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Abstract. In this article, we generalize the Hodge–Tate decomposition of p-adic étale cohomology
to non-smooth rigid spaces. Our strategy is to study pro-étale cohomology of rigid spaces introduced
by Scholze, using the resolution of singularities and the simplicial method.
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1. Introduction

1.1. Goals and main results

Let X be a compact complex manifold. One of the most important invariants of X is its
singular cohomology group HnSing.X;C/, defined in a transcendental way. The de Rham
Theorem allows us to compute those cohomology groups by using differential forms:
there exists a natural isomorphism

HnSing.X;C/ Š Hn.X;��X=C/;

where ��
X=C is the analytic de Rham complex of X over C. Moreover, induced by

the Hodge filtration of the de Rham complex, there exists a (Hodge–de Rham) spectral
sequence

E
i;j
1 D Hj .X;�iX=C/ H) HiCj .X;��X=C/

computing the de Rham cohomology. This spectral sequence often degenerates; in fact,
we have a stronger result when X is a compact Kähler manifold.

Theorem 1.1.1 (Hodge decomposition). Let X be a compact Kähler manifold. Then its
singular cohomology HnSing.X;C/ admits a canonical decomposition into a direct sum of
the vector spaces Hi;j .X/ of harmonic .i; j /-forms for i C j D n.

The vector space Hi;j .X/ is of the same dimension as Hj .X; �i
X=C/. As a conse-

quence, the Hodge–de Rham spectral sequence for X ,

E
i;j
1 D Hj .X;�iX=C/ H) HiCj .X;��X=C/;

degenerates at its first page.
The above assumption holds in particular when X is the analytification of a smooth

projective algebraic variety Y over C. Moreover, in the aforementioned setting, by the
GAGA principle, the above spectral sequence can be replaced by the algebraic Hodge–de
Rham spectral sequence using the algebraic differential forms of Y over C. The singular
cohomology can thus be computed using a purely algebraic method.

Now we turn to non-archimedean geometry. Let us fix a complete and algebraic closed
p-adic field extension K=Qp .

Proper smooth rigid spaces, introduced by Tate in the 1960s, form a natural analogue
of compact complex manifolds in this setting. Here typical examples include analytifica-
tions of proper smooth algebraic varieties over K. Since the non-archimedean field K is
totally disconnected, singular cohomology is not a meaningful invariant ofX . Instead, the
correct analogue should be the p-adic étale cohomology groups Hi .XKet;Zp/, which are
defined by associating an étale site XKet to the rigid space X , and then taking the inverse
limit of the étale cohomology groups Hi .XKet;Z=p

n/. Moreover, analogously to the com-
plex setting, we have the following result computing étale cohomology:



Hodge–Tate decomposition for non-smooth spaces 1555

Theorem 1.1.2 (Hodge–Tate filtration). Let X be a smooth proper rigid space over K.
Then we have a natural spectral sequence

E
i;j
2 D Hi .X;�j

X=K
/.�j / H) HiCj .XKet;Zp/˝Zp K:

The spectral sequence degenerates at its E2-page.

As pointed out by a referee, in contrast to Theorem 1.1.1, we do not need any “Kähler
condition” in the p-adic setting.

When X is an algebraic scheme, the result was proved in many cases by Faltings.
Later on Scholze constructed the spectral sequence above for rigid spaces, and proved the
degeneracy for those X defined over a discretely valued field. Here we note that in the
latter setting when X comes from a discretely valued subfield (with perfect residue field),
the filtration above is Galois equivariant and admits a canonical splitting, which is called
the Hodge–Tate decomposition. The case of general proper smooth rigid spaces that are
not necessarily defined over a discrete subfield is handled in [3] by using a spreading-
out technique of Conrad–Gabber. Similar to the complex geometry, we note that one of
the biggest advantages of this decomposition is that the left side is given by a coherent
cohomology, which is of more algebraic nature than p-adic étale cohomology.

The goal of our article is to generalize the Hodge–Tate decomposition to the case when
X is not necessarily smooth. In scheme theory, one strategy to generalize from the smooth
setting to the non-smooth setting is to use the h-topology, introduced by Voevodsky [37].
The h-topology is defined by refining the étale topology (on the category of all finite type
K-schemes over X ) by allowing not just étale coverings, but also proper surjective maps.
In particular, thanks to the resolution of singularities in characteristic zero, any h-covering
can be refined by smooth schemes, which makes the h-topology “locally smooth”. Later
Geisser [15] introduced the Keh-topology, which is a variant of Voevodsky’s theory and is
defined by a smaller but more amenable collection of covering families.

Inspired by those ideas, we introduce the Keh-topology XKeh for a rigid space X , where
coverings are generated by étale coverings, universal homeomorphisms, and coverings
associated to blowups (see Section 2). Similarly to scheme theory, our Keh-topology is
locally smooth, and there exists a natural morphism of sites �X W XKeh ! XKet. In addition,
by sheafifying the usual sheaf �j

=K
of continuous differentials in the Keh-topology, we

obtain the sheaf �j
Keh;=K of Keh-differentials on the Keh-site XKeh over K. (We will use �j

Keh to
abbreviate the notation when the base is clear.)

Our main theorems are the following:

Theorem 1.1.3 (Hodge–Tate decomposition). Let X be a proper rigid space over a com-
plete algebraically closed non-archimedean fieldK=Qp of characteristic zero. Then there
exists a natural spectral sequence

E
i;j
2 D Hi .XKeh; �

j

Keh/.�j / H) HiCj .XKet;Qp/˝Qp K;

where Hi .XKeh; �
j

Keh/.�j / is the i -th éh-cohomology group of �j
Keh, and is equipped with

a Galois action by the Tate twist of weight j when X is defined over a discretely valued
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subfield. The spectral sequence satisfies the following:

(i) The cohomology group Hi .XKeh; �
j

Keh/.�j / is a finite-dimensional K-vector space
that vanishes unless 0 � i; j � n.

(ii) The spectral sequence degenerates at the E2-page.

(iii) IfX is a smooth rigid space, Hi .XKeh;�
j

Keh/.�j / is isomorphic to Hi .X;�j
X=K

/.�j /,
and the spectral sequence is the same as the Hodge–Tate spectral sequence for
smooth proper rigid spaces in Theorem 1.1.2.

The Keh-cohomology group Hi .XKeh; �
j

Keh/ above is not an exotic construction; in fact,
this is an analogue of the classical Deligne–Du Bois cohomology in the rigid spaces set-
ting, and can be computed by using cohomologies of coherent sheaves over the rigid
space. To see this, we notice that the map of sites �X W XKeh ! XKet provides us with a
natural quasi-isomorphism

R�.XKet; R�X��
j

Keh/ Š R�.XKeh; �
j

Keh/:

As proved in Proposition 6.0.1, each higher pushforward Rs�X��
j

Keh is a coherent sheaf
over X . So the associated Leray spectral sequence above is computed by rigid cohomolo-
gies of coherent sheaves.

Moreover, Keh-cohomology for a proper rigid space X coincides with its algebraic
version when X comes from a proper algebraic variety. More precisely, assume X D Y an

is the analytification of a proper variety Y over K, and the base field K is isomorphic
to C abstractly. We can then get a functorial isomorphism

Hi .XKeh; �
j

Keh/ Š Hi .Y;�jY /;

where �jY is the j -th graded piece of the Deligne–Du Bois complex ��Y for the complex
algebraic variety Y [26, §7.3]. Furthermore, the cohomology group Hi .Y;�jY / is isomor-
phic to the j -th graded factor for the Hodge filtration of the singular cohomology group
HiSing.Y.C/;C/. In fact, there exists a filtered isomorphism between the Keh-cohomology
of X and the singular cohomology of Y , so that the above isomorphism is obtained by
taking the j -th graded factor (see §5.2 for details).

Here we also mention that the analogous h-cohomology for algebraic varieties has
already appeared in the p-adic Hodge theory, in Beilinson’s work [1]. Beilinson gives a
different proof of the Hodge–Tate decomposition for algebraic varieties using de Jong’s
alterations. In the complex settings, the h-cohomology (and the Keh-cohomology) of dif-
ferentials appears for example in [15, 20, 25], where the relation between h-cohomology
and different types of singularities in complex algebraic geometry is studied.

Finally, we mention that in Theorem 1.1.3, the rigid space X may not be defined over
a discretely valued subfield (in which case the Tate twist appearing there will not enter the
picture). However, when X D YK is defined over a discretely valued subfield, the decom-
position theorem above can be obtained from a comparison between étale cohomology
and an Keh version of de Rham cohomology, generalizing the étale-de Rham comparison
for the smooth case in [28]. More precisely, let BdR be Fontaine’s de Rham period ring,
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which is equipped with a natural filtration (see the discussion in §7.1). We then have the
following result:

Theorem 1.1.4 (étale-Keh de Rham comparison). Let Y be a proper rigid space over a
discretely valued subfield K0 of K=Qp that has a perfect residue field. Then there exists
a Gal.K=K0/-equivariant filtered isomorphism

Hn.YK Ket;Qp/˝Qp BdR D Hn.YKeh; �
�

Keh;=K0
/˝K0 BdR;

whose 0-th graded piece is

Hn.YK Ket;Qp/˝Qp K D
M
iCjDn

Hi .YKeh; �
j

Keh;=K0
/˝K0 K.�j /:

The isomorphism is functorial with respect to Y overK0. In particular, the p-adic Galois
representation Hn.YK Ket;Qp/ is de Rham.

Here recall that the filtration on the left side above is the tensor product filtration for
the trivial filtration of étale cohomology and the natural filtration on BdR; the filtration on
the right side is the tensor product filtration for the Hodge filtration of the Keh de Rham
complex and the filtration of BdR.

1.2. Ideas of proof

In this subsection, we sketch the ideas of the proof of Theorem 1.1.3.
Let K=Qp be a fixed complete algebraic closed non-archimedean field extension,

and let X be a rigid space over K. One way to compute the p-adic étale cohomology
H�.XKet;Qp/ is to use the pro-étale topology. Scholze introduces the pro-étale site XproKet

using the perfectoid geometry, together with a natural morphism of Grothendieck topolo-
gies

� W XproKet ! XKet:

AssumingX is proper andK is complete and algebraically closed, Scholze [28,29] shows
that there exists an isomorphism

H�.XKet;Zp/˝Zp K Š H�.XproKet; yOX /;

where yOX is the completed pro-étale structure sheaf on XproKet. So by the Leray spectral
sequence, the study of p-adic étale cohomology can be broken into two parts: the study
of Ri�� yOX , and the understanding of its cohomology.

When X is a smooth rigid space, we have Ri�� yOX D �i
X=K

.�i/ [29, Proposi-
tion 3.23]. Here the twist “.�i/” means that when X D X0 �K0 K comes from a smooth
rigid space X0 over a finite extension K0=Qp , the sheaf Ri�� yOX is isomorphic to the
.�i/-th Tate twist of the i -th continuous differential sheaf over K, as a sheaf of modules
equipped with a Galois action.

In general when X is not necessarily smooth over K, we use the aforementioned Keh-
topology to extend the étale site to a locally smooth siteXKeh, and denote the natural map of
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sites as �X WXKeh!XKet. We sheafify the presheaf ofK-linear continuous differential forms
to get the Keh-sheaf�i

Keh of differentials. Then we have the following result, connecting the
higher direct image Ri�� yOX of the completed pro-étale structure sheaf with the Keh-sheaf
of differentials:

Theorem 1.2.1 (Keh-proét spectral sequence). Let X be a rigid space over K. Then there
exists an E2 .Leray/ spectral sequence of OX -modules

E
i;j
2 D R

i�X��
j

Keh.�j / H) RiCj �� yOX :

When X is smooth over K, the higher direct image Ri�X��
j

Keh vanishes for j 2 N and
i > 0, with

R0�X��
j

Keh.�j / D �
j

X=K
.�j /

being the continuous differential sheaf of X over K, together with the .�j /-th Tate twist
when X is defined over a discretely valued subfield.

Here we note that in the scheme case, the analogous result holds for the Deligne–Du
Bois complex: for a smooth algebraic variety Y over C, the j -th graded factor �jY of
the filtered Deligne–Du Bois complex is quasi-isomorphic to the j -th Kähler differential
sheaf �j

Y=CŒ�j � (cf. [13, 25]).
For the proof of the theorem, we first introduce the v-topology for the given rigid

spaceX (defined in [31]) in Section 3. Here the v-topology serves as a common extension
of the pro-étale topology and the Keh-topology. With the help of the descent result between
the pro-étale site and the v-site, we reduce the problem to the study of Keh-differentials for
rigid spaces in Theorem 4.0.2. The rest of the proof will then be devoted to the study of Keh-
differentials for smooth rigid spaces, in Section 5. Here we follow the idea by Geisser [15],
showing the vanishing of a cone for the natural map

�iX=K ! R�X��
i
Keh

by comparing Keh and étale cohomologies, with the help of the covering structure in XKeh

studied in Section 2.

Remark 1.2.2. At this moment, we mention that when the rigid spaceX is defined over a
discretely valued subfield ofK, the Keh-proKet spectral sequence in Theorem 1.2.1 is Galois
equivariant by functoriality, and hence degenerates at its E2-page by the result of Tate.
Together with the known finiteness for the p-adic étale cohomology for proper spaces, we
in particular get the proof of Theorem 1.1.3 in the case when X comes from a discretely
valued subfield. For the reader’s convenience, we also point out that this only needs the
first half of the article, namely Sections 2 to 4.1

1Here to recover the Hodge–Tate decomposition for proper smooth rigid spaces as in Theorem
1.2.1 (iii), it suffices to compare it with the known decomposition result for this special case as
in [28, Corollary 1.8]. This implies that under this assumption the cohomology of Keh-differentials
coincides with that of continuous differentials, and in particular does not require results in Section 5.
We thank the referee for pointing this out to the author.
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Using Theorem 1.2.1 we can show the coherence and cohomological boundedness of
R�� yOX in the non-smooth case, in Section 6:

Theorem 1.2.3 (Finiteness). Let X be a rigid space over K. Then the higher direct
images Ri�X��

j

Keh are coherent and vanish unless 0 � i; j � dim.X/.

Next, we study the degeneracy of the Keh-proKet spectral sequence in the general case.
As we saw in Remark 1.2.2, the Hodge–Tate decomposition follows from the Galois
action when X comes from a small subfield. It is then natural to ask if the degener-
acy holds for more general X , or even on the level of the derived category. Our next
main result confirms the splitting of the derived direct image R�� yOX into its cohomology
sheaves in the derived category, under the assumption of X being strongly liftable (see
Definition 7.4.1). This condition is satisfied for example when X is defined over a dis-
cretely valued subfield of K that has perfect residue field (Example 7.4.2), or when X is
proper over K (Proposition 7.4.4).

Theorem 1.2.4. Assume X is a quasi-compact and strongly liftable rigid space over K.
Then there exists a non-canonical quasi-isomorphism

R�� yOX !
M
j

R�X�.�
j

Keh.�j /Œ�j �/:

In particular, the éh-proét spectral sequence

E
i;j
2 D R

i�X��
j

Keh.�j / H) RiCj �� yOX

degenerates at the E2-page.

In particular, when X is smooth, the above decomposition degenerates into the fol-
lowing simpler form:

Corollary 1.2.5. AssumeX is quasi-compact, strongly liftable, and smooth overK. Then
there exists a non-canonical quasi-isomorphism

R�� yOX !

dim.X/M
iD0

�iX=K.�i/Œ�i �:

In fact, the isomorphism is functorial among strong lifts of X ; for the precise state-
ment, we refer the reader to Theorem 7.4.9.

When X is smooth, we prove the theorem above by comparing the analytic cotangent
complex of X over BCdR with the derived direct image R�� yOX , which builds the bridge
between liftability and degeneracy. For the non-smooth setting, we first generalize most of
the previous results to smooth quasi-compact (truncated) simplicial rigid spaces, and then
we use cohomological descent for smooth Keh-hypercovers. The idea is to show that the
above isomorphism for smooth rigid spaces is sufficiently functorial to enhance it to sim-
plicial settings, by constructing those enhanced maps by hand. This is given in Section 7.

At the end of Section 7, we give an application of the degeneracy, on the higher direct
image of Keh-differential forms. By a recent work on the almost purity theorem in [4], we
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can show that the derived direct imageR�� yOX lives in cohomological degrees Œ0;dim.X/�
for any rigid space X over K (Proposition 7.5.2). Moreover, if we assume X is proper
over K, then the degeneracy of the Keh-proét spectral sequence implies the vanishing of
Ri�X��

j

Keh for i C j > dim.X/. Note that vanishing of cohomology sheaves is a local
statement, so we can state the upshot as follows:

Theorem 1.2.6. Let X be a locally compactifiable rigid space over K. Then

Ri�X��
j

Keh D 0 for i C j > dim.X/:

We remark that the theorem gives an improvement on the cohomological boundedness
in Theorem 1.2.3 for X being locally compactifiable.

It is natural to ask if the vanishing above is true for all rigid spaces. Here we make a
stronger conjecture.

Conjecture 1.2.7. Let X be a rigid space over K. Then the éh-proét spectral sequence
degenerates at the E2-page. In particular, Ri�X��

j

Keh D 0 for i C j > dim.X/.

In complex geometry, analogous vanishing results hold for graded pieces of the
Deligne–Du Bois complex of a compact complex variety X over C, as in [26, Theorem
7.29] (the statement is proved by Guillen–Navarro and Aznar–Puerta–Steenbrink inde-
pendently, but it is more known as Kawamata–Viehweg type vanishing). Moreover, with
the help of the rigid GAGA theorem [8, Appendix A1], our result implies the vanishing
of the Deligne–Du Bois complex for proper varieties over C.2 We mention that the proof
here essentially makes use of p-adic Hodge theory, while the proof in [26] uses mixed
Hodge structures. It is thus interesting to ask if we can produce more similar results from
Hodge theory in complex geometry, using tools from p-adic Hodge theory instead.

In Section 8, we provide a comparison between pro-étale cohomology and Keh de Rham
cohomology for proper rigid spaces over a discretely valued subfieldK0, generalizing the
smooth case developed in [28]. The idea is to use the simplicial method and the coho-
mological descent developed in Section 7, together with the Keh-descent of differentials
for smooth rigid spaces (Theorem 4.0.2). Our main result in this section is the following,
which generalizes the smooth case in [28]:

Theorem 1.2.8 ((pro-étale)-Keh de Rham comparison). Let Y be a proper rigid space
over K0. Then there exists a Gal.K=K0/-equivariant filtered quasi-isomorphism

R�.YKeh; �
�

Keh;=K0
/˝K0 BdR ! R�.YK;proKet;BdR/:

2Our vanishing result for Keh-differentials directly implies part (b) of [26, Theorem 7.29]. To
get the global vanishing in part (a), let X be a projective variety of dimension d , L an ample
line bundle, Y the affine cone of X , and Bl.Y / the blowup of Y at the origin, where the latter is
also the A1-bundle over X defined by L�1. We can then apply the distinguished triangle of the
Keh-differential sheaves for the blowup square of Y . Using the projection map from Bl.Y / onto X
together with the vanishing of the Deligne–Du Bois complexes at Y as in part (b), we can get part
(a) via an induction argument starting from the top differential degree d C 1.
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Here the left side above has the tensor product filtration, which is given by the Hodge
filtration of the Keh de Rham complex and the canonical filtration on BdR. On the right
side, the cofficient BdR is the de Rham sheaf for X over the pro-étale site (see [28, Def-
inition 6.1], and Definition 8.0.1) with its natural filtration. As an upshot, we obtain the
degeneracy for the Keh version of the Hodge–de Rham spectral sequence at its E1-page,
under the assumptions on Y as above (Proposition 8.0.8): namely, the following natural
spectral sequence degenerates at the first page:

E
p;q
1 D Hq.YKeh; �

p

Keh;=K0
/ H) HpCq.YKeh; �

�

Keh;=K0
/:

Finally, we deduce the generalized Hodge–Tate spectral sequence and the decomposi-
tion in Section 9, using all of our results about the derived direct imageR�� yOX developed
in this article.

In summary, the article is structured as follows. In Section 2, we introduce the Keh-
topology for rigid spaces. Here we prove the local smoothness of this topology, and
discuss in detail the topological structure of Keh-coverings. Then in Section 3, we introduce
the pro-étale topology and v-topology, and discuss the necessary comparison theorems.
Next, we connect those two topologies in Section 4. Here we reduce the theorem on the Keh-
proét spectral sequence to the Keh-descent of differentials. Section 5 is devoted to the proof
of the Keh-descent, with the help of which we get the comparison between Keh-cohomology
and singular cohomology when the rigid space comes from an algebraic variety. In Sec-
tion 6, we obtain coherence and cohomological boundedness using Keh-hypercovers. In
Section 7, we study the degeneracy phenomenon of the derived direct image R�� yOX ,
using the cotangent complex and the simplicial method. As an application, we improve the
cohomological boundedness of R���

j

Keh for locally compactifiable spaces. In Section 8,
we give a comparison between Keh de Rham cohomology and pro-étale cohomology for
proper rigid spaces over a discretely valued field. Finally, in Section 9, we explain the
proof of the Hodge–Tate decomposition.

As in the theory of perfectoid spaces, we use the language of adic spaces throughout
the article. We refer the reader to Huber’s book [22] for basic results about adic spaces.

2. Éh-topology

In this section, we introduce the Keh-topology and study its local structure.

2.1. Rigid spaces

We first give a quick review of rigid spaces, following [22].
LetK be a complete non-archimedean extension of Qp . Denote by RigK the category

of rigid spaces over Spa.K/; its objects are adic spaces that are locally of finite type over
Spa.K;OK/. Any X 2 RigK can be covered by affinoid open subspaces, each of the form
Spa.A; AC/ with A being a quotient of the convergent power series ring KhT1; : : : ; Tni
for some n. Here AC is an integrally closed open subring of A that is of topologically
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finite type over OK , and A is complete with respect to the p-adic topology on K. By
the finite type condition it can be shown that any such AC is equal to Aı, the subring of
all power-bounded elements in A [21, Lemma 4.4]. To simplify the notation we abbre-
viate Spa.A; Aı/ as Spa.A/ in this setting. Unless otherwise mentioned, in the following
discussion we always assume that X is a rigid space over Spa.K/.

For each adic space X , we can define two presheaves: OX and OCX , such that when
the affinoid space U D Spa.B;BC/ � X is open and B is complete, we have

OX .U / D B; OCX .U / D B
C:

It is known that for any X 2 RigK , both OX and OCX are sheaves. We could also define
coherent sheaves over rigid spaces, so that locally the category Coh.Spa.B// of coherent
sheaves over Spa.B/ is equivalent to the category Modfp.B/ of finitely presented B-
modules [24, Theorem 2.3.3]. An important example of coherent sheaves are continuous
differentials �i

X=Y
for a map X ! Y of rigid spaces, which is a coherent sheaf of OX -

modules over X [22, §1.6].3 Locally for a map A ! B of affinoid algebras, it could
be defined by taking the p-adic completion and inverting p at the algebraic differential
module of B0 over A0, where A0 ! B0 is a map of rings of definition over OK that are
topologically of finite type.

Recall that a coherent ideal is defined as a subsheaf I of ideals in OX that is locally
of finite presentation over OX . It is known that when X D Spa.A/ 2 RigK , there is a
bijection between coherent ideals I of X and ideals of A, given by

I 7! I.X/; zI 7!I:

Here zI is the sheaf of OX -modules associated to

U 7! I ˝A OX .U /:

For a coherent ideal I, we can define an analytic closed4 subset of X by taking

Z WD ¹x 2 X j OX;x ¤ IX;xº D ¹x 2 X j jf .x/j D 0;8f 2 Iº:

The subsetZ has a canonical adic space structure such that whenX D Spa.A/ and ID zI ,
we have Z D Spa.A=I; .A=I /ı/ DW V.I /.

2.2. Blowups

Before we introduce the Keh-topology on RigK , we first recall the construction of blowup
in rigid spaces, following [8, §4.1].

Let X 2 RigK be a rigid space, I � OX be a coherent sheaf, and Z D V.I/ be the
analytic closed subset defined by I as in §2.1. Following Conrad [8, §2.3, §4.1], we define
the blowup of X along Z as follows:

3To simplify notations, we always use �i to denote the sheaves of continuous i -differentials in
our article, instead of algebraic ones. We will explicitly mention it when the latter comes up.

4It is also called a Zariski closed subset in the literature. Here we follow [5].
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Definition 2.2.1. The blowup BlZ.X/ of X along Z is the X -rigid space

Projan
�M
n2N

In
�
;

which is the relatively analytified Proj of the graded algebra
L
n2N In over the rigid space

X (see [8, §2.3]). It is called a smooth blowup if the blowup center Z is a smooth rigid
space over K.

Remark 2.2.2. We warn the reader that our definition of a smooth blowup is different
from some existing ones, where both X and Z are required to be smooth.

When X D Spa.A/ is affinoid, the blowup of a rigid space is in fact the “pullback” of
the schematic blowup BlI .Spec.A// of Spec.A/ at the ideal I along the map Spa.A/!
Spec.A/ of locally ringed spaces. More precisely, consider the following natural diagram
of locally ringed spaces:

BlV.I/.Spa.A// //

��

BlI .Spec.A//

��

Spa.A/ // Spec.A/

Then from the universal property of the relative analytification functor [8, Theorem 2.2.5,
Lemma 2.2.3], we have: for a given rigid space Y , there exists a functorial bijection
between the collection of morphisms h W Y !BlV.I/.Spa.A// of rigid spaces over Spa.A/
and the collection of commutative diagrams

Y
f

//

g

��

BlI .Spec.A//

��

Spa.A/ // Spec.A/

where f is a map of locally ringed spaces and g is a morphism of rigid spaces.
As in scheme theory, BlZ.X/ has the following universal property (see [8, after Def-

inition 4.1.1]): for any f W Y ! X in RigK such that the pullback f �I is invertible, the
map f factors uniquely through BlZ.X/! X . Consequently, the blowup map is an iso-
morphism when restricted to the open complement X nZ. Moreover, it can be shown by
the universal property that rigid blowup is compatible with flat base change and analytifi-
cation of schematic blowup [8, Theorem 2.3.8]. More precisely, for a flat map g W Y ! X

of rigid spaces (i.e. OY;y is flat over OX;x for any y 2 Y over x 2 X ), we have

Blg�I.Y / D BlZ.X/ �X Y:

When X D X an
0 is an analytification of a scheme X0 of finite type over K, with Z being

defined by an ideal sheaf I0 of OX0 , we have

BlZ.X/ D BlI0.X0/
an:
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We also note that the blowup map BlZ.X/ ! X is proper. This is because by the
coherence of I, locally I can be written as a quotient of a finite free module, which
(locally) produces a closed immersion of BlZ.X/ into a projective space over X , thus
is proper over X . Moreover, if both the center Z and the ambient space X are smooth
over K, then the blowup itself BlZ.X/ is also smooth.

2.3. Universal homeomorphisms

Another type of morphism that will be used later is universal homeomorphisms.

Definition 2.3.1. Let f W X 0 ! X is a morphism of rigid spaces over K. It is called
a universal homeomorphism if for any morphism g W Y ! X of rigid spaces, the base
change X 0 �X Y ! Y is a homeomorphism.

The following proposition gives a characterization of universal homeomorphisms of
rigid spaces:

Proposition 2.3.2. Let f W X ! Y be a morphism of rigid spaces over Spa.K/. Then it
is a universal homeomorphism if and only if the following two conditions hold:

(i) f is a finite morphism of rigid spaces.

(ii) For any pair of affinoid open subsets V D Spa.A/� Y and U D f �1.V /D Spa.B/,
the corresponding map of schemes

zf W Spec.B/! Spec.A/

is a universal homeomorphism of schemes.

Proof. Assume f is a universal homeomorphism. Let x 2 X be a rigid point. Since the
map f is quasi-finite, by [22, Proposition 1.5.4] there exist open neighborhoods U � X
of x and V of f .x/ such that f .U / � V and f W U ! V is finite. We may assume both
U and V are connected. On the one hand, the finiteness of f W U ! V implies the image
of U is closed. On the other hand, as f is a homeomorphism, f .U / is open in Y , and
thus open in V . Combining these, we see V is exactly equal to f .U / with U D f �1.V /.
So by the density of the rigid points x 2 X , there exists an open covering Vi of Y such
that f �1.Vi / is finite over Vi . Hence we get the finiteness of f .

To check the universal homeomorphism for the corresponding map of affine schemes,
we recall from the Stack Project [33, Tag 04DC] that zf W Spec.B/! Spec.A/ is a uni-
versal homeomorphism of schemes if and only if it is integral, universally injective and
surjective. Since both A and B are K-algebras, where K is an extension over Qp , it suf-
fices to show the following claim.

Lemma 2.3.3. Let f W Spa.B/ ! Spa.A/ be a universal homeomorphism of affinoid
rigid spaces. Then the induced map zf W Spec.B/! Spec.A/ of affine schemes is integral,
bijective, and induces isomorphisms on their residue fields.
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Proof of Lemma. As we have just shown above, the map A! B of affinoid algebras is
finite, thus zf is a finite (hence integral) map of schemes.

For the rest of the claim, we first consider its restriction to closed points. Let zy be a
closed point of the scheme Spec.A/, whose residue field �.zy/ is a finite extension of the
p-adic fieldK. The defining ideal of zy in the scheme Spec.A/ induces a unique rigid point
y of the rigid space Y D Spa.A/, whose residue field is equal to �.zy/. By assumption, the
base change of the universal homeomorphism f along the closed immersion ¹yº ! Y

induces a universal homeomorphism Xy WD Spa.�.zy// �Spa.A/ Spa.B/ ! Spa.�.zy//,
whose natural map to X D Spa.B/ is a closed immersion. This implies that the reduced
subspace ofXy is a rigid point in Spa.B/, and the corresponding closed subscheme inside
Spec.B/ is supported at a unique closed point. Here we also notice that the residue field
of Xy is a finite separable extension of �.zy/. Moreover, applying the universal homeo-
morphism at the base change Xy �Spa.�.zy// Xy ! Xy , we see that the residue field of
Xy is isomorphic to k.zy/. As a consequence, zf induces a bijection and isomorphisms of
residue fields when restricted to their closed points.

To finish the proof, it suffices to extend the claim to non-closed points. The bijectivity
of zf W Spec.B/! Spec.A/ follows from the density of closed points. To see this, we may
assume Spec.A/ is irreducible. Then as zf is a finite morphism whose image contains all
closed points, we get the surjectivity of zf . For the injectivity, by the homeomorphism
between Spa.B/ and Spa.A/, the scheme Spec.B/ admits a unique irreducible component
(hence a unique generic point), and has the same dimension as Spec.A/. Finally, as the
induced map of zf on the generic fields is finite and separable, its isomorphism follows
from the bijection of points.

Conversely, assume f satisfies the two conditions in the statement of Proposition
2.3.2. We first notice that both are invariant under any base change of rigid spaces. We
let V D Spa.A/ and f �1.V / D Spa.B/ be two open affinoid open subsets of Y and X
respectively. Note that since f is finite, for a morphism Spa.C /! Spa.A/ of affinoid
rigid spaces, the base change Spa.C /�Spa.A/ Spa.B/ is exactly Spa.B ˝A C/ [22, 1.4.2].
In particular, Spa.C /�Spa.A/ Spa.B/! Spa.C / is a finite morphism of rigid spaces, with
the underlying map of schemes being a universal homeomorphism. As a consequence,
both conditions (i) and (ii) are base change invariant, and to show f W X ! Y is a univer-
sal homeomorphism of rigid spaces, it suffices to show that f itself is a homeomorphism.
Moreover, by finiteness, as f is both closed and continuous, it remains to show the bijec-
tivity of f as a map of rigid spaces.

Now we pick any point y 2 Y , and consider the completed residue field with its val-
uation ring .k.y/; k.y/C/ of y. We take an open affinoid neighborhood V D Spa.A/
of y with f �1.V / D Spa.B/. Then the base change of the map Spec.B/! Spec.A/ of
schemes gives

Spec.B ˝A k.y//! Spec.k.y//;

which is a universal homeomorphism by assumption. Here the target has exactly one
point, and by finiteness we have B ˝A k.y/D B y̋A k.y/. So by assumption the reduced
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subscheme Spec.B y̋ k.y//red is equal to k.y/ (since they are of characteristic zero). We
then note that the adic spectrum

Spa.B y̋A k.y/; Bı ˝Aı k.y/C/

is exactly the preimage of y in the rigid space X along the morphism f . Notice that the
integral closure of k.y/C in k.y/ is contained in the quotient ring of Bı ˝Aı k.y/C by
its nilpotent elements, which has to be k.y/C itself (as the integral closure is contained in
the field k.y/ and is finite over k.y/C). In this way, the preimage f �1.y/ has exactly one
point x whose residue field has valuation equal to .k.y/; k.y/C/. Hence f is bijective,
and thus a homeomorphism.

Finally, when the target is assumed to be a smooth rigid space, there is no non-trivial
universal homeomorphism:

Proposition 2.3.4. LetX be a smooth rigid space, andX 0 be a reduced rigid space. Then
any universal homeomorphism f W X 0 ! X is an isomorphism.

Proof. By Proposition 2.3.2, every universal homeomorphism f WX 0!X can be covered
by morphisms of affinoid spaces Spa.B/! Spa.A/, where the underlying morphism of
schemes Spec.B/! Spec.A/ is a universal homeomorphism. So it suffices to show that
when X D Spa.A/ is a smooth affinoid rigid space over Spa.K/, A is a seminormal ring
(so any universal homeomorphism Spec.B/ ! Spec.A/ from a reduced scheme is an
isomorphism). But by the smoothness ofX , A is a regular ring (by [22, Corollary 1.6.10],
locally X is étale over the adic spectrum of the Tate algebrasKhTi i, which is regular). So
A is normal, and thus seminormal.

2.4. Éh-topology and its structure

Now we can introduce the Keh-topology on RigK .

Definition 2.4.1. The éh-topology on the category RigK is the Grothendieck topology
such that the covering families are generated by the following types of morphisms:

� étale coverings;

� universal homeomorphisms;

� coverings associated to blowups: BlZ.X/ q Z ! X , where Z is a closed analytic
subset of X .

In the sense of Grothendieck pretopology in [36, Exposé II.1], this means that a family
¹X˛!Xº of maps is in the set Cov.X/ if ¹X˛!Xº can be refined by finite compositions
of the three classes of maps above.

We denote by RigK;Keh the big Keh-site on RigK given by the Keh-topology. For a given
rigid space X over K, we define XKeh as the localization of RigK;Keh on X (in the sense
of [33, Tag 00XZ], i.e. it is defined on the category of K-rigid spaces over X with the
Keh-topology.
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Remark 2.4.2. (1) We notice that a covering associated to a blowup BlZ.X/qZ ! X

is always surjective: by the discussion in §2.2, BlZ.X/! X is an isomorphism when
restricted to X nZ.

(2) Among the three classes of maps above, a covering associated to a blowup is not
base change invariant in general. But note that for any morphism Y ! X , the pullback of
the blowup X 0 D BlZ.X/! X along Y ! X can be refined by the blowup

BlY�XZ.Y /q Y �X Z

**

%%

Y �X BlZ.X/q Y �X Z //

��

BlZ.X/qZ

��

Y // X

We call BlY�XZ.Y / q Y �X Z the canonical refinement for the base change of the
blowup.

(3) Though denoted as XKeh, this site is still a big site. As an extreme case, when
X D Spa.K/, the site XKeh is identical with RigK;Keh.

Remark 2.4.3. Here we note that our definition of Keh-topology is different from h-topol-
ogy. One of the main differences is that the Keh-topology excludes ramified coverings.

For example, consider the n-fold cover map f WB1!B1 of the unit disc, which sends
the coordinate T to T n. Then f is a finite surjective map that is relatively smooth at all
rigid points except T D 0, where it is ramified. If f is an Keh-covering, then by Theorem
2.4.11 which we will prove later, f can be refined by a finite composition of coverings
associated to smooth blowups and étale coverings. Notice that étale coverings are unram-
ified maps that preserve smoothness and dimensions. Moreover, smooth blowups of a
one-dimensional smooth rigid space are isomorphic to that space. In this way, such a
finite composition will not produce a covering that is ramified at any rigid points, and we
get a contradiction.

Example 2.4.4. Let X be a rigid space. Let X 0 D Xred be the reduced subspace of X .
Then X 0 ! X is a universal homeomorphism, which is then an Keh-covering. So in the
Keh-topology, every space is locally reduced.

Proposition 2.4.5. Let X be a quasi-compact quasi-separated rigid space over K.
Assume Xi for i D 1; : : : ; n are irreducible components of X .see [6]/. Then the map

na
iD1

Xi ! X

is an éh-covering.

Proof. We first claim that the canonical map � W BlX1.X/ ! X factors throughS
i>1Xi ! X ; in other words, the image of � is disjoint from X1 n

S
i>1Xi .
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Let x 2 X1 n
S
i>1Xi . Take any open neighborhood U � X1 n

S
i>1Xi of x. Then

the base change of � along the open immersion U ! X becomes

BlU T
X1.U /! U;

by the flatness of U ! X and the discussion in §2.2. But by our choice of U , the inter-
section U \X1 is exactly the whole space U , which by definition leads to the emptiness
of BlU\X1.U /. Thus the intersection of BlX1.X/ with p�1.U / is empty, and the point x
is not contained in the image of � .

Finally, note that the claim leads to the commutative diagram
BlX1.X/qX1 //

((

X

.
S
i>1Xi /qX1

88

which shows that the map .
S
i>1Xi /qX1!X is also an Keh-covering. Thus by induction

on the number of components n, we get the result.

Here we define a specific type of Keh-covering.

Definition 2.4.6. An éh-covering f W X 0 ! X of rigid spaces is said to be a proper éh-
covering if f is proper, and there exists a nowhere dense analytic closed subsetZred�Xred

such that
f jf �1.XnZ/red

W f �1.X nZ/red ! Xred nZred

is an isomorphism.

As an example, a covering associated to a blowup with the center being nowhere dense
is a proper Keh-covering.

The idea of allowing blowups in the definition of the Keh site is to make all rigid spaces
Keh-locally smooth. To make this explicit, we recall Temkin’s non-embedded disingular-
ization:

Theorem 2.4.7 ([34, Theorems 1.2.1, 5.2.2]). Let X be a generically reduced, quasi-
compact rigid space over Spa.K/. Then there exists a composition of finitely many smooth
blowups Xn ! Xn�1 ! � � � ! X0 D X such that Xn is smooth.

Corollary 2.4.8 (Local smoothness). For any quasi-compact rigid space X , there exists
a proper Keh-covering f W X 0 ! Xred such that X 0 is a smooth rigid space over Spa.K/.
Moreover, f is a composition of finitely many coverings associated to smooth blowups.

Proof. By Temkin’s result, we may let Xn ! � � � ! X0 D Xred be the blowups in that
theorem such that the center of each pi W Xi ! Xi�1 is a smooth analytic subset Zi�1
of Xi�1. Then by taking the composition of the covering associated to the blowup associ-
ated to each pi , the map

X 0 WD Xn q
�n�1G
iD0

Zi

�
! Xred

is a proper Keh-covering such that X 0 is smooth. So we get the result.
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Finally, we give a useful result about the structure of Keh-coverings. In order to do this,
we need the embedded strong desingularization by Temkin:

Theorem 2.4.9 (Embedded desingularization, Temkin [35, Theorems 1.1.9, 1.1.13]). Let
X be a quasi-compact smooth rigid space over Spa.K/, andZ �X be an analytic closed
subspace. Then there exists a finite sequence X 0 D Xn ! � � � ! X0 D X of smooth
blowups such that the strict transform of Z is also smooth.

Corollary 2.4.10. Any blowup f W Y ! X over a smooth quasi-compact rigid space X
can be refined by a composition of finitely many smooth blowups.

Proof. Assume Y is given by BlZ.X/, where Z � X is a closed analytic subspace. Then
by embedded desingularization, we can find g W X 0 ! X to be a composition of finitely
many smooth blowups such that the strict transform Z0 of Z is smooth over K. Here the
total transform of Z is g�1.Z/ D Z0 [ EZ , where EZ is a divisor. Next we could blow
upZ0 inX 0 and get h W X 00! X 0. Note that h itself is a smooth blowup. In this way, h ı g
is a composition of finitely many smooth blowups that factorizes through f W Y ! X , by
the universal property of f and the observation that the preimage of Z along h ı g is the
divisor h�1.Z0/ [ h�1.EZ/.

Theorem 2.4.11. LetX 2 RigK be a quasi-compact smooth rigid space and f WX 0!X

be an éh-covering. Then f can be refined by a composition of finitely many étale coverings
and coverings associated to smooth blowups over X .

Proof. By the definition of the Keh-topology, a given Keh-covering f can be refined by a
finite composition of étale coverings, universal homeomorphisms, and coverings associ-
ated to blowups. So up to refinement we may write f as f WX 0DXn!Xn�1!� � �!X0
D X , where each transition map fi W Xi ! Xi�1 is of one of the above three types.

Now we produce a refinement we want, by performing the following operations on f
starting from i D 1:

� If X1 ! X0 is an étale morphism, then we are done for i D 1.

� If X1! X0 is a universal homeomorphism, then by Proposition 2.3.4 we may take the
reduced subspace of X1, which is isomorphic to X0 and thus is smooth.

� If X1 ! X0 is a covering associated to a blowup, then by Proposition 2.4.10, the
associated blowup can be refined by a finite composition of smooth blowups. We let
X 01 ! X1 be the disjoint union of that refinement with all of the centers. Then we
take the base change of Xn ! � � � ! X1 along X 01 ! X1 and get a new covering
Xn �X1 X

0
1 ! � � � ! X 01 ! X0 D X , i.e.

Xn �X1 X
0
1

// � � � // X 01

##��

Xn // � � � // X1 // X0 D X
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Furthermore, starting at j D 2, we do the following operation and increase j by 1
each time: If Xj ! Xj�1 is a covering associated to a blowup, we refine the map
Xj �X1 X

0
1!Xj�1 �X1 X

0
1 by its canonical refinementX 0j !Xj�1 �X

0
1 (see Remark

2.4.2), and take the base change of the chain Xn �X1 X
0
1 ! � � � ! Xj �X1 X

0
1 along

X 0j ! Xj �X1 X
0
1.5

After the discussion of the above three possibilities, Xn! � � � ! X0 is refined by a finite
composition X 0n ! � � � ! X 01 ! X0 such that

� X 01! X0 is a composition of finitely many étale coverings and coverings associated to
smooth blowups;

� X 0n! X 01 is a composition of n� 1 Keh-coverings and coverings associated to blowups,
and universal homeomorphisms.

In this way, we could do the above operation forX 0i ! X 0i�1 and i D 2; : : : ; each time get
a new chain of coverings X 00n ! � � � ! X0 such that X 00i ! X0 is a finite composition of
smooth blowups and étale coverings, and X 00n ! X 00i is a composition of n � i coverings
of three generating classes. Hence after finitely many operations, we are done.

Corollary 2.4.12. Any éh-covering of a quasi-compact rigid space X can be refined by a
composition

X2 ! X1 ! X0 D X;

where X1 D Xred, the map X2! X1 is a finite composition of étale coverings and cover-
ings associated to smooth blowups, and X2 is smooth over K.

Proof. Let X 0 ! X be a given Keh-covering. By Example 2.4.4, X1 WD Xred ! X0 is
an Keh-covering. And by the local smoothness of the Keh-topology (Corollary 2.4.8), there
exists a composition of finitely many coverings associated to smooth blowups Y1 ! X1
such that Y1 is smooth. So the base change of X 0 �X X1 ! X1 along Y1 ! X1 becomes
an Keh-covering whose target is smooth and quasi-compact. Hence by Theorem 2.4.11, we
could refine X 0 � Y1 ! Y1 by X2 ! Y1, where the latter is a finite composition of étale
coverings and coverings associated to smooth blowups. Finally, notice that an étale map or
a smooth blowup will not change the smoothness. Hence the compositionX2!X1!X0
satisfies the requirement.

3. Pro-étale topology and v-topology

In this section, we recall the pro-étale topology and the v-topology over a given rigid
space, in order to build a bridge between the pro-étale topology and the Keh-topology. We
mostly follow Scholze’s foundational work [28, 31], together with the Berkeley lecture
notes [32] by Scholze and Weinstein.

5The covering associated to a blowup is not preserved under base change, thus we need to adjust
all of the maps in Xn �X1 X

0
1 ! � � � ! X 01 so that they will then become exactly those three types

of morphisms.
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3.1. Small v-sheaves

Let Perfd be the category of perfectoid spaces. They are adic spaces that have an open
affinoid covering ¹Spa.Ai ; ACi /; iº such that each Ai is a perfectoid algebra. Since many
of our constructions are large, we need to avoid set-theoretical issues. Following [31, §4],
we fix an uncountable cardinality � with some conditions, and only consider those per-
fectoid spaces, morphisms, and algebras that are “�-small”. We refer to Scholze’s paper
for details, and will follow this convention throughout the section.

We first recall the v-topology defined on the category Perfd.

Definition 3.1.1 ([31, Definition 8.1]). The big v-site Perfdv is the Grothendieck topol-
ogy on the category Perfd for which a collection ¹fi j Xi ! X; i 2 I º of morphisms is a
covering family if for each quasi-compact open subset U � X , there exists a finite subset
J � I and quasi-compact open Vi � Xi such that jU j D

S
i2J f .jVi j/:

Here the index category I is assumed to be �-small.

It is known that the v-site Perfdv is subcanonical; namely the presheaf represented
by any X 2 Perfd is a v-sheaf. Moreover, both integral and rational completed structure
sheaves yOC W X 7! yOCX .X/ and yO W X 7! yOX .X/ are v-sheaves on Perfd [31, Corol-
lary 8.6, Theorem 8.7].

We then introduce a special class of v-sheaves that admits a geometric structure,
generalizing perfectoid spaces. Consider the subcategory Perf of Perfd consisting of per-
fectoid spaces of characteristic p. We can equip Perf with the pro-étale topology and the
v-topology to get two sites PerfproKet and Perfv respectively.

Definition 3.1.2 ([31, Definition 12.1]). A small v-sheaf is a sheaf Y on Perfv such that
there is a surjective map X ! Y of v-sheaves, where X is a representable sheaf of some
�-small perfectoid space in characteristic p.

By the definition and the subcanonicality of the v-topology, any perfectoid space X
in characteristic p produces a small v-sheaf.

Here is a non-trivial example.

Example 3.1.3 ([32, §9.4]). Let K be a p-adic extension of Qp , i.e., K is complete with
respect to a non-archimedean valuation extending that of Qp . Then we can produce a
presheaf Spd.K/ on Perf such that for each Y 2 Perf, we take

Spd.K/.Y / WD ¹isomorphism classes of pairs .Y ]; � W .Y ]/[ ! Y /º;

where Y ] is a perfectoid space (of characteristic zero) overK, and � is an isomorphism of
perfectoid spaces identifying Y ] as an untilt of Y . It can be shown that Spd.K/ is in fact
a small v-sheaf.

By the tilting correspondence, it can be shown that there is an equivalence between
the category PerfdK of perfectoid spaces overK, and the category of perfectoid spaces Y
in characteristic p with a structure morphism Y ! Spd.K/ [32, Theorem 9.4.4].



H. Guo 1572

One of the main reasons we introduce small v-sheaves is that this brings both per-
fectoid spaces and rigid spaces into a single framework. More precisely, we have the
following fact:

Proposition 3.1.4 ([31, Definition 15.5], [32, Proposition 10.2.3]). Let K be a p-adic
extension of Qp as in Example 3.1.3. There is a functor

¹analytic adic spaces over Spa.K/º ! ¹small v-sheaves over Spd.K/º;

X 7! X˘;

such that whenX is a perfectoid space over Spa.K/, the small v-sheafX˘ coincides with
the representable sheaf for the tilt X [.

Moreover, the restriction of this functor to the subcategory of seminormal rigid spaces
gives a fully faithful embedding

¹seminormal rigid spaces over Spa.K/º ! ¹small v-sheaves over Spd.K/º:

Here we remark that every perfectoid space is seminormal [24, Theorem 3.7.4].
We can also define the “topological structure onX˘”: in [31, Definition 10.1], Scholze

defines the concept of being open, étale and finite étale for a morphism of pro-étale
sheaves over Perfd. In particular, for each small v-sheaf X˘ coming from an adic space,
we can define its small étale site X˘

Ket . Those morphisms between small v-sheaves are
compatible with maps of adic spaces, and we have

Proposition 3.1.5 ([31, Lemma 15.6]). For eachX 2 RigK , the functor Y 7! Y ˘ induces
an equivalence of small étale sites

XKet Š X
˘

Ket ;

where the site on the left is the small étale site of the rigid space X defined in [22].

This generalizes the tilting correspondence of perfectoid spaces between characteristic
zero and characteristic p.

3.2. Pro-étale and v-topoi over X

In this subsection, we recall the small pro-étale site and the v-site associated to a given
rigid space X 2 RigK , for K being a p-adic field. Our goal is to produce a topology
over X that is large enough to include both the pro-étale topology and the Keh-topology,
and study the relation between their cohomologies.

We start by recalling basic concepts around the topology of small v-sheaves.
First recall that a perfectoid space X is called quasi-compact if every open covering

admits a finite refinement, and quasi-separated if for any pair of quasi-compact perfectoid
spaces Y;Z over X , the fiber product Y �X Z is also quasi-compact.

The concept of quasi-compactness and quasi-separatedness can be generalized to pro-
étale sheaves and small v-sheaves. A small v-sheaf F is called quasi-compact if for any
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family of morphisms fi W Xi ! F ; i 2 I , such that
`
i2I Xi ! F is surjective and

I is �-small, there is a finite subcollection J � I such that j̀2J Xj ! F is surjective.
Here Xi are (pro-étale sheaves that are representable by) affinoid perfectoid spaces. The
quasi-separatedness for small v-sheaves is defined as for perfectoid spaces.

Now we are able to define two topoi over a given rigid space X .

Definition 3.2.1. Let X 2 RigK be a rigid space over the p-adic field K.

(i) The small pro-étale site over X , denoted by XproKet, is the Grothendieck topology
on the full subcategory of pro-objects in XKet that are pro-étale over X , in the sense
of [28, §3]. Its covering families are defined as those jointly surjective pro-étale mor-
phisms ¹fi W Yi! Y; i 2 I º such that for any quasi-compact open immersionU ! Y ,
there exists a finite subset J � I and quasi-compact open Vj � Yj for j 2 J , satisfy-
ing jU j D

S
j2J fj .jVj j/. We call the pro-étale topos over X , denoted by Sh.XproKet/.

(ii) The v-site over X is defined as the site PerfvjX˘ of perfectoid spaces in characteristic
p over X˘, with the covering structure given by the v-topology. Namely, the site
is defined on the category of pairs .Y; f W Y ! X˘/, where Y is (the representable
sheaf of) a perfectoid space in characteristic p, and f W Y !X˘ is a map of v-sheaves
over Perfv . A collection ¹.Yi ; Yi ! X˘/! .Y; Y ! X˘/º of maps is a covering in
this site if ¹Yi ! Y º is a covering in the v-site. We call Sh.PerfvjX˘/ the v-topos
over X .

Remark 3.2.2. The v-site PerfvjX˘ above is constructed as the localization (restriction)
of the v-site Perfv at the sheaf X˘. The general discussion of the localization of a site at a
sheaf, which generalizes the localization of a site at an object, can be found for example
in [33, Tag 04GY]. Here we note that by [33, Tag 0791], the v-topos overX is isomorphic
to the localization topos Sh.Perfv/jX˘ of the v-topos Sh.Perfv/ at the small v-sheaf X˘.

Remark 3.2.3. Given a rigid space X , we can also form the characteristic zero ana-
logue of the v-site PerfdvjX on the category of perfectoid spaces over X (cf. Definition
3.2.1 (ii)). The tilting correspondence and the definition of X˘ induce a natural equiv-
alence between the v-sites PerfvjX˘ and PerfdvjX , sending an affinoid perfectoid space
Z ! X˘ to the associated tilt Z] ! X .

Let X 2 RigK be a rigid space. Then there is a natural morphism of topoi � D
.��1;��/ W Sh.PerfvjX˘/! Sh.XproKet/. The inverse functor ��1 is computed via the func-
tor .�/˘ as in Proposition 3.1.4. More precisely, when Y 2 XproKet is affinoid perfectoid
with associated complete adic space is OY , the inverse ��1.Y / is the small v-sheaf OY ˘

over X˘, representable by the tilt OY [. As affinoid perfectoid objects form a basis in XproKet

[28, Proposition 4.8], this allows us to extend ��1 to the whole category XproKet. In par-
ticular, by using the Galois descent as in [31, Proposition 15.4], for a rigid space X 0

that is finite étale over X , we have ��1.X 0/ D X 0˘. Here we remark that by loc. cit. the
functor ��1 realizes a pro-étale presentation into an actual limit of v-sheaves: when Y is
affinoid perfectoid with a pro-étale presentation ¹Yiº over X , we have Y ˘ Š lim

 �
Y ˘i .
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When ¹Yi ! Y º is a pro-étale covering of affinoid perfectoid objects over X , the
inverse image ¹ OY ˘i ! OY

˘º forms a v-covering of representable v-sheaves over X˘. For a
general pro-étale sheaf F over XproKet, the functor ��1 sends F to the v-sheaf associated
to the presheaf

Z 7! lim
�!

Z! OW ˘ in Sh.Perfv jX˘ /;
affinoid perfectoidW 2XproKet

F .W /:

Here we note that when Z is equal to the small v-sheaf OY ˘ for OY a perfectoid space
underlying a pro-étale object Y over X , the above direct limit is F .Y /. On the other
hand, the functor �� is the direct image functor, given by

��G .Y / D G . OY [/ for affinoid perfectoid Y 2 XproKet:

We define the untilted completed structure sheaves yOv and yOCv on PerfvjX˘ by send-
ing Z ! X˘ to

yOv.Z/ WD yO.Z
]/; yOCv .Z/ WD

yOC.Z]/;

where Z] is the untilt of Z given by the map Z ! X˘ ! Spd.K/, as in Proposition
3.1.4. By [31, Theorem 8.7], both are sheaves on PerfvjX˘ . Here we notice that under the
(tilting) equivalence in Remark 3.2.3, the sheaves yOv and yOCv are sent to the completed
structure sheaves yO and yOC over PerfdvjX in characteristic zero.

Furthermore, we have the following comparison result on completed pro-étale struc-
ture sheaves.

Proposition 3.2.4 ((pro-étale)-v comparison). The direct image map induces the follow-
ing canonical isomorphism of sheaves on XproKet:

�� yO
C
v !

yOCX :

Moreover, for i > 0 the sheaf Ri�� yOCv is almost zero.
By inverting p, similar results hold for �� yOv andRi�� yOv . In particular, the pro-étale

cohomology of yOX satisfies v-hyperdescent.

Here we follow the convention of the almost mathematics as in [31, §3].

Proof. We first recall that for any quasi-compact analytic adic space Y over K, there
exists a pro-étale covering of Y by perfectoid spaces [31, Lemma 15.3]. In particular,
the pro-étale site XproKet admits a basis given by affinoid perfectoid spaces that are pro-
étale over X . So it suffices to check the above isomorphism and vanishing condition for
Y 2 XproKet that are affinoid perfectoid.

The direct image of the untilted integral complete structure sheaf is the pro-étale sheaf
associated to

Y 7! �.Y; �� yO
C
v / D �.

OY ˘; yOCv /;
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where Y 2 XproKet is affinoid perfectoid. But note that since OY ˘ Š OY [ is the representable
sheaf of an affinoid perfectoid space over X˘, by construction of yOCv we have

�. OY ˘; yOCv / D �..
OY [/]; yOC/:

Here OY is the perfectoid space associated to the object Y 2 XproKet, and OY [ is the tilt of OY .
So by the isomorphism of perfectoid spaces . OY [/] Š OY , we see that �� yOCv is the pro-étale
sheaf associated to the presheaf

Y 7! �.Y; yOC/;

which is exactly the completed pro-étale structure sheaf overXproKet. Thus we get the above
equality.

For the higher direct image, we first note that Ri�� yOCv is the pro-étale sheaf on XproKet

associated to the presheaf
Y 7! Hiv. OY

[; yOCv /

for Y being affinoid perfectoid in XproKet. By the construction of yOCv , the tilting corre-
spondence PerfvjX˘ Š PerfdvjX in Remark 3.2.3 identifies the sheaf yOCv over PerfvjX˘
with yOC over PerfdvjX . In particular, we have the natural isomorphism of cohomology

Hiv. OY
[; yOCv / Š Hiv.. OY

[/]; yOC/ Š Hiv. OY ; yO
C/;

which is almost zero by [31, Proposition 8.8] and the assumption on Y . So we are done.

4. Éh-proét spectral sequence

In this section, we connect all the topologies we have defined, and consider the Keh-proét
spectral sequence.

Let X be a rigid space over K, for K a complete and algebraically closed p-adic
field. We denote by XKeh the localization of the big Keh-site RigK;Keh at X . Then the functor
Y 7! Y ˘ induces a morphism of topoi

˛ W Sh.PerfvjX˘/! Sh.XKeh/;

where ˛�1Y D Y ˘ for Y ! X being the representable sheaf of an adic space. We let XKet

be the small étale site of X , consisting of rigid spaces that are étale over X .
Consider the following commutative diagram of topoi over X :

Sh.XproKet/
� // Sh.XKet/

Sh.PerfvjX˘/

�

OO

˛ // Sh.XKeh/

�X

OO
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Here we note that the diagram is functorial with respect to X . In particular, when X D
X0 �K0 K is a pullback of X0 along a non-archimedean field extension K=K0, the dia-
gram is equipped with a continuous action of Aut.K=K0/.

Now by the proét-v comparison (Proposition 3.2.4), we have

R�� yOX D R��R�� yOv D R��R˛� yOv:

This induces a Leray spectral sequence

E
i;j
2 D R

i��R
j˛� yOv H) RiCj �� yOX :

We then notice that by the above comparison again, the sheaf Rj˛� yOv is the Keh-
sheafification of the presheaf

XKeh 3 Y 7! Hj .Y ˘v ; yOv/ D Hj .YproKet; yOY /:

When Y is smooth, it is in fact the j -th continuous differential:

Fact 4.0.1 ([29, Proposition 3.23]). Let Y be a smooth affinoid rigid space over K. Then
we have a canonical isomorphism

Hj .YproKet; yOY / D �
j

Y=K
.Y /.�j /;

where �j
Y=K

is the sheaf of j -th continuous differential forms. Here the “.�j /” means
that the cohomology is equipped with an action of the Galois group Gal.K=K0/ by the
Tate twist of weight j , when Y D Y0 �K0 K is a base change of a smooth rigid space Y0
over a complete discretely valued field K0 whose residue field is perfect, and K is com-
plete and algebraically closed.

In this way, by the local smoothness of the Keh-topology (Corollary 2.4.8) and functo-
riality, the sheaf Rj˛� yOv on XKeh is the Keh-sheaf associated to

smooth Y 7! �
j

Y=K
.Y /.�j /:

We call the Keh-sheaf associated to Y 7!�
j

Y=K
.Y / the j -th éh-differential overK, denoted

by �j
Keh;=K . When the base field K is clear, we use �j

Keh to simplify the notation. Substitut-
ing this into the spectral sequence above, we get the éh-proét spectral sequence

Ri�X��
j

Keh.�j / H) RiCj �� yOX :

Our first main result is the following descent result for the Keh-differential, which we
will prove in the next section.

Theorem 4.0.2 (Keh-descent). Assume X 2 RigK is a smooth rigid space over Spa.K/.
Then for each j 2 N, we have

R�X��
j

Keh D R
0�X��

j

KehŒ0� D �
j

X=K
:

Remark 4.0.3. When i D j D 0, the section OKeh.X/ of the Keh-structure sheaf on any
rigid space X is O.X sn/, where X sn is the seminormalization of Xred. In other words,
OKeh D Osn. This follows from [32, Proposition 10.2.3].



Hodge–Tate decomposition for non-smooth spaces 1577

5. Éh-descent for differentials

In this section, we prove the descent for Keh-differentials of a smooth rigid space X 2
RigK , where K is any p-adic field (not necessarily algebraically closed). At the end of
the section, we apply the Keh-descent to the case when X comes from an algebraic variety,
to relate the Keh-cohomology to the Deligne–Du Bois complex (cf. [13], [26, §7]).

5.1. Éh-descent

We will follow the idea in [15], showing the vanishing of the coneC for�j
X=K
!R���

j

Keh
by comparing étale cohomology and Keh-cohomology.

We first show the long exact sequence of continuous differentials for coverings asso-
ciated to blowups.

Proposition 5.1.1. Let f W X 0 ! X be a blowup of a smooth rigid space X along a
smooth and nowhere dense closed analytic subset i W Y � X , with the pullback g W Y 0 D
X 0 �X Y ! Y . Then the functoriality of Kähler differentials induces the following distin-
guished triangle in the derived category of X :

�
j

X=K
! Rf��

j

X 0=K
˚ i��

j

Y=K
! i�Rg��

j

Y 0=K
: (�)

Proof. We first note that since the argument is local on X , it suffices to show that for any
given rigid point x 2 X , there exists a small open neighborhood of x such that the result
is true over that neighborhood. So we may assume X D Spa.A/ is affinoid, admitting
an étale morphism to BnK D Spa.Khx1; : : : ; xni/ by [22, Corollary 1.6.10], and Y is of
dimension r , given by Spa.A=I / for an ideal I ofA. Moreover, by refiningX to a smaller
open neighborhood of x if necessary, we could choose a collection of local parameters
f1; : : : ; fr and g1; : : : ; gn�r at x such that ¹glº locally generates the ideal defining Y
in X . In this way, by the differential criterion for étaleness [22, Proposition 1.6.9], we
could assume Y ! X is an étale base change of the closed immersion

BrK ! BnK :

In particular, the blowup diagram for BlY .X/! X locally is the étale base change of
BlBr

K
.BnK/ along X ! BnK .

Then we notice that the blowup of Bn along Br is equivalent to the generic fiber of
the p-adic (formal) completion of the blowup

ArOK ! AnOK :

Furthermore, as proved in [16, IV. Theorem 1.2.1], there exists a natural distinguished
triangle

�
j

An=OK
! Rf��

j

BlAr .An/=OK
˚ i��

j

Ar=OK
! i�Rg��

j

BlAr .An/�AnAr=OK
: (��)

Now we make the following claim:
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Claim 5.1.2. The sequence .�/ for .X; Y / D .BnK ;B
r
K/ can be given by the generic base

change of the derived p-adic completion of the distinguished triangle .��/.

Granting the claim, since both derived completion and generic base change are exact
functors, we are done.

Proof of Claim. We first notice that since An
OK
D Spec.OK ŒT1; : : : ; Tn�/ is p-torsion free

(thus flat over OK), by [33, Tag 0923], for a complex C 2 D.An
OK
/ its p-adic derived

completion is given by
R lim
 �
.C ˝LOK OK=p

mOK/:

Moreover, note that differentials of An
OK
;Ar

OK
;BlAr

OK
.An

OK
/ and BlAr

OK
.An

OK
/ �An

OK

Ar
OK

over OK are all flat over OK . We use the notations Anm and Arm to abbreviate the
schemes An

OK=pm
and Ar

OK=pm
respectively. Then the derived base change of .��/ along

OK ! OK=p
m can be written as

�
j

Anm=.OK=pm/
! Rf��

j

BlArm .A
n
m/=.OK=p

m/
˚ i��

j

Arm=.OK=pm/

! i�Rg��
j

BlArm .A
n
m/�Anm

Arm=.OK=pm/
: (���)

Here we use the formula �j
Y=OK

˝L
OK

OK=p
m D �

j

Ym=.OK=pm/
for a smooth OK-

scheme Y , together with the derived base change formula for a proper morphism [33,
Tag 07VK]. Hence the derived p-adic completion of .��/ is then computed by the derived
limit of .���/ for m 2 N.

Finally, we discuss those derived limits term by term. For Cm D �
j

Anm=.OK=pm/
or

Cm D i��
j

Arm=.OK=pm/
, since their transition maps are surjective, the derived limit has no

higher cohomology and we have

R lim
 �

�
j

Anm=.OK=pm/
D �

j

yAn=OK
; R lim

 �
i��

j

Arm=.OK=pm/
D �

j

yAr=OK
:

For Cm D Rf��
j

BlArm .A
n
m/=.OK=p

m/
or i�Rg��

j

BlArm .A
n
m/�Anm

Arm=.OK=pm/
, recall we

have the formula for the derived functors

Rf�R lim
 �
m

D R lim
 �
m

Rf�:

Hence

R lim
 �
m

Rf��
j

BlArm .A
n
m/=.OK=p

m/
Š Rf�R lim

 �
m

�
j

BlArm .A
n
m/=.OK=p

m/
D Rf��

j

BlyAr .
yAn/=OK

:

The analogous formula holds for Cm D i�Rg��
j

BlArm .A
n
m/�Anm

Arm=.OK=pm/
.

In this way, the derived limit of .���/ is isomorphic to

�
j

yAn=OK
! Rf��

j

BlyAr .
yAn/=OK

˚ i��
j

yAr=OK
! i�Rg��

j

BlyAr .
yAn/�yAn

yAr=OK
:

Finally, taking the base change of this distinguished triangle along Zp ! Qp , we get
.�/ for the pair of discs.

This completes the proof of Proposition 5.1.1.



Hodge–Tate decomposition for non-smooth spaces 1579

Corollary 5.1.3. Under the above notation for the smooth blowup, we get a natural long
exact sequence of étale cohomology of continuous differentials:

� � � ! Hj .XKet; �
i
X=K/! Hj .X 0

Ket; �
i
X 0=K/˚ Hj .YKet; �

i
Y=K/! Hj .Y 0

Ket; �
i
Y 0=K/! � � � :

Similarly there exists a long exact sequence of the covering associated to a blowup for
Keh-cohomology:

Proposition 5.1.4. Let f W X 0! X be a morphism of rigid spaces over Spa.K/, Y � X
be a nowhere dense analytic closed subspace, and Y 0 D Y �X X 0 be the pullback. Let X
be separated. Assume they satisfy one of the following two conditions:

(i) X 0 ! X is a blowup along Y .

(ii) X is quasi-compact, Y is an irreducible component of X , and X 0 is the union of all
the other irreducible components of X .

Then the functoriality of differentials induces a natural long exact sequence of cohomol-
ogy:

� � � ! Hj .XKeh; �
i
Keh/! Hj .X 0

Keh; �
i
Keh/
L

Hj .YKeh; �
i
Keh/! Hj .Y 0

Keh; �
i
Keh/! � � � ;

where �i
Keh is the éh-sheafification of the i -th continuous differential forms.

Proof. For the rigid space Z 2 RigK , we denote by hZ the abelianization of the Keh-
sheafification of the representable presheaf

W 7! HomSpa.K/.W;Z/:

Then for an Keh-sheaf F of abelian groups, we have

Hj .ZKeh;F / D Extj
Keh.hZ ;F /;

since hZ is the final object in the category of sheaves of abelian groups over ZKeh. So back
to our proof, it suffices to prove the exact sequence of Keh-sheaves

0! hY 0 ! hX 0 ˚ hY ! hX ! 0

under each of the above two conditions.
Assume ˛ W Z ! X is a K-morphism. Then since X 0 q Y ! X is an Keh-covering

(see Definition 2.4.1 and Proposition 2.4.5), the element ˛ 2 hX .Z/ is locally given by a
map Z �X .X 0q Y /! X 0q Y , which is an element in hX 0.Z �X X 0/˚ hY .Z �X Y /,
so we get the surjectivity.

Now assume .
P
nrˇr ;

P
mss/ is an element in hX 0.Z/˚ hY .Z/ whose image is 0

in hX .Z/. After refining Z by an admissible covering of quasi-compact affinoid open
subsets if necessary, we may assume Z is quasi-compact affinoid. By taking a further Keh-
covering of Z, we may also assume Z is smooth and connected, given by Z D Spa.A/
for A integral.

Then we look at the composition of those maps with .f; i/ W X 0 q Y ! X .
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� Assume f ı ˇ1 D f ı ˇ2 for some elements ˇi . In the first setting of the proposition,
since X 0 ! X is a blowup along a nowhere dense (Zariski) closed subset, the restric-
tions of ˇ1 and ˇ2 to the open subset Z n f �1.Y / coincide. So by the assumption
that Z is integral (thus equal-dimensional), we see that either the closed analytic sub-
set f �1.Y / is the whole Z and both ˇ1 and ˇ2 come from Z ! Y �X X

0 D Y 0, or
f �1.Y / is nowhere dense analytic inZ. If f �1.Y / is nowhere dense inZ, then ˇ1 and
ˇ2 agree on a Zariski open dense subset ofZ. So by looking at open affinoid subsets of
X 0, the separatedness assumption implies ˇ1 D ˇ2 [19, Chap. II, Exercise 4.2]. In the
second setting, note that X 0 ! X is a closed immersion. So f ı ˇ1 D f ı ˇ2 implies
ˇ1 D ˇ2.

� Assume i ı 1 D i ı 2 for some elements i . Then we get the identity of 1 and 2
again by the injectivity of the closed immersion i W Y ! X .

� Assume there exists an equality f ı ˇi D i ı j . Since the composition f ı ˇi is
mapped into the analytic subset Y � X , the map ˇi W Z ! X 0 factors through Z !
X 0 �X Y D Y

0. So ˇi comes from hY 0.Z/, and by the injectivity of Y ! X again j
comes from hY 0.Z/.

In this way, by combining all of those identical ˇi and j and canceling the coefficients,
the rest of .

P
nrˇr ;

P
mss/ all come from hY 0.Z/, thus the short sequence is exact at

the middle.
Finally, injectivity of hY 0 ! hX 0 ˚ hY follows from the fact that Y 0! X 0 is a closed

immersion.

Remark 5.1.5. Proposition 5.1.4 (ii) can be regarded as an Keh-version of the Mayer–
Vietoris sequence.

Proof of Theorem 4.0.2. Now we prove the descent for the Keh-differential.
Let RigK;Ket be the big étale site of rigid spaces over K. It consists of rigid spaces

over K, and its topology is defined by étale coverings. Then there exists a natural map
� W RigK;Keh ! RigK;Ket of big sites that fits into the diagram

RigK;Ket
�X // XKet

RigK;Keh

�

OO

// XKeh

�X

OO

The sheaf�i
Keh on RigK;Keh is defined as the Keh-sheafification of the continuous differential,

which leads to the equality
�i
Keh D �

�1�i=K ;

where �i
=K

is the i -th continuous differential on RigK;Ket. Moreover, for any Y 2 RigK ,
the direct images along RigK;Ket ! YKet and RigK;Keh ! YKeh are exact. So it is safe to use
F jYKet (resp. F jYKeh ) to denote the direct image of a sheaf on RigK;Ket (resp. RigK;Keh) along
those restriction maps, either in the derived or non-derived cases.
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Let C be a cone of the adjunction map �i
=K
! R���

�1�i
=K
D R���

i
Keh. It suffices

to show the vanishing of C when restricted to a smooth X ; in other words, for each X
smooth over K, we want

H j .C /jXKet D 0; 8j:

We also note that as both �i
=K

and R�����i=K have trivial cohomology in negative
degrees, we have H j .C /jXKet D 0 for j � �2. In particular, C is left bounded.

Now we prove the above statement by contradiction. Assume C is not always acyclic
when restricted to the small site XKet for some smooth rigid space X over K. By the left
boundedness of C , we let j be the smallest degree such that H j .C /jXKet ¤ 0 for some
smooth X . Then H j�l .C /jYKet D 0 for any l > 0 and any smooth Y over K. As this is a
local statement, we let X to be a smooth, connected, quasi-compact quasi-separated rigid
space of the smallest possible dimension such that H j .C /jXKet ¤ 0. So by our assumption,
there exists a non-zero element e in the cohomology group

H0.XKet;H
j .C // D Hj .XKet; C /:

Here the equality of those two cohomologies follows from the vanishing assumption for
H j�l .C /jXKet for l > 0.

We apply the preimage functor ��1 to the triangle

�i=K ! R���
�1�i=K ! C;

and get a distinguished triangle in D.RigK;Keh/

��1�i=K ! ��1R���
�1�i=K ! ��1C:

Noting that since ��1 is exact and the adjoint map ��1 ! ��1 ı �� ı �
�1 is an isomor-

phism, by taking the associated derived functors we get a canonical isomorphism

��1�i=K Š �
�1R���

�1�i=K :

So ��1C is quasi-isomorphic to 0, and there exists an Keh-covering X 0 ! X such that e
will vanish when pulled back to X 0.

Next we use the covering structure of the Keh-topology (Theorem 2.4.11). By taking a
refinement of X 0 ! X if necessary, we assume X 0 ! X is the composition

X 0 D Xm ! Xm�1 ! � � � ! X0 D X;

whereXl !Xl�1 is either a covering associated to a smooth blowup or an étale covering.
Now we discuss the vanishing of the non-zero element e along those pullbacks

X 0 D Xm ! � � � ! X . Assume ejXl�1;Ket is not equal to 0 (which is true when l D 1).
If Xl ! Xl�1 is an étale covering, then since ejXl�1;Ket 2 H0.Xl�1;Ket;H

j .C // is a global
section of a non-zero étale sheaf H j .C / on Xl�1;Ket, the restriction of e to this étale cov-
ering will not be zero by the sheaf axioms. If Xl ! Xl�1 is a covering associated to a
smooth blowup, we then make the following claim:
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Claim 5.1.6. Under the above assumption, the restriction ejXl;Ket in H0.Xl;Ket;H
j .C // D

Hj .Xl;Ket; C / is not equal to 0.

Granting the claim, since X 0 ! X is a finite composition of those two types of cov-
erings, the pullback of e to the cohomology group H0.X 0

Ket;H
j .C // cannot be 0, and we

get a contradiction. Hence C jXKet must vanish in the derived categoryD.XKet/ for a smooth
quasi-compact rigid space X , and we get the natural isomorphism

�iX=K ! R�X��
i
Keh; 8i:

Proof of Claim. By assumption, since ejXl�1;Ket is non-zero, it suffices to show that the
map of cohomology groups

Hj .Xl�1;Ket; C /! Hj .Xl;Ket; C /

is injective.
To simplify the notation, we letX DXl�1, andX 0 DXl be the covering BlY .X/q Y

!X associated to the blowup at the smooth center Y �X . We let Y 0 be the pullback of Y
along BlY .X/! X . Since X 0 ! X is a covering associated to a blowup along a smooth
subspace Y of smaller dimension, by the two long exact sequences of cohomology for
differentials (Corollary 5.1.3 and Proposition 5.1.4), we get

�� �� ��

� � � // Hj .XKet; �
i
X=K

/ //

�x
��

Hj .BlY .X/Ket; �
i
BlY .X/=K

/˚Hj .YKet; �
i
Y=K

/ //

�Y�BlY .X/

��

Hj .Y 0
Ket; �

i
Y 0=K

/ //

�Y 0

��

� � �

� � � // Hj .XKeh; �
i
Keh/

//

��

Hj .BlY .X/Keh; �
i
Keh/˚Hj .YKeh; �

i
Keh/

//

��

Hj .Y 0
Keh; �

i
Keh/

//

��

� � �

� � � // Hj .XKet; C / //

��

Hj .BlY .X/Ket; C /˚Hj .YKet; C / //

��

Hj .Y 0
Ket; C /

//

��

� � �

By the assumption on j , since H j�l .C /jY 0;Ket D 0 for l > 0, we have

Hj�1.Y 0
Ket; C / D 0:

Moreover, since dim.X/ is the smallest dimension such that C jXKet is not quasi-isomorphic
to 0, both Hj .YKet; C / and Hj .Y 0

Ket; C / are zero. In this way, the third row above becomes
an isomorphism

Hj .XKet; C /! Hj .BlY .X/Ket; C /˚ 0 D Hj .X 0
Ket; C /;

and we get an injection.

This ends the proof of Theorem 4.0.2.
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Remark 5.1.7. In fact, the proof above works in a coarser topology, generated by the
rigid topology, universal homeomorphisms and coverings associated to blowups. This is
because all we need is the local smoothness and the distinguished triangles for cohomol-
ogy of differentials, which is a coherent cohomology theory. Moreover, results here can
be deduced from the pullback of this coarser topology to the Keh-topology.

5.2. Application to algebraic varieties

Let K be the field Cp of p-adic complex numbers. We fix an abstract isomorphism of
fields between Cp and C. Our goal in this subsection is to relate Keh-cohomology to sin-
gular cohomology when the rigid space comes from an algebraic variety.

More precisely, we have:

Theorem 5.2.1. Let Y be a proper algebraic variety over K D Cp , and let X D Y an be
its analytification as a rigid space over K. Then there exists a functorial isomorphism

Hi .XKeh; �
j

Keh/ Š grjHiSing.Y.C/;C/;

where HiSing.Y.C// is the i -th singular cohomology of the complex manifold Y.C/
equipped with the Hodge filtration.

Proof. Let � W Y�! Y be a map from a simplicial smooth proper algebraic variety overK
onto Y such that each Yn! .coskn Y�n/nC1 is a finite compositions of Keh-coverings asso-
ciated to smooth blowups (but with algebraic varieties instead of rigid spaces in Defini-
tion 2.4.1). Then the analytification �an WX�!X is an Keh-hypercovering ofX by smooth
proper rigid spaces Xn D Y an

n . Moreover, the sheaf �j
Xn=K

of continuous j -differentials
of Xn, which is a vector bundle over Xn, is canonically isomorphic to the sheafification
of the sheaf �j

Yn=K
of algebraic j -differentials of the algebraic variety Yn over K.

Next we apply cohomological descent (§7.4), and get the natural quasi-isomorphism

R�X��
j

Keh Š R�
an
� R�X���

j

Keh:

As each Xn is smooth over K, by Theorem 4.0.2 we have

R�Xn��
j

Keh Š �
j

Xn=K
:

In particular, the derived pushforward R�X��
j

Keh can be computed as

R�X��
j

Keh Š R�
an
� �

j

X�=K
Š R�an

� .�
j

Y�=K
/an:

We then take the derived global section to get

R�.XKeh; �
j

Keh/ Š R�.Y
an; R�an

� .�
j

Y�=K
/an/:

As all of the algebraic varieties Y and Yn are proper over K with each �j
Yn=K

being
coherent, by the rigid GAGA theorem [8, Appendix A1] we obtain a natural isomorphism

R�.XKeh; �
j

Keh/ Š R�.Y;R���
j

Y�=K
/:
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Now by the construction, the map Y� ! Y of simplicial varieties is a smooth h-
hypercovering in the sense of [20]. In particular, as proved in [20, Theorem 7.12], the
complex R���

j

Y�=K
is naturally isomorphic to the j -th graded piece of the Hodge filtra-

tion of the Deligne–Du Bois complex��Y . So we may replace the derived pushforward to
get the isomorphism of cohomology groups

Hi .XKeh; �
j

Keh/ Š Hi .Y;�jY /:

In this way, as the right side is isomorphic to the j -th graded piece grjHiSing.Y.C/;C/ of
the Hodge filtration of the singular cohomology group [26, §7.3.1], we get

Hi .XKeh; �
j

Keh/ Š grjHiSing.Y.C/;C/:

We note that in the proof above, the comparison is compatible with the differential
maps on both side. So the above leads to a comparison between Keh de Rham cohomology
and singular cohomology when X comes from an algebraic variety.

Corollary 5.2.2. Let Y be a proper algebraic variety over K D Cp , and let X D Y an be
its analytification as a proper rigid space over K. Then there exists a functorial filtered
isomorphism

Hi .XKeh; �
�

Keh/ Š HiSing.Y.C/;C/;

where HiSing.Y.C/;C/ is the i -th singular cohomology of the complex manifold Y.C/,
equipped with the Hodge filtration.

Remark 5.2.3. LetX DY an be the analytification of a proper algebraic variety Y over Cp
as above. The proof of Theorem 5.2.1 in fact implies that the Keh-cohomology Hi .XKeh;�

j

Keh/

of �j
Keh is isomorphic to the h-cohomology Hi .Yh; �

j

h
/ (via [20, Corollary 6.16]), for the

h-cohomology of the scheme Y introduced in [20]. So every computation for a proper
algebraic variety Y in [20] can be used to compute the Keh-cohomology of the rigid
space Y an.

6. Finiteness

In this section, we prove a finiteness result about R�� yOX for X being a rigid space,
namely the coherence and the cohomological boundedness of R�� yOX , where K is an
arbitrary p-adic field.

Assume X is a rigid space over K.

Proposition 6.0.1 (Coherence). The sheaf Rn�� yOX of OX -modules is coherent.

Proof. By the Keh-proét spectral sequence Ri�X��
j

Keh ) RiCj �� yOX , it suffices to show
the coherence for each Ri�X��

j

Keh.�j /. We then assume X is reduced, since the direct
image along Xred ! X preserves the coherence of modules. Then by local smoothness
(Corollary 2.4.8), there exists an Keh-hypercover s W X� ! X such that each Xk is smooth
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and the map sk W Xk ! X is proper. Here we notice that each R�Xk��
j

Keh D �
j

Xk=K

is coherent on Xk by the assumption on Xk and Theorem 4.0.2. So the properness of
sk W Xk ! X implies that each Rqsk��

j

Xk=K
is coherent over OX . On the other hand,

thanks to cohomological descent (see the discussion later in §7.4), the derived direct
imageRs�R�X���

j

Keh along the Keh-hypercoverX�!X is quasi-isomorphic toR�X��
j

Keh.
In this way, the spectral sequence associated to the simplicial object s W X�! X provides

E
p;q
1 D Rqsp��

j

Xp=K
H) HpCq.Rs�R�X���

j

Keh/ D R
pCq�X��

j

Keh;

where each term on the left side is coherent over X . Hence the sheaf RpCq�X��
j

Keh is
coherent on X .

Next we consider the cohomological boundedness of derived direct images.

Theorem 6.0.2 (Cohomological boundedness). For a quasi-compact rigid space X , the
cohomology Hi .XKeh; �

j

Keh/ vanishes unless 0 � i; j � dim.X/.

Remark 6.0.3. The analogous statement about the boundedness of the Hodge numbers
for varieties over C is proved by Deligne [10, Theorem 8.2.4].

Proof of Theorem 6.0.2. We use induction on the dimension of X . When X is of dimen-
sion 0, the reduced subspace Xred is a finite disjoint union of Spa.K 0/ with K 0=K finite,
which is smooth over Spa.K/. So by the local reducedness of the Keh-topology and the
vanishing of the higher direct image of � W Xred ! X , the case of dimension 0 is handled
by Theorem 4.0.2.

We then assume the result is true for all quasi-compact rigid spaces of dimensions
strictly smaller than dim.X/. By local smoothness (Corollary 2.4.8) and the vanishing of
the higher direct image along Xred ! X again, we may assume X is reduced and there
exists a composition of finitely many blowups at smooth centers,

X 0 D Xn ! � � � ! X1 ! X0 D X;

such that X 0 D Xn is smooth over Spa.K/. Observe that by the property of the Keh-
differentials for smooth spaces, the sheaf Ri�Xn��

j

Keh is zero unless i D 0 and 0 � j �
dimXn D dimX . So the claim is true forXn as Hi .Xn;Keh;�

j

Keh/D Hi .Xn;�
j

Xn=K
/. More-

over, to prove the claim for X , it suffices to show that if the result is true for XlC1, then it
is true forXl , whereXlC1!Xl is the l-th blowup at a nowhere dense analytic subspace.

To simplify the notation, we let X 0 D XlC1, X D Xl , f W X 0! X be the blowup, i W
Y !X be the inclusion map of the blowup center, and Y 0 be the preimageX 0 �X Y under
the map g W Y 0! X 0. By the assumption, Hi .X 0

Keh;�
j

Keh/ vanishes unless i; j � dim.X/D
dim.X 0/. Furthermore, thanks to the induction hypothesis we have Hi .Y 0

Keh; �
j

Keh/ D 0

unless i; j � dim.Y 0/ < dim.X/. Now we consider the distinguished triangle of Keh-
cohomology (Proposition 5.1.4)

� � � ! Hi .XKeh; �
j

Keh/! Hi .X 0
Keh; �

j

Keh/˚ Hi .YKeh; �
j

Keh/! Hi .Y 0
Keh; �

j

Keh/! � � � :

We discuss all possible cases:
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� If j > dim.X/, then since the blowup center Y is nowhere dense in X , we have j >
dim.X/ > dim.Y 0/. So by induction hypothesis on dimensions, both Hi .YKeh; �

j

Keh/ and
Hi�1.Y 0

Keh; �
j

Keh/ vanish for every i . Moreover by the assumption on X 0, we know that
Hi .X 0

Keh;�
j

Keh/ vanishes for i 2 N. So the long exact sequence leads to the vanishing for
Hi .XKeh; �

j

Keh/ if j > dim.X/.

� If i > dim.X/, then since i � 1 > dim.X/� 1 � dim.Y 0/, by induction hypothesis on
dimensions again, Hi�1.Y 0

Keh;�
j

Keh/ and Hi .YKeh;�
j

Keh/ are zero. Similarly Hi .X 0
Keh;�

j

Keh/ by
the assumption on X 0. In this way, the long exact sequence implies that Hi .XKeh; �

j

Keh/

is zero for i > dim.X/ and any j 2 N.

Corollary 6.0.4. Let X be a rigid space over K. Then unless 0 � i; j � dim.X/, the
higher direct image Ri�X��

j

Keh vanishes.

Proof. We only need to note that the sheaf Ri�X��
j

Keh is the coherent sheaf on X associ-
ated to the presheaf U 7! Hi .UKeh; �

j

Keh/, for U � X open and quasi-compact.

Corollary 6.0.5. Let X be a rigid space over K. Then each cohomology sheaf Ri�� yOX
is coherent over OX , and vanishes unless 0 � i � 2 dim.X/.

We will improve the above two corollaries for locally compactifiable rigid spaces in
Propositions 7.5.2 and 7.5.6, using the degeneracy result developed in the next section
and the almost purity theorem of [4].

7. Degeneracy theorem

In this section, we show the degeneracy of the spectral sequence Ri�X��
j

Keh.�j / )

RiCj �� yOX under the condition that X is strongly liftable. More precisely, we use the
cotangent complex to show the existence of a quasi-isomorphism

R�� yOX Š
M
j

R�X�.�
j

Keh.�j /Œ�j �/;

assuming X is strongly liftable (see Definition 7.4.1). This condition is satisfied if X is
proper over K (Proposition 7.4.4), or defined over a discretely valued subfield that has a
perfect residue field (Example 7.4.2).

7.1. Cotangent complex for formal schemes and adic spaces

In this subsection, we first recall basics about the cotangent complex for adic spaces.
A detailed discussion of the analytic cotangent complexes of formal schemes and adic
spaces can be found in [14, §§7.1–7.3] (over OK andK) and [18, §§5.1, 5.2] (over Ainf=�

e

and BCdR=�
e).

Let R0 be a p-adically complete ring. Then there exists a continuous morphism
Zp ! R0 of adic rings. Recall that for a map A ! B of complete R0-algebras that
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are p-torsion free, we can define the complete cotangent complex yLB=A as the termwise
p-adic completion of the usual cotangent complex LB=A. Here LB=A is given by the cor-
responding complex of the simplicial B-module�1

P�.B/=A
˝P�.B/ B , where P�.B/ is the

standard A-polynomial resolution of B . The image of yLB=A in the derived category of B-
modules is the p-adic derived completion of LB=A, which lives in cohomological degrees
� 0 such that

H0.yLB=A/ D y�1B=A;

where y�1
B=A

is the continuous differential of B over A and is defined as the p-adic
completion of the algebraic Kähler differential �1

B=A
. We note that the construction of

the complex yLB=A is functorial with respect to complete R0-algebras A! B . So when
X ! Spf.R0/ is an R0-formal scheme that is p-torsion free, we can construct a com-
plex of presheaves which assigns the complex yLB=R0 to an affinoid open subset Spf.B/
in X. The complete cotangent complex yLX=R0 for a p-torsion free R0-formal scheme X

is the actual complex of sheaves defined by sheafifying the above complex of presheaves
termwise.

Now following the construction in [14, §7.2], for a map .A; AC/! .B; BC/ of p-
adic affinoid Huber pairs, we define its analytic cotangent complex Lan

.B;BC/=.A;AC/
as the

colimit
colim
A0!B0

A0;B0 open bounded

yLB0=A0 Œ1=p�;

where the colimit is indexed over the set of all maps A0 ! B0 of rings of definition in
AC!BC, and yLB0=A0 is the complete cotangent complex for a map of p-complete rings
as above. We often use the notation yLan

B=A
instead of Lan

.B;BC/=.A;AC/
for simplicity, when

the choice of the ringsAC andBC is clear from the context. The construction is functorial
with respect to the pair .A;AC/! .B;BC/, and we can sheafify it to define the analytic
cotangent complex Lan

X=Y
for a map X ! Y of adic spaces. Here Lan

X=Y
is a complex of

sheaves of OX -modules that lives in non-positive cohomological degrees, such that

H0.Lan
X=Y / D �

1
X=Y ;

with �1
X=Y

being the continuous differential for the map X ! Y of rigid spaces.

Remark 7.1.1. In many cases where the base ring is fixed, the colimit in the construction
above can be simplified.

For example, let .R; RC/ be either a reduced topologically finite type algebra over a
p-adic field, or .AinfŒ1=p�;Ainf/ (the definition of Ainf will be recalled below), and let R0
be the fixed ring of definition RC (this is guaranteed by the reducedness of A, and the
boundedness of Rı by for example [5, §6.2.4, Theorem 1]) or Ainf respectively. Then for
an affinoid R-algebra .B;BC/, we have the natural quasi-isomorphism

colim
R0!B0

B0 open bounded

yLB0=R0 Œ1=p�! yL
an
B=R;



H. Guo 1588

where the colimit ranges only over rings of definition of .B;BC/. This is because in both
cases the ring R0 is the largest ring of definition, so the index systems of colimits are
cofinal to the one in the original definition.

Moreover, if in addition the integral subringBC of the Huber pair .B;BC/ is bounded,
then the above colimit can be further simplified to one single complex by the quasi-
isomorphism

yLBC=R0 Œ1=p�!
yLan
B=R;

which follows for the same reason concerning the index system.

Remark 7.1.2. The construction of analytic cotangent complexes here is slightly differ-
ent from the one used in [14, 18]: the colimit in the definition of Lan

.B;BC/=.A;AC/
above

is over the set of all rings of definition, while the ones in loc. cit. are over the set of
rings of definitions that are topologically of finite type. The reason we include all rings
of definition is to extend the construction to perfectoid algebras, which are almost never
topologically of finite type.

To see that those two constructions of analytic cotangent complexes for topologically
finite type algebras A over BCdR=�

e coincide, it suffices to notice that any ring of defini-
tion A0 of A is contained in a ring of definition A1 that is topologically of finite type
over Ainf=�

e . When A is reduced (hence is topologically of finite type over K), the sub-
ring Aı of power-bounded elements is the largest ring of definition which is topologically
of finite type over OK (apply [5, §6.4.1, Corollary 5] at a surjection KhTi i ! A).

For the general case when A is not necessarily reduced, this can be seen as follows:
Let A0 be the given ring of definition, I0 be the nilpotent radical of A0, and A1 be a
ring of definition that is topologically of finite type over Ainf=�

e whose quotient by its
nilpotent radical I1 is .Ared/

ı. Here we note that by the p-torsion-freeness of A1=I1 and
[3, Lemma 13.4 (iii, b)], the ideal I1 is finitely generated, say by gj , 1� j �m. Moreover,
the subring A0 of A is contained in the union

S
n2N A1Œ

1
pn
I1� of open subrings, as the

latter is the preimage of .Ared/
ı in A along the surjection A! Ared, and .A0/red � .Ared/

ı

by the last paragraph for reduced rings. By assumption the subring A0 is bounded, so we
could choose an integer n large enough such that A0 � A1Œ 1pn I1�. Therefore the claim
follows as the ring of definitionA1Œ 1pn I1� admits a surjection from Ainf=�

ehTi ; Sj i, where
the map extends a surjection Ainf=�

ehT1; : : : ; Tli ! A1 and sends Sj to 1
pn
gj . Here we

remind the reader that the construction makes sense as each 1
pn
gj is nilpotent and in

particular topologically nilpotent.

Lifting obstruction. One of the most important applications of the cotangent complex is
to the deformation problem.

Let .R; RC/ be a p-adically complete Huber pair over Qp . Assume I is a closed

ideal in RC. We define S as the adic space Spa.R=I; ARC=I /, and S 0 as the adic space
Spa.R=I 2;BRC=I 2/, where ARC=I and AR=I 2 are integral closures. Let X be a flat S -adic
space. Then a deformation ofX along S!S 0 is defined as a closed immersion i WX!X 0

of S 0-adic spaces with X 0 being flat over S , such that the defining ideal is i�I . Thus we
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have the cartesian diagram

X
i //

��

X 0

��

S // S 0

We now focus on the case where the coefficient .R;RC/ is specified as below. Assume
K is a complete and algebraically closed p-adic field, and let X be a quasi-compact
rigid space over Spa.K/. Recall that the ring Ainf is defined as the ring of Witt vectors
W.lim
 �x 7!xp

OK/. There is a canonical surjective continuous map � W Ainf ! OK , with
kernel being a principal ideal ker.�/D .�/ for some fixed element � 2Ainf. We then recall
that the de Rham period ring BCdR is defined to be the �-adic completion of AinfŒ1=p�. Here
we abuse the notation and denote by � W BCdR ! K the canonical surjection induced by
� W Ainf! OK as above. Note that for n � 1, we have BCdR=.�/

n D AinfŒ1=p�=.�/
n, which

is a complete Tate ring over Qp [22, §1.1]. In particular the deformation of any rigid
space X=K along .BCdR=�

n;Ainf=�
n/! .K;OK/ is the same as the deformation along

.AinfŒ1=p�=�
n;Ainf=�

n/! .K;OK/.
We then note that the deformation theory along .BCdR;Ainf/! .K;OK/ only depends

on the p-adic topology. More precisely, we have a observation:

Lemma 7.1.3. Let X be a topologically of finite type, p-torsion free formal scheme over
Ainf=�

N for someN 2N. Let Xn be the base change of X along Ainf! Ainf=�
nC1. Then

we have a quasi-isomorphism

yLX=Ainf ! R lim
 �
n

yLXn=.Ainf=�nC1/
;

where yL is the p-adic complete cotangent complex defined at the beginning of this section.

Proof. We may assume X is affinoid. Let Tn be the p-adic formal scheme
Spf.Ainf=�

nC1/, and let T be the p-adic formal scheme Spf.Ainf/. Consider the following
sequence of p-adic formal schemes:

Xn ! Tn ! T:

Then by taking the distinguished triangle of transitivity for usual cotangent complexes,
we get

LTn=T ˝
L
OTn

OXn ! LXn=T ! LXn=Tn : (�n)

Note that the triangle remains distinguished in D.OXn/ after the derived p-adic comple-
tion.

We then take the derived inverse limit (with respect to n) of the p-adic derived com-
pletion of .�n/. When n � N , we have yLXn=T D yLX=T . Moreover, since Xn is the base
change ofX along Tn! T , we have yLTn=T ˝

L
OTn

OXn D
yLTn=T ˝

L
OT

OX as complexes.
So by taking the inverse limit with respect to n, we get

R lim
 �
n

.yLTn=T ˝
L
OT

OX /! yLX=T ! R lim
 �
n

yLXn=Tn :
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But note that the inverse system ¹yLTn=T ˝
L
OT

OXºn is in fact acyclic. This is because

the cotangent complex yLTn=T is isomorphic to .�/n=.�2n/Œ1�, while the composition of
transition maps

.�/2n=.�4n/Œ1�! .�/2n�1=.�4n�2/Œ1�! � � � ! .�/n=.�2n/Œ1�

is 0. In this way, by the vanishing of R lim
 �n

, we get the quasi-isomorphism we need.

This lemma allows us to forget the complicated natural topology on BCdR when we
look at the deformation along BCdR ! K. So throughout the article, we will consider the
adic space Spa.AinfŒ1=p�;Ainf/ that is only equipped with the p-adic topology, and any
cotangent complex that has Ainf or AinfŒ1=p� as the base will be considered p-adically.

Let S and S 0 be the adic space Spa.AinfŒ1=p�=�/ and Spa.AinfŒ1=p�=�
2/ respec-

tively. Here we note that S is also equal to Spa.K/. Denote by i the map X !

Spa.AinfŒ1=p�;Ainf/. We let OX .1/ be the free OX -module of rank 1, defined by

i�.�OS / D OX ˝AinfŒ1=p� �AinfŒ1=p� D �=�
2OX :

When X is defined over a discretely valued subfield, it admits a Galois action of Hodge–
Tate weight �1.

Our first result is about the relation between the deformation of X and the splitting of
the cotangent complex.

Proposition 7.1.4. Let X be a rigid space over S D Spa.K/. Then a flat lifting X 0 of
X along S ! S 0 induces a section sX of Lan

S=S 0
˝S OX ! Lan

X=S 0
in the distinguished

triangle of transitivity
Lan
S=S 0 ˝S OX ! Lan

X=S 0 ! Lan
X=S :

Moreover, assume X 0 ! Y 0 is a map of flat adic spaces over S 0 which lifts the map
f W X ! Y of rigid spaces overK. Then the induced sections above are functorial, in the
sense that the following natural diagram of sections commutes:

Lan
Y=S 0

sY //

��

Lan
S=S 0
˝S 0 OY

��

Rf�Lan
X=S 0

Rf�.sX / // Rf�.Lan
S=S 0
˝S OX /

Proof. The base change diagram

X //

��

X 0

��

S // S 0

induces two sequences of maps

X ! S ! S 0; X ! X 0 ! S 0:
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We take their distinguished triangles of transitivity [18, Corollary 5.2.18], and get

Lan
X=S

Lan
X 0=S 0

˝OX0
OX // Lan

X=S 0
//

OO

Lan
X=X 0

Lan
S=S 0
˝OS OX

OO

where both the vertical and the horizontal triangles are distinguished.
Following [33, Tag 09D8], we could extend the above to a bigger diagram

Lan
X 0=S 0

˝OX0
OX // Lan

X=S
// E

Lan
X 0=S 0

˝OX0
OX // Lan

X=S 0
˛X //

OO

Lan
X=X 0

OO

Lan
S=S 0
˝OS OX

OO

Lan
S=S 0
˝OS OX

ˇX

OO
(�)

where E is the cone of

.Lan
X 0=S 0 ˝OX0

OX ˚ Lan
S=S 0 ˝OS0

OX /! Lan
X=S 0 ;

which fits into the diagram such that all of the vertical and horizontal triangles are distin-
guished.

We then make the following claim.

Claim 7.1.5. The cone E is isomorphic to 0 in the derived category.

Proof of Claim. By construction, since the right vertical triangle above is distinguished,
it suffices to show that

ˇX W L
an
S=S 0 ˝OS OX ! Lan

X=X 0

is a quasi-isomorphism.
We may assume that X D Spa.B; BC/ and X 0 D Spa.A; AC/ are affinoid and

A˝Ainf=�2
OK D A=� D B . Then by construction, the above map can be rewritten as

Lan
S=S 0 ˝K B ! colim

A0!B0
A0;B0 open bounded

yLB0=A0 Œ1=p�;

for .A0; B0/ being all pairs of rings of definition of .A;AC/ and .B;BC/ respectively.
We then note that for a single pair .A0; B0/ such that B0 Š A0=�, the map

� W Lan
S=S 0 ˝K B !

yLA0=B0 Œ1=p�

is a quasi-isomorphism: by the surjectivity of Ainf=�
2 ! Ainf=� D OK and B0 ! A0,
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applying [14, §7.1.31]6, we have

yLOK=.Ainf=�2/
Š LOK=.Ainf=�2/

; yLA0=B0 Š LA0=B0 :

So under the choice of A0 and B0 the map � can be rewritten as a map of the usual
cotangent complexes

� W LOK=.Ainf=�2/
˝OK B0Œ1=p�! LA0=B0 Œ1=p�:

But by assumption, A D A0Œ1=p� is flat over Ainf=�
2Œ1=p�, while B D B0Œ1=p� is given

by A ˝Ainf=�2
OK . Hence by the flatness of inverting p and the flat base change of the

usual cotangent complexes, we see � is a quasi-isomorphism.
Finally, we only need to note that the collection of rings of definition ¹A0! B0º such

that B0 D A0=� is cofinal with the collection of all A0 ! B0 (since any given B0 is a
subring of B that is of topologically finite type over OK , we can pick the generators and
lift them to A along the surjection A! B). So we get

colim
A0!B0

A0;B0 open bounded

yLB0=A0 Œ1=p� Š colim
A0 open bounded

yL.A0=�/=A0 Œ1=p�;

and the latter is quasi-isomorphic to Lan
S=S 0
˝K B , so we are done.

In this way, since E is constructed so that the top horizontal and the right vertical
triangles in .�/ are distinguished, we see that under the given assumption, E is quasi-
isomorphic to 0. This allows us to get a section

sX W L
an
X=S 0 ! Lan

S=S 0 ˝S OX ;

defined as the composition of ˛X and ˇ�1X in .�/.
Finally, we check functoriality. Consider the map between two lifts

X
f
//

��

Y

��

X 0 //

��

// Y 0

��

S 0 S 0

Since each term in the big diagram .�/ is functorial with respect to X ! X 0, the map of
lifts induces a commutative diagram from .�/ for Y to the derived direct image of .�/ for
X along f W X ! Y . In particular, this implies the commutativity of

6Though the statement there is for topologically finite type algebras over OK , the proof works
for topologically finite type, p-torsion free algebras over Ainf=�

n as well.
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Lan
Y=S 0

˛Y //

��

Lan
Y=Y 0

��

ˇ�1
Y // Lan

S=S 0
˝OY

��

Rf�Lan
X=S 0

Rf�.˛X / // Rf�Lan
X=X 0

Rf�.ˇ
�1
X
/
// Rf�.Lan

S=S 0
˝OX /

By combining them, we get the desired map from sY to Rf�.sX /.

Finally, we note the following relation between Lan
X=S 0

and Lan
X=S.

Lemma 7.1.6. LetX be a smooth rigid space over Spa.K/, and SD Spa.AinfŒ1=p�;Ainf/

be the p-adic complete adic space. Then the sequence of maps X ! S 0 ! S induces a
quasi-isomorphism

Lan
X=AinfŒ1=p�

! ���1Lan
X=.AinfŒ1=p�=�2/

D ���1Lan
X=S 0 :

This is functorial with respect to X .

Proof. By taking the distinguished triangle of transitivity, we get

Lan
S 0=S ˝OS0

OX ! Lan
X=S ! Lan

X=S 0 : (�)

Since S 0D Spa.AinfŒ1=p�=�
2/ is a closed subspace of SD Spa.Ainf/ defined by the regular

ideal .�2/, we have

Lan
S 0=S ˝OS0

OX D .�
2/=.�4/˝LOS0

OX Œ1�:

But by the distinguished triangle for X ! S ! S, we have

Lan
S=S ˝OS OX ! Lan

X=S ! Lan
X=S ;

where Lan
S=S ˝OS OX D .�/=.�

2/˝K OX Œ1� D �=�
2OX Œ1�, and Lan

X=S
D �1

X=K
Œ0� by the

smoothness assumption [14, Theorem 7.2.42]. In this way, since Lan
X=S lives in cohomolog-

ical degrees �1 and 0 and is killed by �2, the image of Lan
S 0=S˝

L
OS0

OX D .�
2/=.�4/˝L

OS0

OX Œ1� in Lan
X=S is 0. Hence the sequence .�/ induces a quasi-isomorphism

Lan
X=AinfŒ1=p�

! ���1Lan
X=.AinfŒ1=p�=�2/

;

which lives in degrees �1 and 0.
Finally, since those two distinguished triangles are functorial with respect to X , so is

the quasi-isomorphism.

7.2. Degeneracy in the smooth setting

After the basics around the cotangent complex and the lifting criterion, we are going to
prove the degeneracy theorem for smooth rigid spaces, assuming liftability to BCdR=�

2. We
fix a complete and algebraically closed p-adic field K as before.
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We first prove a simple result about the cotangent complex over Ainf.

Proposition 7.2.1. Let A be an Ainf-algebra. Then the natural map yLA=Zp ! yLA=Ainf of
complete cotangent complexes is a quasi-isomorphism.

Proof. Consider the sequence of maps

Zp ! Ainf ! A:

By the basic properties of the usual cotangent complex of rings, we get a distinguished
triangle in D�.A/:

LAinf=Zp ˝Ainf A! LA=Ainf ! LA=Zp :

Applying derived p-completion, we get the distinguished triangle

.LAinf=Zp ˝Ainf A/
^
! yLA=Ainf !

yLA=Zp :

By the equality .LAinf=Zp ˝Ainf A/
^ D .yLAinf=Zp ˝Ainf A/

^ and the derived Nakayama
lemma, it suffices to prove the vanishing of LAinf=Zp ˝Zp Zp=p (thus of yLAinf=Zp ). Note
that Ainf D W.O[

K/, where O[
K is a perfect ring in characteristic p. As a consequence,

since the cotangent complex of a perfect ring over Fp is quasi-isomorphic to zero [2,
Chapter 4, Proposition 3.12], we get

LAinf=Zp ˝Zp Zp=p D LO[
K
=Fp
Š 0:

Hence the p-adic completed cotangent complex yLAinf=Zp vanishes, and thus we obtain the
quasi-isomorphism as in the statement.

Corollary 7.2.2. Let X be an adic space over Spa.K;OK/. Then the sequence of maps
Qp ! AinfŒ1=p�! OX induces a functorial quasi-isomorphism between analytic cotan-
gent complexes,

Lan
OX=Qp

Š Lan
OX=AinfŒ1=p�

:

Cotangent complex and derived direct image. Now we are able to connect the cotangent
complex with R�� yOX . Our first result is about the truncation of R�� yOX :

Theorem 7.2.3. Let X be a smooth rigid space over Spa.K/. Then there exists a functo-
rial quasi-isomorphism in the derived category of OX -modules,

Lan
OX=AinfŒ1=p�

.�1/Œ�1� Š ��1R�� yOX :

Proof. To construct the isomorphism above, we will need the analytic cotangent com-
plex for the complete pro-étale structure sheaf Lan

yOX=R
, where .R; RC/ is either

.AinfŒ1=p�;Ainf/ or .Qp;Zp/. We will first work at the presheaf level and do the con-
struction for affinoid perfectoid rings, and then show that the cotangent complex is in fact
a twist of the complete structure sheaf.

Step 1: Calculation at affinoid perfectoid. Denote by Xind the indiscrete site on the cate-
gory of affinoid perfectoid objects in XproKet: the category Xind is the collection of affinoid



Hodge–Tate decomposition for non-smooth spaces 1595

perfectoid objects inXproKet, and the topology is such that every presheaf onXind is a sheaf.
Then there exists a canonical map of sites ı WXproKet!Xind. The inverse image functor ı�1

is an exact functor on abelian sheaves defined by sheafification, and we haveLı�1 D ı�1.
Then we can define the completed structure sheaf yOCind such that for U 2 Xind with

underlying perfectoid space Spa.A;AC/, we have

yOCind.U / D A
C; yOind.U / D A:

Similarly we can define the cotangent complex

Lan
ind; yOC

X
=RC

.U / D lim
�!

A0�A
C

A0 open bounded

yLA0=RC ; Lan
ind; yOX=R

.U / D Lan
ind; yOC

X
=RC

Œ1=p�:

Here the cotangent complexes for formal rings and adic rings are as at the beginning of
the subsection. As a perfectoid algebra .A;AC/ is uniform, we know Aı is bounded in A
[27, Definiton 1.6]. In particular, the open subring AC of Aı is also open bounded, and
we have

Lan
ind; yOC

X
=RC

.U / D yLAC=RC ; Lan
ind; yOX=R

.U / D Lan
A=R

as complexes. We also note that by Proposition 7.2.1, the sequence of sheaves Zp !
Ainf ! yO

C
ind induces a quasi-isomorphism

Lan
ind; yOX=AinfŒ1=p�

Š Lan
ind; yOX=Qp

:

To check this quasi-isomorphism it suffices to check sections at U 2 Xind, since Xind has
only trivial coverings.

Moreover, the map of rings Zp ! OK ! yOCind provides the natural distinguished
triangle

yLOK=Zp
y̋OK

yOCind !
yLind; yOC

X
=Zp
! yLind; yOC

X
=OK

:

Since the mod p reduction of OK ! yO
C
ind is relatively perfect, and yLOK=Zp is isomorphic

to the Breuil–Kisin twist OK¹1ºŒ1� of weight �1, we have the quasi-isomorphism

yLind; yOC
X
=Zp
Š yOCind¹1ºŒ1�:

So by inverting p, we have

Lan
ind; yOX=Qp

Š yOind.1/Œ1�: (�)

The same is true when we replace Qp by AinfŒ1=p�.

Step 2: Pro-étale cotangent complex. Now we go back to the pro-étale topology. As
above, let .R; RC/ be either .AinfŒ1=p�; Ainf/ or .Qp; Zp/. We first observe that the
definition of (integral) analytic cotangent complex can be extended to the whole pro-
étale site XproKet, which is the complex of sheaves given by sheafifying the complex of
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presheaves that assigns to each object U with underlying perfectoid space Spa.A; AC/
the objects

lim
�!

A0�A
C

A0 open bounded

yLA0=RC ; lim
�!

A0�A
C

A0 open bounded

yLA0=RC Œ1=p�:

We denote those two as
Lan
yO
C

X
=RC

; Lan
yOX=R

:

Here we note that the definition is compatible with the one for rigid spaces (see the dis-
cussion at the beginning of §7.1). In particular, by the functoriality of the construction,
the canonical map of ringed sites � W XproKet ! XKet induces a natural map

Lan
X=R ! R��L

an
yOX=R

:

Moreover, as the collection of affinoid perfectoid open subsets forms a base for XproKet,
the pro-étale cotangent complex is equal to the inverse image of the indiscrete cotangent
complex along ı W XproKet ! Xind, i.e.

Lan
yOX=R

D ı�1Lan
ind; yOX=R

:

Now we take the (derived) inverse image ı�1 for the quasi-isomorphism .�/ to get the
quasi-isomorphism

Lan
yOX=R

Š ı�1 yOind.1/Œ1�:

On the other hand, for affinoid perfectoid U (with underlying perfectoid space
Spa.A;AC/) in XproKet, the rings of sections of complete structure sheaves at U are known
to be [28, Lemma 4.10]

yOCX .U / D A
C; yOX .U / D A:

In this way, the inverse images of indiscrete structure sheaves are identified with the com-
plete structure sheaves over the pro-étale site

ı�1 yOCind D
yOCX ; ı�1 yOind D yOX :

Thus we get the natural quasi-isomorphism

Lan
yOX=R

Š yOX .1/Œ1�: (��)

Step 3: Comparison. Finally, we consider the statement of the theorem. The map � W
.XproKet; yOX /! .X;OX / between ringed sites induces a morphism of cotangent complexes

Lan
OX=Ainf

! R��L
an
yOX=Ainf

:

By Corollary 7.2.2 and the natural quasi-isomorphism Lan
yOX=Ainf

D yOX .1/Œ1� in Step 2, the
map above is isomorphic to

Lan
OX=Qp

! R�� yOX .1/Œ1�:
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So in order to show the quasi-isomorphism in Theorem 7.2.3, it suffices to show the quasi-
isomorphism of

Lan
OX=Qp

.�1/Œ�1�! ��1R�� yOX : (���)

Now, since the statement is local on X , we may assume X is affinoid, admitting an
étale morphism to Tn. Then both sides above are invariant under étale base change: the
right side is a complex of étale coherent sheaves, while the base change of the left side is
given by the vanishing of the relative cotangent complex for an étale map.7 So it suffices
to handle the case when X D Tn D Spa.KhT˙1i i;OKhT

˙1
i i/. But notice that the map

.���/ can be given by inverting p at the sequence

yL
OK hT

˙1
i
i=Zp
¹�1ºŒ�1�! ��1R�� yO

C

Tn ;

where ¹�1º is the Breuil–Kisin twist of weight 1. In this way, by the local computation in
[3, Proposition 8.15], the map above induces a quasi-isomorphism

yL
OK hT

˙1
i
i=Zp
¹�1ºŒ�1�! ��1L��p�1R��

yOCTn ;

which after inverting p induces the quasi-isomorphism of analytic cotangent complexes

Lan
Tn=Qp

.�1/Œ�1�! ��1R�� yOTn :

Hence we are done.

Corollary 7.2.4. AssumeX is a smooth rigid space overK that admits a flat liftX 0 along
BCdR=�

2 ! K. Then the lift X 0 induces a splitting of ��1R�� yOX into a direct sum of its
cohomology sheaves in the derived category.

Moreover, the splitting is functorial with respect to the lift X 0.

Proof. By Theorem 7.2.3, we have the functorial quasi-isomorphism

��1R�� yOX D Lan
X=AinfŒ1=p�

.�1/Œ�1�:

7This follows from the distinguished triangle Lf �Lan
Tn=Qp

! Lan
X=Qp

! Lan
X=Tn and the van-

ishing of Lan
X=Tn [14, Theorem 7.2.42], where f W X ! Tn is an étale morphism. Here we note

that as neither X or Tn is topologically of finite type over Qp , we cannot apply [14] to get the tri-
angle directly. To see the triangle, we first notice that as X D Spa.B;Bı/ and T D Spa.A;Aı/ are
reduced and topologically of finite type over K, by Remark 7.1.1 the analytic cotangent complex
can be naturally computed as follows:

Lan
X=Qp

D yLBı=Zp Œ1=p�; Lan
Tn=Qp

D yLAı=Zp Œ1=p�; Lan
X=Tn D

yLBı=Aı Œ1=p�:

Moreover, the pullbackLf �Lan
Tn=Qp

, which is equal toB ˝L
A
.yLAı=Zp Œ1=p�/, is naturally isomor-

phic to .Bı ˝L
Aı

LAı=Zp /
^Œ1=p�. So the distinguished triangle we want can be given by taking the

derived p-completion and then inverting p at the distinguished triangle for the algebraic cotangent
complex of Zp ! Aı ! Bı.
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Moreover, Lemma 7.1.6 about truncation provides a functorial quasi-isomorphism

Lan
X=AinfŒ1=p�

.�1/Œ�1� D .���1.Lan
X=.AinfŒ1=p�=�2/

//.�1/Œ�1�:

Finally, by Proposition 7.1.4, the right side splits into the direct sum of cohomology
sheaves if X can be lifted to a flat adic space over S 0 D Spa.AinfŒ1=p�=�

2;Ainf=�
2/ D

Spa.BCdR=�
2;Ainf=�

2/, such that the splitting in Proposition 7.1.4 is functorial with respect
to the lift. So we get the result.

We then notice that the splitting of the derived direct image is in fact true without the
truncation.

Proposition 7.2.5. Assume X is a smooth rigid space over K that admits a flat lift X 0

over BCdR=�
2. Then the lift X 0 induces a splitting of the derived direct image R�� yOX intoL

i�0�
i
X=K

.�i/Œ�i � in the derived category.
Here the isomorphism is functorial with respect to lifts, in the sense that when f 0 W

X 0 ! Y 0 is a BCdR=�
2 morphism between lifts of a map f W X ! Y of two smooth rigid

spaces overK, then the induced map R�� yOY ! Rf�R�� yOX is compatible with the map
between the direct sums of differentials.

Proof. By Corollary 7.2.4 above, the given lift to BCdR=�
2 induces an OX -linear quasi-

isomorphism
OX Œ0�˚�

1
X=K.�1/Œ�1�! ��1R�� yOX :

It is functorial in the sense that if f 0 W X 0 ! Y 0 is a BCdR=�
2-morphism between lifts of a

map f W X ! Y of smooth rigid spaces over K, then the induced map

��1R�� yOY ! Rf��
�1R�� yOX

is compatible with the section maps

OY Œ0� // Rf�OX Œ0�

��1R�� yOY

sY

OO

// Rf ���1R�� yOX

Rf�.sX /

OO

which are induced by the functoriality in Proposition 7.1.4, Lemma 7.1.6, and Theorem
7.2.3.

We compose the decomposition with ��1R�� yOX ! R�� yOX , and get

�1X=K.�1/Œ�1�! R�� yOX :

Here R�� yOX is a commutative algebra object in the derived category D.OX /. Moreover,
as in [11], the above map can be lifted to a canonical mapM

i�0

�iX=K.�i/Œ�i �! R�� yOX (�)
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of commutative algebra objects in the derived category. This can be constructed as fol-
lows: For each i � 1, the quotient map .�1

X=K
/˝i !�i

X=K
admits a canonical OX -linear

section si given by

!1 ^ � � � ^ !i 7!
1

nŠ

X
�2Si

sgn.�/!�.1/ ˝ � � � ˝ !�.i/:

This allows us to give a canonical OX -linear map from �i
X=K

.�i/Œ�i � to R�� yOX , by the
diagram

.�1
X=K

.�1/Œ�1�/
˝L

OX
i // .R�� yOX /

˝L
OX

i

��

�i
X=K

.�i/Œ�i �

si

OO

// R�� yOX

Here the right vertical map is the multiplication induced from that of yOX . We note that
since X is smooth over K, the derived tensor product of �1

X=K
over OX degenerates into

the usual tensor product. Moreover, by construction the total map
L
i si is multiplicative

under wedge products.
Finally, it suffices to show that the isomorphism for the truncation ��1 can be extended

to the map .�/ above. When X is of dimension 1, since �i
X=K

is zero for i � 2, we
are done. In general, by taking open subsets if necessary we may assume X is affinoid
and admits an étale map from a closed unit disc BnK over K. Here BnK admits a natural
lift Bn

BCdR=�
2
, and by its smoothness over BCdR=�

2 we can lift BnK!X to an étale morphism

Bn
BCdR=�

2
! X 0. Then as the map .�/ commutes with étale base change, it suffices to show

this for the closed unit disc BnK with its canonical lift Bn
BCdR=�

2
. Finally, notice that both

sides of .�/ admit the Künneth formula for products (the Künneth formula for pro-étale
cohomology can be found in [3, Proposition 8.14]), we thus deduce the isomorphism of
.�/ from the curve case.

7.3. Simplicial generalizations

We now generalize results in the past two subsections to simplicial cases.

Simplicial sites and cohomology. First we recall briefly the simplicial sites. The general
discussion can be found in [33, Chapter 09VI].8

Consider a non-augmented simplicial object of sites ¹Ynº: for each nondecreasing
map � W Œn�! Œl � in�, where Œn� (resp. Œl �) is the totally ordered set of nC 1 (resp. l C 1)
elements, there exists a morphism of sites u� W Yl ! Yn satisfying the commutativity of

8We mention that the discussion of the simplicial sites and cohomology in our article might
become simpler if we use the language of infinity categories, as the latter behave better than the
ordinary derived category when we consider a diagram of derived objects.
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diagrams induced from �. Then we can define its associated non-augmented simplicial
site Y�, following the definition of Ctotal in [33, Tag 09WC]. An object of Y� is defined
as an object Un 2 Yn for some n 2 N, and a morphism .�; f / W Ul ! Vn is given by
a map � W Œn� ! Œl � together with a map of objects f W Ul ! u�1� .Vn/ in Yl . To give
a covering of U 2 Yn means to specify a collection of Vi 2 Yn such that ¹Vi ! U º is
a covering in the site Yn. It can be checked that the definition satisfies the axioms of a
Grothendieck topology. Moreover, by allowing n to include the number�1, we can define
the augmented simplicial site Y�. Here we remark that unless specifically mentioned, a
simplicial site or a simplicial object in our article is always assumed to be non-augmented.
Similarly, by replacing � by the finite category ��m and assuming n � m, we get the
definition of the m-truncated simplicial site Y�.

From the definition above, in order to give a (pre)sheaf on Y�, it is equivalent to give
a collection of (pre)sheaves F n on each Yn, and for any map � W Œn�! Œl � in the index
category, to specify a map of sheaves F n ! u��F

l over Yn that is compatible with
arrows in �. This allows us to define the derived category D.Y�/ of abelian sheaves
on Y�.

We could also define the concept of simplicial ringed sites, which consist of pairs
.Y�;OY�/, with Y� being a simplicial site and OY� being a sheaf of rings on Y�, assuming
u� W .Yl ;OYl /! .Yn;OYn/ are maps of ringed sites.

Remark 7.3.1. On the level of the derived category, the categoryD.Y�/ is not equivalent
to the category where objects are given by specifying one in each D.Yn/ together with
natural boundary maps, unless we replace derived categories by derived infinity categories
and also consider higher morphisms. This is the main reason why we need to reconstruct
many objects at the simplicial level in this section, instead of using the known results for
single site or space directly. The essential difference is that an object at the simplicial
level has much stronger functoriality than a collection of objects over each individual
space.

From the construction above, it is clear that there exists a map of sites Y� ! Yn. The
pushforward functor along this map is the restriction functor, sending the collection of
sheaves .Fl /l to its n-th component Fn, and it is exact [33, Tag 09WG] for sheaves of
abelian groups. Here is a useful vanishing criterion for objects in the derived category
DC.Y�/ of a simplicial site.

Lemma 7.3.2. Let K be an object in the derived category DC.Y�/ of an m-truncated
simplicial site Y� for m 2 N [ ¹1º. Then K is acyclic if and only if for each n � m, the
restriction KjYn in DC.Yn/ is acyclic.

Proof. If K is acyclic, then since the restriction functor is exact, KjYn is also acyclic.
Conversely, assume KjYn is acyclic for each integer n � m. If K is not acyclic, then

sinceK lives inDC.Y�/, we may assume i is the least integer such that the i -th cohomol-
ogy sheaf H i .K/ 2 Ab.Y�/ is non-vanishing. Then by definition, there exists n such that
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H i .K/jYn is non-zero. But again by the exactness of restriction,

H i .K/jYn D H i .KjYn/;

and the latter is zero by assumption. So we get a contradiction, and henceK is acyclic.

As a small upshot, we have

Lemma 7.3.3. Let �� W X� ! Y� be a morphism of two m-truncated simplicial sites for
m 2 N [ ¹1º such that for each n � m, the map �n W Xn ! Yn is of cohomological
descent, i.e. the canonical map induced by the adjunction .��1n ; �n�/,

F ! R�n��
�1
n F ;

is a quasi-isomorphism for any F 2 Ab.Yn/. Then �� is also of cohomological descent:
for any abelian sheaf F � on Y�, the counit map of this adjoint pair is a quasi-isomorphism

F � ! R����
�1
� F �:

Proof. Let C be a cone of the map F � ! R����
�1
� F �. It suffices to show the vanishing

of the cone in the derived categoryD.Y�/. Then by the exactness of the restriction functor,
for any n � m the image C jYn in DC.Yn/ is also a cone of

F n
! .R����

�1
� F �/jYn D R�n��

�1
n F n;

which vanishes by assumption. Since both F � and R�����1� F � are lower bounded, the
cone C is also in DC.Y�/ and we can use Lemma 7.3.2 above to get the result.

Derived direct image for smooth simplicial spaces. Next, we use simplicial tools above
to generalize results on cotangent complexes and derived direct images to their simplicial
versions.

Assume f W X� ! Y� is a morphism of (m-truncated) simplicial quasi-compact adic
spaces over a p-adic Huber pair. Then we can define the simplicial analytic cotangent
complex Lan

X�=Y�
as an actual complex of sheaves on the simplicial site X� such that the

n-th term on the adic space Xn is the analytic cotangent complex Lan
Xn=Yn

, defined as
in §7.1. In our applications, we will always assume Y� is a constant simplicial space
associated to T D Spa.R; RC/ for some p-adic Huber pair .R; RC/. We will use the
notation Lan

X�=R
or Lan

X�=T
to indicate that the case is constant.

Here we emphasize that as in the definition of the analytic cotangent complex for
Xn=Yn above, the complex Lan

X�=Y�
is actual, i.e. it is defined in the category of complexes

of abelian sheaves on X�, not just an object in the derived category.
Now letX� be an (m-truncated) simplicial rigid space over Spa.K/. Then we can form

the cotangent complex Lan
X�=AinfŒ1=p�

over AinfŒ1=p�. Moreover we can define the simplicial
differential sheaf �i

X�=K
onX� so that on eachXn, the component of the sheaf is�i

Xn=K
.
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We first generalize the result about the obstruction to lifting to the simplicial case:

Proposition 7.3.4. Let X� be an .m-truncated/ smooth quasi-compact simplicial rigid
space over Spa.K/. Then a flat lift X 0� of X� along BCdR=�

2 ! K induces a splitting of
Lan
X�=AinfŒ1=p�

into the direct sum of its cohomological sheaves OX�.1/Œ1�˚�
1
X�=K

Œ0� in
the derived category. The quasi-isomorphism is functorial with respect to X 0�.

Proof. This is a combination of Proposition 7.1.4 and Lemma 7.1.6. We first notice that
the sequence of maps

X� ! S 0� D Spa.AinfŒ1=p�=�
2/� ! S� D Spa.AinfŒ1=p�/�

induces a map
Lan
X�=AinfŒ1=p�

! Lan
X�=S 0

:

But by the proof of Lemma 7.1.6 and the vanishing Lemma 7.3.2, the complex
Lan
X�=AinfŒ1=p�

lives only in degrees �1 and 0, and is isomorphic to the truncation of Lan
X�=S 0

at ���1. So we reduce ourselves to considering the splitting of Lan
X�=S 0

.
Now assume X� admits a flat lift X 0� over S 0. The lift leads to the cartesian diagram

X� //

��

X 0�

��

S� // S 0�

which induces the simplicial version of the diagram .�/ in the proof of Proposition 7.1.4:

Lan
X 0�=S

0 ˝O
X0�

OX�
// Lan
X�=S

// E

Lan
X 0�=S

0 ˝O
X0�

OX�
// Lan
X�=S 0

˛� //

OO

Lan
X�=X

0
�

OO

Lan
S=S 0
˝OS OX�

OO

Lan
S=S 0
˝OS OX�

ˇ�

OO

The vanishing of E boils down to the vanishing of EjXn by Lemma 7.3.2, which is true
by assumption and Proposition 7.1.4. So we get a section map ˇ�1� ı ˛�, which splits
Lan
X�=S 0

into the direct sum of Lan
X�=S

and Lan
S=S 0
˝OS OX� in the derived category. Note

that since X� is smooth, the cotangent complex Lan
X�=S

is �1
X�=K

Œ0�, while the truncation
���1Lan

S=S 0
˝OS OX� is OX�.1/Œ1�. Thus we get the result.

Finally, the quasi-isomorphism is functorial with respect to X 0�, since the big diagram
above is functorial with respect to lifts, as in the proof of Proposition 7.1.4.

We now try to connect the simplicial version of the cotangent complex with the
derived direct image of the completed structure sheaves.
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Let X� be an (m-truncated) simplicial quasi-compact rigid space over K. It induces
the following commutative diagram of topoi of simplicial sites, as a simplicial version of
the diagram in Section 4:

Sh.X�proKet/
�� // Sh.X�Ket/

Sh.PerfvjX˘� /
˛� //

��

OO

Sh.X�Keh/

��

OO

We then define the complete pro-étale structure sheaf yOX� to the pro-étale simplicial
siteX�proKet, by assigning yOXn to the pro-étale siteXn proKet. Similarly we define the untilted
complete structure sheaf yOv on the site PerfvjX˘� . Here we notice that the sheaf yOv satisfies
cohomological descent (§7.4) along the canonical map �� W Sh.PerfvjX˘� /! Sh.X�proKet/,
by Lemma 7.3.3 and comparison results (Proposition 3.2.4). This leads to the equality

R��� yOX� D R���R˛��
yOv:

The restriction of this equality to each Xn is the one in Section 4.
Define simplicial Keh-sheaves �i

Keh� of differentials on X�Keh such that on each Xn Keh,
the component of the sheaf is �i

Keh. By the exactness of the restriction functor and the
discussion in Section 4,

Rj˛�� yOv D �
j

�Keh.�j /:

When Xn is smooth over K for each n, we have

Rj �� yOX� D �
j

X�=K
.�j /

with

Ri���R
j˛�� D

´
0; i > 0;

�
j

X�=K
.�j /; i D 0:

These are consequences of the Keh-differentials for smooth rigid spaces (Theorem 4.0.2).

Proposition 7.3.5. Let X� be an m-truncated simplicial smooth quasi-compact rigid
space over Spa.K/. Then there exists a canonical quasi-isomorphism

��1R��� yOX� Š Lan
X�=AinfŒ1=p�

.�1/Œ�1�:

The quasi-isomorphism is functorial with respect to X�.

Proof. The proposition is a simplicial version of Theorem 7.2.3.
We first notice that the map �� W XproKet ! X�Ket of simplicial sites induces a map of

analytic cotangent complexes

Lan
X�=AinfŒ1=p�

! R���L
an
yOX�=AinfŒ1=p�

:

Meanwhile, the triple AinfŒ1=p�!K! yOX� provides a distinguished transitivity triangle

Lan
K=AinfŒ1=p�

˝K
yOX� ! Lan

yOX�=AinfŒ1=p�
! Lan

yOX�=K
;
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where the vanishing of Lan
yOX�=K

follows from Lemma 7.3.2 and Step 3 of the proof of

Theorem 7.2.3. So by combining the above two, we get the map

… W Lan
X�=AinfŒ1=p�

! R��� yOX�.1/Œ1�:

Then we consider the induced map of the i -th cohomology sheaves H i . By the exact-
ness of the restriction functor, the restricted map becomes

H i .Lan
Xn=AinfŒ1=p�

/! H i .R�n� yOXn.1/Œ1�/;

which is an isomorphism for i D 0;�1 by Theorem 7.2.3, and H i .Lan
Xn=AinfŒ1=p�

/ is zero
except i D 0;�1. So by the vanishing of the cone, … induces a quasi-isomorphism

Lan
X�=AinfŒ1=p�

! ���1.R��� yOX�.1/Œ1�/;

which leads to the result by a twist.

Combining Propositions 7.3.5 and 7.3.4, we get a simplicial version of the splitting
for the truncated derived direct image:

Corollary 7.3.6. Assume X� is an m-truncated smooth quasi-compact simplicial rigid
space over K, which admits a flat simplicial lift X 0� to BCdR=�

2. Then the lift X 0�
induces a splitting of ��1R��� yOX� into the direct sum of its cohomology sheaves
OX� Œ0�˚�

1
X�=K

.�1/Œ�1� inD.X�/. The splitting is functorial with respect to the liftX 0�.

Moreover, similar to Proposition 7.2.5, the splitting can be extended without derived
truncations.

Corollary 7.3.7. Assume X� is an m-truncated smooth quasi-compact simplicial rigid
space over K that admits a flat lift X 0� to BCdR=�

2. Then the lift X 0� induces a splitting of
the derived direct image R��� yOX� intoM

i�0

�iX�=K.�i/Œ�i �

in the derived category, which is also isomorphic toM
i�0

R�X��.�
i
�Keh.�i/Œ�i �/:

Proof. By Corollary 7.3.6, we have a quasi-isomorphism

OX� Œ0�˚�
1
X�=K

.�1/Œ�1�! ��1R��� yOX� :

Then by composing with ��1R��� yOX� ! R��� yOX� , similar to the proof of Proposition
7.2.5 we may construct the mapM

i�0

�iX�=K.�i/Œ�i �! R��� yOX� ;
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whose restriction to each Xn is exactly the quasi-isomorphism in Proposition 7.2.5. Thus
by the vanishing of the restriction of the cone, we see the above map is a quasi-isomor-
phism.

Finally, by the smoothness of X�, we get the second direct sum expression.

7.4. Degeneracy in general

We now generalize the splitting of the derived direct image to the general case, with-
out assuming smoothness. Our main tools are cohomological descent and the simplicial
generalizations from the last subsection.

Strong liftability. Before we prove the general degeneracy, we need to introduce a
stronger version of liftability, in order to make use of cohomological descent.

We first give the definition.

Definition 7.4.1. Let X be a quasi-compact rigid space over K. We say X is strongly
liftable if for each non-negative integer n, there exists an n-truncated augmented sim-
plicial map X 0�n ! X 0 of adic spaces over BCdR=�

2, where X 0 and each X 0i are flat
and topologically of finite type over BCdR=�

2, such that the pullback along BCdR=�
2 ! K

induces an n-truncated smooth Keh-hypercovering of X over K.
We call any such augmented simplicial map X 0�n ! X 0 of rigid spaces (or X 0�n for

short) a strong lift of length n.

Example 7.4.2. Let k D OK=mK be the residue field of OK , and fix a section i W k !
OK=p for the canonical surjection OK=p! k (whose existence is guaranteed by the for-
mal smoothness of the perfect field k over Fp [33, Tag 031Z]). This induces an injection
of fields from W.k/Œ1=p� to K by the universal property of the Witt ring. Let K0 be a
subfield of K that is finite over W.k/Œ1=p�, and let X be a rigid space defined over K0.
We then claim that X is strongly liftable.

To see this, we first notice that as the resolution of singularities holds for rigid spaces
over K0, it suffices to show that any such field K0 admits a map K0 ! BCdR=�

2 compat-
ible with the inclusion K0 ! K above. Recall that the ring Ainf is defined as W.OK[/,
where O[

K is the inverse limit lim
 �
x 7!xp

OK=p. By the construction of OK[ and the functo-

riality of the inverse limit and of Frobenius maps, the section i W k ! OK=p induces a
homomorphism k ! OK[ , which is a section of the canonical surjection OK[ ! k. In
this way, thanks to the functoriality of the Witt vector functor, we can lift the section map
to W.k/! Ainf D W.OK[/. As an upshot, we get the composition

W.k/Œ1=p�! AinfŒ1=p�! AinfŒ1=p�=�
2
D BCdR=�

2;

which lifts the map W.k/Œ1=p�! K that we started with. Finally, any finite field exten-
sion K0 of W.k/Œ1=p� is étale over W.k/Œ1=p�, while BCdR=�

2 ! OK is a nilpotent
extension of W.k/Œ1=p�-algebras. Hence K0 admits a map to BCdR=�

2 by étaleness.
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Here we also note that this implies strong liftability when X is defined over a dis-
cretely valued subfield L0 � K that has a perfect residue subfield k0 � k, since any such
L0 is finite over W.k0/Œ1=p�, while the latter is contained in W.k/Œ1=p�.

Example 7.4.3. Another example is the analytification of a finite type algebraic variety,
by the spreading-out technique.

Let Y be a finitely presented scheme over K. By [17, §8.9.1], there exists a finitely
generated Q-subalgebra A in K together with a finitely presented A-scheme Y0 such that
Y0 �Spec.A/ Spec.K/ D Y . As the map A! K factors through the fraction field of A, we
may assumeA is a finitely generated field extension of Q and Y0 is defined overA. Notice
that the transcendental degree of Qp over Q is infinite. So by embedding a transcendental
basis of A over Q into Qp , we may find a finite extension K0 of Qp such that A can
be embedded into K0. In this way, we reduce the case to Example 7.4.2, as Y an can be
defined over a discretely valued subfield K0 of K that has a perfect residue field.

By the upcoming work on spreading-out of rigid spaces by Conrad–Gabber [9], it
turns out that X is strongly liftable if it is a proper rigid space over K.

Proposition 7.4.4. Let X be a proper rigid space over K. Then X is strongly liftable.

Proof. We follow the spreading-out technique for rigid spaces by Bhatt–Morrow–Scholze
[3] and study the structure of the deformation ring. However, instead of working on one
rigid space, we need to work with a finite diagram of proper rigid spaces. Similar to
Example 7.4.2, we fix a section i W k D OK=mK ! OK=p of the canonical surjection
OK=p ! k, which induces an inclusion of p-adic fields W.k/Œ1=p�! K.

Let n be any non-negative integer. By the resolution of singularities (Theorem 2.4.7),
we can always construct an n-truncated smooth Keh-hypercovering X�n ! X over K,
where each Xi is proper over K [7, Section 4]. Then it suffices to show that there exists a
proper Keh-hypercovering X�n! X , together with a smooth rigid space � over a subfield
K0 D W.k/Œ1=p� of K, such that the n-truncated simplicial diagram X�n ! X can be
lifted to a diagram of properK0-rigid spaces X�n!X over � . This is because the nilpo-
tent extension BCdR=�

2!K isK0-linear, so by the smoothness of � , the map Spa.K/! �

can be lifted to a map Spa.BCdR=�
2/! � . Thus the base change of X�n along this lifting

does the job.
Now we prove the statement, imitating [3, proof of Proposition 13.15 and Corollary

13.16]. We first deal with the formal lifting over the integral base. Let W D W.k/ be
the ring of Witt vectors for the residue field of K, and CW be the category of artinian,
complete local W -rings with the same residue field k. We first make the following claim:

Claim 7.4.5. There exists an n-truncated smooth éh-hypercovering X�n ! X over K
that admits a lift to an n-truncated simplicial diagram of p-adically complete, topologi-
cally finite type OK-formal schemes

XC�n ! XC:
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Proof. Fix an OK-integral model XC of X , whose existence is guaranteed by Ray-
naud’s result on the relation between rigid spaces over K and admissible formal schemes
over OK . We now construct inductively the required covering and the integral lift, follow-
ing the idea of split hypercoverings (see [7, Section 4], or [33, Tag 094J] for discussions).

By the local smoothness of the Keh-topology (Corollary 2.4.8), pick a smooth Keh-
covering X0 ! X that is proper over X . By Raynaud’s result, there exists a morphism
XC0 ! XC of OK-formal schemes that lifts X0 ! X . This is the lift of the face map of
the simplicial object at degree 0.

Assume we already have an n-truncated smooth proper Keh-hypercovering X�n ! X

together with the integral lift XC�n ! XC over OK . Then recall from [7, Theorems 4.12,
4.14] that in order to extend X�n ! X to a smooth proper n C 1-truncated hypercov-
ering whose n-truncation is the same as X�n, it is equivalent to find a smooth proper
Keh-covering of rigid spaces

N ! .cosknX�n/nC1:

Under the construction, the degree nC 1 term of the resulting nC 1-truncated hypercov-
ering will be

XnC1 WD N qN
0;

for N 0 being some finite disjoint union of irreducible components of Xi .0 � i � n/
(which is also smooth and proper over K). Such a smooth proper Keh-covering N exists
by the local smoothness of XKeh. Furthermore, while we form this nC 1-hypercovering of
the rigid spaces, we also want to find the integral lift

NC ! .cosknXC�n/nC1

of the morphism N ! .cosknX�n/nC1. To do this, we use [7, Theorem 4.12] and do the
same formal construction for NC and XC�n ! XC as above, and extend the latter to an
nC 1-truncated simplicial formal schemes

XC�nC1 ! XC;

where XCnC1 D NC q N 0C is an OK-model of XnC1. In this way, the generic fiber of
XC�nC1!XC is an nC 1-simplicial object overX whose n-truncation isX�n!X , and
whose .nC 1/-th term is XnC1 D N qN 0, which is in fact a smooth proper Keh-covering
of .cosknX�n/nC1. Hence by the induction hypothesis we are done.

We then fix such an Keh-hypercoveringX�n!X with its integral modelXC�n!XC as
in the claim. Define the functor of deformations of the special fiber XC

�n;k
WD XC�n �W k,

Def W CW ! Set;

which assigns to each R 2 CW the isomorphism classes of lifts of the digrams
XC
�n;k
! XC

k
along R ! k, such that each lifted rigid space is proper and flat over R.

This functor is a deformation functor, and admits a versal deformation: to see this, we first
note that as in [33, Tag 0E3U], the functor Def satisfies the Rim–Schlessinger condition
[33, Tag 06J2]. Then we make the following claim:
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Claim 7.4.6. The tangent space TDef WD Def .kŒ��=�2/ of the deformation functor is of
finite dimension.

Proof of Claim. Notice that there is a natural (forgetful) functor from Def to the deforma-
tion functor of the morphism Def Ys!Yt , where Ys is the disjoint union of all the sources
of arrows in the diagram XC

�n;k
, and Yt is the disjoint union of all of those targets. This

induces a map between tangent spaces

TDef ! TDef Ys!Yt :

By construction, both Ys and Yt are finite disjoint unions of proper rigid spaces, which
are then proper over k. So from [33, Tag 0E3W], we know the tangent space TDef Ys!Yt
is finite-dimensional. Furthermore, assume D1 and D2 are two lifted diagrams over kŒ��.
Then the difference ofD1 andD2 is the collection of k-derivations O

X
C

t.˛/;k

! ˛�OXC
s.˛/;k

satisfying certain k-linear relations so that those arrows in D1 and D2 commute. In par-
ticular, this consists of a subspace of Derk.OYt ; u�OYs /DHomYt .�

1
Yt=k

; u�OYs /, which
by properness is again finite-dimensional. In this way, both the kernel and the target of
the map TDef ! TDef Ys!Yt are of finite dimension, thus so is the TDef .

By the above claim and [33, Tag 06IW], the deformation functor Def admits a versal
object. In other words, there is a complete artinian localW -algebraR with residue field k,
and a diagram XR;�n ! XR of proper flat formal R-schemes deforming XC

�n;k
! XC

k
,

such that the induced classifying map

hR WD HomW .R;�/! Def

is formally smooth. Moreover, by [3, proof of Proposition 13.15], we can take the ind-
completion of CW and extend Def to a bigger category, which consists of local zero-
dimensional W -algebras with residue field k (not necessarily noetherian). The category
includes OK=p

m, and since XC�n ! XC is an OK-lifting of XC
�n;k
! XC

k
, we see the

diagram can be obtained by the base change of the universal family XR;�n ! XR along
R! OK D lim

 �m
OK=p

m.
Finally, we invert p at the diagram

XC�n
//

��

Spf.OK/

��

XR;�n
// Spf.R/

The diagram X�n ! X can then be obtained from a truncated simplicial diagram
XR;�nŒ1=p�!XŒ1=p� of properK0-rigid spaces that are flat over � D Spa.RŒ1=p�;R/.
By shrinking S to a suitable locally closed subset if necessary, we may assume S is
smooth over K0. So we are done.
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Cohomological descent. Another preparation we need is hypercoverings and cohomolog-
ical descent.

Assume we have a non-augmented simplicial site Y� (truncated or not) and another
site S . Let ¹an W Yn ! Sº for n � 0 be a collection of morphisms to S that is compat-
ible with face maps and degeneracy maps in Y�. Then we can define the augmentation
morphism a W Sh.Y�/! Sh.S/ between the topoi of Y� and S , such that for an abelian
sheaf F � on Y�, we have

a�F
�
D ker.a0�F 0 � a1�F

1/:

It can be checked that the derived direct image Ra� can be written as the composition

Ra� D s ıRa��;

where a� W Y� ! S� is the morphism from Y� to the constant simplicial site S� asso-
ciated to S , and s is the exact functor that takes a simplicial complex to its associated
cochain complex of abelian groups. Here we say that the augmentation a D ¹Yn ! Sº

is of cohomological descent if the counit map induced by the adjoint pair .a�1; a�/ is a
quasi-isomorphism

id! Ra�a
�1:

The augmentation allows us to compute the cohomology of sheaves on S by the spec-
tral sequence associated to the simplicial site.

Lemma 7.4.7 ([33, Tag 0D7A]). Let Y� be a simplicial site, or anm-truncated simplicial
site for m � 0, and let a D ¹an W Yn ! Sº be an augmentation. Then for K 2 DC.Y�/,
there exists a natural spectral sequence

E
p;q
1 D Rqap�.KjXp / H) RpCqa�K;

which is functorial with respect to Y� ! S and K.
Moreover, if we assume that Y� is non-truncated and the augmentation a is of cohomo-

logical descent, and if L 2DC.S/, then by applying the spectral sequence toK D a�1L
we get a natural spectral sequence

E
p;q
1 D Rqap�a

�1
p L H) HpCq.L/:

We need another variant of this lemma in order to use truncated hypercoverings to
approximate the cohomology of S .

Proposition 7.4.8. Let � W Y�m! S be anm-truncated simplicial hypercovering of sites
for m 2 N. Then for any F 2 Ab.S/, the cone of the natural adjunction map

F ! R���
�1F

lives in cohomological degrees � m � 1.
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Proof. Let z� W coskm Y�m! S be them-th coskeleton of � W Y�m! S . We use the same
symbols coskm Y�m and Y�m to denote their associated simplicial sites. Then there exists
a natural map of sites

� W coskm Y�m ! Y�m:

Those two augmentations induce maps of topoi

z� W Sh.coskm Y�m/! Sh.S/; � W Sh.Y�m/! Sh.S/:

By construction, we have
z� D � ı �

as maps of topoi. From this, for F 2 Ab.S/, we get the commutative diagram

F //

##

Rz��z�
�1F

R���
�1F

88

Now let C be a cone of F ! R���
�1F , and let zC be a cone of F ! Rz��z�

�1F .
Then the above diagram induces a commutative diagram of long exact sequences

� � � // H i .F / //

��

Ri z��z�
�1F //

��

H i . zC/

��

// � � �

� � � // H i .F / // Ri���
�1F // H i .C/ // � � �

By Lemma 7.4.7 and the commutative diagram, we have a map of the first pages of spec-
tral sequences

Rq z�p�z�
�1
p F +3

��

RpCq z��z�
�1F

��

Rq�p��
�1
p F +3 RpCq����1F

But note that since z� is them-coskeleton of �, when pC q � m the formation Rq z�p�z��1p
is the same as Rq�p���1p . So we get the isomorphism

RpCq z��z�
�1F Š RpCq���

�1F ; p C q � m:

Moreover, since � is an m-truncated hypercovering, by Deligne the augmentation z� of
the coskeleton satisfies cohomological descent. So the map F ! Rz��z�

�1F is a quasi-
isomorphism. In this way, the map H i .F /! Ri���

�1F is an isomorphism for i � m,
and hence C lives in D�m�1.S/.
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The degeneracy theorem. Now we are able to state and prove our main theorem about
degeneracy.

Theorem 7.4.9. Let X be a quasi-compact, strongly liftable rigid space of dimension n
over K, and let the augmented truncated simplicial space X 0�m be a strong lift of X of
length m � 2nC 2. Then the strong lift X 0�m induces a quasi-isomorphism

…X 0�m W R��
yOX !

nM
iD0

R�X�.�
i
Keh.�i/Œ�i �/:

The quasi-isomorphism…X 0�m is functorial among strong lifts X 0�m of rigid spaces of
length m � 2nC 2, in the sense that a map of m-truncated strong lifts X 0�m ! Y 0�m of
f W X ! Y will induce the following commutative diagram in the derived category:

Rf�R�� yOX

Rf�.…X0�m
/

//
Ldim.X/
iD0 Rf�R�X�.�

i
Keh.�i/Œ�i �/

R�� yOY

…
Y 0�m

//

OO

Ldim.Y /
iD0 R�Y �.�

i
Keh.�i/Œ�i �/

OO

where the right vertical map is induced by the functoriality of the Kähler differential.

Proof. We may assume X�m is an m-truncated smooth proper Keh-hypercovering of X
that admits a lift X 0�m to a simplicial flat adic space over BCdR=�

2. Denote by � W X�! X

the augmentation map. Then X�m is also an m-truncated v-hypercovering, and we have
a natural map

yOv ! R�v��
�1 yOv Š R�v� yO�v;

whose cone has cohomological degree m � 1 � 2nC 1 by Proposition 7.4.8.
We then apply derived direct image functors, and get a natural map

R�� yOX DR�X�R˛� yOv!R�X�R˛�R�v� yO�v DR��R���R˛�� yO�v DR��R��� yOX� :

Here the cone of the map lives in degree � m � 1 � 2nC 1.
Moreover, by Corollary 7.3.7, the strong lift X 0�m induces a functorial (among strong

lifts) quasi-isomorphism

R��� yOX� !
M
i�0

R���.�
i
�Keh.�i/Œ�i �/:

So we get the distinguished triangle

R�� yOX ! R��R���.�
i
�Keh.�i/Œ�i �/! C1; (1)

where C1 2 D
�2nC1.X/.
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Moreover, by Corollary 7.3.7 and Proposition 7.4.8 again the truncated Keh-hypercov-
ering � induces a natural mapM

i�0

R��.�
i
Keh.�i/Œ�i �/!

M
i�0

R��.R�Keh��
�1
Keh �

i
Keh.�i/Œ�i �/

D

M
i�0

R��R���.�
i
�Keh.�i/Œ�i �/; (2)

whose cone C2 lives in degrees � m � 1 � 2nC 1.
Finally, by combining .1/ and .2/, we get the following diagram that is functorial with

respect to X 0�m, with both horizontal and vertical triangles distinguished:

C2

R�� yOX // R��R���.�
i
�Keh.�i/Œ�i �/

//

OO

C1

L
i�0R��.�

i
Keh.�i/Œ�i �/

OO

But since dim.X/ D n, by the cohomological boundedness (Corollaries 6.0.4 and 6.0.5),
both R�� yOX and

L
i�0 R��.�

i
Keh.�i/Œ�i �/ live in degrees � 2n. Thus by taking the

truncation ��2n, we get the quasi-isomorphism

R�� yOX
�
�! ��2n.R��R���.�

i
�Keh.�i/Œ�i �//

�
 �

nM
i�0

R��.�
i
Keh.�i/Œ�i �/: (3)

In this way, by taking…X 0�m to be the quasi-isomorphism induced from .3/, we are done.

Corollary 7.4.10. AssumeX is a quasi-compact rigid space overK that is either defined
over a discretely valued subfield K0 of a perfect residue field, or proper over K. Then we
have a non-canonical decomposition

R�� yOX Š

dim.X/M
iD0

R�X�.�
i
Keh.�i/Œ�i �/:

In particular, the éh-proét spectral sequence .Theorem 1.2.1/ degenerates at theE2-page.

7.5. Finiteness revisited

In this subsection, we use the degeneracy of the derived direct image R�� yOX to improve
the cohomological boundedness results of Section 6.

We first recall some recent work on perfection and almost purity in [4].
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Theorem 7.5.1 ([4, Proposition 8.5, Theorem 10.9]). Let A be a perfectoid ring, and B
a finitely presented finite A-algebra such that Spec.B/! Spec.A/ is finite étale over an
open subset. Then there exists a perfectoid ring Bperfd together with a map B ! Bperfd of
A-algebras that is initial among all A-algebra maps B ! B 0 for B 0 being perfectoid.

Proposition 7.5.2. Let X be a rigid space over K. Then Rn�� yOX vanishes for all
n > dim.X/.

We mention that the proof will not need the Keh-proét spectral sequence developed
above.

Proof. Since this is an étale local statement, and any étale covering of X does not change
dimension, by passing from X to its open subsets if necessary, we may assume X admits
a finite surjective map onto a torus of the same dimension.9

We introduce some notations. Denote byX D Spa.R;RC/ an affinoid rigid space over
Spa.K/. Assume there exists a finite surjective mapX!TnD Spa.KhTi i;OKhTi i/ onto
the torus of dimension n. Let T1n be the natural pro-étale cover of Tn by extracting all
pn-th roots of Ti , and let OT1n D Spa.KhT 1=p1i i;OKhT

1=p1

i i/ be the underlying affinoid
perfectoid space. Then the base change of T1n along the map X ! Tn produces a pro-
étale cover X1 ! X of X . Note that T1n ! Tn is a Zp.1/n-torsor, so we have

R�.XproKet; yOX / D R�cont.Zp.1/
n; R�proKet.X

1; yOX //:

Thanks to the (pro-étale)-v comparison (Proposition 3.2.4), the above is given by

R�.XproKet; yOX / D R�cont.Zp.1/
n; R�v. OX

1;˘; yOv//;

where OX1;˘ is the small v-sheaf associated to the analytic adic space OX1 as in Proposi-
tion 3.1.4. Here we note that since OT1n ;Tn; and X are all affinoid, we can write OX1 as
Spa.BŒ1=p�; B/ for some p-adic complete OK-algebra B .

We then recall that for a perfectoid space Y of characteristic p with a structure map to
the v-sheaf Spd.K/, and any K-analytic adic space Z, we have the bijection [32, Propo-
sition 10.2.3]

HomSpa.K/.Y
]; Z/ D HomSpd.K/.Y;Z

˘/;

where Y ] is the unique untilt (as a perfectoid space over Spa.K/) of Y associated to
the structure map Y ! Spd.K/ (Example 3.1.3). The bijection implies that as a v-sheaf
over Perfv , the small v-sheaf OX1;˘ associated to the adic space OX1 is the pullback of

9To see the existence of such surjections, we may argue as follows: as a unit disc is covered by
finitely many tori, it suffices to find a finite map from an affinoid rigid space X D Spa.A;AC/ onto
a unit disc of the same dimension. Let A0 be a ring of definition of .A;AC/ that is of topologically
finite type over OK . Since A0=mK is a finite type algebra over the residue field k D OK=mK ,
by Noether’s normalization lemma we can find a subalgebra kŒxi � of A0=mK such that A0=mK
is finite over kŒxi �. In this way, by lifting the map to a morphism OKhxi i ! A0, we get a finite
surjective morphism from X to a disc.
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the representable v-sheaf OT1;[n along the map X˘ ! T˘n . On the other hand, given a
perfectoid space Y over Spd.K/ together with the commutative map

Y ] //

��

OT1n

��

X // Tn

since X ! Tn is finite surjective of the same dimensions, Theorem 7.5.1 implies that
there exists a unique map of adic spaces Y ] ! X1perfd D Spa.BperfdŒ1=p�; Bperfd/ that fits
into the commutative diagram

Y ]

!! ((

��

X1perfd
//

��

OT1n

��

X // Tn

Comparing the pullback OX1;˘ with the universal affinoid perfectoid space X1perfd, we see

that the v-sheaf OX1;˘ is isomorphic to the representable v-sheaf X1;[perfd, given by the tilt
of the perfectoid space X1perfd. In particular,

R�v. OX
1;˘; yOv/ D R�v.X

1;[
perfd;

yOv/:

Since the higher v (pro-étale) cohomology of the completed structure sheaf on an affinoid
perfectoid space vanishes, by combining the equalities above we get

R�.XproKet; yO/ D R�cont.Zp.1/
n; BperfdŒ1=p�/:

Finally, we note that the above object lives in cohomological degrees Œ0; n� in the derived
category of abelian groups, for the continuous group cohomology of Zp.1/n can be com-
puted by the Koszul complex of length n [3, §7]. Thus we are done.

Remark 7.5.3. We mention that the cohomological bound given here is stronger than the
one in Corollary 6.0.5.

Remark 7.5.4. In the proof above, the continuous group cohomology computing
R�.XproKet; yOX / can be defined concretely as

.R lim
 �
m

R�disc.Z
n; R�.X1proKet;

yOCX =p
m///Œ1=p�;

where R�disc.Zn; �/ denotes the discrete group cohomology of Zn. Indeed, as X is
affinoid (thus quasi-compact and quasi-separated), it follows that R�.XproKet; yOX / D

.R lim
 �m

R�.XproKet; yO
C

X =p
m//Œ1=p�. Moreover, to compute each R�.XproKet; yO

C

X =p
m/ we
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can use the Čech complex of yOCX =p
m for the pro-étale covering X1 ! X . Finally, as

the covering is a Zp.1/n-torsor, the Čech complex is equivalent to the discrete group
cohomology R�disc.Zn;R�.X1proKet;

yOCX =p
m//, by the isomorphism in [3, Lemma 7.3] for

� D Zp.1/n.

Definition 7.5.5. Let X be a rigid space over K. We say X is locally compactifiable if
there exists an open covering ¹Ui ! Xºi of X such that each Ui admits an open immer-
sion into a proper rigid space Yi over K.

By definition, any proper rigid space over K is locally compactifiable. Moreover, by
Nagata’s compactification in algebraic geometry, any finite type scheme over K admits
an open immersion in a proper scheme over K. So the analytification of any finite type
scheme over K is a locally compactifiable rigid space.

Proposition 7.5.6. LetX be a locally compactifiable rigid space overK. Then the higher
direct image Ri�X��

j

Keh vanishes when i C j > dim.X/.

Proof. Since the vanishing of the higher direct image is a local statement, by taking an
open covering, it suffices to assume X admits an open immersion f W X ! X 0 with
X 0 proper over K. Moreover, by dropping the irreducible components of X 0 that have
higher dimensions, we may assume dim.X 0/ is the same as dim.X/. This is allowed as
the dimension of an irreducible rigid space is not changed when we pass to its open subsets
(see [7, discussion before 2.2.3]).

We then notice that the result is true forX 0: by Proposition 7.5.2, we knowRn�X 0� yOX 0
vanishes for n > dim.X 0/. On the other hand, by the degeneracy in Corollary 7.4.10, each
Ri�X 0��

j

Keh.�j / is a direct summand of RiCj �X 0� yOX 0 . This implies that when i C j >
dim.X 0/, the cohomology sheaf Ri�X 0��

j

Keh vanishes.
Finally, by the coherence proved in Section 6, since Ri�X��

j

Keh is the sheaf asso-
ciated to the presheaf U 7! Hi .UKeh; �

j

Keh/ for open subsets U inside X , the preimage
of Ri�X 0��

j

Keh along f is exactly Ri�X��
j

Keh. In this way, as dim.X/ D dim.X 0/, the
vanishing of Ri�X 0��

j

Keh for i C j > dim.X 0/ implies the vanishing of Ri�X��
j

Keh for
i C j > dim.X/. So we get the result.

8. (Pro-étale)-éh de Rham comparison

In this section, we give a comparison theorem between pro-étale cohomology and Keh
de Rham cohomology for proper rigid spaces that are defined over a discretely valued
subfield. The idea is to use v-hyperdescent for the de Rham period sheaf BCdR and the
simplicial resolution.

Throughout the section, we fix a complete algebraically closed p-adic field K of
rank 1, and a discretely valued subfield K0 that has a perfect residue field, whose associ-
ated ring of Witt vectors is denoted as W .
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Period sheaves for simplicial spaces. We first recall period sheaves in pro-étale topos and
v-topos, following mostly [28, §6] and [30]. Here following the notations in Section 7,
we extend the construction to simplicial rigid spaces directly.

Let X� be a non-augmented simplicial rigid space over K0, truncated or not. Follow-
ing §7.3, we consider the commutative diagram of topoi of simplicial sites below, as a
simplicial version of the diagram in Section 4:

Sh.X�proKet/
�� // Sh.X�Ket/

Sh.PerfvjX˘� /
˛� //

��

OO

Sh.X�Keh/

��

OO

We first extend the construction of various period sheaves in [12, 28] to the simplicial
pro-étale site X�proKet.

Definition 8.0.1. Let X� be a non-augmented simplicial rigid space over K0, truncated
or not. Consider the following sheaves on X�proKet:

(i) The sheaf Ainf WD W. yO
[;C

proKet/, together with a canonical specializing map � W Ainf !

yOCproKet extending that of Ainf ! OK .

(ii) The positive de Rham sheaf

BCdR WD lim
 �

AinfŒ1=p�=.ker.�//n:

with a filtration defined by FiliBCdR D .ker.�//iBCdR.

(iii) The de Rham sheaf
BdR WD BCdRŒ1=t �;

where t is any generator of Fil1BCdR. We equip the de Rham sheaf with the filtration

FiliBdR D
X
t2Z

t�jFiliCjBCdR:

Note that when X� is the truncated simplicial rigid space over ��0, this recovers
the non-simplicial version of the de Rham period sheaf for a rigid space X D X0 as
in [28]. Moreover, the positive de Rham sheaf BCdR is filtered complete, with its i -th graded
factor griBCdR equal to t i yOXproKet D

yOXproKet.i/ (the non-simplicial version is in [28, Proposi-
tion 6.7]).

Next, we recall the definition of the de Rham period sheaf.

Definition 8.0.2. Let X� be a simplicial smooth rigid space over K0. Consider the fol-
lowing sheaves on X�proKet:

(i) The positive structure de Rham sheaf OBCdR is defined as the sheaf associated to the
presheaf sending U 2 Xn;proKet � X�proKet to the direct limit of the rings

ker.�/-adic completion of
�
.OC
Ket .Uj /

y̋W Ainf.U /
�
Œ1=p�/;
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where ¹Uj º is a pro-étale presentation of U as in [28]. It has a filtration given by
FiliOBCdR D .ker.�//iOBCdR.

(ii) Let F be the sheaf OBCdRŒ1=t �, with the filtration

FiliF D
X
j2Z

t�jFiliCjOBCdR;

where t is a generator of Fil1BCdR. The structure de Rham sheaf OBdR is then defined
as the filtered completion of F , namely

OBdR WD lim
 �

F =FiliF :

Here OBdR comes with a natural filtration from F , whose i -th graded factors are
isomorphic to griF .

Here we note that slightly different from [30], we need to apply a filtered completion
at F to get the structure de Rham sheaf OBdR. This is because the sheaf F is not complete
under the filtration (see [12, Remark 3.11]). We also notice that as explained in [28],
locally on XproKet the element t exists, is a non-zero divisor, and is unique up to units. So
the above notions are well-defined.

Comparisons. Let us assume X� is a simplicial smooth rigid space. The sheaf OBCdR over
X�proKet admits a canonical BCdR-linear connection r induced from the differential map of
OX� over X�Ket, with the following diagram commuting:

OBCdR
r // OBCdR ˝��1� OX�

��1� �
1
X�=K0

��1� OX�
d //

OO

��1� �
1
X�=K0

OO

which is functorial among simplicial smooth rigid spaces X� over K0. Moreover, the
above allows us to give a natural tensor product filtration on the sequence OBCdR˝��1� OX�

��1� �
�
X�=K0

by taking the following subsequences:

Fili .OBCdR ˝��1� OX�
��1� �

�
X�=K0

/ D
X
j2Z

Filj .OBCdR/˝��1� OX�
��1� �

�i�j

X�=K0
;

where ��i�j
X�=K0

is the .i � j /-th Hodge filtration defined by the naive truncation of the
de Rham complex. This filtration is compatible with the Hodge filtration on the de Rham
complex, in the sense that the connection above induces the natural map of subcomplexes

��1� Fili��X�=K0 ! Fili .OBCdR ˝��1� OX�
��1� �

�
X�=K0

/:

Furthermore, replacing the complex OBCdR ˝��1� OX�
��1� �

�
X�=K0

by OBdR ˝��1� OX�

��1� �
�
X�=K0

above, we get the natural tensor product filtration compatible with the former:

Fili .OBdR ˝��1� OX�
��1� �

�
X�=K0

/ D
X
j2Z

Filj .OBdR/˝��1� OX�
��1� �

�i�j

X�=K0
:
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Now let us recall the following Poincaré Lemma on the small pro-étale site X�proKet:

Lemma 8.0.3 (Poincaré Lemma, [28, Corollary 6.13], [12, Corollary 2.4.2]). LetX� be a
simplicial smooth rigid space over K0. Then the following natural sequence is an acyclic
filtered complex of BCdR-linear sheaves over X�proKet:

0! BCdR!OBCdR
r
�!OBCdR˝��1� OX�

��1� �
1
X�

r
�! � � �

r
�!OBCdR˝��1� OX�

��1� �
n
X�
! � � � :

Moreover, the same holds when we replace BCdR and OBCdR by BdR and OBdR respectively
(together with their filtrations).

Proof. The non-simplicial version of the result is proved in [28, Corollary 6.13] and [12,
Corollary 2.4.2]. In general, the acyclicity of the natural sequence is checked by applying
the restriction functor, as in Lemma 7.3.2.

We now recall the (pro-étale)-de Rham comparison for proper smooth rigid spaces
from [28].

Let X� be a simplicial smooth rigid space over K0. As discussed above, we can form
the following natural map in the filtered derived category of abelian sheaves over X�Ket:

��X�=K0 ! R���.OBdR ˝��1� OX�
��1� �

�
X�=K0

/:

By taking the derived global section, we get a filtered morphism

R�.X�; �
�
X�=K0

/! R�.X�K;proKet;OBdR ˝��1� OX�
��1� �

�
X�=K0

/:

As the right side is BdR-linear and the map above is compatible with the filtration on BdR,
the above induces a BdR-linear map

R�.X�; �
�
X�=K0

/˝K0 BdR ! R�.X�K;proKet;OBdR ˝��1� OX�
��1� �

�
X�=K0

/:

Moreover, by endowing the complexR�.X�;��X�=K0/˝K0 BdR with the (derived) tensor
product filtration, the above is in fact a filtered map [23, Chapter 5]. The Poincaré Lemma
8.0.3 implies that the right side is filtered quasi-isomorphic to R���BdR. So we get a
filtered morphism

R�.X�; �
�
X�=K0

/˝K0 BdR ! R�.X�K;proKet;BdR/:

Also note that the map is Gal.K=K0/-equivariant. It is in fact a quasi-isomorphism,
assuming properness:

Theorem 8.0.4 ([28, Theorem 7.11]; [12, Theorem 3.2.7]). LetX� be a simplicial proper
smooth rigid space over K0. Then the following two natural maps are Gal.K=K0/-
equivariant filtered quasi-isomorphisms:

R�.X�K;proKet;BdR/

! R�.X�K;proKet;OBdR ˝��1� OX�
��1��X�=K0/ R�.X�; �

�
X�=K0

/˝K0 BdR:
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Proof. The non-simplicial version was checked in [28, Theorem 7.11] and [12, Theo-
rem 3.2.7]. Namely, for each proper smooth rigid space Xn over K0, the natural maps
below are filtered quasi-isomorphisms:

R�.XnK;proKet;BdR/

! R�.XnK;proKet;OBdR ˝��1n OXn
��1��Xn=K0/ R�.Xn; �

�
Xn=K0

/˝K0 BdR:

To get the simplicial version as in the statement, we take the homotopy limit over the sim-
plicial diagram�. The homotopy limits of the left and the middle terms above are exactly
the left and middle terms as in the statement, so it suffices to check that the following
natural map is a filtered quasi-isomorphism:

R�.X�; �
�
X�=K0

/˝K0 BdR ! R lim
 �
Œn�2�

R�.Xn; �
�
Xn=K0

/˝K0 BdR:

This can be checked by looking at the graded pieces of BdR together with the natural
filtered quasi-isomorphism

R lim
 �
Œn�2�

R�.Xn; �
�
Xn=K0

/ Š R�.X�; �
�
X�=K0

/:

So we are done for the simplicial case.

Remark 8.0.5. Here we remark that the above quasi-isomorphisms between cohomology
of simplicial sites also follow from Lemma 7.4.7: it suffices to show that the cone of a map
vanishes, which follows from the spectral sequence in Lemma 7.4.7 and the vanishing of
the cone for each individual Xn.

Moreover, we can in fact replace the de Rham complex by the Keh de Rham complex
to compute the cohomology:

Proposition 8.0.6. Let X� be a proper smooth rigid space over K0. Then the map �� W
X�Keh ! X�Ket of simplicial ringed sites induces a canonical Gal.K=K0/-equivariant fil-
tered quasi-isomorphism

R�.X�Keh; �
�

X�=K0;Keh/˝K0 BdR ! R�.X�K;proKet;BdR/:

Here the filtration on the complexR�.X�Keh;�
�

X�=K0;Keh/˝K0 BdR is defined by the derived
tensor product filtration

Fili .R�.X�Keh; �
�

X�=K0;Keh/˝K0 BdR/ D lim
�!
j2Z

R�.XX� Keh; �
�i�j

X�=K0;Keh/˝K0 FiljBdR:

Proof. By Theorem 8.0.4 and the definition of the filtrations, to prove the above map is a
filtered quasi-isomorphism, it suffices to prove this for the following map on the simplicial
étale site X�Ket:

��X�=K0 ! R�X���
�

X�=K0;Keh:
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Then by the spectral sequence for the filtration given by the naive truncation of the Keh de
Rham complex, it suffices to show that

�iX�=K0 ! R�X���
i
X�=K0;Keh

for i 2 N and smooth X�=K0 is a quasi-isomorphism, which follows from Keh descent
for differential forms (Theorem 4.0.2) and the vanishing criterion in terms of restrictions
(Lemma 7.3.2).

Now we are ready to prove the (pro-étale)-de Rham comparison for non-smooth
proper rigid spaces which generalizes the smooth case in Proposition 8.0.6.

Theorem 8.0.7. Let X be a proper rigid space overK0. Then there exists a Gal.K=K0/-
equivariant filtered quasi-isomorphism

R�.XKeh; �
�

Keh;=K0
/˝K0 BdR ! R�.XKproKet;BdR/:

Proof. We first notice that the pro-étale cohomology of BdR satisfies Keh-hyperdescent.
More precisely, let � W X� ! X be an Keh-hypercovering such that each Xn is built from
blowing-ups and is smooth and proper over K0. Then we claim that the natural filtered
map below is a filtered quasi-isomorphism

R�.XKproKet;BdR/! R�.X�K;proKet;BdR/:

To see this, let us first notice that since BdR is filtered complete, it suffices to check the
quasi-isomorphism for each graded piece

R�.XKproKet; yOX .i//! R�.X�K;proKet; yOX�.i//:

This follows from Keh-hyperdescent (v-hyperdescent) of the cohomology of the pro-étale
structure sheaf in Proposition 3.2.4. On the other hand, similar to the proof of Theorem
8.0.4, the natural map of sites X� ! X induces a filtered quasi-isomorphism

R�.XKeh; �
�

Keh;=K0
/˝K0 BdR ! R�.X�Keh; �

�

X�=K0;Keh/˝K0 BdR:

So the rest follows from the natural filtered quasi-isomorphism as in Proposition 8.0.6,

R�.X�Keh; �
�

X�=K0;Keh/˝K0 BdR ! R�.X�K;proKet;BdR/:

As the quasi-isomorphisms above are all filtered with respect to natural filtrations, by
taking the 0-th graded piece, we recover the Hodge–Tate decomposition for proper rigid
spaces over a discretely valued field.

Moreover, we can use the above to prove the degeneracy of the Keh version of the
Hodge–de Rham spectral sequence. Recall that the naive truncation of ��

Keh gives a filtra-
tion on it, whose associated spectral sequence is

E
p;q
1 D Hq.XKeh; �

p

Keh;=K0
/ H) HpCq.XKeh; �

�

Keh;=K0
/:

This is the Keh version of the Hodge–de Rham spectral sequence.
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Proposition 8.0.8. Let X be a proper rigid space over K0. Then the éh Hodge–de Rham
spectral sequence degenerates at its E1-page.

Proof. As each Hq.XKeh; �
p

Keh;=K0
/ is of finite dimension over K0 (by the properness of X

and Proposition 6.0.1), it suffices to show thatX
pCqDn

dimK0 Hq.XKeh; �
p

Keh;=K0
/ D dimK0 Hn.XKeh; �

�

Keh;=K0
/:

We first take the tensor product of the K0-vector space Hn.XKeh; �
�

Keh;=K0
/ with the field

BdR. Then the comparison Theorem 8.0.7 implies that the right side above is equal to

dimBdR Hn.XKproKet;BdR/:

Note that Hn.XKproKet; BdR/ is a BdR-vector space of finite dimension that has a fil-
tration compatible with that of BdR, induced by the image of Hn.XKproKet; BCdR/ in
Hn.XKproKet;BdR/. By the Primitive Comparison Theorem of [29], we have

Hn.XKproKet;B
C
dR/ Š Hn.XK Ket;Qp/˝Qp BCdR:

In particular, the cohomology group Hn.XKproKet;B
C
dR/ is a �-torsion sheaf and its map to

Hn.XKproKet; BdR/ is injective. Thus Hn.XKproKet; BdR/ is a finite-dimensional BdR-vector
space whose dimension over BdR is equal to rankBCdR

Hn.XKproKet;B
C
dR/. In particular, the

0-th graded piece is gr0BdR.D K/-vector space Hn.XKproKet; yOX / whose K-dimension is
equal to dimBdR Hn.XKproKet;BdR/. In other words, we get the equality

dimBdR Hn.XKproKet;BdR/ D dimK Hn.XKproKet; yOX /:

In this way, by the degeneracy theorem for the derived direct image R�� yOX (Corollary
7.4.10), we get

dimK Hn.XKproKet; yOX / D
X

pCqDn

dimK Hp.XK Keh; �
p

Keh;=K.�p//

D

X
pCqDn

dimK Hp.XKeh; �
p

Keh;=K0
/;

where the last equality follows from the coherence of R���
p

Keh;=K0
on the small étale

site XKet (Proposition 6.0.1).

Remark 8.0.9. As pointed out by David Hansen, the (pro-étale)-Keh de Rham comparison
could be extended to general de Rham local systems (in the sense of [28]) for non-smooth
proper rigid spaces, not just the trivial local system. As the de Rham complex for local sys-
tems over a non-smooth rigid space does not behave very well, we need to consider locally
free BdR sheaves over the v-site, instead of over the pro-étale site. Then the comparison
of v-cohomology and (Keh) de Rham cohomology will follow from the hyperdescent argu-
ment as in Theorem 8.0.7.
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9. Hodge–Tate decomposition for non-smooth spaces

Finally, we give an application of our results to the Hodge–Tate decomposition for non-
smooth spaces, as mentioned in the introduction. Throughout the section, letX be a proper
rigid space over a complete algebraically closed non-archimedean field K over Qp .

Recall that by the Primitive Comparison Theorem [29, Theorem 3.17], we have

Hn.XKet;Qp/˝Qp K D Hn.XproKet; yOX /:

The equality enables us to compute p-adic étale cohomology by studying pro-étale coho-
mology. In particular, by taking the associated derived version, the right side above can
be obtained by

R�.XproKet; yOX / D R�.XKet; R�� yOX /:

Then we recall the following diagram of topoi associated to X in Section 4:

Sh.XproKet/
� // Sh.XKet/

Sh.PerfvjX˘/
˛ //

�

OO

Sh.XKeh/

�X

OO

The (pro-étale)-v comparison (see Proposition 3.2.4) allows us to replace R�� yOX by the
derived direct image R�X�R˛� yOv of the untilted complete v-structure sheaf. So we have

R�.XproKet; yOX / D R�.XKet; R�X�R˛� yOv/ D R�.XKeh; R˛� yOv/:

By the discussion in Section 4, we have

Rj˛� yOv D �
j

Keh.�j /:

So by replacing the above equality in the Leray spectral sequence for the composition of
derived functors, we get

E
i;j
2 D Hi .XKeh; �

j

Keh/.�j / H) HiCj .XproKet; yOX /:

This together with the Primitive Comparison leads to the Hodge–Tate spectral sequence
for a proper rigid space X :

E
i;j
2 D Hi .XKeh; �

j

Keh/.�j / H) HiCj .XKet;Qp/˝Qp K:

The name is justified by the special case of the Keh-differential in Theorem 4.0.2: whenX is
smooth, the higher direct image of the Keh-differential vanishes, and the spectral sequence
degenerates into

E
i;j
2 D Hi .X;�j

X=K
/.�j / H) HiCj .XKet;Qp/˝Qp K;

with each Hi .XKeh; �
j

Keh/ identified with Hi .X;�j
X=K

/.
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Now by the strong liftability of X (Proposition 7.4.4) and the Degeneracy Theorem
7.4.9, the derived direct image R�� yOX is non-canonically quasi-isomorphic to the direct
sum

dim.X/M
iD0

R�X�.�
j

Keh.�j /Œ�j �/:

Replacing R�� yOX by this direct sum, we have

R�.XproKet; yOX / D

dim.X/M
iD0

R�.XKeh; �
j

Keh.�j /Œ�j �/:

So after taking the n-th cohomology, we see that the Hodge–Tate spectral sequence degen-
erates at its E2-page.

Theorem 9.0.1 (Hodge–Tate decomposition). Let X be a proper rigid space over a com-
plete algebraically closed non-archimedean field K of characteristic zero. Then there
exists a natural spectral sequence to its p-adic étale cohomology

E
i;j
2 D Hi .XKeh; �

j

Keh/.�j / H) HiCj .XKet;Qp/˝Qp K:

Here the spectral sequence degenerates at its E2-page, and Hi .XKeh;�
j

Keh/.�j / is a finite-
dimensional K-vector space that vanishes unless 0 � i; j � n.

If X is a smooth rigid space, Hi .XKeh; �
j

Keh/.�j / is isomorphic to Hi .X;�j
X=K

/.�j /,
and the spectral sequence is the same as the Hodge–Tate spectral sequence for a smooth
proper rigid space .in the sense of [29]).

Proof. The cohomological boundedness of Hi .XKeh;�
j

Keh/.�j / is given by Theorem 6.0.2.
The finite-dimensionality follows from the properness of X , the coherence of Ri�X��

j

Keh
(Proposition 6.0.1), and the equality

R�.XKeh; �
j

Keh/ D R�.XKet; R�X��
j

Keh/:

Moreover, when X is smooth, the isomorphism between Hi .XKeh; �
j

Keh/.�j / and
Hi .X;�j

X=K
/.�j / follows from Keh-descent of differential by Theorem 4.0.2.

Finally, when X is defined over a discretely valued subfield K0 of K that has a
perfect residue field, the above spectral sequence is Galois equivariant. In particular,
since K.�j /Gal.K=K0/ D 0 for j ¤ 0, the boundary map from Hi .XKeh; �

j

Keh/.�j / to
HiC2.XKeh;�

j�1

Keh /.�j C 1/ is zero. In this way, the Hodge–Tate spectral sequence degen-
erates canonically, and the p-adic étale cohomology splits into the direct sum of distinct
Hodge–Tate weights

Hn.XKet;Qp/˝Qp K D
M
iCjDn

Hi .XKeh; �
j

Keh/.�j /:

This canonical (Galois equivariant) decomposition is functorial with respect to rigid
spaces defined over K0.
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Theorem 9.0.2 (Hodge–Tate decomposition). Let Y be a proper rigid space over a dis-
cretely valued subfieldK0 ofK that has a perfect residue field. Then the spectral sequence
above degenerates at its E2-page. In fact, we have a Galois equivariant isomorphism

Hn.YK Ket;Qp/˝Qp K D
M
iCjDn

Hi .YKeh; �
j

Keh;=K0
/˝K0 K.�j /:

The isomorphism is functorial with respect to rigid spaces Y over K0.
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