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Abstract. Let n � 1 be an integer, and L � Rn be a compact smooth affine real hypersurface, not
necessarily connected. We prove that there exist c > 0 and d0 � 1 such that for any d � d0, any
smooth complex projective hypersurface Z in CP n of degree d contains at least c dimH�.Z;R/
disjoint Lagrangian submanifolds diffeomorphic to L, where Z is equipped with the restriction
of the Fubini–Study symplectic form (Theorem 1.1). If moreover all connected components of L

have non-vanishing Euler characteristic, which implies that n is odd, the latter Lagrangian subman-
ifolds form an independent family in Hn�1.Z;R/ (Corollary 1.2). These deterministic results are
consequences of a more precise probabilistic theorem (Theorem 1.23) inspired by a 2014 result
by J.-Y. Welschinger and the author on random real algebraic geometry, together with quantitative
Moser-type constructions (Theorem 3.4). For n D 2, the method provides a uniform positive lower
bound for the probability that a projective complex curve in CP 2 of given degree equipped with the
restriction of the ambient metric has a systole of small size (Theorem 1.6), which is an analog of a
similar bound for hyperbolic curves given by M. Mirzakhani (2013). In higher dimensions, we pro-
vide a similar result for the .n � 1/-systole introduced by M. Berger (1972) (Corollary 1.14). Our
results hold in the more general setting of vanishing loci of holomorphic sections of vector bundles
of rank between 1 and n tensored by a large power of an ample line bundle over a projective complex
n-manifold (Theorem 1.20).

Keywords. Systole, complex algebraic curve, complex projective hypersurface, Lagrangian
submanifold, random geometry, Kähler geometry

1. Introduction

1.1. Disjoint Lagrangian submanifolds

On a compact orientable smooth real surface of genus g > 1, there exist 3g � 3 disjoint
non-contractible closed curves such that two of them are not isotopic. A natural gen-
eralization of this phenomenon in a closed symplectic manifold .X; !/ is to estimate the
possible number of disjoint Lagrangian submanifolds of given diffeomorphism type inX .
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The answer is easy for submanifolds which exist as compact smooth manifolds in R2n,
like the torus, since by the Darboux theorem they can be implemented at any scale in X ,
so there exist an infinite number of them. Moreover, when the submanifold L possesses a
smooth non-vanishing closed 1-form, which is the case for the n-torus, this form produces
an infinite number of disjoint Lagrangian graphs in T �L, hence by Weinstein’s tubular
neighborhood theorem there exist an infinite number of disjoint Lagrangian submanifolds
close to L (see Remark 1.11 below). If this is not the case or if the Euler characteristic
of L is not zero, then it cannot be displaced by a perturbation as a disjoint submanifold
(see §1.4). Furthermore, the classes of a finite family of disjoint such Lagrangian sub-
manifolds with non-zero Euler characteristic form an independent family of the ambient
homology group of degree half the dimension of X (see Lemma 2.2).

The main result. In this paper, we are interested in smooth projective complex subman-
ifolds equipped with the restriction of the ambient Fubini–Study Kähler form. They have
the same diffeomorphic type, because they can be isotoped through smooth hypersurfaces.
For the latter reason, the Moser trick and the fact that the symplectic form has entire peri-
ods show that they are all also symplectomorphic (see Proposition 4.2). Moreover, they
enjoy an interesting homological property: for any degree d hypersurface Z � CP n,

dimH�.Z;R/ �
d!1

dimHn�1.Z;R/ �
d!1

dn:

The first asymptotic is a consequence of the Lefschetz hyperplane theorem [14] and the
second one can be estimated through the Euler class of the tangent space ofZ via the Euler
characteristic and Chern classes. The main goal of this paper is to prove the following
theorem:

Theorem 1.1. Let n � 1 be an integer and L � Rn be a compact smooth real affine
hypersurface, not necessarily connected. Then there exists c > 0 such that for any d
large enough, any complex hypersurface Z of degree d in CP n contains at least
c dimH�.Z;R/ pairwise disjoint Lagrangian submanifolds diffeomorphic to L.

In fact, we prove this result in the more general setting of vanishing loci of holomor-
phic sections of vector bundles of rank between 1 and n tensored by a large power of an
ample line bundle over a projective complex n-manifold (see Theorem 1.20).

Corollary 1.2. Under the hypotheses of Theorem 1.1,

(1) if for any component Li of L, �.Li / 6D 0, then the classes in Hn�1.Z;R/ generated
by their Lagrangian copies in Z are linearly independent;

(2) if L is simply connected, its Lagrangian copies are not close perturbations of each
other.

Remark 1.3. (1) Note that �.L/ 6D 0 implies that n is odd.
(2) The real projective plane RP 2 is a Lagrangian submanifold of Z D CP 2 � CP 3

but cannot be a hypersurface in R3 since any compact hypersurface of Rn is orientable.
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(3) If Z D CP 2 � CP 3, H2.Z;Z/ is generated by the class of a complex line ŒD�.
The integral of the Fubini–Study Kähler form !FS overD is positive since !FS is positive
over complex submanifolds, that is, h!FS; ŒD�i > 0. However, h!FS; ŒL�i D 0 if L is a
Lagrangian submanifold, so that H2.Z;Z/ cannot be generated by Lagrangian classes.

In this paper, we prove Theorem 1.1, which is a special case of Theorem 1.20, through
a probabilistic argument (see Theorem 1.18): if we choose at random such a projective
hypersurface of given large degree, the probability that the conclusion of the theorem
holds is positive. Since the hypersurfaces have the same symplectomorphism type (see
Proposition 4.2), they all satisfy this property. In a parallel paper [11], we prove this
theorem with a deterministic proof based on the Donaldson–Auroux method [7], [2].

Other results on disjoint Lagrangian submanifolds. As far as the author of the present
work knows, essentially three types of results for disjoint Lagrangian submanifolds have
been proved.

� The oldest one concerns Lagrangian spheres that naturally germ from singularities of
hypersurfaces by Picard–Lefschetz theory. For instance, S. V. Chmutov [1, p. 419] proved
that there exists a singular projective hypersurface of degree d with cndn C o.dn/ singu-

lar points, with cn �n
q

2
�n
:When the polynomial defining this hypersurface is perturbed

into a non-singular polynomial, the singularities give birth to disjoint Lagrangian spheres
of the associated smooth hypersurface of the same degree.

� The second result is due to G. Mikhalkin and uses toric arguments:

Theorem 1.4 ([19, Corollary 3.1]). For any n� 2 and d � 1, a 2hn�1;0-dimensional sub-
space of Hn�1.Z;R/ has a basis represented by embedded Lagrangian tori and spheres,
where Z is any smooth projective hypersurface of CP n.

Here, hn;0 is the geometric genus of Z, that is, the dimension of the space of global
holomorphic n-forms, Hn;0.X/ � Hn.X;C/. It grows like cdn for some c > 0, as does
the dimension of Hn�1.Z;C/ and �.Z/: For Lagrangian spheres, Theorem 1.4 is more
precise than our Theorem 1.1, since with our method, for an even dimension n � 3, we
cannot know if our Lagrangian spheres have non-trivial class in Hn�1, and since the
constant c in our bound should be very small compared to the one given by Mikhalkin,
as in Chmutov’s theorem. Moreover, our theorem does not say anything new for tori. On
the other hand, Theorem 1.1 asserts that any real affine hypersurface is reproduced as
Lagrangian submanifolds in a large quantity in projective hypersurfaces of large enough
degree, and in odd dimension, with a simple topological restriction, it generates a uniform
proportion of the homology of the complex hypersurface. Moreover, our result extends to
any projective manifold equipped with any ample line bundle (see Theorem 1.20).

� The third type of results concerns upper bounds for the number of disjoint Lagrangian
submanifolds (not necessarily spheres), and uses Floer techniques; see for instance [23]
for results in open manifolds and a survey for older results of this kind.
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1.2. Random complex projective hypersurfaces

The smooth projective complex hypersurfaces of a given degree d , that is, the smooth
vanishing loci in CP n of complex homogeneous degree d polynomials, form a very nat-
ural family of compact Kähler manifolds. Unlike real projective hypersurfaces, that is, the
vanishing loci in RP n of real polynomials, for fixed d all complex hypersurfaces have
the same diffeomorphism type. In particular for nD 2, all smooth complex hypersurfaces
in CP 2 of degree d are compact connected Riemann surfaces of genus

gd WD
1
2
.d � 1/.d � 2/:

Moreover, as said before, for any n and d , when complex hypersurfaces are equipped with
the restriction of the ambient Kähler form, they all have the same symplectomorphism
type (see Proposition 4.2).

In [25], the authors inaugurated the study of random vanishing loci of complex poly-
nomials in higher dimensions (and zero sets of random holomorphic sections, see Sec-
tion 1.5), studying in particular the statistics of the current of integration over these loci.
In this paper, we will study the statistics of some metric and symplectic properties of
these hypersurfaces equipped with the restriction of the Fubini–Study Kähler metric gFS

and form !FS on CP n. More precisely, we will be concerned with systoles and small
Lagrangian submanifolds.

� n D 2. A source of inspiration and motivation for this paper in the case n D 2 was
genuinely probabilistic and provided by M. Mirzhakani’s theorem on systoles of random
hyperbolic curves [20] (see Theorem 1.5). One of the two main goals of the present work
is in fact to find an analog of it for random complex projective curves (see Theorem 1.6).

� n � 3. With the methods we use, one finds that in higher dimensions the natural gen-
eralization of small non-contractible loops are small Lagrangian submanifolds of random
hypersurfaces. Our motivation was nevertheless deterministic. The probabilistic method is
partly inspired by the work of J.-Y. Welschinger and the author on random real algebraic
manifolds [12], where we proved that any compact affine real hypersurface L appears a
lot of times as a component of a random large degree real projective hypersurface with a
uniform probability (see Theorem 1.8). Note that these components are Lagrangian sub-
manifolds of the complexified hypersurface. In particular, this implies that any complex
hypersurface of large enough degree d contains at least c

p
d
n

Lagrangian submanifolds
diffeomorphic to L, where c > 0 does not depend on d (see Remark 1.9). In this paper,
we prove an analogous complex and symplectic result analogous to Theorem 1.8: any
compact real hypersurface appears at least cdn times as a small Lagrangian submanifold
in a random complex projective hypersurface with a uniform positive probability (see
Theorem 1.10). We emphasize that this improvement from

p
d
n

to dn has an interesting
topological implication: when �.L/ 6D 0, these disjoint submanifolds form an indepen-
dent family of homology classes of cardinality comparable to the dimension of the whole
homology of the complex hypersurface. As said before, the deterministic Theorem 1.6 is
a direct consequence of the probabilistic Theorem 1.10.
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� It can be surprising that probabilistic arguments can have deterministic consequences in
this situation. The main explanation is given by Theorem 1.23 which shows that for any
sequence of smaller and smaller balls B of size 1=

p
d in CP n, the Lagrangian of desired

diffeomorphism type appears in the intersection of B and the random hypersurface of
degree d with a uniform positive probability. This uniform localization easily implies the
global Theorem 1.10, which says that with uniform probability, a uniform proportion of
a packing of CP n with disjoint balls of size 1=

p
d contain the desired Lagrangian. It

happens that the order dn of growth of dimH�.Z;R/ is the same as the order of the num-
ber of those packed small balls. This result itself immediately implies the deterministic
consequence.

� Finally, using the universality of peak sections on Kähler manifolds equipped with
ample line bundles, or the asymptotic (in the degree d ) universality of the Bergman ker-
nel, we will explain that analogous results can be proved in this general setting; see the
probabilistic Theorem 1.18 and the deterministic Theorem 1.20.

Let us define the measure on the space of complex polynomials used in [25] and in
this paper. Let

Hd;nC1 WD Cd
homŒZ0; : : : ; Zn�

be the space of complex homogeneous polynomial in nC 1 complex variables. Its dimen-
sion equals

�
nCd
n

�
. For P 2 Hd;nC1, denote by Z.P / � CP n its projective vanishing

locus. For P outside a codimension 1 complex subvariety of Hd;nC1, Z.P / is a smooth
complex hypersurface. Since for transverse polynomials P;Q, Z.P / D Z.Q/ is equiva-
lent to P D �Q for some � 2 C�, the space of degree d hypersurfaces has the dimension
of Hd;nC1 minus 1. For n D 2 this is 1

2
d.d C 3/ �

gd !1

gd . Note that for the hyperbolic

curves, the complex moduli space has dimension 3g � 3. There exists a natural Hermitian
product on Hd;nC1 given by

8P;Q 2 Hd;nC1; hP;Qi D

Z
CPn

hFS.P;Q/ dvolgFS ;

where

hFS.P;Q/.ŒZ�/ D
P.Z/Q.Z/

jZj2d

and gFS denotes the Fubini–Study metric on CP n. Recall that the latter is the quotient
metric induced by the projection CnC1 � S2nC1 ! CP n and the standard round metric
on the sphere. Then the monomials�s

.d C n/Š

i0Š � � � inŠ
Z
i0
0 � � �Z

in
n

�
Pn

kD0 ikDd

(1.1)

form an orthonormal basis of Cd
homŒZ0; : : : ; Zn� (see the end of the proof of Lemma 4.6).

This Hermitian product induces a Gaussian probability measure on Hd;nC1. In other
terms, we choose
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P D
X

i0C���CinDd

ai0���in

s
.d C n/Š

i0Š � � � inŠ
Z
i0
0 � � �Z

in
n (1.2)

with i.i.d. Gaussian coefficients aI 2 C such that <aI � N.0; 1/ and =aI � N.0; 1/ and
are independent. We denote that measure by Pd .

1.3. Systoles of random projective curves

Let .X; h/ be a compact smooth real manifold equipped with a metric h. In [20], M.
Mirzakhani studied probabilistic aspects of metric parameters of .X; h/, when .X; h/ is
taken at random in Mg , the moduli space of hyperbolic genus g compact Riemann sur-
faces. This moduli space is equipped with a natural symplectic form, the Weil–Petersson
form, hence a volume form, for which Mg has a finite volume, and which provides a
natural probability measure PWP;g on it (see [20]). Denote by

� `sys.X/ the least length of non-contractible loops in .X; h/.

M. Mirzakhani proved the following theorem:

Theorem 1.5 ([20, Theorem 4.2]). There exist "0 > 0 and 0 < c < C such that for any
" � "0 and g � 2,

c"2 � PWP;g ŒX 2Mg j `sys.X/ < "� � C"
2:

We now introduce a partial analogous result for random projective curves of given
degree, with a homological point of view. For any .X; h/ as above, ı > 0 and c > 1,
denote by

� Nsys.X; ı; c/ the maximal cardinality of an independent family of classes in H1.X;Z/
such that any class in the family is represented by a circle of length between ı=c and cı.

Our first main result concerns the systoles of random complex curves in CP 2:

Theorem 1.6. There exist c; d0 � 1 such that for all 0 < " � 1 and d � d0,

exp.�c="6/ < Pd
�
P 2 Hd;3

ˇ̌
Nsys.Z.P /; "=

p
d; c/ � d2 exp.�c="6/

�
;

where Z.P / is equipped with gFSjZ.P/. In particular,

exp.�c="6/ < Pd ŒP 2 Hd;3 j `sys.Z.P // � "=
p
d�: (1.3)

Theorem 1.6 is a particular case of the more general Theorem 1.16, which holds for
random complex curves in a projective complex manifold.

Remark 1.7. (1) Since dimH1.Z.P /;R/ D 2gd �d d
2, the first assertion of this theo-

rem proves that with uniform probability, there exists a basis of H1.Z.P /;R/ such that a
uniform proportion of its members are represented by a loop of size less than "=

p
d .

(2) If we want to compare the Fubini–Study model with the Weil–Petersson model,
we would like the volumes to be equal at a given genus. This implies that the metric in
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the projective setting has to be rescaled by a
p
d factor. In this case the size estimates

given by Theorem 1.6 become similar to the lower bound of Theorem 1.5. Note, however,
that although our bound is uniform in d or gd as in [20], the dependence on " is very bad
compared to Mirzakhani’s bound.

(3) In fact, for any x 2 CP n, with the same probability, a non-contractible loop lies
in Z.P / \ B.x; "=

p
d/ (see Theorem 1.23).

Other metric parameters. For the reader’s convenience, we present some known results
for other metric properties of projective curves. Tables 1 and 2 compare deterministic and
probabilistic observables for the Weil–Petersson and Fubini–Study models.

Parameters
of surfaces of genus g

Hyperbolic surfaces Planar algebraic curves

Dimension of the moduli space �
g!1

3g �
d!1

g

Curvature �1 2 ��1; 2� [22]

Volume �
g!1

4�g �
g!1

4�g

Diameter 2 �0;C1Œ 2 Œc; Cg5=2� [9]

Tab. 1. Deterministic parameters of the two different models of real surfaces, the Weil–Petersson
model with hyperbolic surfaces, and the Fubini–Study model with complex algebraic curves
equipped with the induced rescaled metric

p
2�d gFS on CP 2.

Parameters Hyperbolic surfaces Planar algebraic curves
of surfaces of genus g Weil–Petersson measure Fubini–Study measure

Curvature �1 Ed .K.x/ j x 2 C/ � �1

Diameter
PWP;g .Diam � 40 logg/

����!
g!1

0 [20] ?

Systole PWP;g .`sys � "/ � "
2 [20]

Pd .`sys � "/

� exp.�c="6/ [this paper]

Tab. 2. Statistics of some metric parameters. Complex algebraic curves are equipped with the
induced rescaled metric

p
2�d gFS on CP 2.

� Volume. By the Wirtinger theorem, any curve of degree d in CP 2 (and any degree d
hypersurface of CP n) has volume d (see [14]). By the Gauss–Bonnet theorem, for any
hyperbolic curve of genus g, its volume equals 2�.2g � 2/. Hence, for nD 2, for compar-
ison with the Weil–Petersson model, we should rescale the metric gFS on CP 2 by

p
2�d ,

so that
Volp

2�d gFSjZ.P /
.Z.P // D 2�d2 �

d!1

4�gd :

� Curvature. By a result by L. Ness [22, Corollary p. 60], the Gaussian curvature K
of a degree d complex curve in CP 2 equipped with the induced metric gFS belongs
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to ��1; 2�. Moreover, by the Gauss–Bonnet theorem, the average on Z.P / of K equals

Kmean D �2�
2gd � 2

d
�

g!1

�2�d:

We can prove moreover that for all x 2 CP 2, E.K.x/ j P.x/ D 0/ � �d:

� Diameter. Since by the maximum principle there are no compact complex curves
in C2, no algebraic complex curve in CP 2 exists in a ball, so that

9c > 0; 8P 2
[
d�1

Hd;nC1; Diam.Z.P /; gFSjZ.P// � c: (1.4)

F. Bogomolov [6] has proved that the intrinsic diameter of planar complex curves is not
bounded when the degree grows to infinity. However, S.-T. Feng and G. Schumacher [9]
showed that for a given degree there exists an upper bound for the diameter:

8d � 1; 8P 2 Hd;3; Diam.Z.P /; gFSjZ.P// � 32�g
2
d C o.g

2
d /:

It should be possible, as in [20], to find a better probabilistic estimate for the diameter,
and one can wonder if it is also logarithmic in d .

1.4. Small Lagrangian submanifolds of random hypersurfaces

Let .X2n; !/ be a smooth symplectic manifold of dimension 2n. Recall that ! is a closed
non-degenerate 2-form. A Lagrangian submanifold L of X is an n-dimensional sub-
manifold such that !jTL vanishes. For instance, a real analytic hypersurface in Rn is a
Lagrangian submanifold of its associated complex extension, which is a Kähler manifold
for the restriction of the standard Kähler form in Cn.

Universal real components. In [12], J.-Y. Welschinger and the present author stud-
ied random real projective hypersurfaces, that is, the real loci of random elements of
RHd;nC1, the space of real homogeneous polynomials in nC 1 variables and of degree d .
The measure was the complex Fubini–Study (1.2) restricted to RHd;nC1. In the literature,
this measure is often called the Kostlan measure. Let L�Rn be any compact smooth real
hypersurface. For any real homogeneous polynomial P , let ZR.P / WD Z.P / \RP nC1;
and denote by

� NR.L; ZR.P // the number of disjoint balls B in RP n such that B \ZR.P / contains
a submanifold L0 diffeomorphic to L.

Theorem 1.8 ([12, Theorem 1.2] and [13, Theorem 2.1.1]). Let n � 1 and L � Rn be
any compact smooth hypersurface, not necessarily connected. Then there exist c > 0 and
d0 such that for every d � d0,

c < Pd ŒP 2 RHd;nC1 j NR.L; ZR.P // > c
p
d
n
�:
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Remark 1.9. (1) Note that this theorem has a deterministic corollary, using the same
argument as given in this paper: any compact real affine hypersurface appears at least
c
p
d
n

times as disjoint Lagrangian submanifolds in any complex projective hypersurface
of high enough degree. Indeed, the real part of a complex hypersurface defined over the
reals is Lagrangian for the restriction of the Fubini–Study Kähler form, and complex
projective hypersurfaces are all symplectomorphic.

(2) In [10], the author constructed real hypersurfaces with c
p
d
n

real spheres. The
same proof, replacing a polynomial vanishing on a sphere by another polynomial gives
the same corollary as the latter. Theorem 1.1 gives a cdn lower bound, which is of the
order of dimH�.Z.P /;R/ when d grows to infinity.

(3) In fact, Theorem 1.8 holds in the more general context of Kähler compact mani-
folds with holomorphic line bundles equipped with real structures (see [12]).

Universal Lagrangian submanifolds. We turn now to a complex and Lagrangian analog
of this theorem. As before, let L � Rn be a compact smooth real hypersurface. For any
compact symplectic manifold .Z; !; h/ equipped with a Riemannian metric h, any ı > 0
and c � 1, denote by

� NLag.L; Z; ı; c/ the number of pairwise disjoint open sets containing a Lagrangian
submanifold L0 diffeomorphic to L and satisfying

ı=c � Diam.L0; hjL0/ � cı: (1.5)

For polynomials, the following theorem is the main probabilistic result of this paper. It is
a particular case of Theorem 1.18 below:

Theorem 1.10. Let n � 2 and let L � Rn be any compact smooth hypersurface, not
necessarily connected. Then there exist c; D; d0 � 1 such that for any 0 < " � 1 and
d � d0,

exp.�c="D/ < Pd
�
P 2 Hd;nC1

ˇ̌
NLag.L; Z.P /; "=

p
d; c/ > dn exp.�c="D/

�
;

where the metric and the symplectic form on Z.P / are the ones induced by the Fubini–
Study metric and symplectic form on CP n. Moreover, if L is real algebraic, that is, if
there exists p 2 RŒx1; : : : ; xn� such that LD ZR.p/, thenD can be chosen to be 2degp.

Remark 1.11. (1) In fact, Theorems 1.1, 1.6 and 1.10 have a higher codimension gen-
eralization: instead of taking one random polynomial, one can choose 1 � r � n random
independent polynomials .P1; : : : ; Pr / of the same degree, and look at their common
vanishing locus Z.P1; : : : ; Pr / WD

Tr
iD1 Z.Pi / � CP n, which is now almost surely of

complex codimension r . Then the same conclusions hold with the following changes: for
complex curves (Theorem 1.6), we take n � 2 instead of n D 2, and choose r D n � 1.
For Lagrangians (Theorem 1.10), we take L � Rn�rC1 instead of L � Rn. However, if
r � 2, then L � Rn�rC1 must satisfy a further necessary condition: its normal bundle
must be trivial. These generalizations are direct consequences of Theorem 1.16 for curves
and Corollary 1.19 for higher dimensions.
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(2) By the Weinstein theorem [29], a tubular neighborhood of a closed Lagrangian
submanifold L is symplectomorphic to a tubular neighborhood of the zero section
in T �L, so that local Lagrangian deformations of L can be viewed in T �L as graphs of
closed 1-forms on L. If the form is exact, then it has at least two zeros and the associated
graph intersects L. In particular, if H 1.L;R/ D 0, then L cannot be locally deformed
as a disjoint Lagrangian submanifold. On the other hand, if L possesses a closed 1-form
which does not vanish, like the torus, then there exist an infinite number of Lagrangian
submanifolds diffeomorphic to L. See [8] for topological conditions on L which imply
non-existence of such non-vanishing forms. This remark shows that in the case of spheres,
the disjoint Lagrangian spheres produced by Theorem 1.1 are not small deformations of
each other.

(3) Theorem 1.10 is a consequence of the more precise Theorem 1.23, which asserts
that for any sequence of balls centered at a fixed point x in CP n and of size 1=

p
d , with

uniform probability L appears as a Lagrangian submanifold of a random vanishing locus.

Theorem 1.10 provides a simple generalization to higher dimensions of the esti-
mate (1.3) of the systole given by Theorem 1.6. The natural object is the k-dimensional
systole:

Definition 1.12 (see [3], [15]). Let .M; g/ a compact smooth Riemannian manifold of
dimension n � 1. For any k 2 ¹1; : : : ; nº, define

`ksys.M; g/ WD
1
2

inf ¹Diam.†; gj†/ j † �M a k-submanifold;Hk.M;Z/ 3 Œ†� ¤ 0º:

Lemma 1.13. Let .M; g/ a compact smooth Riemannian manifold of dimension n � 1
and k 2 ¹1; : : : ; n � 1º such that Hk.M;Z/ ¤ 0. Then `ksys.M; g/ > 0.

Proof. Since M is compact, there exists r > 0 such that any ball of size r is diffeo-
morphic to the unit ball in Rn. In particular, for any closed k-submanifold † � M with
Diam.†; gj†/ < r;Hk.M;Z/ 3 Œ†� D 0:

Corollary 1.14. Let n � 2 be an odd integer. There exist c;D; d0 � 1 such that for any
0 < " � 1 and d � d0,

exp.�c="D/ < Pd
�
P 2 Hd;nC1

ˇ̌
`n�1sys .Z.P /; gFSjZ.P// � "=

p
d
�
:

Remark 1.15. (1) Our definition of `ksys.M; g/ is different from but very close to the
one given by Berger (where it is called a carcan), which refers to the volume of the
submanifold, and not the diameter. However, our method does provide a volume estimate.
In order to keep this paper not too long, we do not write it down.

(2) A similar estimate holds for holomorphic sections.

Proof of Corollary 1.14. Let L D Sn�1 � Rn. Then �.L/ ¤ 0 and Corollary 1.14 is a
direct consequence of Theorem 1.10 and Corollary 1.2.
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1.5. Random sections of a holomorphic vector bundle

There are at least two natural generalizations of Theorems 1.6 and 1.10: Firstly, we can
work in the setting of ample holomorphic line bundles over compact Kähler manifolds
introduced by B. Schiffman and S. Zelditch [25]. Secondly, we can study the statis-
tics of the vanishing locus of several random polynomials or sections, as mentioned in
Remark 1.11. We present the fusion of the two generalizations, as in [13]. Let n� 1 andX
be a compact complex n-dimensional manifold equipped with an ample holomorphic line
bundle L! X , that is, there exists a Hermitian metric hL on L with curvature �2i�!
such that ! is Kähler. We denote by g! the associated Kähler metric. Note that by the
Kodaira theorem, X can be holomorphically embedded in CPN for N large enough. Let
1 � r � n be an integer and E ! X be a holomorphic vector bundle of rank r equipped
with a Hermitian metric hE . For any degree d � 1, denote by H 0.X;E ˝Ld / the space
of holomorphic sections of E ˝ L˝d . By the Hirzebruch–Riemann–Roch theorem,

dimH 0.X;E ˝ L˝d / �
d!1

rdn
Z
X

!n

nŠ
:

Let dvol be any volume form on X , and define for any d � 1 the Hermitian product on
H 0.X;E ˝ Ld /:

8s; t 2 H 0.X;E ˝ Ld /; hs; ti WD

Z
X

hE;Ld .s; t/ dvol; (1.6)

where hdE;L is the Hermitian metric on E ˝ L˝d associated to hE and hL. Then
we associate to this Hermitian product the Gaussian probability measure dPd on
H 0.X; E ˝ Ld /. In other terms, for any d � 1, choosing an orthonormal basis
.Si /i2¹1;:::;Nd º

of H 0.X; E ˝ Ld /; where Nd WD dimH 0.X; E ˝ Ld /, a random sec-
tion s 2 H 0.X;E ˝ Ld / can be written as

s D

NdX
iD1

aiSi ;

where the complex coefficients ai have .<ai /i and .=ai /i i.i.d. and following the same
normal law N.0; 1/. In what follows,

� Z.s/ will denote the vanishing locus in X of s 2 H 0.X;E ˝ Ld /, and

� the tuple .n; r; X; L;E; hL; !; g! ; hE ; dvol; .Pd /d�1/ will be called an ample proba-
bilistic model, and an ample model if no probability is involved.

By Bertini’s theorem, almost surely Z.s/ is a compact smooth codimension r complex
submanifold of X .

Standard example: the Fubini–Study random polynomial mappings. ForX DCP n,
E D CP n � Cr , hE the standard metric on Cr , L D O.1/ the hyperplane bundle, and
hL D hFS the Fubini–Study metric, we have

H 0.CP n; E ˝ Ld / D .Cd
homŒZ0; : : : ; Zn�/

r :
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Moreover, the monomials given by (1.1) make this identification an isometry. In other
terms, a random polynomial mapping for the standard structures is an r-uple of indepen-
dent random polynomials in Hd;nC1 equipped with the Gaussian measure (1.2).

Random curves. When r D n � 1, the vanishing locus of a section of H 0.X;E ˝ Ld /

is generically a smooth compact complex curve. When n D 2 and r D 1, the adjunction
formula shows that its genus equals

gd D
1

2
d2
Z
X

!2 �
1

2
d

Z
X

c1.X/ ^ ! C 1;

where c1.X/ denotes the first Chern class of the surface X (see [14]). Theorem 1.6 has
the following natural generalization:

Theorem 1.16. Let n � 2 be an integer. Then there exists a universal constant c � 1
such that the following holds. Let .n; n � 1; X; L; E; hL; !; g! ; hE ; dvol; .Pd /d�1/ be
an ample probabilistic model. Then there exists d0 � 1 such that for all 0 < " � 1 and
d � d0;

exp.�c="6/<Pd
�
s2H 0.X;E˝Ld /

ˇ̌
Nsys.Z.s/;"=

p
d;c/>dnVolg!

.X/exp.�c="6/
�
:

Here, the metric on Z.s/ is the restriction of the Kähler metric g! associated to !.

Recall that Nsys is defined in §1.3. Note that the volume involved in Theorem 1.16 is
the one associated to g! and not to the arbitrary volume form dvol used for the definition
of the scalar product (1.6).

Theorem 1.16 means that for any degree large enough, with probability uniform in d ,
there exists a basis of H1.Z.s/;R/ such that a uniform proportion of its elements are
represented by loops of size bounded by "=

p
d .

Remark 1.17. It is classical [16, Corollary 3.6] that any compact orientable Riemann
surface embeds in CP 3. However, a degree d curve in CP 3, that is, a holomorphic curve
whose class inH2.CP 3;Z/ equals dŒD�, whereD is a line, can have different topologies,
and it is not known which pairs of genus and degree exist (see [16, IV, 6]). Finally, if E is
of rank 2, our model of sections of H 0.CP 3; E ˝ Ld / only provides strict subfamilies
of the whole set of curves.

Lagrangian submanifolds. We now provide a similar Kähler generalization of The-
orem 1.10, that is, for Lagrangian submanifolds. Let † be a complex submanifold in
B � Cn, and L be a compact smooth Lagrangian submanifold of .†; !0jT†/. For any
symplectic manifold .Z; !; h/ equipped with a metric h and ı > 0; c > 1, denote by

� N.†;L; Z; ı; c/ the maximal number of pairwise disjoint open sets †0 � Z such that
†0 contains a Lagrangian submanifold L0 such that

.L0; †0/ �diff .L; †/ and ı=c � DiamL0.L0/ � cı:
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Theorem 1.18. Let n � 2, 1 � r � n � 1, † � B � Cn be a complex algebraic
smooth codimension r submanifold, and L � † be a compact smooth Lagrangian sub-
manifold of .†; !0jT†/: Then there exist c; D � 1 such that the following holds. Let
.n; r;X;L;E;hL;!;g! ; hE ; dvol; .Pd /d�1/ be an ample probabilistic model. Then there
exists d0 � 1 such that for all 0 < " � 1 and d � d0,

exp.�c="D/

< Pd
�
s 2 H 0.X;E ˝ L˝d /

ˇ̌
N.†;L; Z.s/; "=

p
d; c/ > dn Volg!

.X/ exp.�c="D/
�
:

The following corollary proves that any compact smooth real affine codimension n � r
submanifold with trivial normal bundle appears a large number of times in the random
complex codimension r submanifold, with a uniform probability:

Corollary 1.19. Let n � 2, 1 � r � n � 1, and L � Rn be a compact smooth codimen-
sion r submanifold with trivial normal bundle. Then there exist c; D � 1 such that the
following holds. Let .n; r; X; L; E; hL; !; g! ; hE ; dvol; .Pd /d�1/ be an ample proba-
bilistic model. Then there exists d0 � 1 such that for all 0 < " � 1 and d � d0,

exp.�c="D/

< Pd
�
s 2 H 0.X;E ˝ L˝d /

ˇ̌
NLag.L; Z.s/; "=

p
d; c/ > dn Volg!

.X/ exp.�c="D/
�
:

If L is algebraic, one can choose D to be twice the degree of L.

Recall thatNLag is defined in §1.4. Note that when r D 1, that is, if L is a hypersurface,
the condition on its normal bundle is always satisfied. Corollary 1.19 implies the following
generalization of the deterministic Theorem 1.1:

Theorem 1.20. Let n � 2, 1 � r � n, and L � Rn be a compact smooth .n � r/-
submanifold with trivial normal bundle. Then there exists c > 0 such that for any ample
model .n; r; X; L; E; hL; !; g! ; hE / and for d large enough, the zero locus of any sec-
tion s 2H 0.X;E ˝Ld / vanishing transversally contains at least cdnVolg!

.X/ disjoint
Lagrangian submanifolds diffeomorphic to L.

Again, by the Lefschetz theorem and a computation with Chern classes, there exists
c > 0 such that

8d � 1; 8s 2H 0.X;E ˝Ld /; dimH�.Z.s/;R/ �
d!1

dimHn�r .Z.s/;R/ �
d!1

cdnI

see [13, Corollary 3.5.2] for a proof with an explicit constant c.

Corollary 1.21. Under the hypotheses of Theorem 1.20,

(1) if �.Li / 6D 0 for every connected component Li of L, then the classes in
Hn�r .Z.s/;R/ generated by these disjoint submanifolds are linearly independent;

(2) if the Li ’s are simply connected, no Lagrangian copy of any of them can be isotoped
to another one through disjoint Lagrangian submanifolds.
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1.6. Prescribed topology in a small ball

Theorem 1.18 is a consequence of the more precise Theorem 1.23 below. This theorem is
partly inspired by the work of J.-Y. Welschinger and the author. For this reason, we recall
it. In [13], the following was proved:

Theorem 1.22 ([13, Proposition 2.4.2]). Let n � 2 and 1 � r � n. Then, for any real
compact smooth .n� r/-submanifold L�Rn with trivial normal bundle, for any d large
enough and any x 2 RP n, with positive probability uniform in d , the zero set Z.P / of
a random real polynomial P 2 RdhomŒX0; : : : ; Xn� intersects B.x; 1=

p
d/ along some

components, some of which are diffeomorphic to L.

This theorem was in fact proved in the general setting of random sections of holomor-
phic real vector bundles over a projective manifold (see [13]).

We begin with an analogous version of Theorem 1.22 for smooth complex algebraic
affine hypersurfaces†� Cn containing a Lagrangian submanifold L. Note that the latter
condition is not a constraint since every symplectic manifold contains a Lagrangian torus
of any small enough size near every point. Note that in contrast to the real case, an affine
algebraic complex hypersurface is never compact, and is connected if and only it is the
vanishing locus of an irreducible polynomial.

Let n � 2 and 1 � r � n, † be a complex submanifold in B � Cn, L be a compact
smooth Lagrangian submanifold of .†; !0jT†/, and .n; r; X; L; E; hL; !; g! ; hE ; dvol;
.Pd /d�1/ be an ample probabilistic model (see §1.5 for the definition). For any x 2 X ,
ı > 0, C > 1, and s 2 H 0.X;E ˝ Ld /,

� A.†;L; Z.s/; x; ı; C / denotes the event that there exists a smooth topological ball
B � X containing x and a Lagrangian submanifold L0 of .Z.s/\B;!jZ.s// such that

.L0; Z.s/ \ B/ �diff .L; †/ and ı=c � Diam.L0/ � cı:

Here, the diameter is computed with respect to the induced metric on L0. The main theo-
rem of this paper is the following:

Theorem 1.23. Let n � 2 and 1 � r � n � 1 be integers, † � B � Cn be a smooth
complex algebraic .n � r/-submanifold, and L � † be a compact smooth Lagrangian
submanifold of .†; !0jT†/. Then there exists c � 1 such that for any ample probabilistic
model .n; r; X;L;E; hL; !; g! ; hE ; dvol; .Pd /d�1/, there exists d0 � 1 such that for all
0 < " � 1 and x 2 X;

8d � d0; exp.�c="D/ � Pd ŒA.†;L; Z.s/; x; "=
p
d; c/�:

This theorem quickly implies Theorem 1.18 (see below). In fact, the same result
holds for affine real hypersurfaces, not only Lagrangians, as in Corollary 1.19 and Theo-
rem 1.22.
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1.7. Ideas of the proof of the main theorems

We present the strategy of the proofs of Theorems 1.23, 1.16 and 1.18 for r D 1, " D 1
and for polynomials. The proof relies on two main tools: the barrier method for proving
uniform probability of some local topological event, and a quantitative Moser-type con-
struction to make this event symplectic and Lagrangian. The barrier method was used for
instance in a real deterministic context in [10] to construct a lot of small spheres in the
real part of holomorphic or symplectic Donaldson hypersurfaces. In probabilistic contexts
similar to the present work, it was used for instance in [21] to produce small components
of the vanishing locus of a random function with uniform probability, and in [12] to pro-
duce small components with prescribed diffeomorphism types. The proof of the main
Theorem 1.23 is roughly the following:

� Fix a point x 2 CP n and choose for any d a polynomialQx;d vanishing along a hyper-
surface Z.Qx;d / intersecting B.x; 1=

p
d/ along a hypersurface diffeomorphic to †.

Here, 1=
p
d is the natural scale for Fubini–Study or Kostlan measures. The easiest way

to do this is to rescale for every d the same polynomial in an affine chart centered at x.

� Then, for small enough perturbations, the perturbed polynomial still vanishes in
B.x; 1=

p
d/ along a hypersurface isotopic to †. If the allowed perturbation can be quan-

tified, typically when the two-point correlation function of the random function converges
locally to a universal random function after rescaling, one can prove that with a uniform
positive probability, a random polynomial of degree d vanishes in the sequence of balls
B.x; 1=

p
d/ along a hypersurface diffeomorphic to †. In our case, we specialize this

method in two different ways, depending on the dimension n of the ambient space.

� For n D 2 (Theorem 1.16), we choose † � B � C2 to be a complex curve of degree 3,
hence a torus without three small disks. Then a circle whose class in H1.†;R/ is non-
trivial will still be non-trivial in H1.Z.P /;R/.

� For n � 3 (Theorem 1.18), In normal affine complex coordinates on the small ball
B.x; 1=

p
d/, the Fubini–Study form equals the standard form at x, so that the local

implementation in CP n of L is almost Lagrangian in .Z.Qx;d /; !FSjTZ.Qx;d //. Since
the perturbation of Qx;d by a random polynomial is complex and not real, there is no
natural way to follow L as a Lagrangian perturbation in the perturbed vanishing locus†0.
The classical way to deform objects of symplectic nature, like Lagrangians, is the Moser
method. We re-prove it in our particular situation, but with a quantitative point of view
(Theorem 3.4). Thanks to the latter the method keeps the perturbation of L inside the
small ball, so that this small Lagrangian displacement happens with uniform probability.
These points provide the idea of the proof of Theorem 1.23. Note that the quantitative
Moser trick is needed only for dimensions n � 3 and not for our result on systoles.

� Theorems 1.16 and 1.18 are direct consequences of Theorem 1.23: if we choose in CP n

a maximal set of small disjoint balls, then automatically with uniform probability, at
least cdn of these balls intersectZ.P / along a component diffeomorphic to† and contain
a Lagrangian copy of L with a good diameter.
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Organization of the paper. In Section 2, we assume Theorem 1.23 and we give the
proofs of its consequences presented above. In Section 3, we give a quantitative version
of the Moser trick. This part is deterministic. In Section 4, we prove Theorem 1.23.

2. Direct proofs

In this section we assume Theorem 1.23 and we give the proofs of its consequences.

2.1. From local to global

Proof of Theorem 1.18. We follow the proof given in [13, §2.5]. Let c � 1 be given by
Theorem 1.23, and let .n; r; X; L; E; hL; !; g! ; hE ; dvol; .Pd /d�1/ be an ample proba-
bilistic model. Let ƒ";d be a subset of X , maximal for the property that any two distinct
points in ƒ";d are at least 2"=

p
d apart. Then the union of the balls B.x; 2"=

p
d/ cen-

tered at the points of ƒ";d covers X , and the balls B.x; "=
p
d/ are disjoint. Denote by

N.ƒ";d / the number of elements x ofƒ";d such that A.†;L;Z.s/; x; "=
p
d; c/ happens.

Then, by Theorem 1.23,

jƒ";d j exp.�c="D/ �
X

x2ƒ";d

Pd ŒA.†;L; Z.s/; x; "=
p
d; c/�

D

jƒ";d jX
kD1

kPd ŒN.ƒ";d / D k�

�
1
2
jƒ";d je

�c="D

Pd
�
N.ƒ";d / �

1
2
jƒ";d je

�c="D �
C jƒ";d jPd

�
N.ƒ";d / �

1
2
jƒ";d je

�c="D �
:

Consequently, Pd ŒN.ƒ";d / �
1
2
jƒ";d je

�c="D
� � 1

2
exp.�c="D/: Since

Volg!
.X/ �

X
x2ƒ";d

Volg!
.x; 2"=

p
d/ �

d!1

jƒ";d j.2"=
p
d/2n Volg0

.B/;

there exists a universal cn > 0 and d0 independent of " � 1 but depending on the ample
probabilistic model such that jƒ";d j � cn Volg!

.X/dn"�2n so that

Pd
�
NLag.†;L; Z.s/; x; "=

p
d; c/ � cnd

ne�c="
D

Volg!
.X/

�
�

1
2
e�c="

D

:

We can now absorb cn into the exponential, replacing c by a smaller positive constant.

Proof of Theorem 1.10. This is Theorem 1.18 in the standard case and for r D 1.

2.2. From probabilistic to deterministic

Proof of Theorem 1.20. Theorem 1.20 is a direct consequence of Corollary 1.19 and the
fact that the zeros of holomorphic sections of given degree d have the same diffeomor-
phism and symplectomorphism type, when they are equipped with the restriction of the
ambient Kähler form ! (see Proposition 4.2).
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Remark 2.1. As said before for projective hypersurfaces, in a parallel paper [11],
we prove the deterministic Theorem 1.20 using the deterministic Donaldson [7] and
Auroux [2] methods. In the two types of proofs, we use peak sections and a lattice of
mesh of order 1=

p
d . In both cases we prove that Lagrangian submanifolds appear in a

uniform proportion of disjoint balls centered at the vertices of the lattice. An advantage of
the Donaldson method is that it can be used for Donaldson hypersurfaces in a symplectic
compact manifold .M;!/ equipped with an almost complex structure J . These hypersur-
faces are in fact codimension 2 symplectic submanifolds which are the vanishing loci of
almost holomorphic sections of high powers L˝d of a complex line bundle L over M ,
where L is equipped with a Hermitian metric of curvature �2i�!. In this general sym-
plectic context, it is not clear which natural space of symplectic hypersurfaces can be
used for probabilistic considerations. In [26], the authors replaced the holomorphic sec-
tions (which no longer exist in this general context) by the kernel of a certain elliptic
operator acting on the bundle, which is the N@L operator if the almost complex structure
is integrable and the bundle is holomorphic. However, the vanishing locus of a section in
this space is a priori not symplectic. The deterministic proof is not easier, since we also
need the quantitative version of the Moser method given by Theorem 3.4.

Proof of Theorem 1.1. This is Theorem 1.20 in the standard case and for r D 1.

2.3. Small non-contractible curves

We turn now to the proof of Theorem 1.16 for the systoles of random complex curves.

Proof of Theorem 1.16. Define

8.z1; z2/ 2 C2; p.z1; z2/ D z
3
1 C z

3
2 � 1:

By the genus formula applied to the homogenization

P WD Z30p

�
Z1

Z0
;
Z2

Z0
;
Z3

Z0

�
;

Z.P / � CP 2 is a smooth torus, so that for � > 0 large enough,

Q† WD
1

�
.Z.p/ \ B.0; �// � B � C2

is an affine algebraic complex curve diffeomorphic to T2 n
S3
iD1 Di , where .Di /3iD1

are three disjoint discs in T2. Embedding C2 into Cn turns Q† into an affine alge-
braic complex curve † in Cn. Let  � † be a smooth circle which is non-trivial in
H1.†;Z/ (see Figure 1). Since  is a Lagrangian, by Theorem 1.18 there exists at least
dnVolg!

.X/ exp.�c="D/ copies of .†; / in a random curveZ.s/ such that any copy i
of  has intrinsic diameter of order "=

p
d , with a uniform probability given by the theo-

rem. The classes inH1.Z.s/;R/ generated by the copies of  form an independent family.
Indeed, if

P
i �i Œi � D 0, where .�i /i 2 RN and the i are the distinct copies of  , then
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†



Fig. 1. A degree 3 affine complex curve † in C2 with a non-trivial loop.

�

Z.P / � C

Fig. 2. A (non-realistic) degree 6 curve in CP 2 and three small balls of size 1=
p
d containing the

affine complex curve † and the non-trivial real curve  of Figure 1.

there exist codimension 0 surfaces with boundaries†1; : : : ;†N 0 inZ.s/ and .�j /j 2RN
0

such that
P
i �ii D

P
j �j @†j : This implies that @†j is a sum of distinct j ’s. However,

if i is one component of the boundary of †j , then the latter must contain the punctured
torus Q† which contains i , which implies that i bounds on the other side of†j , which is
a contradiction.

Proof of Theorem 1.6. Theorem 1.6 is a particular case of Theorem 1.16, with n D 2,
r D 1, X D CP 2, E D CP 2 � C, hE the Euclidean metric, L D O.1/ the hyperplane
bundle, hL the Fubini–Study metric and ! the Fubini–Study Kähler form.

2.4. From disjoint to homologically non-trivial

Proof of Corollary 1.21. The first assertion is a direct consequence of the classical Lem-
ma 2.2 below, remembering that Lagrangian submanifolds are totally real for any almost
complex structure tamed by the symplectic form !. The second assertion was explained
in Remark 1.11.
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Lemma 2.2. Let L � .X; J / be any closed oriented smooth totally real dimension n
submanifold in an almost complex manifold X of dimension 2n. Then

ŒL� � ŒL� D �.L/;

where ŒL�2Hn.X;Z/ and �.L/ denotes the Euler characteristic of L. If L1; : : : ;LN is a
family of disjoint totally real submanifolds of X with non-vanishing Euler characteristic,
then the family made up of their classes ŒL1�; : : : ; ŒLN � in Hn.X;R/ is independent.

Proof. For a closed totally real L � X , if h is any metric, then JTL � NL, where
NL is the normal bundle over L. Then �.L/ D

R
L
e.TL/ D

R
L
e.NL/, which equals

ŒLj � ŒL�. For the second assertion, if
Pm
iDk ai ŒLk � D 0 inHn.X;R/, where L1; : : : ;Lm

are pairwise disjoint totally real submanifolds, then for every j , intersecting with ŒLj �
gives aj ŒLj � � ŒLj � D 0 so that in our case, aj D 0.

2.5. From smooth to algebraic

For the proof of Corollary 1.19 we will use the classical theorem of H. Seifert:

Theorem 2.3 ([24]). Let n � 2, 1 � r � n and L � Rn be any compact smooth .n� r/-
submanifold with trivial normal bundle. Then there exists a real polynomial map p WD
.p1; : : : ; pr / W Rn ! Rr and a diffeotopy of Rn sending L onto some connected com-
ponents of ZR.p/: The diffeotopy can be chosen as C 1-close to the identity map as we
want.

It is not known which hypersurfaces are diffeotopic to algebraic ones (see [5, Remark
14.1.1]).

Proof of Corollary 1.19. By Theorem 2.3, there exists a regular real polynomial map pD
.p1; : : : ; pr / W Rn ! Rp of maximal degree d.p/ WD maxi deg pi such that ZR.p/ WD

Z.p/ \ Rn has a compact component L0 or a set of components diffeomorphic to L. If
L is algebraic, we can choose p such that ZR.p/ D L. By a comprehensible abuse of
notation, we keep the notation L for L0. After perturbation, we can assume that p, when
considered as defined on Cn, is regular, too. Then ZR.p/ is a Lagrangian submanifold
of its complex vanishing locus † WD Z.p/ equipped with the restriction of the standard
Kähler form !0. For a large enough � > 0, �B contains L. We rescale the polynomial
by 1=� and keep the notation p, so that ZR.p/ \ B contains L. Then Corollary 1.19 is a
consequence of Theorem 1.18 applied to the couple .† \ B;L/.

3. Quantitative deformations

In this section we introduce and prove deterministic lemmas and propositions which
quantify how much a given specific geometrical situation can be perturbed keeping its
specificity. The first part concerns the topology, the second part being Lagrangian.
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3.1. Preserving the topology

The next proposition is a quantitative and deterministic version of the barrier method
for functions. We first need a notation. For any linear mapping A 2 L.Rm;Rp/, where
1 � p � m are integers, define

T .A/ WD inf
jwjD1

jA�wj; (3.1)

where j � j denotes the standard Euclidean norm. We will use the following simple prop-
erties: for any A 2 L.Rm;Rp/;

� T .A/ > 0 if and only if A is onto;

� T .A/ � kAk, where kAk WD supjvjD1 jAvj;

� k.AA�/�1k � T .A/�2;

� if p D 1, then T .A/ D kAk;

� for any B 2 L.Rm;Rp/; T .AC B/ � T .A/ � kBk.

The following proposition provides quantitative estimates for the perturbation of a van-
ishing locus on 2B. It differs from [12, Proposition 3.4] in two ways. First, it allows
the vanishing locus to cross the boundary of the ball. Second, it specifies quantitatively
the existence of a diffeomorphism sending the vanishing locus to its perturbation. We
need indeed to understand how a Lagrangian submanifold of the locus can be moved into
another Lagrangian submanifold of the perturbed locus. For this, we give quantitative
estimates of the difference between the diffeomorphism and the identity. For � > 0 and
C k mappings f; g W 2B! Rp , define

80 � j � k � 1; cj .�; f; g/ WD
1

�2.jC1/
kf k

2jC1

Cj C1.2B/
kgkCj .2B/: (3.2)

Note that cj is a homogeneous function of degree 0; this will be crucial for probabilistic
estimates (see (4.5) below).

Proposition 3.1. Letm� 1, 1� p �m and k � 3 be integers, � > 0; and f;g W 2B�Rm

! Rp be C k maps such that kgkC1.2B/ � �=8, c0.�; f; g/ � 1=8 and

8x 2 2B; jf .x/j < �) T .df .x// > �:

(1) There exists a 1-parameter family .�t /t2Œ0;1� of diffeomorphisms with support in 2B
such that

8t 2 Œ0; 1�; .Z.f /;B/ ��t
.Z.f C tg/; �t .B//

with Z.f C tg/\ 1
2
B� �t .Z.f /\B/�Z.f C tg/\ 3

2
B, .x; t/ 7! �t .x/ is C k�1

and
8t 2 Œ0; 1�; k�t � IdkC0.2B/ � tc0.�; f; g/: (3.3)

(2) Let j D 1; 2 and C > 1 be such that cj .�; f; g/ � C . Then there exists C 0 depending
only on C such that

8t 2 Œ0; 1�; k�t � IdkCj .2B/ � C
0tcj .�; f; g/: (3.4)
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In the proof of the main probabilistic Theorem 1.23 below, the different estimates for
the various norms of �1 � Id in Proposition 3.1 will be used in different ways:

� a small C 0 norm will imply that a Lagrangian submanifold of Z.f / in 1
2
B will be sent

by �1 2 Z.f C g/ into a submanifold of B;

� a small C 1 norm implies that �1 is close to being symplectic, so that the image of
the Lagrangian is close to being Lagrangian and can be perturbed into a genuine
Lagrangian submanifold of Z.f C g/ (see Theorem 3.4);

� the bound for the C 2 norm will be used to estimate the intrinsic metric on the pertur-
bation of Z.f / on Z.f C g/, in order to obtain estimates for diameters.

Proof of Proposition 3.1. For any t 2 Œ0; 1�, define ft WD f C tg. We first prove that

8.x; t/ 2 2B � Œ0; 1�; jft .x/j < �=2) T .dft .x// > �=2: (3.5)

Indeed, jft .x/j < �=2 implies jf .x/j < � since jg.x/j < �=2, so that T .df .x// > � by
hypothesis, and since dft D df C tdg and kdg.x/k < �=2, we have T .dft .x// > �=2.
In particular, for all t 2 Œ0; 1�, Z.ft / is a C k�1 codimension p submanifold of 2B. For
any t 2 Œ0; 1� and ˇ > 0, let Vt .ˇ/ WD ¹x 2 2B j jft .x/j � ˇº: Then, by hypothesis on g,

8t 2 Œ0; 1�; Z.ft / � V0.�=8/ � V0.�=4/ � Vt .�=2/: (3.6)

For all .x; t/ 2 V0.�=4/� Œ0; 1� define Xt .x/ 2 Rm to be the projection of the origin onto
the .m � p/-plane

dft .x/
�1.¹�@tft .x/º/ � Rm;

which is well defined by (3.6) and (3.5). Note that X.x; t/ D ˆ.dft .x/; g.x// where ˆ
is defined in Lemma 4.5. Lemma 4.5 shows that ˆ is a smooth mapping where the first
variable is onto, so that X is C k�1 where it is defined. Let � W R! Œ0; 1� be a smooth
cut-off function satisfying �j.�1;1=4� D 1 and �jŒ1=2;1� D 0, and define on 2B the family
of vector fields

8.x; t/ 2 2B � Œ0; 1�; QXt .x/ WD �

�
2

�
jf .x/j

�
�

�
jxj � 1

2

�
Xt .x/:

Then QXt is C k�1 in .t; x/, for any t 2 Œ0; 1� we have QXt D Xt over V0.�=8/ \ 3
2
B, and

QXt D 0 on .V0.�=4//c and on @.2B/. Now let .�t /t2Œ0;1� be the family of diffeomorphisms
generated by . QXt /t2Œ0;1� on 2B, that is,

8.x; t/ 2 2B � Œ0; 1�; @t�t .x/ D QXt .�t .x//; �0 D Id:

Note that .x; t/ 7! �t .x/ is C k�1. By construction, �t can be extended smoothly as the
identity outside 2B. Since the C 0 norm of QX is bounded by the one of X , by Lemmas 4.3
and 4.5,

8t 2 Œ0; 1�; k�t � IdkC0.2B/ �
4t

�2
kdf kC0.2B/kgkC0.2B/ � 1=2;
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so that 1
2
B � �t .B/ �

3
2
B for all t 2 Œ0; 1�. Moreover, for any .x; t/ such that �t .x/ 2

V0.�=8/ \
3
2
B,

@t .ft .�t .x/// D g.�t .x//C dft .�t .x/.X.�t .x/; t/ D 0:

By an open-closed argument and the inclusions (3.6), this condition is satisfied if x 2 B.
Consequently,

8t 2 Œ0; 1�; Z.ft / \
1
2
B � �t .Z.f / \ B/ � Z.ft / \

3
2
B

and assertion (1) of the proposition is proved.
Now, since dXt D dˆ.dft .x/;g.x//.d2ft ; dg.x// for all t 2 Œ0;1�, Lemma 4.5 gives

max
t2Œ0;1�

kdXtkC0.2B/ �
16

�4
kgkC0.2B/.2kdf k

2
C0C�

2=4/kd2f kC0C
4

�2
kdf kC0kdgkC0

� Kc1.�; f; g/;

where K is a universal constant. Moreover, d QXt D
rjf j
�
�0X C �dX; so that

kd QXtkC0.2B/ � K
0

�
kdf kC0

�
c0.�; f; g/C c1.�; f; g/

�
� K 00c1.�; f; g/;

whereK 0;K 00 depend only on �. Consequently, by Lemma 4.3, there exists C 0 depending
only on C such that

k�t � IdkC1.2B/ � C
0tc1.�; f; g/:

This proves assertion (2) for j D 1.
For j D 2 in (2) we compute

d2xXt .x; t/ D d
2ˆ.dft .x/; g.x//.d

2ft ; dg/
2
C dˆ.dft .x/; g.x//.d

3ft ; d
2g.x//:

so that by Lemma 4.5,

kd2xXtk � 14kdf k
3��6jgj kd2f k2 C 6��4kdf k2kd2f k kdgk

C 3��4kdf k2jgj kd3f k C ��2kdf k kd2gk

� 24c2.�; f; g/:

A similar estimate for d2 QX and Lemma 4.3 imply

8t 2 Œ0; 1�; k�t � IdkC2.2B/ � tC
00c2.�; f; g/;

where C 00 is a constant depending only on C .

3.2. Preserving Lagrangianity

The main goal of this subsection is to prove the technical Proposition 3.3 below. It asserts,
in a quantitative way, that
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� if some compact Lagrangian submanifold L lies inside a compact symplectic subman-
ifold † of a symplectic manifold .M;!/;

� if † is perturbed into �.†/ by a diffeomorphism � close to the identity;

� if ! is exact and perturbed by a small 2-form d�,

then there exists a perturbation L0 � �.†/ of L which is Lagrangian for the restriction of
the perturbed form. Since we think that this quantitative proposition has its own interest,
we provide a general statement and a proof for symplectic manifolds. However, in this
paper we will apply it in the simple case where the ambient manifold is the unit ball of
the standard symplectic space .R2n; !0/ (see Theorem 3.4 below). Before the statement
of Proposition 3.3, we need some definitions:

Definition 3.2. Let .M; h/ be a smooth Riemannian manifold, possibly with boundary.

� For any continuous maps f; g W M ! M define d.f; g/ WD supx2M d.f .x/; g.x//,
where d is the distance associated to h.

� For any k � 0 and any C k vector field X on M , define Nk.X; M/ D

supx2M;0�p�k kr
pXk and similarly Nk.˛; M/ for any C k form ˛ on M . Here, r

denotes the Levi-Civita connection associated to h.

� For any submanifold L �M , define DiamM .L/ WD maxp;q2L d.p; q/:

� For any 2-form ! defined on a neighborhood of an open subset U of a manifold M
equipped with a metric h, let

S.!;U / WD inf
x2U;X2TxM; jX jD1

sup
Y2TxM; jY jD1

j!.X; Y /j:

Note that:

� DiamL.L/ is the intrinsic diameter of L; note also that if L is a circle, then its length
is bounded by its intrinsic diameter;

� if U is relatively compact, then ! is symplectic over U if and only if S.!;U / > 0;

� if !0 denotes the standard symplectic form on R2n, that is, !0 D
Pn
iD1 dxi ^ dyi , then

S.!0;R2n/ D 1;

� for any 2-forms ! and !0,

S.! C !0; U / � S.!;U / � k!0kI (3.7)

� if X is a vector field on U , iX! D � and ! is symplectic, then

kXkC0.U / �
1

S.!; U /
k�kC0.U /I (3.8)

� if f WU �Cn!C is holomorphic and vanishes transversally, then S.!0jTZ.f /;U /D1.

Proposition 3.3. Let 1 � r � n be integers, .M; !; h/ a smooth symplectic 2n-manifold
equipped with a metric, U � V � W � Y four relatively compact open sets such that
U � V , V � W , W � Y , and assume that there exists a smooth 1-form � on Y such
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that !
jY D d�. Let†� Y be a compact smooth codimension 2r submanifold, symplectic

for !jT†, L a compact smooth Lagrangian submanifold of .† \ U; !jT†/, � W Y ! Y

a smooth diffeomorphism with support in Y , and � a smooth 1-form on W satisfying

d.�; Id/ � dist.V; @W /;

k��.�C �/ � �kC0.W / �
1
2
S.!jT†; W \†/ dist.U; @V /;

k��.d�C d�/ � d�kC0.W / �
1
2
S.!jT†; W \†/:

(1) There exists a compact smooth Lagrangian submanifold L0 of .�.†/ \ W;
.! C d�/j�.†// such that .L; † \ V / �� .L0; �.† \ V //:

(2) If furthermore d.�; Id/ � 1
8

DiamM .L/ and

k��.�C �/ � �kC0.W / �
1
16
S.!jT†; W \†/DiamM .L/;

then 1
2

DiamM .L/ � DiamL0.L0/:

(3) Let C > 1. If furthermore

max
�
S.!jT†; W \†/

�1; N1.�
�.�C �/ � �;W /;N1.!;W /; kd�kC0.W /

�
� C;

then there exists C 0 > 0 depending only on C , on the pair .V;W / and on the C 1 norm
of h over W such that DiamL0.L0/ � C 0 DiamL.L/:

In the proof of Theorem 1.23, where we prove that a given affine complex hypersurface†
with a Lagrangian submanifold L appears with uniform probability in a sequence of small
balls, we will need Proposition 3.3 applied to the concrete context of Proposition 3.1,
where† is the vanishing locus of a holomorphic function f , � is a diffeomorphism send-
ing Z.f / onto the perturbed submanifold Z.f C g/, and ! is the Kähler form viewed
in the chart on the standard ball. Theorem 3.4 below synthesizes these two propositions
for this goal: it asserts, in a quantitative way, that if L is a compact Lagrangian of a van-
ishing locus Z.f / which is symplectic for the restriction of the standard form inside the
standard ball, as is the case for the real part of a complex hypersurface defined by a real
polynomial, and if g is a small perturbing function, then there exists a perturbation L0

of L which is a Lagrangian submanifold of Z.f C g/ equipped with the restriction of a
perturbation !0 C d� of the standard form.

Theorem 3.4. Let n � 1 and 1 � r � n be integers, � > 0, and f; g W 2B � R2n ! R2r

be smooth maps such that kgkC1.2B/ � �=8 and

8x 2 2B; jf .x/j < �) T .df .x// > �:

Let ! be a smooth symplectic form on 2B and � be a smooth 1-form on 2B satisfying
! D !0 C d� with

max
�
c0.�; f; g/; c1.�; f; g/; k�kC0.2B/; kd�kC0.2B/

�
�

1
16
: (3.9)

Let L be a compact smooth Lagrangian submanifold of .Z.f / \ 1
2
B; !0jZ.f //.
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(1) There exists a smooth ball B satisfying 1
2
B � B � 3

2
B and a compact smooth

Lagrangian submanifold L0 of .Z.f C g/\B;!jZ.fCg// satisfying .L;Z.f /\ B/
�diff .L

0; Z.f C g/ \ B/.

(2) If furthermore

max
�
c0.�; f; g/; c1.�; f; g/; k�kC0.2B/

�
�

1
16

DiamZ.f /.L/; (3.10)

then 1
2

DiamZ.f /.L/ � DiamL0.L0/:

(3) Let C > 1 be such that, furthermore,

max
�
c2.�; f; g/;N1.�; 2B/

�
� C: (3.11)

Then there existsC 00>1 depending only onC such that DiamL0.L0/�C 00DiamL.L/:

The various estimates for the diameters concern the restriction of the standard met-
ric g0 on R2n. We postpone the proof of Proposition 3.3 and prove the theorem now,
which is a consequence of Propositions 3.3 and 3.1.

Proof of Theorem 3.4. By Proposition 3.1 (1, 2), there exists a family of diffeomorphisms
.�t /t2Œ0;1� W 2B ! 2B with compact support and a universal constant K 0 � 1 such that,
writing � D �1,

d.�; Id/ D k� � IdkC0 � c0.�; f; g/ �
1
2

and kd� � IdkC0 � K 0c1.�; f; g/;

and .Z.f /;B/ �� .Z.f C g/; �.B/ with

Z.f C g/ \ B � �.Z.f / \ B/ � Z.f C g/ \ 3
2
B:

Let �0 WD
Pn
iD1 xidyi be the standard Liouville form, which satisfies d�0D!0. Note

that k�0.x/k � jxj for any x 2 R2n. Then, using the fact that S.!0jTZ.f /; 2B/ D 1,

k��.�0 C �/ � �0kC0.2B/ � k� � IdkC0 C k�0kC0kd� � IdkC0 C kd�kC0k�kC0

� c0.�; f; g/C 2c1.�; f; g/C .1C c1/k�kC0

� 5max.c0; c1; k�kC0/

�
1
2
S.!0jTZ.f /; 2B \Z.f // dist.B; 2B/ (3.12)

by (3.9). Similarly,

k��.d�0 C d�/ � d�0kC0.2B/ � kd� � Idk2
C0 C 2kd� � IdkC0 C kd�k2

C0kd�kC0

� c21 C 2c1 C .1C c1/
2
kd�kC0

�
1
2
S.!0jTZ.f /; 2B \Z.f //

again by (3.9). By Proposition 3.3 (1) applied to Y D 2B, W D 3
2
B, V D B, U D 1

2
B,

† D Z.f /, and ! D !0, there exists a Lagrangian submanifold L0 of .Z.f C g/ \
�.B/; .!0 C d�/jTZ.fCg// such that

.L; Z.f / \ B/ �� .L
0; Z.f C g/ \ �.B//:
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If B WD �.B/, then 1
2
B � B � 3

2
B. Hence, the first assertion of the theorem is proved.

If furthermore (3.10) is satisfied, then by (3.12), the hypotheses of Proposition 3.3 (2) are
satisfied, so that 1

2
DiamZ.f /.L/ � Diam.L0/. This proves the second assertion. Now, if

(3.11) is satisfied, then by Proposition 3.1 (2), there exists C 00 depending only on C such
that kd2�kC0.2B/ � C

00. This implies that there is a universal constantK 000 and a constant
C 000 depending only on C such that

N1Œ�
�.d�0C d�/� d�0/; 2B��K

000
�
kd�kC0N1.d�;2B/Ckd

2�kC0kd�kC0

�
�C 000:

Consequently,

max
�
S
�
!0jTZ.f /;

3
2
B\Z.f /

��1
;N1

�
��.d�0C d�/� d�0;

3
2
B
�
;N1.!0; 2B/

�
�C .4/;

where C .4/ depends only on C . We can now apply Proposition 3.3 (3): there exists a
constant C 0 > 0 depending only on C such that DiamL0.L0/ � C 0 DiamL.L/:

The main steps for proving Proposition 3.3 are the following:

� Recall that in Proposition 3.3, a symplectic submanifold† is deformed by a diffeomor-
phism � into †0, and the ambient symplectic form ! is deformed into ! C d�.

� The restriction of the perturbed form to †0 can be viewed as �0 D ��.! C d�/jT†
on †. Proposition 3.5 below constructs, in a general setting, an isotopy . t /t of local
diffeomorphisms on † such that  1 is a symplectomorphism between �0 and a given
symplectic form�, which is�D !jT† in our case, with an explicit control of  1 � Id
depending on � ��0 and its primitive.

� Corollary 3.6 applies this intrinsic Proposition 3.5 to the relative situation of Propo-
sition 3.3, and transfers the latter control to controls depending on � � Id and the
perturbation of the ambient symplectic form.

� The proof of Proposition 3.3 consists in applying this corollary to the deformation of
the Lagrangian submanifold.

Moser trick. The next proposition is a quantitative version of Moser’s trick.

Proposition 3.5. Let .†;�;H/ be a smooth symplectic manifold, possibly with bound-
ary, equipped with a metric H , and U;V ;W be three relatively compact open sets in †
such that U � V and V � W . Let � be a smooth 1-form on W satisfying

k�kC0.W/ �
1
2
S.�;W// dist.U; @V/ and kd�kC0.W/ �

1
2
S.�;W/:

(1) There exists a smooth family of diffeomorphisms . t /t2Œ0;1� W W ! W with compact
support in W such that

8t 2 Œ0; 1�;  �t .�C td�/ D � on U;

 t .U/ � V ; d. t ; Id/ �
2t

S.�;W/
k�kC0.W/:
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(2) Let C > 1 and assume that

max
�
S.�;W/�1; N1.�/; N1.�/

�
� C: (3.13)

Then there exists C 0 > 0 depending only on .U;V/, on the C 1 norm of H on W and
on C such that kd tkC0.W/ � C

0:

Proof. For any t 2 Œ0; 1�, let �t WD � C td�: Then for every t 2 Œ0; 1�, by hypothe-
sis and (3.7), S.�t ;W/ � 1

2
S.�;W/, which is positive since W is compact, so that

�t is symplectic on W . We are looking for a 1-parameter family . t /t2Œ0;1� of diffeo-
morphisms of W such that for all t 2 Œ0; 1�;  �t .�t / D �. Differentiating in time, and
assuming that Xt is a vector field that generates  t , we obtain @t�t C d.iXt

�t / D 0; or
d.� C iXt

�t / D 0: We now inverse the procedure. Let .Xt /t2Œ0;1� be a family of vector
fields on W such that

8t 2 Œ0; 1�; 8x 2 W ; iXt .x/�t .x/ D ��.x/: (3.14)

Since �t is non-degenerate, Xt is uniquely defined, smooth and by (3.8),

8t 2 Œ0; 1�; kXtkC0.W/ �
2

S.�;W/
k�kC0.W/: (3.15)

Let � W W ! Œ0; 1� be a smooth cut-off function such that �V D 1 and � has compact
support in W . Let . t /t2Œ0;1� be the 1-parameter family of diffeomorphisms associated
to �Xt . By Lemma 4.4,

8t 2 Œ0; 1�; d. t ; Id/ �
2t

S.�;W/
k�kC0.W/: (3.16)

By hypothesis on k�k, this implies that  t .U/ � V for all t 2 Œ0; 1�. Since �D 1 over V ,
we obtain  �1�1 D � over  1.U/ � V .

We now assume that (3.13) is satisfied and want a bound for the derivative of  1.
Differentiating (3.14) gives iXt

r�t C irXt
�t D �r� over W for all t 2 Œ0; 1�, so that

max
t2Œ0;1�

krXtkC0.W/ �
2

S.�;W/
.kr�tkC0.W/kXtkC0.W/ C kr�kC0.W//

and maxt2Œ0;1� kr.�Xt /k � maxt2Œ0;1�.krXtkC0 C kd�k kXtkC0/: By Lemma 4.4
and (3.16), this implies that maxt2Œ0;1� kd tkC0 � C 0; where C 0 depends only on the
derivative of the metric on W , on C and on �, hence on .V ;W/.

In Corollary 3.6 below, we apply the latter proposition to the situation that is of
interest for us: the construction of a symplectomorphism ‰ between a symplectic sub-
manifold† in an ambient manifold .M;!/ and another submanifold �.†/ equipped with
the restriction of another symplectic structure ! C d� which is close to !. Then the proof
of Proposition 3.3 will be a direct consequence of Corollary 3.6.
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Corollary 3.6. Assume the hypotheses of Proposition 3.3.

(1) There exists a smooth isotopy of embeddings .‰t /t2Œ0;1� W †\W ! �.†/ satisfying

8t 2 Œ0; 1�; ‰�t ..!C td�/jT�.†//D !jT† on U \† with ‰t .U \†/�W \ �.†/;

and

d.‰1; Idj†\W / �
2

S.!jT†; W \†/
k��.�C �/ � �kC0.W / C d.�; Id/:

(2) If furthermore the hypotheses of Proposition 3.3 (3) are satisfied, there exists C 0 > 0
depending only on U; V; †, the C 1 norm of h on W and on C , such that
kd‰tkC0.†\W / � C

0 for all t 2 Œ0; 1�.

Proof. Let j W†!W be the natural injection,� WD j �! and � WD j �.��.�C�/� �/;
so that j �.��.! C d�// D �C d�: Choosing the metric H on † to be the one induced
by the ambient metric h, the various estimates for � are bounded by the ones for
��.�C�/� �, so that, using the fact that the induced distance in† is larger than the one
in M ,

k�kC0.W\†/ �
1
2
S.!jT†; W \†/ dist†.U \†; @V \†/;

kd�kC0.W\†/ �
1
2
S.!jT†; W \†/:

By Proposition 3.5 (1) applied to .†; �/, W D † \ W , V D † \ V , U D † \ U ,
H D hjT†; and �, there exists a 1-parameter family of diffeomorphisms  t W † \W !
†\W with compact support inW \† such that for any t 2 Œ0; 1�,  t .U \†/� V \†,

d. t ; Id/ �
2t

S.!jT†; W \†/
k�kC0.W\†/ � dist.U; @V /; (3.17)

and  �t .j
�.��.! C d�/// D !jT† on U \ †: For any t 2 Œ0; 1�; let ‰t WD � ı  t W

W \†! Y: Then, since by hypothesis d.�; Id/ � dist.V; @W /, we have ‰t .U \†/ �
W \ �.†/ by (3.17). Moreover,

.‰�t .! C d�//jT† D
�
 �t .�

�.! C td�//
�
jT†
D � on U \†:

This proves the first assertion.
Now, assume that the hypotheses of Proposition 3.3 (3) are satisfied. Then

N1.�;W \†/ � C , so that by Proposition 3.5 (2), there exists C 0 > 0 depending only on
.U;V/, the C 1 norm ofH and C such that kd tkC0.W\†/ � C

0. Since kd�kC0.Y / � C ,
we have kd‰tkC0.W\†/ � CC

0, hence the result after changing the definition of C 0.

We can now give the proof of Proposition 3.3, which demonstrates the stability of a
Lagrangian submanifold in a symplectic submanifold when the latter and the symplectic
form are perturbed.
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Proof of Proposition 3.3. By Corollary 3.6 there exists a smooth diffeomorphism

‰ W † \ U ! ‰.† \ U/ � �.†/ \W

such that .‰�.!C d�//jT†D !jT† onU \†. This implies that L0 WD‰.L/ is a smooth
compact Lagrangian submanifold in .�.†/ \W; .! C d�/jT�.†//.

Assume now that the hypotheses of Proposition 3.3 (2) are satisfied. Then by Corol-
lary 3.6, d.‰; Id/ � 1

4
DiamM .L/. Let p; q 2 L with DiamM .L/ D dM .p; q/: Then

DiamL0.L0/ � dL0.‰.p/;‰.q// � dM .‰.p/;‰.q//

� dM .p; q/ � 2d.‰; Id/ � 1
2

DiamM .L/:

Assume now that the hypothesis of Proposition 3.3 (3) is satisfied. Again by Corol-
lary 3.6, there exists C 0 such that kd‰kC0.†\W / � C

0: This implies DiamL0.L0/ �

C 0 DiamL.L/: Indeed, let p0; q0 2 L0 and let  W Œa; b� ! L be a shortest path in L

between p WD ‰�1.p0/ 2 L and q WD ‰�1.q0/ 2 L. Then

dL0.p0; q0/ � LengthL0.‰.// D

Z b

a

jd‰./. 0.t//j dt � C 0 Diam.L/:

4. Proof of the main local theorem

4.1. The standard setting

Proof of Theorem 1.23. We adapt the barrier method of the real context in [12] to our
complex algebraic situation, and we will use the quantitative Moser method given by
Theorem 3.4. For the reader’s convenience, we begin with the proof in the case of stan-
dard random polynomials. Then we sketch the proof for the general setting of random
holomorphic sections.

Let p 2 CŒz1; : : : ; zn� be regular such that Z.p/ \ B D †. Since p is regular, there
exists � > 0 such that p W 2B! Cr satisfies the transversality condition

8z 2 2B; jp.z/j < �) T .dp.z// > �; (4.1)

where T is defined by (3.1).
Since the probability measure is invariant under the symmetries of CP n, as also is the

assertion of Theorem 1.23, it is enough to prove the theorem for x D Œ1 W 0 W � � � W 0�. Let
z be the local holomorphic affine coordinates:

z D .z1; : : : ; zn/ WD

�
Z1

Z0
; : : : ;

Zn

Z0

�
2 Cn

defined on CP n n ¹Z0 D 0º: Fix " > 0 and let p";d .z/ WD p.z
p
d
"
/: Note that Z.p";d /

D
"p
d
†. Then for any d � d.p/, let

P";d .Z/ WD Z
d
0 p";d

�
Z1

Z0
; : : : ;

Zn

Z0

�
2 .Cd

homŒZ0; : : : ; Zn�/
r : (4.2)
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By construction,Z.P";d /�CP n intersects the affine coordinate ballB.0; "=
p
d/ around

Œ1 W 0 W � � � W 0� along a small homothetical copy of † and contains a copy of L. Notice
that P";d is singular, since Z.P";d / contains the hyperplane ¹X0 D 0º with multiplicity
d � d0.

In order to apply Theorem 3.4 (1), we must have a bound for the perturbation of !0
into !. For this, in our affine coordinates, let �FS D d

c log.1C jzj2/ and �0 D d c jzj2,
that is,

�FS D
1

2i

Pn
iD1.zid Nzi � Nzidzi /

1C jzj2
:

By definition !FS D d�FS and !0 D d�0, so that �FS D �0 C O.kzk
3/, and d�FS D

!0 C O.kzk
2/: Let  be the linear map  .z/ D z "p

d
. Then there exists a universal

constant K > 0 such that the pull-backs � D d
"2 

��FS and ! D d
"2 

�!FS satisfy

8d � dL WD
16K

min.1;DiamZ.p/.L//
; k� � �0kC0.2B/ C k! � !0kC0.2B/

� K
"2

d
�
1

16
min.1;DiamZ.p/.L//;

which is the bound needed in Theorem 3.4 for the perturbation form � and its differential
(see (3.9) and (3.10)).

Now let HP WD P?
";d

be the space orthogonal to P";d in .Cd
homŒZ�; h ; i/: We use a

decomposition for our random polynomials adapted to P";d and HP . Since a random
polynomial can be written in any fixed orthonormal basis, we can decompose our random
polynomial P as

P D a
P";d

kP";dkL2

CR; (4.3)

where a is a complex Gaussian variable and R 2 HP is a Gaussian random polynomial
for the induced law on HP and independent of a. The L2-norm of P";d is computed by
Lemma 4.6 below. We want to prove that with a uniform positive lower bound,R does not
perturb the first term too much, so that P still vanishes on a hypersurface diffeomorphic
to †. Hence, we need to know when the vanishing locus of a perturbation of a function
gives a diffeotopic perturbation of the vanishing locus of the function. For this, for any
d � d.p/, we apply Theorem 3.4 to

8z 2 2B; f .z/ WD aP";d

�
1; z

"
p
d

�
D ap.z/ and g.z/ WD kP";dkL2R

�
1; z

"
p
d

�
:

By (4.1) we have

8a 2 C�; 8z 2 2B; jf .x/j < jaj�) T .df .x// > jaj�:

We want now to give a uniform lower bound for the probability that the pair of random
functions .f; g/ on 2B satisfies the various conditions of Theorem 3.4. In order to control
the perturbation g, we decompose it as

g D 1
2
p1 C

1
2
p2 WD

1
2
.g C f /C 1

2
.g � f /:
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Note that the law of p1 WD g C f is the same as that of r.z/ WD kP";dkL2P.1; z "p
d
/;

where P follows the Fubini–Study law. The same holds for p2 WD g � f . We use the
trivial inequality

E sup
2B
jgj � 1

2

�
E sup
2B
jp1j C E sup

2B
jp2j

�
� E sup

2B
jr j; (4.4)

and similarly for the average of the derivative of g. Hence, it is enough to bound from
above the norms of a random q.

By the Markov inequality, the independence between f and p1, p2, the bound (4.4),
Remark 4.7 and Lemma 4.8, there exists KP > 0 depending only on P such that for all
0 < " � 1, d � d.p/, F > 0, 0 < ˛ � 1, and j 2 ¹0; 1; 2º,

Pd Œ9a 2 C�; kgkC1 � jaj�=8; cj .jaj�; f; g/ � ˛�

� Pd

�
F � jaj; kgkC1 � F�=8; kgkCj � F˛

�2jC2

kpk
2jC1

C3

�
�
1

�

Z
F<jaj

e�jaj
2

jdaj

�
1 �

K2P
"2d.p/˛2F 2

�
: (4.5)

Recall that cj is defined by (3.2). For j D 2, let F D F" WD 2 KP

˛"d.p/ and ˛ D
1
16

DiamR2n.L/. Then there exists a constant CP > 0 depending only on P such that
for all d � d.p/ and 0 < " � 1, the probability (4.5) is bounded from below by
CP exp.� CP

"2d.P / Diam2

R2n
.L/
/: By Theorem 3.4 (1–3), there exists C 00 depending only on

DiamR2n.L/ such that for d � max.d.p/; dL/; with the same probability, there exists a
topological ball B satisfying 1

2
B � B � 3

2
B, and a compact smooth Lagrangian subman-

ifold L0 of .Z.f C g/ \ B;!jZ.fCg// satisfying

.L; Z.f / \ B/ �diff .L
0; Z.f C g/ \ B/

with 1
2

DiamZ.f /.L/ � DiamL0.L0/ � C 00 DiamL.L/: Here, the metrics are the various
restrictions of the standard metric g0 on the ball. However, the push-forward of the metric
g! on the unit ball by the coordinates z"=

p
d converges uniformly in 0 � " � 1 to g0

when d grows to infinity. This implies the theorem.

4.2. The general Kähler setting

The generalization of the proof of Theorem 1.23 to random holomorphic sections rests
on the concept of peak sections, as in [12] and [13]. This object was used by Tian [28]
to give estimates for the Bergman kernel, and by Donaldson [7] to prove the existence of
codimension 2 symplectic submanifolds. In a way, they were already used by Hörmander
to solve the Levi problem for Stein manifolds [17, Theorem 5.1.6]. They are used in the
parallel paper [11] for a deterministic proof of Corollary 1.20.

Let .n; r; X; L; E; hL; !; g! ; hE ; dvol; .Pd /d�1/ be an ample probabilistic model.
A peak section of L˝d at x 2 X is a holomorphic section whose norm decreases expo-
nentially fast outside x, and almost vanishes at scale� 1=

p
d , like Xd0 in the standard
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projective case near the point Œ1 W 0 W � � � W 0�. One of their crucial features is that a given
peak section times the monomials (1.1) in normal holomorphic coordinates form asymp-
totically an orthonormal family, which makes the general Kähler situation locally very
similar to the standard projective one.

Proof of Theorem 1.18. Let x 2 X , and e a local holomorphic trivialization of L near x
such that kekhL

is locally maximal at x with ke.x/khL
D 1. Then there exists a uniform

(in x 2 X ) constant c > 0 such that for any y in a fixed neighborhood of x,

ke˝d .y/khL
� exp.�cdkx � yk2/: (4.6)

This is implied by the fact that the curvature of hL is a Kähler form and the uniformity is
implied by the compactness of X . Again, Xd0 D e

d in the standard case. Let .e1; : : : ; er /
be a local holomorphic trivialization ofE, orthonormal at x. Then .e1˝ ed ; : : : ; er ˝ ed /
is a local holomorphic trivialization ofE˝Ld whose coordinates are called peak sections
for x. Now, let .p1; : : : ; pr / be a polynomial map that defines the complex algebraic
hypersurface †, and

s";d;p WD .pi .�
p
d="/ei /1�i�r ˝ e

d ;

which is a section of E ˝ Ld defined in a fixed neighborhood of x, and is the equiv-
alent of P";d (see (4.2) in the standard case). Now by the Hörmander L2-estimates
(see [17] or [27] for a bundle version), s";d;p can be perturbed to a global section
�";d;p 2 H

0.X; E ˝ Ld /. Moreover, this is a classical result in Hörmander theory that
the C 1 error produced by the perturbation on B.x; .log d/=

p
d/ is bounded by exp.�cd/

[12, Lemma 3.5]. Here, the estimates (4.6) are crucial. By Lemma 3.1 this implies that
Z.s";d;p/ is a complex .n � r/-submanifold which is an isotopic perturbation of Z.p/.

The rest of the proof is very similar to the standard case. We decompose the random
section s 2 H 0.X;E ˝ Ld / as

s D a
s";d;p

ks";d;pkL2

C �;

where � 2 s?
";d;p

and s?
";d;p

is equipped with the restriction of the Gaussian measure, and
a follows a complex normal lawNC.0; 1/. The L2-norm of s";d;p has a similar equivalent
to kP";dkL2 given by Lemma 4.6. Then we look at the situation on B.x; "=

p
d/ which

becomes a fixed B � Cn after rescaling, and the sections are trivialized as functions with
values in Cr . Lemma 4.8 still holds for the trivialization q of the perturbation. In its
proof of it, the only essential adaptation in the bundle case is the estimate (4.10), where
the modulus of the function is compared on B.0; "=

p
d/ with its Fubini–Study norm. In

the present situation, a similar comparison holds, since the norm of ed varies only by a
uniform positive multiplicative constant over B.x; "=

p
d/.

The Lagrangian part of the proof is the same, since as coordinates at a point x 2 X
we can choose holomorphic coordinates z such that ! D z�!0 at x, so that we can find
a 1-form � in the chart such that � � z��0 D O.jzj/, which is the only two things we
need.
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Remark 4.1. Instead of peak sections, we could use the Bergman kernel, the Schwartz
kernel for the projection onto the space of holomorphic sections, and the 2-point correla-
tion function for our random model. This kernel converges at scale 1=

p
d to a universal

kernel, the Bargmann–Fock kernel [4], which explains why the results on standard Fubini–
Study random polynomials are similar to those for random holomorphic sections. This
universality can be proved by using peak sections [28]. The kernel approach has the
virtue that parts of the proof can be adapted to other random models. However, we must
not overestimate this interest for some reasons. Firstly, the fact that the zeros of the sec-
tions of given degree have the same topology and symplectomorphism type is very much
dependent on holomorphy, or at least asymptotic holomorphy in the Donaldson [7] and
Auroux settings [2]. Secondly, the projective hypersurface inherits a natural symplec-
tic form, which is rarely the case for other models. Thirdly, the barrier method is very
much adapted to explicit local sections, like peak sections. Fourthly, the fact that this
model is particularly well suited for polynomials is not directly seen from the kernel
and needs some asymptotic computation. Lastly, the Bergman kernel between x and y
is essentially represented by the value of the peak section associated to x evaluated
at y.

We finish this section with the proof that the smooth vanishing loci all have the same
symplectomorphism type:

Proposition 4.2. Let 1 � r � n be integers, E ! X be a holomorphic vector bundle
of rank r , and L ! X be a holomorphic line bundle equipped with a metric h with
positive curvature �i!. For any degree d � 1, denote by H 0

reg.X; E ˝ L
d / the space

of holomorphic sections of E ˝ L˝dwhich vanish transversally. Then for any d large
enough,

8.s; t/ 2 H 0
reg.X;E ˝ L

d /2; .Z.s/; !jZ.s// �symp .Z.t/; !jZ.t//:

Proof. First, by Bertini’s theorem [14, p. 137], H 0
sing WD H 0.X; E ˝ Ld / n

H 0
reg.X;E ˝L

d / is of real codimension at least 2 inH 0. This implies that any s; t 2H 0
reg

are joined by a path of sections inH 0
reg. By the Ehresmann theorem, this implies thatZ.s/

is diffeomorphic to Z.t/. Now, for a continuous family .st /t2Œ0;1� of sections in H 0
reg,

since ! is the curvature of a line bundle, as also is its restriction to Z.st /, we have
Œ!jZ.st /� 2 H

2.Z.st /;Z/. Consequently, the pull-back in H 2.Z.s0/;Z/ of Œ!jZ.st /� by
the diffeomorphism  t W Z.s0/ ! Z.s1/ given by the former argument is constant. In
other words,  �t Œ!jZ.st /� D Œ!jZ.s0/�. Then the Moser argument (see [18, Theorem 3.17])
implies that the zero sets are in fact symplectomorphic.

4.3. Some simple lemmas

In this subsection we give the proofs of elementary and technical lemmas that are used in
the core of the proof of the quantitative Moser deformation, Proposition 3.3.
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Lemmas for the deformations

Lemma 4.3. Let m � 1 be an integer, .Xt /t2Œ0;1� be a C 2 family of vector fields on Rn

with compact support, and .�t /t2Œ0;1� be the associated flow.

(1) For all t 2 Œ0; 1�, k�t � IdkC0.Rm/ � t maxt2Œ0;1� kXtkC0.Rm/:

(2) Let 0 � j � 2 and C > 0 be such that maxt2Œ0;1� Nj .Xt ;Rm/ � C . Then there
exists C 0 depending only on C such that

8t 2 Œ0; 1�; k�t � IdkCj .Rm/ � C
0t max
t2Œ0;1�

Nj .Xt /:

Proof. First, it is classical that �t is C k in .t; x/. We have

8.x; t/ 2 Rn � Œ0; 1�; �t .x/ � x D

Z t

0

Xs.�s.x// ds;

which implies k�t � IdkC0.M/ � maxt2Œ0;1� kXtkC0.M/ and

d�t � Id D
Z t

0

dxXs.�s.x// ı d�s ds:

Consequently, kd�t � IdkC0 �maxt kdXtkC0.t C
R t
0
kd�s � Idkds/: By Gronwall, this

implies

kd�t � IdkC0 � t max
t
kdXtkC0 exp

�
max
t
kdXtkC0

�
� teCN1.X/: (4.7)

Now, d2.�t � Id/ D d2�t D
R t
0
d2xXs.�s/d�s ˝ d�s C dxXs ı d

2�sds: Together with
estimate (4.7), this implies

kd2�tk � max
t
kd2XtkC0.1C CeC /2 Cmax

t
kdXtkC0

Z t

0

kd2�sk ds;

so that by Gronwall, kd2�tk � maxt kd2XtkC0.1C CeC /2 exp.C /:

Unfortunately, for manifolds we need a simpler version of the latter affine lemma.

Lemma 4.4. Let .M; h/ be a smooth Riemannian manifold, .Xt /t2Œ0;1� be a C k family
of vector fields with compact support N and .�t /t2Œ0;1� the 1-parameter group of diffeo-
morphism generated by .Xt /t .

(1) For all t 2 Œ0; 1�, d.�t ; Id/ � t maxs2Œ0;1� kXskC0.M/:

(2) Let C > 0 be such that maxt2Œ0;1�N1.Xt ;Rm/ � C . Then there exists C 0 depending
only on C and the C 1 norm of the metric on N such that maxt2Œ0;1� kd�tkC0.M/

� C 0:

Proof. Again, it is classical that �t is C k in .t; x/, and

8.x; t/ 2M � Œ0; 1�; d.�t .x/; x/ � Length.¹�t .x/ºt2Œ0;1�/ � t max
s2Œ0;1�

kXskC0.M/:
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Let x 2M in a local chart. If t is small enough, in coordinates we have

�t .x/ � x D

Z t

0

X.�s.x/; s/ ds;

so that d�t � Id D
R t
0
dxX.�s.x/; s/ ı d�s ds: Then there exists a constant C depending

only on the compact support of X and the C 1 norm of the metric h in coordinates such
that for any vector Y 2 Rn,

jd�t .Y /j�t .x/ � C jY jx

�
1C max

s2Œ0;t�
kdxXskC0.M/

Z t

0

kd�sk�s.x/ ds
�
;

which implies kd�tk�t .x/ � C.1Cmaxs2Œ0;t� kdxXskC0.M/k
R t
0
kd�sk�s.x/ ds/, and by

Gronwall,
kd�tkC0 � C exp

�
C max
Œ0;1�
kdxXsk

�
;

so that there exists another constant C 0 depending on the chart such that

kd�tkC0 � C exp
�
C 0max

Œ0;1�
N1.Xs/

�
:

Since we can cover the support of X by a finite number of charts, this implies the result.

The following lemma was used in the proof of the last assertion (3.3) of Proposi-
tion 3.1.

Lemma 4.5. Let m � 1 and 1 � p � m be integers, and ˆ W M.p; m/ � Rm ! Rm,
where for any .A; Y / 2 M.p; m/ � Rm, ˆ.A; Y / denotes the orthogonal projection of
the origin onto the space ¹X 2 Rm j AX D Y º. Then, for any 0 � j � 2 and for any
.A; Y / 2M.p;m/ �Rm such that A is onto,

ˆ.A; Y / � T .A/�2kAk jY j;

kdAˆ.A; Y /k � 3T .A/
�4
kAk2jY j and kdYˆ.A; Y /k � T .A/

�2
kAk;

kd2
A2ˆ.A; Y /k � 14kAk

3T .A/jY j�6 and kd2AYˆk � 3T .A/
�4
kAk2;

where T has been defined in .3.1/.

Proof. Write A D .A1; : : : ; Ap/t , where Ak 2 Rm are column vectors. Since A is onto,
.kerA/? D hA1; : : : ; Api and there exist a unique �.A; Y / D .�1; : : : ; �p/ 2 Rp such
that ˆ.A; Y / D

Pp
iD1 �iAi 2 A

.�1/.¹Y º/, which means AAt� D Y , so that

ˆ.A; Y / D ŒK.A/Y;A�;

where Œ�; A� WD
Pp
iD1 �iAi and K.A/ WD .AAt /�1. This implies that ˆ is smooth near

.A; Y / for any A onto, and linear in Y . Since

K.A/ � T .A/�2;
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by Cauchy–Schwarz jˆ.A; Y /j � T .A/�2kAk jY j: Differentiating gives

dˆ.A; Y / D ŒdK.A/Y CKdY;A�C ŒKY; dA� (4.8)

so that kdYˆk � T .A/�2kAk: If Q.A/ WD AAt , then kdQ.A/k � 2kAk and

8B 2M.p;m/; dK.A/.B/ D �KdQ.A/BK;

so that, using T .A/ � kAk,

kdK.A/k � 2T .A/�4kAk;

kdAˆk � 2T .A/
�4
kAk2jY j C T .A/�2jY j � 3T .A/�4kAk2jY j:

Now

d2ˆ.A;Y /D Œd2K.A/Y;A�C Sym
�
ŒdK.A/Y;dA�C ŒK.A/dY;dA�C ŒdK.A/dY;A�

�
;

(4.9)
where Sym means that the bracket is symmetrized in the two vectors inM.p;m/�Rm to
which d2ˆ.A;Y / is applied. Since d2K.A/D Sym KdQKdQK �Kd2QK; we obtain

kd2K.A/k � 8kAk2T .A/�6 C 2T .A/�4 � 10kAk2T .A/�6;

kd2
A2ˆ.A; Y /k � 10kAk

3T .A/�6jY j C 4T .A/�4kAk jY j � 14kAk3T .A/�6jY j;

kd2AYˆk � 3T .A/
�4
kAk2:

Lemmas for the barrier methods

Lemma 4.6. Let 0 < "� 1, p 2 .CŒz1; : : : ; zn�/r and P";d DZd0 p.
p
d
"
�/. Then, uniformly

in ",

kP";dkL2 �
d!1

1

�dn=2

p� �"
�

BF
;

where kpk2BF WD
1
�n

R
Cn jp.y/j

2e�jyj
2
jdyj defines the Bargmann–Fock norm of p.

Remark 4.7. Note that for any p, there exists a constant c > 0 such that for any 0 < "� 1
and d � 1,

kP";dkL2 �
c

dn=2"degp
:

Proof of Lemma 4.6. We have, by definition of the Fubini–Study measure on CP n,

kP";dk
2
L2 D

Z
S2nC1

jP";d j
2 d�

2�
;

where d� is the canonical measure on the sphere with volume 1 and the 2� factor corre-
sponds to the volume of the fiber U.1/ of the quotient S2nC1 ! CP n. SinceZ

CnC1

jP";d j
2e�kZk

2

jdZj D

Z 1
0

r2dC2nC1e�r
2

dr

Z
S2nC1

jP";d j
2 d�

D .d C n/Š

Z
S2nC1

jP";d j
2 d�;



Systoles and Lagrangians of random complex algebraic hypersurfaces 37

where jdZj denotes the Lebesgue measure on CnC1, we have

kP";dk
2
L2 D

1

2�.d C n/Š

Z
CnC1

jZ0j
2d

ˇ̌̌̌
p

�p
d

"

Z0

Z0

�ˇ̌̌̌2
e�kZk

2

jdZj;

where Z0 D .Z1; : : : ; Zn/. We use the change of variable .W0; w/ D .Z0; Z0=Z0/; then
.w0; w/ D .W0

p
1C jwj2; w/, and finally y D

p
d so that

kP";dk
2
L2

D
1

2�.d C n/Š�nC1

Z
CnC1

jW0j
2.dCn/

ˇ̌̌̌
p

�p
d

"
w

�ˇ̌̌̌2
e�jW0j

2.1Ckwk2/
jdW0j jdwj

D
1

2�.d C n/Š�nC1

�

Z
CnC1

jw0j
2.dCn/e�jw0j

2

ˇ̌̌̌
p

�p
d

"
w

�ˇ̌̌̌2
1

.1C kwk2/dCnC1
jdw0j jdwj

D
1

dn
1

2�.d C n/Š�nC1

�

Z
C
jw0j

2.dCn/e�jw0j
2

jdw0j

Z
Cn

ˇ̌̌̌
p

�
y

"

�ˇ̌̌̌2
1�

1C 1
d
kyk2

�dCnC1 jdyj
�

d!1

1

dn
1

�nC1

Z
Cn

ˇ̌̌̌
p

�
y

"

�ˇ̌̌̌2
e�jyj

2

jdyj

uniformly in " � 1.
Note that for any .i0; : : : ; in/ 2 NnC1 such that

P
k ik D d ,

kZ
i0
0 � � �Z

in

n k
2
L2 D

1

2�.d C n/Š

Z
CnC1

nC1Y
kD0

jZ
ik
k
j
2e�kZk

2

jdZj

D
1

2�.d C n/Š

nC1Y
kD0

Z
C
jzj2ike�jzj

2

jdzj

D
1

.d C n/Š

nC1Y
kD0

Z 1
0

r2ikC1e�r
2

dr D
i0Š � � � inŠ

.d C n/Š
:

The next lemma was proved in a real and general Kähler situation in [12]. We give
a simple proof in the polynomial setting, in order for the article to be self-contained.

Lemma 4.8. Let 1 � r � n be integers, " > 0, R 2 .Hd;nC1/r be a random polynomial
mapping of maximal degree d and q.z/ D R.1; z"=

p
d/, where z D .z1; : : : ; zn/. Then

there exists C > 0 depending only on n and r such that for any d � 1, any 0 < " � 1, and
any 0 � j � 2,

E
�

sup
2B
jd j qj2

�
� Cn

.d C n/Š

d Š
:
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Proof. Since q is holomorphic, we can use the mean value inequality for plurisubhar-
monic functions applied to jqj2 (see [17]):

8z 2 2B; jq.z/j2 �
1

Vol B

Z
zCB
jq.u/j2du;

so that E.sup2B jqj
2/ � 1

Vol B

R
3B E.jq.u/j2/ du: By (1.2) we have

8z 2 2B; E.jq.z/j2/ D E.jR.1; z"=
p
d/j2/

D E.kRk2FS.1; z"=
p
d//.1C jzj2"2=d/2d : (4.10)

By definition of the measure, E.kRk2FS/ is constant over CP n. Remembering that the
coordinates of R are independent random polynomials, we obtain (see decomposi-
tion (1.2))

E.kRk2FS/.1; z"=
p
d/ D E.kRk2FS.0// D rE

�
.d C n/Š

d Š
ja0j

2

�
D r

.d C n/Š

d Š
:

Moreover, .1C jzj2"=d/2d � e18"
2

for all d � 1 and z 2 2B, hence the first estimate of
the lemma.

For the second estimate, for any holomorphic function f D .f1; : : : ; fr / W Cn ! Cr

define

kdf k22 WD

rX
iD1

nX
jD1

ˇ̌̌̌
@fi

@zj

ˇ̌̌̌2
:

Notice that kdf k � kdf k2, where kdf k is the operator norm used in Proposition 3.1.
Similarly to the first estimate, since the complex derivatives of q are holomorphic, we
have

E
�

sup
2B
kdqk22

�
�

1

Vol B

Z
3B

E.kdq.u/k22/ du

with kdq.u/k22 D
"2

d
kdZ0R.1; u"=

p
d/k22; where Z0 D .Z1; : : : ; Zn/. As before,

E.kdZ0P.1; u"=
p
d/k22/ � E.kdZ0P k2FS.1; 0//e

18"2

with, using the linear part in Z0 of the decomposition (1.2),

E.kdZ0P.1; 0/k2FS/ D r

nX
iD1

E

�
.d C n/Š

.d � 1/Š1Š
ja0���1���0j

2

�
D rn

.d C n/Š

.d � 1/Š
;

which implies the second estimate of the lemma. The last estimate is similar.
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