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Abstract. If a knot K in S3 admits a pair of truly cosmetic surgeries, we show that the surgery
slopes are either £+2 or £1/¢ for some value of ¢ that is explicitly determined by the knot Floer
homology of K. Moreover, in the former case the genus of K must be 2, and in the latter case there
is a bound relating ¢ to the genus and the Heegaard Floer thickness of K. As a consequence, we
show that the cosmetic crossing conjecture holds for alternating knots (or more generally, Heegaard
Floer thin knots) with genus not equal to 2. We also show that the conjecture holds for any knot K
for which each prime summand of K has at most 16 crossings; our techniques rule out cosmetic
surgeries in this setting except for slopes =1 and £2 on a small number of knots, and these remain-
ing examples can be checked by comparing hyperbolic invariants. These results make use of the
surgery formula for Heegaard Floer homology, which has already proved to be a powerful tool for
obstructing cosmetic surgeries; we get stronger obstructions than previously known by considering
the full graded theory. We make use of a new graphical interpretation of knot Floer homology and
the surgery formula in terms of immersed curves, which makes the grading information we need
easier to access.
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1. Introduction

Given a knot K in S3, two surgeries S3(K) and Sr3,(K) with r # r’ are said to be cos-
metic if Sy (K) and S,/ (K) are diffeomorphic as unoriented manifolds, and truly cosmetic
if S;(K) = S;/(K) (here, and throughout the paper, = denotes orientation preserving
diffeomorphism). Surgeries that are cosmetic but not truly cosmetic are called chirally
cosmetic. Cosmetic surgeries are one way in which the surgery characterization of a 3-
manifold can fail to be unique. Examples of chirally cosmetic surgeries are not difficult to
find, but Gordon conjectured that there are no truly cosmetic surgeries on nontrivial knots
[4, Conjecture 6.1] (see also [14, Problem 1.81 Al]). This conjecture is stated more gener-
ally for knots in arbitrary 3-manifolds, with the notion of truly cosmetic surgery suitably
extended, but we will only consider the case of knots in S 3,
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Conjecture 1 (Cosmetic Surgery Conjecture in S3). Let K be a nontrivial knot in S3. If
r # 1/, then S} (K) % S3(K).

The conjecture can be viewed as a generalization of the knot complement problem,
solved by Gordon and Luecke [5], who proved that no pair of cosmetic surgeries contains
the trivial surgery S3 (K). In addition to this, several partial results related to Conjecture
1 are known. Boyer and Lines [1] used surgery formulae for Casson—Walker and Casson—
Gordon invariants to place a restriction on Ak (¢) for knots K admitting truly cosmetic
surgeries. Much of the recent progress on Conjecture 1 has made use of Heegaard Floer
homology, which has led to several results on obstructing cosmetic or truly cosmetic surg-
eries. For any pair of truly cosmetic surgeries, the surgery slopes were shown first to have
opposite signs [19, 24], and then to be in fact opposite [15]. If K admits truly cosmetic
surgeries, then the genus of K is not 1 [23] and the knot Floer homology of K satisfies
certain additional constraints [3, 15].

Heegaard Floer homology has already proved to be a powerful tool at distinguishing
surgeries, but it has not been used to its full potential. Each application to the cosmetic
surgery conjecture mentioned above uses only partial information from Heegaard Floer
homology, either the total rank of HF [19,24], the d-invariants [15,23], or the Euler char-
acteristic of HF:gd [3, 15]. We will harness (almost) all of the information in Heegaard
Floer homology to obtain much stronger obstructions to truly cosmetic surgeries. In par-
ticular, we consider the isomorphism type of HF as an absolutely graded vector space,
which amounts to keeping track of the grading for each generator in addition to the rank.
This is facilitated by a recent reinterpretation of Heegaard Floer invariants for manifolds
with torus boundary in terms of collections of immersed curves due to the author, Ras-
mussen, and Watson [8, 9]. In particular, this provides a combinatorial framework that
makes comparing gradings for surgeries on knots easier. We give obstructions to truly
cosmetic surgeries in terms of numerical invariants n, extracted from knot Floer homol-
ogy, the Heegaard Floer thickness th(K), and the Seifert genus g(K). The Heegaard Floer
thickness is the difference between the maximal and minimal §-gradings in HFK. The
integers n; will be introduced in Section 2.3; briefly, they count the intersection number
of the immersed multicurve representing knot Floer homology with a horizontal line at
height /. Our main result is the following:

Theorem 2. If K C S3 is a nontrivial knot and S? (K) = S;”,(K) forr # 1/, then
. . N no + 2 Z;x;l X
(i) the pair of slopes {r, 1’} is either {£2} or {x1/q} where ¢ = —=—">—;
4 Zs=1 Szl’ls

(i) if {r,r'} is {£2} then g(K) = 2 and ng = 2ny;

o _ th(K) +2g(K)

Gii) if {r,r'} is{x£1/q} thenq < 22 (K)@(K) — 1)

Note that for any given knot we rule out all but at most two pairs of truly cosmetic
surgeries; it was not previously known that a knot must have finitely many pairs of truly
cosmetic surgeries. Importantly, this is an effective finiteness statement, meaning that for
a given knot K the two (or fewer) potential truly cosmetic surgery pairs are explicitly
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determined. This makes it possible to check the conjecture for a given finite set of knots
by means of a finite computation (see Theorem 6 below). In fact, in the vast majority
of cases observed, the value of g predicted by conclusion (i) is not an integer and the
conditions in (ii) are not met, so that Theorem 2 rules out all truly cosmetic surgeries
on K.

Although the formula in conclusion (i) of Theorem 2 determines ¢, the bound on g in
conclusion (iii) is also useful as a convenient way to rule out truly cosmetic surgeries on
large classes of knots without computing the n; invariants. In particular:

Corollary 3. If K is a nontrivial knot in S> with g(K) # 2 and th(K) < 6, then K does
not admit any truly cosmetic surgeries.

Proof. The cosmetic surgery conjecture is known for genus 1 knots [23], so we may
assume that g(K) > 2. Conclusion (ii) from Theorem 2 rules out slopes £2. The bound
from conclusion (iii) of Theorem 2 then implies that ¢ < 1, which is impossible. ]

A great many knots have th(K) < 6. A knot is Floer homologically thin if th(K) = 0,
that is, if only one §-grading is occupied (we will simply refer to such knots as thin);
examples of thin knots include all alternating and quasialternating knots. Furthermore,
direct computation reveals that for any prime knot K with at most 16 crossings, th(K) < 2.
It follows that the cosmetic surgery conjecture holds for any of these knots with genus
other than 2.

An additional consequence of Theorem 2 is a restriction on the manifolds that could
arise from truly cosmetic surgeries on knots in S3:

Corollary 4. If Y is a closed oriented 3-manifold with |H(Y ; Z)| > 2, then Y cannot
be obtained by a truly cosmetic surgery on any knot in S3.

In addition to those in Theorem 2, some further conditions must also be satisfied by the
knot Floer homology of K for truly cosmetic surgeries to exist. These conditions require
some more definitions to state in general (see Section 5), but in the case of thin knots they
can be stated in terms of the Alexander polynomial and signature.

Theorem 5. If a nontrivial knot K C S3 is thin (in particular if K is alternating or
quasialternating) and admits a pair of truly cosmetic surgeries, then Ag(t) = nt? —
4nt + (6n 4 1) — 4nt=' 4 nt=2 for some positive integer n, o(K) = 0, and the surgery
slopes are =1 or £2.

We remark that Theorem 5 is the best statement possible for thin knots using only
Heegaard Floer homology. That is, if K is thin, Ag (t) = nt? — 4nt + (6n + 1) — 4nt~!
+nt~2, and 6(K) = 0, then the pairs {S;(K), S2,(K)} and {S3(K), S3,(K)} are not
distinguished by their Heegaard Floer homology. The first two examples in the knot tables
where this occurs are the knots 94; and 944. Similarly, Theorem 2 and the additional
constraints in Section 5 allow us to extract as much information as possible from Heegaard
Floer homology: if we cannot prove the cosmetic surgery conjecture for a given knot,
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then the pairs of surgeries that are not ruled out in fact have isomorphic Heegaard Floer
homology.

Knots having any surgeries at all that cannot be distinguished by Heegaard Floer
homology are exceedingly rare, but they do exist—to date we have found 337 such knots,
each with two pairs of slopes that are not distinguished. All of these 337 examples are
genus 2 and have Alexander polynomial of the form described in Theorem 5 (though not
all are thin). To prove the conjecture for these knots, we must use other invariants to dis-
tinguish the remaining pairs of surgeries; for the examples found so far the hyperbolic
volume and Chern—Simons invariant are sufficient. In this way we verify the conjecture
for all prime knots up to 16 crossings, and in fact for arbitrary connected sums of such
knots.

Theorem 6. Let K C S3 be a nontrivial knot whose prime summands each have at most
16 crossings. If r # r' then S (K) % S3/(K).

This paper grew out of an attempt to answer the question: how much can Heegaard
Floer homology tell us about the Cosmetic Surgery Conjecture? For knots in S3, we have
now given a comprehensive answer to that question. Indeed, we see that Heegaard Floer
homology can say a great deal, and examples for which it is not sufficient to prohibit truly
cosmetic surgeries appear to be very rare. Nevertheless, other tools will be required to
prove Conjecture 1 outright.

The results in this paper are, to the author’s knowledge, the strongest obstructions
available for knots in S3, but similar results can be obtained using other techniques. In
particular, very recently Futer, Purcell, and Schleimer [2] have used hyperbolic methods
to prove a result comparable to Theorem 2: for any given hyperbolic knot, they rule out
truly cosmetic surgeries on all but an explicitly determined finite set of slopes. For knots
in $3 this result seems to be weaker in practice than Theorem 2, in the sense that the
finite set of slopes remaining is larger and thus the exhaustive search required to check
the conjecture on a given set of knots is slower. However, the result in [2] applies not just
to hyperbolic knot complements in S3 but to arbitrary finite volume hyperbolic manifolds
with torus boundary. In contrast, the arguments in this paper are highly specialized to
knots in S3 (though S3 can be replaced with any integer homology sphere L-space).
It is interesting to ask how much Heegaard Floer homology can tell us about cosmetic
surgeries in more general manifolds. Although the proofs in this paper are not well suited
to that setting, the broader principle of using immersed curves to more easily compare
the ranks and relative gradings of the Heegaard Floer invariants of different Dehn fillings
may be fruitful. In particular, we could hope to obtain a finiteness result in the line of
Theorem 2 and [2, Theorem 7.29].

Question 7. Can Heegaard Floer homology be used to rule out all but finitely many pairs
of cosmetic surgery slopes for arbitrary manifolds with torus boundary?

A good starting point would be graph manifolds with torus boundary, since (i) hyper-
bolic techniques would not apply and (ii) there is well developed machinery for under-
standing the bordered Floer invariants in this case [6, 10].
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The rest of the paper is organized as follows. In Section 2 we describe knot Floer
homology and review its relevant properties. This section is recommended even for read-
ers already familiar with knot Floer homology, as our description of the invariant is not
the usual one. In particular, we describe knot Floer homology as a decorated collection of
immersed curves, a perspective that we will use throughout the paper. Section 3 addresses
the Cosmetic Surgery Conjecture and briefly reviews some existing results; this is not
meant to be a comprehensive survey of the subject, but rather focuses on results that use
Heegaard Floer homology and on which our arguments build. In Section 4 we introduce
our main obstructions and prove Theorem 2. Section 5 refines these results and provides
several explicit obstructions to a knot admitting truly cosmetic surgeries; in particular, we
prove Theorem 5. Finally, in Section 6 we verify the conjecture for arbitrary connected
sums of knots up to 16 crossings, proving Theorem 6.

2. Knot Floer homology

Knot Floer homology was defined by Ozsvath and Szab6 [17] and independently by
Rasmussen [21]. We will use a description of this invariant for knots in S3 in terms of
immersed curves; this is rather different from the original formulation, though it carries
equivalent information. We will be primarily interested in a weaker form of the invariant,
which we call f(K ) and which is equivalent to the UV = 0 truncation of the knot Floer
complex. The UV = 0 truncation of knot Floer homology is also equivalent to bordered
Floer homology of the knot complement, and an immersed curve description of this invari-
ant is due to the author, Rasmussen, and Watson [8, 9] (the case of knot complements is
discussed specifically in [9, Section 4]). In particular, the invariant denoted f(K ) in this
paper agrees with HF (M) with M = §3\ v(K) in the notation of [8, 9]. For readers
unfamiliar with bordered Floer homology, a bordered free construction of the immersed
curves f‘(K ) will appear in a forthcoming paper by the author [7]. This construction has
the advantage that it can be strengthened to a decorated curve I'(K) capturing the full
knot Floer complex CFK*°(K). We will not need this stronger invariant in the present
paper, though we will need to make use of the construction in [7] in one small way (see
Proposition 17).

We will now describe the invariant f(K ). Throughout we work with coefficients in
F = Z/27. We begin by setting notation for the spaces in which the curves f(K ) appear.
Let T denote the torus marked with a chosen pair of parametrizing curves u and A and a
single marked point w, which we may take to be the intersection of 1 and A. Let 7 denote
the infinite cyclic covering space of T in which A lifts to a loop and p does not, and let
p: T — T denote the covering map. We will identify 7 with (R/Z) x R, where the lifts
of A and p are horizontal and vertical, respectively, and the preimages of w are the points
(0, s — 1/2) for integers s. Let T denote the universal covering space R? with covering
map p: T—>T. By slight abuse, we will often refer to the vertical line through the marked
points in T’ (or through a column of marked points in T)as W, though it is really a lift of
the curve p in T'. Finally, we will use T, T., and T. to denote corresponding punctured
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surfaces obtained by removing the marked points. We may conflate punctures and marked
points at times, the only distinction is that we use marked points if we want to allow disks
to cover these points and we use punctures otherwise.

2.1. The knot Floer invariant.

To aknot K in S3, we associate a collection ¥ = {yy, . .., y,} of oriented immersed curves
in T,; y is an invariant knot K, up to regular homotopy and reindexing of the curves
(note that we work in the punctured cylinder T o rather than marked cylinder 7, meaning
that the curves and homotopies are required to avoid the punctures). f‘\(K ) denotes this
multicurve along with two extra decorations: (1) each curve may be decorated with a local
system, and (2) the multicurve carries decorations to encode relative grading data. We
remark that the first decoration is not relevant to the arguments in this paper, though we
describe it here for completeness. Moreover, it is still unknown whether the local system
decoration is nontrivial for any knot in S3. In contrast, the second type of decoration will
play a crucial role. This Maslov grading decoration for immersed curves in the context
of bordered Floer homology is discussed in detail in [9, Section 2]; see also [7] for the
special case of f(K).

Local systems. If a curve y; is homologous in 7', to k; copies of some primitive curve Yis
then we will assume that y; is realized by k; parallel copies of y; outside of a small region,
in which the curve crosses itself k; — 1 times as shown in Figure 1 (a). This region contains
one segment of y; (the negatively sloped segment in the figure) that intersects each of
ki — 1 other segments. Then each curve y; is decorated with a subset of these k; — 1
self-intersection points. Note that for a primitive curve this decoration is automatically
trivial. The selected intersection points should be interpreted as places where a traveler
along the negatively sloped segment is allowed to make a left turn onto one of the other
segments. In the language of [8], this means that we extend the curve y; to an immersed
train track and add two (oriented) edges near the selected intersection point, as shown in
Figure 1 (b). Decorating a chosen subsection of intersection points by adding train track
edges in this way determines a k; X k; invertible matrix with coefficients in F that counts

(a) (b)
Fig. 1. We assume that nonprimitive curves are arranged as shown in (a) and decorated with a
subset of the intersection points in the boxed region. To each chosen intersection point we add a
pair of edges as pictured in (b), or equivalently a crossover arrow in the notation of [8]. Counting
(smooth) paths from the left side of the boxed region to the right determines a matrix, which can be
interpreted as a local system.
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immersed paths from the left to the right of the boxed region. By a local system we mean
a similarity class of such matrices, which is equivalent to the subset of intersection points
above since the matrix constructed in this way will be in rational canonical form. The
local system associated to each curve in y is also an invariant of K. Note that the pair
of train track edges added at an intersection point is equivalent to a single “crossover
arrow”, in the shorthand notation of [8], and using the arrow sliding moves the whole
configuration can be replaced with k; parallel copies of y/ with some crossover arrows
between parallel strands. This also defines a matrix, which is similar to the one constructed
above.

Maslov gradings. The multicurve y can be enhanced with extra decorations in order to
encode some (relative) grading information. In fact, the desired information is already
contained in the immersed curve for any single component y; of p, so extra decorations
are only required to capture relative gradings between different components. There are
multiple ways to encode this information the approach we describe here is to add labeled
arcs to y connecting different components. More precisely, we extend the multicurve y
to an immersed graph y,,, which contains y as a subgraph and all of whose vertices are
contained in y, but which also contains some number of edges connecting vertices on
different curve components. We will refer to these new edges as grading edges, and they
should be ignored except for the purposes of computing gradings. We require that the
grading edges are tangent to y at their endpoints, so that p, is in fact an immersed train
track (recall that a train track is a graph for which all incident edges at any vertex are
mutually tangent). Moreover, we require the ends of the grading edges to be consistent
with the relative orientations on the curves, in the sense that a smooth path that runs over
an edge connecting y; and y; either follows the orientation on both curves or opposes the
orientation on both curves. Grading edges themselves are directed (this direction is not
required to agree with the orientation on the curves) and labeled with an integer weight.
We say that a set of grading edges on y is complete if y,, is connected as a graph.
We say that a set of grading edges is consistent if, for any closed (not necessarily smooth)
path P iny,,,
—rotation(P) + winding(P) + weights(P) = 0, (D

where rotation(P) is % times the total counterclockwise rotation along the smooth sec-
tions of P, winding(P) is the sum over marked points w in T of the winding number
of P around w, and weights(P) is the sum of the weights of all grading edges traversed
by P, with the weight counted negatively if P traverses the grading edge backwards.
More precisely, for the rotation and winding numbers to make sense, we only consider
paths P that do not wrap around the cylinder; these can be viewed as paths in the marked
strip obtained by cutting 7 open along the line {1/2} x R. We say that two complete
sets of grading edges are equivalent if their union is consistent. With these definitions
established, the grading decoration we will use on the multicurve y to define f(K ) is
a complete consistent set of grading edges; this decoration is an invariant of K up to
equivalence of sets of grading edges.
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For any complete set of grading edges and any
additional oriented grading edge, there is a unique s
integer weight on the new edge that makes the
combined set consistent. In particular, for any ori-  gjg. 2. A crossover arrow is shorthand
ented edge connecting two components of y, tan-  for a pair of edges.
gent to y at each end in a way that is consistent
with the orientation of the curves, we can choose a set of grading edges that contains

this edge with some integer weight. If y contains n + 1 curves, then a minimal complete
subset of any complete set of grading edges contains n edges. We will generally choose
a minimal complete set of grading edges, except that the convention established in [9]
replaces each grading edge with a pair of edges as in Figure 2, the shorthand for which is
a bold arrow. We will call these pairs of grading edges grading arrows, and we will dec-
orate y with a minimal consistent set of grading arrows. Using both edges in a grading
arrow is unnecessary but can be convenient. Note that a grading arrow can be labeled by a
single weight, since consistency requires both edges in the pair to have the same weight.
For examples of multicurves decorated with grading arrows, see Figure 3.

Remark 8. Grading arrows are described in detail in [9, Section 2] (see also [7] for a
slightly different description). Note that in [9], grading arrows do not carry an integer
weight; these arrows should be interpreted as having weight 0. By sliding arrows over
punctures and changing the corresponding weights by 1, it is clear that any configuration
of weighted arrows can be replaced with an equivalent configuration of arrows that all
have weight 0. Thus using weighted grading arrows is not necessary, but it is convenient
as it provides greater freedom in which arrows we choose. Finally, note that the arrow
weights discussed here should not be confused with the complexity weights on crossover
arrows used in the proof of the arrow removal algorithm in [8, Section 3.7].

2.2. Properties of T

Some examples of the invariant f(K ) are shown in Figure 3. For the unknot and the right
hand trefoil, the invariant contains a single curve. The invariant for the figure eight knot
consists of two curves decorated with a single grading arrow connecting them, while the
invariant for 944 has five curves and four grading arrows. These examples demonstrate
some general properties of T, which we now highlight.

(I) For a knot K in S3, the multicurve y associated with T can be homotoped to
have exactly one intersection with the line {1/2} x R in T ~ (R/Z) x R. This follows
from the fact that when T and this vertical line are in minimal position, their intersections
generate HF of the meridional filling, that is, of HF (S3) = F [8, Theorem 2]. This con-
dition implies that there is one distinguished curve component, which we always take to
be o, that wraps around the cylinder once, and all other components can be contained in
a neighborhood of p, the vertical line through the marked points. As in the examples in
Figure 3, yo is always oriented left-to-right.
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(II) The immersed curves in y are unobstructed, meaning that they do not bound any
“teardrops”, or one-cusped disks, that do not enclose a marked point. That is, there are no
immersed disks in the punctured cylinder T, with boundary on some y; € y such that the
boundary is a smooth path apart from one acute corner at a self-intersection point of y;.

(IIT) The consistency condition for sets of grading arrows in (1) is stated as a condition
that must hold for all closed loops in the train track y,, that do not wrap around the
puncture. We remark that this condition must in particular hold for each curve component
y; with i # 0, even before grading arrows are introduced, and this places restrictions on
the allowed curves: for any closed curve with net zero rotation, the total winding number
around punctures must also be zero. In particular, any figure eight shaped curve must
enclose the same number of marked points on each side.

Remark 9. In the examples above, all of the curves y; with i # 0 are figure eights wrap-
ping around two adjacent punctures; such a curve will be called a simple figure eight. This
is not a general property of T, butitis incredibly common. In fact, this condition holds for
all but one prime knot up to 15 crossings. The unique exception is 151166130, for which
T contains (along with thirty simple figure eights) two components not of this form. These
components are still figure eight curves enclosing one marked point on each side, but they
enclose nonadjacent marked points. Larger examples can be constructed with figure eight
curves enclosing more than one marked point on each side, but the author has not yet
found an example with a homologically trivial curve that is not a figure eight in this more
general sense.

(IV) The decorated curve set f(K ) is invariant under rotation by 7 about the origin,
up to homotopy of curves and equivalence of grading arrows, except that the rotation
flips the orientation of every curve. This is the geometric expression of a symmetry for
bordered Floer invariants established in [9, Theorem 7], which was proved earlier in the
case of knot complements by Xiu [25].

2.3. Invariants derived from knot Floer homology

Several interesting numerical invariants of K can be extracted from T. For example, the
genus of K is the maximum height of an intersection of T with the vertical line W through
the marked points, assuming T is in minimal position with . Here we mean height in
the discrete sense: an intersection point is said to occur at height s if its y-coordinate falls
between the marked points at (0, s — 1/2) and (0, s + 1/2).

There is a distinguished curve component y that wraps around the cylinder T and
a distinguished intersection of yo with w, the first time yo reaches pu after wrapping
around the cylinder. The Ozsvath—Szab6 t invariant is the height of this first intersec-
tion point on Yo (see [9, Section 4.2]; this intersection corresponds to the generator of
vertical homology and the height gives its Alexander grading). Moreover, after y, reaches
this first intersection point, it can do one of three things: turn right (downward), turn left
(upward), or continue straight. Hom’s invariant €(K) is 1, —1, or 0, respectively, in these
three cases (again see [9, Section 4.2]; this behavior corresponds to the generator of ver-
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* * *
* *

* * *
* * *

Fig. 3. The curve invariants f([( ) for, from left to right, the unknot, the right-handed trefoil, the
figure eight knot, and 944. Grading arrows, shown in gray, all have weight 0, and there are no local
systems.

tical homology lying at the end of a horizontal arrow, the beginning of a horizontal arrow,
or no horizontal arrow). Note that by symmetry yo can only continue straight if the inter-
section was at height 0, so €(K) = 0 implies (K) = 0. In this case y intersects p only
once and is homotopic to the simple horizontal line S x {0} in the cylinder. Note that
and € are both concordance invariants of K; in fact, it can be shown that the distinguished
curve component Yy is itself a concordance invariant of K, up to homotopy of curves (this
follows from [12, Theorem 1]; yy is the immersed curve representative of the direct sum-
mand of UV = 0 knot Floer homology supporting the homology, which is a concordance
invariant). In fact the curve yg exactly encodes the e-equivalence class as defined by Hom.
Note that T and € depend only on .

In the arguments in this paper, it will be useful to quantify a few more aspects of
the underlying multicurve p for T'. To do this, we will assume that y has a convenient
form. We start by “pulling tight” as described in [8]. This means that we assume p is
the minimal length representative of its homotopy class, subject to the constraint that it
avoids an open disk of some small radius € around each marked point. Intuitively, we
think of there being a peg of radius € at each marked point and think of the curve as a
rope winding through the pegs; we pull the curve taut as if the rope were elastic.! Under
this assumption, p breaks into segments that connect pegs (separated by small portions
of y lying on the boundary of a peg). Because of property (I) from the previous section,
exactly one of these segments leaves a neighborhood of y and wraps around the cylinder,
while all other segments connect a peg to one directly above it and thus are (roughly)
vertical of length 1. We are interested in counting these vertical segments. We say that

ITo ensure transverse self-intersection (and make pictures easier to read), we can modify this
by letting the curve wrap at a slightly different radius each time it encounters a peg.
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a vertical segment is at height s if it connects a peg at height X
s — 1/2 to a peg at height s + 1/2; let ny denote the number of

vertical segments at height s and letn = ) ., ns denote the total

number of vertical segments. In general we will perturb the curve

slightly from its pulled tight position so that the segments counted (%
by the n are in fact vertical outside of a neighborhood of the pegs;
Figure 4 shows a simple figure eight curve in this position. Note
that a simple figure eight curve always contributes two vertical
segments at the same height. The unique nonvertical segment in
y is also of interest, and we will record the slope m of this segment. For example, consider
the curve invariant for the knot 944 shown in Figure 3. Each figure eight curve contributes
two vertical segments, and we have m = 0, ng = 4, n; = n_y = 2, and ny = 0 for all
other s. Since they are derived from f, the quantities m and ng are invariants of the knot,
though we remark that they are not fundamentally new and can be described in terms of
other invariants (for example, it can be shown that m = 2t(K) — €(K)).

Fig. 4. A simple figure
eight curve contributes
two vertical segments.

2.4. /F\(K ) and bifiltered complexes

Readers who are already familiar with knot Floer homology will notice that the object
defined above bears little resemblance to the original formulation of the invariant, which
takes the form of a Z-graded, Z @ Z-filtered chain complex CFK™ (K) defined up to
filtered chain homotopy equivalence. To reassure these readers that the two invariants
are in fact equivalent, we pause to briefly describe how the knot Floer complex can be
recovered from f(K ). More accurately, we recover the so-called UV = 0 quotient of
this complex, which records only the horizontal and vertical differentials in CFK™ (K);
the stronger invariant I'(K) described in [7], which is f(K ) equipped with some extra
decoration, would be required recover the full knot Floer complex.

LetT = f(K ) be represented by the immersed multicurve y along with decorations
as described above, and let i denote the vertical line through the marked points in 7. We
construct a complex Cg over F[U,V]/(UV = 0) whose generators are the intersection
points of y with u, and whose differential counts immersed bigons for which the left
boundary lies on u and the right boundary is a path in y. More precisely, for intersection
points x and y in y N, a bigon from x to y is a homotopy class of maps f : D2 — T
such that f(—i) = x, f(i) = y, the negative real part of D2 maps to u, the positive
real part of dD? maps to y, f is an immersion away from i, —i, and f(3D?) forms acute
corners at x and y. Let N(x, y) denote the mod 2 count of such bigons. We are interested
in recording how these bigons cover certain marked points. The marked points of T all lie
on the line w; we will push each of these points w slightly off of w to the right, and add a
new marked point z next to each just to the left of w. For any homotopy class ¢ of maps
as above, we define n,(¢) and n4,(¢) to be the multiplicity with which a representative
of ¢ covers the z’s and w’s, respectively. The differential is then given by

a(x) = Z N(x, y)UmrwE)ynz(6.),,
y
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Since we set UV = 0 in our coefficient ring, the differential only needs to count bigons
that cover either w marked points or z marked points, but not both. We note that to recover
the full knot Floer complex, we would need to count bigons covering both types of marked
points and we would not set U V' = 0. However, if we attempt to construct such a complex
using only T, 92 may not be zero. To correctly recover the knot Floer complex, we need
to take into account some extra decorations in the stronger invariant I'(K) (see [7]).

We set an Alexander grading on the generators of Cx, which are intersection points
between y and w, by their height: for x € y N u, we define A(x) € Z to be s if x lies
between the marked points at (0, s — 1/2) and (0, s 4+ 1/2). It is clear that if a bigon
from x to y covers k marked points of type w, then A(y) = A(x) + k, and if it covers k
marked points of type z then A(y) = A(x) — k; thus if d(x) contains a term U4V?y
where one of a or b vanishes, then A(y) = A(x) — b + a.

In addition to the Alexander grading, C4 carries an integer Maslov grading M. This
satisfies

MUx)=M(x)—2, MWVx)=M(x), M(@Ox)=M(x)—1. )

These relationships determine M as a relative grading on each connected component of
C/I:, since if U*V?y appears in dx then M(x) — M(y) = 1 — 2a. The connected com-

ponents of C? correspond directly to the component immersed curves in T. The grading
M can be extended to a relative grading on all of C»I: by considering bigons between i
and the train track y,, obtained by including grading arrows with y; we require that (2)
still holds for these bigons, where running over a grading edge of weight k forward (resp.
backward) counts as covering both U and V' k times (resp. —k times). That is, if there is
a bigon from x to y whose left boundary lies in x4 and whose right boundary is a smooth
path in y,, that covers w marked points 1, times and z marked points n; times, and for
which k is the sum of the weights (counted with sign) of all grading edges traversed on
the boundary of the bigon traveling from x to y, then

M(y) — M(x) = —1+2ny + 2k. 3)

We can always assume that all grading arrows in T lie completely to the right of w or
completely to the left of , so to determine the relative Maslov grading it is sufficient
to consider bigons that cover only w’s or only z’s and that include at most one grading
arrow. That said, (3) applies for bigons covering both types of marked points, and can in
fact be generalized to the following formula for the grading difference between any two
generators:

Definition 10. For x, y € y N p, let P; be a path (not necessarily smooth) from x to y
in ., let P, be a path from y to x in 4, and let P be the concatenated path Py P,. Then
P is a closed path that is smooth apart from right corners at x and y and possibly one
or more cusps. Let rotation(P) denote % times the total counterclockwise rotation along
the smooth sections of P, let winding,,(P) denote the net winding number of P around
w marked points, and let weights(P) be the sum of the weights (counted with sign) of all
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grading edges traversed by P. Then
M(y) — M(x) = —2 - rotation(P) + 2 - winding,,(P) + 2 - weights(P). “)

Note that the mod 2 reduction of the (relative) Maslov grading is determined by the
sign of the intersection points in y N . It is clear that the completeness condition on
sets of grading arrows ensures that this relative grading is defined for all generators, and
the consistency condition ensures that the relative grading is well defined. Finally, this
relative grading can be promoted to an absolute grading by noting that there is a special
generator of Cg, the first intersection of yo with w after yo wraps around the cylinder; we
set the Maslov grading of this generator to be 0.

As originally defined, the knot Floer complex CFK*°(K) is a Z-graded, Z & Z-
filtered chain complex finitely generated over F[U, U~!]. The first filtration is given
by negative powers of U, while the second, the Alexander filtration, is recorded sepa-
rately. The Alexander filtration is determined by an Alexander grading on the generators,
together with the fact that multiplication by U lowers the filtration level by 1. It is conve-
nient to add a second formal variable V' to keep track of the Alexander filtration, giving
rise to a complex generated (with the same generating set) over F[U*!, V*1], with the
two filtrations given by negative powers of U and V, respectively. The original definition
is then recovered from this by setting V' = 1, though the new complex is bigger as many
powers of V' can be attached to the same element of CFK*°(K). To get a complex over
F[U*!, V*!] that is isomorphic to CFK* (K ), we would consider only elements U%V?x
such that a — b = A(x); then a generator x of CFK®°(K) would correspond to the element
V=A™ x, which is at Alexander filtration level A(x). Terms in the differential that fix the
algebraic filtration level (resp. the Alexander filtration level) are referred to as vertical
arrows (resp. horizontal arrows); setting UV = 0 amounts to counting only horizontal
and vertical arrows. C/F\ as defined above recovers this UV = 0 quotient complex.

a
Example 11. Consider the figure eight knot, whose invariant T
is shown in Figure 3. To recover the knot Floer complex, we ZRw
would draw the vertical line o through the marked points, plac-
ing basepoints z and w to the left and right of each marked point,
and notice that there are five intersections with u; label these a, /
b, ¢, d, e from top to bottom as in Figure 5. The Alexander > d
grading is 1 for a, O for b, ¢, and d, and —1 for e. There are two EW
bigons to the left of w contributing Vb to da and Ve to dc, and e
there are two bigons to the right of x contributing Ua to dc and
Ub to de. The distinguished generator with Maslov grading 0
is d. When we include the grading arrow, there is a bigon on the right of u from d to a
that covers the marked point w once and whose boundary runs over the grading arrow (see
Figure 5; note that for clarity we have drawn the pair train track edges that the grading
crossover arrow represents, the boundary runs over one of these). The crossover arrow has
weight 0, so this bigon implies that M (a) = 1. The bigons mentioned previously imply
that M(b) = M(c) = 0and M(e) = —1.

Fig. 5
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Remark 12. The discussion above shows that it is fairly straightforward to construct
a UV = 0 bifiltered complex from a decorated set of immersed curves. The converse,
that any UV = 0 bifiltered complex can be represented by a decorated set of immersed
curves and that this representation is unique in an appropriate sense, is more difficult. This
follows from the main Theorem in [8], which proves a related result for type D structures,
since the UV = 0 quotient of CFK*(K) is equivalent to the bordered Floer invariant
of the knot complement C%(S 3\ v(K)). See also [7] for a proof that does not pass
through bordered Floer homology. f(K ) is defined to be the decorated immersed curve
that represents the UV = 0 quotient of CFK*°(K).

2.5. Surgery formula

A key strength of the knot Floer homology package is that there is a simple way to
recover the Heegaard Floer homology of any Dehn surgery on a knot K. In particu-
lar, HF (S 3 (K )) can be realized as the intersection Floer homology of the decorated
1mmersed curve F(K ) with lines of slope p/q in the punctured torus 7, or the punctured
cylinder T, as we will now further explain (a precise statement is given in Theorem 14).

More precisely, let ﬁ(/l"\) be the projection of f(K ) to Te; we will see that
HF (83 b/a (K)) agrees with intersection Floer homology of p(F) with a stralght line £, 4 of
slope p/q. By this we mean the homology of a chain complex CF( p(F) £y ,4) generated
by intersection points whose differential counts immersed bigons with right boundary on
)4 (f) and left boundary on £, ;. We do not allow bigons to cover the marked point (we
indicate this by taking Floer homology in the punctured torus 7, rather than the marked
torus 7). We count bigons whose boundary includes crossover arrows associated with the
local system decoration on T (see Figure 1 (b)), though it turns out that including these
bigons in the differential has no effect on the resulting homology, so in practice the local
systems on T can be ignored. In contrast, we do not count bigons whose boundary runs
over a grading arrow so the Maslov decoration has no effect on the differential, but it will
be used to define gradings on the resulting complex.

There are two types of grading information on intersection Floer homology. First,
CF( ﬁ(f), {,,4) decomposes into spin® summands, where generators x and y are in the
same summand if and only if the loop P formed by concatenating a path from y to x
in £, followed with a (not necessarily smooth) path from x to y in p(y,,) (that is,
in ﬁ(f‘) with grading arrows included) is nullhomologous. This decomposition is easier
to understand by lifting to the covering space T, where we take Floer homology of r
with lifts of £, 4; to recover the same complex we must use multiple different lifts of £, 4,
and the spin® summands are precisely the Floer homology of T with any one lift of £, ;.
On each spin® summand there is also a (relative) Maslov grading, where the grading
difference M (x) — M(y) is defined exactly as in Definition 10. The general form of the
grading difference can be cumbersome, but in practice it is sufficient to consider bigons
that involve at most one grading arrow, possibly with a cusp at one end of the grading
arrow.
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Lemma 13. Suppose x and y are connected by an immersed region bounded between
Yo and a lift of £y 4 that is

(a) a bigon not involving a grading arrow,

(b) a bigon whose y,, boundary is a smooth path traversing one grading arrow of
weight m, or

(¢) a cusped bigon whose y ,. boundary traverses one grading arrow of weight m with a
single left turning cusp,

as pictured in Figure 6. Suppose in any case that the region covers k marked points
(counted with multiplicity). Then the Maslov grading difference M(y) — M(x) is given
by —1 + 2k in case (a), —1 4+ 2k + 2m in case (b), or 2k + 2m in case (c).

Proof. This follows from the general formula for M(y) — M(x); see (4). In cases (a) and
(b), the net counterclockwise rotation traversing the closed loop from x to y in y,, and
from y to x in £, 4 is 27, but since this includes two right angles at x and y the net
rotation along the smooth segments is 7r; it follows that the term —2rotation(P) in (4)
is —1. In case (c) the extra cusp means that the net rotation along smooth segments in the
boundary is 0. In each case the net winding number around the marked points is k, and in
cases (b) and (c) the grading arrow contributes m to weights(P). ]

N y N

\2 \L m & m
(a) (b) ©

Fig. 6. Three types of regions used to determine the relative Maslov grading on intersection Floer
homology. Recall that a crossover arrow consists of a pair of edges in the train track as in Figure 2;
the boundaries of the bigons in (b) and (c) use one of these edges.

The following theorem relates HF of surgery on a knot with intersection Floer homol-
ogy as defined above. Recall that for p/q surgery on a knot K C S3 there is a canonical
identification of Spin® (S;’/q (K)) with Z/ pZ.

Theorem 14 (Surgery formula). Consider a knot K € S* and p, q relatively prime with
p > 0. Fix a small € > 0 (in particular, ¢ < 1/q), and for each i € 7./ pZ let E;’q be
a straight line in the punctured cylinder T+ of slope p/q that passes through the point
(0, —% + f]; + €). Then

I?F(S;/q,i) ~ HF(F(K),@;'M)

as relatively graded vector spaces, where the right hand side refers to intersection Floer
homology in T .
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Proof. This is a special case of a much more general gluing formula for bordered
Floer invariants ([8, Theorem 2] without gradings and [9, Theorem 5] with gradings).
Indeed, f(K ) is precisely the invariant HF (M) associated with the knot complement
M = S3\ v(K), the invariant HF(D? x ') is simply the meridian dD? x S!, and p/q-
Dehn surgery corresponds to gluing D? x S! to M by a map taking the meridian to a line
of slope p/q. |

A direct consequence is that rk(ﬁF (3 /4 (K))) is given by the minimal intersection in

T, of p(F) and £, 4. This is because all bigons not coverlng a puncture can be removed by
pulling p(F) tight (here we need that no component of p(F) is parallel to £, 4 to ensure
admissibility, but this is clear if p # 0). Similarly, rk(HF (S; Ia (K), 1)) is the minimal

intersection in T4 of T and Kﬁ,, ¢ We remark that when T is pulled tight as described in
Section 2.3, it automatically has minimal intersection with each pr, q

Recall that if T is pulled tight, then outside of a neighborhood of the punctures it
consists of a collection of some number n of length 1 vertical segments and a single non-
vertical segment of slope m. Then we have the following expression for rk(I-/ITT (S; Iq (K)))
(compare [19, Proposition 9.5]):

Proposition 15. With the integers m and n defined as above,
tk(HF(S},,(K)) = |p — mg| +nlq|.

Proof. A line of slope p/q in T intersects the vertical line through the marked point |¢|
times, so there are n|q| intersection points coming from vertical segments in p (/F\) The
remaining intersection points come from intersections with the segment of slope m, and
the number of such intersections is the distance between the slopes p/q and m/1, namely
et (4,9)]. .

Remark 16. The key idea in the proof of [8, Theorem 2] (in the special case required
for Theorem 14) is to perturb both /F\(K ) and E;’q into a special form so that the inter-
section Floer chain complex can be directly identified with (one spin® component of) the
box tensor product of two bordered Floer invariants, the homology of which is known to
agree with HF (S;’ I i). It is also possible to prove Theorem 14 without passing through
bordered Floer homology. This is accomplished by perturbing KL, 4 S0 that the intersection
Floer chain complex CF (/I:(K ), E;,q) is identified with the complex X; in the mapping
cone formula [19], whose homology is also known to give HF (S; I i). This identification

was shown for large integer surgery in [9, Proposition 70], and the full proof will appear
in [7].

While the two proofs are similar in spirit, this second proof has a few advantages
since the mapping cone formula carries some information not available with bordered
Floer homology. For example, the mapping cone formula recovers the absolute grading
on HF (S p3 Ia i) while bordered Floer homology can only give the relative grading. In
addition, the identification of the Floer chain complex with the mapping cone formula
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can be generalized to one involving X;" instead of X;, so a version of Theorem 14 holds
for + type invariants [7]. We will not need the absolute grading or + type invariants in
the present paper, but we will make use of the identification mentioned in Remark 16 in
one small way in Proposition 17 below; namely, we will use the fact that the subset of
generators of HF (f(K ), 6;, ;) arising from any one curve component y; in f(K ) can be
identified with the subset of generators of S;’, 4 (K) arising from the mapping cone formula
applied to direct summand of CFK*°(K) corresponding to y;.

We will be interested in a special class of knots for which the bifiltered complex
CFK*°(K) has a direct summand that looks like CFK*°(U), where U is the unknot.
That is, we require that for some choice of basis CFK*(K) has a generator with no
differentials in or out. In this case we will say that CFK*°(K) has an isolated generator.
Note that CFK*(K) having an isolated generator implies that the curve yq in /F\(K )
is homotopic to the horizontal curve wrapping around the cylinder once, but the latter
condition is slightly weaker since yo does not see diagonal arrows in CFK*°(K) (giving
an immersed curve condition equivalent to having an isolated generator would require the
stronger invariant I'(K) and amounts to further imposing that y, is not connected to any
other y; by the additional decorations in I'(K)).

Recall that for a 3-manifold Y with spin€ structure s, the d-invariant, or correction
term, d(Y, s) is defined as the minimum absolute grading of an element of the image
of HF*°(Y,s) in HFT (Y, s). Understanding d-invariants usually requires working the
+ flavor of invariants; there is always a generator in HF (Y, s) whose absolute grading
is the d-invariant, but without knowing the U-module structure on HF " we generally
have no way of knowing which generator gives the d-invariant (unless, of course, there
is only one generator in HF (Y, s)). However, if Y is (nonzero) surgery on a knot K for
which CFK®°(K) has an isolated generator, there is an obvious choice for a distinguished
generator in each spin® structure and indeed this generator gives the d -invariant.

Proposition 17. Suppose K is a knot for which CFK*° (K) has an isolated generator, and
in particular the distinguished curve yo of f(K ) is horizontal. Then for eachi € 7./ pZ,
the absolute grading of the generator ofIfIF(S;’/q (K),i) = HF(f(K), Kﬁ,’q) correspond-
ing to the unique intersection point of yo with Kz,q is d(S;/q (K),i).

Proof. In the mapping cone formula, the direct summands of CFK*(K) give rise to
direct summands for the mapping cone X, and it is clear that to compute the d -invariant
it is sufficient to consider only the unique nonacyclic summand of CFK*°(K) and the
corresponding summand of the mapping cone. When CFK*°(K) has an isolated genera-
tor, the homology of this summand has rank 1, so the d-invariant must be the grading of
its only generator. We now appeal not just to Theorem 14 but also to the identification of
CF (f(K ), Z;, 4) With Xi mentioned in Remark 16. The direct summands of CFK* (K)
correspond to the curve components of f(K ), with the nonacyclic summand correspond-
ing to yp, and so the relevant summand of X\i is identified with the intersection Floer
complex of yp with K;,q. Thus the grading of the unique generator of HF (yy, E;,q) is
d(Sg/q(K),i). (]
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This result is not at all surprising, but it does require the mapping cone formula proof
of Theorem 14 since the bordered Floer approach gives no way of confirming that the
obvious distinguished summand H F (yy, E;’ ) should capture the d-invariant. We remark
that this use of Remark 16 in the proof of Proposition 17 is the only essential dependence
of the present paper on [7].

3. Obstructing truly cosmetic surgeries

We now turn to a brief survey of some past results on which the arguments in the next
section build. The first observation is that, since H; (S;’q (K)) = Z/ pZ, any pair of cos-
metic surgery slopes must have the same numerator. The next constraint is a condition on
the Alexander polynomial of K proved by Boyer and Lines:

Theorem 18 ([ 1, Proposition 5.11). If K admits a truly cosmetic surgery, then A% (1) = 0.

This result is a consequence of surgery formulas for the Casson—Walker invariant A
and the Casson—Gordon invariant 7:

A(S2,,(K)) = ML(p.q)) + %A}g(l), 5)
7(53,,(K) = ©(L(p.q)) — o (K, p), ©)

where o (K, p) = Zf;é ok (e2177/P) does not depend on ¢. If p/q and p/q’ are truly
cosmetic surgery slopes, (6) implies that T(L(p, q)) = T(L(p,q’)). For a lens space,
T(L(p, q)) is a constant multiple of pA(L(p, q)), so in fact A(L(p,q)) = A(L(p,q)).
Then (5) implies that either ¢ = ¢’ or A% (1) = 0.

Heegaard Floer homology entered the story when Ozsvith and Szab6 constructed a
surgery formula in terms of knot Floer homology [19] and used it to prove the following
proposition. As a demonstration of the machinery that will be used in this paper, we
present a proof that is essentially equivalent to the one in [19] but is reframed in the
language of the immersed curve surgery formula.

Proposition 19 ([19, Theorem 1.5]). Suppose S;/ql(K) ~ :i:SIf/qz(K) with q1 # q>.
Either q1 and q, have opposite signs or S;/ql (K) is an L-space.

Proof. We must have rk(IfIF(S;/q1 (K))) = rk(IfIF(S;/q2 (K))). By Proposition 15,
|p —maqi| + nlq1| = |p —mq2| + nlq2|, @)

where m is the slope of the nonvertical segment in /I:(K ) and n is the number of vertical
segments. By taking the mirror of K if necessary, we may assume without loss of gen-
erality that m > 0. First suppose that ¢; and g, are both negative or that they are both
positive and greater than p/m. In either case, (7) simplifies to (m + n)q; = (m + n)qa.
Since m 4+ n > 0 for a nontrivial knot, this implies that g; = g». Next suppose that ¢,
and ¢, are both positive and smaller than p/k; in this case (7) simplifies to (n — m)q; =
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(n —m)qz. If g1 # q», we must have n = m, which implies that K is an L-space knot,
and since p/q; > m = 2g(K) — 1, the result of either surgery is an L-space. Finally,
suppose that g and g, are both positive, with mq; < p and mq, > p; then (7) becomes
p—mqy +nq, = mqy — p + nq,. This implies

n(g2 —q1) = 2p —m(q1 + q2) < 2mq> —m(q1 + q2) = m(q2 — q1).
This is a contradiction, since n > m. [

In the case of truly cosmetic surgery on a knot K with Seifert genus 1, Ozsvath and
Szabé in fact showed that the surgery must be an L-space [19, Theorem 1.4]. Wang ruled
out this possibility, implying that the cosmetic surgery conjecture holds for all genus 1
knots [23]; we will give a new proof of this fact in Section 4 (see Corollary 26). Wu later
ruled out the possibility that truly cosmetic surgeries are L-spaces for arbitrary knots [24]
by observing that the restrictions on the Alexander polynomial of an L-space knot given
in [18] imply that A% (1) # 0 and applying Theorem 18. Thus truly cosmetic surgery
slopes have opposite sign.

A significant advancement came in the following result of Ni and Wu:

Theorem 20 ([15, Theorem 1.2]). Suppose S;/q -~ S;/q, with q' # q. Then

(1) ©(K) = 0, where T is the Ozsvdth-Szabé concordance invariant;
(il) ¢’ = —q; and
(iii) g2 = —1 (mod p).

The key ingredient here was a surgery formula for the d -invariants in Heegaard Floer
homology [15, Proposition 1.6]. A consequence of the surgery formula is that for p/g > 0,
the d-invariants of S; 14 (K) are less than or equal to the corresponding d-invariants of
Sj/q (U) = L(p, q), with equality holding for all spin® structures if and only if V,(K) =
Hy(K) = 0, where Vj and Hj are integer invariants related to certain maps in the rational
surgery formula. For p/¢q’ < 0, the same relationship holds with the inequality reversed.
Let d(Y) denote Zsespmf(Y) d(Y,s). For a lens space, d(L(p, q)) is a constant multi-
ple of the Casson—Walker invariant A(L(p, g)), and it was already noted that for a truly
cosmetic surgery equations (5) and (6) imply that A(L(p,q)) = A(L(p,q’)). Thus

d(S3g) < d(L(p.q) = d(L(p.q)) < d(S},).

For a truly cosmetic surgery equality must hold, so Vo(K) = Ho(K) = 0. This in partic-
ular implies (i), and then by Proposition 15, tk(HF(S ; 1q (K))) is a linear function of |g|,
which implies (ii). Finally, (iii) follows from the fact that d(L(p, q)) = d(L(p,—q)) =
—d(L(p,q)), and an explicit formula for A(L(p, ¢)) showing that A(L(p, q)) = 0 if and
only if g2 = —1 (mod p).

In fact, the first conclusion is slightly understated, since the proof really shows that
Vo(K) = Ho(K) = 0 [15, Theorem 2.5], and this is strictly stronger than 7(K) being
zero. Hom showed that when this condition holds then CFK®°(K) has an isolated gen-
erator [12, Proposition 3.11]. Recall that by this we mean that for some choice of basis,
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CFK®(K) has a single generator with no differentials in or out. Hom’s paper also shows
that the bifiltered chain complex CFK*°(K), taken up to filtered chain homotopy equiva-
lence and up to adding and removing acyclic summands, is a concordance invariant from
which all known Heegaard Floer concordance invariants can be derived; having an iso-
lated generator is equivalent to this concordance invariant being trivial. In the language
of immersed curves, CFK*(K) having an isolated generator implies that yq is the hori-
zontal curve wrapping around the cylinder once; this in turn is equivalent to € (K) being O
and implies t(K) = 0. To summarize, we have the following implications:

CFK®(K) has isolated generator z Yo is horizontal <= €¢(K) =0 z 7(K)=0.

Thus, Ni and Wu really proved the following:

Theorem 21 ([15, Theorem 1.2, enhanced]). Suppose S}, = S>, , withq' # q. Then
(1) CFK*°(K) has an isolated generator, in particular, e(K) = 1(K) = 0;

(ii) ¢' = —q; and

(iii) g2 = —1 (mod p).

It makes sense that the original theorem was stated in terms of t only, as € had not
been defined at that time and the condition that Vy = Hy = 0 or that CFK® has an iso-
lated generator makes for a more cumbersome statement. However, this means that some
implications of Ni and Wu’s work, which has already found many wonderful applications,
have been overlooked. For example, the following result follows immediately from The-
orem 21 and a cabling formula of Hom [11, Theorem 2], which says that € of a cable is
never zero:

Corollary 22. The cosmetic surgery conjecture holds for any nontrivial cable of a knot
in S3.

This result was recently proved in [22] using Theorem 20 and Hom’s cabling formula
for 7 [11, Theorem 1] to rule out many cases, but other methods were needed to deal with
cables for which T = 0.

We end this section with a technical result that will be required later, related to one
used by Ni and Wu in the proof of Theorem 20. Recall that part (iii) of that theorem
follows from the fact that if p/q is a truly cosmetic surgery slope then the sum of all the
d-invariants of L(p, g) must be 0. More precisely, there is an explicit formula for this
sum of d-invariants [20, Lemmas 2.2 and 4.3]:

p—1 1 n
d(L(p.9)) 1= ) d(L(p.q).1) = pA(L(p.9)) = =73 [q +q' +p) (ai— 3)], 8)
i=0 i=1

where ¢’ is the unique integer 0 < ¢’ < p with g¢’ = 1 (mod p) and [ay, ..., ay] is the
Hirzebruch—Jung continued fraction expansion for p/g. If this sum is 0, then considering
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the term in the brackets modulo p implies that ¢ = —¢’ (mod p) and Theorem 20 (iii)
follows. We will at times be interested in only the first ¢ d-invariants of L(p, ¢); below
we show that when the sum of all p d-invariants of L(p,q) is 0, then the sum of the first ¢
of them is nonzero.

Lemma 23. For p > q > 0 relatively prime and g*> = —1 (mod p),

qg—1

Y d(L(p.q).i) #0.

i=0

Proof. We will show that the sum is nonzero modulo 1/12. We use the recursive formula
for d -invariants of L(p, ¢) given by Ozsvéth and Szabd [16, Proposition 4.8]:

1 2i +1—p—gq)? )
J EEILED i, ),

d(L(p,q),i) = —— 1pg

where r and j are the mod ¢ reductions of p and i, respectively. In particular,

= 1 LQitl-p—q? 9
Y dLp.g)i)==> —+)_ =Y d(L(g.r).i).
i=0 i=0 4 i=0 4pq i=0

The third sum on the right hand side is simply d(L(q, r)), and it it is easy to see from (8)
that this is an integer multiple of 1/12. The first sum on the right hand side, which evalu-
ates to ¢ /4, is also a multiple of 1/12, so it is enough to check that the second sum is not.
We have

q—1 g—1
dDQi+1-p—g? =) (p>+2pg—1-2i)+ (g —1-2i)%
i=0 i=0
q—1 q—1
=gp”+2pY (g—1-20)+ Y (g—1-2i)%
i=0 i=0

The second term in the expression on the right is 0, since the summands run evenly from
q — 1to —(g — 1). The final term is twice the sum of the first ¢ /2 odd squares if ¢ is even,
or twice the sum of the first (¢ — 1)/2 even squares if ¢ is odd; in either case, the sum
evaluates to ¢(¢ — 1)(g + 1)/3. Thus we need to show that

qp’+4@*=D/3 _p -1
4pq 4 12p

is not a multiple of 1/12. The first term clearly is, but the second term is not as long as
g? # 1 (mod p). This holds in particular when g2 = —1 (mod p), unless p = 2. We
complete the proof by directly checking the case p = 2, ¢ = 1: the claim holds since
d(L(2,1),0) =1/4 #0. (]
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4. New obstructions

Throughout this section we fix a knot K, and let T = f(K ) with underlying set y of
immersed curves. We will assume that CFK*°(K) has an isolated vertex, which by The-
orem 21 is necessary for K to admit a truly cosmetic surgery. In particular, this means
that the distinguished curve Y in p is horizontal. Theorem 21 also says that any pair
of cosmetic surgery slopes are opposite, so we fix p,q > 0 relatively prime, and set

Yy = S;/q (K)and Y_ = Sfp/q (K). Our goal is to obstruct Y and Y_ from being orien-

tation preserving diffeomorphic by finding conditions under which HF(Y,) and HF(Y_)
are not isomorphic as graded vector spaces.

The results in the previous section primarily make use of the Casson—Walker and
Casson—-Gordon invariants, the total rank of HF . and the d-invariants, which can be
viewed as the Maslov grading of one special generator of HF for each spin¢ structure. To
extract more information and produce new obstructions, we will need to use the Maslov
grading of all generators. In particular, the set of gradings of all generators of HF is an
invariant, as is the partitioning of this set into subsets according to spin structures. To
avoid working with absolute gradings, we define

Mrel(x) = M(X) - d(Y’ 5)

for x in HF (Y, s). Since Yy is horizontal, for each i € Z/pZ =~ Spin®(Y) there is a
distinguished generator in HF (Y1,17) coming from the unique intersection point of yg
with Ei’ ; we will denote this generator xf). By Proposition 17 the absolute grading of
xf) is d(Y4,i). Thus for Y4 and Y_, M,(x) is simply the Maslov grading relative to
the distinguished generator in the same spin® structure, i.e. My (x) = M(x) — M (xé).
We will consider the following multisets (that is, sets with repetition allowed) of relative
gradings:

M1 (Y) = {M(x) | x a generator of fﬁ?(Y)},
M. (Y,s) = {M,(x) | x a generator of fITT(Y, $)}.

These are invariants of Y and the pair (Y, ), respectively. In particular, if Y4 = Y_ then
the sets My j(Y+) and M, (Y—) agree. Moreover, there is some permutation o on Z/pZ
such that M ;(Y4,i) = M (Y—, 0(i)). We will at times refer to the sum of all elements
in these sets, which we denote X M,(Y) and X M, (Y, ), respectively.

Remark 24. Both Spin°(Y4) and Spin®(Y_) can be identified with Z/pZ in a way that
is canonical given the surgery description, but this identification is not an invariant of the
manifold. Thus even if Y4 2 Y_, the ith spin® structure of Y need not agree with the ith
spin€ structure of Y_; this is why the permutation ¢ is required above.

It is easy to see that the ranks of HF (Y+) and HF (Y-) agree. Indeed, since yq is
horizontal, the slope m of the nonvertical segment in I is 0, so by Proposition 15,

tk(HF (Y1) = p +nlq| = p + n|—q| = tk(HF (Y_)).
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Fig. 7. The intersection of T (black) with a line Z;,’q (light gray) and its vertical reflection Ké’_q
(dark gray). We assume that yp is a simple horizontal curve, and that outside of a neighborhood of
the marked points the remaining immersed curves in T consist of parallel vertical segments. The
map ¢; takes an intersection of £, 4 with a vertical segment to the nearby intersection of Zﬁ,,_q with
that segment, as pictured to the right.

Our main strategy for studying the sets of gradings described above is to define for each
i € Z/pZ a particular map ¢;: FI?’(Y+, i) — ITIF(Y_, i) which is an isomorphism of
ungraded vector spaces. In other words, ¢; gives a one-to-one correspondence between
generators of HF(Y,., i) and generators of HF(Y_, ). This correspondence does not pre-
serve the relative grading M., even when HF (Y+) and HF (Y-) are isomorphic as graded
vector spaces; however, we will be able to say explicitly how M., changes under ¢; and
we can use this to determine if the sets of gradings defined above are fixed. Combining
these maps for all i gives an (ungraded) isomorphism ¢: HF Yy) — HF (Yo).

We will assume that T' has the form described in Section 2.3 and shown in Figure
4. That is, we assume the curve is pulled tight, noting that outside of a neighborhood of
the marked points each curve y; with i # 0 consists of a collection of roughly vertical
segments, and we perturb the curves slightly so that these are in fact parallel vertical
segments (see Figure 7). The endpoints of these vertical arcs are connected in some way
within the neighborhoods of the marked points, but this information will not be relevant
to us. Recall that n; denotes the number of these vertical segments at height s, and n =
Y o2 oo s is the total number of vertical segments. When Tis pulled tight in this way,
it is clear that it intersects minimally with K;’ q and 1 SO We may view HF (Y1,i) =

P’
HF(T, € ) asgenerated by [ N €L . .

We will now define ¢; by describing a one-to-one correspondence between rn E;,, q
and T N Zﬁ,,_q. Note that E;',,_q is the reflection across . of E;',’ ;- In particular, each inter-
section of £}, , with p is also an intersection of £}, _, with p. The vertical segments
are arbitrarily close to u, so each intersection of £}, . with a vertical segment can be
uniquely identified with an intersection point in 4 N £}, ., namely the nearest such inter-
section point. Conversely, for each point in 4+ N £}, , and for each vertical segment at the

same height as that point, there is exactly one nearby intersection of the vertical segment
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with ﬁ;’q. The same is true for intersections between a vertical segment and ﬁ;,_q. If

xel'n Z;,q lies on a vertical segment in T, then we define ¢i(x) to be the point on

xeln Zﬁ,’_q that lies on the same vertical segment in T and corresponds to the same
s i i

pointin u N ¢}, , = /Lﬂfp’_q,’\ . b

Ifxel'n Z;,,q does not lie on a vertical segment in I" then it is

see the right side of Figure 7 depicting a neighborhood of
fv,iq‘ ] o~
the unique point in yo N £}, ,, corresponding to the distinguished generator of HF (Y, i);
in this case we define ¢;(x) to be the unique point in yo N £}, _ ., so ¢; identifies the
distinguished generators.

We often need to distinguish the generators in HF (Y1) that come from intersections
on vertical segments of T from the distinguished generators coming from intersections
on Yo, which we denote by xé in the ith spin® structure. Mimicking the standard notation
for HF T, we will use IfIFred(Yi, i) to denote the summand of HF (Y+, i) obtained by
removing the generator xé, and HF red(Y+) to denote ;5 /pZ HF, red(Y+, 7). Of course,
reduced Floer homology in the hat setting does not make sense in general, but in this case,
where we know that the distinguished generator xf, gives the d -invariant and corresponds
to the tower in HF T, the analogy is appropriate.

For each generator x of HF, red(Y4), we are interested in computing both M (x) and
M;ei(¢(x)) (for the distinguished generators xJ, both quantities are 0 by definition). The
generator x corresponds to an intersection point between E;,q for some i and a vertical

one point in N £

segment of T. There are two integers we will associate with such an intersection point x.
First, let A(x) denote the height of the relevant vertical segment. Second, after a slight
perturbation we can assume that the vertical segment containing x lies exactly on the ver-
tical line 4 through the marked points of 7' and that x can be viewed as an intersection
point of  and £ _; let k(x) denote the number of marked points, counted with multi-

1 .
P.q
plicity, in the interior of the triangle formed by w, £} _, and yy. It is easiest to picture this

i
P.q
triangle in the covering space 7', as shown in Figure 8. Using these quantities, we can

compute the effect that the map ¢ has on the relative grading of x.

Ok kb X *
[ ([ “p.a

e -‘-I4

K K * X
| 7 |
* * * *

Fig. 8. The generator x corresponding to the marked intersection point has A(x) = 2 since the
intersection lies on a vertical segment of height 2, and k(x) = 2 since the interior of the shaded
triangle covers two marked points.
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Proposition 25. Fora generator x € HF (Y4, 1) corresponding to an intersection of {’ »/a
with a vertical segment in T, let A(x) and k(x) be the quantities defined above. Then

Arel(x) = Mre1(¢(x)) - Mrel(x) =1- 2|A()C)| - 4k(x)

Proof. We will assume that A(x) > 0; if A(x) < 0, the proof is exactly the same with
all pictures rotated 180 degrees and A(x) replaced with |A(x)|. We will only work with
yo and the vertical segment containing x, and will ignore the rest of T. Up to perturbing
T we may assume that the vertical segment in question lies exactly on u, so that the

points x € I' N £}, , and ¢(x) € r'n Zp _g4 coincide; this means that Z;, e Z;, ¢ and yq

form a triangle. In order to compute M., we need the grading decoration on T'. We can
assume that the set of grading arrows contains an arrow that lies on the right side of x and
connects Yo to the bottom end of the vertical segment; this grading arrow carries some
integer weight m. There are two cases to consider, depending on whether the vertical
segment containing x is oriented up or down (note that we always assume ), is oriented
rightward). The first case is pictured on the left of Figure 9; in this case the grading arrow
goes from yp to the right side of the vertical segment. There is a bigon from xé to x,
shaded dark gray in the figure, which has no cusps, covers k(x) + A(x) punctures, and
whose boundary runs over the grading arrow labeled by m. By Lemma 13 (b),

Mt (x) = M(x) — M(x}) = —1 4 2k(x) + 2A4(x) + 2m.

The complement of this region within the triangle formed by Kp 7 pr —q» and yo, shaded
light gray in Figure 9, is a cusped bigon from ¢ (x) to ¢ (x}). This bigon covers k(x), and
its boundary runs over the grading arrow backwards and has a single cusp, at the tail of

the grading arrow. It follows from Lemma 13 (c) that

Moa(p(x)) = M(¢p(x)) — M(¢p(x})) = —2k(x) + 2m.

Thus Api(x) = Mie(¢p(x)) — My (x) = 1 —2A(x) — 4k(x), as desired. Note that the
label of the grading arrow cancels out and does not end up affecting A (x).

If the vertical segment is oriented downward, the grading arrow must go to the left
side of the vertical segment to be consistent with the orientations. The right side of Figure
9 shows the modified grading arrow we will use. The only difference is that the boundary
of the dark gray bigon from x}, to x now has one cusp while the bigon from ¢ (x) to ¢ (x})
can be drawn with no cusps. This change adds 1 to M(x) and also adds 1 to M. (¢ (x)),
so it does not affect A (x). [ ]

Note that the triangle formed by Kp e K;, _g»and yg covers |A(x)| + 2k(x) punctures,
so proposition says that A (x) is 1 minus twice the number of punctures covered by this
triangle. This number of punctures is nonnegative. Moreover, k(x) = 0 if A(x) = 0; it
follows that A (x) = 1 if and only if A(x) = 0, and A (x) < 0 otherwise. An immediate

corollary of this is a reproof of a result of Wang:

Corollary 26 ([23, Theorem 1.3]). If g(K) = 1, then K does not admit truly cosmetic
surgeries.
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Proof. If K admits a truly cosmetic surgery, then by Theorem 21 we may assume that
the slopes are opposite and CFK*°(K) has an isolated generator. Let Y4 = S ;’ Iq (K) and

Y- = Sip/q(K), and define ¢ : FIF(Y.,_) — ITIF(Y_) as above. If g(K) = 1, then all

vertical segments in T are at height 0. It follows that every intersection x of any line
of slope p/q with a vertical segment of T has A(x) = 0, and thus has Ay (x) = 1.
That is, every generator of HF red(Y4) has its relative grading increase under ¢. Since
K is nontrivial, T has at least one vertical segment so HF red(Y+) is nontrivial. Thus
SMg(Yy) > EMpe(Y-),and Y4 22 Y_. |

The above corollary demonstrates how powerful Proposition 4 can be; we will use
this proposition to derive several more restrictions on the multicurve T. For example,
Corollary 26 follows from the fact that if too many vertical segments are at height 0,
the sum of all gradings will increase when ¢ is applied. On the other hand, it is easy to
see that if fewer than half of all vertical segments are at height O, then the sum of all
gradings will decrease. To make this intuition more precise, recall that ny denotes the
number of vertical segments of T at height s; by the rotational symmetry of T,n_g = ny.
The number of generators x in HF red(Yx) with A(x) = s is g - ns. Since k(x) is always
nonnegative, Proposition 4 implies that Aj(x) < 1 — 2|s| when A(x) = s. It follows that
it XM (Y-) — EM(Y4) = 0, then

o0
no =Y ng2ls|—1) =Y 2n2s — 1) =2ny + 61z + 1003 + -+ . )
s#0 s=1

Armed with this information, we can show that large surgery slopes can never give
truly cosmetic surgeries.

Theorem 27. Let K be a nontrivial knot in S3. If Y, = S;’/q(K) and Y_ = Sip/q(K)
are diffeomorphic and p/q > 1, then p/q = 2, g(K) = 2, and ng = 2n;.

3 3 3 3 3 3 3 ES

Fig. 9. Left: A computation of Ar(x). The dark shaded bigon (which has no cusps) can be used to
compute M;(x), while the lightly shaded region is a cusped bigon used to compute M (¢ (x)).
Right: The modification to the diagram needed if the vertical segment is oriented down rather
than up.
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Proof. Suppose Y4 = Y_. In particular, there is some permutation o on Z/ pZ such that
HF(Y4,i) >~ HF(Y_,o0(i)) as graded vector spaces. Note that o can only permute spin®
structures with the same rank of HF, since

HF(Yy,0(i)) ~ HF(Y_,0(i)) ~ HF (Y4, i)

as ungraded vector spaces, where the first isomorphism is given by ¢4 ;). Because
p/q > 1, any line of slope p/q intersects any vertical segment of T at most once. In
particular, for ¢ < i < p, the line Z;,,q does not hit the vertical segments at height O at
all, while for 0 < j < g the line Z{;,q does hit the vertical segments at height 0. Thus we
observe that for j < g andi > g,

o
tkHF(Y+.j) = 1+4no and tkHF(Yr.i) <1+ ) 2n,.

s=1

From (9), we find that

o0 o0
tk HF (Y, j) — tk HFE(Y+,i) > ng — Z2ns > ZZns(Zs —2)=4n, +8nz +--- .

s=1 s=1

This difference in dimensions is strictly positive unless ng = 0 for all s > 1.

First suppose that n; > 0 for some s > 1, so that the above difference is positive for any
j < gqandi > g. The spin® structures of Y and Y_ can thus be divided by rank into two
subsets, with one set having the g largest dimensions of HF and the other set having the
p — q smallest dimensions of HF, and for both Y, and Y_, these subsets are {0,...,q — 1}
and {q, ..., p — 1}. The permutation 0 must fix these two sets; in other words, the first ¢
spin€ structures of Y, must correspond to the first ¢ spin® structures of Y_ under any
isomorphism of HF (Y+) and HF (Y_). In particular, the sum of the d-invariants of these
first g spin® structures must agree. We have

q—1 g—1 q—1 g—1
Yo d(L(p.q).i) =) d(Ys,i) =) d(Y-,i) =) d(L(p,—q).i)
i=0 i=0 i=0 i=0

q—1
= —d(L(p.q).i).
i=0

It follows that the sum must be zero, but this is impossible by Lemma 23.

Now suppose that ng = 0 for all s > 1. It follows that g(K) = 2, since the maximum s
for which ny # 0 is g(K) — 1, and g(K) cannot be 1 by Corollary 22. Since p/q > 1,
we have k(x) = 0 for any x € FITTred(Y+) (i.e. the relevant triangle does not cover any
marked points). By Proposition 4,

1, A(x) =0,

Buaa(x) = {—1, A(x) = +1.
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Fig. 10. Intersecting T with four lines of slope 4/3, assuming the knot has genus 2 with ng =
2n1. Each vertical line in the figure represents n vertical segments in I'. The spin€ structures
i €{0,1,2,3} have types (b), (a), (b), and (c), respectively, as described in the proof of Theorem 27.

These grading changes must cancel when we sum over all generators of HF. red(Y4), which
implies that ng = ny +n_; = 2n;.

There are five possible values of rk HF (Y4, i) depending on which vertical segments
E;’ 4 intersects, as shown in the table below (see also Figure 10 for an example with a par-
ticular slope); this partitions the set of spin® structures into five subsets. For each type, we
can also compute the net change in relative grading, the sum of A, (x) over all generators
X Ofﬁred(Y+, l)

Heights of vertical segments hit by K;,,q tk HF (Y1) Dok Arel(x)

(a) {1,0,—1} 14 4gny 0

(b) {1,0} or {0, —1} 14 3gn; qni

() {1, —1} or {0} 14 2gn; 2gny or —2gny
(d {1} or {—1} 1+gny —qni

(e) {} 1 0

Because o can only permute spin® structures with the same rank, o must fix the subsets
of spin structures corresponding to these five types. However, for any spin structure of
type (b), the total relative grading strictly increases when ¢ is applied; it follows that there
can be no spin structures of type (b). There can also be no spin¢ structures of type (d) for
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similar reasons. But if p/g > 2 there is at least one spin® structure of type (d), namely the
one defined by i = ¢, andif 1 < p/g < 2 there is at least one spin® structure of type (b),
namely i = 0. Either case gives a contradiction, so p/g must be 2. ]

Small slopes can be dealt with in a similar way. Note that for p/g < 1, the constant
k(x) in Proposition 4 is at least s(s — 1)/2, where s = |A(x)|. Moreover, k(x) is strictly
larger than this for at least one intersection point x with |A(x)| = s, provided there are
any such points. Since we require that X M. (Y_) — X M,;(Y4) = 0, it follows that there
exist constants a; € Q with a_; = a; and a; > 252 — 1 for s > 0 such that

o0
n0:Znsas=22nsas>2n1 + 14n, + 34n3 +--- . (10)
s#0 s=1

The constants a; could be computed exactly for any fixed p/g, but we will not need this;

in fact, we will only need that a; > 1 for all s > 0.

Theorem 28. Let K be a nontrivial knot in S3. If Y4 = S;’/q(K) and Y_ = Sip/q(K)
are diffeomorphic and p/q < 1, then p = 1.

Proof. Suppose to the contrary that Y4 =~ Y_and p # 1. Letqg = mp + r with0 <r < p;
since p and ¢ are relatively prime, r > 0. Any line of slope p/q hits any vertical segment
inT either m or m + 1 times; let cé € {m, m + 1} denote the number of times the line
K;’ iq intersects a vertical segment at height s. We have

o0
tk HF (Ye.i) =1+ Y clng.
§=—00

If0 5;’ < r, it is easy to see that cé =m + 1, while if r < j < p then cé = m. Since
¢l —c¢j > —1foranys,

o0 o0
tk HF (Ye.i) =tk HF(Ye, j) = Y (ch—c]yng = ng— Y 2n5 >0,

§=—00 s=1

where the last inequality uses (10). In other words, the first r spin® structures have ranks
strictly bigger than each of the remaining p — r spin€ structures. It follows that the per-
mutation o corresponding to the reindexing of spin structures under any isomorphism
from HF (Y4) to HF (Y-) must preserve the first r spin® structures as a set. In particular,

r—1 r—1
D od(yy.i)y =Y d(Y_.i).
i=0 i=0

As in the proof of Theorem 27, this implies that

r—1 r—1
0= d(L(p.q),i) =) d(L(p.r).i).
i=0 i=0

Butr = ¢ = —1 (mod p), so this is impossible by Lemma 23. ]
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When we restrict to p = 1 we can compute explicit formulas for the net change in
relative grading under ¢, and this determines ¢ exactly (for a given knot) if +-1/¢ is a pair
of truly cosmetic surgery slopes.

Proposition 29. Suppose Sf/q (K) =~ Sil/q (K). As above, let ng be the number of verti-

cal segments in T at height s. Then

_ o+ 2302 ns
4300 s2ng

Proof. This is a straightforward consequence of Proposition 4 and the fact that
> Ari(x) = 0. Note that for slope 1/g there are g intersections of line £; ; with any
vertical segment at height s > 0, and if we label these intersections by i = 0,...,q — 1,
the constant k(x) for the ith intersection is

_gsGs=1 .

[q(s—l)+q(s—2)+~--+q]+is—T+1s,

and the sum over all ¢ of these points of 4k (x) + 2A(x) — 1 is

g*s(s—1)  sq(g—1)
4[ > T 2

]+2qs—q:2q2s2—q.

By symmetry the contribution to ) Ari(x) of a vertical segment at height —s is the same
as that of a vertical segment at height 5. Each vertical segment at height O contributes g
intersection points, each with A(x) = 1. The condition that )", Ay(x) = 0 can now
be stated as
o0
qno—2 (24*s* — q)ns = 0;
s=1

solving this equation for g gives the desired result. ]

Note that since ng = 0 for |s| > g(K), the infinite sums above can be truncated for
any particular example.

Another powerful consequence of Proposition 4 is a bound on ¢ and the genus of K.
Theorems 27 and 28 and Proposition 29 rely on the fact that the sums of relative gradings
YM)(Y4) and X M, (Y_) should agree, and thus for every generator x of HF ed(Y+)
with A (x) = —n < 0, there must be n generators yy, ..., y, with A (y;) = 1. But the
set of relative gradings is an invariant, not just its sum, so in fact M (Y4) = M (Y-) as
multisets. This lets us say more:

Lemma 30. Suppose Yy =~ Y_. IfFIFred(Y+) contains a generator x with Ag(x) =
—n < 0 and My (x) = m, then it must contain generators y1, ..., yn with Ap(y;) = 1
and M (yi) = m —1i.

Proof. If ¢ : FIT’(Y+) — I#(Y_) is a grading preserving isomorphism, then ¥ ! o ¢
determines a permutation on the multiset of gradings M. (Y+). This permutation takes
an element m of M (Yy) (corresponding to the grading of the generator x) to m — n.
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The cycle containing this element must eventually return to m, but at each step the relative
grading can increase by at most one by Proposition 4. Thus for each m — i between m —n
and m — 1, m — i appears in the cycle followed by m — i + 1; each such element m — i
corresponds to M, for some generator with positive A, and we take this generator to
be y;. ]

We now need to relate M, of generators of HF (Y1) with A = 1 to the knot Floer
homology of K. Recall that the §-grading refers to the difference between the Alexander
and Maslov gradings.

Lemma 31. If x is a generator 0fHF(Y+) commgfrom a vertical segment ofhezght 0 and
M.,e1(x) = m, then there is an intersection point in rn u (ie a generator ofHFK(K))
with §-grading at least —m — 1, and there is one with §-grading at most —

Proof. Let V be the vertical segment in r containing x. We may assume there is a grading
arrow in T’ moving upward from yg to V, as shown in Figure 11 (a) if m is odd and 11 (d)
if m is even. Consider first the case that m is odd, with m = 2k — 1; then the arrow has
weight k and approaches V' from the right. We will assume that T is in minimal position
with p and note that V' lies either to the right of u, as in Figure 11 (b), or to the left of u,
as in Figure 11 (c). In either case, let x” and x” in r'n 1 be the first intersections with p
when following r upward and downward, respectively, from V. Note that A(x’) > 0 and
A(x™") <0.

X X
* * ' * *
x y o X
k k k k
Yo Yo Yo Yo
* * * *
X " 3 x "
(a) (b) (© (d)

Fig. 11. (a) A grading arrow such that Myej(x) = m = 2k — 1; (b,¢) x’ and x”, the first intersections
with ¢ above and below the vertical segment containing x; (d) a grading arrow such that M (x) =
m = 2k.

Let x¢ denote the intersection of yo with w, which by definition has Maslov grading
M(xo) = 0. If V is to the right of u, there is a bigon from xo to x” whose boundary
traverses the grading arrow and which passes A(x") marked points along j; from this and
(3) in Section 2.4 we compute

M(x") = M(xq) + 2k + 2A(x") — 1 = m + 24(x"),
8(x)=AKX)—ME') =-—m— AKX < —m.
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The bigon from x” to x’, which passes A(x") — A(x") marked points along u, gives

M) =ME)+1-2(AK") — A") =m +24(") + 1,
X" =AX"Y-ME")Y=-m—1—-AK") > -m—1.

If instead V lies to the left of 4 then a bigon from x¢ to x” gives
Mix"y=2k—-1=m, §x")=AK")—m <-—m,
and a bigon from x’ to x” gives
MX)Y=MxX")+1=m+1, §x)=Ax)-m—-1>-m—1.

The case that m = 2k is similar. The grading arrow must approach V' from the left, as
in Figure 11 (d), which adds a cusp to the boundary of the bigons considered above which
run over the grading arrow. This increases M (x’) and M(x”) by 1 (computing in terms
of k), which decreases the §-gradings by 1, but m is also increased from 2k — 1 to 2k, so
the conclusion still holds. ]

We are now ready to prove the promised bounds on g and g(K). Recall that th(K)
denotes the Heegaard Floer thickness of K, that is,

th(K) = max {§(x) | x € HFK(K)} — min{8(x) | x € HFK(K)}.

Theorem 32. Let K be a nontrivial knot in S> of genus g. If Y4 = S13/q (K) and Y_ =
Sil /q(K ) are diffeomorphic, then

th(K) > 2¢qg(g — 1) — 2g.

Proof. The maximum height attained by Tis g so there are at least two vertical segments
at height g — 1, one on either side of a maximum of I'. Consider the highest intersection

point of each of these two vertical segments with any Z’i call these x and x’ as shown

e
in Figure 12. By construction, A(x) = A(x’) = g — 1. Counting the marked points in the

closure of the triangle in Figure 12 and removing those on the boundary gives

, glg—1)
k(x) =k(x)=[q(g—1D+q(g—=2)+--+q)]-(g—-1 =qT—(g— 1).
*x * * *x /*
Xeo Ix
* * (fl_(/* * *
B3 * X B3 *
Yo
*x * X *x *

Fig. 12. Generators x and x’ with minimal A in HF, red (Y4 ) for surgery slope 1/¢q. Here ¢ = 2
and g(K) = 3.
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Let d denote —Apj(x) = —Api(x"). We have

qg(g—1)

d = 4k(x) + 24(x) — 1 =4( :

—(g—1>)+2<g—1)—1
=2qg(g—1)—2g+ 1.

Let m be M. (x); the small bigon from x to x’ covering one puncture tells us that
M |(x') = M)(x) + 1 = m + 1. By Lemma 30, there are generators Yy, ..., yg of
ﬁFred(Y+) with M(y;) = m —i and A.(y;) = +1. Applying Lemma 31 to yg
and yg4, we find that H/F\K(K) contains generators z; and z, with §(z7) < —m and
8(z) > —m —1+d. Thusth(K) > d — 1. [

Theorems 27 and 28, Proposition 29, and Theorem 32 combine to give Theorem 2 in
the introduction.

5. Explicit obstructions in terms of r

5.1. General constraints on I

In addition to Theorem 2, it is helpful to have explicit conditions on a knot K, in terms
of its knot Floer invariant, that ensure that K admits no truly cosmetic surgeries at all.
Several such conditions are already implicit in what has been discussed so far. One con-
dition comes from Theorem 21, namely that the curve yy is horizontal. Another condition
follows from the bounds in Theorem 2: if g = g(K) # 2 and th(K) + 2g < 2g(g — 1),
then K admits no truly cosmetic surgeries. We have also seen that Proposition 4 and the
fact that Zx Are1(x) = 0 places constraints on the numbers 7 of vertical segments in
f( K) at height s, including the inequality (9). In particular, if fewer than half of all ver-
tical segments occur at height 0, then K cannot admit any truly cosmetic surgeries. For
the slopes 1/¢ the inequality (9) can be improved to an equation that can be solved for
q, giving rise to Proposition 29. This places a further constraint on the existence of truly
cosmetic surgeries which is implicit in Theorem 2: if the quantity

no+2) 50 ns
42?‘;1s2ns

is not a positive integer for a given knot K, then K does not admit truly cosmetic surgeries.

To arrive at Proposition 29 and the other constraints mentioned above, we only
assumed that S2(K) and S3,(K) have the same sum of all relative gradings. By con-
sidering the set of all relative gradings, we could impose further constraints on K. For
example, for r = 2, it is not enough to have two vertical segments at height O for each
vertical segment at height 1, we also require that vertical segments at height O give rise to
generators in S3(K) that have grading 1 less than those coming from the vertical segment
at height 1. Unfortunately, it is difficult to state such conditions purely in terms of the knot
Floer homology of K; this is partly because there is not a perfect correspondence between
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gradings of elements of the surgery coming from a vertical segment and gradings in knot
Floer homology.

We will see that this difficulty can be overcome in a particular special case. We remark
that while it might be possible to state some additional (likely messy) conditions on f(K )
in the general case, it is not worth doing so. In practice, to achieve this fine an obstruction
on K it is easiest to simply compute absolutely graded HF* for each of the finitely many
surgery pairs allowed by Theorem 2 and check if they agree for any pair. In this way, we
can extract the maximum information from Heegaard Floer homology: for any knot we
can always either rule out cosmetic surgeries or conclude that Heegaard Floer homology
cannot rule out some potential pair. This can be thought of as a condition on the knot Floer
homology of K (by the surgery formula, HF ' of the relevant surgeries is determined by
knot Floer homology), though it is a condition that requires some computation to check.

5.2. Further constraints for simple figure eight curves

There is one situation where it is convenient to state additional constraints purely in terms
of knot Floer homology, and that is when the underlying curve set for T consists only of
yo and simple figure eight curves. As mentioned in Remark 9, this is common in practice.

A simple figure eight component y; of y intersects p four times, corresponding to
four generators of the knot Floer homology of K. These generators all have the same
8-grading, so it makes sense to talk about the §-grading of the curve y;. The height of a
simple figure eight component is the height at which it is centered, which is the Alexander
grading of two of the four generators. Let ef denote the number of simple figure eight
components in y at height s with §-grading d, and letes = > ;.5 ef be the total number
of simple figure eights at height s. Each simple figure eight curve contributes two vertical
segments at height s, so if we assume yy is horizontal and all other y;’s are simple figure
eights then ny; = 2e;. We will assume the self-intersection in a simple figure eight curve y;
occurs below the vertical segments, as in Figure 13, and with this understanding we will
refer to the left and right vertical segments coming from y;. The relative grading of y;
is determined by its §-grading. In particular, if y; is a simple figure eight at height s > 0
with §-grading d, we can add a consistent grading arrow from y to one of the vertical

segments in y; as shown in Figure 13 (a, b); the arrow passes to the right of any marked
—d—s
42

if d 4 s is even, or it ends on the left vertical segment and carries the weight I_—Z_S if

d + s is odd. The case of height s < 0 is similar, except that the arrow stays to the left of
the marked points and s is replaced with |s| in the arrow weights.

points up to height s and ends on the right vertical segment and carries the weight

Remark 33. This gives an alternative (and much simpler) way of encoding grading
information in f(K ) when all curves other than y, are simple figure eights: instead of
decorating the set of curves with a collection of grading arrows, we can simply decorate
each curve other than yy with an integer, its §-grading.

We now relate the §-grading d of a simple figure eight component y; at height s to the
relative grading of generators of HF(Y4) coming from y;. Note that for each generator x
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* *
’
X X
—d—s 1—d—s
2 ®
" 1Yo ~ 1Yo

(a) (b) (©)

Fig. 13. (a) A grading arrow for a simple figure eight component at height s with §-grading d if
d + s is even; (b) a grading arrow if d + s is odd; (c) a pair x, x’ of intersection points representing
generators of HF(Y4), with My (x") = Mye1(x) + 1.

coming from the right vertical segment of y;, there is a corresponding generator x” com-
ing from the left vertical segment, as shown in Figure 13 (c). These intersection points are
connected by a small bigon covering one marked point, so that M (x’) = M (x) + 1.
It is clear that k(x) = k(x’) and A(x) = A(x’) = s, and thus A (x) = A(x') =
1 — 4k(x) — 2s. We calculate that M;(x) = —1 + 2k(x) + s — d, regardless of the par-
ity of s 4+ d. For any given slope r, it is possible to compute the k(x) for all intersection
points of lines of slope r and state an obstruction to S3(K) and S3, (K) agreeing purely
in terms of the quantities ef for K; we will only do this for the slope r = 1, where every
intersection point x coming from a simple figure eight at height s has k(x) = s(s — 1)/2.

Proposition 34. Suppose that f(K ) consists only of yo and simple figure eight curves,
and let ef be the number of simple figure eight components with height s and §-grading d.
IfSil(K) o SEI(K), then yy is horizontal and for every D € 7, we must have

s#0d=—D—s2+1

Proof. We already know that yq is horizontal by Theorem 21. We now consider the
graded contribution of the simple figure eight components to each surgery. It is enough
to consider only one generator of HF e (S il (K)) coming from each simple figure eight
component, the one coming from the right vertical segment, since the generators com-
ing from the left vertical segments behave exactly the same with the grading shifted up
by 1. With this in mind, a simple figure eight component with height s and §-grading d
contributes a generator x with M (x) = s — 1 —d and Ar(x) = 1 — 2s%2. By Lemma
30, this must be counteracted by a chain of generators coming from height O vertical seg-
ments with gradings ranging from —d — s up to —d + s? — 2. These must come from
a chain of height 0 simple figure eight components with §-gradings —d — s + 1, —d —
s2+2,...,—d + s% — 1 (we are still considering only the right vertical segment of each
figure eight). All height O figure eight components must be accounted for in one of these
chains, and we see that there is a contribution to eOD for each figure eight component with
height s # 0 and grading d withd > —D —s*> + landd < —D + s> — 1. [
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Restricting to knots with small thickness gives the following condition:

Proposition 35. Suppose, as in the previous proposition, that f(K ) consists only of yg
and simple figure eight components, and suppose th(K) < 4. If K admits any truly
cosmetic surgery, then ef =0 for all |s| > 1, and eg = e‘li + eil = Zef for every
8-grading d.

Proof. By Theorem 2, we know that g(K) = 2, which implies ef = 0if |s| > 2. We
also know that the only possible truly cosmetic surgeries have slopes 1 or +2. In the
first case, we apply Proposition 34 to get the desired result. For the latter case, note that
intersections x between lines of slope 2 and vertical segments at height 1 or —1 still have
k(x) =0, and so M, (x) and A (x) are the same as in the slope 1 case, and the reasoning
in the proof of Proposition 34 applies. ]

There is a sort of Heegaard Floer converse to this statement: if g(K) = 2, and e(‘)i =
26‘11 for all gradings d, then Heegaard Floer homology can not distinguish either pair—
that is, HF (S3(K)) and HF (S3,(K)) are isomorphic as absolutely graded vector spaces
for r € {1,2}. We compute this explicitly for the example of 944 below, which serves as
a model computation for the general case. One might hope that upgrading to HF ™ would
help in this situation, but it does not. In fact, when yy is horizontal and all other curves
in f(K ) are simple figure eight components, HF ' is determined by HF for any surgery
on K.

In the case of thin knots this condition can be given purely in terms of the Alexander
polynomial, as stated in the introduction.

Proof of Theorem 5. We use Proposition 35, though since K is thin there is only one occu-
pied §-grading, which must be O if yq is horizontal. For K to admit truly cosmetic surg-
eries, we must have some number n of simple figure eights at height 1 (and at height —1,
by symmetry), and 2n simple figure eight components at height 0. It is easy to com-
pute Ak (t) from this information and see that it has the desired form. (Conversely, for
thin knots f(K) is determined by Ak (¢) and o (K); for 6 (K) = 0 and Ag(¢) as in the
conclusion of the theorem, it is easy to check the y, is horizontal, e? = egl =n, and
e) = 2n, and thus Heegaard Floer homology does not distinguish &1 surgeries or £2

surgeries.) ]

5.3. Unobstructed knots

We conclude this section by demonstrating that Theorem 2 cannot be substantially
improved using Heegaard Floer homology alone. We first note that there exist knots for
which Heegaard Floer homology does not distinguish £1 surgeries or £2 surgeries. For
example, consider the knot 944 shown in Figure 14 (a). This example appeared in [19],
where it was first observed that HF ' (S3(944)) = HF*(S3,(944)). It turns out that this
example is representative of all currently known examples for which Heegaard Floer
homology does not obstruct truly cosmetic surgeries, so we now examine this example
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in detail. The knot Floer invariant f(944) is shown in Figure 14 (b) (see also Figure 3);
Yo is horizontal and there are four simple figure eight components, with e‘l) = egl =1

and e = 2.
i
71 o [
- '
\J v2| |v3 “
by

bl |44

(a) (b) (© (d)

\

S

Fig. 14. (a) The knot 944; (b) the /ilwariant f‘\(944) (all simple figure eight components have §-
grading 0); (c) the computation of HF (S 13 (944)); (d) the computation of HF (S23 (944)).

Let Y+ denote S 11(944); we compute HF (Y4) using part (c) of Figure 14, which
shows the intersection of f(944) with a line of slope +1. It is easy to see that, in addition
to the generator x¢ coming from yg, HF (Y4) has a pair of generators (a;, b;) coming
from each of the simple figure eight curves, with M, (b;) = M (a;) + 1. For the two
extremal figure eights (that is, for i € {1, 4}), we have M (a;) = 0, M (b;) = 1, and
Arei(ai) = A(b;) = —1. For the two figure eights at height O (that is, for i € {2, 3}),
we have M (a;) = —1, Mii(b;) = 0, and Ap(a;) = Awi(bi) = 1. Applying ¢ with
the given grading changes, we see that m’(Y_) has M.e1(¢(x0)) = 0, M) (¢p(a;)) = —1
for i € {1, 4}, M(p(b;)) = 0 for i € {1, 4}, M (p(a;)) = 0 for i € {2,3}, and
M (¢p(b;)) = 1 for i € {2,3}. Thus ITIF(YJF) and HF(Y,) agree as relatively graded
vector spaces. The absolute grading agrees as well since d(Y4) = 0 = d(Y-). Note that
the computation is similar for any genus 2 knot for which T contains only a horizon-
tal yo and simple figure eight curves and for which e(‘," = Zei" =2¢4 , for each §-grading
d: each height 1 or height —1 figure eight with grading d contributes a pair (a;, b;) with
Me(a;i) = —d, My)(bj) =1 —d, and A (a;) = Arer(b;) = —1, and each height O figure
eight with grading d contributes a pair (a;, b;) with My (a;) = —1 —d, My (bi) = —d,
and Arel(ai) = Arel(bi) = +1.
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If instead we consider Y4 = S i2(944), the computation is almost identical except that
the generators now split into two spin® structures. We compute HF (Y4) using part (d) of
Figure 14, which shows the intersection of f(944) with two lines of slope +2 (one for
each spin® structure). Ignoring the generators coming from yg, we have HF red(Y4,0) gen-
erated by the four intersections with height 0 figure eights (labeled b5, b3, a3, and a; in
Figure 14), which have relative gradings {0,0, —1, —1} and A of 1, while HF ed(Y+, 1)
is generated by the four intersections with the extremal figure eights (labeled by, bg4,
aiy, and a4 in Figure 14), which have relative gradings {1, 1,0, 0} and A of —1. Thus
HF (Y+,0) and HF (Y_, 1) agree as relatively graded vector spaces, as do HF (Y+,1) and
HF (Y_, 0); in other words, any graded isomorphism from HF (Y4) to HF (Y+) must per-
mute the two spin® structures. This could potentially conflict with the absolute grading,
but it does not, since

d(Y4.0) =d(L(2,1),0) = ; =d(L(2,-1),1) =d(Y_, 1),
d(Y4. 1) =d(L(2.1),1) = =% =d(L(2,-1),0) = d(Y_.0).

Once again, the computation is essentially the same for any genus 2 knot for which r
contains only a horizontal Yy and simple figure eight curves and for which e(‘f = 2efl =
Zef1 for each §-grading d. There are other knots which satisfy this property; Table 1
gives 337 such knots. Surprisingly, these are the only knots the author is currently aware
of for which Heegaard Floer homology does not obstruct all truly cosmetic surgeries. In
particular, an example for which HF (S13 Iq (K)) agrees with HF (Si1 /a (K)) forg > 1 or
for a knot with g(K) > 2 has not yet been found. We note that it is possible to construct a
decorated immersed curve T' which would allow for truly cosmetic surgeries with g > 2
or ¢ > 1, but it is not known whether such curves occur as the invariant for a knot in S3.
To construct such a curve for some g > 2 and ¢ > 1, we can place g simple figure eights
at height g — 1 and, for symmetry, another g simple eights at height 1 — g. Each of these
figure eights produces ¢ pairs of points in the intersection with £, 4. Indexing these pairs
of points by 1 < i < ¢, each pair has some relative gradings m; and m; + 1 and some
grading shift Ay = —A; < 0. Foreachi, we then add 2A; simple figure eights at height O,
with two in each §-grading from —m; to —m; + A; — 1. Each of these figure eights at
a 6-grading d produces a pair of intersection points with relative gradings —d — 1 and
—d and with A = +1; it is straightforward to check that these grading increases coun-
teract the grading decreases from the extremal figure eights when ¢ is applied. Thus for
the resulting graded multicurve T, the Floer homologies HF (f‘, li4)and HF (f‘, li—g)
agree as graded vector spaces.

6. Computational results
One important consequence of Theorem 2 is that for any given knot K, cosmetic surgeries

on K are ruled out for all but possibly a finite number of pairs of slopes. In practice, cos-
metic surgeries are obstructed outright for the vast majority of knots, and for the remaining
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knots the “finite number” of possible pairs that need to be checked is quite small, often
just 2. Thus checking the cosmetic surgery conjecture on any finite set of knots reduces to
distinguishing a small number of pairs of manifolds. Computing, say, hyperbolic invari-
ants for these remaining pairs is very tractable, and often this is sufficient to rule out the
remaining surgeries. To demonstrate this, we check the following:

Theorem 36. The cosmetic surgery conjecture holds for all prime knots with at most 16
crossings.

Proof. We computed the UV = 0 knot Floer complex for all < 16 crossing prime knots,
using a program of Szabd, and then checked each against the obstructions described in this
paper.” Recall that the UV = 0 knot Floer complex of K is equivalent to the immersed
curve invariant f(K ). We make two observations from these computations:

o The maximum thickness of any prime knot up to 16 crossings is 2.

e For each genus 2 knot up to 16 crossings, F(K ) contains only simple figure eight
components besides yg.

The first observation tells us immediately that we only need to consider genus 2 knots and
we only need to consider the slopes £1 and £2. The second observation tells us that for
these knots we can use the obstruction in Proposition 35.

There are 1,701,935 knots up to 16 crossings. We note that the results of Ni and Wu
(specifically conclusion (i) in Theorem 20) already verify the conjecture for over two-
thirds of these knots: after restricting to knots with t(K) = 0, we are left with 449,417
knots (requiring that € = O rather than v = O eliminates a further 38 knots, leaving
449,379). It turns out that the obstructions coming from Theorem 2 are much stronger.
Among knots with €(K) = 0, requiring also that g(K) = 2 reduces the list to 3,316.
Finally, the obstruction in Proposition 35 rules out truly cosmetic surgery on all but 337
of these knots. The remaining knots are listed in Table 1. Thus we have reduced to 674
possible pairs of cosmetic surgeries, 1 and %2 surgeries on each of these 337 knots.

This is the best that Heegaard Floer techniques alone can tell us; as noted in the pre-
vious section, for any knot K satisfying the constraint in Proposition 35, Heegaard Floer
homology cannot distinguish S3; (K) from S3, (K), nor can it distinguish S3, (K) from
sz(K ). So these last examples must be ruled out using other methods. Computing the
hyperbolic volume for the manifolds in question using SnapPy, we find that this distin-
guishes every pair except for the surgeries on four knots: 1033, 161600112, 1612786382,
and 16n988939. These knots are amphichiral, so 4r surgery and —r surgery can never be
distinguished by hyperbolic volume. For these manifolds, the £1 and 42 surgery pairs on
each of these four knots are distinguished by the Chern—Simons invariant, also computed
by SnapPy.* n

ZAll code used for these computations is available at https:/github.com/hanselman/CFK-
immersed-curves.

3The author thanks Dave Futer for suggesting the use of the Chern—-Simons invariant for
amphichiral examples.
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Remark 37. We caution that Theorem 36 depends on computer calculations, some of
which are nonverified. The computation of the knot Floer complex is combinatorial in
nature, but SnapPy uses numerical methods to compute hyperbolic invariants so these
computations should not be taken as rigorous proof. SnapPy does offer verified computa-
tion, via interval arithmetic, of hyperbolic volume but not of the Chern—Simons invariant.
Thus, to be fully rigorous, the knots 1033, 1612600112, 161786382, and 1617988939
should be excluded from Theorem 36. We do note that SnapPy estimates the Chern—
Simons computations are accurate to 10 decimal places, and for each relevant pair of
manifolds the values differ by at least .001.

Remark 38. Some of the 337 knots listed in Table 1 can be ruled out using the Jones
polynomial as in [13], instead of using hyperbolic volumes. Unfortunately, this does not
help with any of the four knots for which the Chern—Simons invariant was needed.

The result above considers prime knots, but Theorem 2 is also very good at obstructing
truly cosmetic surgeries on connected sums. In fact, with only a little more work, we can
rule out cosmetic surgeries on all knots whose prime summands have at most 16 crossings.
The following is equivalent to Theorem 6 stated in the introduction.

Theorem 39. The cosmetic surgery conjecture holds for the connected sum of any num-
ber of prime knots each with < 16 crossings.

Proof. Suppose that K has n > 1 prime summands, each with at most 16 crossings. It
follows that g(K) > n and th(K) < 2n, since both genus and thickness are additive with
respect to connected sum and the maximum thickness for knots up to 16 crossings is 2.
Suppose £ is a pair of truly cosmetic surgery slopes for K. If g(K) > 2, then by Theo-
rem 2 we must have r = 1/¢q with

th(K) 1 2n 1 2

q= = + = .
2¢(K)(g(K)—1) g(K)—17"2n(n—1) n—-1 n-—1

Since ¢ must be > 1, it follows that n < 3.

Moreover, if n = 3 then g(K) =3 and g = 1. If n = 2 then g(K) = 2 but ¢ can be

1 or 2; we must also consider the case g(K) = 2 and r = 2. By Proposition 29, if n = 3

we require that eg = 2e; + 7e;, while if n = 2 we require ey = 2eq if r € {1,2} and

eyg = 661 ifr = ]/2.
We will need one more observation from our computations of T:

e For knots with < 16 crossings and g(K) = 1, all curves other than y, are simple figure
eights, and yg has one of the three forms: the horizontal curve, the curve which is the
invariant of the right-handed trefoil (see Figure 3), or the mirror of the right-handed
trefoil curve (which is the invariant of the left-handed trefoil).

We will denote the three possibilities for yo above as yi°, yXHT and y§HT. Note that
they are distinguished by the value of 7, which is 0, 1, and —1, respectively.
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12a:
15a:
12n:
13n:

14n:

15n:

16n:

41,44 10: 33, 136, 146 11a: 333

1144 13a: - 14a: 17464
76589, 84220 16a: 345268, 345454, 374264 11n: 18, 42, 62, 83
34, 65, 278, 313, 360, 393, 430, 483, 550, 650, 846, 884

71, 198, 490, 1019, 1209, 1398, 1513, 1598, 1756, 1757, 2337, 2703, 2796, 3290, 3416,
3783, 4591

372,971, 1193, 2087, 2489, 6421, 7228, 7412, 7469, 7534, 8091, 8196, 8554, 8716, 9290,
9684, 9829, 10155, 11129, 11429, 12224, 12609, 12977, 13570, 14799, 15285, 15380,
15581, 15965, 15976, 17163, 17183, 18494, 19673, 21231, 21269, 22150, 22196, 22614,
22634, 23325, 24593, 27072, 27091

1058, 3240, 4898, 9477, 11491, 19192, 21666, 21997, 27824, 30711, 34041, 34773, 36113
38567, 38594, 41604, 43982, 46350, 46536, 49081, 51379, 51847, 54458, 58840, 62260,
63468, 63550, 64468, 67694, 67879, 71170, 73390, 73507, 76978, 77245, 77247, 77784,
83761, 84434, 84645, 88899, 91448, 93899, 94474, 96914, 97157, 102309, 104775, 105829,
106611, 118711, 120250, 124511, 129229, 129231, 132539, 135706, 137623, 140373
140582, 142082, 142299, 142716, 142841, 142843, 143482, 143825, 143856, 144436,
144439, 144887, 147186, 156806, 160027

5596, 9193, 16004, 24365, 27992,49009, 60136, 67523, 94939, 102539, 102773, 191694,
196472, 197735, 203049, 215168, 218032, 219174, 220556, 227624, 230857, 233335,
239267, 239379, 242042, 242545, 249927, 265957, 271606, 271610, 273164, 277974,
280482, 285128, 306917, 307635, 315594, 324571, 329529, 332372, 349983, 353272,
360174, 366612, 376208, 385669, 386732, 387806, 401152, 401963, 402644, 405088
412371, 423420, 424451, 429723, 438719, 440479, 441595, 459035, 460502, 461585,
463225, 463419, 465019, 466470, 467558, 469510, 470606, 470717, 473737, 475444,
481843, 489486, 493489, 494163, 498542, 498651, 508893, 513585, 515663, 534392
540621, 544661, 550305, 551107, 577882, 585135, 587843, 588588, 596192, 596449,
597513, 598535, 599034, 600112, 606009, 608181, 609311, 609798, 614804, 614907,
617672, 628265, 629526, 631987, 632225, 635338, 666646, 687419, 691300, 696924,
696992, 725574, 761555, 762559, 767010, 768788, 770126, 774829, 784110, 786382
788898, 789181, 798964, 809799, 810368, 812243, 824554, 828723, 847911, 855704,
855909, 862009, 863179, 864017, 864258, 864259, 869439, 869441, 874997, 879694,
880152, 888060, 888954, 902353, 906603, 907441, 907673, 916183, 916207, 916242,
918157, 919068, 925408, 932460, 941562, 941564, 968742, 972142, 988939, 989795,
990225, 990270, 991069, 991085, 998071, 1000650, 1000651, 1001406, 1001474,
1004278, 1004646

Tab.

1. Knots up to 16 crossing for which Heegaard Floer homology does not rule out all cosmetic

surgeries. The only pairs of slopes not ruled out for each of these knots are +1 and £2.
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If n = 2, we must have K = K; # K, with g(K;) = g(K3) = 1. By the Kiinneth
formula for knot Floer homology, /F\(K )= f(K 1) ® /I‘\(K2)4. A straightforward compu-
tation reveals that the tensor product of two figure eight components (at height 0) yields
four figure eight components at heights 1, 0, 0, and —1. The tensor product of a figure

eight component and either y&T or ySHT gives three figure eight components at heights

—1,0, and 1, and the tensor product of y&1T with y 1T yields a horizontal curve yo along
with two figure eights at heights —1 and 1. Taking the tensor product of any curve with
ylg(’ﬁz gives a copy of that curve. Let a and b be the number of height 1 figure eight com-
ponents in f(K 1) and f(Kz). Since 7 is additive and 7(K) = 0, either the y, curves for
K and K are y§UT and y§"7 (in that order, without loss of generality) or they are both
horizontal and a, b > 0. In the first case, we see that f(K) has eg = 2ab +a + b and
e1 = ab + a + b + 1; this is impossible since then ey < 2e;. In the second case we have
eo = 2ab + a + b and e; = ab; this is impossible because i—‘l’ =2+ % + ll, is strictly
greater than 2 and strictly less than 6. Thus n # 2.

Ifn =3, wehave K = K # K, # K3 with g(K;) = 1. Let a, b, and ¢ be the numbers
of figure eight components in T for Ki, K5, and K3. Since t(K) = 0, either yq for
the three knots is given (up to reordering) by y&HT, y HT and yJ%, or yq is horizontal
for all three knots. In the first case, we compute that e = 6abc + 4ac + 4bc + 3¢ +
2ab +a + b, and e; = 4abc + 3ac + 3bc + 2¢ +ab + a + b + 1. It follows that
2e1 —eg = 2abc + 2ac + 2bc + ¢ +a + b + 2 > 0, which is a contradiction because
we require eg = 2e1 + 7e; > 2e;. In the second case, we compute that e = 4abc +
2(ab 4+ ac + bc)+a+ b+ c,e; =3abc + (ab + ac + bc), and e, = abc. It follows
that 7e; + 2e1 > eq, since Tep + 2e1 — eg = 9abc — (a + b + ¢) is strictly positive. Thus

n # 3. L]

Remark 40. Note that in the above proof, the thickness bound immediately ruled out
connected sums of more than three 16 crossing knots. Since th(K) and g(K) are both
additive and the upper bound on g goes like th/g?, this behavior is expected. In fact, for
any finite set of knots Theorem 2 prohibits truly cosmetic surgeries on connected sums of
sufficiently many knots in the initial set.
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