note that Theorem 8.1 is stated in rotating coordinates (see (7.1)). Nevertheless, since
this change is the identity on the initial conditions, one does not need to make any further
modification. Moreover, the change (7.1) leaves invariant both the `1 and Sobolev norms.
We show that the solution . zY�.t/; z��.t/; za�.t// expressed in the original coordinates sat-
isfies the desired growth of Sobolev norms.

Define
Si D

X
E|2ƒi

j E| j2s for i D 1; : : : ;g:

We first estimate the initial and final Sobolev norms of the solution .Y�.t/; ��.t/; a�.t//
in terms of the constants Si ; namely, we prove

1

2
��2S3 �ka�.0/k

2
hs � 2�

�2S3 and ka�.T /k2hs �
��2

4
Sg�1: (8.9)

The initial condition (8.6) for the orbit under consideration has support ƒ (recall that
Y D 0). Therefore,

ka�.0/k2hs D
gX
iD1

X
E|2ƒi

j E| j2s��2jbi .0/j
2:

Then, taking into account Theorem 7.8,ˇ̌
ka�.0/k2hs � �

�2S3
ˇ̌
� 3��2�S3 C �

�2�2
X
i¤3

Si � �
�2S3

�
3�C �2

X
i¤3

Si

S3

�
:

From Theorem 7.3 we know that Si=S3 . esg for i ¤ 3. Therefore, to bound these terms
we use the definition of � from Theorem 7.8. Taking 
 > 1=2 and g large enough, we
obtain the first estimate in (8.9).

To obtain the second estimate in (8.9) (final Sobolev norm), note that

ka�.T /k2hs �
X
E|2ƒg�1

j E| j2sja�
E|
.T /j2 � Sg�1 inf

E|2ƒg�1

ja�
E|
.T /j2: (8.10)

Thus, it is enough to obtain a lower bound for ja�
E|
.T /j for E| 2ƒg�1. To do so, we need to

express a� in normal form coordinates and use Theorem 8.1. We split ja�
E|
.T /j as follows.

Let . zY�.t/; z��.t/; za�.t// be the image of the orbit with initial condition (8.6) under the
changes of variables in Theorems 4.3 and 5.2, in Proposition 6.2 and in (7.1). Then

ja�
E|
.T /j � jˇ�

E|
.T /j � jza�

E|
.T / � ˇ�

E|
.T /ei� E| .�;"/T j � jza�

E|
.T / � a�

E|
.T /j:
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The first term, by Theorem 7.8, satisfies jˇ�
E|
.T /j � ��1=2. For the second one, using

Theorem 8.1, we have

jza�
E|
.T / � ˇ�

E|
.T /ei� E| .�;"/T j � ��1�� :

Finally, taking into account the estimates (8.7) and (8.8), one can bound the third term as

jza�
E|
.T / � a�

E|
.T /j � kza�.T / � a�.T /k`1 . ka�.T /k2

`1
C
ka�.T /k`1
j E| j

:

Now, by Theorems 8.1 and 7.3 (more precisely the fact that j E| j & f .g/ for E| 2 ƒ),

jza�
E|
.T / � a�

E|
.T /j � ��1��

(taking a smaller � if necessary). Thus, by (8.10), we obtain the second estimate in (8.9).
The last step to prove Theorem 1.2 is to choose suitable � and g in terms of the

parameters K � 1 and 0 < ı � 1.
To measure the growth of Sobolev norms, note that (8.9) implies

ka�.T /k2hs
ka�.0/k2hs

�
Sg�1

8S3
�
1

16
2.1�s/.g�4/:

Thus, taking g � ln.K=ı/, one obtains the growth of Sobolev norm

ka�.T /k2hs
ka�.0/k2hs

&
K2

ı2
:

To control the initial Sobolev norm, we need ka�.0/k2
hs
� ��2S3 � ı

2. Note that this
estimate and the ones just obtained imply ka�.T /k2

hs
& K2. To estimate ka�.0/k2

hs
, it is

enough to choose a suitable � (as a function of g). To this end, note that by Theorem 7.3,

C�12gf .g/2s � S3 � C2
g3gf .g/2s :

Thus, one can take �2 � ı�2S3, which satisfies

f .g/s . � . ı�12g=23g=2f .g/s :

Then, choosing the parameters s1; s2 introduced in Theorem 8.1 such that 0 < s1 < s <
s2 < 1, one sees that, taking g large enough (recall that we have chosen g � ln.K=ı/,
which we can make arbitrarily big by enlarging K if necessary), the chosen � belongs to
the range admitted for � in Theorem 8.1. This gives

C�1ı2 � ka�.0/k2hs � Cı
2

for some C > 0 independent of ı. Note that in the reasoning above, to obtain small initial
Sobolev hs norm it has been crucial that s 2 .0; 1/.

Remark 8.2. In case we require only the `2 norm of a�.0/ to be small, we can drop the
condition s < 1. Indeed, ka�.0/k`2 . ��12gg, which can be made arbitrarily small by
simply taking g large enough .and � as in (8.5)/.
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The time estimates can be easily deduced from (8.2), (8.5), (7.6) and Theorem 7.8,
which concludes the proof of Theorem 1.2 (1).

For the proof of the second statement of Theorem 1.2 it is enough to point out that
the condition s < 1 has only been used in imposing that the initial Sobolev norm is small.
The estimate for the `2 norm can be obtained as explained in Remark 8.2.

8.1. Proof of Theorem 8.1

To prove Theorem 8.1, we define

� D ˇ � ˇ�.t/:

We use the equations in (8.4) to deduce an equation for � . It can be written as

i P� D Z0.t/CZ1.t/� CZ01.t/� CZ001.t/Y CZ2.�;Y; t /; (8.11)

where

Z0.t/ D @ˇJ.0; �; ˇ�/C @ˇR.0; �; ˇ�/;

Z1.t/ D @ˇˇG0.ˇ
�/C @ˇˇJ.0; �; ˇ�/;

Z01.t/ D @ˇˇG0.ˇ
�/C @ˇˇJ.0; �; ˇ�/;

Z001.t/ D @YˇG0.ˇ
�/C @

YˇJ.0; �; ˇ�/;

Z2.t/ D @ˇG0.ˇ
�
C �/ � @ˇG0.ˇ

�/ � @ˇˇG0.ˇ
�/�

� @ˇˇG0.ˇ
�/� C @ˇJ.Y; �; ˇ� C �/ � @ˇJ.0; �; ˇ�/

� @ˇˇJ.0; �; ˇ�/� � @ˇˇJ.0; �; ˇ�/� � @
YˇJ.0; �; ˇ�/Y

C @ˇR.Y; �; ˇ� C �/ � @ˇR.0; �; ˇ�/:

(8.12)

We analyze the equations for � in (8.11) and Y in (8.4).

Lemma 8.3. Assume that .ˇ� ; Y/; .ˇ� C �; Y/ 2 D.r2/ .see (2.1)/ where r2 has been
given by Theorem 6.2. Then

d

dt
k�k`1 � C�

�4g424g
C C��3g323g.f .g/�4=5 C tf .g/�2/C C��2g222g

k�k`1

C C��1g2g
jYj C C��1g2g

k�k2
`1
C Ck�k`1 jYj C C jYj

2

for some constant C > 0 independent of �.

Proof. We compute estimates for each term in (8.12). For Z0, we use the fact that the
definition of R in (7.3) and Theorem 6.2 imply k@ˇR.0; �; ˇ�/k`1 � O.kˇ�k4

`1
/. Thus,

it only remains to use the results in Theorems 7.8 (using (8.1)) and 7.3, to obtain

k@ˇR.0; �; ˇ�/k`1 � C�
�4g424g:
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To bound @ˇJ.0; �; ˇ�/, the other term in Z0, recall that J D J1 C J2 (see (7.3) and
(7.10)). Then we split into two terms @ˇJ.0; �; ˇ�/ D @ˇJ1.0; �; ˇ

�/C @ˇJ2.�; ˇ
�/ as

@ˇJ1.0; �; ˇ
�/ D @ˇ ¹G .0; �; .ˇ

�
E|
ei� E| .�;"/t /

E|2Z2
N
n�0
/ � G .0; �; ˇ�/º

D @ˇ ¹Q
.2/
Res.0; �; .ˇ

�
E|
ei� E| .�;"/t /

E|2Z2
N
n�0
/ �Q

.2/
Res.0; �; ˇ

�/º; (8.13)

@ˇJ2.�; ˇ
�/ D @ˇ ¹G .0; �; .ˇ

�
E|
ei� E| .�;"/t /

E|2Z2
N
n�0
/ � G0..ˇ

�
E|
ei� E| .�;"/t /

E|2Z2
N
n�0
/º;

(8.14)

To bound (8.13), recall that Q
.2/
Res defined in (6.4) is the sum of two terms. Since…R2Q

.2/

is action preserving, the only terms contributing to (8.13) are the ones coming from
…R4Q

.2/. Since ˇ� is supported on ƒ, it follows from (6.2) that

@ˇJ1.0; �; ˇ
�/

D

� X
E|1; E|2; E|32ƒ

j E|1j
2�j E|2j

2�j E|3j
2�j E| j2D0

.e
it.� E|1�� E|2C� E|3�� E| / � 1/J E|1 E|2 E|3 E|ˇ

�
E|1
ˇ�
E|2
ˇ�
E|3

�
E|2ƒ

: (8.15)

In order to bound the oscillating factor, we use the formula for the eigenvalues given in
Theorem 4.4 to find that, for E|1; E|2; E|3; E| 2 ƒ, one has

je
it.� E|1�� E|2C� E|3�� E| / � 1j . jt j j� E|1 �� E|2 C� E|3 �� E| j . jt j=f .g/

2:

Hence, for t 2 Œ0; T �, using the estimate for Q
.2/
Res given by Theorem 6.2,

k@ˇJ1.0; �; ˇ
�/k`1 � Ctf .g/

�2
kˇ�k3

`1
� Ct��3g323gf .g/�2:

To bound (8.14), it is enough to use (7.12) and (7.6) to obtain

k@ˇJ2.�; ˇ
�/k`1 � Cf .g/

�4=5
kˇ�k3

`1
� C��3g323gf .g/�4=5:

For the linear terms, one can easily see that

kZ1.t/�k`1 � Ckˇ
�
k
2
`1
k�k`1 � C�

�2g222g
k�k`1 ;

and the same for kZ01.t/�k`1 . Analogously,

kZ001.t/Yk`1 � Ckˇ
�
k`1 jYj � C�

�1g2g
jYj:

Finally, it is enough to use the definition of Z2, the definition of R in (7.3) and Theorem
6.2 to show

kZ2k � kˇ
�
k`1k�k

2
`1
C kˇ�k2

`1
jYj C k�k`1 jYj C kˇ

�
k
3
`1
k�k`1 C jYj

2

� C��1g2g
jYj k�k2

`1
C C��2g222g

k�k`1 jYj C C�
�3g323g

k�k`1 C jYj
2:
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Lemma 8.4. Assume that .ˇ� ; Y/; .ˇ� C �; Y/ 2 D.r2/ .see (2.1)/ where r2 has been
given by Theorem 6.2. Then

d

dt
jYj � C��5g525g

C C��3g323g
k�k2

`1

C C��1g2g
k�k3

`1
C Ck�k`1 jYj C C�

�3g323g
jYj2

for some constant C > 0 independent of �.

Proof. Proceeding as for P� , we write the equation for PY as

PY D X0.t/CX1.t/� CX01.t/� CX001 .t/Y CX2.�;Y; t /; (8.16)

with

X0.t/ D � @�J.0; �; ˇ�/ � @�R.0; �; ˇ�/;

X1.t/ D @ˇ�J.0; �; ˇ�/;

X01.t/ D @ˇ�J.0; �; ˇ�/;

X001 .t/ D @Y�J.0; �; ˇ�/;

X2.t/ D �@�J.Y; �; ˇ� C �/C @�J.0; �; ˇ�/ � @�R.Y; �; ˇ� C �/C @�R.0; �; ˇ�/:

We claim that X1.t/ and X01.t/ are identically zero. Then, proceeding as in the proof of
Lemma 8.3, one can bound each term and complete the proof of Lemma 8.4.

To explain the absence of linear terms, consider first @ˇ�J.0; �; ˇ�/. It contains two
types of monomials: those coming from R2 (see (4.4)), which however do not depend
on � , and those coming from R4 (see (6.2)). But also those last monomials do not depend
on � once they are restricted to the set ƒ (indeed, the only monomials of R4 which are
� -dependent are those of the third line of (6.2), which are supported outsideƒ). Therefore
@ˇ�J.0; �; ˇ�/ � 0 (and so @ˇ�J.0; �; ˇ�/ and @Y�J.0; �; ˇ�/).

We define
M D k�k`1 C �jYj:

As a conclusion of these two lemmas, we can deduce that

PM � C
�
��4g424g

C ��3g323g.f .g/�4=5C tf .g/�2/
�
CC��2g222gM C ��1g2gM 2:

Now we apply a bootstrap argument. Assume that for some T � > 0 and 0 < t < T � we
have

M.t/ � C��1��=2

(the constant � will be determined later).
Recall that, by assumption, for t D 0 we know that the above is already satisfied since

M.0/ � ��1�4� : (8.17)

A posteriori we will show that the time T in (8.2) satisfies 0 < T < T � and therefore
the bootstrap assumption holds. Note that, taking g large enough (and recalling (7.6)
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and (8.5)), the bootstrap estimate implies that .ˇ� ;Y/ and .ˇ� C �;Y/ satisfy the assump-
tion of Lemmas 8.3 and 8.4. With the boostrap assumption, we have

PM � C
�
��4g424g

C ��3g323g.f .g/�4=5 C tf .g/�2/
�
C C��2g222gM:

Applying the Gronwall inequality one obtains

M � C
�
M.0/C ��4g424gt C ��3g323g.tf .g/�4=5 C t2f .g/�2/

�
e�
�2g222gt :

Thus, using (8.2), the estimates for T0 in Theorem 7.8, (8.17) and (8.5) (note that it implies
f .g/�1 � ��1), we get

M � C
�
M.0/C ��2g624g

C ��1g523gf .g/�4=5 C �g723gf .g/�2
�
eCg422g

� C.��1�4� C ��2g624g
C ��9=5g523g

C ��3g723g/eCg422g

:

Now, taking A large enough (see Theorem 7.3), there exists � > 0 such that for t 2 Œ0; T �,
provided g is sufficiently large,

M.t/ � ��1�� :

This implies that T � T �. That is, the bootstrap assumption was valid. This completes
the proof.

Appendix A. Proof of Proposition 6.1

We split the proof into several steps. We first perform an algebraic analysis of the nonres-
onant monomials.

A.1. Analysis of monomials of the form ei� �` a
�1
E|1
a
�2
E|2
a
�3
E|3
a
�4
E|4

We analyze the small divisors (6.1) related to these monomials. Taking advantage of the
asymptotics of the eigenvalues given in Theorem 4.4, we consider a “good” first order
approximation of the small divisor given by

!.�/ � `C �1 z� E|1.�; "/C �2
z� E|2.�; "/C �3

z� E|3.�; "/C �4
z� E|4.�; "/: (A.1)

Note that this is an affine function in " and therefore it can be written as

(A.1) � K�j;` C "F
�
j;`.�/:

We say that a monomial is Birkhoff nonresonant if, for any " > 0, this expression is not 0
as a function of �.

Lemma A.1. Assume that the mk’s do not solve any of the linear equations defined in
(A.5) below .this determines L2 in the statement of Theorem 6.1/. Consider a monomial
of the form ei� �` a

�1
j1
a
�2
j2
a
�3
j3
a
�4
j4

with .j; `; �/ 2 A4. If .j; `; �/ 62 R4, then it is Birkhoff
nonresonant.
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Proof. We write the functions K�j;` and F�j;`.�/ explicitly as

K�j;` WD !
.0/
�`C�1 z� E|1.�; 0/C�2

z� E|2.�; 0/C�3
z� E|3.�; 0/C�4

z� E|3.�; 0/; (A.2)

F�j;`.�/ WD @"
�
!.�/�`C�1 z� E|1.�; "/C�2

z� E|2.�; "/C�3
z� E|3.�; "/C�4

z� E|4.�; "/
�ˇ̌
"D0

D ���`C�1# E|1.�/C�2# E|2.�/C�3# E|3.�/C�4# E|4.�/: (A.3)

As in [43], K�j;` is an integer while the functions # E| .�/ belong to the finite list of functions
# E| .�/ 2 ¹0; ¹�i .�/º1�i�dº defined in Theorem 4.4. Clearly to prove that the resonance
(A.1) D 0 does not hold identically, it is enough to ensure that

K�j;` D 0 and F�j;`.�/ � 0 (A.4)

cannot occur for .j; `; �/ 2 A4 n R4. We study all the possible combinations; each time
we assume that (A.4) holds and we deduce a contradiction.

(1): E|i 2 Z for any 1 � i � 4. If ` ¤ 0, then F�j;`.�/ D �� � ` is not identically 0. Now

take ` D 0. By conservation of zPx , zPy we find that
P4
iD1 �i E|i D 0 and K�j;` D 0

implies
P4
iD1 �i j E|i j

2 D 0. Then, using mass conservation (see Remark 4.7), since
`D 0, one has

P4
iD1 �i D 0 and therefore the E|i ’s form a rectangle (and thus .j; 0; �/

belongs to R4).

(2): E|1; E|2; E|3 2 Z, E|4 2 S . Then F�j;`.�/ D �� � `C �3 �i .�/ for some 1 � i � d. If
F�j;`.�/� 0 then�i .�/D �3� � ` is a root in ZŒ�� of the polynomialP.t;�/ defined in
Theorem 4.4; however, P.t; �/ is irreducible over Q.�/Œt �, yielding a contradiction.

(3): E|1; E|2 2 Z, E|3; E|4 2 S . We can assume E|3 D .mi ; n3/, E|4 D .mk ; n4/ for some 1 �
i; k � d. Then

F�j;`.�/ D �� � `C �3 �i .�/C �4�k.�/:

Case `¤ 0. Then F�
j;`.�/� 0 iff �i .�/���3�4�k.�/C �3� � `. This means that �k.�/

is a common root of P.t; �/ and P.��3�4t C �3� � `; �/. However this last polynomial
is irreducible as well, being the translation of an irreducible polynomial. Hence the two
polynomials must be equal (or opposite). A direct computation shows that this does not
happen (see [43, Lemma 6.1] for details).

Case ` D 0. Then F�j;`.�/ � 0 iff �i .�/ � ��3�4�k.�/.

� If i ¤ k and �3�4D�1, thenP.t;�/would have a root with multiplicity 2. ButP.t;�/,
being an irreducible polynomial, has no multiple roots.

� If i ¤ k and �3�4 D 1, then P.t;�/ and P.�t; �/would have �k.�/ as a common root.
However, P.�t; �/ is irreducible on ZŒ�� as well, and two irreducible polynomials
sharing a common root must coincide (up to sign), i.e. P.t; �/ � ˙P.�t; �/. A direct
computation using the explicit expression of P.t; �/ shows that this is not true.

� If i D k and �3�4 D 1 then �i .�/ � 0 would be a root of P.t; �/. But P.t; �/ is
irreducible over ZŒ��, so it cannot have 0 as a root.
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� If i D k and �3�4 D �1 (we can assume �3 D 1, �4 D �1), by mass conservation
one has �1 C �2 D 0 and by conservation of zPx one has �1m1 C �2m2 D 0, thus
m1 D m2. Then by conservation of zPy we get n1 � n2 C n3 � n4 D 0, which together
with 0 D K�j;` D n

2
1 � n

2
2 C n

2
3 � n

2
4 gives ¹n1; n3º D ¹n2; n4º. One verifies easily that

in that case the sites E|r ’s form a horizontal rectangle (which could even be degenerate),
and therefore they belong to R4.

(4): E|1; E|2; E|3 2 S , E|4 2 Z. We can assume that E|1 D .mi1 ; n1/, E|2 D .mi2 ; n2/, E|3 D
.mi3 ; n3/ for some 1 � i1; i2; i3 � d and n1; n2; n3 ¤ 0. Then

F�j;`.�/ D �� � `C �1�i1.�/C �2�i2.�/C �3�i3.�/ :

By conservation of mass �.`/ C �4 D 0, hence ` ¤ 0. Assume F�j;`.�/ � 0. This
can only happen for (at most) a unique choice of `.i;�/ 2 Zd, i WD .i1; i2; i3/. By
conservation of zPx we have X

k

mk`
.i;�/
k
C �4m4 D 0:

These two conditions fix m4 � m
.i;�/
4 uniquely. In particular, if m4 is sufficiently

large, we have a contradiction.

(5): E|r 2 S for all 1 � r � 4. Then

F�j;`.�/ D �� � `C �1�i1.�/C �2�i2.�/C �3�i3.�/C �4�i4.�/:

If ` ¤ 0, the condition F�j;`.�/ � 0 fixes `.i;�/ 2 Zd uniquely, i WD .i1; i2; i3; i4/. By

conservation of zPx we have the conditionX
k

mk`
.i;�/
k
D 0 (A.5)

defining a hyperplane, which can be excluded by suitably choosing the tangen-
tial sites mk (recall that the functions �i .�/ are independent of this choice, see
Remark 4.5).

If ` D 0, we have
P
r �rnr D

P
r �rn

2
r D 0. Then ¹n1; n3º D ¹n2; n4º. One

verifies easily that in that case the sites E|r form a horizontal trapezoid (which could
even be degenerate).

A.2. Analysis of monomials of the form ei� �`Yla
�1
j1
a
�2
j2

In this case, since the factor Yl does not affect the Poisson brackets, admissible mono-
mials (in the sense of Definition 4.1) are nonresonant provided they do not belong to the
set R2 introduced in Definition 4.2.

Lemma A.2. Any monomial of the form ei� �` a
�1
E|1
a
�2
E|2

Yi with .j; `; �/ … R2 admissible in
the sense of Definition 4.1 is Birkhoff nonresonant.

Proof. We skip the proof since it is analogous to that of [43, Lemma 6.1].
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A.3. Quantitative measure estimate

We are now in a position to prove our quantitative nonresonance estimate. Recall that,
by Theorem 4.3, the frequencies � E| .�; "/ of the Hamiltonian (5.1) have the form (4.8).
Expanding � E| .�; "/ in Taylor series in powers of " we get

!.�/ � `C �1� E|1.�; "/C �2� E|2.�; "/C �3� E|3.�; "/C �4� E|4.�; "/

D K�
j;` C "F

�
j;`.�/C "

2G�
j;`.�; "/; (A.6)

where K�
j;` is defined in (A.2) and F�

j;`.�/ is defined in (A.3). We wish to prove that the set

of � 2 C
.2/
" such that

j!.�/ � `C �1� E|1.�; "/C �2� E|2.�; "/C �3� E|3.�; "/C �4� E|4.�; "/j � "
2=h`i
�2 ;

8.j; `; � / 2 A4 n R4; (A.7)

has positive measure for 
2 and " small enough and �2 large enough. We deal with the
cases j`j � 4M0 and j`j > 4M0 separately.

A.3.1. Case j`j � 4M0. We start with the following lemma.

Lemma A.3. There exists k 2 N such that for any 
c > 0 sufficiently small, there exists
a compact domain Cc � O0 with jO0 n Ccj � 


1=k
c and

min ¹jF�
j;`.�/j W � 2 Cc; .`; j; � / 2 A4 n R4; j`j � 4M0; K�

j;` D 0º � 
c > 0:

Proof. See [43, Lemma 6.4]. The estimate on the measure follows from classical results
on sublevels of analytic functions.

We can now prove the following result.

Proposition A.4. There exist "c > 0 and a set Cc � O0 such that for any " � "c and any
� 2 Cc one hasˇ̌̌

!.�/ � `C

4X
lD1

�l� E|l .�; "/
ˇ̌̌
�

c"

2
; 8.j; `; � / 2 A4 n R4; j`j � 4M0: (A.8)

Moreover, jO0 n Cc j � ˛"
�
c where ˛; � do not depend on "c .

Proof. By the very definition of M0 in (4.9) and the estimates on the eigenvalues given in
Theorem 4.4, one has sup�2O0

jF�
j;`.�/j � 8M0 and sup�2O0

jG�
j;`.�/j � 4M0. Assume first

that K�
j;` 2 Z n ¹0º. Then if "c is sufficiently small and for " < "c one has

j(A.6)j � jK�
j;`j � "8M0 � "

24M0 � 1=2:

Hence, for such `’s, (A.8) is trivially fulfilled for all � 2 O0. If instead K�
j;` D 0, we use

Lemma A.3 with 
c D 10M0"c to obtain a set Cc � O0 such that for any � 2 Cc and any
.j; `; � / 2 A4 n R4 with j`j � 4M0,

j(A.6)j � "
c � "24M0 � "
c=2:
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A.3.2. Case j`j > 4M0. In this case we prove the following result.

Proposition A.5. Fix "? > 0 sufficiently small and �? > 0 sufficiently large. For any
" < "?, there exists a set C? � O0 such that jO0 n C?j . "�? .with ˛; � independent of "?/,
and for any � 2 C? and j`j > 4M0 one hasˇ̌̌

!.�/ � `C

4X
lD1

�l� E|l .�; "/
ˇ̌̌
� 
?

"

h`i�?
(A.9)

for some constant 
? depending on "?.

To prove the proposition, first define, for 1 � i � d and 0 � k � d, the functions

bFi;k.�/ D
8̂̂̂̂
<̂
ˆ̂̂:
"�i .�/ if k D 0;

"�C
i;k
.�/ if 1 � i < k � d;

"��
i;k
.�/ if 1 � k < i � d;

0 if 1 � i D k � d:

The right hand side of (A.6) is always of the form

!.�/ � `CKC �1bFi1;k1.�/C �2bFi2;k2.�/C �3bFi3;k3.�/C �4bFi4;k4.�/
C �11

‚m1.�; "/

hm1i2
C �12

‚m2.�; "/

hm2i2
C �13

‚m3.�; "/

hm3i2
C �14

‚m4.�; "/

hm4i2

C �21
‚m1;n1.�; "/

hm1i2Chn1i2
C �22

‚m2;n2.�; "/

hm2i2Chn2i2
C �23

‚m3;n3.�; "/

hm3i2Chn3i2
C �24

‚m4;n4.�; "/

hm4i2Chn4i2

C �31
$m1.�; "/

hm1i
C �32

$m2.�; "/

hm2i
C �33

$m3.�; "/

hm3i
C �34

$m4.�; "/

hm4i
(A.10)

for a particular choice ofK 2 Z,mi 2 Z; ni 2 NZ n ¹0º and �r ; �jj 0 2 ¹�1; 0; 1º. There-
fore it is enough to show (A.9) where the left hand side is replaced by (A.10).

Proof of Proposition A.5. If the integer K is large, namely jKj � 4j`jmax1�i�d m2i , then
the quantity on the left hand side of (A.9) is far from zero. More precisely,

j(A.10)j � jKj � j!.�/j j`j �
4X
rD1

jbFir ;kr jO1 � 4X
rD1

j‚mr .�; "/j
O1

hmri2

�

4X
rD1

j‚mr ;nr .�; "/j
O1

hmri2 C hnri2
�

4X
rD1

j$mr .�; "/j
O1

hmri

� 4 max
1�i�d

m2i j`j � max
1�i�d

m2i j`j � "j`j � 4"M0 � 4"
2M0 � M0:

So from now on we restrict ourselves to the case jKj � 4j`jmax1�i�d m2i . We will
repeatedly use the following result, which is an easy variant of [47, Lemma 5].
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Lemma A.6. Fix K 2 Z, mi 2 Z; ni 2 Z n ¹0º, �j ; �jj 0 2 ¹�1; 0; 1º. For any ˛ > 0 one
has

meas.¹� 2 O0 W j(A.10)j < "˛º/ < 16˛j`j�1:

The proof relies on the fact that all the functions appearing in (A.10) are Lipschitz
in �; for full details see e.g. [43, Lemma C.2].

Now, let us fix


? D
"?M0
100

: (A.11)

We construct the set C? by induction on the number n defined by

n WD j�1;1j C � � � C j�3;4j � 12;

which is nothing but the number of nonzero coefficients in (A.10) . For every 0 � n � 12
we construct (i) a positive increasing sequence �n and (ii) a sequence of nested sets Cn D

Cn.
?; �n/ such that:

(1) There exists C > 0, independent of " and 
?, such that

meas.O0 n C0/ � C
?; meas.Cn n CnC1/ � C
?: (A.12)

(2) For � 2 Cn and j`j � 4M0 one has

j(A.10)j � "
?=h`i�n : (A.13)

Then the proposition follows by taking C? WD C12, �? D �12, so that jO0 n C?j �

13C
? � 
? provided 
? is small enough.

Case n D 0. Define

G0K;i;k;�;`.
?; �0/ WD ¹� 2 O0 W j(A.10)j � "
?=h`i�0 and �jj 0 D 0 8j; j 0º;

where K 2 Z with jKj � 4 max1�i�d m2i j`j, i D .i1; i2; i3; i4/ 2 ¹1; : : : ; dº4, k D
.k1; k2; k3; k4/ 2 ¹0; : : : ; dº4, ` 2 Zd with j`j � 4M0, � D .�1; �2; �3; �4/ 2 ¹�1; 0; 1º4.
By Lemma A.6 with ˛ D 
?h`i��0 we have

meas.G0K;i;k;�;`.
?; �0// � 16
?= h`i
�0C1:

Taking the union over all the possible values of K; i;k; �; ` one gets

meas
� [
j`j�4M0; i;k;�
jKj�4maxi m2

i
j`j

G0K;i;k;�;`.
?; �0/
�
� C.d/ 
?

X
j`j�4M0

1

h`i�0
� C
?;

which is finite provided �0 � dC 1. Letting

C0 WD O0 n
[

j`j�4M0; i;k;�
jKj�4maxi m2

i
j`j

G0K;i;k;�;`.
?; �0/
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one clearly has meas.O0 n C0/ � C
?, and for � 2 C0,ˇ̌̌
!.�/ � `CK C

4X
rD1

�jbFir ;kr .�/ˇ̌̌ � "
?=h`i�0
for any admissible choice of `;K; i;k; �. This proves the inductive step for n D 0.

Case nÝ nC 1. Assume that (A.13) holds for any possible choice of �11; : : : ; �34 such
that j�11j C � � � C j�34j � n � 11 for some .�j /njD1. We now prove step nC 1. Let us fix
�nC1 � dC 1C 6�n. We shall show that for each j`j � 4M0, the set

GnC1
`
WD ¹� 2 CnW j(A.10)j � "
?=h`i�nC1 ; j�11j C � � � C j�34j D nC 1º (A.14)

has measure � C.d/
?=h`idC1. Thus defining

CnC1 WD Cn n
[
j`j�4M0

GnC1
`

.
?; �nC1/;

we obtain the claimed estimates (A.12) and (A.13). To estimate the measure of (A.14) we
consider three cases.

Case 1: Assume that
9mi ; jmi j � h`i

�n

(of course we also assume that one of the coefficients �1i ; �2i ; �3i is not null); we can
assume it is m4. Then we treat all the terms in (A.10) which contain m4 as perturbations,
and we estimate all the other terms using the inductive assumption. Here are the details:
First we have ˇ̌̌̌

‚m4.�; "/

hm4i2

ˇ̌̌̌
C

ˇ̌̌̌
‚m4;n4.�; "/

hm4i2 C hn4i2

ˇ̌̌̌
C

ˇ̌̌̌
$m4.�; "/

hm4i

ˇ̌̌̌
�

M0 "2

h`i�n
:

By the inductive assumption (A.13) and (A.11), for any � 2 Cn one has

j(A.10)j �
ˇ̌̌̌
!.�/ � `CK C

4X
jD1

�ibFij ;kj .�/C 3X
jD1

�1j
‚mr .�; "/

hmj i2

C

3X
jD1

�2j
‚mj ;nj .�; "/

hmj i2 C hnj i2
C

3X
jD1

�3j
$mj .�; "/

hmj i

ˇ̌̌̌
�

M0"2

h`i�n

�
"
?

h`i�n
�

M0"2

h`i�n
�

"
?

2h`i�n
�

"
?

h`i�nC1

provided �nC1 � �n C 1. Therefore, in this case, there are no �’s contributing to the set
(A.14).

Case 2: Assume that
9ni ; jni j

2
� h`i�n
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(and again we also assume that one of the coefficients �2i is not null); we can assume it
is n4. Similarly to the previous case, we treat the term in (A.10) which contains n4 as a
perturbation, and we estimate all the other terms using the inductive assumption. More
precisely, we have ˇ̌̌̌

‚m4;n4.�; "/

hm4i2 C hn4i2

ˇ̌̌̌
�

M0"2

h`i�n
;

so by the inductive assumption (A.13) and (A.11),

j(A.10)j �
ˇ̌̌̌
!.�/ � `CK C

4X
jD1

�ibFij ;kj .�/C 4X
jD1

�1j
‚mj .�; "/

hmj i2

C

3X
jD1

�2j
‚mj ;nj .�; "/

hmj i2 C hnj j i2
C

4X
jD1

�3j
$mj .�; "/

hmj i

ˇ̌̌̌
�

M0 "2

h`i�n

�
"
?

2h`i�n
�

"
?

h`i�nC1

provided �nC1 � �n C 1. Also in this case, there are no �’s contributing to the set (A.14).

Case 3: We have
jmi j; jni j

2
� h`i�n

for all the mi ; ni that appear in (A.10) with nonzero coefficients. Furthermore, recall that
we are considering the case jKj � 4maxi m2i j`j: Thus we are left with a finite number of
cases and we can impose a finite number of Melnikov conditions. So define

GnC1
K;i;k;�;`;m;n.
?; �nC1/ WD ¹�2Cn W j(A.10)j � "
?=h`i�nC1 ; j�11jC� � �Cj�34jDnC1º:

By Lemma A.6 with ˛ D 
=h`i�nC1 we have

meas.GnC1
K;i;k;�;`;m;n.
?; �nC1// � 16
?=h`i

�nC1C1; (A.15)

and taking the union over the possible values of K; i;k; �;m;n one gets

GnC1
`
�

[
i;k;�

[
jmi j;jni j

2�h`i�n

jKj�4maxi m2
i
j`j

GK;i;k;�;`;m;n.
?; �nC1/:

Estimate (A.15) gives immediately

meas.GnC1
`

/ � C.d/
?
h`i1C6�n

h`i�nC1C1
�
C.d/
?
h`idC1

;

as claimed.

We can finally prove Proposition 6.1.

Proof of Proposition 6.1. Fix 
c D 
? DW 
2 sufficiently small, and put "2 WDmin."c ; "?/,
�2 WD �? and C .2/ WD Cc \ C?. Propositions A.4 and A.5 guarantee that for any � 2 C .2/,
estimate (A.7) is fulfilled. Finally, one has jC .1/ n C .2/j . 


1=k
2 C 
2 � 


1=k
2 .
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Appendix B. List of notations

We give a list of notations and parameters. We also specify the relations between the
parameters needed to prove the first statement of Theorem 1.2.
� d 2 N – Dimension of the torus T I

�0

� �0 � Z � ¹0º – Set of (Birkhoff) modes where the torus T I
�0

is supported. It has cardinality d.

� I D .Im1 ; : : : ; Imd/ 2 Rd
>0 – Actions which define the torus T I

�0
.

� " 2 R – Size of the actions I .

� s 2 .0; 1/ – The index for the Sobolev H s norm in the first statement of Theorem 1.2.

� ı � 1 – It measures the initial distance from the torus T I
�0

(in the Sobolev H s norm) in the first
statement of Theorem 1.2.

� K � 1 – It measures the final Sobolev norm in the first statement of Theorem 1.2.

� r 2 R – Size of the neighborhood of 0 where the several steps of Birkhoff normal form are
performed (see (2.1)).

� � 2 R – Width of the analyticity domain in the angles � (see (2.1)).

� � 2 .1=2; 1/d – Parameter used to modulate the actions I (see Lemma 3.3).

� !.�/ 2 Rd – Tangential frequencies of the torus (see Lemma 3.3).

� N 2 N – It is introduced in (4.1) and defines the set lattice Z � NZ where equation (2D-NLS)
is restricted. It will be chosen depending on g (see below).

� � E| .�; "/ – Normal frequencies of the torus T I
�0

(see Theorem 4.3).

� ƒ � Z � NZ – Set where the solution undergoing growth of Sobolev norms is essentially sup-
ported (see Theorem 7.3).

� g 2 N – Number of generations of the set ƒ. In Section 8 it is g � ln.K=ı/.

� f .g/ – It gives the size of the modes in ƒ (see (7.6) and (7.7)).

� � 2 R – It measures the errors in the toy model orbit (see Theorem 7.8). It satisfies � D e�
g

for some 
 � 1.

� T0 2 R – Transition time for the toy model orbit (see Theorem 7.8). It satisfies T0 � g2.

� � 2R – Scaling applied to the toy model solution. In the case s 2 .0; 1/ (first part of the statement
of Theorem 1.2) it satisfies f .g/s1 � � � f .g/s2 for some 0 < s1 < s < s2 < 1.

� T 2 R – Transition time for the orbit in the first statement of Theorem 1.2 (see also (8.2)). It
satisfies T � �2g2 . e.K=ı/

ˇ
for some ˇ > 1.
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