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Abstract. In a smoothly bounded convex domain � � R3, we consider the chemotaxis-Navier–
Stokes model 8̂<̂

:
nt C u � rn D �n � r � .nrc/; x 2 �; t > 0;

ct C u � rc D �c � nc; x 2 �; t > 0;

ut C .u � r/u D �uCrP C nrˆ; r � u D 0; x 2 �; t > 0;

.?/

proposed by Goldstein et al. to describe pattern formation in populations of aerobic bacteria inter-
acting with their liquid environment via transport and buoyancy. Known results have asserted that
under appropriate regularity assumptions on ˆ and the initial data, a corresponding no-flux/no-
flux/Dirichlet initial-boundary value problem is globally solvable in a framework of so-called weak
energy solutions, and that any such solution eventually becomes smooth and classical.

Going beyond this, the present work focuses on the possible extent of unboundedness phenom-
ena also on short timescales, and hence investigates in more detail the set of times in .0;1/ at
which solutions may develop singularities. The main results in this direction reveal the existence of
a global weak energy solution which coincides with a smooth function throughout��E, where E
denotes a countable union of open intervals which is such that j.0;1/ n Ej D 0. In particular, this
indicates that a similar feature of the unperturbed Navier–Stokes equations, known as Leray’s struc-
ture theorem, persists even in the presence of the coupling to the attractive and hence potentially
destabilizing cross-diffusive mechanism in the full system (?).
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1. Introduction

Possible singularities in Navier–Stokes flows with given forces. Questions related to
regularity of weak solutions to the Navier–Stokes equations, especially due to their cen-
tral role in corresponding solution theories also at levels of existence issues, have greatly
stimulated substantial developments in PDE analysis even far beyond fluid-mechanical
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application areas [41]. Although deciding about the possibility of spontaneous singularity
formation is still a major problem in this field, open despite remarkably comprehensive
knowledge e.g. about nonexistence of self-similar blow-up or genericity of smoothness
in various flavors [2, 28, 31], a contribution of great relevance in this regard, noticeably,
even dates back to the first half of the last century: Namely, Jean Leray’s celebrated struc-
ture theorem [24, 41] quite considerably reduces the subset of times at which a given
and widely arbitrary global weak solution to the Dirichlet problem for the incompressible
Navier–Stokes equations in bounded three-dimensional domains � may develop a singu-
larity somewhere in space. More precisely, in its simplest form this theorem states that if
u is any such solution which satisfies a certain energy-type inequality naturally associated
with the Navier–Stokes system, then it is possible to find T > 0 and an at most countable
union of open subintervals of .0; T / which complements a null set of times, and which is
such that u is smooth throughout each of these intervals, and additionally in .T;1/, as an
X -valued mapping, with convenient choices of the function space X compatible with the
regularity of @�, say, X D C 2.�IR3/ in case of smoothly bounded � [24, 32, 37].

Actually made already in 1934, this discovery can be viewed as a starting point for
numerous substantial further developments concerning possible structures and sizes of
corresponding singularity sets, e.g. including estimates for the Hausdorff dimension of
the set of times at which singularities may occur [13], and even considerably detailed
information about genuine spatio-temporal smoothness features in the context of studies
on what is known as partial regularity enjoyed by certain further subclasses of so-called
suitable solutions [2, 30].

Some natural extensions of the above structure theorem address cases in which the
fluid considered is subject to a given external force, and a technique developed in [32]
paved the way toward the conclusion that Leray’s statement in fact remains unchanged in
its essence whenever such a prescribed force is suitably regular [37, Theorem IV.5.5].

In contrast to this, regularity properties of fluid flows seem much less understood in
some biologically significant situations in which the corresponding forces themselves are
unknowns of the system. Such potentially self-enhancing couplings are typically present
in contexts of buoyancy-driven interplay of chemotactically migrating microbial popula-
tions with a surrounding liquid environment, as experimentally found to be of relevance
for pattern generation in certain bioconvection processes [7,36]. Indeed, in the recent few
years several theoretical studies have gathered considerable evidence indicating various
noticeable effects of such chemotaxis-fluid interaction in frameworks of some particular
models accessible to rigorous analysis, including influences of fluid flows on spatial pop-
ulation spreading [18, 19], and even fluid-driven suppression of bacterial aggregation in
the sense of blow-up prevention [14, 20].

Buoyancy-induced fluid forcing in bioconvection processes. Exclusively relying on
the common assumption that the respective velocity field is given, these findings predom-
inantly focus on cases in which any gravitational feedback of microbial masses on fluid
flows can be neglected; if such additional couplings are accounted for, however, much
less information seems available. For instance, in the context of the particular model for
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oxytactic migration of swimming aerobic bacteria, as proposed in [36] according to8̂̂<̂
:̂
nt C u � rn D �n � r � .n�.c/rc/; x 2 �; t > 0;

ct C u � rc D �c � nf .c/; x 2 �; t > 0;

ut C .u � r/u D �uCrP C nrˆ; r � u D 0; x 2 �; t > 0;

(1.1)

predominantly the presence of the source term nrˆ in the Navier–Stokes subsystem
seems lead to substantial challenges already at the level of basic existence theorems.
Indeed, reflecting a bouyancy-induced forcing of the fluid velocity u and associated pres-
sure P by fluctuations in the population density n through the given gravitational poten-
tial ˆ, especially in light of well-known caveats from the theory of chemotaxis-driven
blow-up phenomena in related fluid-free Keller–Segel systems [1, 16, 27, 34, 44] such
sources seem quite far from being a priori known to fall into any class of inhomogeneities
accessible to well-established theories for the Navier–Stokes equations; under general
assumptions on the chemotactic sensitivity function � and the rate f .c/ at which the
chemical signal c is consumed by cells, for instance, available regularity information on
n apparently reduces to bounds in L1.�/ obtained from mass conservation, but corre-
sponding implications on the fluid force seem far from sufficient to ensure applicability
of classical Navier–Stokes theory [31].

Accordingly, most studies on global solvability in three-dimensional domains� either
concentrate on small-data smooth solutions [4,5,8,21], or rely on considerable restrictions
on � and f [8]; a comprehensive result on global existence of weak solutions, address-
ing (1.1) in bounded convex domains��R3 under parameter conditions allowing for the
prototypical choices � � 1 and f .c/ D c, c � 0, could be established only recently [46].
Even for simplified variants of (1.1) obtained upon suppressing the nonlinear convection
term .u � r/u, clearly allowing for smooth solution components u and P in the decou-
pled case when rˆ � 0, in the presence of chemotactic interaction only weak solutions
seem available up to now [43], whereas global bounded solutions could up to now be
constructed only after further system modifications, introducing appropriate additional
relaxation such as diffusion enhancement at large population densities through porous
medium-type operators, or including certain saturation mechanisms in the cross-diffusive
term, for instance; as a selection from extensive literature in this direction, we refer to
[3, 6, 9, 38–40], and also to [17, 23, 35, 48].

In line with this, the knowledge becomes quite sparse as soon as the focus is set
on qualitative solution properties going beyond fundamental regularity features naturally
obtained in basic existence theories. In fact, the apparently only information available
in this direction to date asserts a certain long-time relaxation effect in the sense that in
bounded convex three-dimensional�, fairly arbitrary weak solutions to (1.1), if satisfying
a certain quasi-energy inequality in fact enjoyed by each solution obtained through some
convenient approximation procedure, eventually become smooth and classical, and that
they stabilize toward a semi-trivial, and especially motion-free, equilibrium in the large
time limit ([47]; cf. also [45, 49] for two-dimensional precedents partially even provid-
ing convergence rates). Widely unfathomed, however, seem possible facets of potentially
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destabilizing influences that well-conceivable taxis-driven cell aggregation phenomena
may exert on the per se already quite delicate fluid flow regularity, and vice versa, on
short timescales.

Main results. The purpose of this work is to address this issue from a perspective related
to that underlying Leray’s structure theorem for the unperturbed Navier–Stokes system,
and we shall see that despite the evidently more complex couplings than those present in
the latter, the three-dimensional version of the full chemotaxis-fluid system (1.1) in fact
retains a certain generic smoothness feature in quite a similar flavor.

In order to make this more precise and most transparent, let us concentrate on (1.1) in
a prototypical form, and hence throughout the sequel consider the initial-boundary value
problem8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

nt C u � rn D �n � r � .nrc/; x 2 �; t > 0;

ct C u � rc D �c � nc; x 2 �; t > 0;

ut C .u � r/u D �uCrP C nrˆ; r � u D 0; x 2 �; t > 0;
@n
@�
D

@c
@�
D 0; u D 0; x 2 @�; t > 0;

n.x; 0/ D n0.x/; c.x; 0/ D c0.x/; u.x; 0/ D u0.x/; x 2 �;

(1.2)

in a bounded convex domain � � R3 with smooth boundary, where accessibility to the
existence theory from [46] will be provided by our standing assumptions that

ˆ 2 W 2;1.�/; (1.3)

and that 8̂̂<̂
:̂
n0 2 L logL.�/ is nonnegative with n0 6� 0,

c0 2 L
1.�/ is nonnegative and such that

p
c0 2 W

1;2.�/,

u0 2 L
2
� .�/;

(1.4)

where as usual we letL2� .�/ WD ¹' 2L
2.�/ j r � 'D 0º denote the space of all solenoidal

vector fields in L2.�/, and write L logL.�/ to represent the standard Orlicz space asso-
ciated with the Young function .0;1/ 3 z 7! z ln.1C z/.

Within this framework, our main results will then reveal that at least some solutions
enjoy a property of generic regularity quite in the flavor of Leray’s statement:

Theorem 1.1. Let � � R3 be a bounded convex domain with smooth boundary, and
assume (1.3) and (1.4). Then the problem (1.2) admits at least one global weak energy
solution, in the sense of Definition 2.1, which has the property that there exist T? > 0, a
countable set I � N and pairwise disjoint open intervals I� � .0; T?/, � 2 I, such thatˇ̌̌

.0; T?/ n
[
�2I

I�

ˇ̌̌
D 0; (1.5)
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and that after redefining .n; c; u/ on a null set in � � .0;1/ we have8̂̂̂̂
<̂̂
ˆ̂̂̂:
n 2 C 2;1

�
� �

�S
�2I

I� [ .T?;1/
��
;

c 2 C 2;1
�
� �

�S
�2I

I� [ .T?;1/
��

and

u 2 C 2;1
�
� �

�S
�2I

I� [ .T?;1/
�
IR3

�
:

(1.6)

Challenges and overall strategy. A major difference between our analysis of (1.2) and
standard approaches to the corresponding unperturbed Navier–Stokes problem, inter alia
explaining the restriction in Theorem 1.1 to particular weak solutions, is rooted in the
circumstance that due to its apparent sparseness, our available global a priori regularity
information for (1.2) seems insufficient to warrant some essential uniqueness features
in the flavor of those known from Navier–Stokes theory. In fact, unlike in initial-value
problems for the latter [31] it seems unknown whether an arbitrary weak solution to (1.2),
if merely known to enjoy some regularity properties inherently linked to some natural
energy-type features of (1.2) (cf. Definition 2.1 and especially (2.1) and (2.2) below),
must coincide with any suitably smooth solution whenever such a second solution exists.

Accordingly, besides the constitution of a local existence theory involving spaces Y
of functions .n; c; u/ large enough so as to be consistent with the regularity information
gained from (2.1) and (2.2), deriving Theorem 1.1 will require an adequate handling of
this lacking uniqueness property in order to make sure that a weak solution .n; c; u/
in question indeed is smooth near each time t0 at which the size of .n; c; u/ in Y can
conveniently be controlled.

In contrast to corresponding well-established arguments from the literature on the
Navier–Stokes system [32, 37], our approach will therefore predominantly operate at the
level of solutions .n"; c";u"/ to suitably regularized variants of (1.2) (see (2.3) below), and
aim at deducing estimates, ultimately in spaces of smooth functions, independent of the
respective approximation parameter " 2 .0; 1/. Forming the origin of an additional tech-
nical complication, the temporally local character of such quantitative regularity informa-
tion will suggest to finally derive smoothness near an instant t0 under consideration by
providing estimates throughout a partially backward open interval J.t0/ 3 t0, instead of
merely concentrating on exclusively forward intervals, as known to be a possible and con-
siderably simpler procedure in the derivation of Leray’s theorem for the Navier–Stokes
system [32, 37].

Specifically, our approach will rest on a local theory based on an analysis of

y".t/ WD

Z
�

np" .�; t /C

Z
�

jrc".�; t /j
2p
C

Z
�

jA˛=2u".�; t /j
2; t � 0; " 2 .0; 1/; (1.7)

for suitably chosen p > 1 and ˛ > 0, where, as throughout the sequel, we let A D �P�

denote the realization of the Stokes operator in L2� .�/, with its domain given byD.A/D
W 2;2.�IR3/\W 1;2

0;� .�/,W
1;2
0;� .�/ WDW

1;2
0 .�IR3/\L2� .�/, and with P denoting the

Helmholtz projection onL2.�IR3/, and for ˛ 2R we letA˛ represent the corresponding
sectorial fractional powers.
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Indeed, we shall firstly see that whenever

p > 3=2 and ˛ 2 .1=2; 1/; (1.8)

the short-time growth of y" can conveniently be controlled due to the observation that
y" satisfies a superlinearly forced but autonomous ODI with "-independent coefficients
(Lemmas 3.7 and 3.8). The a priori information thereby gained will turn out to form a
suitable starting point for a bootstrap procedure eventually providing local-in-time esti-
mates in C 2C�;1C�=2 spaces (Lemmas 4.6 and 4.7) after each time at which y" remains
controlled by any arbitrarily large but fixed number.

In order to ensure applicability of this local regularity theory to (1.2) through an ele-
mentary observation on the sizes of certain sets containing endpoints of intervals at which
a given measurable function exceeds a prescribed level (Lemma 5.1 and Corollary 5.2), in
Section 6 we will thereafter complement this by making sure that the alternative hypothe-
ses

p < 3 and ˛ < 1 (1.9)

guarantee that the space Y WD Lp.�/ �W 1;2p.�/ �D.A˛=2/ underlying the choice of
y" is large enough so as to contain .n; c; u/ throughout large sets of times due to the
dissipation processes expressed in (2.1) and (2.2) (Lemma 6.5). Thanks to a suitable
approximation property of y" in the limit of vanishing " (Lemma 6.4), these arguments
indeed become applicable to .n"; c"; u"/, and the desired overall conclusion can finally be
obtained due to the fortunate circumstance that the requirements in (1.8) and (1.9) can be
fulfilled simultaneously.

Before going into details, let us finally remark that in line with this and our subsequent
reasoning, the statement of Theorem 1.1 immediately extends to any global weak energy
solution that can be gained as an accumulation point of the family of solutions to (2.3)
as " & 0; actually, corresponding limits obtained through more general approximation
procedures can be covered as well, but pursuing this in detail goes beyond the scope of
this study.

2. Energy solutions, eventual regularity and approximation

In order to briefly specify the framework of our analysis, we firstly introduce the fol-
lowing solution concept which combines [46, Definition 2.1] with the essential part of
[47, Definition 1.1]. For vectors v 2 R3 and w 2 R3, we here let v˝w denote the matrix
.aij /i;j2¹1;2;3º 2 R3�3 defined by letting aij WD viwj for i; j 2 ¹1; 2; 3º.

Definition 2.1. Suppose that

� n 2L4loc.
N�� Œ0;1//\L2loc.Œ0;1/IW

1;2.�// is nonnegative with n1=2 2L2loc.Œ0;1/I

W 1;2.�//, that

� c 2 L1loc.� � Œ0;1// is nonnegative and such that c1=4 2 L4loc.Œ0;1/IW
1;4.�//, and

that

� u 2 L1loc.Œ0;1/IL
2
� .�// \ L

2
loc.Œ0;1/IW

1;2
0 .�IR3//.
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Then .n; c; u/ will be called a global weak energy solution of (1.2) if

�

Z 1
0

Z
�

n�t�

Z
�

n0�.�; 0/ D �

Z 1
0

Z
�

rn�r�C

Z 1
0

Z
�

nrc �r�C

Z 1
0

Z
�

nu�r�

for all � 2 C10 . N� � Œ0;1//;

�

Z 1
0

Z
�

c�t �

Z
�

c0�.�; 0/ D �

Z 1
0

Z
�

rc � r� �

Z 1
0

Z
�

nc� C

Z 1
0

Z
�

cu � r�

for all � 2 C10 . N� � Œ0;1//;

�

Z 1
0

Z
�

u��t�

Z
�

u0 ��.�;0/D�

Z 1
0

Z
�

ru�r�C

Z 1
0

Z
�

u˝u�r�C

Z 1
0

Z
�

nrˆ��

for all � 2 C10 .� � Œ0;1/IR
3/ satisfying r � � � 0;

1

2

Z
�

ju.�; t /j2 C

Z t

t0

Z
�

jruj2 �
1

2

Z
�

ju.�; t0/j
2
C

Z t

t0

Z
�

nu � rˆ (2.1)

for a.e. t0 > 0 and all t > t0; and there exist � > 0 and K > 0 such that

d

dt

²Z
�

n lnnC
1

2

Z
�

jrcj2

c
C �

Z
�

juj2
³
C
1

K

Z
�

²
jrnj2

n
C
jrcj4

c3
C jruj2

³
� K

(2.2)
in D 0..0;1//.

For any such solution, the main result from [47] applies so as to assert the following
statement on eventual smoothness:

Theorem A. Suppose that .n; c; u/ is any global weak energy solution of (1.2) with some
initial data n0; c0 and u0 satisfying (1.4). Then there exist T? > 0 and P 2 C 1;0.� �
ŒT?;1// such that upon redefining .n; c; u/ on a null set we have

n 2 C 2;1.� � ŒT?;1//; c 2 C 2;1.� � ŒT?;1//; u 2 C 2;1.� � ŒT?;1/IR
3/;

and such that .n; c; u; P / solves the boundary value problem in (1.2) classically in � �
ŒT?;1/.

The corresponding existence theory from [46] utilizes the regularized problems8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

n"t C u" � rn" D �n" � r � .n"F
0
".n"/rc"/; x 2 �; t > 0;

c"t C u" � rc" D �c" � F".n"/c"; x 2 �; t > 0;

u"t C .Y"u" � r/u" D �u" CrP" C n"rˆ; r � u" D 0; x 2 �; t > 0;
@n"
@�
D

@c"
@�
D 0; u" D 0; x 2 @�; t > 0;

n".x; 0/ D n0.x/; c".x; 0/ D c0.x/; u".x; 0/ D u0.x/; x 2 �;

(2.3)

for " 2 .0; 1/, where the Yosida approximation Y" [26, 31] is defined by letting

Y"v WD .1C "A/
�1v for v 2 L2� .�/ and " 2 .0; 1/ (2.4)
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and where setting

F".s/ WD
1

"
ln.1C "s/ for s � 0 and " 2 .0; 1/

ensures that

0 � F 0".s/ D
1

1C "s
� 1 and 0 � F".s/ � s for all s � 0 and " 2 .0; 1/, (2.5)

and that F 0".s/% 1 and F".s/% s as "& 0 for all s > 0. As for the initial data in (2.3),
from [46] we import the requirements that´
n0" 2 C

1
0 .�/; n0" � 0 in �,

R
�
n0" D

R
�
n0 for all " 2 .0; 1/;

n0" ! n0 in L logL.�/ as "& 0;
(2.6)´

c0" � 0 in �,
p
c0" 2 C

1
0 .�/; kc0"kL1.�/ � kc0kL1.�/ for all " 2 .0; 1/;

p
c0" !

p
c0 a.e. in � and in W 1;2.�/ as "& 0;

(2.7)´
u0" 2 C

1
0;� .�/; ku0"kL2.�/ D ku0kL2.�/ for all " 2 .0; 1/;

u0" ! u0 in L2.�/ as "& 0:
(2.8)

The following lemma summarizes some basic results concerning global existence of clas-
sical solutions and some of their elementary properties, as obtained in [46, Lemmas 2.2,
2.3, 3.9].

Lemma 2.2. For each " 2 .0; 1/, there exist

n" 2 C
2;1.� � Œ0;1//; c" 2 C

2;1.� � Œ0;1//; u" 2 C
2;1.� � Œ0;1/IR3/

such that n" > 0 and c" > 0 in � � .0;1/, and such that .n"; c"; u"; P"/ solves (2.3)
classically in � � .0;1/ with some P" 2 C 1;0.� � .0;1//. Moreover,Z

�

n".�; t / D

Z
�

n0 for all t > 0; (2.9)

kc".�; t /kL1.�/ � kc0kL1.�/ for all t > 0: (2.10)

3. Local theory: Controlling the short-time growth of y" when p > 3=2

Forming the core quantity of all our subsequent analysis, our object of investigation in this
section will be the functional introduced in (1.7), with the parameters p > 1 and ˛ > 0
appearing therein still being at our disposal. Our goal will consist in making sure that the
key assumptions in (1.8), and especially the requirement p > 3=2 therein, indeed enable
us to develop a local regularity theory by deriving the autonomous ODI (3.13) for y", and
a first step toward this can be achieved by performing three quite straightforward testing
procedures to (2.3):
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Lemma 3.1. Let p > 1 and ˛ > 0. Then there exists C > 0 such that with .y"/"2.0;1/
taken from (1.7) we have

y0".t/C
1

C
�

²Z
�

jrnp=2" j
2
C

Z
�

ˇ̌
rjrc"j

p
ˇ̌2
C

Z
�

jA.˛C1/=2u"j
2

³
� C �

²Z
�

np" jrc"j
2
C

Z
�

n2" jrc"j
2p�2

C

Z
�

jrc"j
2p
� jru"j

C

ˇ̌̌̌Z
�

A˛u" �P ¹.Y"u" � r/u"

±ˇ̌̌̌
C

ˇ̌̌̌Z
�

A˛u" �P ¹n"rˆº

ˇ̌̌̌³
(3.1)

for all t > 0 and " 2 .0; 1/.

Proof. Since r � u" D 0, from the first equation in (2.3) and Young’s inequality we obtain
that for all t > 0,

1

p

d

dt

Z
�

np" C .p � 1/

Z
�

np�2" jrn"j
2
D .p � 1/

Z
�

np�1" F 0".n"/rn" � rc"

�
p � 1

2

Z
�

np�2" jrn"j
2
C
p � 1

2

Z
�

np" F
02
" .n"/jrc"j

2

and hence, by (2.5),

1

p

d

dt

Z
�

np" C
2.p � 1/

p

Z
�

jrnp=2" j
2
�
p � 1

2

Z
�

np" jrc"j
2 for all t > 0: (3.2)

Next, using that @jrc"j
2

@�
� 0 on @� � .0;1/ by convexity of � [25], integrating by parts

in the second equation from (2.3) we see that again due to the solenoidality of u" and
(2.5), and thanks to (2.10) and Young’s inequality,

1

2p

d

dt

Z
�

jrc"j
2p
D

Z
�

jrc"j
2p�2
rc" � r¹�c" � F".n"/c" � u" � rc"º

D
1

2

Z
�

jrc"j
2p�2�jrc"j

2
�

Z
�

jrc"j
2p�2
jD2c"j

2

C

Z
�

F".n"/c" � ¹2.p � 1/jrc"j
2p�4
rc" � .D

2c" � rc"/C jrc"j
2p�2�c"º

�

Z
�

jrc"j
2p�2
rc" � .ru" � rc"/

� �
2.p � 1/

p2

Z
�

ˇ̌
rjrc"j

p
ˇ̌2
�

Z
�

jrc"j
2p�2
jD2c"j

2

C .2.p � 1/C
p
3/kc0kL1.�/

Z
�

n"jrc"j
2p�2
jD2c"j C

Z
�

jrc"j
2p
� jru"j

� �
2.p � 1/

p2

Z
�

ˇ̌
rjrc"j

p
ˇ̌2

C
.2.p � 1/C

p
3/2kc0k

2
L1.�/

4

Z
�

n2" jrc"j
2p�2

C

Z
�

jrc"j
2p
� jru"j (3.3)
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for all t > 0. We finally test the third equation in (2.3), rewritten in the projected form
u"t C Au" D �P

®
.Y"u" � r/u"

¯
CP

®
n"rˆ

¯
, by A˛u" to obtain that

1

2

d

dt

Z
�

jA.˛/=2u"j
2
C

Z
�

jA.˛C1/=2u"j
2
D �

Z
�

A˛u" �P ¹.Y"u" � r/u"º

C

Z
�

A˛u" �P ¹n"rˆº

for all t > 0, which combined with (3.2) and (3.3) entails (3.1).

Now under the announced assumption that p > 3=2, the first two of the five integrals
on the right of (3.1) can jointly be estimated in terms of the dissipated quantity therein,
and of a superlinear power of y", by means of a Gagliardo–Nirenberg type interpolation.

Lemma 3.2. Let p > 3=2 and ˛ > 0. Then for all � > 0 there exists C.�/ > 0 such that
whenever " 2 .0; 1/,Z

�

np" jrc"j
2
C

Z
�

n2" jrc"j
2p�2

� �

Z
�

jrn"j
2
C �

Z
�

ˇ̌
rjrc"j

2
ˇ̌2
C C.�/y

2p�1
2p�3
" .t/C C.�/ (3.4)

for all t > 0, where y" is as in (1.7).

Proof. According to the Gagliardo–Nirenberg inequality, followed by two applications of
Young’s inequality which rely on the assumption p > 3=2 and the fact that 2.p C 1/=p <
2.2p�1/
2p�3

, we can fix C1 > 0 and C2 D C2.�/ > 0 such that

2k'k
2.pC1/=p

L2.pC1/=p.�/
� C1kr'k

3=p

L2.�/
k'k

.2p�1/=p

L2.�/
C C1k'k

2.pC1/=p

L2.�/

� �kr'k2
L2.�/

C C2.�/k'k
2.2p�1/
2p�3

L2.�/
C C1k'k

2.pC1/=p

L2.�/

� �kr'k2
L2.�/

C C3.�/k'k
2.2p�1/
2p�3

L2.�/
C C1 for all ' 2 W 1;2.�/;

where C3.�/ WD C1 C C2.�/. Twice employing this shows that again thanks to Young’s
inequality, with some C4 > 0 we haveZ
�

np" jrc"j
2
C

Z
�

n2" jrc"j
2p�2

� 2

Z
�

npC1" C 2

Z
�

jrc"j
2.pC1/

D 2knp=2" kL2.pC1/=p.�/ C 2


jrc"jp

2.pC1/=pL2.pC1/=p.�/

� �krnp=2" k
2
L2.�/

C C3.�/kn
p=2
" k

2.2p�1/
2p�3

L2.�/
C C1

C �


rjrc"jp

2L2.�/ C C3.�/

jrc"jp

 2.2p�1/2p�3

L2.�/
C C1
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for all t > 0 and " 2 .0; 1/. Since

knp=2" k

2.2p�1/
2p�3

L2.�/
� y

2p�1
2p�3
" .t/ and



jrc"jp

 2.2p�1/2p�3

L2.�/
� y

2p�1
2p�3
" .t/ for all t > 0

by (1.7), this implies (3.4).

In order to prepare our estimation of the three remaining integrals on the right-hand
side of (3.1), but also one of our subsequent higher order regularity arguments in Lemma
4.4, let us explicitly recall the following well-known interpolation inequality (cf. e.g. [10,
Theorem 2.14.1]).

Lemma 3.3. Let � 2 R; � > � and � 2 .�; �/. Then there exists C D C.�; �; �/ > 0
such that

kA�'kL2.�/ � CkA
�'k

���
���

L2.�/
kA�'k

���
���

L2.�/
for all ' 2 D.A�/:

We can thereby control the second contribution to the right-hand side of (3.1), and
hence the transport-related part of the interaction in (2.3), in a flavor quite similar to that
of Lemma 3.2, provided that ˛ > 1=2.

Lemma 3.4. Let p > 1 and ˛ 2 .1=2; 1/. Then for all � > 0 there exists C.�/ > 0 such
that for each " 2 .0; 1/, with y" taken from (1.7) we haveZ

�

jrc"j
2p
� jru"j

� �

Z
�

ˇ̌
rjrc"j

p
ˇ̌2
C �

Z
�

jA.˛C1/=2u"j
2
C C.�/y

2˛C1
2˛�1
" .t/C C.�/ (3.5)

for all t > 0.

Proof. By the Cauchy–Schwarz inequality,Z
�

jrc"j
2p
� jru"j �



jrc"jp

2L4.�/kru"kL2.�/ for all t > 0; (3.6)

where due to the Gagliardo–Nirenberg inequality and (1.7), we can find C1 > 0 such that

jrc"jp

2L4.�/ � C1

rjrc"jp

3=2L2.�/

jrc"jp

1=2L2.�/ C C1

jrc"jp

2L2.�/
� C1



rjrc"j2

3=2L2.�/y1=4" .t/C C1y".t/ (3.7)

for all t > 0 and " 2 .0; 1/, and where Lemma 3.3 enables us to pick C2 > 0 fulfilling

kru"kL2.�/ D kA
1=2u"kL2.�/

� C2kA
.˛C1/=2u"k

1�˛
L2.�/

kA˛=2u"k
˛
L2.�/

� C2kA
.˛C1/=2u"k

1�˛
L2.�/

y˛=2" .t/ for all t > 0 and " 2 .0; 1/;



M. Winkler 1434

because kA˛=2u"k2L2.�/ � y".t/ for any such t and ". Since 4.1 � ˛/ < 2 according to
our hypothesis that ˛ > 1=2, through Young’s inequality a combination of this with (3.7)
and (3.6) yields C3.�/ > 0 and C4.�/ > 0 such that for all t > 0 and " 2 .0; 1/,Z
�

jrc"j
2p
� jru"j

� C1C2


rjrc"jp

3=2L2.�/kA.˛C1/=2u"k1�˛L2.�/

y.2˛C1/=4" .t/

C C1C2kA
.˛C1/=2u"k

1�˛
L2.�/

y.˛C2/=2" .t/

� �


rjrc"jp

2L2.�/ C C3.�/kA.˛C1/=2u"k4.1�˛/L2.�/

y2˛C1" .t/

C C1C2kA
.˛C1/=2u"k

1�˛
L2.�/

y.˛C2/=2" .t/

� �


rjrc"jp

2L2.�/ C �kA.˛C1/=2u"k2L2.�/ C C4.�/y 2˛C12˛�1

" .t/C C4.�/y
˛C2
˛C1
" .t/:

Since ˛C2
˛C1

< 2˛C1
2˛�1

, a final application of Young’s inequality thus yields (3.5).

Likewise, through Lemma 3.3 also the third of the integrals in question can be conve-
niently estimated if ˛ > 1=2.

Lemma 3.5. Let p > 1, ˛ 2 .1=2; 1/ and � 2 .3
4
; ˛C1

2
/. Then given any � > 0, one can

find C.�/ > 0 such that whenever " 2 .0; 1/,ˇ̌̌̌Z
�

A˛u" �P ¹.Y"u" � r/u"º

ˇ̌̌̌
� �

Z
�

jA.˛C1/=2u"j
2
C C.�/y

˛�2�C2
˛�2�C1
" .t/ for all t > 0;

(3.8)
where again y" is as in (1.7).

Proof. According to the Cauchy–Schwarz inequality and the orthogonal projection prop-
erty of P ,ˇ̌̌̌Z

�

A˛u" �P ¹.Y"u" � r/u"º

ˇ̌̌̌
� kA˛u"kL2.�/k.Y"u" � r/u"kL2.�/

� kA˛u"kL2.�/kY"u"kL1.�/kru"kL2.�/ (3.9)

for all t > 0. Here using thatD.A�/ ,!L1.�IR3/ due to our restriction � > 3=4 [12, 15],
we can find C1 > 0 such that since A� and Y" commute on D.A�/, and since Y" is non-
expansive on L2� .�/,

kY"u"kL1.�/ � C1kA
�Y"u"kL2.�/ D C1kY"A

�u"kL2.�/ � C1kA
�u"kL2.�/

for all t > 0. As furthermore � < .˛ C 1/=2 and ˛ > 1=2, each of the three rightmost
factors in (3.9) therefore becomes accessible to Lemma 3.3, whence application of the
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latter, followed by Young’s inequality, provides C2 > 0 and C3.�/ > 0 fulfilling

kA˛u"kL2.�/kY"u"kL1.�/kru"kL2.�/

� C2 � ¹kA
.˛C1/=2u"k

˛
L2.�/

kA˛=2u"k
1�˛
L2.�/

º � ¹kA.˛C1/=2u"k
2��˛

L2.�/
kA˛=2u"k

˛�2�C1

L2.�/
º

� ¹kA.˛C1/=2u"k
1�˛
L2.�/

kA˛=2u"k
˛
L2.�/

º

D C2kA
.˛C1/=2u"k

2��˛C1

L2.�/
kA˛=2u"k

˛�2�C2

L2.�/

� �kA.˛C1/=2u"k
2
L2.�/

C C3.�/kA
˛=2u"k

2.˛�2�C2/
˛�2�C1

L2.�/
for all t > 0 and " 2 .0; 1/;

because clearly 0 < 2� � ˛ C 1. Again using that kA˛=2u"k2L2.�/ � y".t/ for all t > 0
and " 2 .0; 1/, in view of (3.9) we directly obtain (3.8) from this.

The rightmost and buoyancy-induced term from Lemma 3.1 can finally be estimated
in a manner sufficient for our purposes, even for arbitrary ˛ 2 .0; 1/ and any p from the
range .4=3;1/ larger than that determined through (1.8), by resorting to the L1 bound
implied by (2.9).

Lemma 3.6. Let p > 4=3 and ˛ 2 .0; 1/. Then for each � > 0 there exists C.�/ > 0 such
that for any " 2 .0; 1/,ˇ̌̌̌Z
�

A˛u" �P ¹n"rˆº

ˇ̌̌̌
� �

Z
�

jrnp=2" j
2
C �

Z
�

jA.˛C1/=2u"j
2
C C.�/y

.3p�1/.1�˛/
.3p�1/.2�˛/�3
" .t/C C.�/ (3.10)

for all t > 0, with y" as given by (1.7).

Proof. Due to our overall assumption on boundedness of rˆ, we may again rely on the
orthogonal projection property of P , on Lemma 3.3 and on Young’s inequality to infer
that with some C1 > 0 and C2.�/ > 0 we haveˇ̌̌̌Z

�

A˛u" �P ¹n"rˆº

ˇ̌̌̌
� kA˛u"kL2.�/kn"rˆkL2.�/

� C1kA
.˛C1/=2u"k

˛
L2.�/

kA˛=2u"k
1�˛
L2.�/

kn"kL2.�/

� �kA.˛C1/=2u"k
2
L2.�/

C C2.�/kA
˛=2u"k

2.1�˛/
2�˛

L2.�/
kn"k

2
2�˛

L2.�/

� �kA.˛C1/=2u"k
2
L2.�/

C C2.�/y
1�˛
2�˛
" .t/kn"k

2
2�˛

L2.�/
(3.11)

for all t > 0 and " 2 .0; 1/, once more because kA˛=2u"k2L2.�/ � y".t/ for t > 0 by (1.7).

Here employing the Gagliardo–Nirenberg inequality, since knp=2" k
2=p

L2=p.�/
D
R
�
n" D
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�
n0 for all t > 0 by (2.9), we see that with some C3.�/ > 0 and C4.�/ > 0 we have

C2.�/y
1�˛
2�˛
" .t/kn"k

2
2�˛

L2.�/
D C2.�/y

1�˛
2�˛
" .t/knp=2" k

4
p.2�˛/

L
4
p .�/

� C3.�/y
1�˛
2�˛
" .t/krnp=2" k

6
.3p�1/.2�˛/

L2.�/
knp=2" k

2.3p�2/
p.3p�1/.2�˛/

L2=p.�/
CC3.�/y

1�˛
2�˛
" .t/knp=2" k

4
p.2�˛/

L2=p.�/

� C4.�/y
1�˛
2�˛
" .t/krnp=2" k

6
.3p�1/.2�˛/

L2.�/
CC4.�/y

1�˛
2�˛
" .t/ (3.12)

for all t > 0 and " 2 .0; 1/. Since our restrictions p > 4=3 and ˛ < 1 warrant that
6

.3p�1/.2�˛/
< 2, and since evidently 1�˛

2�˛
< .3p�1/.1�˛/

.3p�1/.2�˛/�3
, two applications of Young’s

inequality finally show that there exists C5.�/ > 0 fulfilling

C4.�/y
1�˛
2�˛
" .t/krnp=2" k

6
.3p�1/.2�˛/

L2.�/
C C4.�/y

1�˛
2�˛
" .t/

� �krnp=2" k
2
L2.�/

C C5.�/y
.3p�1/.1�˛/
.3p�1/.2�˛/�3
" .t/C C4.�/y

1�˛
2�˛
" .t/

� �krnp=2" k
2
L2.�/

C .C4.�/C C5.�//y
.3p�1/.1�˛/
.3p�1/.2�˛/�3
" .t/C C4.�/

for all t > 0 and " 2 .0; 1/, so that (3.10) results from (3.11) and (3.12).

In summary, Lemmas 3.2, 3.4 and 3.5 enable us to control the growth of y" on the
basis of Lemma 3.1 as follows.

Lemma 3.7. Let p > 3=2 and ˛ 2 .1=2; 1/. Then there exist # D #.p; ˛/ > 1 and C D
C.p; ˛/ > 0 such that for arbitrary " 2 .0; 1/, the function y" defined in (1.7) satisfies

y0".t/ � Cy
#
" .t/C C for all t > 0: (3.13)

Proof. We fix any � D �.˛/ 2 .3
4
; ˛C1

2
/ and let

# D #.p; ˛/ WD max
²
2p � 1

2p � 3
;
2˛ C 1

2˛ � 1
;
˛ � 2�C 2

˛ � 2�C 1
;
.3p � 1/.1 � ˛/

.3p � 1/.2 � ˛/ � 3

³
> 1:

Then (3.13) readily results upon combining Lemma 3.1 with Lemmas 3.2 and 3.4–3.6
when applied to suitably small � D �.p; ˛/ > 0, and employing Young’s inequality to
estimate

y
2p�1
2p�3
" .t/C y

2˛C1
2˛�1
" .t/C y

˛�2�C2
˛�2�C1
" .t/C y

.3p�1/.1�˛/
.3p�1/.2�˛/�3
" .t/ � 4y#" .t/C 3

for all t > 0 and " 2 .0; 1/.

By integration of (3.13), as the main result of this section we obtain the following
quantitative information about lengths of time intervals within which the growth of y"
can conveniently be controlled.
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Lemma 3.8. Let p > 3=2 and ˛ 2 .1=2; 1/. Then for all k � 1 there exists T .k/ D
T .kIp; ˛/ 2 .0; 1=k� with the property that whenever " 2 .0; 1/ and t0 � 0 are such that
with y" taken from (1.7) we have

y".t0/ � k; (3.14)

it follows that
y".t/ � 2k for all t 2 .t0; t0 C T .k//: (3.15)

Proof. By means of Lemma 3.7, we can pick # D #.p; ˛/ > 1 and C1 D C1.p; ˛/ > 0
such that

y0".t/ � C1y
#
" .t/C C1 for all t > 0 and " 2 .0; 1/; (3.16)

and given k � 1 we thereupon define

T .kIp; ˛/ WD min ¹T .kIp; ˛/; 1=kº with T .kIp; ˛/ WD
.1 � 21�#/k1�#

2.# � 1/C1
:

Then for fixed t0 � 0,

y.t/ WD ¹k1�# � 2.# � 1/C1 � .t � t0/º
� 1
#�1 ; t 2 Œt0; t0 C T .kIp; ˛/�;

defines a function y 2 C 1.Œt0; t0 C T .kIp; ˛/�/ which satisfies y0.t/ D 2C1y#.t/ for all
t 2 .t0; t0 C T .kIp; ˛// and y.t0/ D k. In particular, y is nondecreasing and hence has
the additional property that

1 � k � y.t/ � y.t0 C T .kIp; ˛// D 2k for all t 2 .t0; t0 C T .kIp; ˛//; (3.17)

whence especially

y0.t/ � C1y
#.t/ � C1 D C1y

#.t/ � C1 � 0 for all t 2 .t0; t0 C T .kIp; ˛//:

Together with (3.16), through an ODE comparison this entails that whenever " 2 .0; 1/
and t0 � 0 are such that (3.14) holds, we have y" � y in .t0; t0 C T .kIp; ˛//. Therefore,
(3.15) becomes a consequence of the upper estimate for y in (3.17), combined with the
evident fact that T .kIp; ˛/ � T .kIp; ˛/.

4. Local theory for p > 3=2: Higher order estimates

The purpose of this section is to extend the above local regularity theory toward higher
order estimates, which will be achieved on the basis of Lemma 3.8 that will form a starting
point of a bootstrap procedure gradually improving our knowledge about smoothness in
suitable time intervals past an instant at which (3.14) is supposed to be valid. Accordingly,
throughout this section we shall rely on the assumptions p > 3=2 and ˛ 2 .1=2;1/ already
made in the previous section.

In preparation for both Lemmas 4.2 and 4.3, let us first draw an essentially immediate
consequence of Lemma 3.8 on the non-diffusive part of the flux appearing in the first
equation from (2.3).
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Lemma 4.1. Let p > 3=2 and ˛ 2 .1=2; 1/, and for k � 1 let T .k/ D T .kIp; ˛/ be as
in Lemma 3.8. Then there exist q0 D q0.p; ˛/ > 3 and C.k/ D C.kIp; ˛/ > 0 such that
whenever (3.14) is satisfied for some " 2 .0; 1/ and t0 � 0, we have

kF 0".n".�; t //rc".�; t /C u".�; t /kLq0 .�/ � C.k/ for all t 2 .t0; t0 C T .k//: (4.1)

Proof. As our assumptions p > 3=2 and ˛ > 1=2 warrant that min ¹2p; 6
3�2˛
º > 3, we

can fix q0 D q0.p; ˛/ > 3 such that

q0 � 2p and q0 <
6

3 � 2˛
:

Then since the latter condition herein ensures that D.A˛=2/ ,! Lq.�IR3/ [12, 15], we
readily infer (4.1) from (2.5), Lemma 3.8 and our definition of .y"/"2.0;1/.

Essentially relying on the fact that the number q0 obtained above exceeds the size of
the spatial dimension considered, an argument based on regularization effects of the heat
semigroup yields L1 bounds for the first solution component, involving temporal weight
functions that depend on the distance to the times at which (3.14) is supposed to hold.

Lemma 4.2. Let p > 3=2 and ˛ 2 .1=2; 1/, and let .T .k//k�1 D .T .kIp; ˛//k�1 be as
accordingly provided by Lemma 3.8. Then there exists C.k/ D C.kIp; ˛/ > 0 such that
if " 2 .0; 1/ and t0 � 0 are such that (3.14) holds, we have

kn".�; t /kL1.�/ � C.k/ � .t � t0/
� 3
2p for all t 2 .t0; t0 C T .k//: (4.2)

Proof. With q0 D q0.p; ˛/ > 3 taken from Lemma 4.1, noting that clearly 3p
.p�3/C

> 3

we fix q D q.p; ˛/ > 3 such that

q � q0.p/ and q <
3p

.p � 3/C
; (4.3)

whence by boundedness of �, through Lemma 4.1 the first condition herein ensures the
existence of C1 D C1.k/ > 0 such that whenever (3.14) holds for some " 2 .0; 1/ and
t0 � 0, the function h" WD F 0".n"/rc" C u" satisfies

kh".�; t /kLq.�/ � C1 for all t 2 .t0; t0 C T .k//: (4.4)

In order to appropriately estimate

M WD sup
t2.t0;t0CT.k//

.t � t0/
3
2p kn".�; t /kL1.�/;

on the basis of this, we pick any r D r.p; ˛/ 2 .3; q/ and invoke known smoothing esti-
mates for the Neumann heat semigroup .e��/��0 on � [11, 42] to fix C2 D C2.p/ > 0
and C3 D C3.p; ˛/ > 0 such that whenever � 2 .0; 1/,

ke��'kL1.�/ � C2�
� 3
2p k'kLp.�/ for all ' 2 C 0.�/



Leray’s structure theorem and chemotaxis-fluid interaction 1439

and
ke��r � 'kL1.�/ � C3�

� 12�
3
2r k'kLr .�/

for all ' 2 C 1.�IR3/ such that ' � � D 0 on @�. According to a Duhamel representation
associated with the first equation from (2.3), this entails that for all t 2 .t0; t0 C T .k//,

kn".�; t /kL1.�/ D





e.t�t0/�n".�; t0/ � Z t

t0

e.t�s/�r � ¹n".�; s/h".�; s/º ds






L1.�/

� C2.t � t0/
� 3
2p kn".�; t0/kLp.�/ C C3

Z t

t0

.t � s/�
1
2�

3
2r kn".�; s/h".�; s/kLr .�/ ds;

because T .k/ � 1=k � 1. Since furthermore

kn".�; t /kLp.�/ � y
1=p
" .t/ � .2k/1=p for all t 2 Œt0; t0 C T .k//

thanks to (3.15), and since the second requirement in (4.3) along with the restriction r > 3
implies that

qr

q � r
� p >

3q

q � 3
� p D

3p � .p � 3/q

q � 3
> 0

and hence qr
q�r

> p, we may use the Hölder inequality to infer that due to (4.4), writing

a WD qr�pqCpr
qr

2 .0; 1/ we have

kn".�; t /kL1.�/ � C2.t � t0/
� 3
2p kn".�; t0/kLp.�/

C C3

Z t

t0

.t � s/�1=2�
3
2r kn".�; s/k

L
qr
q�r .�/

kh".�; s/kLq.�/ ds

� C2.t � t0/
� 3
2p kn".�; t0/kLp.�/

C C3

Z t

t0

.t � s/�1=2�
3
2r kn".�; s/k

a
L1.�/kn".�; s/k

1�a
Lp.�/kh".�; s/kLq.�/ ds

� .2k/1=pC2.t � t0/
� 3
2p

C .2k/
1�a
p C1C3M

a

Z t

t0

.t � s/�1=2�
3
2r .s � t0/

� 3a2p ds

D .2k/1=pC2.t � t0/
� 3
2p

C .2k/
1�a
p C1C3C4M

a.t � t0/
1
2�

3
2r �

3a
2p for all t 2 .t0; t0 C T .k//

with C4 WD
R 1
0
.1� �/�1=2�

3
2r ��

3a
2p d� being finite thanks to the inequalities r > 3, a < 1

and p > 3=2. Observing that according to the definition of a,

3

2p
C
1

2
�
3

2r
�
3a

2p
D
q � 3

2q

is positive, we thus infer that

M � .2k/1=pC2 C .2k/
1�a
p C1C3C4M

aT
q�3
2q .k/;
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so that
M � max ¹1; ¹.2k/1=pC2 C .2k/

1�a
p C1C3C4T

q�3
2q .k/º

1
1�a º

due to the fact that a < 1.

Now due to the latter, standard parabolic Hölder theory becomes applicable to the first
equation in (2.3):

Lemma 4.3. Fix p > 3=2 and ˛ 2 .1=2; 1/ and let T .k/ D T .kIp; ˛/ be as in Lemma
3.8. Then for all � 2 .0; T .k// there exist 
 D 
.k; �; p; ˛/ 2 .0; 1/ and C.k; �/ D
C.k; � I p; ˛/ > 0 with the property that whenever (3.14) is valid for some " 2 .0; 1/
and t0 � 0, we have

kn"kC
;
=2.��Œt0C�;t0CT.k/�/ � C.k; �/: (4.5)

Proof. Again using the fact that Lemma 4.1 implies an ."; t0/-independent estimate for
.F 0".n".�; t //rc".�; t /C u".�; t //t2.t0;t0CT.k// inLs..t0; t0C T .k//ILq0.�//with s WD1
and q0 > 3 as provided there, based on the bound for n" in L1loc.� � .t0; t0 C T .k/�/

provided by Lemma 4.2 we may derive this from standard Hölder regularity theory for
scalar parabolic equations due to the fact that these choices ensure that 1

s
C

3
2q0
D

3
2q0

< 1
2

[29].

In order to create a temporal localization setting for our derivation of appropriate
estimates for u" from this information on n", let us fix a function �0 2 C1.Œ0;1// such
that 0 � �0 � 1 and that �0 � 0 on Œ0; 1=2� as well as �0 � 1 throughout Œ1;1/, and let

�.t0;�/.t/ WD �0

�
t � t0

�

�
; t � t0; (4.6)

for t0 � 0 and � > 0. Then for arbitrary " 2 .0; 1/ and any such t0 and � ,

v".x; t/ WD �
.t0;�/.t/u".x; t/; x 2 �; t � t0; (4.7)

satisfies8̂̂̂̂
<̂
ˆ̂̂:
v"t D �v"�.Y"u" �r/v"Cr.�

.t0;�/.t/P"/Cg".x; t/; r�v" D 0;

x 2 �; t > t0;

v" D 0; x 2 @�; t > t0;

v" D 0; x 2 �; t 2 Œt0; t0C�=2�;

(4.8)

with

g".x; t/ WD �
.t0;�/.t/n".x; t/rˆ.x/C �

.t0;�/
t .t/u".x; t/; x 2 �; t > t0: (4.9)
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A first conclusion of Lemma 4.3 then asserts local-in-time L1 and even Hölder bounds
for Aˇv", when considered as an L2.�/-valued function, thereby providing the following
information about u":

Lemma 4.4. Let p > 3=2, ˛ 2 .1=2; 1/, k � 1 and T .k/ D T .kI˛/ be as in Lemma 3.8,
and let ˇ 2 .5�2˛

4
; 1/. Then for all � 2 .0;T .k// there existsC.k;�/DC.k;� Ip;˛;ˇ/ > 0

such that if " 2 .0; 1/ and t0 � 0 are such that (3.14) holds,

kAˇu".�; t /kL2.�/ � C.k; �/ for all t 2 .t0 C �; t0 C T .k// (4.10)

and

kAˇu".�; t / � A
ˇu".�; t?/kL2.�/ � C.k; �/ � .t � t?/

1�ˇ (4.11)

for all t? 2 .t0 C �; t0 C T .k// and t 2 .t?; t0 C T .k//.

Proof. Once more using the fact that ˛ > 1=2 implies the inequality 6
3�2˛

> 3, we fix
qD q.˛/ > 3 such that q < 6

3�2˛
and henceD.A˛=2/ ,!Lq.�IR3/ according to [12, 15].

Since Y"A˛=2 D A˛=2Y" on D.A˛=2/, and since kY"'kL2.�/ � k'kL2.�/ for all ' 2
L2� .�/, by means of Lemma 4.2 we thus find C1DC1.k;p;˛/ > 0, C2DC2.k;p;˛/ > 0
andC3DC3.k;�;p;˛/> 0 such that whenever (3.14) holds for some "2 .0;1/ and t0� 0,
the functions v"; Y"u" and g" in (4.8) and (4.9) satisfy

kA˛=2v".�; t /kL2.�/ � C1 for all t 2 .t0; t0 C T .k//; (4.12)

kY"u".�; t /kLq.�/ � C2 for all t 2 .t0; t0 C T .k//; (4.13)

kg".�; t /kL2.�/ � C3 for all t 2 .t0; t0 C T .k//: (4.14)

To make appropriate use of this, we fix ˇ0 D ˇ0.˛; ˇ/ 2 .
5�2˛
4
; ˇ/ and note that then

D.Aˇ0/ ,! W 1; 2qq�2 .�IR3/ [12, 15], whence besides taking C4 D C4.ˇ/ > 0 and C5 D
C5.ˇ/ > 0 such that

kAˇe��A'kL2.�/ � C4�
�ˇ
k'kL2.�/ for all ' 2 L2� .�/ and � > 0; (4.15)

kAˇC1e��A'kL2.�/ � C5�
�ˇ�1

k'kL2.�/ for all ' 2 L2� .�/ and � > 0; (4.16)

by using Lemma 3.3 we can choose C6 D C6.˛; ˇ/ > 0, a D a.˛; ˇ/ 2 .0; 1/ and C7 D
C7.˛; ˇ/ > 0 fulfilling

kr'k
L
2q
q�2 .�/

� C6kA
ˇ0'kL2.�/

� C7kA
ˇ'ka

L2.�/
kA˛=2'k1�a

L2.�/
for all ' 2 D.Aˇ /. (4.17)
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We now apply Aˇ to a variation-of-constants representation of the accordingly defined
function v" from (4.7) to see that for arbitrary t? 2 Œt0; t0C T .k// and t 2 .t?; t0C T .k//,

kAˇv".�; t / � A
ˇv".�; t?/kL2.�/

D





� Z t?

t0

Aˇ Œe�.t�s/A � e�.t?�s/A�P ¹.Y"u".�; s/ � r/v".�; s/º ds

�

Z t

t?

Aˇe�.t�s/AP ¹.Y"u".�; s/ � r/v".�; s/º ds

C

Z t?

t0

Aˇ Œe�.t�s/A � e�.t?�s/A�Pg".�; s/ ds

C

Z t

t?

Aˇe�.t�s/APg".�; s/ ds






L2.�/

; (4.18)

where by (4.16), the Cauchy–Schwarz inequality, (4.13) and (4.17),



� Z t?

t0

Aˇ Œe�.t�s/A � e�.t?�s/A�P ¹.Y"u".�; s/ � r/v".�; s/º ds






L2.�/

D





Z t?

t0

Z t

t?

AˇC1e�.��s/AP ¹.Y"u".�; s/ � r/v".�; s/º d� ds






L2.�/

� C4

Z t?

t0

Z t

t?

.� � s/�ˇ�1kP ¹.Y"u".�; s/ � r/v".�; s/ºkL2.�/ d� ds

� C4

Z t?

t0

Z t

t?

.� � s/�ˇ�1kY"u".�; s/kLq.�/krv".�; s/k
L
2q
q�2 .�/

d� ds

� C2C5C7

Z t?

t0

Z t

t?

.� � s/�ˇ�1kAˇv".�; s/k
a
L2.�/

kA˛=2v".�; s/k
1�a
L2.�/

d� ds

� C 1�a1 C2C5C7M
a
"

Z t?

t0

Z t

t?

.s � �/�ˇ�1 d� ds

D
C 1�a1 C2C5C7M

a
"

ˇ.1 � ˇ/
� ¹.t � t?/

1�ˇ
� .t � t0/

1�ˇ
C .t? � t0/

1�ˇ
º

�
C 1�a1 C2C5C7M

a
"

ˇ.1 � ˇ/
� .t � t?/

1�ˇ ; (4.19)

with M" WD maxs2Œt0;t0CT.k/� kA
ˇv".�; s/kL2.�/. Likewise, (4.16) and (4.14) imply that

for all t? 2 Œt0; t0 C T .k// and t 2 .t?; t0 C T .k//,



Z t?

t0

Aˇ Œe�.t�s/A � e�.t?�s/A�Pg".�; s/ ds






L2.�/

D





 � Z t?

t0

Z t

t?

AˇC1e�.��s/APg".�; s/ d� ds






L2.�/

� C3C5

Z t?

t0

Z t

t?

.� � s/�ˇ�1 d� ds �
C3C5

ˇ.1 � ˇ/
� .t � t?/

1�ˇ ; (4.20)
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and furthermore we can combine (4.15) with (4.13) and (4.17) to estimate



� Z t

t?

Aˇe�.t�s/AP ¹.Y"u".�; s/ � r/v".�; s/º ds






L2.�/

� C4

Z t

t?

.t � s/�ˇkP ¹.Y"u".�; s/ � r/v".�; s/ºkL2.�/ ds

� C4

Z t

t?

.t � s/�ˇkY"u".�; s/kLq.�/krv".�; s/k
L
2q
q�2 .�/

ds

� C 1�a1 C2C4C7M
a
"

Z t

t?

.t � s/�ˇ ds D
C 1�a1 C2C4C7M

a
"

1 � ˇ
� .t � t?/

1�ˇ (4.21)

for all t? 2 Œt0; t0 C T .k// and t 2 .t?; t0 C T .k//, whereas (4.15) together with (4.14)
shows that



Z t

t?

Aˇe�.t�s/APg".�; s/ ds






L2.�/

� C4

Z t

t?

.t � s/�ˇkPg".�; s/kL2.�/ ds

� C3C4

Z t

t?

.t � s/�ˇ ds

D
C3C4

1 � ˇ
� .t � t?/

1�ˇ (4.22)

for all t? 2 Œt0; t0 C T .k// and t 2 .t?; t0 C T .k//. In view of (4.17)–(4.22), on letting
t? WD t0 we firstly obtain from (4.18) that since v".�; t0/D 0,M" �C8CC8M

a
" and hence

M" � max ¹1; .2C8/
1
1�a º with

C8 D C8.k;˛;ˇ/ WD
T 1�ˇ .k/

1 � ˇ
�max

²
C3C5

ˇ
CC3C4;

C 1�a1 C2C5C7

ˇ
CC 1�a1 C2C4C7

³
:

Having thereby proved (4.10), inserting this information into (4.19) and (4.21) we there-
upon obtain (4.11) from (4.18)–(4.22) and our definition of v".

A particular consequence asserts Hölder bounds not only for u" itself, but also for the
expression Y"u" forming an essential part of the nonlinear convection term in (2.3).

Corollary 4.5. Let p > 3=2, ˛ 2 .1=2; 1/ and k � 1, and let T .k/ D T .kIp; ˛/ be as
given by Lemma 3.8. Then for all � 2 .0; T .k// there exist 
 D 
.k; �; p; ˛/ 2 .0; 1/ and
C.k; �/ D C.k; � Ip; ˛/ > 0 with the property that if " 2 .0; 1/ and t0 � 0 are such that
(3.14) is satisfied, the inequality

ku"kC
;
=2.��Œt0C�;t0CT.k/�/ C kY"u"kC
;
=2.��Œt0C�;t0CT.k/�/ � C.k; �/ (4.23)

holds.

Proof. We apply Lemma 4.4 to any fixed ˇ 2 .5�2˛
4
; 1/ and then infer (4.23) from (4.10)

and (4.11) upon observing that, in particular, ˇ > 3=4 and hence D.Aˇ / ,! C 
 .�IR3/
for all 
 2 .0; 2ˇ � 3=2/ [12,15], and again using that kAˇY"'kL2.�/ � kAˇ'kL2.�/ for
all ' 2 D.Aˇ /.
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Once more explicitly operating on the localized problem (4.8), combining the latter
with, again, Lemma 4.3 enables us to derive the following higher order estimate through
standard literature on Schauder theory for the Stokes evolution equations.

Lemma 4.6. Let p > 3=2, ˛ 2 .1=2; 1/, k � 1 and T .k/ D T .kIp; ˛/ be as in Lemma
3.8. Then for each � 2 .0; T .k// one can find 
 D 
.k; �; p; ˛/ 2 .0; 1/ and C.k; �/ D
C.k; � I p; ˛/ > 0 with the property that whenever " 2 .0; 1/ and t0 � 0 are such that
(3.14) holds, we have

ku"kC2C
;1C
=2.��Œt0C�;t0CT.k/�/ � C.k; �/: (4.24)

Proof. According to Corollary 4.5 and Lemma 4.3, we can pick 
i D 
i .k;�;p;˛/2 .0;1/
and Ci D Ci .k; �; p; ˛/ > 0, i 2 ¹1; 2º, with the property that if (3.14) is satisfied with
some " 2 .0; 1/ and t0 � 0, then taking g" as accordingly introduced in (4.9) we have

kY"u"kC
1;
1=2.��Œt0C�=2;t0CT.k/�/ � C1; (4.25)

kg"kC
2;
2=2.��Œt0C�=2;t0CT.k/�/ � C2: (4.26)

Now due to a well-known result from Schauder theory for the Stokes evolution system
[33], there exist 
3 D 
3.k; �; p; ˛/ 2 .0; 1/ and C3 D C3.k; �; p; ˛/ > 0 such that if
t0 � 0, a 2 C 
1;
1=2.� � Œt0 C �=2; t0 C T .k/�IR3�3/ and b 2 C 
2;
2=2.� � Œt0 C �=2;
t0 C T .k/�IR3/ are such that b.�; t0 C �=2/ D 0 on @� as well as

kakC
1;
1=2.��Œt0C�=2;t0CT.k/�/ � C1; kbkC
2;
2=2.��Œt0C�=2;t0CT.k/�/ � C2;

then the problem8̂̂̂̂
<̂
ˆ̂̂:
wt D �w C a.x; t/ � rw C b.x; t/CrQ; r � w D 0;

x 2 �; t 2 .t0 C �=2; t0 C T .k//;

w D 0; x 2 @�; t 2 .t0 C �=2; t0 C T .k//;

w.x; t0 C �=2/ D 0; x 2 �;

admits a solution .w;Q/ with a uniquely determined w 2 C 2C
3;1C
3=2.� � Œt0 C �=2;
t0 C T .k/�IR3/ fulfilling

kwkC2C
3;1C
3=2.��Œt0C�=2;t0CT.k/�/ � C3:

In view of (4.8), (4.25) and (4.26), an application thereof to a WD Y"u" and b WD g" imme-
diately yields (4.24), because actually g".�; t0 C �=2/ � 0 throughout � by (4.9) and
(4.6).

According to this and to Lemma 4.3, we are now in a position to twice invoke clas-
sical Schauder theory for scalar parabolic problems to successively deduce second order
estimates also for the first two solution components.
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Lemma 4.7. Suppose that p > 3=2 and ˛ 2 .1=2; 1/, that k � 1, and that T .k/ D
T .kIp;˛/ is as in Lemma 3.8. Then for arbitrary � 2 .0;T .k// there exist 
 D 
.k;�;p;˛/
2 .0; 1/ and C.k; �/ D C.k; � I p; ˛/ > 0 such that if (3.14) holds with some " 2 .0; 1/
and t0 � 0, the inequalities

kn"kC2C
;1C
=2.��Œt0C�;t0CT.k/�/ � C.k; �/; (4.27)

kc"kC2C
;1C
=2.��Œt0C�;t0CT.k/�/ � C.k; �/ (4.28)

hold.

Proof. Using Lemma 4.3 and Corollary 4.5 as a starting point, we can firstly derive (4.28)
from (2.3) and standard parabolic Schauder theory [22] through a reasoning of quite the
same flavor as that in the proof of Lemma 4.6. Thereafter, (4.28) can be seen to provide
sufficient regularity information so as to warrant accessibility of (4.27) to the same token.

5. Quantifying exceptionality of largeness: A general endpoint lemma

Our next goal will be to apply the local theory developed above, with appropriately
selected parameters p and ˛, for suitably chosen values of t0 at which solutions remain
conveniently far from singular behavior, in the sense of (3.14). In Section 6 this will be
achieved by means of bounds on energy dissipation rates which however, through their
temporally integrated nature do not entirely rule out singular behavior, but after all pro-
vide some information about a certain exceptional character of times at which solutions
may become inconveniently large.

Our quantitative exploitation of corresponding integral estimates, and hence our selec-
tion of instants t0 to be used above, will be motivated by the following general observa-
tion, possibly being of independent interest, concerning endpoints of intervals of pre-
scribed length throughout which a given function y essentially exceeds some fixed value.
The estimate (5.2) on the size of the set of all such points generalizes an inequality trivially
valid for continuous y to arbitrary measurable functions, and thereby warrants applicabil-
ity to the possibly discontinuous limit object of the quantities y" discussed before, to be
precisely defined in (6.10) below.

Lemma 5.1. Let T > 0 and y W .0; T /! R be measurable. Then for each � 2 .0; T / and
k > 0,

S.k; �/ WD ¹t? 2 .�; T / j y.t/ � k for a.e. t 2 .t? � �; t?/º (5.1)

has the property that its outer Lebesgue measure jS.k; �/j? satisfies

jS.k; �/j? � j¹t 2 .0; T / j y.t/ � kºj: (5.2)

Proof. Assuming without loss of generality that S.k; �/ is not empty, we let t1 WD
supS.k; �/ 2 .�; T � and

yt1 WD inf ¹t? 2 .0; t1/ j y.t/ � k for a.e. t 2 .t?; t1/º;



M. Winkler 1446

and note that yt1 then is well-defined and nonnegative with

yt1 � t1 � � (5.3)

according to the definitions of t1 and S.k; �/. Moreover, the construction of yt1 enables us
to fix a null set N1 � Œ0; T � such that

y.t/ � k for all t 2 Œyt1; t1� nN1:

Now in the case when yt1 � � , we must have y.t/ � k for all t 2 .�; t1/ n N1 and hence,
again by definition of S.k; �/, trivially infer that S.k; �/ � .�; t1� � ¹t 2 .0; T / j y.t/
� kº [N1 and that thus (5.2) holds due to the fact that jN1j D 0. Similarly, if yt1 > � and

†1 WD ¹t 2 S.k; �/ j t � yt1º

is empty, then S.k;�/� .yt1; t1��¹t 2 .0;T / j y.t/� kº [N1 and hence we may conclude
as before.

If yt1 > � and †1 ¤ ;, however, then

t2 WD sup†1

is a well-defined element of .�; yt1� which, due to (5.3), in fact even satisfies t2 � t1 � � .
Repeating this selection process if necessary, we thus obtain an integer j0 � T=� as well
as finite families .tj /

j0
jD1 and .ytj /0jD1 such that writing yt0 WD T , for all j 2 ¹1; : : : ; j0º we

have

tj D inf ¹t 2 S.k; �/ j t � ytj�1º; ytj D inf ¹t? 2 .0; tj / j y.t/ � k for a.e. t 2 .t?; tj /º

with tj � ytj�1 � tj�1 � � , and that there exist null sets Nj � Œ0; T �, j 2 ¹1; : : : ; j0º,
fulfilling

y.t/ � k for all t 2 Œytj ; tj � nNj ; j 2 ¹1; : : : ; j0º:

As accordingly

S.k; �/ �

j0[
jD1

Œytj ; tj � � ¹t 2 .0; T / jy.t/ � kº [

j0[
jD1

Nj ;

due to an evident null set property of the rightmost union herein we again arrive at (5.2)
also in this general case.

An evident consequence of the latter will be of importance for our subsequent reason-
ing.

Corollary 5.2. Let T > 0 and y 2 Lq..0; T // for some q > 0. Then the sets S.k; �/,
.k; �/ 2 .0;1/ � .0; T /, defined in (5.1) satisfy

sup
�2.0;T /

jS.k; �/j? ! 0 as k !1:

Proof. This is evident from Lemma 5.1 and the fact thatZ T

0

jyjq � kq � j¹t 2 .0; T / j y.t/ � kºj for all k > 0.
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6. Quantifying exceptionality of largeness: Exploiting a quasi-energy structure

In accordance with Corollary 5.2, we shall next intend to identify conditions on the param-
eters p and ˛ which firstly ensure convergence of the functions from (1.7) as "& 0 in
some appropriate sense, and which secondly warrant that the limit function y thereby
obtained belongs to some Lq space. The following implications of a quasi-energy struc-
ture associated with (2.1) and (2.2) have been observed in [46].

Lemma 6.1. For all T > 0 there exists C.T / > 0 such thatZ T

0

Z
�

²
jrn"j

2

n"
C jrn"j

5=4
C n5=3" C

jD2c"j
2

c"
C
jrc"j

4

c3"
C jru"j

2
C ju"j

10=3

³
� C.T /

(6.1)
for all " 2 .0; 1/, andZ T

0

¹kn"t .�; t /k
10=9

.W 1;10.�//?
Ck.
p
c"/t .�; t /k

5=3

.W 1;5=2.�//?
Cku"t .�; t /k

5=4

.W
1;5
0;�

.�//?
ºdt�C.T /

(6.2)
for all " 2 .0; 1/. Moreover,

sup
"2.0;1/

sup
t>0

²Z
�

jrc".�; t /j
2

c"
C

Z
�

ju".�; t /j
2

³
<1: (6.3)

Proof. This can be obtained by simply collecting the outcomes of [46, Lemmas 3.8, 3.10,
3.11].

A straightforward interpolation between (2.9) and the first estimate implicitly con-
tained in (6.1) yields the following further regularity information of order zero for the
first solution component.

Lemma 6.2. Let p 2 .1; 3�. Then for all T > 0 there exists C.p; T / > 0 such thatZ T

0

kn".�; t /k
2p

3.p�1/

Lp.�/
dt � C.p; T / for all " 2 .0; 1/: (6.4)

Proof. By means of a Gagliardo–Nirenberg interpolation, we find C1 D C1.p/ > 0 such
that for all t > 0 and " 2 .0; 1/,

kn"k
2p

3.p�1/

Lp.�/
D k
p
n"k

4p
3.p�1/

L2p.�/

� C1kr
p
n"k

2
L2.�/

k
p
n"k

2.3�p/
3.p�1/

L2.�/
C C1k

p
n"k

4p
3.p�1/

L2.�/

D
C1

4
�

²Z
�

n0

³ 3�p
3.p�1/

�

Z
�

jrn"j
2

n"
C C1 �

²Z
�

n0

³ 2p
3.p�1/

; (6.5)

because k
p
n"k

2
L2.�/

D
R
�
n"D

R
�
n0 for any such t and " due to (2.9). In view of Lemma

6.1, an integration of (6.5) yields (6.4).
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In conjunction again with (6.1), the latter lemma implies a gradient estimate involv-
ing a space integrability exponent larger than that appearing in the expression jrn"j5=4

from (6.1), at the cost of a reduced regularity in time.

Lemma 6.3. If r 2 .1; 3=2�, then given any T > 0 one can find C.r; T / > 0 fulfillingZ T

0

krn".�; t /k
2r
4r�3

Lr .�/
dt � C.r; T / for all " 2 .0; 1/: (6.6)

Proof. Two applications of the Hölder inequality show that for all T > 0 and each " 2
.0; 1/,Z T

0

krn".�; t /k
2r
4r�3

Lr .�/
dt D

Z T

0

²Z
�

²
jrn"j

2

n"

³r=2
� nr=2" dx

³ 2
4r�3

dt

�

Z T

0

²Z
�

jrn"j
2

n"
dx

³ r
4r�3

�

²Z
�

n
r
2�r
" dx

³ 2�r
4r�3

dt

�

²Z T

0

Z
�

jrn"j
2

n"
dx dt

³ r
4r�3

�

²Z T

0

²Z
�

n
r
2�r
" dx

³ 2�r
3.r�1/

dt

³ 3.r�1/
4r�3

: (6.7)

Since our assumptions r > 1 and r � 3=2 warrant that p WD r
2�r

satisfies both p > 1 and
p � 3, and since moreover

2p

3.p � 1/
D

2

3 � 3 � 2�r
r

D
r

3.r � 1/
;

Lemma 6.2 applies so as to guarantee that for each T > 0 we can pick C1 D C1.r; T / > 0
satisfyingZ T

0

²Z
�

n
r
2�r
" dx

³ 2�r
3.r�1/

dt D

Z T

0

kn".�; t /k
r

3.r�1/

L
r
2�r .�/

dt � C1.r; T / for all " 2 .0; 1/:

Therefore, (6.6) results from (6.7) and Lemma 6.1.

The compactness features thereby collected now prepare us for an appropriate passage
to the limit "& 0, and especially for the definition and a convenient approximation of a
function y to be used when applying Corollary 5.2.

Lemma 6.4. Let p 2 .1; 3/ and ˛ 2 .0; 1/. Then there exist a null set N � .0;1/ and
."j /j2N � .0; 1/ such that "j & 0 as j !1, that

.n"; c"; u"/! .n; c; u/ a.e. in � � .0;1/ as " D "j & 0 (6.8)

with some global weak energy solution .n; c; u/ of (1.2), and that furthermore the func-
tions y" from (1.7) satisfy

y".t/! y.t/ for all t 2 .0;1/ nN as " D "j & 0; (6.9)

where

y.t/ � y.p;˛/.t/ WD

Z
�

np.�; t /C

Z
�

jrc.�; t /j2p C

Z
�

jA˛=2.�; t /j2; t > 0: (6.10)
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Proof. According to the detailed derivation in [46, Lemma 4.1], a combination of the esti-
mates from Lemma 6.1 with a straightforward extraction procedure based on an Aubin–
Lions type lemma yields ."j /j2N � .0; 1/ and functions n; c and u defined a.e. on � �
.0;1/ such that "j & 0 as j !1, that n � 0 and c > 0 a.e. in � � .0;1/, that (6.8)
holds, and that .n; c; u/ forms a global weak energy solution of (1.2) in the sense of
Definition 2.1.

To see that furthermore also (6.9) can be achieved for fixed p 2 .1; 3/ and ˛ 2 .0; 1/,
given any such p and ˛ we use that p < 3, and that hence 3p

pC3
< 3=2, in choosing

r 2 .1; 3=2/ such that r > 3p
pC3

, and we moreover take some q 2 .3; 6/ fulfilling q � 2p.
Then from Lemma 6.3, Lemma 6.1, (2.9) and (2.10) we actually know that

� .n"/"2.0;1/ is bounded in L
2r
4r�3 ..0; T /IW 1;r .�//,

� .n"t /"2.0;1/ is bounded in L10=9..0; T /I .W 1;10.�//?/,

� .
p
c"/"2.0;1/ is bounded in L2..0; T /IW 2;2.�//,

� ..
p
c"/t /"2.0;1/ is bounded in L5=3..0; T /I .W 1;5=2.�//?/,

� .u"/"2.0;1/ is bounded in L2..0; T /IW 1;2
0;� .�//,

� .u"t /"2.0;1/ is bounded in L5=4..0; T /I .W 1;5
0;� .�//

?/,

for all T > 0. Since herein 2r
4r�3

> 1 due to the fact that r < 3=2, and since the inequal-
ities r > 3p

pC3
, q < 6 and ˛=2 < 1=2 ensure that the embeddings W 1;r .�/ ,! Lp.�/,

W 2;2.�/ ,! W 1;q.�/ and W 1;2
0;� .�/ ,! D.A˛=2/ are all compact in the three-dimen-

sional setting considered, upon passing to a suitably relabeled further subsequence if
necessary we may assume that again due to an Aubin–Lions lemma, with some null set
N � .0;1/ we moreover have

n".�; t /! n.�; t / in Lp.�/ for all t 2 .0;1/ nN; (6.11)p
c".�; t /!

p
c.�; t / in W 1;q.�/ for all t 2 .0;1/ nN; (6.12)

u".�; t /! u.�; t / in D.A˛=2/ for all t 2 .0;1/ nN (6.13)

as " D "j & 0. Since (6.12) in particular entails that
p
c".�; t /!

p
c.�; t / in L1.�/ for

all t 2 .0;1/ n N as " D "j & 0 by continuity of W 1;q.�/ ,! L1.�/, as guaranteed
by our requirement that q > 3, it follows from (6.12) that as " D "j & 0 we also have

rc".�; t / D 2
p
c".�; t /r

p
c".�; t /

! 2
p
c.�; t /r

p
c.�; t /

D rc.�; t / in Lq.�/ ,! L2p.�/ for all t 2 .0;1/ nN

due to the restriction that q � 2p. In conjunction with (6.11) and (6.13), this establishes
(6.9).

Indeed, y enjoys some integrability feature in the spirit of Corollary 5.2:
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Lemma 6.5. Let p 2 .1; 3/ and ˛ 2 .0; 1/. Then the function y D y.p;˛/ from (6.10) has
the property that Z T

0

yq.p;˛/.t/ dt <1 for all T > 0; (6.14)

where q.p; ˛/ WD min ¹ 2
3.p�1/

; 1
˛
º.

Proof. Given T > 0, from Lemma 6.1 and (2.10) we infer the existence of Ci D Ci .T / >
0, i 2 ¹1; 2; 3; 4º, such thatZ T

0

Z
�

jD2c"j
2
� C1 for all " 2 .0; 1/; (6.15)Z T

0

Z
�

jru"j
2
� C2 for all " 2 .0; 1/; (6.16)Z

�

jrc".�; t /j
2
� C3 for all t 2 .0; T / and " 2 .0; 1/; (6.17)Z

�

ju".�; t /j
2
� C4 for all t 2 .0; T / and " 2 .0; 1/: (6.18)

By an application of the Gagliardo–Nirenberg inequality based on the assumption that
p < 3, we can interpolate between (6.15) and (6.17) to see that with someC5DC5.p/ > 0
we haveZ T

0

krc".�; t /k
4p

3.p�1/

L2p.�/
dt � C5

Z T

0

kD2c".�; t /k
2
L2.�/

krc".�; t /k
2.3�p/
3.p�1/

L2.�/
dt

� C1C
3�p
3.p�1/

3 C5 for all " 2 .0; 1/; (6.19)

and utilizing Lemma 3.3 we similarly find C6 D C6.˛/ > 0 such thatZ T

0

kA˛=2u".�; t /k
2=˛

L2.�/
dt � C6

Z T

0

kru".�; t /k
2
L2.�/

ku".�; t /k
2.1�˛/=˛

L2.�/
dt

� C2C
1�˛
˛

4 C6 for all " 2 .0; 1/; (6.20)

because ˛ 2 .0; 1/. Since, apart from that, Lemma 6.2 provides C7 D C7.p; T / > 0 ful-
filling Z T

0

kn".�; t /k
2p

3.p�1/

Lp.�/
dt � C7 for all " 2 .0; 1/;

by means of Young’s inequality we can use that pq.p; ˛/ � 2p
3.p�1/

and 2q.p; ˛/ � 2
˛

to
estimate
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Z T

0

yq.p;˛/" .t/ dt � 3q.p;˛/ �

²Z T

0

²Z
�

np" dx

³q.p;˛/
dt C

Z T

0

²Z
�

jrc"j
2p dx

³q.p;˛/
C

Z T

0

²Z
�

jA˛=2u"j
2 dx

³q.p;˛/
dt

³
� 3q.p;˛/ �

²Z T

0

kn".�; t /k
2p

3.p�1/

Lp.�/
dt C

Z T

0

krc".�; t /k
4p

3.p�1/

L2p.�/
dt

C

Z T

0

kA˛=2u".�; t /k
2=˛

L2.�/
dt C 2T

³
� 3q.p;˛/ � ¹C7 C C1C

3�p
3.p�1/

3 C5 C C2C
1�˛
˛

4 C6 C 2T º

for all " 2 .0; 1/. Since Lemma 6.4 in particular says that with ."j /j2N as provided there
we have yq.p;˛/" ! yq.p;˛/ a.e. in .0; T / as " D "j & 0, Fatou’s lemma therefore implies
(6.14).

7. Genericity of smoothness: Proof of Theorem 1.1

We are now prepared to identify suitably large sets of times within which the limit .n;c;u/
gained in Lemma 6.4 coincides with a smooth solution to the boundary value problem in
(1.2). This will be achieved in a parameter regime consistent with both (1.8) and (1.9),
whence in particular both the second order local estimates from Section 4 and the approx-
imation and integrability results from Section 6 become applicable.

A first conclusion in this direction yields open smoothness intervals around each time
outside any of the sets S.k; �/ from (5.1), for arbitrarily large k 2 N and suitably chosen
� D �.k/:

Lemma 7.1. Fix p 2 .3=2; 3/, ˛ 2 .1=2; 1/, T > 0 and k0 WD 1=T , and for integers
k > k0, let S.k; T .k// be as correspondingly defined by (5.1), with y D y.p;˛/ given by
(6.10), and with T .k/ 2 .0; 1=k� � .0; T / taken according to Lemma 3.8. Then for each
t? 2 .T .k/; T / n S.k; T .k// there exist an open interval J.t?/ � .0; T / and functions8̂̂<̂

:̂
zn.t?/ 2 C 2;1.� � J.t?//;

zc.t?/ 2 C 2;1.� � J.t?//;

zu.t?/ 2 C 2;1.� � J.t?/IR3/

(7.1)

such that t? 2 J.t?/ and that the functions n; c and u from Lemma 6.4 satisfy

.n; c; u/ D .zn.t?/; zc.t?/; zu.t?// a.e. in � � J.t?/: (7.2)
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Proof. We take N D N .˛/ as introduced in Lemma 6.4, and given k 2 N such that
k > k0 we let T .k/ 2 .0; 1=k� be as provided by Lemma 3.8. Then for fixed t? 2

.T .k/; T / n S.k; T .k//, recalling the definition of S.k; T .k// we may rely on the density
of .t? � T .k/; t?/ nN in .t? � T .k/; t?/ to find some t0 D t0.t?/ 2 .t? � T .k/; t?/ nN �
.0; T / such that y.t0/ < k. According to Lemma 6.4, the fact that t0 does not belong toN
ensures that with .y"/"2.0;1/ given by (1.7) and ."j /j2N taken from Lemma 6.4 we have
y".t0/! y.t0/ as " D "j & 0, whence we can pick "? D "?.t?/ 2 .0; 1/ such that

y".t0/ � k for all " 2 ."j /j2N such that "j < "?:

Now in view of Lemma 4.7, the latter warrants that if we pick any � D �.t?/ 2 .0; T .k//
such that t0 C � < t?, then there exist 
 D 
.t?/ 2 .0; 1/ and C1 D C1.t?/ > 0 with the
property that writing J.t?/ WD .t0 C �; t0 C T .k// we have

kn"kC2C
;1C
=2.��J.t?// C kc"kC2C
;1C
=2.��J.t?// C ku"kC2C
;1C
=2.��J.t?// � C1

for all " 2 ."j /j2N such that " < "?. By means of the Arzelà–Ascoli theorem, from this
we infer the existence of a subsequence ."ji /i2N of ."j /j2N \ .0; "?/, and of functions
zn.t?/; zc.t?/ and zu.t?/ which are such that (7.1) holds and that

n"ji
! zn.t?/ in C 2;1.� � J.t?//;

c"ji
! zc.t?/ in C 2;1.� � J.t?//;

u"ji
! zu.t?/ in C 2;1.� � J.t?//

as i !1. In light of (6.8), this identifies .zn.t?/; zc.t?/; zu.t?// in the sense of (7.2).

Now the crucial size information provided by Corollary 5.2 enables us to make sure
that a suitable collection of accordingly gained time intervals from Lemma 7.1 indeed
complements a null set of times.

Lemma 7.2. Let p 2 .3=2; 3/ and ˛ 2 .1=2; 1/, and let n; c and u be as accordingly be
obtained in Lemma 6.4. Then given any T > 0 one can find an open set E � .0; T / and
functions 8̂̂<̂

:̂
yn 2 C 2;1.� �E/;

yc 2 C 2;1.� �E/;

yu 2 C 2;1.� �EIR3/

(7.3)

such that

.n; c; u/ D .yn; yc; yu/ a.e. in � �E; (7.4)

j.0; T / nEj D 0: (7.5)

Proof. For k 2 N with k > k0 WD 1=T we let S.k; T .k// be as defined through (5.1),
with y D y.˛/ taken from (6.10). Then given t? 2 .T .k/; T / n S.k; T .k// we let
J.t?/ � .0; T / and .zn.t?/; zc.t?/; zu.t?// be as obtained in Lemma 7.1, and first observe
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that whenever t? 2 .T .k/; T / n S.k; T .k// and t?? 2 .T .k/; T / n S.k; T .k//, from (7.2)
we clearly infer that necessarily .zn.t?/; zc.t?/; zu.t?// � .zn.t??/; zc.t??/; zu.t??// throughout
� � .J.t?/ \ J.t??//. Writing

E.k/ WD
[

t?2.T .k/;T /nS.k;T .k//

J.t?/; k 2 N \ .k0;1/;

and noting that clearly E.k/ is open for any such k, from Lemma 7.1 we thus actually
infer the existence of a uniquely determined triple .n.k/; c.k/; u.k// of functions

n.k/ 2 C 2;1.��E.k//; c.k/ 2 C 2;1.��E.k//; u.k/ 2 C 2;1.��E.k/IR3/ (7.6)

such that
.n; c; u/ D .n.k/; c.k/; u.k// a.e. in � �E.k/: (7.7)

Moreover, the trivial inclusion .T .k/; T / n S.k; T .k// � E.k/ enables us to estimate

j.0; T / nE.k/j � jS.k; T .k//j? C T .k/ for all k 2 N \ .k0;1/;

so that an application of Corollary 5.2 to q WD q.p; ˛/ shows that due to Lemma 6.5 we
have

j.0; T / nE.k/j ! 0 as k !1;

because T .k/! 0 as k !1 by Lemma 3.8. Therefore, letting

E WD
[

k2N; k>k0

E.k/

defines an open set fulfilling (7.5), and similarly to the above observation noting that

.n.k/; c.k/; u.k//� .n.l/; c.l/; u.l// in � � .E.k/\E.l// for all k; l 2 N \ .k0;1/,

setting

.yn; yc; yu/.x; t/ WD .n.k/; c.k/; u.k//.x; t/ if .x; t/2��E with t 2E.k/ for some k >k0,

we obtain functions yn; yc and yu which are well-defined on all of��E, which satisfy (7.3)
due to (7.6), and for which (7.4) holds as a consequence of (7.7).

Along with the statement on eventual smoothness from Theorem A, this readily estab-
lishes our final result on generic regularity in (1.2):

Proof of Theorem 1.1. We apply Lemma 6.4 to any p 2 .3=2; 3/ and ˛ 2 .1=2; 1/, and
employ Theorem A to fix T? > 0 such that the global weak energy solution .n; c; u/, as
thereby obtained, upon modification on a null set in � � .T?;1/ satisfies

n 2 C 2;1.� � .T?;1//; c 2 C 2;1.� � .T?;1//; u 2 C 2;1.� � .T?;1/IR
3/:

Invoking Lemma 7.2 thereafter yields an open setE � .0;T?/ such that j.0;T?/ nEj D 0,
and that .n; c; u/ D .yn; yc; yu/ a.e. in � � E with some .yn; yc; yu/ 2 .C 2;1.� � E//2 �
C 2;1.� � EIR3/. Upon an evident redefinition of .n; c; u/ on a null set in � � .0; T?/,
we readily arrive at the intended conclusion if, by suitably choosing the countable set I,
we let .I�/�2I denote a family of mutually disjoint connected components of E.
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